WO2024024672A1 - 核酸合成用リンカーおよび固相担体 - Google Patents

核酸合成用リンカーおよび固相担体 Download PDF

Info

Publication number
WO2024024672A1
WO2024024672A1 PCT/JP2023/026790 JP2023026790W WO2024024672A1 WO 2024024672 A1 WO2024024672 A1 WO 2024024672A1 JP 2023026790 W JP2023026790 W JP 2023026790W WO 2024024672 A1 WO2024024672 A1 WO 2024024672A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid phase
nucleic acid
compound
general formula
Prior art date
Application number
PCT/JP2023/026790
Other languages
English (en)
French (fr)
Inventor
功幸 張
靖史 渕
一輝 山本
勇太 伊藤
Original Assignee
富士フイルム和光純薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム和光純薬株式会社 filed Critical 富士フイルム和光純薬株式会社
Publication of WO2024024672A1 publication Critical patent/WO2024024672A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • the present invention relates to a compound, a linker, a solid phase carrier, and a method for producing a nucleic acid.
  • a solid phase support having a 1,2-diol unit called a universal linker (hereinafter also referred to as a "universal support”) has been used for the synthesis of nucleic acids (for example, Patent Document 1, Non-Patent Documents 1- 2).
  • the use of a universal support has the advantage that it is not necessary to prepare a solid support depending on the 3'-end of the nucleic acid.
  • nucleic acid When a nucleic acid is synthesized using a universal support, it is necessary to cut out the nucleic acid from the universal support by treatment with an aqueous ammonia solution or the like. For example, a nucleic acid is excised as shown in the scheme below (CPG: Controlled Pore Glass, Nu - : nucleophile, R: hydrogen atom or substituent).
  • CPG Controlled Pore Glass
  • Nu - nucleophile
  • R hydrogen atom or substituent
  • an adduct in which a 1,2-diol unit is added to a nucleic acid may remain, so in such a case, it is necessary to purify it by HPLC (high performance liquid chromatography) or the like.
  • the present invention provides a solid phase carrier for nucleic acid synthesis, which allows nucleic acids to be easily separated from adducts by HPLC when nucleic acids are synthesized using the solid phase carrier and the nucleic acids are excised.
  • the present invention aims to provide a solid phase carrier that can be produced, a compound that serves as a linker of the solid phase carrier, a compound that serves as a precursor of the linker, and a method for producing a nucleic acid using the solid phase carrier.
  • the present inventors discovered that the above-mentioned problems could be solved by using a specific compound having a highly fat-soluble 3- to 4-ring aromatic ring, leading to the present invention. . That is, the present inventors have found that the above problem can be solved by the following configuration.
  • Ar is an anthracene ring, a phenanthrene ring, a tetracene ring, or a pyrene ring, which may have a substituent, or the above (1) or The compound described in (2).
  • a solid phase carrier comprising a compound represented by the general formula (3) described below.
  • (11) The solid phase carrier according to (10) above, which is for nucleic acid synthesis.
  • (12) In the above (10) or (11), in the general formula (3) described below, Ar is an anthracene ring, a phenanthrene ring, a tetracene ring, or a pyrene ring, which may have a substituent.
  • Solid phase support as described.
  • (13) The solid phase support according to any one of (10) to (12) above, wherein Ar in general formula (3) described below is a phenanthrene ring which may have a substituent.
  • a solid phase carrier for nucleic acid synthesis which allows nucleic acids and adducts to be easily separated by HPLC when nucleic acids are synthesized using the solid phase carrier and the nucleic acids are excised. It is possible to provide a solid phase carrier that can be used as a solid phase carrier, a compound that serves as a linker of the solid phase carrier, a compound that serves as a precursor of the linker, and a method for producing a nucleic acid using the solid phase carrier.
  • the solid phase support of the present invention also has the effect that when a nucleic acid is synthesized using the solid support and the nucleic acid is excised, a peak of a cyclic phosphate derived from the linker is observed by HPLC. Furthermore, since the solid phase carrier of the present invention has a stable structure, it also has the effect of being difficult to decompose.
  • Example 1 is an HPLC chart of Example 1 and Comparative Example 1.
  • 1 is an HPLC chart of Example 1 and Comparative Example 1.
  • 3 is an HPLC chart of Example 2.
  • 3 is an HPLC chart of Example 3.
  • 3 is an HPLC chart of Example 4.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ ” as the lower limit and upper limit.
  • adenine may be expressed as "A,” guanine as “G,” cytosine as “C,” and thymine as “T.”
  • the nucleic acid and the adduct can be easily separated by HPLC, the peak of the cyclic phosphate derived from the linker can be easily observed by HPLC, and it is difficult to decompose. It may be said that "the effects of the present invention are excellent”.
  • Compound (1) of the present invention is a compound represented by the following general formula (1).
  • Compound (1) of the present invention is a compound suitable for a precursor of the linker of the solid phase carrier of the present invention, which will be described later.
  • the compound (1) of the present invention is also referred to as a "specific linker precursor.”
  • Ar represents a 3- to 4-cyclic aromatic ring which may have a substituent
  • Z represents a hydrogen atom or a protective group that can be removed by an acid
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
  • Ar represents a 3- to 4-cyclic aromatic ring which may have a substituent.
  • 3-4 cyclic aromatic ring refers to a ring in which 3 or 4 monocyclic aromatic rings are condensed.
  • an aromatic ring is a ring in which the number of electrons included in the ⁇ electron system is 4n+2 (n is an integer of 0 or more).
  • the monocyclic aromatic ring is preferably a benzene ring because the effects of the present invention are better.
  • the "tri- to tetracyclic aromatic ring" will also be referred to as "specific aromatic ring.”
  • Specific examples of the specific aromatic ring include anthracene ring, phenanthrene ring (phenanthrene ring), chrysene ring, pyrene ring, triphenylene ring, and tetracene ring.
  • a ring, a phenanthrene ring, a tetracene ring, or a pyrene ring is preferable, and a phenanthrene ring is more preferable.
  • substituent W is not particularly limited, a specific example thereof includes the substituent W described below.
  • the above-mentioned substituent is preferably an alkyl group, an alkoxy group, a dialkylamino group, or a halogeno group (halogen atom) because the effects of the present invention are more excellent.
  • Z represents a hydrogen atom or a protecting group that can be removed with an acid.
  • protecting groups that can be removed by acid are preferred because the effects of the present invention are more excellent.
  • the protecting group that can be removed by the above acid is not particularly limited, but for the reason that the effect of the present invention is better, it is preferably a protecting group that can be removed by a Br ⁇ nsted acid such as trichloroacetic acid or dichloroacetic acid.
  • the protecting group is more preferably a silyl protecting group, and even more preferably a trityl protecting group.
  • the above-mentioned trityl-based protecting group includes, for example, any substituent (for example, a substituent selected from a C 1-6 alkoxy group, a C 1-6 alkyl group, a halogen atom, etc.) (two or more substituents taken together).
  • any substituent for example, a substituent selected from a C 1-6 alkoxy group, a C 1-6 alkyl group, a halogen atom, etc.
  • Examples include trityl groups which may be substituted with trityl groups (triphenylmethyl groups (Tr)), monomethoxytrityl groups (for example, 4- Examples include methoxyphenyldiphenylmethyl group (MMTr)), dimethoxytrityl group (for example, 4,4'-dimethoxyphenylphenylmethyl group (DMTr)), and 9-phenylxanthene-9-yl group (pixyl group).
  • the trityl-based protecting group is preferably a 4,4'-dimethoxyphenylphenylmethyl group (DMTr) because the effects of the present invention are better.
  • silyl protecting group examples include a silyl group tri-substituted with an arbitrary substituent (for example, a substituent selected from a C 1-6 alkoxy group, a C 1-6 alkyl group, a phenyl group, etc.). Specific examples thereof include trimethylsilyl group, triethylsilyl group, isopropyldimethylsilyl group, tert-butyldimethylsilyl group, dimethylmethoxysilyl group, methyldimethoxysilyl group, and tert-butyldiphenylsilyl group.
  • the silyl protecting group is preferably a trimethylsilyl group because the effects of the present invention are better.
  • C 1-6 alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, Examples include linear, branched, or cyclic alkyl groups such as n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, cyclopentyl group, hexyl group, and cyclohexyl group. Among these, methyl group and ethyl group are preferred because the effects of the present invention are more excellent.
  • C 1-6 alkoxy group includes methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group. , n-pentyloxy group, isopentyloxy group, sec-pentyloxy group, tert-pentyloxy group, cyclopentyloxy group, hexyloxy group, cyclohexyloxy group, etc., linear, branched, or cyclic Examples include alkoxy groups. Among these, methoxy group and tert-butoxy group are preferred because the effects of the present invention are more excellent.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, fluorine atom, chlorine atom, and bromine atom are preferable because the effects of the present invention are more excellent.
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group (for example, a carbon number of 1 to 10, preferably a carbon number of 1 to 6, more preferably a carbon number of 1 to 4), or an alkoxy group (eg, carbon number 1 to 10, preferably carbon number 1 to 6, more preferably carbon number 1 to 4).
  • R 1 to R 4 are preferably hydrogen atoms because the effects of the present invention are better.
  • substituent W in this specification will be described.
  • substituent W include a halogeno group (halogen atom), an alkyl group (for example, a tert-butyl group) (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (a cycloalkenyl group, a bicyclo (including alkenyl groups), alkynyl groups, aryl groups, heterocyclic groups (also referred to as heterocyclic groups), cyano groups, hydroxy groups, nitro groups, carboxy groups, alkoxy groups, aryloxy groups, silyloxy groups, heterocyclic groups Oxy group, acyloxy group, carbamoyl group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group), ammonio group, dialkylamino group, acyloxy group, carbamoyl
  • the method for producing the specific linker precursor is not particularly limited, and it can be produced by combining known methods.
  • a specific linker precursor can be produced with reference to the synthetic route for Compound 1 or Compound 2 in Example 1, which will be described later.
  • a strong base such as sodium amide
  • a tri- to tetracyclic aromatic ring compound having a substituent W such as bromophenanthrene and a halogeno group
  • a substituent A precursor compound of Compound 1 is obtained by reacting the same furan.
  • Compound 1 can then be produced by diolizing the olefin with an oxidizing agent such as osmium tetroxide.
  • a specific linker precursor (among the compounds represented by general formula (1), Z can be protected with a protecting group that can be removed with an acid) compounds) can be produced.
  • Compound (2) The compound (2) of the present invention is a compound represented by the following general formula (2).
  • Compound (2) of the present invention is a compound suitable for the linker of the solid phase carrier of the present invention, which will be described later.
  • the compound (2) of the present invention is also referred to as a "specific linker.”
  • Ar represents a 3- to 4-cyclic aromatic ring which may have a substituent
  • Z represents a hydrogen atom or a protective group that can be removed by an acid
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group
  • L represents a divalent hydrocarbon group which may have an oxygen atom.
  • L represents a divalent hydrocarbon group which may have an oxygen atom.
  • the divalent hydrocarbon group is not particularly limited, and specific examples include a divalent alkylene group (eg, having 1 to 10 carbon atoms), a divalent aromatic hydrocarbon group, and the like.
  • L is preferably an alkylene group that may have an oxygen atom, an arylene group that may have an oxygen atom, or a combination thereof, because the effects of the present invention are better, and L is a divalent group. is preferably an alkylene group, more preferably an ethylene group.
  • the method for producing the specific linker is not particularly limited, and it can be produced by combining known methods.
  • a specific linker can be manufactured with reference to the synthetic route of Compound 3 in Example 1, which will be described later.
  • the specific linker can be produced, for example, by reacting Compound 2 with a carboxylic acid anhydride such as succinic anhydride in the presence of a base.
  • Solid phase carrier The solid phase carrier of the present invention is a solid phase carrier (hereinafter also referred to as "specific carrier") consisting of a compound represented by the following general formula (3).
  • the specific carrier is suitably used as a solid phase carrier (universal support) for nucleic acid synthesis.
  • the compound (specific carrier) represented by the general formula (3) is a compound in which one group (residue) obtained by removing Sp from the general formula (3) is bonded to Sp. It may be a compound in which multiple bonds are made.
  • Ar represents a 3- to 4-cyclic aromatic ring which may have a substituent
  • Z represents a hydrogen atom or a protective group that can be removed by an acid
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group
  • L represents a divalent hydrocarbon group
  • Sp represents a solid phase support.
  • Sp represents a solid phase support.
  • the Sp carrier may have a spacer (for example, an alkylene group) for binding to the carboxy group of the above-mentioned specific linker.
  • the Sp carrier is preferably a carrier for solid phase synthesis that allows easy removal of reagents used in excess during nucleic acid synthesis by washing.
  • Specific examples thereof include glass-based porous carriers; polystyrene-based porous carriers and acrylamide.
  • Examples include porous polymer carriers such as porous carriers.
  • the Sp carrier is preferably a glass-based porous carrier or a porous polymer carrier (especially a polystyrene-based porous carrier) because the effects of the present invention are better.
  • the glass-based porous carrier refers to a porous carrier containing glass as a constituent, and includes, but is not limited to, particle-shaped porous glass particles (CPG).
  • CPG particle-shaped porous glass particles
  • CPGs with pores of 20 to 400 nm, more preferably 50 to 200 nm, and even more preferably 100 nm are most preferably used.
  • a polystyrene porous carrier is a porous carrier made of a resin mainly composed of structural units of styrene or its derivatives.
  • Examples of polystyrene-based porous carriers include porous carriers made of styrene-hydroxystyrene-divinylbenzene copolymer particles (JP-A Nos. 2005-097545, 2005-325272, and 2006-342245). (see Japanese Patent Publication No. 2008-074979), or a porous carrier made of a styrene-(meth)acrylonitrile-hydroxystyrene-divinylbenzene copolymer (see Japanese Patent Application Laid-open No. 2008-074979).
  • Acrylamide-based porous carriers are porous carriers made of resin mainly composed of structural units of acrylamide or derivatives thereof.
  • the acrylamide porous carrier include a porous carrier made of an aromatic monovinyl compound-divinyl compound-(meth)acrylamide derivative copolymer.
  • the Sp carrier is an acrylamide-based solid phase carrier, if the content of structural units derived from (meth)acrylamide derivative monomers is too small, a decrease in the amount of nucleic acid synthesis and a decrease in synthesis purity can be avoided. On the other hand, if it is too large, it will be difficult to form a porous resin. Therefore, it is preferably 0.3 to 4 mmol/g, more preferably 0.4 to 3.5 mmol/g, even more preferably 0.6 to 3 mmol/g.
  • the shape of the Sp carrier is not particularly limited, and may be any shape such as flat, particulate, or fibrous, but it can improve the filling efficiency into the synthesis reaction container and prevent damage to the synthesis reaction container.
  • the carrier is in the form of particles, since it is difficult to form particles.
  • particles does not mean having a strict spherical shape, but rather has a certain shape (for example, approximately spherical shape such as ellipsoidal shape, irregular shape such as polyhedral shape, cylindrical shape, confetti shape, etc.). ).
  • the size (volume) of the Sp carrier is not particularly limited, but if the average particle diameter measured by laser diffraction (scattering method) of porous particles is smaller than 1 ⁇ m, back pressure will occur when packed in a column. On the other hand, if the average particle size is larger than 1000 ⁇ m, the voids between the carrier particles will become large when packed in a column, resulting in a problem that the column of a certain volume will not be able to handle the column efficiently. It is often difficult to fill the carrier particles. Therefore, the thickness is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and even more preferably 10 to 200 ⁇ m.
  • the specific surface area measured by the multi-point BET method of the Sp support is not particularly limited, but if the specific surface area is smaller than 0.1 m 2 /g, the degree of swelling in an organic solvent will be low, so the synthesis reaction will tend to be difficult to occur. On the other hand, if it is larger than 500 m 2 /g, the pore diameter becomes small, so that the synthesis reaction tends to be difficult to occur. Therefore, it is preferably 0.1 to 500 m 2 /g, more preferably 10 to 300 m 2 /g, and even more preferably 50 to 200 m 2 /g.
  • the average pore diameter of the Sp support measured by mercury porosimetry is not particularly limited, but if the pore diameter is too small, the field for the synthesis reaction will be small and the desired reaction will be difficult to occur, or if the nucleotide length is longer than the desired number. On the other hand, if the pore size is too large, the yield tends to decrease because there are fewer opportunities for contact between the hydroxy groups on the surface of the porous particle, which is the reaction site, and substances involved in the reaction. Therefore, the wavelength is preferably 1 to 200 nm, more preferably 5 to 100 nm, and even more preferably 20 to 70 nm.
  • the compound represented by the general formula (3) is a compound in which one group (residue) obtained by removing Sp from the general formula (3) is bonded to Sp. may be a compound in which a plurality of are bonded to Sp.
  • the amount of the above-mentioned residues bound to Sp is not particularly limited, but if it is too small, the yield of the nucleic acid will decrease, while if it is too large, the purity of the nucleic acid will be reduced.
  • the amount is preferably 1 to 2000 ⁇ mol/g, more preferably 10 to 1000 ⁇ mol/g, even more preferably 20 to 100 ⁇ mol/g, and particularly preferably 30 to 50 ⁇ mol/g.
  • the method for producing the solid phase support of the present invention is not particularly limited, but for example, it has the above-mentioned specific linker and a functional group (e.g., an amino group) that can react with the carboxy group of the above-mentioned linker, and after the reaction, the Sp support is Examples include a method of reacting with a solid phase carrier (hereinafter also referred to as "reactive solid phase carrier").
  • a solid phase carrier hereinafter also referred to as "reactive solid phase carrier”
  • the reactive solid phase carrier examples include a CPG solid phase carrier having a long chain aminoalkyl spacer (lcaa-CPG solid phase carrier), a polystyrene based porous carrier having an amino group and/or a hydroxy group, and a polystyrene based porous carrier having an amino group and/or a hydroxyl group.
  • a CPG solid phase carrier having a long chain aminoalkyl spacer lastyrene based porous carrier having an amino group and/or a hydroxy group
  • a polystyrene based porous carrier having an amino group and/or a hydroxyl group examples of the reactive solid phase carrier.
  • an acrylamide porous carrier having a hydroxyl group especially a hydroxyl group
  • the nucleic acid production method of the present invention (hereinafter also simply referred to as "the production method of the present invention") is a step of carrying out a nucleic acid synthesis reaction on the above-mentioned solid phase support (specific support) of the present invention.
  • a method for producing a nucleic acid comprising: That is, the production method of the present invention is a method for producing nucleic acids using a specific carrier as a universal support.
  • nucleic acid synthesis reaction for example, various known synthesis methods using an automatic nucleic acid synthesizer can be used.
  • nucleic acid synthesis reaction especially means the elongation reaction of the nucleotide which comprises a nucleic acid. That is, elongated oligonucleotides are obtained by sequentially bonding nucleotides to nucleosides, nucleotides, or oligonucleotides bonded on a solid support.
  • nucleic acid refers to a chain-like compound (oligonucleotide) in which nucleotides are linked by phosphodiester bonds, and includes DNA, RNA, and the like.
  • the nucleic acid may be either single-stranded or double-stranded, but is preferably single-stranded because it can be efficiently synthesized using a nucleic acid synthesizer.
  • nucleic acid includes not only oligonucleotides containing purine bases such as adenine (A) and guanine (G) and pyrimidine bases such as thymine (T), cytosine (C), and uracil (U). , modified oligonucleotides containing these modified nucleobases are also included.
  • nucleic acid synthesis reactions examples include the H-phosphonate method, phosphoester method, and phosphoramidite method.
  • the phosphoramidite method is preferred because it has high nucleic acid synthesis ability and can yield highly pure nucleic acids. preferable.
  • the production method of the present invention usually includes a step of cutting out a synthesized nucleic acid from a specific carrier that is a universal support (cutting treatment).
  • the cutting treatment is not particularly limited, but examples thereof include a method of treatment with ammonia and/or amines.
  • amines include methylamine, ethylamine, isopropylamine, ethylenediamine, diethylamine, and triethylamine. It is desirable to use ammonia and/or amines in combination with a solvent.
  • the solvent include water, alcohols (eg, methanol, ethanol, etc.), and the like. Two or more of these solvents may be used as a mixture in an appropriate ratio.
  • a nucleic acid is obtained by the cutting process.
  • a specific example of a scheme in which a nucleic acid is excised from a specific carrier is as described above.
  • an adduct in which a 1,2-diol unit is added to a nucleic acid may remain, but when the solid phase support of the present invention is used, the nucleic acid and the adduct can be easily separated by HPLC. It becomes possible to separate into
  • Ar represents a phenanthrene ring
  • Z represents a DMTr group
  • R 1 to R 4 represent a hydrogen atom
  • L represents an ethylene group
  • Sp represents a long-chain aminoalkyl spacer of lcaa-CPG with the amino group removed. carrier
  • the amount of Compound 3 supported on PT-CPG was determined by DMTr assay and was 37 ⁇ 1.3 ⁇ mol/g.
  • the DMTr assay method involves treating a solid phase support with a deblocking solution (3 w/v% trichloroacetic acid in dichloromethane solution), and measuring the amount of deprotected DMTr (dimethoxytrityl) groups by absorbance measurement (504 nm). This is a method of indirectly quantifying the amount supported.
  • T 10 T-10mer oligonucleic acid
  • PT-CPG a universal support
  • T represents a thymine residue
  • CE represents a cyanoethyl group
  • the synthesis scale was 0.2 ⁇ mol, and the synthesis was carried out under trityl OFF conditions (finally, the DMTr group was deprotected with a dichloromethane solution of 3 w/v% trichloroacetic acid).
  • a commercially available phosphoramidite of T was prepared as a 0.1 M anhydrous acetonitrile solution and used. 5-ethylthio-1H-tetrazole (0.25 M anhydrous acetonitrile solution) was used as the activator, and the condensation time was 10 minutes only at the 3' end and 25 seconds at the other end.
  • FIG. 1 shows an HPLC chart.
  • Comparative Example 1 peaks of oligonucleic acid (T 10 ) and adduct (T 10 -adduct) were observed.
  • T 10 -adduct adduct of oligonucleic acid
  • Example 1 only the oligonucleic acid peak was observed.
  • Example 2 HPLC was measured under conditions that made separation more difficult. Specifically, the gradient was changed from "Liquid B: 5-15%” to "Liquid B: 8-18%.” Table 2 below shows the HPLC conditions.
  • Figure 2 shows an HPLC chart.
  • a chart (including wash) including the time of washing (after 30 minutes) is also shown.
  • a chart of Comparative Example 1 (liquid B: 5-15%) is also shown.
  • CPG3 in Figure 3 of Non-Patent Document 2 shows HPLC of the solution after the excision process (same conditions as Condition 2 above) when oligonucleic acid (T 10 ) was synthesized using the universal support obtained from the linker below.
  • a chart is shown in which the oligonucleic acid (T 10 ) peak is observed at a retention time of about 10 minutes, and the adduct (T 10 -3) peak is observed at a retention time of about 24 minutes.
  • Example 1 in the case of Example 1 described above, as shown in FIG. 2, the peak of the oligonucleic acid (T 10 ) has a retention time of about 10 minutes, and the peak of the adduct (T 10 -adduct) has a retention time of about 10 minutes. It was observed at 27 minutes. That is, it can be said that the specific carrier of Example 1 described above has even better peak separation than the universal support of Non-Patent Document 2.
  • oligonucleic acid [Synthesis of oligonucleic acid] Using PT-CPG as a universal support, an oligonucleic acid (T 9 At the 3' end (X), Pac-dA (dA), Ac-dC (dC), iPrPac-dG (dG), 2'-O-Me-U ( MeO U), LNA-T ( LNA T) was used. The synthesis scale was 0.2 ⁇ mol, and the synthesis was carried out under trityl OFF conditions. A commercially available phosphoramidite of T was prepared as a 0.1 M anhydrous acetonitrile solution and used. 5-ethylthio-1H-tetrazole (0.25M anhydrous acetonitrile solution) was used as the activator, and the condensation time was 10 minutes only at the 3' end and 25 seconds at the other end.
  • FIG. 3 shows an HPLC chart.
  • a peak of oligonucleic acid (T 9 X) and a peak of cyclic phosphate (cp) derived from the linker were observed. Note that even though the analysis was performed under the same conditions as in FIG. 2 (condition 2), no adduct (T 9 X-adduct) peak was observed. From this, it is considered that the oligonucleic acid was completely excised and no adduct was present in the solution after the excision process.
  • oligonucleic acid Phosphorothioated oligonucleic acids (sONs) were synthesized by an automated DNA synthesizer using PT-CPG as a universal support. The synthesis scale was 0.2 ⁇ mol, and the synthesis was carried out under trityl OFF conditions.
  • Commercially available phosphoramidites of T, Ac C, Pac A, and iPrPac G were prepared as 0.1 M anhydrous acetonitrile solutions and used. 5-ethylthio-1H-tetrazole (0.25M anhydrous acetonitrile solution) was used as the activator, and the condensation time was 10 minutes only at the 3' end and 25 seconds at the other end.
  • DDTT dimethylamino-methylidene-3H-1,2,4-dithiazaoline-3-thione
  • Excision of oligonucleic acid from universal support and removal of linker Excision of the oligonucleic acid from the universal support and associated removal of the linker is performed by treatment with a 28% ammonia aqueous solution at room temperature for 2 hours (condition A) or with a 28% ammonia aqueous solution at 55°C for 3 hours (condition C). I went there.
  • FIG. 4 shows an HPLC chart. As can be seen from FIG. 4, the peak of the phosphorothioated oligonucleic acid (sON) and the peak of the adduct (sON-adduct) were separated. Furthermore, in the HPLC chart of condition C, a peak of cyclic phosphate (cp) derived from the linker was also observed.
  • sON phosphorothioated oligonucleic acid
  • sON-adduct the peak of the adduct
  • T 10 T-10mer oligonucleotide
  • PT-PS a
  • PT-PS PT-PS
  • c PT-PS
  • the synthesis scale was 1.0 ⁇ mol, and the synthesis was carried out under trityl OFF conditions.
  • a commercially available phosphoramidite of T was prepared as a 0.1 M anhydrous acetonitrile solution and used.
  • 5-ethylthio-1H-tetrazole (0.25M anhydrous acetonitrile solution) was used as the activator, and the condensation time was 10 minutes only at the 3' end and 25 seconds at the other end.
  • FIG. 5 shows an HPLC chart. As can be seen from FIG. 5, a peak of oligonucleic acid (T 10 ) was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

本発明は、核酸合成用の固相担体であって、それを用いて核酸を合成し、核酸を切り出したときに、HPLCによって核酸と付加体とを容易に分離できる固相担体、上記固相担体のリンカーとなる化合物、上記リンカーの前駆体となる化合物、及び、上記固相担体を用いた核酸の製造方法を提供することを課題とする。本発明の化合物は、下記一般式(1)で示される化合物である。 一般式(1)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表し、Zは、水素原子、又は、酸により脱離可能な保護基を表し、R~Rは、それぞれ独立して、水素原子、アルキル基、又は、アルコキシ基を表す。

Description

核酸合成用リンカーおよび固相担体
 本発明は、化合物、リンカー、固相担体、及び、核酸の製造方法に関する。
 従来、核酸の合成には、ユニバーサルリンカーと呼ばれる1,2-ジオールユニットを有する固相担体(以下、「ユニバーサルサポート」とも言う)が使用されている(例えば、特許文献1、非特許文献1~2)。ユニバーサルサポートを使用することで、核酸の3′-末端に応じた固相担体を用意する必要がなくなるという利点がある。
米国特許出願公開第2004/0152905号明細書
Synthesis,2021,53,4440-4448 Tetrahedron,2021,92,132261
 ユニバーサルサポートを用いて核酸を合成した場合、アンモニア水溶液等で処理することによって核酸をユニバーサルサポートから切り出す必要がある。例えば、以下のスキーム(ここで、CPG:Controlled Pore Glass、Nu:求核剤、R:水素原子又は置換基)のとおり、核酸が切り出される。
 このとき、核酸に1,2-ジオールユニットが付加した付加体が残存する場合があるため、そのような場合には、HPLC(高速液体クロマトグラフィー)等によって精製する必要がある。
 このようななか、本発明者らが特許文献1等に記載のユニバーサルサポートを用いて核酸を合成し、核酸を切り出したところ、HPLCによって核酸のピークと付加体のピークとを十分に分離できない場合があることが明らかになった。
 そこで、本発明は、上記実情を鑑みて、核酸合成用の固相担体であって、それを用いて核酸を合成し、核酸を切り出したときに、HPLCによって核酸と付加体とを容易に分離できる固相担体、上記固相担体のリンカーとなる化合物、上記リンカーの前駆体となる化合物、及び、上記固相担体を用いた核酸の製造方法を提供することを目的とする。
 本発明者らは、上記課題について鋭意検討した結果、脂溶性の高い3~4環式の芳香族環を有する特定の化合物を用いることによって、上記課題が解決できることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 後述する一般式(1)で示される化合物。
(2) 後述する一般式(2)で示される化合物。
(3) 後述する一般式(1)又は(2)中、Arが、置換基を有していてもよい、アントラセン環、フェナントレン環、テトラセン環、又は、ピレン環である、上記(1)又は(2)に記載の化合物。
(4) 後述する一般式(1)又は(2)中、Arが、置換基を有していてもよいフェナントレン環である、上記(1)~(3)のいずれかに記載の化合物。
(5) 後述する一般式(1)又は(2)中、Zが、酸により脱離可能な保護基である、上記(1)~(4)のいずれかに記載の化合物。
(6) 上記酸により脱離可能な保護基が、トリチル系保護基、又は、シリル系保護基である、上記(5)に記載の化合物。
(7) 後述する一般式(1)又は(2)中、R~Rが、水素原子である、上記(1)~(6)のいずれかに記載の化合物。
(8) 後述する一般式(2)中、Lが、酸素原子を有していてもよいアルキレン基、酸素原子を有していてもよいアリーレン基、又は、それらの組み合わせである、上記(2)、及び、少なくとも上記(2)を引用する上記(3)~(7)、のいずれかに記載の化合物。
(9) 上記(1)~(8)いずれかに記載の化合物を用いた、核酸合成用固相担体のリンカー。
(10) 後述する一般式(3)で示される化合物からなる、固相担体。
(11) 核酸合成用である、上記(10)に記載の固相担体。
(12) 後述する一般式(3)中、Arが、置換基を有していてもよい、アントラセン環、フェナントレン環、テトラセン環、又は、ピレン環である、上記(10)又は(11)に記載の固相担体。
(13) 後述する一般式(3)中、Arが、置換基を有していてもよいフェナントレン環である、上記(10)~(12)のいずれかに記載の固相担体。
(14) 後述する一般式(3)中、Zが、酸により脱離可能な保護基である、上記(10)~(13)のいずれかに記載の固相担体。
(15) 上記酸により脱離可能な保護基が、トリチル系保護基、又は、シリル系保護基である、上記(14)に記載の固相担体。
(16) 後述する一般式(3)中、R~Rが、水素原子である、上記(10)~(15)のいずれかに記載の固相担体。
(17) 後述する一般式(3)中、Lが、酸素原子を有していてもよいアルキレン基、酸素原子を有していてもよいアリーレン基、又は、それらの組み合わせである、上記(10)~(16)のいずれかに記載の固相担体。
(18) 後述する一般式(3)中、Spが、多孔質ポリマー担体、又は、ガラス系多孔質担体である、上記(10)~(17)のいずれかに記載の固相担体。
(19) 上記(10)~(18)のいずれかに記載の固相担体上で核酸合成反応を行う工程を含む、核酸の製造方法。
(20) 上記核酸合成反応が、ホスホロアミダイト法により行われる、上記(19)に記載の核酸の製造方法。
 以下に示すように、本発明によれば、核酸合成用の固相担体であって、それを用いて核酸を合成し、核酸を切り出したときに、HPLCによって核酸と付加体とを容易に分離できる固相担体、上記固相担体のリンカーとなる化合物、上記リンカーの前駆体となる化合物、及び、上記固相担体を用いた核酸の製造方法を提供することができる。また、本発明の固相担体は、それを用いて核酸を合成し、核酸を切り出したときに、HPLCによってリンカーに由来する環状リン酸体のピークが観測されるという効果も有する。また、本発明の固相担体は安定な構造からなるため分解し難いという効果も有する。
実施例1及び比較例1のHPLCチャートである。 実施例1及び比較例1のHPLCチャートである。 実施例2のHPLCチャートである。 実施例3のHPLCチャートである。 実施例4のHPLCチャートである。
 以下、本発明の化合物、リンカー、固相担体、及び、核酸の製造方法について説明する。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、アデニンを「A」、グアニンを「G」、シトシンを「C」、チミンを「T」と表す場合がある。
 また、核酸を切り出したときに、HPLCによって核酸と付加体とを容易に分離できること、HPLCによってリンカーに由来する環状リン酸体のピークが容易に観測されること、分解し難いことを、まとめて「本発明の効果が優れる」と言う場合がある。
[1]化合物(1)
 本発明の化合物(1)は、下記一般式(1)で示される化合物である。
 本発明の化合物(1)は、後述する本発明の固相担体のリンカーの前駆体に好適な化合物である。以下、本発明の化合物(1)を「特定リンカー前駆体」とも言う。
 一般式(1)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表し、Zは、水素原子、又は、酸により脱離可能な保護基を表し、R~Rは、それぞれ独立して、水素原子、アルキル基、又は、アルコキシ基を表す。
[Ar]
 上述のとおり、一般式(1)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表す。
 ここで、3~4環式の芳香族環とは、3個又は4個の単環の芳香族環が縮環した環を表す。また、芳香族環とは、π電子系に含まれる電子の数が4n+2(nは0以上の整数)の環である。単環の芳香族環は、本発明の効果がより優れる理由から、ベンゼン環であることが好ましい。以下、「3~4環式の芳香族環」を「特定芳香族環」とも言う。
 特定芳香族環の具体例としては、アントラセン環、フェナントレン環(フェナンスレン環)、クリセン環、ピレン環、トリフェニレン環、テトラセン環等が挙げられ、なかでも、本発明の効果がより優れる理由から、アントラセン環、フェナントレン環、テトラセン環、又は、ピレン環が好ましく、フェナントレン環がより好ましい。
 特定芳香族環が有していてもよい置換基は特に制限されないが、その具体例としては、後述する置換基Wが挙げられる。
 上記置換基は、本発明の効果がより優れる理由から、アルキル基、アルコキシ基、ジアルキルアミノ基、又は、ハロゲノ基(ハロゲン原子)であることが好ましい。
[Z]
 上述のとおり、Zは、水素原子、又は、酸により脱離可能な保護基を表す。なかでも、本発明の効果がより優れる理由から、酸により脱離可能な保護基が好ましい。
 上記酸により脱離可能な保護基は特に制限されないが、本発明の効果がより優れる理由から、トリクロロ酢酸やジクロロ酢酸等のブレンステッド酸により脱離可能な保護基であることが好ましく、トリチル系保護基、シリル系保護基がより好ましく、トリチル系保護基がさらに好ましい。
 上記トリチル系保護基としては、例えば、任意の置換基(例えば、C1-6アルコキシ基、C1-6アルキル基、ハロゲン原子等から選ばれる置換基(2個以上の置換基が一緒になって環を形成していてもよい))で置換されていてもよいトリチル基が挙げられ、具体的には、トリチル基(トリフェニルメチル基(Tr))、モノメトキシトリチル基(例えば、4-メトキシフェニルジフェニルメチル基(MMTr))、ジメトキシトリチル基(例えば、4,4′-ジメトキシフェニルフェニルメチル基(DMTr))、9-フェニルキサンテン-9-イル基(ピクシル基)等が挙げられる。トリチル系保護基は、本発明の効果がより優れる理由から、4,4′-ジメトキシフェニルフェニルメチル基(DMTr)であることが好ましい。
 上記シリル系保護基としては、例えば、任意の置換基(例えば、C1-6アルコキシ基、C1-6アルキル基、フェニル基等から選ばれる置換基)でトリ置換されたシリル基が挙げられ、具体的には、トリメチルシリル基、トリエチルシリル基、イソプロピルジメチルシリル基、tert-ブチルジメチルシリル基、ジメチルメトキシシリル基、メチルジメトキシシリル基、tert-ブチルジフェニルシリル基等が挙げられる。シリル系保護基は、本発明の効果がより優れる理由から、トリメチルシリル基であることが好ましい。
 なお、本明細書中、「C1-6アルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、シクロペンチル基、ヘキシル基、シクロへキシル基などの、直鎖状、分岐状、又は、環状のアルキル基が挙げられる。なかでも、本発明の効果がより優れる理由から、メチル基、エチル基が好ましい。
 また、本明細書中、「C1-6アルコキシ基」としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、sec-ペンチルオキシ基、tert-ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロへキシルオキシ基などの、直鎖状、分岐状、又は、環状のアルコキシ基が挙げられる。なかでも、本発明の効果がより優れる理由から、メトキシ基、tert-ブトキシ基が好ましい。
 また、本明細書中、「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。なかでも、本発明の効果がより優れる理由から、フッ素原子、塩素原子、臭素原子が好ましい。
[R~R
 上述のとおり、一般式(1)中、R~Rは、それぞれ独立して、水素原子、アルキル基(例えば、炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4)、又は、アルコキシ基(例えば、炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4)を表す。
 R~Rは、本発明の効果がより優れる理由から、水素原子であることが好ましい。
[置換基W]
 本明細書における置換基Wについて記載する。
 置換基Wとしては、例えば、ハロゲノ基(ハロゲン原子)、アルキル基(例えば、tert-ブチル基)(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイル基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、ジアルキルアミノ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基などが挙げられる。
[製造方法]
 特定リンカー前駆体を製造する方法は特に制限されず、公知の方法を組み合わせることで製造することができる。例えば、後述する実施例1の化合物1又は化合物2の合成経路を参照して、特定リンカー前駆体を製造することができる。
 具体的には、例えば、ナトリウムアミド等の強塩基の存在下、ブロモフェナンスレン等の置換基Wとハロゲノ基を有する3~4環式の芳香族環化合物と、置換基を有していてもよいフランを反応させることにより、化合物1の前駆化合物を得る。次いで、四酸化オスミウム等の酸化剤でオレフィンをジオール化することで、化合物1を製造することができる。また、化合物1の一方のヒドロキシ基を酸により脱離可能な保護基で保護することにより、特定リンカー前駆体(一般式(1)で示される化合物のうち、Zが酸により脱離可能な保護基である化合物)を製造することができる。
[2]化合物(2)
 本発明の化合物(2)は、下記一般式(2)で示される化合物である。
 本発明の化合物(2)は、後述する本発明の固相担体のリンカーに好適な化合物である。以下、本発明の化合物(2)を「特定リンカー」とも言う。
 一般式(2)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表し、Zは、水素原子、又は、酸により脱離可能な保護基を表し、R~Rは、それぞれ独立して、水素原子、アルキル基、又は、アルコキシ基を表し、Lは、酸素原子を有していてもよい2価の炭化水素基を表す。
 Ar、Z、及び、R~Rの具体例及び好適な態様は、上述した一般式(1)と同じである。
[L]
 上述のとおり、一般式(2)中、Lは、酸素原子を有していてもよい2価の炭化水素基を表す。
 2価の炭化水素基は特に制限されず、その具体例としては、2価のアルキレン基(例えば、炭素数1~10)、2価の芳香族炭化水素基等が挙げられる。
 Lは、本発明の効果がより優れる理由から、酸素原子を有していてもよいアルキレン基、酸素原子を有していてもよいアリーレン基、又は、それらの組み合わせであることが好ましく、2価のアルキレン基であることが好ましく、エチレン基であることがより好ましい。
[製造方法]
 特定リンカーを製造する方法は特に制限されず、公知の方法を組み合わせることで製造することができる。例えば、後述する実施例1の化合物3の合成経路を参照して、特定リンカーを製造することができる。
 具体的には、例えば、塩基の存在下、無水コハク酸等のカルボン酸無水物と、化合物2を反応させることにより、特定リンカーを製造することができる。
[3]固相担体
 本発明の固相担体は、下記一般式(3)で示される化合物からなる、固相担体(以下、「特定担体」とも言う)である。
 特定担体は、核酸合成用の固相担体(ユニバーサルサポート)に好適に用いられる。
 なお、一般式(3)で示される化合物(特定担体)は、一般式(3)からSpを除いた基(残基)がSpに1つ結合した化合物であっても、上記残基がSpに複数結合した化合物であってもよい。
 一般式(3)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表し、Zは、水素原子、又は、酸により脱離可能な保護基を表し、R~Rは、それぞれ独立して、水素原子、アルキル基、又は、アルコキシ基を表し、Lは、2価の炭化水素基を表し、Spは、固相担体を表す。
 Ar、Z、R~R、及び、Lの具体例及び好適な態様は、上述した一般式(1)及び一般式(2)と同じである。
[Sp]
 上述のとおり、一般式(3)中、Spは、固相担体を表す。以下、Spで表される固相担体を「Sp担体」とも言う。Sp担体は、上述した特定リンカーのカルボキシ基と結合するためのスペーサー(例えば、アルキレン基)を有していてもよい。
 Sp担体は、核酸合成時に過剰に用いた試薬を洗浄によって簡単に除去できる固相合成用の担体であることが好ましく、その具体例としては、ガラス系多孔質担体;ポリスチレン系多孔質担体やアクリルアミド系多孔質担体等の多孔質ポリマー担体等が挙げられる。
 Sp担体は、本発明の効果がより優れる理由から、ガラス系多孔質担体、又は、多孔質ポリマー担体(特にポリスチレン系多孔質担体)であることが好ましい。
 ガラス系多孔質担体は、ガラスを構成成分として含む多孔質担体を言い、例えば、粒子形状の多孔質ガラス粒子(CPG)等が挙げられるが、これらに限定されない。長鎖ヌクレオチドの合成の場合においては、CPGの孔が20~400nm、より好ましくは50~200nm、さらに好ましくは100nmのものが最も好ましく用いられる。
 ポリスチレン系多孔質担体は、主にスチレン又はその誘導体の構造単位から構成される樹脂からなる多孔質担体である。
 ポリスチレン系多孔質担体としては、例えば、スチレン-ヒドロキシスチレン-ジビニルベンゼン系共重合体粒子からなる多孔質担体(特開2005-097545号公報、特開2005-325272号公報及び特開2006-342245号公報を参照)、又は、スチレン-(メタ)アクリロニトリル-ヒドロキシスチレン-ジビニルベンゼン系共重合体からなる多孔質担体(特開2008-074979号公報を参照)等が挙げられる。
 アクリルアミド系多孔質担体は、主にアクリルアミド又はその誘導体の構造単位から構成される樹脂からなる多孔質担体である。
 アクリルアミド系多孔質担体としては、例えば、芳香族モノビニル化合物-ジビニル化合物-(メタ)アクリルアミド誘導体系共重合体からなる多孔質担体等が挙げられる。Sp担体が、アクリルアミド系固相担体である場合において、(メタ)アクリルアミド誘導体モノマー由来の構造単位の含有量は、少なすぎると核酸の合成量の減少及び合成純度の低下を回避し得るという効果が得られず、他方、多すぎると多孔質樹脂を形成し難い。したがって好ましくは0.3~4mmol/g、より好ましくは0.4~3.5mmol/g、さらに好ましくは0.6~3mmol/gである。
 Sp担体の形状は、特に限定されず、平板状、粒子状、繊維状等のいずれの形状であってもよいが、合成反応容器への充填効率を高くすることができ、合成反応容器が破損し難いという点から、好ましくは粒子の形状を呈する担体である。本明細書にて、「粒子」とは、厳密な球状を呈することを意味するのではなく、一定形状(例えば、楕円球状などの略球状、多面体形状、円柱形状、金平糖形状などの異型形状など)を有していればよいことを意味する。
 Sp担体の大きさ(体積)は、特に限定されないが、多孔質粒子のレーザー回折(散乱式)により測定される平均粒径が1μmよりも小さいと、カラムに充填して使用した場合に背圧が高くなりすぎる、又は送液速度が遅くなるという不具合が生じ、他方、平均粒径が1000μmよりも大きいと、カラムに充填したとき、担体粒子間の空隙が大きくなり、一定容量のカラムに効率よく担体粒子を充填することが困難となる。したがって、好ましくは1~1000μm、より好ましくは5~500μm、さらに好ましくは10~200μmである。
 Sp担体の多点BET法により測定した比表面積は、特に限定されないが、比表面積が0.1m/gより小さいと有機溶媒中での膨潤度が低くなるため、合成反応が起こりにくくなる傾向があり、他方、500m/gより大きいと、細孔径が小さくなるため、合成反応が起こりにくくなる傾向がある。したがって、好ましくは0.1~500m/g、より好ましくは10~300m/g、さらに好ましくは50~200m/gである。
 Sp担体の水銀圧入法により測定される平均細孔径は、特に限定はされないが、孔径が小さすぎる場合、合成反応の場が小さくなり所望の反応が起き難くなる、又はヌクレオチド長が所望の数より少なくなる傾向があり、他方、孔径が大きすぎる場合には、反応場である多孔質粒子表面のヒドロキシ基と反応に関わる物質との接触機会が少なくなるため、歩留まりが低下する傾向がある。したがって、好ましくは1~200nm、より好ましくは5~100nm、さらに好ましくは20~70nmである。
[担持量]
 上述のとおり、一般式(3)で示される化合物(特定担体)は、一般式(3)からSpを除いた基(残基)がSpに1つ結合した化合物であっても、上記残基がSpに複数結合した化合物であってもよい。上記残基がSpに結合する量(担持量)は特に制限されないが、少なすぎると核酸の収量が低下し、一方、多すぎると核酸の純度が低下するため、Sp1gに対する上記残基のモル量として、1~2000μmol/gであることが好ましく、10~1000μmol/gであることがより好ましく、20~100μmol/gであることがさらに好ましく、30~50μmol/gであることが特に好ましい。
[製造方法]
 本発明の固相担体を製造する方法は特に制限されないが、例えば、上述した特定リンカーと、上述したリンカーのカルボキシ基と反応し得る官能基(例えば、アミノ基)を有し、反応後にSp担体となる固相担体(以下、「反応性固相担体」とも言う)とを反応させる方法が挙げられる。
 反応性固相担体としては、例えば、長鎖のアミノアルキルスペーサーを有するCPG固相担体(lcaa-CPG固相担体)、アミノ基及び/又はヒドロキシ基を有するポリスチレン系多孔質担体、アミノ基及び/又はヒドロキシ基(特にヒドロキシ基)を有するアクリルアミド系多孔質担体等が挙げられる。
[4]核酸の製造方法
 本発明の核酸の製造方法(以下、単に「本発明の製造方法」とも言う)は、上述した本発明の固相担体(特定担体)上で核酸合成反応を行う工程を含む、核酸の製造方法である。すなわち、本発明の製造方法は、ユニバーサルサポートとして特定担体を用いて核酸を製造する方法である。
[核酸合成反応]
 核酸合成反応としては、例えば、核酸自動合成装置を用いた公知の種々の合成法を用いることができる。
 なお、本明細書において、「核酸合成反応」とは、特に核酸を構成するヌクレオチドの伸長反応を意味する。即ち、固相担体上に結合したヌクレオシド、ヌクレオチド、又は、オリゴヌクレオチドに、ヌクレオチドを順次結合させることにより、伸長されたオリゴヌクレオチドを得る。
 また、本明細書において、「核酸」とは、ヌクレオチドがホスホジエステル結合により連結された鎖状の化合物(オリゴヌクレオチド)を意味し、DNA、RNA等が含まれる。核酸は1本鎖、2本鎖のいずれであってもよいが、核酸合成機による効率的な合成が可能であることから、好ましくは1本鎖である。本明細書において「核酸」には、アデニン(A)、グアニン(G)等のプリン塩基及びチミン(T)、シトシン(C)、ウラシル(U)等のピリミジン塩基を含有するオリゴヌクレオチドのみでなく、これらの修飾核酸塩基を含有する修飾オリゴヌクレオチドも含まれる。
 核酸合成反応としては、H-ホスホネート法、ホスホエステル法、ホスホロアミダイト法などが挙げられるが、なかでも、核酸の合成能力が高く、高純度の核酸が得られることから、ホスホロアミダイト法が好ましい。
[切り出し処理]
 本発明の製造方法は、通常、合成した核酸をユニバーサルサポートである特定担体から切り出す工程(切り出し処理)を含む。
 切り出し処理は特に制限されないが、例えば、アンモニア及び/又はアミン類で処理する方法が挙げられる。アミン類としては、例えば、メチルアミン、エチルアミン、イソプロピルアミン、エチレンジアミン、ジエチルアミン、トリエチルアミン等が挙げられる。アンモニア及び/又はアミン類は、溶媒と混合して用いるのが望ましい。溶媒としては、例えば、水、アルコール類(例えば、メタノール、エタノール等)等が挙げられる。これらの溶媒は2種以上を適宜の割合で混合して用いてもよい。
 切り出し処理によって、核酸が得られる。特定担体から核酸が切り出されるスキームの具体例は上述のとおりである。
 このとき、上述のとおり、核酸に1,2-ジオールユニットが付加した付加体が残存する場合があるところ、本発明の固相担体を用いた場合には、HPLCによって核酸と付加体とを容易に分離することが可能となる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
〔特定担体の合成〕
 下記のとおり、PT-CPG(特定担体)を合成した。
<化合物1の合成>
(1)アルゴン気流下、9-ブロモフェナンスレン(2.00g,7.78mmol)とナトリウムアミド(910mg,23.3mmol)の無水テトラヒドロフラン(15mL)溶液に、フラン(5.63mL,77.8mmol)を加えて、室温で19時間撹拌した。反応終了後、反応液を0℃まで冷却し水を加えた。さらに、酢酸エチルで希釈し、有機層を水で2回、飽和食塩水で1回洗浄した後、硫酸ナトリウムで乾燥し、溶媒を減圧蒸留した。粗成績体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=100:1から50:1)で精製し、化合物1の前駆化合物(1.10g,混合物として)を薄茶色固体として得た(Chem.Commun.2014,50,6869-6871.)。
(2)続いて、前駆化合物(1.10g,混合物)のアセトン(15mL)溶液に、50%N-メチルモルフォリンオキシド水溶液(2.28g,4.56mL,19.5mmol)と0.1Mの四酸化オスミウムtert-ブタノール溶液(77.8μL,0.00778mmol)を加えて、3時間加熱還流した。反応終了後、反応液にチオ硫酸ナトリウム飽和水溶液を加えて、クロロホルムとメタノールの混合溶液(クロロホルム/メタノール=10:1)で5回抽出を行った。集めた有機層を水で1回、飽和食塩水で1回洗浄した後、硫酸ナトリウムで乾燥し、溶媒を減圧蒸留した。粗成績体をシリカゲルクロマトグラフィー(クロロホルムのみからクロロホルム/メタノール=100:1)で精製し、化合物1(一般式(1)で示される化合物。ここで、Arはフェナントレン環を表し、Zは水素原子を表し、R~Rは水素原子を表す。)(特定リンカー前駆体)(910mg,2工程収率42%)を薄茶色固体として得た。
 H-NMR(500MHz,DMSO-d) δ 8.90-8.88(m,2H),8.10-8.08(m,2H),7.74-7.70(m,4H),5.75(s,2H),5.17-5.15(m,2H),3.70-3.67(m,2H).13C-NMR(125MHz,DMSO-d) δ 138.6,129.7,127.3,126.7,125.6,124.5,123.8.IR(ATR)cm-1:3355,3240.HRMS(FAB):calcd for C1814NaO [M+Na] 301.0841,found 301.0828.
<化合物2の合成>
 アルゴン気流下、化合物1(500mg,1.80mmol)の無水ピリジン(10mL)溶液に、4,4′-ジメトキシトリチルクロライド(731mg,2.16mmol)を加えて、室温で20時間撹拌した。反応終了後、反応液を酢酸エチルで希釈し、有機層を水で2回、飽和食塩水で1回洗浄した後、硫酸ナトリウムで乾燥し、溶媒を減圧蒸留した。粗成績体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3:1)で精製し、化合物2(一般式(1)で示される化合物。ここで、Arはフェナントレン環を表し、ZはDMTr基を表し、R~Rは水素原子を表す。)(特定リンカー前駆体)(1.01g,収率97%)を薄黄色固体として得た。
 1H-NMR(500MHz,CDCl) δ 8.66-8.63(m,2H),7.91-7.89(m,1H),7.65-7.48(m,6H),7.39-7.26(m,5H),7.20(d,1H,J=7.0Hz),6.90-6.86(m,4H),5.73(s,1H),5.12(s,1H),3.98(d,1H,J=5.0Hz),3.91-3.87(m,2H),3.83(s,3H),3.81(s,3H).13C-NMR(125MHz,CDCl) δ 158.9,158.8,144.7,138.4,138.0,136.1,135.8,130.3,130.2,128.3,128.2,127.2,126.7,126.5,126.4,126.0,125.5,125.0,124.4,123.5,123.3,113.5,88.9,84.7,83.0,73.0,70.6,55.3.IR(ATR)cm-1:3499,3004,2953,1607,1507.HRMS(ESI-TOF):calcd for C3932NaO [M+Na] 603.2147,found 603.2149.
<化合物3の合成>
 アルゴン気流下、化合物2(500mg,0.861mmol)の無水ジクロロメタン(10mL)溶液に、トリエチルアミン(1.19mL,8.61mmol)を加えた。無水コハク酸(345mg,3.44mmol)を加えて、室温で20時間撹拌した。反応終了後、反応液をクロロホルムとメタノールの混合溶液(クロロホルム/メタノール=10:1)で5回抽出を行い、集めた有機層を水で1回、飽和食塩水で1回洗浄した後、硫酸ナトリウムで乾燥し、溶媒を減圧蒸留した。粗成績体をシリカゲルクロマトグラフィー(クロロホルムのみからクロロホルム/メタノール=100:1)で精製し、化合物3(一般式(2)で示される化合物。ここで、Arはフェナントレン環を表し、ZはDMTr基を表し、R~Rは水素原子を表し、Lはエチレン基を表す。)(特定リンカー)(368mg,収率63%)を薄茶色固体として得た。
 1H-NMR(500MHz,CDCl) δ 8.63(d,2H,J=8.5Hz),7.95-7.93(m,1H),7.64-7.60(m,3H),7.55-7.49(m,3H),7.42-7.36(m,4H),7.31-7.21(m,4H),6.87-6.82(m,4H),5.83(s,1H),5.26(s,1H),4.76(d,1H,J=6.0Hz),4.09(d,1H,J=6.0Hz),3.83(s,3H),3.81(s,3H),2.95-2.77(m,4H).13C-NMR(125MHz,CDCl) δ 172.7,158.7,158.6,145.4,138.7,137.8,136.7,136.4,130.3,130.2,128.3,128.0,127.4,126.9,126.8,126.7,126.4,125.8,125.4,125.0,123.4,123.3,113.4,88.1,84.7,83.6,82.6,73.9,73.1,55.3,29.3.IR(ATR)cm-1:3649,3007,2929,1733,1607,1507.HRMS(ESI-TOF):calcd for C4336NaO [M+Na] 703.2308,found 703.2303.
<PT-CPGの合成>
 アルゴン気流下、lcaa(長鎖のアミノアルキルスペーサー)-CPG(500mg,アミノ基含有量:40.0μmol/g)の無水アセトニトリル(4mL)懸濁液に、ジイソプロピルエチルアミン(6.80μL,40.0μmol)を加え、さらに化合物3(13.6mg,20.0μmol)とHBTU(Hexafluorophosphate Benzotriazole Tetramethyl Uronium)(7.58mg,20.0μmol)を加えた。室温で1時間撹拌した後に反応液をろ過し、固相担体(ろ物)をアセトニトリルで洗浄、さらに一晩真空乾燥した。得られた固体を、Cap A溶液(無水酢酸のテトラヒドロフラン溶液)とCap B溶液(メチルイミダゾールのテトラヒドロフラン溶液)に懸濁して30分撹拌した。再び反応液をろ過し、固相担体(ろ物)をアセトニトリルで洗浄、一晩真空乾燥することでPT-CPG(一般式(3)で示される化合物。ここで、Arはフェナントレン環を表し、ZはDMTr基を表し、R~Rは水素原子を表し、Lはエチレン基を表し、Spは、lcaa-CPGの長鎖アミノアルキルスペーサーからアミノ基を除いたものを表す。)(特定担体)を得た。PT-CPGの化合物3の担持量はDMTrアッセイ法により定量し、37±1.3μmol/gであった。DMTrアッセイ法とは、固相担体をデブロッキング溶液(3w/v%トリクロロ酢酸のジクロロメタン溶液)で処理し、脱保護されたDMTr(ジメトキシトリチル)基の量を吸光度測定(504nm)することにより、間接的に担持量を定量する方法である。
〔オリゴ核酸の合成〕
 PT-CPGをユニバーサルサポートとして用いて、DNA自動合成装置によって、T-10merのオリゴ核酸(T10)を合成した(式中、Tはチミン残基を表し、CEはシアノエチル基を表す)。合成スケールは0.2μmolとし、トリチルOFF条件(最後に3w/v%トリクロロ酢酸のジクロロメタン溶液によってDMTr基を脱保護する)で行った。市販のTのホスホロアミダイトは0.1Mの無水アセトニトリル溶液として調製し、それを用いた。活性化剤には5-エチルチオ-1H-テトラゾール(0.25Mの無水アセトニトリル溶液)を用い、縮合時間は3′末端のみ10分間、それ以外は25秒間とした。
〔オリゴ核酸のユニバーサルサポートからの切り出しとリンカーの除去〕
 オリゴ核酸のユニバーサルサポートからの切り出しとそれに伴うリンカーの除去は、28%アンモニア水溶液で室温下2時間処理すること(条件A)で行った。
[比較例1]
 PT-CPGの代わりにCUTAG-CPG(Sigma-Aldrich社製)(下記構造、R:メチル基)(以下、単に「CUTAG」とも言う)を用いた以外は、実施例1と同様に、オリゴ核酸を合成し、切り出し処理を行った。
[評価]
 実施例1及び比較例1について、切り出し処理後の溶液を逆相HPLCにより分析した。
〔条件1〕
 まず、下記表1に記載の条件でHPLCを行った。
 図1に、HPLCのチャートを示す。
 図1に示されるように、比較例1では、オリゴ核酸(T10)、及び、付加体(T10-aduct)のピークが観測された。一方、実施例1では、オリゴ核酸のピークのみ観測された。
〔条件2〕
 実施例1で付加体のピークが観測されなかった理由は、付加体のピークの保持時間が長いためであると予想した。そこで、実施例1について、より分離し難い条件でHPLCを測定した。具体的には、グラジエントを「B液:5-15%」から「B液:8-18%」に変更した。下記表2にHPLCの条件を示す。
 図2に、HPLCのチャートを示す。また、洗浄時(30分以降)を含むチャート(washを含む)を併せて示す。また、比較のために、比較例1(B液:5-15%)のチャートを併せて示す。
〔結果〕
 図1に示されるように、比較例1の場合、オリゴ核酸(T10)のピークと付加体(T10-adduct)のピークは近い位置に観測された。これに対して、図2に示されるように、実施例1の場合、より分離し難い条件(B液:8-18%)であっても、オリゴ核酸のピークと付加体のピークは十分に離れていた。すなわち、実施例1の特定担体を用いて核酸を合成した場合、核酸を切り出したときに、HPLCによって核酸と付加体とを容易に分離できることが示された。また、実施例1の場合、HPLCチャート(washを含む)にはリンカーに由来する環状リン酸体(cp)のピークも観測された。
〔非特許文献2との対比〕
 非特許文献2の図3のCPG3には、下記リンカーから得られたユニバーサルサポートを用いてオリゴ核酸(T10)を合成したときの、切り出し処理後の溶液のHPLC(上記条件2と同じ条件)のチャートが示され、オリゴ核酸(T10)のピークが保持時間約10分、付加体(T10-3)のピークが保持時間約24分に観測されている。
 これに対して、上述した実施例1の場合、図2に示されるように、オリゴ核酸(T10)のピークは保持時間約10分、付加体(T10-adduct)のピークは保持時間約27分に観測されている。すなわち、上述した実施例1の特定担体は、非特許文献2の上記ユニバーサルサポートよりも、ピークの分離がさらに優れていると言える。
[実施例2]
〔オリゴ核酸の合成〕
 PT-CPGをユニバーサルサポートとして用いて、DNA自動合成装置によって、3′末端のみT以外のヌクレオシドを導入したオリゴ核酸(TX)を合成した。3′末端(X)には、Pac-dA(dA)、Ac-dC(dC)、iPrPac-dG(dG)、2′-O-Me-U(MeOU)、LNA-T(LNAT)を用いた。合成スケールは0.2μmolとし、トリチルOFF条件で行った。市販のTのホスホロアミダイトは0.1Mの無水アセトニトリル溶液として調製し、それを用いた。活性化剤には5-エチルチオ-1H-テトラゾール(0.25M無水アセトニトリル溶液)を用い、縮合時間は3′末端のみ10分間、それ以外は25秒間とした。
〔オリゴ核酸のユニバーサルサポートからの切り出しとリンカーの除去〕
 オリゴ核酸のユニバーサルサポートからの切り出しとそれに伴うリンカーの除去は、28%アンモニア水溶液で55℃、8時間処理すること(条件B)で行った。
〔評価〕
 切り出し処理後の溶液を逆相HPLCにより分析した。HPLCの条件は上述した条件2と同じとした。
 図3に、HPLCのチャートを示す。
 図3から分かるように、オリゴ核酸(TX)のピーク及びリンカーに由来する環状リン酸体(cp)のピークが観測された。なお、図2と同じ条件(条件2)で分析しているにも関わらず付加体(TX-adduct)のピークは観測されなかった。このことから、オリゴ核酸が完全に切り出され、切り出し処理後の溶液中に付加体は存在しないものと考えられる。
[実施例3]
〔オリゴ核酸の合成〕
 PT-CPGをユニバーサルサポートとして用いて、DNA自動合成装置によって、ホスホロチオエート化オリゴ核酸(sON)を合成した。合成スケールは0.2μmolとし、トリチルOFF条件で行った。市販のT、AcC、PacA、iPrPacGのホスホロアミダイトは0.1Mの無水アセトニトリル溶液として調製し、それを用いた。活性化剤には5-エチルチオ-1H-テトラゾール(0.25M無水アセトニトリル溶液)を用い、縮合時間は3′末端のみ10分間、それ以外は25秒間とした。硫化剤には、DDTT(dimethylamino-methylidene)amino)-3H-1,2,4-dithiazaoline-3-thione)(0.05M無水ピリジン/無水アセトニトリル溶液)を用いた。
〔オリゴ核酸のユニバーサルサポートからの切り出しとリンカーの除去〕
 オリゴ核酸のユニバーサルサポートからの切り出しとそれに伴うリンカーの除去は、28%アンモニア水溶液で室温下2時間処理(条件A)、又は、28%アンモニア水溶液で55℃、3時間処理すること(条件C)で行った。
〔評価〕
 切り出し処理後の溶液を逆相HPLCにより分析した。HPLCの条件は下記表3のとおりである(条件3)。
 図4に、HPLCのチャートを示す。
 図4から分かるように、ホスホロチオエート化オリゴ核酸(sON)のピークと付加体(sON-adduct)のピークは離れていた。また、条件CのHPLCチャートにはリンカーに由来する環状リン酸体(cp)のピークも観測された。
[実施例4]
〔特定担体の合成〕
 下記のとおり、PT-PS(a)(特定担体)、及び、PT-PS(c)(特定担体)を合成した。
<PT-PS(a)>
 アルゴン気流下、Primer supportTM(200mg,アミノ基含有量:90.0μmol)の無水アセトニトリル(4mL)懸濁液に、ジイソプロピルエチルアミン(30.8μL,180μmol)を加え、さらに実施例1の化合物3と同様の手順によって合成された化合物3a(61.3mg,90.0μmol)とHBTU(34.1mg,90.0μmol)を加えた。室温で1時間撹拌した後に反応液をろ過し、固相担体(ろ物)をアセトニトリルで洗浄、さらに一晩真空乾燥した。得られた固体を、Cap A溶液(無水酢酸のアセトニトリル溶液)とCap B溶液(メチルイミダゾールのアセトニトリル溶液)に懸濁して30分撹拌した。再び反応液をろ過し、固相担体(ろ物)をアセトニトリルで洗浄、一晩真空乾燥することでPT-PS(a)を得た。PT-PS(a)の化合物3aの担持量はDMTrアッセイ法により定量し、349±10μmol/gであった。
<PT-PS(c)>
(化合物3cの合成)
 アルゴン気流下、実施例1と同様の手順によって合成された化合物2(200mg,0.344mmol)の無水ピリジン(3mL)溶液に、2,2′-((オキシビス(エタン-2,1-ジイル))ビス(オキシ))二酢酸(91.8mg,0.413mmol)を加えた。1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(65.9mg,0.344mmol)と4-ジメチルアミノピリジン(4.20mg,0.00344mmol)を加え、室温で20時間撹拌した。反応終了後、クロロホルムとメタノールの混合溶液(クロロホルム/メタノール=10:1)で5回抽出を行った。集めた有機層を水で1回、飽和食塩水で1回洗浄した後、硫酸ナトリウムで乾燥し、溶媒を減圧蒸留した。粗成績体をシリカゲルクロマトグラフィー(クロロホルムのみからクロロホルム/メタノール=20:1)で精製し、化合物3c(105mg,収率39%)を白色固体として得た。
 1H-NMR(500MHz,CDCl) δ 8.66-8.64(m,2H),7.97-7.95(m,1H),7.66-7.61(m,3H),7.57-7.54(m,1H),7.48-7.47(m,2H),7.47-7.22(m,8H),6.87-6.83(m,4H),5.87(s,1H),5.33(s,1H),4.79(d,1H,J=6.0Hz),4.48 and 4.24(ABq,1H,1H,J=16.5Hz),4.16(s,2H),4.12(d,1H,J=6.0Hz),3.86-3.72(m,14H).13C-NMR(125MHz,CDCl) δ 171.4,171.0,158.7,145.3,138.7,137.5,136.6,136.2,130.4,130.3,128.3,128.0,127.0,126.8,126.5,125.8,125.3,125.0,124.5,123.4,113.4,88.1,83.6,82.6,77.3,77.2,77.0,76.8,73.9,73.1,71.5,70.8,70.7,70.3,69.0,68.6,55.3,45.1,9.2.IR(ATR)cm-1:2929,1746,1607,1507.HRMS(ESI-TOF):calcd for C474311 [M-H]? 783.2805,found 783.2809.
(PT-PS(c)の合成)
 アルゴン気流下、Primer supportTM(100mg,アミノ基含有量:45.0μmol)の無水アセトニトリル(2mL)懸濁液に、ジイソプロピルエチルアミン(15.4μL,90.0μmol)を加え、さらに化合物3c(35.3mg,45.0μmol)とHBTU(17.1mg,45.0μmol)を加えた。室温で1時間撹拌した後に反応液をろ過し、固相担体(ろ物)をアセトニトリルで洗浄、さらに一晩真空乾燥した。得られた固体を、Cap A溶液(無水酢酸のアセトニトリル溶液)とCap B溶液(メチルイミダゾールのアセトニトリル溶液)に懸濁して30分撹拌した。再び反応液をろ過し、固相担体(ろ物)をアセトニトリルで洗浄、一晩真空乾燥することでPT-PS(c)を得た。PT-PS(c)の化合物3cの担持量はDMTrアッセイ法*により定量し、296±21μmol/gであった。
〔オリゴ核酸の合成〕
 PT-PS(a)及びPT-PS(c)をユニバーサルサポートとして用い、DNA自動合成装置によって、T-10merのオリゴ核酸(T10)を合成した。合成スケールは1.0μmolとし、トリチルOFF条件で行った。市販のTのホスホロアミダイトは0.1Mの無水アセトニトリル溶液として調製し、それを用いた。活性化剤には5-エチルチオ-1H-テトラゾール(0.25M無水アセトニトリル溶液)を用い、縮合時間は3′末端のみ10分間、それ以外は25秒間とした。
〔オリゴ核酸のユニバーサルサポートからの切り出しとリンカーの除去〕
 オリゴ核酸のユニバーサルサポートからの切り出しとそれに伴うリンカーの除去は、28%アンモニア水溶液で55℃、48時間処理することで行った。
〔評価〕
 切り出し処理後の溶液を逆相HPLCにより分析した。HPLCの条件は上述した条件2と同じとした。
 図5に、HPLCチャートを示す。
 図5から分かるように、オリゴ核酸(T10)のピークが観測された。

Claims (20)

  1.  下記一般式(1)で示される化合物。
     一般式(1)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表し、Zは、水素原子、又は、酸により脱離可能な保護基を表し、R~Rは、それぞれ独立して、水素原子、アルキル基、又は、アルコキシ基を表す。
  2.  下記一般式(2)で示される化合物。
     一般式(2)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表し、Zは、水素原子、又は、酸により脱離可能な保護基を表し、R~Rは、それぞれ独立して、水素原子、アルキル基、又は、アルコキシ基を表し、Lは、酸素原子を有していてもよい2価の炭化水素基を表す。
  3.  前記Arが、置換基を有していてもよい、アントラセン環、フェナントレン環、テトラセン環、又は、ピレン環である、請求項1又は2に記載の化合物。
  4.  前記Arが、置換基を有していてもよいフェナントレン環である、請求項1又は2に記載の化合物。
  5.  前記Zが、酸により脱離可能な保護基である、請求項1又は2に記載の化合物。
  6.  前記酸により脱離可能な保護基が、トリチル系保護基、又は、シリル系保護基である、請求項5に記載の化合物。
  7.  前記R~Rが、水素原子である、請求項1又は2に記載の化合物。
  8.  前記Lが、酸素原子を有していてもよいアルキレン基、酸素原子を有していてもよいアリーレン基、又は、それらの組み合わせである、請求項2に記載の化合物。
  9.  請求項1又は2に記載の化合物を用いた、核酸合成用固相担体のリンカー。
  10.  下記一般式(3)で示される化合物からなる、固相担体。
     一般式(3)中、Arは、置換基を有していてもよい3~4環式の芳香族環を表し、Zは、水素原子、又は、酸により脱離可能な保護基を表し、R~Rは、それぞれ独立して、水素原子、アルキル基、又は、アルコキシ基を表し、Lは、2価の炭化水素基を表し、Spは、固相担体を表す。
  11.  核酸合成用である、請求項10に記載の固相担体。
  12.  前記Arが、置換基を有していてもよい、アントラセン環、フェナントレン環、テトラセン環、又は、ピレン環である、請求項10又は11に記載の固相担体。
  13.  前記Arが、置換基を有していてもよいフェナントレン環である、請求項10又は11に記載の固相担体。
  14.  前記Zが、酸により脱離可能な保護基である、請求項10又は11に記載の固相担体。
  15.  前記酸により脱離可能な保護基が、トリチル系保護基、又は、シリル系保護基である、請求項14に記載の固相担体。
  16.  前記R~Rが、水素原子である、請求項10又は11に記載の固相担体。
  17.  前記Lが、酸素原子を有していてもよいアルキレン基、酸素原子を有していてもよいアリーレン基、又は、それらの組み合わせである、請求項10又は11に記載の固相担体。
  18.  前記Spが、多孔質ポリマー担体、又は、ガラス系多孔質担体である、請求項10又は11に記載の固相担体。
  19.  請求項10又は11に記載の固相担体上で核酸合成反応を行う工程を含む、核酸の製造方法。
  20.  前記核酸合成反応が、ホスホロアミダイト法により行われる、請求項19に記載の核酸の製造方法。
PCT/JP2023/026790 2022-07-29 2023-07-21 核酸合成用リンカーおよび固相担体 WO2024024672A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121221 2022-07-29
JP2022121221 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024672A1 true WO2024024672A1 (ja) 2024-02-01

Family

ID=89706514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026790 WO2024024672A1 (ja) 2022-07-29 2023-07-21 核酸合成用リンカーおよび固相担体

Country Status (1)

Country Link
WO (1) WO2024024672A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152905A1 (en) * 2003-01-31 2004-08-05 Guzaev Andrei P. Universal building blocks and support media for synthesis of oligonucleotides and their analogs
JP2013177371A (ja) * 2012-01-30 2013-09-09 Nitto Denko Corp 核酸固相合成用リンカー及び担体
JP2016204316A (ja) * 2015-04-24 2016-12-08 日東電工株式会社 核酸固相合成用リンカー及び担体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152905A1 (en) * 2003-01-31 2004-08-05 Guzaev Andrei P. Universal building blocks and support media for synthesis of oligonucleotides and their analogs
JP2013177371A (ja) * 2012-01-30 2013-09-09 Nitto Denko Corp 核酸固相合成用リンカー及び担体
JP2016204316A (ja) * 2015-04-24 2016-12-08 日東電工株式会社 核酸固相合成用リンカー及び担体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO KAZUKI, FUCHI YASUFUMI, ITO YUTA, HARI YOSHIYUKI: "Bicyclo[2.2.2]octane-2,3-diol as an universal linker for the solid-phase synthesis of oligonucleotides", TETRAHEDRON, ELSEVIER SIENCE PUBLISHERS, AMSTERDAM, NL, vol. 92, 1 July 2021 (2021-07-01), AMSTERDAM, NL , pages 132261, XP055966350, ISSN: 0040-4020, DOI: 10.1016/j.tet.2021.132261 *

Similar Documents

Publication Publication Date Title
JP6673373B2 (ja) 擬似固相保護基およびヌクレオチド
US9605261B2 (en) RNA synthesis—phosphoramidites for synthetic RNA in the reverse direction, and application in convenient introduction of ligands, chromophores and modifications of synthetic RNA at the 3′-end
RU2079508C1 (ru) Способ соединения нуклеозидов 3'-5'-межнуклеотидным силильным звеном
EP0206913B1 (fr) Nouveaux supports, la préparation de ces supports, les intermédiaires nouveaux obtenus, leur application à la synthèse d'oligonucléotides et les nouveaux nécléosides et oligonucléotides reliés aux supports ainsi obtenus
JP7484951B2 (ja) オリゴヌクレオチドの製造方法
JP2002540118A (ja) キシロ−lna類似体
JP2006248949A (ja) ヌクレオシド誘導体、ヌクレオチド誘導体及びそれらの製造方法
CN112533892B (zh) 烷氧基苯基衍生物、核苷保护体和核苷酸保护体、寡核苷酸制造方法以及取代基除去方法
TW201202261A (en) Process for the synthesis of azacitidine and decitabine
EP0422090B1 (fr) Derives de nucleosides utilisables pour la synthese d'oligonucleotides marques, oligonucleotides obtenus a partir de ces derives et leur synthese
WO2024024672A1 (ja) 核酸合成用リンカーおよび固相担体
JP7045669B2 (ja) リボ核酸h-ホスホネートモノマーの合成方法および本モノマーを用いたオリゴヌクレオチド合成
JP2016204316A (ja) 核酸固相合成用リンカー及び担体
TW202115097A (zh) 核酸化合物的製造方法及核酸化合物
CN114981280A (zh) 寡核苷酸化合物的制造方法
EP3491001A1 (en) 5's-lna nucleotides and oligonucleotides
WO2004063208A1 (en) New phosphoramidite compounds
JP2016202097A (ja) 核酸固相合成用リンカー及び担体
Meyer et al. A versatile reagent for the synthesis of 5′-phosphorylated, 5′-thiophosphorylated or 5′-phosphoramidate-conjugated oligonucleotides
WO2005080404A1 (ja) 核酸固相合成用シリルリンカー
JP2012111728A (ja) 高分散性液相支持体を用いたオリゴヌクレオチド合成法
Tomaszewska-Antczak et al. P-Stereodefined phosphorothioate analogs of glycol nucleic acids—synthesis and structural properties
WO2022191172A1 (ja) 核酸固相合成のためのリンカー及び担体
WO2022255469A1 (ja) ホスホロチオエート及びボラノホスフェートを含むキメラ型核酸オリゴマー、及びその製造方法
JP2009256335A (ja) 2’位にアルキル型保護基を有するリボ核酸の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846403

Country of ref document: EP

Kind code of ref document: A1