WO2024024700A1 - 液晶組成物、光学異方性膜、近赤外線吸収色素 - Google Patents

液晶組成物、光学異方性膜、近赤外線吸収色素 Download PDF

Info

Publication number
WO2024024700A1
WO2024024700A1 PCT/JP2023/026898 JP2023026898W WO2024024700A1 WO 2024024700 A1 WO2024024700 A1 WO 2024024700A1 JP 2023026898 W JP2023026898 W JP 2023026898W WO 2024024700 A1 WO2024024700 A1 WO 2024024700A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
compound
optically anisotropic
wavelength
Prior art date
Application number
PCT/JP2023/026898
Other languages
English (en)
French (fr)
Inventor
佑紀 齊部
悟史 岡田
奈保実 高田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024024700A1 publication Critical patent/WO2024024700A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a liquid crystal composition, an optically anisotropic film, a near-infrared absorbing dye, etc.
  • a retardation film (optically anisotropic film) having refractive index anisotropy is applied to various uses such as antireflection films for display devices and optical compensation filters for liquid crystal display devices.
  • Patent Document 1 and Patent Document 2 describe an optically anisotropic film having specific optical properties, which is formed from a composition containing a liquid crystal compound and an infrared absorbing dye.
  • Patent Document 1 and Patent Document 2 are expected to have a small molar absorption coefficient at the maximum absorption wavelength, and it is necessary to add a large amount in order to exhibit desired optical properties.
  • the present invention provides a near-infrared absorbing dye and a liquid crystal composition useful for forming an optically anisotropic film that can exhibit optical properties more efficiently, and an optically anisotropic film formed from the liquid crystal composition. With the goal.
  • the present invention relates to the following liquid crystal composition.
  • a liquid crystal composition comprising a liquid crystal compound and a near-infrared absorbing dye having a mesogenic group,
  • the near-infrared absorbing dye has a molar extinction coefficient of 200000 L/(mol cm) or more at the maximum absorption wavelength in dichloromethane,
  • the near-infrared absorbing dye has the following formula (1), where A1 is the absorbance in the long axis direction of the molecule and A2 is the absorbance in the short axis direction at a wavelength of 650 to 1100 nm measured under the following measurement conditions (A).
  • a liquid crystal composition that satisfies the following.
  • A1 ⁇ A2 Measurement conditions (A): Absorption obtained by producing an optically anisotropic film using a composition containing a near-infrared absorbing dye and a liquid crystal compound, and irradiating the obtained optically anisotropic film with polarized light parallel to the alignment direction of the liquid crystal compound. Measure the absorbance A1 in the long axis direction of the near infrared absorbing dye molecule from the spectrum, and measure the absorbance A2 in the short axis direction of the near infrared absorbing dye molecule from the absorption spectrum obtained by irradiating polarized light perpendicular to the alignment direction of the liquid crystal compound. do.
  • the present invention also relates to an optically anisotropic film containing a cured product of the above liquid crystal composition.
  • the present invention further relates to the following near-infrared absorbing dye.
  • a compound represented by the following formula (3-1A), a compound represented by the following formula (3-1B), a compound represented by the following formula (3-2), or a compound represented by the following formula (3-3) A near-infrared absorbing dye consisting of a compound that
  • R L A monovalent mesogenic group represented by the following formula (2), and two R L may be the same or different.
  • RL ' a hydrogen atom, a monovalent organic group having electron-withdrawing properties, or a monovalent organic group having polymerizability.
  • Cy an arylene group that may have a substituent, a heteroarylene group that may have a substituent, or a cycloalkylene group that may have a substituent.
  • n An integer from 2 to 9.
  • Sp1, Sp2, Sp3 each independently one type of group or bond selected from a single bond, an alkylene group, an alkenylene group, an alkynylene group, a carbonyl group, an ester bond, an amide bond, and an ether bond, or a combination thereof.
  • X 1 A carbon atom or nitrogen atom that may have a monovalent substituent.
  • Y 1 oxygen atom, sulfur atom or NH group.
  • X 2 sulfur atom or oxygen atom.
  • Y 2 A carbon atom or nitrogen atom that may have a monovalent substituent.
  • R 11 , R 12 , R 21 , R 22 , R 31 , R 32 Each independently may have a substituent, an unsaturated bond between carbon atoms, an oxygen atom, an alicyclic ring or an aromatic ring
  • An alkyl group having 1 to 20 carbon atoms which may contain R 13 , R 14 , R 23 , R 33 : hydrogen atom or alkyl group having 1 to 12 carbon atoms.
  • R 11 and R 12 , R 11 and R 13 , R 12 and R 13 , and R 13 and R 14 may be bonded to each other to form a ring.
  • R 21 and R 22 , R 21 and R 23 , and R 22 and R 23 may be bonded to each other to form a ring.
  • R 31 and R 32 , R 31 and R 33 , and R 32 and R 33 may be bonded to each other to form a ring.
  • the present invention it is possible to provide a liquid crystal composition useful for forming an optically anisotropic film that can exhibit optical properties more efficiently, and an optically anisotropic film formed from the liquid crystal composition. Further, the present invention can provide a novel near-infrared absorbing dye.
  • the compound represented by formula (A1) is also referred to as compound (A1), and the same applies to cases where it is represented by other formulas.
  • the dye composed of compound (A1) is also referred to as dye (A1), and the same applies to cases where it is expressed by other formulas.
  • the group represented by formula (1a) is also referred to as group (1a), and the same applies to groups represented by other formulas.
  • " ⁇ " representing a numerical range includes the upper and lower limits.
  • the alkyl group may be linear, branched, cyclic, or a combination of these structures.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, unless otherwise specified, with a fluorine atom being preferred.
  • an aryl group refers to a group bonded via a carbon atom constituting an aromatic ring of an aromatic compound, such as a benzene ring, a naphthalene ring, or a biphenyl ring.
  • heteroaryl group refers to a group bonded via a carbon atom or a heteroatom constituting an aromatic ring of an aromatic compound having a heteroatom, such as a furan ring, a thiophene ring, or a pyrrole ring.
  • a squarylium compound refers to a compound having a squarylium skeleton represented by the following formula (S1) that can have a resonance structure represented by the following formula (S2) in the structural formula.
  • the squarylium skeleton is represented by either formula (S1) or formula (S2).
  • Re( ⁇ ) represents in-plane retardation at wavelength ⁇ .
  • Retardation is measured using a retardation measuring device (for example, RETS-100 manufactured by Otsuka Electronics).
  • the liquid crystal composition of the present invention includes a liquid crystal compound and a near-infrared absorbing dye having a mesogenic group, and the near-infrared absorbing dye has a molar extinction coefficient of 200,000 L/(mol ⁇ cm) or more at the maximum absorption wavelength in dichloromethane.
  • the near-infrared absorbing dye is determined by the following formula (1), where A1 is the absorbance in the long axis direction of the molecule and A2 is the absorbance in the short axis direction at a wavelength of 650 to 1100 nm measured under the measurement conditions (A) described below. ) is satisfied.
  • the near-infrared absorbing dye in the present invention satisfies the following formula (1), where A1 is the absorbance in the long axis direction of the molecule at a wavelength of 650 to 1100 nm, and A2 is the absorbance in the short axis direction of the molecule. A1 ⁇ A2 (1)
  • the near-infrared absorbing dye in the present invention is a dye having dichroism in the near-infrared region because the absorbance A1 in the long axis direction of the molecule and the absorbance A2 in the short axis direction are different at wavelengths of 650 to 1100 nm. This makes it possible to control the optical properties of the optically anisotropic film at wavelengths of 650 to 1100 nm.
  • the liquid crystal compound is not limited as long as it can form an optically anisotropic film, and includes, for example, a liquid crystal compound exhibiting a nematic phase. Further, the amount of near-infrared absorbing dye added is preferably 0.5 to 10 parts by weight per 100 parts by weight of the liquid crystal compound from the viewpoint of accurate measurement.
  • the refractive index of an organic dye decreases monotonically as the wavelength increases in a wavelength region away from the intrinsic absorption wavelength. Such a phenomenon is called normal dispersion.
  • the refractive index changes rapidly as the wavelength increases, which is called anomalous dispersion.
  • the refractive index rapidly decreases on the short wavelength side of the specific absorption wavelength, and rapidly increases on the long wavelength side of the specific absorption wavelength.
  • an organic dye that absorbs in the UV region satisfies B1 ⁇ B2, where B1 is the absorbance in the long axis direction of the molecule at a wavelength of 250 to 450 nm and B2 is the absorbance in the short axis direction, the absorbance is large in the visible light region.
  • the refractive index in the short axis direction is smaller than the refractive index in the long axis direction, and furthermore, the refractive index in the short axis direction increases rapidly immediately after the characteristic absorption wavelength, so the refractive index difference on the short wavelength side Decrease.
  • the in-plane retardation of the optically anisotropic film is calculated from the product of the refractive index difference and the film thickness.
  • the in-plane retardation becomes a curve that increases from short wavelength to long wavelength, and can approach ⁇ /4.
  • Re becomes constant and deviates from ⁇ /4.
  • an organic dye that absorbs in the near-infrared region satisfies formula (1)
  • the refractive index in the short axis direction decreases rapidly just before the intrinsic absorption wavelength, so the refractive index on the long wavelength side of the visible light region decreases rapidly. The difference increases. Therefore, by combining an organic dye that absorbs in the UV region, the in-plane retardation increases as the refractive index increases in the long wavelength region that deviates from ⁇ /4, making it possible to approach ⁇ /4 over the entire visible light range.
  • the near-infrared absorbing dye in the present invention has a molar extinction coefficient of 200000 L/(mol ⁇ cm) or more at the maximum absorption wavelength in dichloromethane. This makes it easy to exhibit absorption properties even in a small amount, and for example, sufficient optical properties can be obtained even if the amount added in an optically anisotropic film is small.
  • the molar extinction coefficient is preferably 250000 L/(mol ⁇ cm) or more.
  • the near-infrared absorbing dye in the present invention has a mesogenic group. Since the near-infrared absorbing dye has a mesogenic group, it is easy to align with the liquid crystal compound contained in the composition, and it is easy to control predetermined optical properties.
  • a mesogenic group is a functional group that is rigid and has orientation.
  • the mesogenic group preferably has a structure containing two or more cyclic structures such as an aromatic ring or an alicyclic ring, and more preferably a structure in which such cyclic structures are connected directly or via a linking group.
  • the near-infrared absorbing dye preferably has a maximum absorption wavelength in dichloromethane in a wavelength range of 650 to 1100 nm, more preferably a maximum absorption wavelength in a wavelength range of 700 to 900 nm. This increases the retardation in the long wavelength region and tends to approach ⁇ /4 over the entire visible light range.
  • the near-infrared absorbing dye also preferably satisfies the following spectral characteristics when the transmittance at the maximum absorption wavelength is 10% in the spectral transmittance curve in dichloromethane.
  • the average transmittance at a wavelength of 400 to 500 nm is preferably 95% or more, more preferably 97% or more.
  • the minimum transmittance at a wavelength of 400 to 500 nm is preferably 85% or more, more preferably 90% or more.
  • the average transmittance at a wavelength of 500 to 600 nm is preferably 95% or more, more preferably 97% or more.
  • the minimum transmittance at a wavelength of 500 to 600 nm is preferably 90% or more, more preferably 93% or more. Satisfying the above spectral characteristics is preferable from the viewpoint of high visible light transmittance.
  • the near-infrared absorbing dye has a squarylium skeleton. If the dye has a squarylium skeleton, its absorption in the visible light region is small, so that it is possible to suppress coloring of the resulting optically anisotropic film.
  • R L -D R L (3) As the near-infrared absorbing dye, a compound represented by the following formula (3) is more preferable.
  • D is a divalent group having a squarylium skeleton
  • R L is a monovalent mesogenic group.
  • Two R L may be the same or different.
  • the two mesogenic groups bond symmetrically around the squarylium skeleton, making it easier to align with the liquid crystal compound.
  • the mesogenic group R L is preferably represented by the following formula (2).
  • R L ' is a hydrogen atom, a monovalent organic group having electron-withdrawing properties, or a monovalent organic group having polymerizability.
  • Examples of the monovalent organic group having electron-withdrawing properties include CN, CF 3 , F, and the like.
  • Examples of the monovalent organic group having polymerizability include a polymerizable group capable of radical polymerization or cationic polymerization.
  • a known radically polymerizable group can be used, and an acryloyl group or a methacryloyl group is preferable.
  • a known cationic polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro-orthoester group, and a vinyloxy Examples include groups. Among these, an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferred.
  • R L ' which is the terminal of the mesogenic group
  • R L ' can be selected depending on the purpose of the optically anisotropic film to be obtained.
  • a monovalent organic group with electron-withdrawing properties is preferable
  • a monovalent organic group with polymerizability is preferable, and the hydrogen atom does not depend on the purpose. preferable.
  • Cy is an arylene group that may have a substituent, a heteroarylene group that may have a substituent, or a cycloalkylene group that may have a substituent.
  • the arylene group include a phenylene group, a naphthalene group, and a tetrahydronaphthalene group.
  • the heteroarylene group include a furan ring, a pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, and a benzothiazole ring.
  • Examples of the cycloalkylene group include a cyclohexylene group, a cyclohexelene group, a decahydronaphthalene group, and a dioxane group.
  • Examples of the substituent for Cy include a methyl group and a methoxy group.
  • Sp1, Sp2, and Sp3 each independently represent one type of group or bond selected from a single bond, an alkylene group, an alkenylene group, an alkynylene group, a carbonyl group, an ester bond, an amide bond, and an ether bond. , or a combination of these.
  • the alkylene group is preferably a straight chain alkylene group having 1 to 12 carbon atoms.
  • n is an integer from 2 to 9, preferably from 2 to 6. Furthermore, in formula (2), two or more [Cy-Sp2] structures may be the same or different.
  • the mesogenic group represented by formula (2) preferably includes a structure represented by the following formula.
  • Examples of the near-infrared absorbing dye include a compound represented by the following formula (3-1A), a compound represented by the following formula (3-1B), a compound represented by the following formula (3-2), and a compound represented by the following formula (3-1B). At least one selected from the compounds represented by 3-3) is more preferred.
  • Compounds (3-1A) to (3-3) below have mesogenic groups arranged in a direction perpendicular to the squarylium skeleton at the center of the compound, so the retardation of the optically anisotropic film formed is The squarylium skeleton is likely to be arranged in a direction perpendicular to the phase axis.
  • absorption in the infrared region (particularly wavelengths of 700 to 900 nm) originating from the squarylium skeleton is likely to be obtained in the direction perpendicular to the slow axis of the optically anisotropic film, and an optically anisotropic film exhibiting desired characteristics can be obtained. Easy to obtain. Further, the following compounds (3-1A) to (3-3) have high absorbance and have a molar extinction coefficient of 200000 L/(mol ⁇ cm) or more at the maximum absorption wavelength in dichloromethane, and are therefore preferable.
  • R L is the same as the definition of R L in formula (2) above, and preferred embodiments are also The same is true.
  • X 1 is a carbon atom or nitrogen atom that may have a monovalent substituent. From the viewpoint of improving red transmittance, carbon atoms are preferable, and from the viewpoint of improving blue transmittance, nitrogen atoms are preferable.
  • Monovalent substituents on carbon atoms include hydrogen atoms, halogen atoms, alkyl groups having 1 to 9 carbon atoms, alkenyl groups, alkynyl groups, aromatic rings that may have substituents, hydroxyl groups, carboxy groups, and sulfo groups.
  • a cyano group an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 19 carbon atoms.
  • Y 1 is an oxygen atom, a sulfur atom, or an NH group.
  • Y 1 is one of these elements or groups, the five-membered ring containing Y 1 becomes aromatic, and the blue light transmittance is improved.
  • a sulfur atom is preferable, and from the viewpoint of improving red light transmittance and steepening absorption due to hydrogen bonding, an NH group is preferable.
  • X 2 is a sulfur atom or an oxygen atom. Sulfur atoms are preferred from the viewpoint of improving red light transmittance.
  • Y 2 is a carbon atom or nitrogen atom that may have a monovalent substituent. Nitrogen atoms are preferred from the viewpoint of improving blue light transmittance.
  • Monovalent substituents on carbon atoms include hydrogen atoms, halogen atoms, alkyl groups having 1 to 9 carbon atoms, hydroxyl groups, carboxy groups, sulfo groups, cyano groups, amino groups, and N-substituted amino groups. , a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 19 carbon atoms.
  • R 11 and R 12 may each independently have a substituent, and may have an unsaturated bond between carbon atoms, an oxygen atom, or a fatty acid. It is an alkyl group having 1 to 20 carbon atoms and which may contain a ring or an aromatic ring.
  • the alkyl group may be linear or branched, preferably linear from the viewpoint of orientation, and preferably branched from the viewpoint of solubility.
  • the alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. If it is branched, a branched alkyl group having 3 to 15 carbon atoms is preferred, and a branched alkyl group having 3 to 8 carbon atoms is more preferred.
  • R 11 and R 12 is a branched alkyl group having 3 to 15 carbon atoms, and both R 11 and R 12 are branched alkyl groups having 3 to 8 carbon atoms. is particularly preferred.
  • R 11 and R 12 may be the same or different, but are preferably the same from the viewpoint of symmetry.
  • R11 and R12 have a substituent
  • the carbon number of a substituent is included in the carbon number of R11 and R12 .
  • Substituents include halogen atom, hydroxyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, and carbon number 1 to 19 alkoxy groups are mentioned.
  • R 13 and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Hydrogen atoms are preferred from the viewpoint of orientation.
  • R 11 and R 12 , R 11 and R 13 , R 12 and R 13 , R 13 and R 14 are bonded to each other to form a ring. Good too.
  • the number of members in the ring is preferably 4 to 6.
  • the compound represented by formula (3-1A) includes the compounds shown in the table below.
  • the case where X 1 is a nitrogen atom and Y 1 is an NH group is defined as a compound (3-1Ai)
  • the case where X 1 is a carbon atom and Y 1 is an NH group is defined as a compound (3-1Ai). It is referred to as compound (3-1Aii).
  • each symbol has the same meaning on the left and right sides of the squarylium skeleton.
  • R L is as defined above.
  • the compound represented by formula (3-1B) includes the compounds shown in the table below.
  • compound (3-1B) the case where X 2 is a sulfur atom is referred to as compound (3-1Bi), and the case where X 2 is an oxygen atom is referred to as compound (3-1Bii).
  • each symbol has the same meaning on the left and right sides of the squarylium skeleton.
  • R L is as defined above.
  • R 21 and R 22 may each independently have a substituent, or may contain an unsaturated bond, an oxygen atom, an alicyclic ring, or an aromatic ring between carbon atoms. It is a good alkyl group having 1 to 20 carbon atoms.
  • the alkyl group may be linear or branched, preferably linear from the viewpoint of orientation, and preferably branched from the viewpoint of solubility.
  • the alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. If it is branched, a branched alkyl group having 3 to 15 carbon atoms is preferred, and a branched alkyl group having 3 to 8 carbon atoms is more preferred.
  • R 21 and R 22 is a branched alkyl group having 3 to 15 carbon atoms, and both R 21 and R 22 are branched alkyl groups having 3 to 8 carbon atoms. is particularly preferred.
  • R 21 and R 22 may be the same or different, but are preferably the same from the viewpoint of symmetry.
  • R21 and R22 have a substituent
  • the carbon number of the substituent is included in the carbon number of R21 and R22 .
  • Substituents include halogen atom, hydroxyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, and carbon number 1 to 19 alkoxy groups are mentioned.
  • R 23 is a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Hydrogen atoms are preferred from the viewpoint of orientation.
  • R 21 and R 22 , R 21 and R 23 , and R 22 and R 23 may be bonded to each other to form a ring.
  • the number of members in the ring is preferably 4 to 6.
  • the compound represented by formula (3-2) includes the compounds shown in the table below. Furthermore, in the compounds shown in the table below, each symbol has the same meaning on the left and right sides of the squarylium skeleton. Moreover, R L is as defined above.
  • R 31 and R 32 may each independently have a substituent, or may contain an unsaturated bond, an oxygen atom, an alicyclic ring, or an aromatic ring between carbon atoms. It is a good alkyl group having 1 to 20 carbon atoms.
  • the alkyl group may be linear or branched, preferably linear from the viewpoint of orientation, and preferably branched from the viewpoint of solubility.
  • the alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. If it is branched, a branched alkyl group having 3 to 15 carbon atoms is preferred, and a branched alkyl group having 3 to 8 carbon atoms is more preferred.
  • R 31 and R 32 is a branched alkyl group having 3 to 15 carbon atoms, and both R 31 and R 32 are branched alkyl groups having 3 to 8 carbon atoms. is particularly preferred.
  • R 31 and R 32 may be the same or different, but are preferably the same from the viewpoint of symmetry.
  • R 31 and R 32 have a substituent
  • the number of carbon atoms of the substituent is included in the number of carbon atoms of R 31 and R 32 .
  • Substituents include halogen atom, hydroxyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, and carbon number 1 to 19 alkoxy groups are mentioned.
  • R 33 is a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Hydrogen atoms are preferred from the viewpoint of orientation.
  • R 31 and R 32 , R 31 and R 33 , and R 32 and R 33 may be bonded to each other to form a ring.
  • the number of members in the ring is preferably 4 to 6.
  • the compound represented by formula (3-3) includes the compounds shown in the table below. Furthermore, in the compounds shown in the table below, each symbol has the same meaning on the left and right sides of the squarylium skeleton. Moreover, R L is as defined above.
  • the near-infrared absorbing dye of the present invention can be produced, for example, by the synthesis method shown below.
  • R L CHO can be synthesized, for example, according to a known production method described in paragraph [0131] of Japanese Patent Application Publication No. 2011-207782.
  • R L Br can be synthesized according to the known production method described in, for example, Synlett, 2009, 20, 3279-3282.
  • R L COCl can be synthesized, for example, according to a known production method described in paragraph [0093] of Japanese Patent Application Publication No. 2014-58490.
  • the method for synthesizing the near-infrared absorbing dye (3-2) is shown below. Note that the starting material can be synthesized, for example, according to the known production method described in International Publication No. 2021/112020.
  • R L BPin is, for example, Org. Biomol. Chem. , 2016, 14, 9974-9980 and the like.
  • the method for synthesizing the near-infrared absorbing dye (3-3) is shown below. Note that the starting material can be synthesized, for example, according to the known production method described in International Publication No. 2021/112020.
  • R L BPin is, for example, Org. Biomol. Chem. , 2016, 14, 9974-9980 and the like.
  • the liquid crystal composition of the present invention may contain only one type of near-infrared absorbing dye, or may contain a combination of multiple types of near-infrared absorbing dyes.
  • the content of the near-infrared absorbing dye in the liquid crystal composition is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, particularly preferably 1 to 8% by mass, from the viewpoint of improving retardation.
  • the liquid crystal compound in the liquid crystal composition of the present invention is preferably a liquid crystal compound that transmits visible light from the viewpoint of visible light transmittance.
  • Types of liquid crystal compounds include non-polymerizable liquid crystal compounds that exhibit a nematic phase, polymerizable liquid crystal compounds that exhibit a nematic phase, polymerizable liquid crystal compounds that exhibit a smectic phase, and the like. From the viewpoint of orientation, non-polymerizable liquid crystal compounds exhibiting a nematic phase and polymerizable liquid crystal compounds exhibiting a nematic phase are preferred.
  • the liquid crystal compound preferably exhibits flat dispersion or reverse wavelength dispersion.
  • flat dispersion means wavelength dispersion in which the retardation value hardly changes from the short wavelength side to the long wavelength side.
  • the term "reverse wavelength dispersion liquid crystal compound” means a compound in which an optically anisotropic film formed using the compound exhibits reverse wavelength dispersion.
  • a reverse wavelength dispersion liquid crystal compound means that when the in-plane retardation (Re) value of an optically anisotropic film made using this compound is measured at a specific wavelength (visible light range), the measured wavelength is large. It means that the Re value becomes the same or higher as the temperature increases.
  • a liquid crystal compound exhibiting flat dispersion is preferable since it has low retardation on the short wavelength side.
  • a liquid crystal compound exhibiting reverse wavelength dispersion is preferable since retardation is improved on the short wavelength side.
  • the liquid crystal compound may be synthesized by known manufacturing methods described in, for example, International Publication No. 2009/148142, Japanese Patent Application Publication No. 2011-207765, International Publication No. 2021/039625, etc., or commercially available products. May be used.
  • liquid crystal compound exhibiting flat dispersibility known compounds can be used, for example, liquid crystal compounds described in Japanese Patent Application Publication No. 2011-207765 and International Publication No. 2009/148142 can be used.
  • liquid crystal compound exhibiting reverse wavelength dispersion known compounds can be used, for example, the liquid crystal compounds shown below and those described in Japanese Patent Application Publication No. 2011-207765, International Publication No. 2021/039625, etc. Liquid crystal compounds can be used.
  • the content of the liquid crystal compound in the liquid crystal composition of the present invention is preferably 50 to 99.9% by mass, more preferably 80 to 99.5% by mass, particularly preferably 90 to 99% by mass, and has a stable liquid crystal phase. It is preferably 50% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, from the viewpoint of expressing in a wide temperature range, and preferably 99.9% by mass from the viewpoint of achieving sufficient absorbance.
  • the content is more preferably 99.5% by mass or less, particularly preferably 99% by mass or less.
  • the liquid crystal composition of the present invention may contain other components in addition to the above-described near-infrared absorbing dye and liquid crystal compound.
  • the liquid crystal composition may contain a polymerization initiator as another component, for example, when the liquid crystal compound is a polymerizable liquid crystal compound.
  • the polymerization initiator is selected depending on the type of polymerization reaction, and includes, for example, a thermal polymerization initiator and a photopolymerization initiator.
  • the photopolymerization initiator examples include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimer and p-aminophenyl ketone. It will be done.
  • the content of the polymerization initiator in the liquid crystal composition is preferably 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total solid content of the composition.
  • the liquid crystal composition may also contain, for example, a polymerizable monomer as other components.
  • a polymerizable monomer examples include radically polymerizable or cationically polymerizable compounds. Among these, polyfunctional radically polymerizable monomers are preferred.
  • a monomer copolymerizable with the polymerizable liquid crystal compound is preferable.
  • the content of the polymerizable monomer in the liquid crystal composition is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
  • the liquid crystal composition may also contain, for example, a surfactant as other components.
  • a surfactant include conventionally known compounds.
  • the liquid crystal composition may include a solvent as other components, for example.
  • organic solvents are preferred.
  • Organic solvents include amides, sulfoxides, heterocyclic compounds, hydrocarbons, alkyl halides, esters, ketones, and ethers. Note that two or more types of organic solvents may be used in combination.
  • the liquid crystal composition may include, for example, an antioxidant as other components.
  • an antioxidant examples include Irganox 1010 (manufactured by BASF).
  • the liquid crystal composition may include various alignment control agents such as a vertical alignment agent and a horizontal alignment agent as other components. These alignment control agents are compounds that can control the alignment of the liquid crystal compound horizontally or vertically on the interface side.
  • optically anisotropic film of the present invention is formed by curing the liquid crystal composition of the present invention described above. Therefore, the optically anisotropic film of the present invention contains a cured product of the liquid crystal composition of the present invention.
  • the optically anisotropic film of the present invention has various properties derived from the liquid crystal composition of the present invention.
  • the optically anisotropic film of the present invention preferably has a maximum absorption wavelength in a wavelength range of 650 to 1100 nm.
  • the slow axis absorbance of the optically anisotropic film at a wavelength of 650 to 1100 nm is A3, and the fast axis absorbance is A4, it is preferable that the following formula (4) is satisfied.
  • A3 ⁇ A4 (4) The absorbance of the slow axis is determined from the absorption spectrum when polarized light parallel to the alignment direction of the liquid crystal compound in the optically anisotropic film is irradiated, and the absorbance of the fast axis is determined by the absorption spectrum of the liquid crystal compound in the optically anisotropic film. It is determined from the absorption spectrum when irradiated with polarized light perpendicular to the orientation direction of .
  • the refractive index difference between the fast axis and the slow axis changes due to anomalous refractive index dispersion in the wavelength range of 650 to 1100 nm.
  • Re(550)/Re(650) When the retardation of the optically anisotropic film at a wavelength of 550 nm is Re(550) and the retardation at a wavelength of 650 nm is Re(650), it is preferable that the following formula (5) is satisfied.
  • An optically anisotropic film that satisfies the above formula (5) has reverse wavelength dispersion.
  • Re(550)/Re(650) is more preferably 0.9 or less.
  • the dichroic ratio of the maximum absorption wavelength in the wavelength range of 650 to 1100 nm of the optically anisotropic film is preferably 1.5 or more, more preferably 1.75 or more.
  • the method for producing the optically anisotropic film is not particularly limited, and known methods may be used. Among these, from the viewpoint of easy control of in-plane retardation, we apply a liquid crystal composition to form a coating film, perform orientation treatment on the coating film to orient the liquid crystal compound, and then cure the resulting coating film.
  • a method of forming an optically anisotropic film by performing a treatment is preferred. Below, the steps of the above method will be explained in detail.
  • a liquid crystal composition is applied onto a support to form a coating film, and the coating film is subjected to an alignment treatment to align the liquid crystal compound.
  • the support used is a member that functions as a base material for applying the composition.
  • the support may be a temporary support that is peeled off after the liquid crystal composition is applied and cured.
  • a plastic film or a glass substrate can be used as the support (temporary support).
  • the thickness of the support is preferably 5 to 1000 ⁇ m, more preferably 10 to 300 ⁇ m, particularly preferably 15 to 90 ⁇ m.
  • the alignment layer generally has a polymer as its main component. Polymers for alignment layers are described in many documents, and many commercially available products are available.
  • the polymer for the alignment layer is preferably polyvinyl alcohol, polyimide, or a derivative thereof. Note that the alignment layer is preferably subjected to known rubbing treatment, photo alignment treatment, or groove alignment treatment.
  • the thickness of the alignment layer is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • Methods for applying the liquid crystal composition include curtain coating method, dip coating method, spin coating method, print coating method, spray coating method, slot coating method, roll coating method, slide coating method, blade coating method, gravure coating method, and , wire bar method, etc. Regardless of which method is used, single-layer coating is preferred.
  • the coating film formed on the support is subjected to alignment treatment to orient the liquid crystal compound in the coating film.
  • the orientation treatment can be performed by drying the coating film at room temperature or by heating the coating film.
  • the liquid crystal phase formed by the alignment treatment can generally be transformed by changing temperature or pressure.
  • the transition can also be caused by changing the composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250°C, more preferably 50 to 150°C, and the heating time is preferably 10 seconds to 10 minutes.
  • the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) described below.
  • the cooling temperature is preferably 20 to 200°C, more preferably 20 to 150°C.
  • the difference between the heating temperature of the coating film described above and the cooling temperature of the coating film described above is not particularly limited, and is preferably 40 to 150°C.
  • the heating temperature TA of the coating film is 50 to 250°C
  • the cooling temperature TB is heating temperature TA ⁇ 0.1 to The range is preferably heating temperature TA x 0.7.
  • the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment.
  • the method of curing treatment performed on the coating film in which the polymerizable liquid crystal compound is oriented is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among these, from the viewpoint of manufacturing suitability, light irradiation treatment is preferred, and ultraviolet irradiation treatment is more preferred.
  • the irradiation conditions for the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 3000 mJ/cm 2 is preferable.
  • the arrangement of the near-infrared absorbing dye, etc. can be adjusted, and as a result, the optical properties of the optically anisotropic film can be adjusted.
  • the heating temperature when aligning the liquid crystal compound after coating the liquid crystal composition on the support to form a coating film and the cooling temperature when cooling after heating, it is possible to absorb near-infrared rays.
  • the arrangement of the dye can be adjusted, and as a result, the optical properties of the optically anisotropic film can be adjusted.
  • the optically anisotropic film described above can be applied to various uses, and for example, the in-plane retardation of the optically anisotropic film can be adjusted and used as a so-called ⁇ /4 plate or ⁇ /2 plate.
  • the ⁇ /4 plate is a plate that has a function of converting linearly polarized light of a certain wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a plate whose in-plane retardation Re at a predetermined wavelength ⁇ nm is ⁇ /4 (or an odd multiple thereof).
  • the in-plane retardation (Re(550)) of the ⁇ /4 plate at a wavelength of 550 nm may have an error of about 25 nm around the ideal value (137.5 nm), for example, 110 to 160 nm.
  • the wavelength is preferably 120 to 150 nm, more preferably 120 to 150 nm.
  • the ⁇ /2 plate refers to an optically anisotropic film whose in-plane retardation Re( ⁇ ) at a specific wavelength ⁇ nm satisfies Re( ⁇ ) ⁇ /2. This formula only needs to be achieved at any wavelength in the visible light region (for example, 550 nm).
  • it is preferable that the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the following relationship. 210nm ⁇ Re(550) ⁇ 300nm
  • the optically anisotropic film and the optical filter including the optically anisotropic film may be included in a display device.
  • more specific applications of the optically anisotropic film include, for example, optical compensation filters for optically compensating liquid crystal cells, and antireflection films used in display devices such as organic electroluminescent display devices.
  • a preferable embodiment of the optical filter is a circularly polarizing plate including an optically anisotropic film and a polarizer. This circularly polarizing plate can be suitably used as the above-mentioned antireflection film.
  • a display device including a display element (for example, an organic electroluminescent display element) and a circularly polarizing plate disposed on the display element, reflected tint can be further suppressed.
  • the optically anisotropic film of the present invention is suitably used in an optical compensation filter of an IPS (In Plane Switching) type liquid crystal display device, and prevents color change when viewed from an oblique direction and light leakage during black display. It can be improved.
  • IPS In Plane Switching
  • examples of the optical filter including an optically anisotropic film include a circularly polarizing plate including a polarizer and an optically anisotropic film.
  • the polarizer may be any member (linear polarizer) that has the function of converting light into specific linearly polarized light, and mainly an absorption type polarizer can be used.
  • absorption polarizers include iodine polarizers, dye polarizers using dichroic dyes, and polyene polarizers.
  • Iodine-based polarizers and dye-based polarizers include coating type polarizers and stretching type polarizers, both of which can be applied, but they are produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching it. Polarizers are preferred.
  • the relationship between the absorption axis of the polarizer and the slow axis of the optically anisotropic film is not particularly limited, but if the optically anisotropic film is a ⁇ /4 plate and the optical filter is used as a circularly polarizing filter, the polarization
  • the angle between the absorption axis of the child and the slow axis of the optically anisotropic film is preferably 45° ⁇ 10°.
  • a liquid crystal composition comprising a liquid crystal compound and a near-infrared absorbing dye having a mesogenic group,
  • the near-infrared absorbing dye has a molar extinction coefficient of 200000 L/(mol cm) or more at the maximum absorption wavelength in dichloromethane,
  • the near-infrared absorbing dye has the following formula (1), where A1 is the absorbance in the long axis direction of the molecule and A2 is the absorbance in the short axis direction at a wavelength of 650 to 1100 nm measured under the following measurement conditions (A).
  • a liquid crystal composition that satisfies the following.
  • A1 ⁇ A2 Measurement conditions (A): Absorption obtained by producing an optically anisotropic film using a composition containing a near-infrared absorbing dye and a liquid crystal compound, and irradiating the obtained optically anisotropic film with polarized light parallel to the alignment direction of the liquid crystal compound. Measure the absorbance A1 in the long axis direction of the near infrared absorbing dye molecule from the spectrum, and measure the absorbance A2 in the short axis direction of the near infrared absorbing dye molecule from the absorption spectrum obtained by irradiating polarized light perpendicular to the alignment direction of the liquid crystal compound. do.
  • Cy an arylene group that may have a substituent, a heteroarylene group that may have a substituent, or a cycloalkylene group that may have a substituent.
  • n An integer from 2 to 9.
  • Sp1, Sp2, Sp3 each independently one type of group or bond selected from a single bond, an alkylene group, an alkenylene group, an alkynylene group, a carbonyl group, an ester bond, an amide bond, and an ether bond, or a combination thereof.
  • the near-infrared absorbing dye is a compound represented by the following formula (3-1A), a compound represented by the following formula (3-1B), a compound represented by the following formula (3-2), and the following:
  • the liquid crystal composition according to [3] which is at least one selected from compounds represented by formula (3-3).
  • R L Same as the definition of R L in the above formula (2).
  • X 1 A carbon atom or nitrogen atom that may have a monovalent substituent.
  • Y 1 oxygen atom, sulfur atom or NH group.
  • X 2 sulfur atom or oxygen atom.
  • Y 2 A carbon atom or nitrogen atom that may have a monovalent substituent.
  • R 11 , R 12 , R 21 , R 22 , R 31 , R 32 Each independently may have a substituent, an unsaturated bond between carbon atoms, an oxygen atom, an alicyclic ring or an aromatic ring
  • An alkyl group having 1 to 20 carbon atoms which may contain R 13 , R 14 , R 23 , R 33 : Each independently a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • R 11 and R 12 , R 11 and R 13 , R 12 and R 13 , and R 13 and R 14 may be bonded to each other to form a ring.
  • R 21 and R 22 , R 21 and R 23 , and R 22 and R 23 may be bonded to each other to form a ring.
  • R 31 and R 32 , R 31 and R 33 , and R 32 and R 33 may be bonded to each other to form a ring.
  • [5] The liquid crystal composition according to any one of [1] to [4], wherein the liquid crystal compound exhibits flat dispersion or reverse wavelength dispersion.
  • An optically anisotropic film comprising a cured product of the liquid crystal composition according to any one of [1] to [5].
  • [7] The optically anisotropic film according to [6], which has a maximum absorption wavelength in a wavelength range of 650 to 1100 nm.
  • R L A monovalent mesogenic group represented by the following formula (2), and two R L may be the same or different.
  • RL ' a hydrogen atom, a monovalent organic group having electron-withdrawing properties, or a monovalent organic group having polymerizability.
  • Cy an arylene group that may have a substituent, a heteroarylene group that may have a substituent, or a cycloalkylene group that may have a substituent.
  • n An integer from 2 to 9.
  • Sp1, Sp2, Sp3 each independently one type of group or bond selected from a single bond, an alkylene group, an alkenylene group, an alkynylene group, a carbonyl group, an ester bond, an amide bond, and an ether bond, or a combination thereof.
  • X 1 A carbon atom or nitrogen atom that may have a monovalent substituent.
  • Y 1 oxygen atom, sulfur atom or NH group.
  • X 2 sulfur atom or oxygen atom.
  • Y 2 A carbon atom or nitrogen atom that may have a monovalent substituent.
  • R 11 , R 12 , R 21 , R 22 , R 31 , R 32 Each independently may have a substituent, an unsaturated bond between carbon atoms, an oxygen atom, an alicyclic ring or an aromatic ring
  • An alkyl group having 1 to 20 carbon atoms which may contain R 13 , R 14 , R 23 , R 33 : hydrogen atom or alkyl group having 1 to 12 carbon atoms.
  • R 11 and R 12 , R 11 and R 13 , R 12 and R 13 , and R 13 and R 14 may be bonded to each other to form a ring.
  • R 21 and R 22 , R 21 and R 23 , and R 22 and R 23 may be bonded to each other to form a ring.
  • R 31 and R 32 , R 31 and R 33 , and R 32 and R 33 may be bonded to each other to form a ring.
  • a flash spectrophotometer UV5 manufactured by Mettler was used to measure the molar extinction coefficient.
  • a retardation measuring device manufactured by Otsuka Electronics, RETS-100 was used to measure retardation.
  • a visible absorption spectrometer manufactured by Shimadzu Corporation, SolidSpec-3700DUV was used to measure the absorption spectrum and spectral characteristics.
  • reaction solution was added dropwise to 800 mL of ice water, and a solid precipitated, so the solution was left to stand and the solution was removed by decantation. Furthermore, 800 mL of water was added, the solution was left to stand and the solution was removed by decantation, and the precipitated solid was filtered to obtain unpurified compound (a2). This was suspended in 100 mL of a solution of hexane/ethyl acetate (1:1, volume ratio) and heated to 60° C. to dissolve the solid. This solution was returned to room temperature, and the precipitated solid was removed by filtration. The solid removed was dibromo.
  • Dye A-2 was produced in the same manner as dye A-1, except that diisobutylamine used in the synthesis of compound (a3) was changed to di(2-ethylhexyl)amine in the synthesis of dye A-1. Synthesized.
  • 1 H-NMR 400MHz, CHLOROFORM-D
  • ⁇ 12.97 s, 2H
  • 2.86-2.78 m, 2H
  • 1.92-0.86 m, 108H).
  • Dye A-3 was used in the synthesis of compound (a3) in that the compound (a1) was changed to the compound (a1') represented by the following formula (a1') in the synthesis of dye A-1. It was synthesized in the same manner as dye A-1 except that diisobutylamine was changed to di(2-ethylhexyl)amine.
  • Dye B-1 was synthesized in the same manner as dye A-1, except that compound (a5) was changed to compound (b6) in the synthesis of dye A-1.
  • 1H -NMR 400MHz, CHLOROFORM-D
  • 7.22-7.15 m, 4H
  • Dye D-1 was synthesized in the same manner as dye C-1, except that compound (c4) was changed to compound (d3).
  • 1 H-NMR 400 MHz, CHLOROFORM-D
  • Example 1-7 Synthesis of dye E-1
  • Pyrrolidone and TMS-Cl are reacted to form N-TMS pyrrolidone, LDA is applied to this to react with n-octane iodide, water is added to form 5-octylpyrrolidone, and by reduction with LiAlH4, 3 -Octylpyrrolidine was synthesized, and the rest was based on International Publication No. 2017/135359, and dye E-1 was synthesized.
  • Example 1-1 to 1-7 Characteristics of dye
  • a composition similar to Polymerizable Liquid Crystal Composition 2-1 described below was prepared using each dye compound, and an optically anisotropic film was produced by the same method as Example 2-1.
  • the absorbance A1 in the long axis direction of the dye molecule at a wavelength of 650 to 1100 nm can be determined perpendicular to the alignment direction of the liquid crystal compound.
  • the absorbance A2 in the short axis direction of the dye molecule at a wavelength of 650 to 1100 nm was measured.
  • the maximum absorption wavelength of each dye in dichloromethane The maximum absorption wavelength of each dye in dichloromethane, the molar extinction coefficient at this maximum absorption wavelength, the absorbance A1 in the long axis direction of the dye molecule, the absorbance A2 in the short axis direction of the dye molecule, and the maximum absorption in the spectral transmittance curve in dichloromethane.
  • the following table shows each spectral characteristic when the transmittance at the wavelength is 10%.
  • Examples 1-1 to 1-6 are examples, and Example 1-7 is a comparative example.
  • Example 2-1 Polymerizable liquid crystal composition 2-1 was obtained by mixing the following materials in the proportions shown in the table below, dissolving in dichloromethane, and drying to remove dichloromethane.
  • Liquid crystal compounds L-1 to L-4 were synthesized based on the method described in International Publication No. 2009/148142. Note that liquid crystal compounds L-1 to L-4 are polymerizable liquid crystal compounds that exhibit flat dispersibility and exhibit a nematic phase.
  • Irganox 1010 manufactured by BASF was used as an antioxidant.
  • Irgacure 369E manufactured by BASF was used as a photopolymerization initiator.
  • the wavelengths of 650 ⁇ By irradiating polarized light parallel to and perpendicular to the orientation direction (i.e., rubbing direction) of the liquid crystal compound in the optically anisotropic film, and measuring the respective absorption spectra (A
  • Example 2-2 to Example 2-5 Polymerizable liquid crystal compositions 2-2 to 2-5 were prepared according to the same procedure as in Example 2-1, except that the dye, dye concentration, and cell gap were changed to the conditions shown in the table below, and the polymers were obtained.
  • An optically anisotropic film was manufactured by using the same method, and the absorbance on the slow axis and the absorbance on the fast axis in the wavelength range of 650 to 1100 nm, and the dichroic ratio and retardation at the maximum absorption wavelength in the wavelength range of 650 to 1100 nm were measured.
  • Examples 2-1 to 2-4 are examples, and example 2-5 is a comparative example.
  • the optically anisotropic film of Example 2-5 containing a near-infrared absorbing dye in which the relationship between absorbance A1 in the long axis direction and absorbance A2 in the short axis direction is A1>A2 has a retardation ratio Re(550)/Re( 650) exceeded 1, and no retardation increasing effect was obtained.
  • Example 3-1 Polymerizable liquid crystal composition 3-1 was prepared by mixing the following materials in the proportions shown in the table below.
  • Liquid crystal compound L'-1 was synthesized based on the method described in paragraphs [0535] to [0542] of Japanese Patent No. 5899607. Note that the liquid crystal compound L'-1 is a polymerizable liquid crystal compound that exhibits reverse wavelength dispersion and also exhibits a nematic phase.
  • liquid crystal compound L-5 was synthesized based on the method described in International Publication No. 2009/148142. Note that the liquid crystal compound L-5 is a polymerizable liquid crystal compound that exhibits flat dispersibility and also exhibits a nematic phase.
  • Irganox 1010 manufactured by BASF was used as an antioxidant.
  • Irgacure 369E manufactured by BASF was used as a photopolymerization initiator.
  • BYK361-N manufactured by BYK Chemie Japan was used as a surfactant.
  • Polymerizable liquid crystal composition 3-1 was polymerized by irradiating the coating film with UV light with a wavelength of 365 nm at 100° C. at 80 mW/cm 2 ⁇ 30 seconds in a nitrogen atmosphere, and then heating at 160° C. for 4 hours. An optically anisotropic film was obtained.
  • the optically anisotropic film By irradiating the optically anisotropic film with polarized light parallel to and perpendicular to the alignment direction (rubbing direction) of the liquid crystal compound and measuring the respective absorption spectra (A
  • Example 3-1 is an example.
  • the optically anisotropic film of Example 3-1 containing a near-infrared absorbing dye in which the relationship between absorbance A1 in the long axis direction and absorbance A2 in the short axis direction is A1 ⁇ A2 has a retardation ratio Re(550)/ Since Re(650) was less than 1, an effect of increasing retardation was obtained. Furthermore, since the optically anisotropic film of Example 3-1 had a dichroic ratio exceeding 1, an optically anisotropic film having dichroism was obtained.
  • Example 4-1 The following materials were mixed in the proportions shown in the table below, dissolved in dichloromethane, and dried to remove dichloromethane to obtain polymerizable liquid crystal composition 4-1. Liquid crystal compound L'-1, antioxidant, and photopolymerization initiator are the same as in Example 3-1.
  • An alignment cell manufactured by EHC Co., Ltd. in which a gap of 2.3 ⁇ m was maintained was heated to 160°C, and the obtained polymerizable liquid crystal composition 4-1 was injected into the cell, allowed to cool to 120°C, and nematic A phase was formed.
  • polymerizable liquid crystal composition 4-1 was polymerized to obtain an optically anisotropic film.
  • the optically anisotropic film By irradiating the optically anisotropic film with polarized light parallel to and perpendicular to the alignment direction (rubbing direction) of the liquid crystal compound and measuring the respective absorption spectra (A
  • Example 4-2 to Example 4-4 Polymerizable liquid crystal compositions 4-2 to 4-4 were prepared according to the same procedure as in Example 3-1, except that the dye and dye concentration were changed to the conditions shown in the table below, and the polymers were obtained and optically anisotropic. The absorbance of the slow axis at a wavelength of 650 to 1100 nm, the absorbance of the fast axis, and the dichroic ratio and retardation at the maximum absorption wavelength of 650 to 1100 nm were measured.
  • Examples 4-1 to 4-4 are examples.
  • optically anisotropic film of the present invention is useful, for example, as a quarter-wave plate exhibiting excellent reverse wavelength dispersion.

Abstract

本発明は、液晶化合物と、メソゲン基を有する近赤外線吸収色素とを含む液晶組成物であって、前記近赤外線吸収色素のジクロロメタン中の最大吸収波長におけるモル吸光係数が200000L/(mol・cm)以上であり、前記近赤外線吸収色素は、特定の測定条件(A)において測定される波長650~1100nmにおける分子の長軸方向の吸光度をA1とし、短軸方向の吸光度をA2としたとき、以下の式(1)を満たす、液晶組成物に関する。 A1<A2 (1)

Description

液晶組成物、光学異方性膜、近赤外線吸収色素
 本発明は、液晶組成物、光学異方性膜、近赤外線吸収色素等に関する。
 屈折率異方性を有する位相差膜(光学異方性膜)は、表示装置の反射防止膜、および、液晶表示装置の光学補償フィルタなど種々の用途に適用されている。
 ここで、特許文献1や特許文献2には、液晶化合物および赤外線吸収色素を含む組成物から形成された、特定の光学特性を有する光学異方性膜が記載されている。
日本国特開2010-77261号公報 国際公開第2021/059946号
 しかしながら、上記特許文献1および特許文献2における赤外線吸収色素は、最大吸収波長におけるモル吸光係数が小さいことが予想され、所望の光学特性を発揮するために多量に添加する必要がある。
 本発明は、より効率的に光学特性を発揮できる光学異方性膜の形成に有用な近赤外線吸収色素および液晶組成物、ならびに当該液晶組成物から形成された光学異方性膜を提供することを目的とする。
 本発明は下記液晶組成物に関する。
 液晶化合物と、メソゲン基を有する近赤外線吸収色素とを含む液晶組成物であって、
 前記近赤外線吸収色素のジクロロメタン中の最大吸収波長におけるモル吸光係数が200000L/(mol・cm)以上であり、
 前記近赤外線吸収色素は、下記測定条件(A)において測定される波長650~1100nmにおける分子の長軸方向の吸光度をA1とし、短軸方向の吸光度をA2としたとき、以下の式(1)を満たす、液晶組成物。
   A1<A2   (1)
測定条件(A):
 近赤外線吸収色素および液晶化合物を含む組成物を用いて光学異方性膜を作製し、得られた光学異方性膜に対し、液晶化合物の配向方向と平行な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の長軸方向の吸光度A1を測定し、液晶化合物の配向方向と垂直な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の短軸方向の吸光度A2を測定する。
 本発明はまた、上記の液晶組成物の硬化物を含む光学異方性膜に関する。
 本発明はさらに、下記の近赤外線吸収色素に関する。
 下記式(3-1A)で表される化合物、下記式(3-1B)で表される化合物、下記式(3-2)で表される化合物、または下記式(3-3)で表される化合物からなる、近赤外線吸収色素。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
〔上記各式における記号の定義は下記の通りである。
:下記式(2)で表される1価のメソゲン基であり、2つのRは同一でも異なっていてもよい。
   R’-Sp1-〔Cy-Sp2〕-Sp3-    (2)
’:水素原子、電子求引性を有する1価有機基、または重合性を有する1価有機基。
Cy:置換基を有してもよいアリーレン基、置換基を有してもよいヘテロアリーレン基、または置換基を有してもよいシクロアルキレン基。
n:2~9の整数。
Sp1、Sp2、Sp3:それぞれ独立に、単結合、アルキレン基、アルケニレン基、アルキニレン基、カルボニル基、エステル結合、アミド結合、およびエーテル結合から選ばれる1種の基もしくは結合、またはこれらの組み合わせ。
:一価の置換基を有してもよい炭素原子または窒素原子。
:酸素原子、硫黄原子またはNH基。
:硫黄原子または酸素原子。
:一価の置換基を有してもよい炭素原子または窒素原子。
11、R12、R21、R22、R31、R32:それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基。
13、R14、R23、R33:水素原子、または炭素数1~12のアルキル基。R11とR12、R11とR13、R12とR13、R13とR14は、それぞれ互いに結合して環を形成してもよい。R21とR22、R21とR23、R22とR23は、それぞれ互いに結合して環を形成してもよい。R31とR32、R31とR33、R32とR33は、それぞれ互いに結合して環を形成してもよい。〕
 本発明によれば、より効率的に光学特性を発揮できる光学異方性膜の形成に有用な液晶組成物、および当該液晶組成物から形成された光学異方性膜を提供できる。また本発明は、新規の近赤外線吸収色素を提供できる。
 以下、本発明の実施の形態について説明する。
 本明細書において、式(A1)で示される化合物を化合物(A1)とも記し、他の式で表される場合も同様である。化合物(A1)からなる色素を色素(A1)とも記し、他の式で表される場合も同様である。また、例えば、式(1a)で表される基を基(1a)とも記し、他の式で表される基も同様である。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
 本明細書において、特に断りのない限り、アルキル基は、直鎖状、分岐鎖状、環状またはこれらの構造を組み合わせた構造でもよい。
 ハロゲン原子としては、特に断りのない限り、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 本明細書において、特に断りのない限り、アリール基は芳香族化合物が有する芳香環、例えば、ベンゼン環、ナフタレン環、ビフェニル等を構成する炭素原子を介して結合する基をいう。また、ヘテロアリール基は、ヘテロ原子を有する芳香族化合物が有する芳香環、例えば、フラン環、チオフェン環、ピロール環等を構成する炭素原子あるいはヘテロ原子を介して結合する基をいう。
 本明細書において、スクアリリウム化合物とは、構造式において下記式(S2)で表す共鳴構造をとり得る下記式(S1)で表されるスクアリリウム骨格を有する化合物をいう。本明細書において、スクアリリウム骨格は式(S1)または式(S2)のいずれかで示される。
Figure JPOXMLDOC01-appb-C000010
 本発明において、Re(λ)は、波長λにおける面内のリタデーションを表す。
 リタデーションはリタデーション測定装置(例えば、大塚電子製、RETS-100)を用いて測定する。
<液晶組成物>
 本発明の液晶組成物は、液晶化合物と、メソゲン基を有する近赤外線吸収色素とを含み、近赤外線吸収色素のジクロロメタン中の最大吸収波長におけるモル吸光係数が200000L/(mol・cm)以上であり、近赤外線吸収色素は、後述する測定条件(A)において測定される波長650~1100nmにおける分子の長軸方向の吸光度をA1とし、短軸方向の吸光度をA2としたとき、以下の式(1)を満たす。
   A1<A2   (1)
 以下、液晶組成物に用いられる材料について説明する。
<近赤外線吸収色素>
 本発明における近赤外線吸収色素は、波長650~1100nmにおける分子の長軸方向の吸光度をA1とし、短軸方向の吸光度をA2としたとき、以下の式(1)を満たす。
   A1<A2   (1)
 本発明における近赤外線吸収色素は、波長650~1100nmにおける分子の長軸方向の吸光度A1と短軸方向の吸光度A2とが異なることから、近赤外領域において二色性を有する色素である。これにより、光学異方性膜の波長650~1100nmにおける光学特性を制御できる。
 近赤外線吸収色素の長軸方向の吸光度A1と、短軸方向の吸光度A2は、測定条件(A)において測定される。
 測定条件(A):
 近赤外線吸収色素および液晶化合物を含む組成物を用いて光学異方性膜を作製し、得られた光学異方性膜に対し、液晶化合物の配向方向と平行な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の長軸方向の吸光度A1を測定し、液晶化合物の配向方向と垂直な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の短軸方向の吸光度A2を測定する。
 液晶化合物としては、光学異方性膜を形成できる液晶化合物であれば限定されず、例えばネマチック相を示す液晶化合物が挙げられる。
 また近赤外線吸収色素の添加量としては、正確に測定する観点から液晶化合物100質量部に対し0.5~10質量部とすることが好ましい。
 有機色素は、一般的に、固有の吸収波長から離れた波長領域においては、屈折率は波長が増すに連れて単調に減少する。このような現象は正常分散と称される。これに対し、固有の吸収波長を含む波長領域においては、屈折率は波長増加に連れ急激に変化し、異常分散と称される。具体的には、固有の吸収波長の短波長側で屈折率が急激に下がり、固有の吸収波長の長波長側で急激に増加する挙動がみられる。
 ここで、光学異方性膜を1/4波長板として利用したときに、Re=λ/4では直線偏光が完全な円偏光に変換され、理想的な光学特性が得られる。
 UV領域に吸収のある有機色素が波長250~450nmにおける分子の長軸方向の吸光度をB1とし、短軸方向の吸光度をB2としたときにB1<B2を満たす場合、可視光領域では吸光度が大きい短軸方向の屈折率の方が、長軸方向の屈折率よりも小さく、さらに、固有吸収波長の直後で短軸方向の屈折率が急激に増加するので、短波長側での屈折率差が減少する。そして光学異方性膜の面内リタデーションは屈折率差と膜厚の積から算出される。よって、短波長から長波長になるにつれて面内リタデーションが上昇する曲線となり、λ/4に近づけることができる。しかし、長波長になるにつれReは一定となり、λ/4から外れる。一方、近赤外領域に吸収のある有機色素が式(1)を満たす場合、固有吸収波長の直前で短軸方向の屈折率が急激に低下するので、可視光領域の長波長側で屈折率差が増大する。よって、UV領域に吸収のある有機色素と組み合わせることで、λ/4から外れる長波長領域において屈折率増大に伴い面内リタデーションが上昇し、可視光全域に渡りλ/4に近づけることができる。
 本発明における近赤外線吸収色素はジクロロメタン中の最大吸収波長におけるモル吸光係数が200000L/(mol・cm)以上である。これにより少量でも吸収特性を発揮しやすく、たとえば光学異方性膜中の添加量が少なくても十分な光学特性が得られる。
モル吸光係数は好ましくは250000L/(mol・cm)以上である。
 本発明における近赤外線吸収色素はメソゲン基を有する。近赤外線吸収色素がメソゲン基を有することにより、組成物中に含まれる液晶化合物と共に配向しやすく、所定の光学特性の制御がしやすい。
 メソゲン基とは、剛直かつ配向性を有する官能基である。メソゲン基としては、例えば、芳香環や脂環等の環状構造を2以上含む構造が好ましく、好ましくは、かかる環状構造が直接または連結基を介して連なった構造がより好ましい。
 近赤外線吸収色素はジクロロメタン中で波長650~1100nmに最大吸収波長を有することが好ましく、波長700~900nmに最大吸収波長を有することがより好ましい。これにより長波長領域におけるリタデーションが上昇し、可視光全域に渡りλ/4に近づきやすい。
 近赤外線吸収色素はまた、ジクロロメタン中の分光透過率曲線において、最大吸収波長における透過率を10%とした場合に、下記の分光特性を満たすことが好ましい。
 波長400~500nmの平均透過率が好ましくは95%以上、より好ましくは97%以上である。
 波長400~500nmの最小透過率が好ましくは85%以上、より好ましくは90%以上である。
 波長500~600nmの平均透過率が好ましくは95%以上、より好ましくは97%以上である。
 波長500~600nmの最小透過率が好ましくは90%以上、より好ましくは93%以上である。
 上記分光特性を満たすことにより、可視光透過率が高い観点から好ましい。
 近赤外線吸収色素はスクアリリウム骨格を有することが好ましい。スクアリリウム骨格を有する色素であれば、可視光領域の吸収が小さいため、得られる光学異方性膜の着色を抑制できる。
 近赤外線吸収色素としては、下記式(3)で表される化合物がより好ましい。
   R-D-R    (3)
 式(3)において、Dはスクアリリウム骨格を有する2価の基であり、Rは1価のメソゲン基である。2つのRは同一でも異なっていてもよい。
 上記の近赤外線吸収色素(3)であれば、スクアリリウム骨格を中心に2つのメソゲン基が対称に結合することで、液晶化合物と共により配向しやすい。
 メソゲン基Rは好ましくは下記式(2)で表される。
   R’-Sp1-〔Cy-Sp2〕-Sp3-    (2)
 式(2)において、R’は水素原子、電子求引性を有する1価有機基、または重合性を有する1価有機基である。
 電子求引性を有する1価有機基としては、例えば、CN、CF、F等が挙げられる。
 重合性を有する1価有機基としては、例えば、ラジカル重合またはカチオン重合が可能な重合性基等が挙げられる。
 ラジカル重合性基としては、公知のラジカル重合性基を用いることができ、アクリロイル基またはメタアクリロイル基が好ましい。
 カチオン重合性基としては、公知のカチオン重合性基を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などが挙げられる。なかでも、脂環式エーテル基またはビニルオキシ基が好ましく、エポキシ基、オキセタニル基、または、ビニルオキシ基がより好ましい。
 メソゲン基の末端であるR’の構造は得られる光学異方性膜の目的に応じで選択できる。例えば、電圧駆動型液晶である場合は電子求引性を有する1価有機基が好ましく、液晶に重合性基がある場合は重合性を有する1価有機基が好ましく、水素原子は目的によらず好ましい。
 式(2)において、Cyは、置換基を有してもよいアリーレン基、置換基を有してもよいヘテロアリーレン基、または置換基を有してもよいシクロアルキレン基である。
 アリーレン基としては、フェニレン基、ナフタレン基、テトラヒドロナフタレン基が挙げられる。
 ヘテロアリーレン基としては、フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、ベンゾチアゾール環が挙げられる。
 シクロアルキレン基としては、シクロへキシレン基、シクロヘキセレン基、デカヒドロナフタレン基、ジオキサン基が挙げられる。
 Cyにおける置換基としてはメチル基、メトキシ基が挙げられる。
 式(2)において、Sp1、Sp2、Sp3は、それぞれ独立に、単結合、アルキレン基、アルケニレン基、アルキニレン基、カルボニル基、エステル結合、アミド結合、およびエーテル結合から選ばれる1種の基もしくは結合、またはこれらの組み合わせである。
 アルキレン基としては、炭素数1~12の直鎖アルキレン基が好ましい。
 nは2~9の整数であり、好ましくは2~6の整数である。
 また、式(2)において、2以上の〔Cy-Sp2〕構造は、同一でも異なっていてもよい。
 式(2)で表されるメソゲン基としては、好ましくは下記式で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 近赤外線吸収色素としては、下記式(3-1A)で表される化合物、下記式(3-1B)で表される化合物、下記式(3-2)で表される化合物、および下記式(3-3)で表される化合物から選ばれる少なくとも一種がより好ましい。
 下記化合物(3-1A)~化合物(3-3)は、化合物の中心にあるスクアリリウム骨格と直交する方向に延びる形でメソゲン基が配置されているため、形成される光学異方性膜の遅相軸に対して、上記スクアリリウム骨格が直交する方向に配列しやすい。つまり、光学異方性膜の遅相軸に直交する方向に、スクアリリウム骨格に由来する赤外線領域(特に、波長700~900nm)における吸収が得られやすく、所望の特性を示す光学異方性膜が得られやすい。
 また、下記化合物(3-1A)~化合物(3-3)は、吸光度が高く、ジクロロメタン中の最大吸収波長におけるモル吸光係数が200000L/(mol・cm)以上であり好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(3-1A)、式(3-1B)、式(3-2)、式(3-3)において、Rは前記式(2)におけるRの定義と同様であり、好ましい態様も同様である。
 式(3-1A)において、Xは一価の置換基を有してもよい炭素原子または窒素原子である。赤色透過率向上の観点からは炭素原子が好ましく、青色透過率向上の観点からは窒素原子が好ましい。炭素原子における一価の置換基としては、水素原子、ハロゲン原子、炭素数1~9のアルキル基、アルケニル基、アルキニル基、置換基を有してもよい芳香環、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。
 式(3-1A)において、Yは酸素原子、硫黄原子またはNH基である。Yがこれらの元素または基の場合、Yを含む5員環が芳香族性となり、青色光透過率が向上する。赤色光透過率向上の観点からは硫黄原子が好ましく、赤色光透過率向上および水素結合による吸収の急峻化の観点からはNH基が好ましい。
 式(3-1B)において、Xは硫黄原子または酸素原子である。赤色光透過率向上の観点から硫黄原子が好ましい。
 式(3-1B)において、Yは一価の置換基を有してもよい炭素原子または窒素原子である。青色光透過率向上の観点から窒素原子が好ましい。炭素原子における一価の置換基としては、置換基としては、水素原子、ハロゲン原子、炭素数1~9のアルキル基、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。
 式(3-1A)および式(3-1B)において、R11、R12は、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基である。
 アルキル基としては、直鎖状でも分岐状でもよく、配向性の観点からは直鎖状が好ましく、溶解性の観点からは分岐状が好ましい。
 炭素数1~20のアルキル基としては、直鎖状であれば炭素数1~15の直鎖状アルキル基が好ましく、炭素数1~10の直鎖状アルキル基がより好ましい。分岐状であれば炭素数3~15の分岐状アルキル基が好ましく、炭素数3~8の分岐状アルキル基がより好ましい。
 また、R11、R12の少なくとも一方が、炭素数3~15の分岐状アルキル基であることがさらに好ましく、R11、R12の両方が炭素数3~8の分岐状アルキル基であることが特に好ましい。
 R11、R12は、同一でも異なっていてもよいが、対称性の観点から同一であることが好ましい。
 なお、R11、R12が置換基を有する場合、置換基の炭素数はR11、R12の炭素数に含まれる。置換基としてはハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。
 式(3-1A)および式(3-1B)において、R13、R14は、それぞれ独立して、水素原子、または炭素数1~12のアルキル基である。配向性の観点から水素原子が好ましい。
 式(3-1A)および式(3-1B)において、R11とR12、R11とR13、R12とR13、R13とR14は、それぞれ互いに結合して環を形成してもよい。環の員数は4~6が好ましい。
 式(3-1A)で表される化合物としては、より具体的には以下の表に示す化合物が挙げられる。化合物(3-1A)において、Xが窒素原子であり、YがNH基である場合を化合物(3-1Ai)とし、Xが炭素原子であり、YがNH基である場合を化合物(3-1Aii)とする。また、以下の表に示す化合物は、スクアリリウム骨格の左右において各記号の意味は同一である。
 また、Rは上記の定義のとおりである。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 式(3-1B)で表される化合物としては、より具体的には以下の表に示す化合物が挙げられる。化合物(3-1B)において、Xが硫黄原子である場合を化合物(3-1Bi)とし、Xが酸素原子である場合を化合物(3-1Bii)とする。また、以下の表に示す化合物は、スクアリリウム骨格の左右において各記号の意味は同一である。
 また、Rは上記の定義のとおりである。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 式(3-2)において、R21、R22は、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基である。
 アルキル基としては、直鎖状でも分岐状でもよく、配向性の観点からは直鎖状が好ましく、溶解性の観点からは分岐状が好ましい。
 炭素数1~20のアルキル基としては、直鎖状であれば炭素数1~15の直鎖状アルキル基が好ましく、炭素数1~10の直鎖状アルキル基がより好ましい。分岐状であれば炭素数3~15の分岐状アルキル基が好ましく、炭素数3~8の分岐状アルキル基がより好ましい。
 また、R21、R22の少なくとも一方が、炭素数3~15の分岐状アルキル基であることがさらに好ましく、R21、R22の両方が炭素数3~8の分岐状アルキル基であることが特に好ましい。
 R21、R22は、同一でも異なっていてもよいが、対称性の観点から同一であることが好ましい。
 なお、R21、R22が置換基を有する場合、置換基の炭素数はR21、R22の炭素数に含まれる。置換基としてはハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。
 式(3-2)において、R23は、水素原子、または炭素数1~12のアルキル基である。配向性の観点から水素原子が好ましい。
 式(3-2)において、R21とR22、R21とR23、R22とR23は、それぞれ互いに結合して環を形成してもよい。環の員数は4~6が好ましい。
 式(3-2)で表される化合物としては、より具体的には以下の表に示す化合物が挙げられる。また、以下の表に示す化合物は、スクアリリウム骨格の左右において各記号の意味は同一である。
 また、Rは上記の定義のとおりである。
Figure JPOXMLDOC01-appb-T000019
 式(3-3)において、R31、R32は、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基である。
 アルキル基としては、直鎖状でも分岐状でもよく、配向性の観点からは直鎖状が好ましく、溶解性の観点からは分岐状が好ましい。
 炭素数1~20のアルキル基としては、直鎖状であれば炭素数1~15の直鎖状アルキル基が好ましく、炭素数1~10の直鎖状アルキル基がより好ましい。分岐状であれば炭素数3~15の分岐状アルキル基が好ましく、炭素数3~8の分岐状アルキル基がより好ましい。
 また、R31、R32の少なくとも一方が、炭素数3~15の分岐状アルキル基であることがさらに好ましく、R31、R32の両方が炭素数3~8の分岐状アルキル基であることが特に好ましい。
 R31、R32は、同一でも異なっていてもよいが、対称性の観点から同一であることが好ましい。
 なお、R31、R32が置換基を有する場合、置換基の炭素数はR31、R32の炭素数に含まれる。置換基としてはハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。
 式(3-3)において、R33は、水素原子、または炭素数1~12のアルキル基である。配向性の観点から水素原子が好ましい。
 式(3-3)において、R31とR32、R31とR33、R32とR33は、それぞれ互いに結合して環を形成してもよい。環の員数は4~6が好ましい。
 式(3-3)で表される化合物としては、より具体的には以下の表に示す化合物が挙げられる。また、以下の表に示す化合物は、スクアリリウム骨格の左右において各記号の意味は同一である。
 また、Rは上記の定義のとおりである。
Figure JPOXMLDOC01-appb-T000020
<近赤外線吸収色素の製造方法>
 本発明の近赤外線吸収色素は、例えば下記に示す合成方法により製造できる。
 近赤外線吸収色素(3-1Ai)の合成方法を下記に示す。なお出発物質は市販品から入手可能である。RCHOは例えば日本国特開2011-207782号公報の段落[0131]等に記載される公知の製法に従って合成できる。
Figure JPOXMLDOC01-appb-C000021
 近赤外線吸収色素(3-1Aii)の合成方法を下記に示す。なお出発物質は市販品から入手可能である。RBrは例えばSynlett,2009,20,3279-3282等に記載される公知の製法に従って合成できる。
Figure JPOXMLDOC01-appb-C000022
 近赤外線吸収色素(3-1Bi)および(3-1Bii)の合成方法を下記に示す。なお出発物質は市販品から入手可能である。RCOClは例えば日本国特開2014-58490号公報の段落〔0093〕等に記載される公知の製法に従って合成できる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 近赤外線吸収色素(3-2)の合成方法を下記に示す。なお出発物質は例えば国際公開第2021/112020号に記載される公知の製法に従って合成できる。RBPinは例えばOrg.Biomol.Chem.,2016,14,9974-9980等に記載される公知の製法に従って合成できる。
Figure JPOXMLDOC01-appb-C000025
 近赤外線吸収色素(3-3)の合成方法を下記に示す。なお出発物質は例えば国際公開第2021/112020号に記載される公知の製法に従って合成できる。RBPinは例えばOrg.Biomol.Chem.,2016,14,9974-9980等に記載される公知の製法に従って合成できる。
Figure JPOXMLDOC01-appb-C000026
 本発明の液晶組成物は、1種の近赤外線吸収色素のみを含んでもよく、複数種の近赤外線吸収色素を組み合わせて含んでもよい。
 液晶組成物における近赤外線吸収色素の含有量は、好ましくは0.1~15質量%、より好ましくは0.5~10質量%、特に好ましくは1~8質量%であり、リタデーション向上の観点から好ましくは0.1質量%以上、より好ましくは0.5質量%以上、特に好ましくは1質量%以上であり、また、可視光透過率の観点から好ましくは15質量%以下、より好ましくは10質量%以下、特に好ましくは8質量%以下である。
<液晶化合物>
 本発明の液晶組成物における液晶化合物は、可視光透過率の観点から可視光を透過する液晶化合物であることが好ましい。
 液晶化合物の種類としては、ネマチック相を示す非重合性液晶化合物、ネマチック相を示す重合性液晶化合物、スメクチック相を示す重合性液晶化合物等が挙げられる。配向性の観点からはネマチック相を示す非重合性液晶化合物およびネマチック相を示す重合性液晶化合物が好ましい。
 また、液晶化合物は、フラット分散性または逆波長分散性を示すことが好ましい。
 ここで、フラット分散性とは、リタデーション値が短波長側から長波長側に向かってほとんど変わらない波長分散性であることを意味する。
 また、逆波長分散性液晶化合物とは、その化合物を用いて形成される光学異方性膜が逆波長分散性を示す化合物を意味する。つまり、逆波長分散性液晶化合物とは、この化合物を用いて作製された光学異方性膜の特定波長(可視光範囲)における面内リタデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 フラット分散性を示す液晶化合物であれば短波長側のリタデーションが低い点で好ましい。また逆波長分散性を示す液晶化合物であれば短波長側でリタデーションが改善する点で好ましい。
 液晶化合物は、例えば国際公開第2009/148142号、日本国特開2011-207765号公報、国際公開第2021/039625号等に記載される公知の製法により合成してもよく、また、市販品を用いてもよい。
 フラット分散性を示す液晶化合物としては、公知の化合物を用いることができ、例えば日本国特開2011-207765号公報、国際公開第2009/148142号に記載される液晶化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000027
 逆波長分散性を示す液晶化合物としては、公知の化合物を用いることができ、例えば下記に示す液晶化合物や、日本国特開2011-207765号公報、国際公開第2021/039625号等に記載される液晶化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000028
 本発明の液晶組成物における液晶化合物の含有量は、好ましくは50~99.9質量%、より好ましくは80~99.5質量%、特に好ましくは90~99質量%であり、安定な液晶相を広い温度範囲で発現させる観点から好ましくは50質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、また、十分な吸光度とする観点から好ましくは99.9質量%以下、より好ましくは99.5質量%以下、特に好ましくは99質量%以下である。
 本発明の液晶組成物は、上記した近赤外線吸収色素および液晶化合物以外に、その他の成分を含んでもよい。
 液晶組成物はその他の成分として、たとえば、液晶化合物が重合性液晶化合物である場合に、重合開始剤を含んでもよい。重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、および、光重合開始剤が挙げられる。例えば、光重合開始剤としては、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、および、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 液晶組成物中における重合開始剤の含有量は、組成物の全固形分に対して、0.01~20質量%が好ましく、0.5~10質量%がより好ましい。
 液晶組成物はその他の成分として、たとえば、重合性モノマーを含んでもよい。
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。なかでも、多官能性ラジカル重合性モノマーが好ましい。また、重合性モノマーとしては、重合性液晶化合物と共重合性のモノマーが好ましい。
 液晶組成物中における重合性モノマーの含有量は、液晶化合物の全質量に対して、1~50質量%が好ましく、2~30質量%がより好ましい。
 液晶組成物はその他の成分として、たとえば、界面活性剤を含んでもよい。
 界面活性剤としては、従来公知の化合物が挙げられる。
 液晶組成物はその他の成分として、たとえば、溶媒を含んでもよい。溶媒としては、有機溶媒が好ましい。有機溶媒としては、アミド、スルホキシド、ヘテロ環化合物、炭化水素、アルキルハライド、エステル、ケトン、および、エーテルが挙げられる。なお、2種類以上の有機溶媒を併用してもよい。
 液晶組成物はその他の成分として、たとえば、酸化防止剤を含んでもよい。酸化防止剤としては例えばIrganox1010(BASF社製)が挙げられる。
 液晶組成物はその他の成分として、たとえば、垂直配向剤、および、水平配向剤などの各種配向制御剤を含んでもよい。これらの配向制御剤は、界面側において液晶化合物を水平または垂直に配向制御可能な化合物である。
<光学異方性膜>
 本発明の光学異方性膜は、上記の本発明の液晶組成物を硬化して形成される。したがって本発明の光学異方性膜は本発明の液晶組成物の硬化物を含有する。
 本発明の光学異方性膜は本発明の液晶組成物に由来する種々の特性を有する。
 本発明の光学異方性膜は、好ましくは波長650~1100nmに極大吸収波長を有する。
 光学異方性膜の波長650~1100nmにおける遅相軸の吸光度をA3とし、進相軸の吸光度をA4としたとき、下記式(4)を満たすことが好ましい。
   A3<A4   (4)
 なお、遅相軸の吸光度は、光学異方性膜における液晶化合物の配向方向と平行な偏光を照射したときの吸収スペクトルから求められ、進相軸の吸光度は、光学異方性膜における液晶化合物の配向方向と垂直な偏光を照射したときの吸収スペクトルから求められる。
 式(4)を満たす光学異方性膜は、波長650~1100nmにおいて屈折率異常分散により進相軸と遅相軸の屈折率差が変化する。
 光学異方性膜の波長550nmにおけるリタデーションをRe(550)とし、波長650nmにおけるリタデーションをRe(650)としたとき、下記式(5)を満たすことが好ましい。
   Re(550)/Re(650)<1   (5)
 上記式(5)を満たす光学異方性膜は、逆波長分散性である。
 Re(550)/Re(650)はより好ましくは0.9以下である。
 光学異方性膜の波長650~1100nmにおける最大吸収波長の二色比が好ましくは1.5以上、より好ましくは1.75以上である。
 光学異方性膜の製造方法は特に制限されず、公知の方法が挙げられる。
 なかでも、面内リタデーションの制御がしやすい点から、液晶組成物を塗布して塗膜を形成し、塗膜に配向処理を施して液晶化合物を配向させ、得られた塗膜に対して硬化処理(紫外線の照射(光照射処理)または加熱処理)を施して、光学異方性膜を形成する方法が好ましい。
 以下、上記方法の手順について詳述する。
 まず、支持体上に、液晶組成物を塗布して塗膜を形成し、塗膜に配向処理を施して液晶化合物を配向させる。
 使用される支持体は、組成物を塗布するための基材として機能を有する部材である。支持体は、液晶組成物を塗布および硬化させた後に剥離される仮支持体であってもよい。
 支持体(仮支持体)としては、プラスチックフィルムや、ガラス基板を用いることができる。
 支持体の厚みは、好ましくは5~1000μm、より好ましくは10~300μm、特に好ましくは15~90μmである。
 なお、必要に応じて、支持体上には、配向層を配置してもよい。
 配向層は、一般的には、ポリマーを主成分とする。配向層用ポリマーとしては、多数の文献に記載があり、多数の市販品を入手できる。配向層用ポリマーとしては、ポリビニルアルコール、ポリイミド、または、その誘導体が好ましい。
 なお、配向層には、公知のラビング処理、光配向処理、または溝配向処理が施されることが好ましい。
 配向層の厚みは、0.01~10μmが好ましく、0.01~1μmがより好ましい。
 液晶組成物の塗布方法としては、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、および、ワイヤーバー法などが挙げられる。いずれの方法で塗布する場合においても、単層塗布が好ましい。
 支持体上に形成された塗膜に、配向処理を施して、塗膜中の液晶化合物を配向させる。
 配向処理は、室温により塗膜を乾燥させる、または、塗膜を加熱することにより行うことができる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度または圧力の変化により転移させることができる。リオトロピック性液晶化合物の場合には、溶媒量などの組成比によっても転移させることができる。
 なお、塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては50~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 また、塗膜を加熱した後、後述する硬化処理(光照射処理)の前に、必要に応じて、塗膜を冷却してもよい。冷却温度としては20~200℃が好ましく、20~150℃がより好ましい。
 なお、上述した塗膜の加熱温度と、上述した塗膜の冷却温度との差は特に制限されず、40~150℃が好ましい。
 なかでも、硬化処理を施す前に、塗膜を加熱して冷却する際には、塗膜の加熱温度TAが50~250℃であり、かつ、冷却温度TBが加熱温度TA×0.1~加熱温度TA×0.7の範囲であることが好ましい。
 次に、重合性液晶化合物が配向された塗膜に対して硬化処理を施す。
 重合性液晶化合物が配向された塗膜に対して実施される硬化処理の方法は特に制限されず、例えば、光照射処理および加熱処理が挙げられる。なかでも、製造適性の点から、光照射処理が好ましく、紫外線照射処理がより好ましい。
 光照射処理の照射条件は特に制限されないが、50~3000mJ/cmの照射量が好ましい。
 上記製造方法において、各種条件を調整することにより、近赤外線吸収色素の配置状態などを調整でき、結果として光学異方性膜の光学特性を調整できる。
 例えば、支持体上に液晶組成物を塗布して塗膜を形成した後の液晶化合物を配向させる際の加熱温度、および、加熱した後に冷却する際の冷却温度を調整することにより、近赤外線吸収色素の配置状態などを調整でき、結果として光学異方性膜の光学特性を調整できる。
(用途)
 上述した光学異方性膜は、種々の用途に適用でき、例えば、光学異方性膜の面内リタデーションを調整して、いわゆるλ/4板またはλ/2板として用いることもできる。
 なお、λ/4板とは、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板である。より具体的には、所定の波長λnmにおける面内リタデーションReがλ/4(または、この奇数倍)を示す板である。
 λ/4板の波長550nmでの面内リタデーション(Re(550))は、理想値(137.5nm)を中心として、25nm程度の誤差があってもよく、例えば、110~160nmであることが好ましく、120~150nmであることがより好ましい。
 また、λ/2板とは、特定の波長λnmにおける面内リタデーションRe(λ)がRe(λ)≒λ/2を満たす光学異方性膜のことをいう。この式は、可視光線領域のいずれかの波長(例えば、550nm)において達成されていればよい。なかでも、波長550nmにおける面内リタデーションRe(550)が、以下の関係を満たすことが好ましい。
  210nm≦Re(550)≦300nm
 光学異方性膜、および、この光学異方性膜を含む光学フィルタは、表示装置中に含まれていてもよい。つまり、光学異方性膜のより具体的な用途としては、例えば、液晶セルを光学補償するための光学補償フィルタ、および、有機エレクトロルミネッセンス表示装置などの表示装置に用いられる反射防止膜が挙げられる。
 なかでも、光学フィルタの好ましい態様として、光学異方性膜と偏光子とを含む円偏光板が挙げられる。この円偏光板は、上記反射防止膜として好適に使用できる。つまり、表示素子(例えば、有機エレクトロルミネッセンス表示素子)と、表示素子上に配置された円偏光板とを有する表示装置においては、反射色味がより抑制できる。
 また、本発明の光学異方性膜は、IPS(In Plane Switching)型液晶表示装置の光学補償フィルタに好適に用いられ、斜め方向から視認した時の色味変化および黒表示時の光漏れを改善できる。
 光学異方性膜を含む光学フィルタとしては、上述したように、偏光子と光学異方性膜とを含む円偏光板が挙げられる。
 偏光子は、光を特定の直線偏光に変換する機能を有する部材(直線偏光子)であればよく、主に、吸収型偏光子を利用できる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが挙げられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子とがあり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 偏光子の吸収軸と光学異方性膜の遅相軸との関係は特に制限されないが、光学異方性膜がλ/4板であり、光学フィルタが円偏光フィルタとして用いられる場合は、偏光子の吸収軸と光学異方性膜の遅相軸とのなす角は、45°±10°が好ましい。
 以上説明したとおり、本明細書は下記の液晶組成物、光学異方性膜、近赤外線吸収色素等を開示する。
〔1〕 液晶化合物と、メソゲン基を有する近赤外線吸収色素とを含む液晶組成物であって、
 前記近赤外線吸収色素のジクロロメタン中の最大吸収波長におけるモル吸光係数が200000L/(mol・cm)以上であり、
 前記近赤外線吸収色素は、下記測定条件(A)において測定される波長650~1100nmにおける分子の長軸方向の吸光度をA1とし、短軸方向の吸光度をA2としたとき、以下の式(1)を満たす、液晶組成物。
   A1<A2   (1)
測定条件(A):
 近赤外線吸収色素および液晶化合物を含む組成物を用いて光学異方性膜を作製し、得られた光学異方性膜に対し、液晶化合物の配向方向と平行な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の長軸方向の吸光度A1を測定し、液晶化合物の配向方向と垂直な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の短軸方向の吸光度A2を測定する。
〔2〕 前記近赤外線吸収色素がジクロロメタン中で波長650~1100nmに最大吸収波長を有し、かつスクアリリウム骨格を有する、〔1〕に記載の液晶組成物。
〔3〕 前記近赤外線吸収色素が下記式(3)で表される化合物である、〔1〕または〔2〕に記載の液晶組成物。
   R-D-R    (3)
〔上記式における記号の定義は下記の通りである。
D:スクアリリウム骨格を有する2価の基。
:下記式(2)で表される1価のメソゲン基であり、2つのRは同一でも異なっていてもよい。
   R’-Sp1-〔Cy-Sp2〕-Sp3-    (2)
’:水素原子、電子求引性を有する1価有機基、または重合性を有する1価有機基。
Cy:置換基を有してもよいアリーレン基、置換基を有してもよいヘテロアリーレン基、または置換基を有してもよいシクロアルキレン基。
n:2~9の整数。
Sp1、Sp2、Sp3:それぞれ独立に、単結合、アルキレン基、アルケニレン基、アルキニレン基、カルボニル基、エステル結合、アミド結合、およびエーテル結合から選ばれる1種の基もしくは結合、またはこれらの組み合わせ。〕
〔4〕 前記近赤外線吸収色素が下記式(3-1A)で表される化合物、下記式(3-1B)で表される化合物、下記式(3-2)で表される化合物、および下記式(3-3)で表される化合物から選ばれる少なくとも一種である、〔3〕に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
〔上記各式における記号の定義は下記の通りである。
:前記式(2)におけるRの定義と同様である。
:一価の置換基を有してもよい炭素原子または窒素原子。
:酸素原子、硫黄原子またはNH基。
:硫黄原子または酸素原子。
:一価の置換基を有してもよい炭素原子または窒素原子。
11、R12、R21、R22、R31、R32:それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基。
13、R14、R23、R33:それぞれ独立して、水素原子、または炭素数1~12のアルキル基。R11とR12、R11とR13、R12とR13、R13とR14は、それぞれ互いに結合して環を形成してもよい。R21とR22、R21とR23、R22とR23は、それぞれ互いに結合して環を形成してもよい。R31とR32、R31とR33、R32とR33は、それぞれ互いに結合して環を形成してもよい。〕
〔5〕 前記液晶化合物がフラット分散性または逆波長分散性を示す、〔1〕~〔4〕のいずれかに記載の液晶組成物。
〔6〕 〔1〕~〔5〕のいずれかに記載の液晶組成物の硬化物を含む光学異方性膜。
〔7〕 波長650~1100nmに極大吸収波長を有する、〔6〕に記載の光学異方性膜。
〔8〕 前記光学異方性膜の波長650~1100nmにおける遅相軸の吸光度をA3とし、進相軸の吸光度をA4としたとき、下記式(4)を満たす、〔6〕または〔7〕に記載の光学異方性膜。
   A3<A4   (4)
〔9〕 前記光学異方性膜の波長550nmにおけるリタデーションをRe(550)とし、波長650nmにおけるリタデーションをRe(650)としたとき、下記式(5)を満たす、〔6〕~〔8〕のいずれかに記載の光学異方性膜。
   Re(550)/Re(650)<1   (5)
〔10〕 前記光学異方性膜の波長650~1100nmにおける最大吸収波長の二色比が1.5以上である、〔6〕~〔9〕のいずれかに記載の光学異方性膜。
〔11〕 下記式(3-1A)で表される化合物、下記式(3-1B)で表される化合物、下記式(3-2)で表される化合物、または下記式(3-3)で表される化合物からなる、近赤外線吸収色素。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
〔上記各式における記号の定義は下記の通りである。
:下記式(2)で表される1価のメソゲン基であり、2つのRは同一でも異なっていてもよい。
   R’-Sp1-〔Cy-Sp2〕-Sp3-    (2)
’:水素原子、電子求引性を有する1価有機基、または重合性を有する1価有機基。
Cy:置換基を有してもよいアリーレン基、置換基を有してもよいヘテロアリーレン基、または置換基を有してもよいシクロアルキレン基。
n:2~9の整数。
Sp1、Sp2、Sp3:それぞれ独立に、単結合、アルキレン基、アルケニレン基、アルキニレン基、カルボニル基、エステル結合、アミド結合、およびエーテル結合から選ばれる1種の基もしくは結合、またはこれらの組み合わせ。
:一価の置換基を有してもよい炭素原子または窒素原子。
:酸素原子、硫黄原子またはNH基。
:硫黄原子または酸素原子。
:一価の置換基を有してもよい炭素原子または窒素原子。
11、R12、R21、R22、R31、R32:それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基。
13、R14、R23、R33:水素原子、または炭素数1~12のアルキル基。R11とR12、R11とR13、R12とR13、R13とR14は、それぞれ互いに結合して環を形成してもよい。R21とR22、R21とR23、R22とR23は、それぞれ互いに結合して環を形成してもよい。R31とR32、R31とR33、R32とR33は、それぞれ互いに結合して環を形成してもよい。〕
 次に、本発明を実施例によりさらに具体的に説明する。
 モル吸光係数の測定にはメトラー社製フラッシュ分光光度計UV5を用いた。
 リタデーションの測定にはリタデーション測定装置(大塚電子製、RETS-100)を用いた。
 吸収スペクトルおよび分光特性の測定には可視吸収スペクトル計(島津製作所製、SolidSpec-3700DUV)を用いた。
〔例1-1:色素A-1の合成〕
Figure JPOXMLDOC01-appb-C000035
<化合物(a1)の合成>
 50mLの2口ナスフラスコにTHFを17mL、(メトキシメチル)トリフェニルホスホニウムクロリド4.61g(13.5mmol)を加え、窒素雰囲気下、氷冷下で、t-ブトキシカリウム1.52g(13.4mmol)をゆっくり加えて30分攪拌した。4-(trans-4-プロピルシクロヘキシル)シクロヘキサノン1.50g(6.66mmol)をゆっくり加え、30分攪拌し、室温に戻して1.5時間攪拌した。反応終了後、水を10mL、ブラインを10mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去した。得られた固体をヘキサンに懸濁させ、ろ過を行って固体を除去し、溶媒を減圧除去して未精製の化合物を得た。50mLの2口ナスフラスコに得られた化合物を加え、窒素雰囲気下、氷冷下で、THF(17mL)、塩酸(2.1mL)、水(2.1mL)を加え、室温に戻して1時間撹拌した。反応終了後、ブラインを20mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物を得た。溶媒除去後、これをヘキサン:ジクロロメタン=2:1でカラム精製を行い、化合物(a1)を0.807g得た。(収率51%)
<化合物(a2)の合成>
 300mLの丸底フラスコに、2,1,3-ベンゾチアジアゾールを10.0g(73.4mmol)加えた。氷冷下、濃硫酸を200g(2039mmol)加え、室温に戻し、溶解するまで1時間撹拌した。その後、再び氷冷下でN-ブロモスクシンイミドを12.4g(69.8mmol)加え、室温に戻し、溶解するまで1時間撹拌した。さらに1時間撹拌して反応を完了させた後、800mLの氷水に反応溶液を滴下すると固体が析出したので、静置してデカンテーションで溶液を取り除いた。さらに800mLの水を加え、静置してデカンテーションで溶液を取り除いた後、析出した固体を濾過することで未精製の化合物(a2)を得た。これをヘキサン/酢酸エチル(1:1、容量比)の溶液100mLに懸濁させ、60℃に加熱し固体を溶解させた。この溶液を室温に戻し、析出した固体を濾過で取り除いた。取り除いた固体はジブロモ体であった。濾液を飽和炭酸水素ナトリウム水溶液100mLで洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧除去して9.15gの固体を得た。得られた固体は化合物(a2):ジブロモ体=1:0.17(モル比)であり、含まれる化合物(a2)は7.42gであった。(収率47%)
<化合物(a3)の合成>
 還流装置を装備した500mLの3つ口丸底フラスコに、PEPPSITM-IPrを0.63g(0.93mmol)、上記で得られた化合物(a2)(ジブロモ体を17.0mol%含む)を9.15g(Br当量:46.3mmol)、t-ブトキシカリウムを6.75g(60.2mmol)、トルエンを200mL加えた。脱気および窒素置換をおこなった後、ジイソブチルアミンを9.57mL(55.5mmol)加え、100℃で5時間撹拌した。反応終了後、セライト濾過にて反応液中の固体を除去し、濾液を濃縮して未精製の化合物(a3)を得た。これをヘキサン/酢酸エチル(24:1、容量比)を展開液としたカラムクロマトグラフィーで精製し、8.53gの化合物(a3)を得た。(収率94%)
<化合物(a4)の合成>
 50mLの2口ナスフラスコに化合物(a3)0.834g(3.16mmol)、エタノール13mLを加え、窒素雰囲気下、氷冷下で、水素化ホウ素ナトリウム0.37g(9.70mmol)、およびエタノールに溶かした塩化コバルト(II)六水和物0.253g(1.06mmol)をゆっくり加え、2時間撹拌した。反応終了後、ジクロロメタンでセライトろ過を行い、飽和塩化アンモニウム水溶液を10mL、飽和炭酸水素ナトリウム水溶液を20mL加え、ジクロロメタンで5回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(a4)を得た。化合物(a4)は未精製のまま次の反応に使用した。
<化合物(a5)の合成>
 還流装置を装備した50mLの2口ナスフラスコに上記で得られた化合物(a4)0.744g(3.16mmol)、DMA17mLを加え、窒素雰囲気下、亜硫酸水素ナトリウム0.354g(3.41mmol)を加え、100℃に加熱した。DMAに溶かした化合物(a1)0.856g(3.62mmol)を15分かけてゆっくり滴下し、100℃で3時間撹拌した。反応終了後、飽和水酸化ナトリウム水溶液を50mL加え、ヘキサン:酢酸エチル=4:1で3回抽出し、水で洗浄し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物を得た。これをヘキサン:酢酸エチル=4:1でカラム精製を行い、化合物(a5)を0.94g得た。(収率61%)
<色素A-1の合成>
 300mLの3つ口丸底ナスフラスコに化合物(a5)を0.94g(2.1mmol)、1-ブタノールを40mL、トルエンを40mL加え、窒素雰囲気下、スクアリン酸0.167g(1.42mmol)を加え、3時間還流した。反応終了後、溶媒を減圧除去し、ヘキサンに懸濁させてろ過を行い、未精製の色素A-1を得た。これをヘキサン:酢酸エチル:クロロホルム=2:1:10でカラム精製を行い、色素A-1を得た。(収率86%)H-NMR(400MHz,CHLOROFORM-D)δ12.94(s,1H),7.95(dd,J=15.5,9.1Hz,2H),6.44(dd,J=9.2,2.3Hz,2H),3.88(d,J=6.4Hz,8H),2.87-2.76(m,2H),2.36-2.26(m,4H),2.19-2.11(m,4H),1.91-1.89(m,4H),1.79-1.75(m,8H),1.67-1.61(m,4H),1.35-1.14(m,26H),0.96(d,J=6.6Hz,24H),0.88(t,J=7.3Hz,6H)。
〔例1-2:色素A-2の合成〕
Figure JPOXMLDOC01-appb-C000036
 色素A-2は、色素A-1の合成において、化合物(a3)の合成の際に用いたジイソブチルアミンをジ(2-エチルヘキシル)アミンに変更した以外は、色素A-1と同様の方法で合成した。
H-NMR(400MHz,CHLOROFORM-D)δ12.97(s,2H),7.95(d,J=9.0Hz,2H),6.49(d,J=9.0Hz,2H),4.08(s,8H),2.86-2.78(m,2H),2.28(d,J=11.7Hz,4H),1.92-0.86(m,108H)。
〔例1-3:色素A-3の合成〕
Figure JPOXMLDOC01-appb-C000037
 色素A-3は、色素A-1の合成において、化合物(a1)を下記式(a1’)で表される化合物(a1’)に変更した点、化合物(a3)の合成の際に用いたジイソブチルアミンをジ(2-エチルヘキシル)アミンに変更した点以外は、色素A-1と同様の方法で合成した。
Figure JPOXMLDOC01-appb-C000038
H-NMR(400MHz,CHLOROFORM-D)δ13.10(s,2H),7.99(d,J=9.1Hz,2H),7.25(d,J=8.3Hz,4H),7.01(d,J=8.3Hz,4H),6.52(d,J=9.1Hz,2H),4.20-3.79(m,8H),2.97(t,J=11.6Hz,2H),2.67(t,J=11.3Hz,2H),2.46-2.40(m,H),2.19-0.84(m,122H)。
〔例1-4:色素B-1の合成〕
Figure JPOXMLDOC01-appb-C000039
<化合物(b1)の合成>
 50mLの2口ナスフラスコにtrans-4-(trans-4-プロピルシクロヘキシル)シクロヘキサンカルボン酸1.44g(5.71mmol)、4-ジメチルアミノピリジン0.734g(6.01mmol)、ジクロロメタン27.3mL、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩1.16g(6.05mmol)を加え、窒素雰囲気下で20分攪拌した。4-ヨードフェノール1.20g(5.46mmol)を加え、2時間攪拌した。反応終了後、1M塩酸を10mL、水を10mL加え、ジクロロメタンで5回抽出し、飽和炭酸水素ナトリウム水溶液で洗浄し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b1)を得た。これをヘキサン:ジクロロメタン=1:1でカラム精製を行い、化合物(b1)を2.19g得た。(収率88%)
<化合物(b2)の合成>
 50mLの2口ナスフラスコに3-ニトロアニリン1.06g(7.66mmol)、DMF15mLを加え、窒素雰囲気下、N-ブロモスクシンイミドを1.43g(8.03mmol)加え、1時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を20mL、水を20mL加え、ヘキサン:酢酸エチル=4:1で3回抽出し、水で洗浄を行い、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b2)を得た。これをヘキサン:酢酸エチル=1:1でカラム精製を行い、化合物(b2)を1.56g得た。(収率94%)
<化合物(b3)の合成>
 100mLの2口ナスフラスコに化合物(b2)1.56g(7.18mmol)、酢酸14mL、アセトニトリル14mLを加え、窒素雰囲気下、氷冷下水素化ホウ素ナトリウム0.816g(21.6mmol)を加え、20分間撹拌した。イソブチルアルデヒド2.0mL(21.5mmol)を加え、室温に戻して5時間攪拌した。反応終了後、水を10mL加え、溶媒を減圧除去した。水酸化ナトリウム水溶液で中和し、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b3)を得た。これをヘキサン:酢酸エチル=93:7でカラム精製を行い、化合物(b3)を2.19g得た。(収率93%)
<化合物(b4)の合成>
 100mLの2口ナスフラスコに化合物(b3)2.19g(6.65mmol)、THF22mLを加え、窒素雰囲気下、-40℃でビニルマグネシウムクロリド(1.6mol/L、THF溶液)14mLをゆっくり加え、4時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液を15mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b4)を得た。化合物(b4)は未精製のまま次の反応に使用した。
<化合物(b5)の合成>
 200mLのナスフラスコに上記で得られた化合物(b4)2.15g(6.65mmol)、酢酸エチル44mL、トリエチルアミン4.6mL(33mmol)を加え、窒素雰囲気下、Pd/C0.53gを加え、水素置換して15時間攪拌した。反応終了後、セライトろ過を行い、溶媒を減圧除去して未精製の化合物(b5)を得た。これをヘキサン:酢酸エチル=10:1でカラム精製を行い、化合物(b5)を0.524g得た。(収率32%)
<化合物(b6)の合成>
 50mLの2口ナスフラスコに化合物(b5)0.524g(2.14mmol)、2-ノルボルネン0.409g(4.34mmol)、炭酸カリウム0.593g(4.29mmol)、ビス(アセトニトリル)パラジウム(II)ジクロリド0.056g(0.214mmol)、DMA10.7mL、水0.1mLを加え、脱気を行い、窒素雰囲気下で化合物(b1)1.94g(4.26mmol)を加え、70℃で24時間撹拌した。反応終了後、水を30mL加え、ジクロロメタンで3回抽出し、ブラインで洗浄を行い、硫酸ナトリウムで乾燥した後、セライトろ過を行い、ろ液を回収して溶媒を減圧除去した。得られた固体をヘキサンで洗浄し、残渣を回収して未精製の化合物(b6)を得た。これをヘキサン:ジクロロメタン=1:3でカラム精製を行い、化合物(b6)を0.403g得た。(収率33%)
<色素B-1の合成>
 色素B-1は、色素A-1の合成において、化合物(a5)を化合物(b6)に変更した以外は、色素A-1と同様の方法で合成した。
H-NMR(400MHz,CHLOROFORM-D)δ13.37(d,J=102.0Hz,2H),8.11(d,J=8.8Hz,2H),7.81(t,J=9.1Hz,4H),7.22-7.15(m,4H),6.79(s,2H),6.47(s,2H),3.61(s,8H),2.54-2.45(m,2H),2.29-2.17(m,8H),1.91-1.86(m,4H),1.79-1.72(m,8H),1.61-1.52(m,4H),1.34-1.25(m,4H),1.17-1.05(m,18H),0.99(d,J=6.7Hz,24H),0.90-0.83(m,12H)。
〔例1-5:色素C-1の合成〕
Figure JPOXMLDOC01-appb-C000040
<化合物(c1)の合成>
 化合物(c1)の合成は、4-ヨードフェノールを4-ブロモフェノールに変更した以外は、化合物(b1)と同様の方法で合成した。
<化合物(c2)の合成>
 50mLの2口ナスフラスコに化合物(c1)0.684g(1.68mmol)、1,4-ジオキサン8.6mL、酢酸カリウム0.450g(5.06mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物0.0743g(0.0901mmol)を加えて脱気を行い、窒素雰囲気下でビス(ピナコラート)ジボロン0.501g(1.87mmol)を加え、80℃で6時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を6mL、水を10mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物を得た。これをヘキサン:酢酸エチル=10:1でカラム精製を行い、化合物(c2)を0.632g得た。(収率83%)
<化合物(c3)の合成>
 国際公開第2021/112020号の段落[0264]~[0267]に記載された方法に基づき、化合物(c3)を合成した。
<化合物(c4)の合成>
 50mLの2口ナスフラスコに1,4-ジオキサン5.3mL、化合物(c3)0.489g(1.07mmol)、トリフェニルホスフィン0.056g(0.212mmol)、化合物(c2)0.605g(1.33mmol)を加え、水0.9mLに溶かした炭酸カリウム0.585g(4.23mmol)を加えた。脱気を行い、窒素雰囲気下[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物0.046g(0.055mmol)を加え、100℃で24時間撹拌した。反応終了後、水を10mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、セライトろ過を行い、ろ液の溶媒を減圧除去して未精製の化合物(c4)を得た。これをヘキサン:酢酸エチル=20:1でカラム精製を行い、化合物(c4)を0.529g得た。(収率70%)
<色素C-1の合成>
 100mLの2口ナスフラスコに化合物(c4)0.529g(0.749mmol)、1-プロパノール30mL、トルエン10mL、オルトギ酸トリメチル0.82mL(7.5mmol)を加え、窒素雰囲気下、スクアリン酸0.062g(0.54mmol)を加え、80℃で1.5時間攪拌した。反応終了後、溶媒を減圧除去し、未精製の色素C-1を得た。これをヘキサン:酢酸エチル:ジクロロメタン=10:1:5でカラム精製を行い、色素C-1を0.214g得た。(収率38%)H-NMR(400MHz,CHLOROFORM-D)δ7.60(dd,J=6.7,1.9Hz,4H),7.22(dd,J=6.7,1.9Hz,4H),6.04
(s,2H),3.32-3.21(m,8H),2.48(tt,J=12.2,3.6Hz,2H),2.19(d,J=11.0Hz,4H),1.88(d,J=9.1Hz,8H),1.79-1.73(m,8H),1.55(t,J=12.0Hz,4H),1.40-1.21(m,40H),1.17-0.96(m,16H),0.89(td,J=7.3,3.3Hz,32H)。
〔例1-6:色素D-1の合成〕
Figure JPOXMLDOC01-appb-C000041
<化合物(d1)の合成>
 国際公開第2021/112020号の段落[0272]~[0274]に記載された方法に基づき、化合物(d1)を合成した。
<化合物(d2)の合成>
 50mLの2口ナスフラスコに化合物(d1)0.440g(1.04mmol)、エタノール3.5mL、6M水酸化ナトリウム水溶液1.74mLを加え、窒素雰囲気下で3時間還流した。反応終了後、溶媒を減圧除去し、6M塩酸水溶液を2mL加えて中和した。水を10mL加えてジクロロメタンで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(d2)を得た。化合物(d2)は未精製のまま次の反応に使用した。
<化合物(d3)の合成>
 化合物(d3)の合成は、化合物(b1)の合成において、trans-4-(trans-4-プロピルシクロヘキシル)シクロヘキサンカルボン酸を化合物(d2)に変更し、4-ヨードフェノールをtrans-4-(trans-4-プロピルシクロヘキシル)シクロヘキサノールに変更した以外は、化合物(b1)と同様の方法で合成した。
<色素D-1の合成>
 色素D-1の合成は、化合物(c4)を化合物(d3)に変更した以外は、色素C-1と同様の方法で合成した。
H-NMR(400MHz,CHLOROFORM-D)δ9.29(s,2H),6.41(s,2H),6.25(d,J=15.7Hz,2H),4.81-4.75(m,2H),3.35(d,J=7.4Hz,8H),2.15(d,J=9.1Hz,4H),1.93-1.71(m,16H),1.60-1.29(m,38H),1.15-0.96(m,20H),0.93-0.85(m,30H)。
〔例1-7:色素E-1の合成〕
 ピロリドンとTMS-Clを反応させてN-TMSピロリドンとし、これにLDAを作用させヨウ化n-オクタンを反応させ、水を加えることで5-オクチルピロリドンとし、LiAlHで還元することで、3-オクチルピロリジンを合成し、その他は国際公開第2017/135359号に基づき、色素E-1を合成した。
Figure JPOXMLDOC01-appb-C000042
〔例1-1~1-7:色素の特性〕
<色素分子の吸光度>
 各色素化合物を用いて、後述の重合性液晶組成物2-1と同様の組成物を調製し、例2-1と同様の方法により光学異方性膜を作製した。
 光学異方性膜における液晶化合物の配向方向と平行な偏光を照射し、吸収スペクトルを測定することで、波長650~1100nmにおける色素分子の長軸方向の吸光度A1を、液晶化合物の配向方向と垂直な偏光を照射し、吸収スペクトルを測定することで、波長650~1100nmにおける色素分子の短軸方向の吸光度A2を測定した。
 各色素のジクロロメタン中の最大吸収波長、かかる最大吸収波長におけるモル吸光係数、色素分子の長軸方向の吸光度A1、色素分子の短軸方向の吸光度A2、ジクロロメタン中の分光透過率曲線において、最大吸収波長における透過率を10%とした場合の各分光特性を、下記表に示す。
 例1-1~例1-6は実施例であり、例1-7は比較例である。
Figure JPOXMLDOC01-appb-T000043
〔例2-1〕
 下記の各材料を、下記表に示す割合で混合してジクロロメタンに溶解し、乾燥してジクロロメタンを除去することで重合性液晶組成物2-1を得た。
 液晶化合物L-1~液晶化合物L-4は、国際公開第2009/148142号に記載された方法に基づき合成した。なお液晶化合物L-1~液晶化合物L-4は、フラット分散性を示し、またネマチック相を示す重合性液晶化合物である。
 酸化防止剤としてBASF社製 Irganox1010を用いた。
 光重合開始剤としてBASF社製 Irgacure369Eを用いた。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000045
 イーエッチシー社製の5μmのギャップが保たれた配向セルを95℃に加熱し、得られた重合性液晶組成物2-1をセル内に注入し、110℃で2分間加熱した後、60℃まで放冷し、ネマチック相を形成させた。
 波長365nmのUV光を、60℃で50mW/cm×30秒の条件で照射することで、重合性液晶組成物2-1を重合させ、光学異方性膜を得た。
 光学異方性膜における液晶化合物の配向方向(すなわちラビング方向)と平行な偏光および垂直な偏光を各々照射し、それぞれの吸収スペクトル(A||およびA⊥)を測定することで、波長650~1100nmにおける遅相軸の吸光度、進相軸の吸光度、および波長650~1100nmの最大吸収波長における二色比を算出した。また、リタデーション測定装置を用いてリタデーションを測定した。なお、二色比はA⊥/A||で表される値を用いた。
〔例2-2~例2-5〕
 色素、色素濃度、およびセルギャップを下記表に示す条件に変えた以外は、例2-1と同様の手順に従って、重合性液晶組成物2-2~2-5を調製し、重合体を得て光学異方性膜を製造し、波長650~1100nmにおける遅相軸の吸光度、進相軸の吸光度、および波長650~1100nmの最大吸収波長における二色比、リタデーションを測定した。
 例2-1~例2-5で得られた光学異方性膜の波長650~1100nmにおける最大吸収波長、二色比、およびリタデーション比Re(550)/Re(650)、波長650~1100nmにおける遅相軸の吸光度A3、進相軸の吸光度A4を、下記表にまとめて示す。
 例2-1~例2-4は実施例であり、例2-5は比較例である。
Figure JPOXMLDOC01-appb-T000046
 上記結果より、長軸方向の吸光度A1と短軸方向の吸光度A2の関係がA1<A2である近赤外線吸収色素を含む例2-1~例2-4の光学異方性膜は、リタデーション比Re(550)/Re(650)が1を下回ったことから、リタデーション上昇効果が得られた。一方、長軸方向の吸光度A1と短軸方向の吸光度A2の関係がA1>A2である近赤外線吸収色素を含む例2-5の光学異方性膜は、リタデーション比Re(550)/Re(650)が1を超え、リタデーション上昇効果が得られなかった。
 さらに、例2-1~例2-4の光学異方性膜は二色比が1を超えたことから、二色性を有する光学異方性膜が得られた。
〔例3-1〕
 下記の各材料を、下記表に示す割合で混合して重合性液晶組成物3-1を調製した。
 液晶化合物L’-1は、日本国特許第5899607号公報の段落[0535]~[0542]に記載された方法に基づき合成した。なお液晶化合物L’-1は、逆波長分散性を示し、またネマチック相を示す重合性液晶化合物である。また、液晶化合物L-5は、国際公開第2009/148142号に記載された方法に基づき合成した。なお液晶化合物L-5は、フラット分散性を示し、またネマチック相を示す重合性液晶化合物である。
 酸化防止剤としてBASF社製 Irganox1010を用いた。
 光重合開始剤としてBASF社製 Irgacure369Eを用いた。
 界面活性剤としてビックケミージャパン社製BYK361-Nを用いた。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-T000048
 イーエッチシー社製のラビング処理された配向膜付きガラス基板上に、混合溶媒(トルエン:シクロヘキサノン:クロロホルム=1.5:0.6:7.9)に溶解させた重合性液晶組成物3-1をスピンコート法により塗布して塗膜を形成し、160℃で2分間加熱した後、100℃まで放冷し、ネマチック相を形成させた。
 窒素雰囲気下、波長365nmのUV光を、100℃で80mW/cm×30秒の条件で塗膜に照射、次いで160℃で4時間加熱することで、重合性液晶組成物3-1を重合させ、光学異方性膜を得た。
 液晶化合物の配向方向(ラビング方向)と平行な偏光および垂直な偏光を光学異方性膜に照射し、それぞれの吸収スペクトル(A||およびA⊥)を測定することで、波長650~1100nmにおける遅相軸の吸光度、進相軸の吸光度、および波長650~1100nmの最大吸収波長における二色比を算出した。また、リタデーション測定装置を用いてリタデーションを測定した。なお、二色比はA⊥/A||で表される値を用いた。
 例3-1で得られた光学異方性膜の波長650~1100nmにおける最大吸収波長、二色比、およびリタデーション比Re(550)/Re(650)、波長650~1100nmにおける遅相軸の吸光度A3、進相軸の吸光度A4を、下記表にまとめて示す。
 例3-1は実施例である。
Figure JPOXMLDOC01-appb-T000049
 上記結果より、長軸方向の吸光度A1と短軸方向の吸光度A2の関係がA1<A2である近赤外線吸収色素を含む例3-1の光学異方性膜は、リタデーション比Re(550)/Re(650)が1を下回ったことから、リタデーション上昇効果が得られた。
 さらに、例3-1の光学異方性膜は二色比が1を超えたことから、二色性を有する光学異方性膜が得られた。
〔例4-1〕
 下記の各材料を、下記表に示す割合で混合してジクロロメタンに溶解し、乾燥してジクロロメタンを除去することで重合性液晶組成物4-1を得た。
 液晶化合物L’-1、酸化防止剤、光重合開始剤は、例3-1と同様である。
Figure JPOXMLDOC01-appb-T000050
 イーエッチシー社製の2.3μmのギャップが保たれた配向セルを160℃に加熱し、得られた重合性液晶組成物4-1をセル内に注入し、120℃まで放冷し、ネマチック相を形成させた。
 波長365nmのUV光を、120℃で80mW/cm×60秒の条件で照射することで、重合性液晶組成物4-1を重合させ、光学異方性膜を得た。
 液晶化合物の配向方向(ラビング方向)と平行な偏光および垂直な偏光を光学異方性膜に照射し、それぞれの吸収スペクトル(A||およびA⊥)を測定することで、波長650~1100nmにおける遅相軸の吸光度、進相軸の吸光度、および波長650~1100nmの最大吸収波長における二色比を算出した。また、リタデーション測定装置を用いてリタデーションを測定した。なお、二色比はA⊥/A||で表される値を用いた。
〔例4-2~例4-4〕
 色素および色素濃度を下記表に示す条件に変えた以外は、例3-1と同様の手順に従って、重合性液晶組成物4-2~4-4を調製し、重合体を得て光学異方性膜を製造し、波長650~1100nmにおける遅相軸の吸光度、進相軸の吸光度、および波長650~1100nmの最大吸収波長における二色比、リタデーションを測定した。
 例4-1~例4-4で得られた光学異方性膜の波長650~1100nmにおける最大吸収波長、二色比、およびリタデーション比Re(550)/Re(650)、波長650~1100nmにおける遅相軸の吸光度A3、進相軸の吸光度A4を、下記表13にまとめて示す。
 例4-1~例4-4は実施例である。
Figure JPOXMLDOC01-appb-T000051
 上記結果より、長軸方向の吸光度A1と短軸方向の吸光度A2の関係がA1<A2である近赤外線吸収色素を含む例4-1~例4-4の光学異方性膜は、リタデーション比Re(550)/Re(650)が1を下回ったことから、リタデーション上昇効果が得られた。
 さらに、例4-1~例4-4の光学異方性膜は二色比が1を超えたことから、二色性を有する光学異方性膜が得られた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2022年7月27日出願の日本特許出願(特願2022-119966)、2022年11月2日出願の日本特許出願(特願2022-176666)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の光学異方性膜は、たとえば優れた逆波長分散性を示す1/4波長板として有用である。

Claims (11)

  1.  液晶化合物と、メソゲン基を有する近赤外線吸収色素とを含む液晶組成物であって、
     前記近赤外線吸収色素のジクロロメタン中の最大吸収波長におけるモル吸光係数が200000L/(mol・cm)以上であり、
     前記近赤外線吸収色素は、下記測定条件(A)において測定される波長650~1100nmにおける分子の長軸方向の吸光度をA1とし、短軸方向の吸光度をA2としたとき、以下の式(1)を満たす、液晶組成物。
       A1<A2   (1)
    測定条件(A):
     近赤外線吸収色素および液晶化合物を含む組成物を用いて光学異方性膜を作製し、得られた光学異方性膜に対し、液晶化合物の配向方向と平行な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の長軸方向の吸光度A1を測定し、液晶化合物の配向方向と垂直な偏光を照射して得られる吸収スペクトルから近赤外線吸収色素分子の短軸方向の吸光度A2を測定する。
  2.  前記近赤外線吸収色素がジクロロメタン中で波長650~1100nmに最大吸収波長を有し、かつスクアリリウム骨格を有する、請求項1に記載の液晶組成物。
  3.  前記近赤外線吸収色素が下記式(3)で表される化合物である、請求項1に記載の液晶組成物。
       R-D-R    (3)
    〔上記式における記号の定義は下記の通りである。
    D:スクアリリウム骨格を有する2価の基。
    :下記式(2)で表される1価のメソゲン基であり、2つのRは同一でも異なっていてもよい。
       R’-Sp1-〔Cy-Sp2〕-Sp3-    (2)
    ’:水素原子、電子求引性を有する1価有機基、または重合性を有する1価有機基。
    Cy:置換基を有してもよいアリーレン基、置換基を有してもよいヘテロアリーレン基、または置換基を有してもよいシクロアルキレン基。
    n:2~9の整数。
    Sp1、Sp2、Sp3:それぞれ独立に、単結合、アルキレン基、アルケニレン基、アルキニレン基、カルボニル基、エステル結合、アミド結合、およびエーテル結合から選ばれる1種の基もしくは結合、またはこれらの組み合わせ。〕
  4.  前記近赤外線吸収色素が下記式(3-1A)で表される化合物、下記式(3-1B)で表される化合物、下記式(3-2)で表される化合物、および下記式(3-3)で表される化合物から選ばれる少なくとも一種である、請求項3に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000001

     
    Figure JPOXMLDOC01-appb-C000002

     
    Figure JPOXMLDOC01-appb-C000003

     
    〔上記各式における記号の定義は下記の通りである。
    :前記式(2)におけるRの定義と同様である。
    :一価の置換基を有してもよい炭素原子または窒素原子。
    :酸素原子、硫黄原子またはNH基。
    :硫黄原子または酸素原子。
    :一価の置換基を有してもよい炭素原子または窒素原子。
    11、R12、R21、R22、R31、R32:それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基。
    13、R14、R23、R33:それぞれ独立して、水素原子、または炭素数1~12のアルキル基。R11とR12、R11とR13、R12とR13、R13とR14は、それぞれ互いに結合して環を形成してもよい。R21とR22、R21とR23、R22とR23は、それぞれ互いに結合して環を形成してもよい。R31とR32、R31とR33、R32とR33は、それぞれ互いに結合して環を形成してもよい。〕
  5.  前記液晶化合物がフラット分散性または逆波長分散性を示す、請求項1に記載の液晶組成物。
  6.  請求項1~5のいずれか1項に記載の液晶組成物の硬化物を含む光学異方性膜。
  7.  波長650~1100nmに極大吸収波長を有する、請求項6に記載の光学異方性膜。
  8.  前記光学異方性膜の波長650~1100nmにおける遅相軸の吸光度をA3とし、進相軸の吸光度をA4としたとき、下記式(4)を満たす、請求項6に記載の光学異方性膜。
       A3<A4   (4)
  9.  前記光学異方性膜の波長550nmにおけるリタデーションをRe(550)とし、波長650nmにおけるリタデーションをRe(650)としたとき、下記式(5)を満たす、請求項6に記載の光学異方性膜。
       Re(550)/Re(650)<1   (5)
  10.  前記光学異方性膜の波長650~1100nmにおける最大吸収波長の二色比が1.5以上である、請求項6に記載の光学異方性膜。
  11.  下記式(3-1A)で表される化合物、下記式(3-1B)で表される化合物、下記式(3-2)で表される化合物、または下記式(3-3)で表される化合物からなる、近赤外線吸収色素。
    Figure JPOXMLDOC01-appb-C000004

     
    Figure JPOXMLDOC01-appb-C000005

     
    Figure JPOXMLDOC01-appb-C000006

     
    〔上記各式における記号の定義は下記の通りである。
    :下記式(2)で表される1価のメソゲン基であり、2つのRは同一でも異なっていてもよい。
       R’-Sp1-〔Cy-Sp2〕-Sp3-  (2)
    ’:水素原子、電子求引性を有する1価有機基、または重合性を有する1価有機基。
    Cy:置換基を有してもよいアリーレン基、置換基を有してもよいヘテロアリーレン基、または置換基を有してもよいシクロアルキレン基。
    n:2~9の整数。
    Sp1、Sp2、Sp3:それぞれ独立に、単結合、アルキレン基、アルケニレン基、アルキニレン基、カルボニル基、エステル結合、アミド結合、およびエーテル結合から選ばれる1種の基もしくは結合、またはこれらの組み合わせ。
    :一価の置換基を有してもよい炭素原子または窒素原子。
    :酸素原子、硫黄原子またはNH基。
    :硫黄原子または酸素原子。
    :一価の置換基を有してもよい炭素原子または窒素原子。
    11、R12、R21、R22、R31、R32:それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基。
    13、R14、R23、R33:水素原子、または炭素数1~12のアルキル基。R11とR12、R11とR13、R12とR13、R13とR14は、それぞれ互いに結合して環を形成してもよい。R21とR22、R21とR23、R22とR23は、それぞれ互いに結合して環を形成してもよい。R31とR32、R31とR33、R32とR33は、それぞれ互いに結合して環を形成してもよい。〕
PCT/JP2023/026898 2022-07-27 2023-07-21 液晶組成物、光学異方性膜、近赤外線吸収色素 WO2024024700A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022119966 2022-07-27
JP2022-119966 2022-07-27
JP2022-176666 2022-11-02
JP2022176666 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024024700A1 true WO2024024700A1 (ja) 2024-02-01

Family

ID=89706533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026898 WO2024024700A1 (ja) 2022-07-27 2023-07-21 液晶組成物、光学異方性膜、近赤外線吸収色素

Country Status (1)

Country Link
WO (1) WO2024024700A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417402B1 (en) * 2001-09-26 2002-07-09 Council Of Scientific And Industrial Research Squaraine based dyes and process for preparation thereof
WO2018043185A1 (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 組成物、膜、近赤外線カットフィルタ、パターン形成方法、積層体、固体撮像素子、画像表示装置、カメラモジュールおよび赤外線センサ
JP2018087939A (ja) * 2016-11-30 2018-06-07 東洋インキScホールディングス株式会社 近赤外線吸収性組成物およびフィルタ
WO2019044505A1 (ja) * 2017-08-31 2019-03-07 富士フイルム株式会社 樹脂組成物、膜、近赤外線カットフィルタ、赤外線透過フィルタ、固体撮像素子、画像表示装置、赤外線センサおよびカメラモジュール
WO2019230570A1 (ja) * 2018-05-29 2019-12-05 Agc株式会社 近赤外線吸収色素、光学フィルタおよび撮像装置
WO2021059946A1 (ja) * 2019-09-25 2021-04-01 富士フイルム株式会社 光学異方性膜、偏光板、画像表示装置、組成物、化合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417402B1 (en) * 2001-09-26 2002-07-09 Council Of Scientific And Industrial Research Squaraine based dyes and process for preparation thereof
WO2018043185A1 (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 組成物、膜、近赤外線カットフィルタ、パターン形成方法、積層体、固体撮像素子、画像表示装置、カメラモジュールおよび赤外線センサ
JP2018087939A (ja) * 2016-11-30 2018-06-07 東洋インキScホールディングス株式会社 近赤外線吸収性組成物およびフィルタ
WO2019044505A1 (ja) * 2017-08-31 2019-03-07 富士フイルム株式会社 樹脂組成物、膜、近赤外線カットフィルタ、赤外線透過フィルタ、固体撮像素子、画像表示装置、赤外線センサおよびカメラモジュール
WO2019230570A1 (ja) * 2018-05-29 2019-12-05 Agc株式会社 近赤外線吸収色素、光学フィルタおよび撮像装置
WO2021059946A1 (ja) * 2019-09-25 2021-04-01 富士フイルム株式会社 光学異方性膜、偏光板、画像表示装置、組成物、化合物

Similar Documents

Publication Publication Date Title
JP6666293B2 (ja) 化合物、光学フィルム及び光学フィルムの製造方法
CN101470212B (zh) 光学膜
CN101470227B (zh) 光学膜
JP6616963B2 (ja) 着色組成物、光吸収異方性膜、積層体、偏光板、画像表示装置及び化合物
JP5613992B2 (ja) 組成物、フィルム及びフィルムの製造方法
EP3187566B1 (en) Polymerizable liquid crystal compound, composition for optical film, and optical film, compensation film, antireflective film, and display device including the same
JP2017120431A (ja) 位相差フィルム
JP5219594B2 (ja) 組成物、光学フィルム及びフラットパネル表示装置
WO2019181433A1 (ja) 化合物、組成物、硬化物、光学異方体、反射膜
KR101847714B1 (ko) 광시야각 역파장분산 보상필름용 조성물 및 이를 포함하는 보상필름
CN113620805A (zh) 可聚合化合物、组合物及光学各向异性体
CN112334797B (zh) 偏振器及图像显示装置
WO2024024700A1 (ja) 液晶組成物、光学異方性膜、近赤外線吸収色素
WO2024024701A1 (ja) 光学異方性膜および位相差板
US20230151275A1 (en) Compound, composition for anisotropic dye films including the compound, anisotropic dye film, and optical element
JP6042538B2 (ja) 重合性液晶化合物、これを含む液晶組成物及び光学異方体
JP6798600B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP7141461B2 (ja) 化合物、混合物、液晶組成物、硬化物、光学異方体、反射膜
JP7363887B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP7467851B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
US11959005B2 (en) Liquid crystal compounds
KR102112704B1 (ko) 신규한 반응성 메조겐 화합물, 이를 포함하는 역파장분산 보상필름용 조성물 및 이를 포함하는 역파장분산 보상필름
US20210171478A1 (en) Polymerizable compound, polymerizable composition and optical film
WO2023181907A1 (ja) 化合物、異方性色素膜形成用組成物、異方性色素膜及び光学素子
WO2023063249A1 (ja) 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846430

Country of ref document: EP

Kind code of ref document: A1