WO2024024173A1 - カテーテル及び医療システム並びにカテーテルの操作方法 - Google Patents

カテーテル及び医療システム並びにカテーテルの操作方法 Download PDF

Info

Publication number
WO2024024173A1
WO2024024173A1 PCT/JP2023/013772 JP2023013772W WO2024024173A1 WO 2024024173 A1 WO2024024173 A1 WO 2024024173A1 JP 2023013772 W JP2023013772 W JP 2023013772W WO 2024024173 A1 WO2024024173 A1 WO 2024024173A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
shaft
catheter
power
holding part
Prior art date
Application number
PCT/JP2023/013772
Other languages
English (en)
French (fr)
Inventor
康一 酒井
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Publication of WO2024024173A1 publication Critical patent/WO2024024173A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to a catheter, a medical system, and a method for operating a catheter.
  • Patent Document 1 a medical system including a catheter for performing pulse field ablation has been proposed.
  • An example of the object of the present invention is to efficiently apply energy in pulse field ablation. Other objects of the invention will become apparent from the description herein.
  • One aspect of the present invention is a catheter for pulse field ablation, which includes a hollow, elongated cylindrical shaft, and an electrode section 40 located at the tip of the shaft, and the electrode section 40 has a first an electrode, a second electrode, and a third electrode, the second electrode being located between the first electrode and the third electrode in the longitudinal direction of the shaft. , a first DC power is supplied between the first electrode and the second electrode, a second DC power is supplied between the second electrode and the third electrode, and the The first DC power and the second DC power are alternately supplied.
  • One aspect of the present invention is a medical system including a catheter for pulse field ablation and a power supply unit that supplies power to the catheter, wherein the catheter has a hollow and elongated cylindrical shaft; A first electrode, a second electrode, and a third electrode are located at the distal end of the shaft and are located in order from the distal end toward the proximal end, and the power supply section includes a first electrode, a second electrode, and a third electrode. The first DC power is alternately supplied between the second electrode and the third electrode, and the second DC power is alternately supplied between the second electrode and the third electrode.
  • One aspect of the present invention includes a hollow and elongated cylindrical shaft, and an electrode section in which a first electrode, a second electrode, and a third electrode are located from the distal end to the proximal end of the shaft.
  • a method of operating a catheter for pulsed field ablation comprising: supplying DC power including at least one rectangular wave between the first electrode and the second electrode; a second step of supplying DC power including at least one rectangular wave between the electrode and the third electrode, and the first step and the second step are performed alternately.
  • an electric field is generated between the first electrode and the second electrode, and an electric field is generated between the second electrode and the third electrode.
  • This allows two electric fields to be generated near the second electrode. Therefore, compared to a form in which only the electric field is generated by the first electrode and the second electrode, and a form in which only the electric field is generated by the second electrode and the third electrode, it is possible to perform pulsed field ablation more efficiently. energy can be applied to increase the likelihood of irreversible electroporation of cells in the target tissue.
  • FIG. 2 is a perspective view of a catheter including an intermediate electrode housed in a storage sheath in the first embodiment.
  • FIG. 3 is a perspective view of a catheter including an intermediate electrode removed from a storage sheath.
  • FIG. 3 is an enlarged perspective view of a region including an intermediate electrode in FIG. 2;
  • FIG. 7 is an enlarged perspective view of a region including an intermediate electrode in a second embodiment.
  • FIG. 7 is an enlarged perspective view of a region including an intermediate electrode in a third embodiment.
  • FIG. 7 is an enlarged perspective view of a region including an intermediate electrode in a fourth embodiment.
  • FIG. 1 is a perspective view of a catheter including an intermediate electrode housed in a storage sheath in the first embodiment.
  • FIG. 3 is a perspective view of a catheter including an intermediate electrode removed from a storage sheath.
  • FIG. 3 is an enlarged perspective view of a region including an intermediate electrode in FIG. 2
  • FIG. 7 is an enlarged perspective view of a region including
  • FIG. 7 is an enlarged perspective view of a region including an intermediate electrode, a front holding wire attached to the inner shaft near the intermediate electrode, and a rear holding wire attached to the outer shaft near the intermediate electrode in the fifth embodiment.
  • FIG. 7 is an enlarged perspective view of a region including an intermediate electrode, a front holding wire attached to the inner shaft apart from the intermediate electrode, and a rear holding wire attached to the outer shaft apart from the intermediate electrode in the fifth embodiment.
  • FIGS. 1 to 3 The first embodiment will be described below using FIGS. 1 to 3. However, the embodiments are not limited to the following embodiments. Moreover, the content described in one embodiment is similarly applied to other embodiments in principle. Each embodiment and each modification can be combined as appropriate.
  • the storage sheath 10, outer shaft 20, and inner shaft 30 are hollow cylindrical members.
  • the inner diameter of the storage sheath 10 in the cross section is larger than the outer diameter of the outer shaft 20 in the cross section, and the inner diameter of the outer shaft 20 in the cross section is larger than the outer diameter of the inner shaft 30 in the cross section.
  • the storage sheath 10 is positioned to cover the outer shaft 20, and the outer shaft 20 is positioned to cover the inner shaft 30.
  • regions in which each of the outer shaft 20, inner shaft 30, and guide wire 50 are covered with other members are indicated by dotted lines.
  • the intermediate electrode 45 housed in the housing sheath 10 is shown by a solid line.
  • illustrations of the storage sheath 10, guide wire 50, and hub 60 are omitted.
  • the catheter 1 As shown in FIGS. 1 and 2, the catheter 1 according to the first embodiment includes a storage sheath 10, shafts (outer shaft 20, inner shaft 30), electrode section 40, guide wire 50, and hub 60. Catheter 1 is used to perform pulse field ablation.
  • Storage sheath 10 is an elongate, tubular, flexible member configured to move within a patient's body.
  • the cross section of the storage sheath 10 may be an annular shape such as a perfect circle, an ellipse, or an ellipse, a quadrilateral shape such as a square, a rectangle, a rhombus, or a trapezoid, or a polygonal shape such as a triangle or a pentagon.
  • the cross section of the storage sheath 10 may have a shape with rounded corners.
  • the storage sheath 10 is made of a translucent resin (such as fluororesin) that is slippery and allows the interior to be seen through.
  • the storage sheath 10 is made of PFA (tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene/hexafluoropropylene copolymer), PE (polyethylene), PP (polypropylene), PI (polyimide). Consists of. However, the storage sheath 10 may be made of a transparent or opaque member.
  • Outer shaft 20 is an elongate, tubular, flexible member configured to move within a patient's body.
  • the outer shaft 20 passes inside the storage sheath 10.
  • the cross section of the outer shaft 20 may be an annular shape such as a perfect circle, an ellipse, or an ellipse, a quadrilateral shape such as a square, a rectangle, a rhombus, or a trapezoid, or a polygonal shape such as a triangle or a pentagon.
  • the corners may be rounded.
  • the distal end of the outer shaft 20 protrudes from the distal end of the storage sheath 10 in the expanded state shown in FIG.
  • a rear electrode 43 which will be described later, is arranged at the distal end of the outer shaft 20. Further, an intermediate electrode 45 is attached to the distal end of the outer shaft 20 via a rear holding wire 46b, which will be described later. At the distal end of the outer shaft 20, the intermediate electrode 45, the rear holding wire 46b, and the rear electrode 43 are located in this order from the most distal end toward the base end.
  • the outer shaft 20 is made of opaque resin.
  • the outer shaft 20 is made of nylon, thermoplastic polyamide elastomer, or the like.
  • the outer shaft 20 may be made of a transparent or translucent member.
  • Inner shaft 30 is an elongate, tubular, flexible member configured to move within a patient's body.
  • the inner shaft 30 passes inside the outer shaft 20.
  • the cross section of the inner shaft 30 may be annular such as a perfect circle, ellipse, or oval, quadrilateral such as a square, rectangle, rhombus, or trapezoid, or polygonal such as a triangle or pentagon. Further, the cross section of the inner shaft 30 may have a shape with rounded corners.
  • the distal end of the inner shaft 30 protrudes from the distal end of the outer shaft 20 and also from the distal end of the storage sheath 10.
  • a front electrode 41 which will be described later, is arranged at the distal end of the inner shaft 30.
  • an intermediate electrode 45 is attached to the distal end of the inner shaft 30 via a front holding wire 46a, which will be described later.
  • a front electrode 41, a front holding wire 46a, and an intermediate electrode 45 are located in this order from the most distal end toward the base end.
  • the inner shaft 30 is made of opaque resin.
  • the inner shaft 30 is made of, for example, PEEK (polyetheretherketone), PSF (polysulfone), nylon, thermoplastic polyamide elastomer, or the like.
  • the inner shaft 30 may be made of a transparent or translucent member.
  • the outer shaft 20 and the inner shaft 30 constitute a hollow and long cylindrical shaft in the catheter 1.
  • the electrode section 40 is an electrode section for performing pulse field ablation, and includes a front electrode (first electrode) 41, a rear electrode (third electrode) 43, an intermediate electrode (second electrode) 45, and a holding section 46. has.
  • Front electrode 41 is located at the distal end of inner shaft 30 .
  • the front electrode 41 has an unchanged outer diameter in its cross section and has a surrounding shape along the side surface of the distal end of the inner shaft 30 .
  • the front electrode 41 may be located on the outer wall of the distal end of the inner shaft 30 or may be located on the inner wall.
  • a band-shaped electrode having a desired width is arranged along the side surface of the distal end of the inner shaft 30 whose outer shape has an annular cross section to form a continuous annular shape.
  • the front electrode 41 may have a shape having at least a slit, a slot, a zigzag shape, a meandering shape, a pulse wave shape, a convex part, a concave part, or a curved part. Furthermore, the front electrode 41 may have a shape that does not extend along the side surface of the distal end of the inner shaft 30 but covers the side surface of the distal end of the inner shaft 30 from the outside.
  • the front electrode 41 is connected to a first positive terminal (not shown) of the electrode connector 65 via a cable (not shown) arranged on the outer wall or inner wall of the inner shaft 30.
  • the front electrode 41 of the first embodiment is arranged so as to cover the side surface of the distal end of the inner shaft 30, and the cable extending from the first positive side terminal through the inner cavity of the inner shaft 30 is connected to the inner shaft 30. It penetrates the wall of the front electrode 41 and connects with the inside of the front electrode 41.
  • the front electrode 41 is made of, for example, a platinum-iridium alloy. Therefore, the position of the front electrode 41 can be easily confirmed with X-rays.
  • the rear electrode 43 is located at the distal end of the outer shaft 20.
  • the rear electrode 43 has an unchanged outer diameter in cross section and has a surrounding shape along the side surface of the distal end of the outer shaft 20 .
  • the rear electrode 43 may be located on the outer wall of the distal end of the outer shaft 20, or may be located on the inner wall.
  • a band-shaped electrode having a desired width is arranged along the side surface of the distal end of the outer shaft 20 whose outer shape has an annular cross section to form a continuous annular shape. However, it is not limited to this.
  • the rear electrode 43 may have a shape in which at least a portion thereof has a slit, a slot, a zigzag shape, a meandering shape, a pulse waveform, a convex portion, a concave portion, or a curved portion. Further, the rear electrode 43 may have a shape that does not extend along the side surface of the distal end of the outer shaft 20 but covers the side surface of the distal end of the outer shaft 20 from the outside.
  • the rear electrode 43 is connected to a second positive side terminal (not shown) of the electrode connector 65 via a cable (not shown) arranged on the outer wall or inner wall of the outer shaft 20.
  • the rear electrode 43 of the first embodiment is arranged so as to cover the side surface of the distal end of the outer shaft 20, and the cable extending from the second positive side terminal through the inner cavity of the outer shaft 20 is connected to the outer shaft 20. It penetrates the wall of and connects to the inside of the rear electrode 43.
  • the rear electrode 43 is made of, for example, a platinum-iridium alloy. Therefore, the position of the rear electrode 43 can be easily confirmed with X-rays.
  • the rear electrode 43 is located 15 to 30 mm away from the front electrode 41.
  • the distance between the front electrode 41 and the rear electrode 43 is not limited to the range of 15 to 30 mm, and may be shorter than 15 mm or longer than 30 mm.
  • Intermediate electrode 45 is arranged between front electrode 41 and rear electrode 43. Specifically, the intermediate electrode 45 is located between the front electrode 41 and the distal end of the outer shaft 20 so as to cover the side surface of the inner shaft 30.
  • the intermediate electrode 45 is formed of a wavy curve having a plurality of peaks. As shown in FIG. 3, the plurality of peaks include a first peak 45a that projects toward the distal end of the inner shaft 30, and a second peak 45b that projects toward the proximal end of the inner shaft 30.
  • the first peak portions 45a and the second peak portions 45b are arranged alternately. In the first embodiment, an example is shown in which the plurality of peaks includes six first peaks 45a and six second peaks 45b.
  • the intermediate electrode 45 is located between the most distal end of the outer shaft 20 and the most distal end of the inner shaft 30, and the first mountain portion 45a is located between the most distal end of the inner shaft 30.
  • the second mountain portion 45b is located on the distalmost end side of the outer shaft 20.
  • the intermediate electrode 45 is made of, for example, a nickel-titanium alloy or austenitic stainless steel.
  • the intermediate electrode 45 has a seamless surrounding shape that covers the side surface on the rear end side of the front electrode 41 at the distal end of the inner shaft 30 and has a variable outer diameter. That is, the surrounding shape of the intermediate electrode 45 is a shape that surrounds the central axis of the shaft, and since the wavy curved electrode of the intermediate electrode 45 expands and contracts, the outer diameter of the intermediate electrode 45 becomes variable.
  • the central axis of the shaft refers to at least one of the central axis of the outer shaft 20 and the central axis of the inner shaft 30, and it is preferable that the central axis of the outer shaft 20 and the central axis of the inner shaft 30 are the same.
  • the intermediate electrode 45 By forming the intermediate electrode 45 in a curved line, there is an effect that blood vessels are less likely to be damaged.
  • the surrounding shape of the intermediate electrode 45 can be shown by a single stroke, and the intermediate electrode 45 is configured in a shape that does not have an end, that is, the intermediate electrode 45 is seamless, so that it is less likely to damage blood vessels.
  • the shape of the intermediate electrode 45 is not limited to a wavy shape, and may have a shape having at least a portion of a zigzag shape, a meander shape, or a pulse wave shape, as long as it has a shape that allows expansion and contraction. good.
  • the cross section of the inner shaft 30 is a perfect circle, the intermediate electrode 45 has a seamless annular shape.
  • the intermediate electrode 45 When the cross section of the inner shaft 30 is an ellipse, an oval, or a polygon such as a triangle or square with rounded corners, the intermediate electrode 45 has a seamless ring shape. , the intermediate electrode 45 has a shape that follows the cross-sectional shape of the inner shaft 30.
  • the holding part 46 includes a front holding wire 46a (first holding part) and a rear holding wire 46b (second holding part).
  • the front holding wire 46a connects the inner shaft 30 and the intermediate electrode 45.
  • the front holding wire 46a is formed of at least one linear member.
  • the rear holding wire 46b connects the outer shaft 20 and the intermediate electrode 45.
  • the rear holding wire 46b is formed of at least one linear member.
  • the intermediate electrode 45 is held on the inner shaft 30 via the front holding wire 46a, and is held on the outer shaft 20 via the rear holding wire 46b.
  • the front holding wire 46a connects each of the first peaks 45a and the outer wall of the inner shaft 30.
  • the rear holding wire 46b connects each of the second peaks 45b and the outer wall of the outer shaft 20.
  • the surrounding shape of the intermediate electrode 45 covers the side surface of the inner shaft 30 between the front electrode 41 and the distal end of the outer shaft 20 .
  • the holding portion 46 is made of the same material as the intermediate electrode 45, and is made of, for example, a nickel-titanium alloy or austenitic stainless steel.
  • At least one linear member also serves as an electrical connection cable between the intermediate electrode 45 and the electrode connector 65.
  • a plurality of linear members among the plurality of front holding wires 46a and the plurality of rear holding wires 46b also serve as electrical connection cables between the intermediate electrode 45 and the electrode connector 65. In this case, even if one wire (wire member) that also serves as the electrical connection cable is disconnected, another wire can be used and the electrical connection state can be maintained.
  • connection between the front holding wire 46a and the inner shaft 30 is performed between the front electrode 41 and the intermediate electrode 45.
  • the connection between the rear holding wire 46b and the outer shaft 20 is made between the rear electrode 43 and the intermediate electrode 45.
  • an example has been described in which some of the plurality of front holding wires 46a and the plurality of rear holding wires 46b are used as electrical connection cables.
  • an electrical connection cable may be arranged separately from the holding portion 46 (front holding wire 46a, rear holding wire 46b).
  • the diameter of the surrounding shape of the intermediate electrode 45 means the outer diameter of the substantially circular surrounding shape that constitutes the intermediate electrode 45 when viewed from the distal end side of the inner shaft 30.
  • the surrounding shape of the intermediate electrode 45 contracts due to the front holding wire 46a and the rear holding wire 46b, and the diameter of the surrounding shape becomes smaller.
  • the intermediate electrode 45 is connected to a negative terminal (not shown) of the electrode connector 65 via at least one of the front holding wire 46a and the rear holding wire 46b and a cable (not shown) arranged on the outer wall or inner wall of the inner shaft 30. ) is connected.
  • the front side holding wires 46a one that also serves as an electrical connection cable is connected to a cable extending from the negative terminal through the inner cavity of the inner shaft 30.
  • One of the rear holding wires 46b that also serves as an electrical connection cable is connected to a cable extending from the negative terminal through the inner cavity of the outer shaft 20.
  • the intermediate electrode 45 passes through the inside of the storage sheath 10, the distance between the front electrode 41 and the rear electrode 43 is increased, and the surrounding shape of the intermediate electrode 45 is contracted.
  • the intermediate electrode 45 is made to protrude from the distal end of the storage sheath 10, the distance between the front electrode 41 and the rear electrode 43 is shortened, and the surrounding shape of the intermediate electrode 45 is expanded.
  • the operator of the catheter 1 contracts and expands the intermediate electrode 45 by operating the storage sheath 10, the outer shaft 20, the inner shaft 30, and the like.
  • Guidewire 50 is an elongated rod-shaped flexible member configured to move within a patient's body.
  • the guide wire 50 passes inside the inner shaft 30.
  • the distal end of the guidewire protrudes from the distal end of the inner shaft 30 and also from the distal ends of the outer shaft 20 and storage sheath 10.
  • the hub 60 has a wire port 61, a hemostatic valve 62, a balloon port 63, and an electrode connector 65.
  • Inner shaft 30 and guide wire 50 are inserted through wire port 61.
  • a hemostatic valve 62 is arranged between the wire port 61 and the inner shaft 30.
  • a liquid such as physiological saline is supplied to the balloon 70, which will be described later, through a balloon port 63.
  • a power supply device 90 is detachably connected to the electrode connector 65.
  • the liquid supplied to the balloon 70 through the balloon port 63 is not limited to physiological saline, and may be, for example, a contrast agent diluted with physiological saline. Moreover, what is supplied to the balloon 70 via the balloon port 63 is not limited to liquid, and may be gas such as air.
  • the flow path resistance is high and the time required to take the liquid in and out of the balloon 70 becomes longer, but since it is less likely to be compressed, the intermediate electrode 45 is expanded. It's easy to do.
  • gas is supplied to the balloon 70 through the balloon port 63, it is likely to be compressed and may not be able to sufficiently assist the expansion of the intermediate electrode 45; The time required to pump in and out gas can be shortened.
  • liquid nitrous oxide or the like may be used as the medium supplied to the balloon 70 via the balloon port 63.
  • balloon 70 can be used for cryoablation.
  • Power supply device 90 includes an RF generator and supplies square wave power to catheter 1 .
  • the first positive electrode of the power supply device 90 is electrically connected to the front electrode 41 via the first positive terminal of the electrode connector 65 .
  • the second positive side electrode of the power supply device 90 is electrically connected to the rear electrode 43 via the second positive side terminal of the electrode connector 65.
  • the negative electrode of the power supply device 90 is electrically connected to the intermediate electrode 45 via the negative terminal of the electrode connector 65. That is, the front electrode 41 and the rear electrode 43 have the same polarity, and the intermediate electrode 45 has the opposite polarity to the front electrode 41 and the rear electrode 43.
  • the power supply device 90 supplies DC power including a rectangular wave (first DC power) between the front electrode 41 and the intermediate electrode 45.
  • the power supply device 90 supplies DC power including a rectangular wave (second DC power) between the rear electrode 43 and the intermediate electrode 45 .
  • a DC voltage containing a rectangular wave is applied for a short time between the front electrode 41, which is a positive electrode, and the intermediate electrode 45, which is a negative electrode.
  • a DC voltage containing a rectangular wave is applied for a short time between the rear electrode 43, which is a positive electrode, and the intermediate electrode 45, which is a negative electrode.
  • This first step and second step are repeated alternately.
  • the catheter 1 and the power supply device (corresponding to the power supply unit in the claims) 90 constitute the medical system of the first embodiment.
  • the supply of the first DC power and the supply of the second DC power by the power supply device 90 do not overlap in time (non-overlapping). Specifically, after the first DC power including one or more rectangular waves is supplied between the front electrode 41 and the intermediate electrode 45, the first DC power including the next rectangular wave is supplied between the front electrode 41 and the intermediate electrode 45. Before the DC power is supplied, the power supply device 90 supplies the second DC power including one or more rectangular waves between the rear electrode 43 and the intermediate electrode 45. Further, after the second DC power including one or more rectangular waves is supplied between the rear electrode 43 and the intermediate electrode 45, the second DC power including the next rectangular wave is supplied between the rear electrode 43 and the intermediate electrode 45. Before being supplied, the power supply device 90 supplies first DC power including one or more rectangular waves between the front electrode 41 and the intermediate electrode 45 .
  • a configuration can be considered in which supply of the first DC current containing only one rectangular wave and supply of the second DC current containing only one rectangular wave are alternately performed.
  • a configuration may be considered in which the supply of the first DC current including a plurality of rectangular waves and the supply of the second DC current including the plurality of rectangular waves are performed alternately. It is better to alternately supply the first DC current including a plurality of rectangular waves and the second DC current including the plurality of rectangular waves. This tends to direct the polarity of cells in one direction. Therefore, compared to a configuration in which the supply of the first DC current containing only one square wave and the supply of the second DC current containing only one square wave are alternately performed, the time required to cause cell necrosis is shorter. It becomes possible to do so. It is desirable to provide a pause step in which no power is supplied between the first step and the second step. By appropriately setting the pause step, cells can be cauterized efficiently.
  • Example of pulse field ablation procedure An example of a procedure for performing pulse field ablation using the catheter 1 of the first embodiment will be described. However, the procedure for performing pulse field ablation using the catheter 1 is not limited to this. Further, the target tissue for performing pulse field ablation is not limited to the pulmonary vein opening, but may be other sites.
  • the operator introduces the storage sheath 10 through a peripheral vein, such as the femoral vein, and advances it into the right atrium.
  • Storage sheath 10 is passed through an incision in the fossa ovalis with the distal end of storage sheath 10 extending into the left atrium.
  • the distal end of the outer shaft 20 and the intermediate electrode 45 are stored inside the storage sheath 10.
  • a guidewire 50 may be used in advancing the distal end of storage sheath 10 into the right atrium.
  • Storage sheath 10 may be introduced into the left atrium through the arterial system.
  • the operator positions the distal end of the inner shaft 30 near the pulmonary vein opening. However, it is sufficient that the intermediate electrode 45 is located near the region to be ablated, and the catheter 1 does not need to be in contact with the region to be ablated.
  • a guide wire 50 may be used in positioning the distal end of the inner shaft 30 proximate the pulmonary vein opening.
  • the operator moves the inner shaft 30 to separate the distal end of the inner shaft 30 from the distal end of the storage sheath 10. Further, the operator further moves the inner shaft 30 to cause the intermediate electrode 45 to protrude from the storage sheath 10. This puts the intermediate electrode 45 in an expandable state.
  • the operator moves at least one of the outer shaft 20 and the inner shaft 30 to bring the distal end of the inner shaft 30 closer to the distal end of the outer shaft 20.
  • the area of the front holding wire 46a in contact with the intermediate electrode 45 and the area of the rear holding wire 46b in contact with the intermediate electrode 45 expand in the radial direction, and the intermediate electrode 45 expands.
  • the operator drives the power supply device 90 to supply first DC power to the front electrode 41 and intermediate electrode 45 (first step) and to supply second DC power to the rear electrode 43 and intermediate electrode 45. (second step) alternately.
  • An electric field is generated around the front electrode 41 and the intermediate electrode 45 by the rectangular wave included in the first DC power.
  • An electric field is generated around the rear electrode 43 and the intermediate electrode 45 by the rectangular wave included in the second DC power.
  • An electric field is generated between the front electrode 41 and the intermediate electrode 45, and an electric field is generated between the rear electrode 43 and the intermediate electrode 45. That is, an electric field generated by the front electrode 41 and the intermediate electrode 45 and an electric field generated by the rear electrode 43 and the intermediate electrode 45 are alternately generated. As a result, two electric fields can be generated near the intermediate electrode 45; one is an electric field generated by the front electrode 41 and the intermediate electrode 45, and the other is an electric field generated by the rear electrode 43 and the intermediate electrode 45. Energy can be applied for pulsed field ablation more efficiently than in the case where only an electric field is used. Therefore, it becomes possible to further facilitate irreversible electroporation in cells of the target tissue.
  • pulse driving between the front electrode 41 and the intermediate electrode 45 and pulse driving between the rear electrode 43 and the intermediate electrode 45 are performed in a state that does not overlap in time. Therefore, the intermediate electrode 45 can be shared by pulse driving using the front electrode 41 and pulse driving using the rear electrode 43.
  • the range of the electric field generated between the front electrode 41 and the electric field generated between the rear electrode 43 is widened, and the range of the electric field generated between the front electrode 41 and the rear electrode 43 is widened, and It becomes possible to easily cause irreversible electroporation.
  • the front holding wire 46a is connected to the inner shaft 30 at a position closer to the intermediate electrode 45 than the front electrode 41.
  • the rear holding wire 46b is connected to the outer shaft 20 at a position closer to the intermediate electrode 45 than the rear electrode 43. Therefore, by increasing the distance between the front electrode 41 and the intermediate electrode 45 and the distance between the rear electrode 43 and the intermediate electrode 45, it is possible to widen the area where the electric field is generated.
  • the first DC power and the second DC power include a rectangular wave (square-shaped pulse wave).
  • the first DC power and the second DC power preferably have a rectangular wave, but may include other waveforms different from the rectangular wave.
  • the first DC power and the second DC power may include pulse waves having a triangular shape, a sawtooth shape, a semielliptical shape, a semicircular shape, or the like.
  • square, triangular, and sawtooth pulse waves have a steeper rise in waveforms than semielliptical and semicircular pulse waves, causing rapid changes in the polarity of cells in the target tissue. , it becomes possible to shorten the time it takes for the cells to become necrotic.
  • the catheter 1 includes a storage sheath 10, an outer shaft 20, an inner shaft 30, an electrode section 40, a guide wire 50, a hub 60, and a balloon (expandable balloon) 70.
  • the balloon 70 is made of, for example, synthetic latex rubber.
  • the balloon 70 is arranged inside the encircling shape of the intermediate electrode 45. That is, the balloon 70 is located between the intermediate electrode 45 and the shaft (inner shaft 30). The balloon 70 communicates with the balloon port 63 via the space between the outer shaft 20 and the inner shaft 30. When not in use, the balloon 70 is kept deflated. When in use, a liquid or gas is injected into the balloon 70 so that the balloon 70 is inflated. Inflating the balloon 70 causes the intermediate electrode 45 to expand. Further, after the intermediate electrode 45 is expanded, the balloon 70 may be in a deflated state. In this case, the inflation of the balloon 70 is only temporary, and stagnation of blood flow is less likely to occur.
  • the intermediate electrode 45 By disposing the balloon 70 inside the intermediate electrode 45, the intermediate electrode 45 is It is easy to expand the intermediate electrode 45, and it is easy to bring the intermediate electrode 45 close to the target cell. Further, even if a problem occurs with the front holding wire 46a or the like, the intermediate electrode 45 can be expanded by expanding the balloon 70. That is, the balloon 70 can assist in expanding the intermediate electrode 45 and the like. Furthermore, the presence of the balloon 70 makes it easier to form an electric field on the outside of the intermediate electrode 45 than on the inside of the intermediate electrode 45. Therefore, compared to the configuration without the balloon 70, it is possible to more easily cause irreversible electroporation in the target tissue located near the intermediate electrode 45.
  • the balloon 70 is used to support the intermediate electrode 45 during inflation and to assist in expansion of the intermediate electrode 45.
  • the intermediate electrode 45 may be connected to the balloon 70 at all times to assist in both expansion and deflation of the intermediate electrode 45.
  • the intermediate electrode 45 can be contracted in conjunction. That is, as the balloon 70 expands and contracts, the intermediate electrode 45 expands and contracts.
  • the catheter 1 according to the third embodiment includes a storage sheath 10, an outer shaft 20, an inner shaft 30, an electrode section 40, a guide wire 50, a hub 60, and a basket (basket wire) 80.
  • Basket 80 is formed from a plurality of linear members.
  • the linear member of the basket 80 is made of, for example, a nickel-titanium alloy or austenitic stainless steel.
  • the basket 80 is arranged inside the encircling shape of the intermediate electrode 45. That is, the basket 80 is located between the intermediate electrode 45 and the shaft (inner shaft 30).
  • the front side of the basket 80 connects to the distal end of the inner shaft 30.
  • the rear side of the basket 80 connects to the distal end of the outer shaft 20.
  • connection between the basket 80 and the inner shaft 30 is made at the most distal end side of the front electrode 41.
  • the connection between the basket 80 and the outer shaft 20 is made on the proximal side of the rear electrode 43.
  • the plurality of linear members forming the basket 80 bend in a curved shape, causing the basket 80 to bulge and the diameter of the basket 80 to increase.
  • the basket 80 contracts because the plurality of linear members forming the basket 80 extend linearly, and the diameter of the basket 80 becomes smaller.
  • the basket 80 When not in use, the basket 80 is kept in a deflated state. When in use, the basket 80 is in an inflated state. As the basket 80 expands, the intermediate electrode 45 expands. That is, the basket 80 is used to expand the intermediate electrode 45.
  • the intermediate electrode 45 By disposing the basket 80 inside the intermediate electrode 45, the intermediate electrode 45 is It is easy to expand the intermediate electrode 45, and it is easy to bring the intermediate electrode 45 close to the target cell. Further, even if a problem occurs with the front holding wire 46a or the like, the intermediate electrode 45 can be expanded by expanding the basket 80. That is, the basket 80 can assist in expanding the intermediate electrode 45 and the like. Further, since there is an empty space between the plurality of linear members that constitute the basket 80, stagnation of blood flow is less likely to occur.
  • the basket 80 is used to support the intermediate electrode 45 during expansion and assist the expansion of the intermediate electrode 45.
  • at least a portion of the intermediate electrode 45 may always be connected to the basket 80 via an insulating member.
  • the intermediate electrode 45 can be contracted in conjunction. That is, as the basket 80 expands and contracts, the intermediate electrode 45 expands and contracts.
  • One end of the front holding wire 46a is connected to the inner shaft 30 at a position closer to the intermediate electrode 45 than the front electrode 41, that is, between the front electrode 41 and the intermediate electrode 45.
  • the other end of the front holding wire 46a is connected to the intermediate electrode 45.
  • One end of the rear holding wire 46b is connected to the outer shaft 20 at a position closer to the intermediate electrode 45 than the rear electrode 43, that is, between the rear electrode 43 and the intermediate electrode 45.
  • the other end of the rear holding wire 46b is connected to the intermediate electrode 45.
  • the attachment position of the front side holding wire 46a to the inner shaft 30 and the attachment position of the rear side holding wire 46b to the outer shaft 20 are not limited to these.
  • one end of the front holding wire 46a is located at a position farther from the intermediate electrode 45 than the position of the front electrode 41, that is, between the most distal end of the inner shaft 30 and the front electrode 41.
  • the inner shaft 30 is connected between the inner shaft 30 and the inner shaft 30.
  • the other end of the front holding wire 46a is connected to the intermediate electrode 45.
  • One end of the rear holding wire 46b is connected to the outer shaft 20 at a position farther from the intermediate electrode 45 than the position of the rear electrode 43, that is, closer to the proximal end of the outer shaft 20 than the rear electrode 43 is.
  • the other end of the rear holding wire 46b is connected to the intermediate electrode 45.
  • the plurality of peaks of the intermediate electrode 45 include six first peaks 45a and six second peaks 45b.
  • the number of peaks is not limited to this.
  • the plurality of peaks of the intermediate electrode 45 include eight first peaks 45a and eight second peaks 45b.
  • the number of first peaks 45a and the number of second peaks 45b are both set to even numbers.
  • the intermediate electrode 45 can be made easier.
  • the front holding wire 46a and the rear holding wire 46b make it easier to contract the intermediate electrode 45 without losing its shape. .
  • One front holding wire 46a is connected to each of the ridges forming the first ridge 45a, and one rear holding wire 46b is connected to each of the ridges forming the second ridge 45b. Connected. However, one front holding wire 46a may be connected to a plurality of peaks forming the first peak 45a.
  • the intermediate electrode 45 has a surrounding shape that can be expanded and contracted, like one of a plurality of rings that constitute a stent.
  • the intermediate electrode 45 may have an unchanging outer diameter and a surrounding shape that covers the side surface of the inner shaft 30 or the outer shaft 20. Even in this case, the effect of performing pulsed field ablation using three electrodes can be obtained.
  • Aspect 1 is a catheter for pulsed field ablation, which includes a hollow and elongated cylindrical shaft and an electrode section located at the tip of the shaft, and the electrode section includes a first electrode and a second electrode. and a third electrode, the second electrode is located between the first electrode and the third electrode in the longitudinal direction of the shaft, and the second electrode is located between the first electrode and the third electrode in the longitudinal direction of the shaft.
  • a first DC power is supplied between the electrode and the second electrode
  • a second DC power is supplied between the second electrode and the third electrode
  • the first DC power is supplied between the second electrode and the third electrode. and the second DC power are alternately supplied.
  • an electric field is generated between the first electrode and the second electrode, and an electric field is generated between the second electrode and the third electrode.
  • This allows two electric fields to be generated near the second electrode. Therefore, compared to a form in which only the electric field is generated by the first electrode and the second electrode, and a form in which only the electric field is generated by the second electrode and the third electrode, it is possible to perform pulsed field ablation more efficiently. energy can be applied to increase the likelihood of irreversible electroporation of cells in the target tissue. Further, pulse driving between the first electrode and the second electrode and pulse driving between the second electrode and the third electrode are performed in a state that does not overlap in time. Therefore, the second electrode can be shared by pulse driving using the first electrode and pulse driving using the third electrode.
  • the second electrode has a surrounding shape surrounding the central axis of the shaft, and its outer diameter is variable.
  • the range of the electric field generated between the first electrode and the electric field generated between the third electrode is widened, and the range of the electric field generated between the target It becomes possible to easily cause irreversible electroporation of tissue cells.
  • blood vessels are less likely to be damaged compared to a configuration in which the second electrode has an end portion. Less likely to damage blood vessels
  • Aspect 4 further includes a basket located between the second electrode and the shaft, and the basket is formed of a plurality of linear members and assists expansion of the second electrode.
  • the basket can assist in expanding the second electrode. Furthermore, since there is an empty space between the plurality of linear members that constitute the basket, stagnation of blood flow is less likely to occur.
  • Aspect 5 further includes a balloon located between the second electrode and the shaft, the balloon assisting expansion of the second electrode.
  • the balloon can assist in expanding the second electrode. Furthermore, the presence of the balloon makes it easier to form an electric field outside the second electrode than inside the second electrode. Therefore, compared to a configuration without a balloon, it is possible to more easily cause irreversible electroporation in the target tissue located in the vicinity of the second electrode.
  • Aspect 6 further includes a storage sheath that stores the shaft, and the shaft has an outer shaft passing through the inside of the storage sheath, and an inner shaft passing inside the outer shaft, and the first electrode is located at the distal end of the inner shaft, the third electrode is located at the distal end of the outer shaft, and the second electrode is connected to the first electrode and the distal end of the outer shaft.
  • the inner shaft is located between the inner shaft and the outer shaft so as to cover the side surface of the inner shaft.
  • the second electrode it is possible to move the second electrode within the patient's body, particularly within a narrow tube such as a blood vessel, while the second electrode is housed within the storage sheath. Further, in use, the second electrode can be protruded from the storage sheath, thereby expanding the second electrode in the radial direction and bringing the second electrode closer to the target tissue. This makes it possible to efficiently apply energy to the cells of the target tissue, making it possible to easily cause irreversible electroporation in the cells of the target tissue.
  • the electrode part includes a first holding part that connects the inner shaft and the second electrode, and a second holding part that connects the outer shaft and the second electrode. Further, each of the first holding part and the second holding part is formed of at least one linear member, and one end of the first holding part is connected to the first electrode and the second holding part. The other end of the first holding part is connected to the second electrode, and one end of the second holding part is connected to the second electrode. The third electrode is connected to the outer shaft, and the other end of the second holding portion is connected to the second electrode.
  • the distance between the first electrode and the second electrode and the distance between the second electrode and the third electrode can be increased to widen the area in which the electric field is generated.
  • the electrode part includes a first holding part that connects the inner shaft and the second electrode, and a second holding part that connects the outer shaft and the second electrode. Further, each of the first holding part and the second holding part is formed of at least one linear member, and one end of the first holding part is located at a position lower than the position of the first electrode. It is connected to the inner shaft at a position away from the second electrode, the other end of the first holding part is connected to the second electrode, and one end of the second holding part is connected to the inner shaft.
  • the second holding portion is connected to the outer shaft at a position farther from the second electrode than the position of the third electrode, and the other end of the second holding portion is connected to the second electrode.
  • the first holding part and the second holding part can be lengthened to reduce the operational resistance when the second electrode is contracted.
  • the second electrode is configured with a wavy curve having a plurality of peaks, and the plurality of peaks include a first peak protruding toward the distal end of the inner shaft, and a first peak protruding toward the distal end of the inner shaft. a second peak protruding toward the proximal end of the inner shaft, the first peak is connected to the inner shaft via the first holding part, and the second peak is connected to the inner shaft through the first holding part.
  • two or more linear members are connected to the outer shaft through the electrical connection of the second electrode. Also serves as a cable.
  • the electrical connection state can be maintained using another wire.
  • the first DC power and the second DC power include one or more rectangular waves.
  • the rise of the waveform is steep, and it is possible to rapidly change the polarity of cells in the target tissue and shorten the time until the cells become necrotic.
  • Aspect 11 is a medical system including a catheter for pulse field ablation and a power supply section that supplies power to the catheter, wherein the catheter has a hollow and elongated cylindrical shaft, and a distal end of the shaft. and a first electrode, a second electrode, and a third electrode located in order from the distal end to the proximal end, and the power supply section includes a first electrode, a second electrode, and a The first DC power is alternately supplied between the second electrode and the third electrode, and the second DC power is alternately supplied between the second electrode and the third electrode.
  • an electric field is generated between the first electrode and the second electrode, and an electric field is generated between the second electrode and the third electrode.
  • two electric fields can be generated near the second electrode, one in which only the electric field is generated by the first electrode and the second electrode, and the other in which the electric field is generated by the second electrode and the third electrode.
  • energy can be applied for pulsed field ablation more efficiently, and irreversible electroporation can be easily caused in cells of the target tissue.
  • pulse driving between the first electrode and the second electrode and pulse driving between the second electrode and the third electrode are performed in a state that does not overlap in time. Therefore, the second electrode can be shared by pulse driving using the first electrode and pulse driving using the third electrode.
  • a method for operating a catheter is provided.
  • Aspect 12 is a pulsed field ablation method comprising: a hollow and elongated cylindrical shaft; and an electrode section in which a first electrode, a second electrode, and a third electrode are located from the distal end to the proximal end of the shaft.
  • a method of operating a catheter for use in a catheter comprising: a first step of supplying DC power including at least one rectangular wave between the first electrode and the second electrode; a second step of supplying DC power including at least one square wave between the third electrode and the third electrode, and the first step and the second step are performed alternately.
  • a second step of supplying DC power containing at least one square wave to the Energy application for pulsed field ablation can be performed more efficiently than in the form of only an electric field generated by the second electrode and the form of only an electric field generated by the second electrode and the third electrode. , it becomes possible to easily cause irreversible electroporation in cells of the target tissue.
  • Aspect 13 is that the first electrode and the third electrode have the same polarity, and the second electrode has a polarity opposite to that of the first electrode and the third electrode. , has a suspension step of suspending the supply of DC power between the first step and the second step.
  • the polarity of the first electrode and the third electrode are the same, and the polarity of the second electrode is opposite to the polarity of the first electrode and the polarity of the third electrode. Therefore, the second electrode can be shared by pulse driving using the first electrode and pulse driving using the third electrode. Furthermore, since it includes a pause step, cells can be cauterized efficiently.

Abstract

パルスフィールドアブレーションにおいて、効率良くエネルギー印加を行う。 カテーテル1は、パルスフィールドアブレーション用のカテーテルであって、中空で細長い筒状のシャフトと、前記シャフトの先端に位置する電極部40と、を備え、前記電極部40は、第1の電極と、第2の電極と、第3の電極と、を有し、前記第2の電極は、前記シャフトの長手方向において、前記第1の電極と前記第3の電極との間に位置し、前記第1の電極と前記第2の電極との間に第1の直流電力が供給され、前記第2の電極と前記第3の電極との間に第2の直流電力が供給され、前記第1の直流電力及び前記第2の直流電力が交互に供給される。

Description

カテーテル及び医療システム並びにカテーテルの操作方法
 本発明は、カテーテル及び医療システム並びにカテーテルの操作方法に関する。
 従来、特許文献1のように、パルスフィールドアブレーションを行うためのカテーテルを含む医療用システムが提案されている。
特開2020-182846号公報
 一般的に、矩形波によるエネルギー印加を効率的に行う必要がある。
 本発明の目的の一例は、パルスフィールドアブレーションにおいて、効率良くエネルギー印加を行えることにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。
 本発明の一態様は、パルスフィールドアブレーション用のカテーテルであって、中空で細長い筒状のシャフトと、前記シャフトの先端に位置する電極部40と、を備え、前記電極部40は、第1の電極と、第2の電極と、第3の電極と、を有し、前記第2の電極は、前記シャフトの長手方向において、前記第1の電極と前記第3の電極との間に位置し、前記第1の電極と前記第2の電極との間に第1の直流電力が供給され、前記第2の電極と前記第3の電極との間に第2の直流電力が供給され、前記第1の直流電力及び前記第2の直流電力が交互に供給される。
 本発明の一態様は、パルスフィールドアブレーション用のカテーテルと、前記カテーテルに電力を供給する電力供給部と、を備えた医療システムであって、前記カテーテルは、中空で細長い筒状のシャフトと、前記シャフトの先端に位置し、前記先端から基端に向かって順に位置する第1電極、第2電極及び第3電極と、を有し、前記電力供給部は、前記第1の電極と前記第2の電極との間への第1の直流電力の供給と、前記第2の電極と前記第3の電極との間への第2の直流電力の供給と、を交互に行う。
 本発明の一態様は、中空で細長い筒状のシャフトと、前記シャフトの先端から基端に向かって第1の電極、第2の電極及び第3の電極が位置する電極部と、を備える、パルスフィールドアブレーション用のカテーテルの操作方法であって、前記第1の電極と前記第2の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第1の工程と、前記第2の電極と前記第3の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第2の工程と、を含み、前記第1の工程と前記第2の工程とを交互に行う。
 本発明の上記態様によれば、第1の電極と第2の電極とで電場を発生させ、第2の電極と第3の電極とで電場を発生させる。これにより、第2の電極の近くで、2つの電場を発生させることが出来る。したがって、第1の電極と第2の電極とで発生される電場のみの形態、及び第2の電極と第3の電極とで発生される電場のみの形態に比べて、効率良くパルスフィールドアブレーションのためのエネルギー印加を行うことができ、標的組織の細胞に非可逆的な電気穿孔がより生じやすくなる。
第1実施形態における、収納シースに収納された状態の中間電極を含むカテーテルの斜視図である。 収納シースから取り出された状態の中間電極を含むカテーテルの斜視図である。 図2の中間電極を含む領域を拡大した斜視図である。 第2実施形態における、中間電極を含む領域を拡大した斜視図である。 第3実施形態における、中間電極を含む領域を拡大した斜視図である。 第4実施形態における、中間電極を含む領域を拡大した斜視図である。 第5実施形態における、中間電極、中間電極の近くでインナーシャフトに取り付けられた前側保持ワイヤ、中間電極の近くでアウターシャフトに取り付けられた後側保持ワイヤを含む領域を拡大した斜視図である。 第5実施形態における、中間電極、中間電極から離れてインナーシャフトに取り付けられた前側保持ワイヤ、中間電極から離れてアウターシャフトに取り付けられた後側保持ワイヤを含む領域を拡大した斜視図である。
 以下、第1実施形態について、図1~図3を用いて説明する。ただし、実施形態は、以下の実施形態に限られるものではない。また、一つの実施形態に記載した内容は、原則として他の実施形態にも同様に適用される。各実施形態及び各変形例は、適宜組み合わせることが出来る。
 収納シース10、アウターシャフト20、インナーシャフト30は、中空の筒状部材である。収納シース10の断面における内径が、アウターシャフト20の断面における外径よりも大きく、アウターシャフト20の断面における内径が、インナーシャフト30の断面における外径よりも大きい。収納シース10は、アウターシャフト20を覆うように位置し、アウターシャフト20は、インナーシャフト30を覆うように位置する。図1~図8では、アウターシャフト20、インナーシャフト30、ガイドワイヤ50の各々が自身以外の他の部材で覆われる領域を点線で示す。ただし、図1において、収納シース10に収納された中間電極45は実線で示す。図3~図8では、収納シース10、ガイドワイヤ50、ハブ60の図示を省略している。
 (カテーテル1)
 図1、図2に示すように、第1実施形態に係るカテーテル1は、収納シース10、シャフト(アウターシャフト20、インナーシャフト30)、電極部40、ガイドワイヤ50、ハブ60を備える。カテーテル1は、パルスフィールドアブレーションを行うために使用される。
 (収納シース10)
 収納シース10は、患者の身体内で移動するように構成される細長い管状の可撓性部材である。収納シース10の断面は、真円形、楕円形、長円形等の環状形状でもよく、正方形、長方形、菱形、台形等の四辺形状でもよく、三角形、五角形等の多角形状でもよい。また、収納シース10の断面において、角部に丸みを有する形状であってもよい。収納シース10は、滑りがよく内部が透けて見える半透明の樹脂(フッ素樹脂など)で構成される。例えば、収納シース10は、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PE(ポリエチレン)、PP(ポリプロピレン)、PI(ポリイミド)で構成される。ただし、収納シース10は、透明若しくは不透明の部材で構成されてもよい。
 (アウターシャフト20)
 アウターシャフト20は、患者の身体内で移動するように構成される細長い管状の可撓性部材である。アウターシャフト20は、収納シース10の内部を通る。アウターシャフト20の断面は、真円形、楕円形、長円形等の環状形状でもよく、正方形、長方形、菱形、台形等の四辺形状でもよく、三角形、五角形等の多角形状でもよい。また、アウターシャフト20の断面において、角部に丸みを有する形状であってもよい。アウターシャフト20の遠位端は、図2に示す展開状態において、収納シース10の遠位端から突出する。アウターシャフト20の遠位端には、後述する後電極43が配置される。また、アウターシャフト20の遠位端には、後述する後側保持ワイヤ46bを介して、中間電極45が取り付けられる。アウターシャフト20の遠位端において、最遠位端から基端に向かって、中間電極45、後側保持ワイヤ46b、後電極43の順に位置している。アウターシャフト20は、不透明の樹脂で構成される。例えば、アウターシャフト20は、ナイロン、熱可塑性ポリアミドエラストマーなどで構成される。ただし、アウターシャフト20は、透明若しくは半透明の部材で構成されてもよい。
 (インナーシャフト30)
 インナーシャフト30は、患者の身体内で移動するように構成される細長い管状の可撓性部材である。インナーシャフト30は、アウターシャフト20の内部を通る。インナーシャフト30の断面は、真円形、楕円形、長円形等の環状形状でもよく、正方形、長方形、菱形、台形等の四辺形状でもよく、三角形、五角形等の多角形状でもよい。また、インナーシャフト30の断面において、角部に丸みを有する形状であってもよい。インナーシャフト30の遠位端は、アウターシャフト20の遠位端から突出し、また、収納シース10の遠位端からも突出する。インナーシャフト30の遠位端には、後述する前電極41が配置される。また、インナーシャフト30の遠位端には、後述する前側保持ワイヤ46aを介して、中間電極45が取り付けられる。インナーシャフト30の遠位端において、最遠位端から基端に向かって、前電極41、前側保持ワイヤ46a、中間電極45の順に位置している。インナーシャフト30は、不透明の樹脂で構成される。インナーシャフト30は、例えば、PEEK(ポリエーテルエーテルケトン)、PSF(ポリサルフォン)、ナイロン、熱可塑性ポリアミドエラストマーなどで構成される。ただし、インナーシャフト30は、透明若しくは半透明の部材で構成されてもよい。
 アウターシャフト20とインナーシャフト30は、カテーテル1における、中空で長い筒状のシャフトを構成する。
 (電極部40)
 電極部40は、パルスフィールドアブレーションを行うための電極部であり、前電極(第1の電極)41、後電極(第3の電極)43、中間電極(第2の電極)45、保持部46を有する。
 (前電極41)
 前電極41は、インナーシャフト30の遠位端に位置する。前電極41は、その断面の外径が不変であり、インナーシャフト30の遠位端の側面に沿う囲繞形状を有する。前電極41は、インナーシャフト30の遠位端の外壁に位置してもよいし、内壁に位置してもよい。第1実施形態の前電極41は、所望の幅を有する帯状の電極が、その外形が環状の断面を有するインナーシャフト30の遠位端の側面を沿うように配置されて、連続した環状形状を有しているが、これに限定されない。前電極41は、少なくとも一部にスリット、スロット、ジグザグ形状、蛇行形状、パルス波形状、凸部、凹部、湾曲部を有する形状であってもよい。さらに、前電極41は、インナーシャフト30の遠位端の側面に沿わず、インナーシャフト30の遠位端の側面を外側から覆う形状であってもよい。前電極41は、インナーシャフト30の外壁若しくは内壁に配置されたケーブル(不図示)を介して、電極コネクタ65の第1正側端子(不図示)と接続される。第1実施形態の前電極41は、インナーシャフト30の遠位端の側面を覆うように配置され、インナーシャフト30の内腔を通って当該第1正側端子から延びてきたケーブルがインナーシャフト30の壁を貫通して前電極41の内側と接続する。前電極41は、例えば、白金イリジウム合金で構成される。このため、前電極41は、X線で容易に位置を確認出来る。
 (後電極43)
 後電極43は、アウターシャフト20の遠位端に位置する。後電極43は、その断面の外径が不変であり、アウターシャフト20の遠位端の側面に沿う囲繞形状を有する。後電極43は、アウターシャフト20の遠位端の外壁に位置してもよいし、内壁に位置してもよい。第1実施形態の後電極43は、所望の幅を有する帯状の電極が、その外形が環状の断面を有するアウターシャフト20の遠位端の側面を沿うように配置されて、連続した環状形状を有しているが、これに限定されない。後電極43は、少なくとも一部にスリット、スロット、ジグザグ形状、蛇行形状、パルス波波形、凸部、凹部、湾曲部を有する形状であってもよい。さらに、後電極43は、アウターシャフト20の遠位端の側面に沿わず、アウターシャフト20の遠位端の側面を外側から覆う形状であってもよい。後電極43は、アウターシャフト20の外壁若しくは内壁に配置されたケーブル(不図示)を介して、電極コネクタ65の第2正側端子(不図示)と接続される。第1実施形態の後電極43は、アウターシャフト20の遠位端の側面を覆うように配置され、アウターシャフト20の内腔を通って当該第2正側端子から延びてきたケーブルがアウターシャフト20の壁を貫通して後電極43の内側と接続する。後電極43は、例えば、白金イリジウム合金で構成される。このため、後電極43は、X線で容易に位置を確認出来る。
 後電極43は、前電極41から15~30mm離れて位置する。ただし、前電極41と後電極43の距離は、15~30mmの範囲内に限定されるものではなく、15mmよりも短くてもよいし、30mmよりも長くてもよい。
 (中間電極45)
 中間電極45は、前電極41と後電極43の間に配置される。具体的には、中間電極45は、前電極41とアウターシャフト20の遠位端との間で、インナーシャフト30の側面を覆うように位置する。中間電極45は、複数の山部を有する波状の曲線で構成される。図3に示すように、複数の山部は、インナーシャフト30の遠位端側に突出する第1山部45aと、インナーシャフト30の基端側に突出する第2山部45bを含む。第1山部45aと第2山部45bは、交互に配置される。第1実施形態では、複数の山部が、6つの第1山部45aと6つの第2山部45bを含む例を示す。展開状態のカテーテル1において、中間電極45は、アウターシャフト20の最遠位端とインナーシャフト30の最遠位端との間に位置し、第1山部45aはインナーシャフト30の最遠位端側に位置し、第2山部45bはアウターシャフト20の最遠位端側に位置する。中間電極45は、例えば、ニッケル・チタン合金、オーステナイト系ステンレス鋼で構成される。
 中間電極45は、インナーシャフト30の遠位端で、前電極41よりも後端側の側面を覆うシームレスで、且つ外径が可変の囲繞形状を有する。すなわち、中間電極45の囲繞形状は、シャフトの中心軸線を囲う形状であり、中間電極45の波状の曲線電極が拡張、収縮するため、中間電極45の外径が可変となる。シャフトの中心軸線とは、アウターシャフト20の中心軸線及びインナーシャフト30の中心軸線の少なくとも一方を示しており、アウターシャフト20の中心軸線とインナーシャフト30の中心軸線とは同一であることが好ましい。中間電極45を曲線で形成することで、血管を傷つけにくい効果がある。中間電極45の囲繞形状は、一筆書きの線で示すことができ、中間電極45が端部を有さない形状で構成される、すなわち、中間電極45がシームレスであるため、血管を傷つけにくい効果がある。ただし、中間電極45の形状は波状に限定されず、ジグザグ形状、ミアンダ形状、パルス波形状のいずれかを少なくとも一部に有する形状であってもよく、拡張、収縮が可能となる形状であればよい。インナーシャフト30の断面が真円形の場合は、中間電極45はシームレスの環状であり、インナーシャフト30の断面が楕円形、長円形、角部に丸みを有する三角形や四角形等の多角形の場合は、中間電極45は、インナーシャフト30の断面形状に沿う形状となる。
 (保持部46)
 保持部46は、前側保持ワイヤ46a(第1の保持部)と、後側保持ワイヤ46b(第2の保持部)と、を含む。前側保持ワイヤ46aは、インナーシャフト30と中間電極45とを接続する。前側保持ワイヤ46aは、少なくとも1つの線状部材で形成される。後側保持ワイヤ46bは、アウターシャフト20と中間電極45とを接続する。後側保持ワイヤ46bは、少なくとも1つの線状部材で形成される。中間電極45は、前側保持ワイヤ46aを介してインナーシャフト30に保持され、後側保持ワイヤ46bを介してアウターシャフト20に保持される。前側保持ワイヤ46aは、第1山部45aのそれぞれと、インナーシャフト30の外壁とを繋ぐ。後側保持ワイヤ46bは、第2山部45bのそれぞれと、アウターシャフト20の外壁とを繋ぐ。中間電極45の囲繞形状は、前電極41とアウターシャフト20の遠位端との間で、インナーシャフト30の側面を覆う。保持部46は、中間電極45と同じ素材で構成され、例えば、ニッケル・チタン合金、オーステナイト系ステンレス鋼で構成される。
 複数の前側保持ワイヤ46aと複数の後側保持ワイヤ46bのうち、少なくとも1つの線状部材は、中間電極45と電極コネクタ65との電気的な接続ケーブルを兼ねる。ただし、複数の前側保持ワイヤ46aと複数の後側保持ワイヤ46bのうち、複数の線状部材が、中間電極45と電極コネクタ65との電気的な接続ケーブルを兼ねるのが望ましい。この場合、当該電気的な接続ケーブルを兼ねる1つのワイヤ(線状部材)が断線しても、他のワイヤを用いることが出来、電気的な接続状態を維持することが可能となる。
 前側保持ワイヤ46aとインナーシャフト30との接続は、前電極41と中間電極45との間で行われる。後側保持ワイヤ46bとアウターシャフト20との接続は、後電極43と中間電極45との間で行われる。
 第1実施形態では、複数の前側保持ワイヤ46aと複数の後側保持ワイヤ46bのいくつかが電気的な接続ケーブルとして用いられる例を説明した。しかしながら、保持部46(前側保持ワイヤ46a、後側保持ワイヤ46b)とは別に電気的な接続ケーブルを配置してもよい。
 中間電極45の囲繞形状は、前電極41と後電極43との距離が短い時に、前側保持ワイヤ46aと後側保持ワイヤ46bとによって、拡張し、当該囲繞形状の直径が大きくなる。中間電極45の囲繞形状の直径は、インナーシャフト30の遠位端側から見て中間電極45を構成する略円形の囲繞形状の外径を意味するものとする。中間電極45の囲繞形状は、前電極41と後電極43の距離が長い時に、前側保持ワイヤ46aと後側保持ワイヤ46bとによって、収縮し、当該囲繞形状の直径が小さくなる。中間電極45は、前側保持ワイヤ46aと後側保持ワイヤ46bの少なくとも一方と、インナーシャフト30の外壁若しくは内壁に配置されたケーブル(不図示)を介して、電極コネクタ65の負側端子(不図示)と接続される。前側保持ワイヤ46aのうち、電気的な接続ケーブルを兼ねるものは、インナーシャフト30の内腔を通って当該負側端子から延びてきたケーブルと接続する。後側保持ワイヤ46bのうち、電気的な接続ケーブルを兼ねるものは、アウターシャフト20の内腔を通って当該負側端子から延びてきたケーブルと接続する。
 中間電極45が収納シース10の内部を通る時は、前電極41と後電極43との距離を長くし、中間電極45の囲繞形状を収縮させる。パルスフィールドアブレーションを行う時は、中間電極45を収納シース10の遠位端から突出させ、前電極41と後電極43との距離を短くし、中間電極45の囲繞形状を拡張させる。中間電極45の収縮及び拡張は、カテーテル1の手技者が、収納シース10、アウターシャフト20、インナーシャフト30などを操作して行う。
 (ガイドワイヤ50)
 ガイドワイヤ50は、患者の身体内で移動するように構成される細長い棒状の可撓性部材である。ガイドワイヤ50は、インナーシャフト30の内部を通る。ガイドワイヤの遠位端は、インナーシャフト30の遠位端から突出し、また、アウターシャフト20及び収納シース10の遠位端からも突出する。
 (ハブ60)
 ハブ60は、ワイヤーポート61、止血弁62、バルーンポート63、電極コネクタ65を有する。インナーシャフト30とガイドワイヤ50は、ワイヤーポート61を介して挿入される。ワイヤーポート61とインナーシャフト30の間には止血弁62が配置される。後述するバルーン70には、バルーンポート63を介して生理食塩液などの液体が供給される。電極コネクタ65には、着脱可能な状態で、電力供給装置90が接続される。
 バルーンポート63を介してバルーン70に供給される液体は、生理食塩水に限るものではなく、例えば、生理食塩水で希釈した造影剤などであってもよい。また、バルーンポート63を介してバルーン70に供給されるのは、液体に限るものではなく、空気などの気体であってもよい。
 バルーンポート63を介してバルーン70に液体が供給される場合には、流路抵抗が高く、バルーン70への液体の出し入れに必要とする時間が長くなるが、圧縮されにくいので中間電極45を拡張しやすい。バルーンポート63を介してバルーン70に気体が供給される場合には、圧縮されやすいので中間電極45の拡張の補助が十分に行えない可能性があるが、流路抵抗が低く、バルーン70への気体の出し入れに必要とする時間を短く出来る。
 また、バルーンポート63を介してバルーン70に供給する媒体として、液体の亜酸化窒素などが用いられてもよい。この場合には、バルーン70を冷凍アブレーションに用いることが出来る。
 (電力供給装置90)
 電力供給装置90は、RF発生器を含み、矩形波の電力をカテーテル1に供給する。電力供給装置90の第1正側電極は、電極コネクタ65の第1正側端子を介して、前電極41と電気的に接続される。電力供給装置90の第2正側電極は、電極コネクタ65の第2正側端子を介して、後電極43と電気的に接続される。電力供給装置90の負側電極は、電極コネクタ65の負側端子を介して、中間電極45と電気的に接続される。すなわち、前電極41及後電極43は、同一の極性を有し、中間電極45は、前電極41及び後電極43とは逆の極性を有する。
 電力供給装置90は、前電極41と中間電極45の間に矩形波を含む直流電力(第1直流電力)を供給する。電力供給装置90は、後電極43と中間電極45の間に矩形波を含む直流電力(第2直流電力)を供給する。具体的には、第1工程では、正極である前電極41と負極である中間電極45との間に矩形波を含む直流電圧を短時間印加する。第2工程では、正極である後電極43と負極である中間電極45との間に矩形波を含む直流電圧を短時間印加する。この第1工程と第2工程とを交互に繰り返す。カテーテル1と電力供給装置(特許請求の範囲の電力供給部に相当)90とで、第1実施形態の医療システムが構成される。
 電力供給装置90による第1直流電力の供給と第2直流電力の供給とは、時間的に重複しない(非重複である)。具体的には、前電極41と中間電極45の間に1以上の矩形波を含む第1直流電力が供給された後、前電極41と中間電極45の間に次の矩形波を含む第1直流電力が供給されるまでに、電力供給装置90は、後電極43と中間電極45の間に1以上の矩形波を含む第2直流電力を供給する。また、後電極43と中間電極45の間に1以上の矩形波を含む第2直流電力が供給された後、後電極43と中間電極45の間に次の矩形波を含む第2直流電力が供給されるまでに、電力供給装置90は、前電極41と中間電極45の間に1以上の矩形波を含む第1直流電力を供給する。
 例えば、1つの矩形波だけを含む第1直流電流の供給と、1つの矩形波だけを含む第2直流電流の供給が交互に行われる形態が考えられる。また、複数の矩形波を含む第1直流電流の供給と、当該複数の矩形波を含む第2直流電流の供給が交互に行われる形態が考えられる。複数の矩形波を含む第1直流電流の供給と、当該複数の矩形波を含む第2直流電流の供給が交互に行われる形態の方が、電力供給の切り替えを行うまでに、複数の矩形波により、細胞の極性を一方向に向かわせやすい。このため、1つの矩形波だけを含む第1直流電流の供給と、1つの矩形波だけを含む第2直流電流の供給が交互に行われる形態と比べて、細胞を壊死させるまでの時間を短くすることが可能になる。第1工程と第2工程の間に、電力供給を行わない休止工程を設けるのが望ましい。当該休止工程を適切に設定することで、細胞の焼灼を効率良く行うことが出来る。
 (パルスフィールドアブレーションの手順例)
 第1実施形態のカテーテル1を使って、パルスフィールドアブレーションを行う手順例を説明する。ただし、カテーテル1を使ってパルスフィールドアブレーションを行う手順はこれに限るものではない。また、パルスフィールドアブレーションを行う標的組織は、肺静脈開口部に限るものではなく、他の部位であってもよい。
 手技者が、収納シース10を、大腿静脈など末梢静脈を通って導入し、右心房内に進める。収納シース10は、卵円窩に切開部を通って、収納シース10の遠位端が左心房内に延在させる。このとき、アウターシャフト20の遠位端、及び中間電極45は、収納シース10の内側に収納される。収納シース10の遠位端を右心房内に進める際に、ガイドワイヤ50が用いられてもよい。収納シース10は、動脈系を通って左心房内に導入されてもよい。
 手技者が、インナーシャフト30の遠位端を肺静脈開口部の近傍に位置させる。ただし、焼灼対象領域の近くに中間電極45が位置していればよく、当該焼灼対象領域にカテーテル1が接触している必要はない。インナーシャフト30の遠位端を肺静脈開口部の近傍に位置させる際に、ガイドワイヤ50が用いられてもよい。
 手技者が、インナーシャフト30を移動させ、インナーシャフト30の遠位端を、収納シース10の遠位端から離す。また、手技者が、インナーシャフト30を更に移動させ、中間電極45を収納シース10から突出させる。これにより、中間電極45が拡張可能な状態になる。
 手技者が、アウターシャフト20とインナーシャフト30の少なくとも一方を移動させ、インナーシャフト30の遠位端をアウターシャフト20の遠位端に近づける。これにより、前側保持ワイヤ46aの中間電極45と接する領域、及び後側保持ワイヤ46bの中間電極45と接する領域が、径方向に広がり、中間電極45が拡張する。
 手技者が、電力供給装置90を駆動し、第1直流電力を前電極41と中間電極45に供給すること(第1の工程)と、第2直流電力を後電極43と中間電極45に供給すること(第2の工程)とを交互に行う。第1直流電力に含まれる矩形波により、前電極41と中間電極45の周囲に電場が発生する。第2直流電力に含まれる矩形波により、後電極43と中間電極45の周囲に電場が発生する。これらの電場により、中間電極45の近傍の標的組織にエネルギーが印加され、標的組織の細胞に非可逆的な電気穿孔(electroporation)が引き起こされる。肺静脈開口部の周囲で非可逆的な電気穿孔を引き起こした場合には、肺静脈開口部内で異常電気信号が発生しても、当該異常電気信号が心房に伝わらず、心房細動の発生を抑制することが可能になる。
 (3つの電極を用いてパルスフィールドアブレーションを行うことの効果)
 前電極41と中間電極45とで電場を発生させ、後電極43と中間電極45とで電場を発生させる。すなわち、前電極41と中間電極45とによる電場と、後電極43と中間電極45とによる電場と、を交互に発生させる。これにより、中間電極45の近くで、2つの電場を発生させることが出来、前電極41と中間電極45とで発生される電場のみの形態、及び後電極43と中間電極45とで発生される電場のみの形態に比べて、効率良くパルスフィールドアブレーションのためのエネルギー印加を行うことができる。したがって、さらに標的組織の細胞に非可逆的な電気穿孔を生じやすくすることが可能となる。
 また、時間的に重複しない状態で、前電極41と中間電極45との間のパルス駆動と、後電極43と中間電極45との間のパルス駆動とが行われる。このため、前電極41を使ったパルス駆動と、後電極43を使ったパルス駆動とで、中間電極45を共用できる。
 (線で構成された中間電極45を用いることの効果)
 中間電極45の囲繞形状が線で構成されるので、施術中に中間電極45が血液の流れを妨げない。このため、施術中に血液の流れを妨げるような構成の電極を用いる形態に比べて、患者の身体的負担を軽減出来る。
 (外径が可変の中間電極45を用いることの効果)
 不使用時は、中間電極45の囲繞形状の外径を小さくして、収納シース10に中間電極45を収納した状態で、血管などの細い管の中を移動させることが出来る。使用時は、収納シース10による中間電極45の収納状態を解除し、中間電極45の囲繞形状の外径を大きくして、中間電極45を径方向に拡張する。これにより、中間電極45を拡張させない形態に比べて、前電極41との間で発生する電場、及び後電極43との間で発生する電場の範囲を広くし、標的組織の細胞に対して、非可逆的な電気穿孔を生じやすくすることが可能となる。
 (前側保持ワイヤ46aなどを中間電極45の近くに配置することの効果)
 前側保持ワイヤ46aは、前電極41よりも中間電極45に近い位置で、インナーシャフト30と接続される。後側保持ワイヤ46bは、後電極43よりも中間電極45に近い位置で、アウターシャフト20と接続される。このため、前電極41と中間電極45との間の距離、及び後電極43と中間電極45との間の距離を長くして、電場が発生する領域を広く出来る。
 (電力供給の波形の応用例)
 第1実施形態では、第1直流電力及び第2直流電力が矩形波(四角形状のパルス波)を含む例を説明した。第1直流電力及び第2直流電力は、矩形波が好ましいが、矩形波と異なる他の波形を含んでもよい。例えば、第1直流電力及び第2直流電力は、三角形状、のこぎり形状、半楕円形状、半円形状等のパルス波を含んでもよい。ただし、半楕円形状、半円形状のパルス波よりは、四角形状、三角形状、のこぎり形状のパルス波の方が、波形の立ち上がりが急峻であり、標的組織の細胞における極性を急激に変化させて、当該細胞が壊死するまでの時間を短くすることが可能になる。
 (バルーン70を用いた応用例、第2実施形態)
 次に、第2実施形態について説明する。第1実施形態では、前側保持ワイヤ46aと後側保持ワイヤ46bを用いて、中間電極45を拡張する例を説明した。第2実施形態では、さらにバルーン70を用いて、中間電極45を拡張する。以下、第1実施形態と異なる点を中心に説明する。図4に示すように、第2実施形態に係るカテーテル1は、収納シース10、アウターシャフト20、インナーシャフト30、電極部40、ガイドワイヤ50、ハブ60、バルーン(拡張式バルーン)70を備える。バルーン70は、例えば、合成ラテックスゴムなどで構成される。
 バルーン70は、中間電極45の囲繞形状の内側に配置される。すなわち、バルーン70は、中間電極45とシャフト(インナーシャフト30)との間に位置する。バルーン70は、アウターシャフト20とインナーシャフト30の間の空間を介して、バルーンポート63と連通する。不使用時は、バルーン70がしぼんだ状態にされる。使用時は、バルーン70に液体若しくは気体が注入され、バルーン70が膨らんだ状態にされる。バルーン70が膨らむことにより、中間電極45が拡張する。また、中間電極45が拡張した後は、バルーン70がしぼんだ状態にされてもよい。この場合には、バルーン70の膨張が一時的なもので済み、血流の淀みを発生させにくい。
 (バルーン70を中間電極45の内側に配置したことの効果)
 バルーン70が中間電極45の内側に配置されることで、バルーン70を配置せずに、前側保持ワイヤ46aと後側保持ワイヤ46bとだけで中間電極45を拡張する形態に比べて、中間電極45を拡張しやすく、中間電極45を標的細胞の近傍に近づけやすい。また、前側保持ワイヤ46aなどに不具合が生じても、バルーン70を拡張することにより、中間電極45を拡張させることが出来る。すなわち、バルーン70により、中間電極45の拡張などを補助出来る。また、バルーン70があることで、中間電極45の内側よりも中間電極45の外側に電場が形成されやすくなる。このため、バルーン70が無い形態に比べて、中間電極45の近傍に位置する標的組織に非可逆的な電気穿孔を生じやすくすることが可能となる。
 第2実施形態では、バルーン70が、膨張時に中間電極45を支持し、中間電極45の拡張を補助するために使用される例を説明した。しかしながら、中間電極45の拡張及び収縮の両方を補助するため、中間電極45の少なくとも一部が、バルーン70と常に接続されていてもよい。この場合には、バルーン70がしぼむ時に、連動して中間電極45を収縮させることが出来る。すなわち、バルーン70の膨張及び収縮に伴って、中間電極45の膨張及び収縮が行われる。
 (バスケット80を用いた応用例、第3実施形態)
 次に、第3実施形態について説明する。第1実施形態では、前側保持ワイヤ46aと後側保持ワイヤ46bを用いて、中間電極45を拡張する例を説明した。第2実施形態では、さらにバルーン70を用いて、中間電極45を拡張する例を説明した。第3実施形態では、バルーン70に代えて、バスケット80を用いて、中間電極45を拡張する。以下、第1実施形態と異なる点を中心に説明する。図5に示すように、第3実施形態に係るカテーテル1は、収納シース10、アウターシャフト20、インナーシャフト30、電極部40、ガイドワイヤ50、ハブ60、バスケット(バスケットワイヤ)80を備える。バスケット80は、複数の線状部材で形成される。バスケット80の線状部材は、例えば、ニッケル・チタン合金、オーステナイト系ステンレス鋼で構成される。
 バスケット80は、中間電極45の囲繞形状の内側に配置される。すなわち、バスケット80は、中間電極45とシャフト(インナーシャフト30)との間に位置する。バスケット80の前側は、インナーシャフト30の遠位端と接続する。バスケット80の後側は、アウターシャフト20の遠位端と接続する。
 バスケット80とインナーシャフト30の接続は、前電極41よりも最遠位端側で行われる。バスケット80とアウターシャフト20の接続は、後電極43よりも基端側で行われる。
 バスケット80は、前電極41と後電極43の距離が短い時に、バスケット80を形成する複数の線状部材が曲線状に撓むことによって、膨らみ、バスケット80の直径が大きくなる。バスケット80は、前電極41と後電極43の距離が長い時に、バスケット80を形成する複数の線状部材が直線状に延びることによって、収縮し、バスケット80の直径が小さくなる。
 不使用時は、バスケット80は収縮した状態にされる。使用時は、バスケット80が膨らんだ状態にされる。バスケット80が膨らむことにより、中間電極45が拡張する。すなわち、バスケット80は、中間電極45の拡張に用いられる。
 (バスケット80を中間電極45の内側に配置したことの効果)
 バスケット80が中間電極45の内側に配置されることで、バスケット80を配置せずに、前側保持ワイヤ46aと後側保持ワイヤ46bとだけで中間電極45を拡張する形態に比べて、中間電極45を拡張しやすく、中間電極45を標的細胞の近傍に近づけやすい。また、前側保持ワイヤ46aなどに不具合が生じても、バスケット80を拡張することにより、中間電極45を拡張させることが出来る。すなわち、バスケット80により、中間電極45の拡張などを補助出来る。また、バスケット80を構成する複数の線状部材の間に空きスペースがあるため、血流の淀みを発生させにくい。
 第3実施形態では、バスケット80が、膨張時に中間電極45を支持し、中間電極45の拡張を補助するために使用される例を説明した。しかしながら、中間電極45の拡張及び収縮の両方を補助するため、中間電極45の少なくとも一部が、バスケット80と絶縁部材を介して常に接続されていてもよい。この場合には、バスケット80が収縮する時に、連動して中間電極45を収縮させることが出来る。すなわち、バスケット80の膨張及び収縮に伴って、中間電極45の膨張及び収縮が行われる。
 (前側保持ワイヤ46aなどの配置の応用例、第4実施形態)
 次に、第4実施形態について説明する。第1実施形態では、以下の形態の例を説明した。前側保持ワイヤ46aの一端は、前電極41よりも中間電極45に近い位置、すなわち、前電極41と中間電極45との間で、インナーシャフト30に接続される。前側保持ワイヤ46aの他端は、中間電極45に接続される。後側保持ワイヤ46bの一端は、後電極43よりも中間電極45に近い位置、すなわち、後電極43と中間電極45との間で、アウターシャフト20に接続される。後側保持ワイヤ46bの他端は、中間電極45に接続される。
 しかしながら、前側保持ワイヤ46aのインナーシャフト30への取付位置及び後側保持ワイヤ46bのアウターシャフト20への取付位置は、これに限るものではない。図6に示すように、第4実施形態では、前側保持ワイヤ46aの一端は、前電極41の位置よりも中間電極45から離れた位置、すなわち、インナーシャフト30の最遠位端と前電極41との間で、インナーシャフト30に接続される。前側保持ワイヤ46aの他端は、中間電極45に接続される。後側保持ワイヤ46bの一端は、後電極43の位置よりも中間電極45から離れた位置、すなわち、後電極43よりもアウターシャフト20の基端側で、アウターシャフト20に接続される。後側保持ワイヤ46bの他端は、中間電極45に接続される。
 (前側保持ワイヤ46aなどを中間電極45から離れて配置することの効果)
 前側保持ワイヤ46a及び後側保持ワイヤ46bを長くして、中間電極45の収縮させる際の動作抵抗を小さく出来る。
 (山部の数の応用例、第5実施形態)
 次に、第5実施形態について説明する。第1実施形態では、中間電極45の複数の山部が、6つの第1山部45aと6つの第2山部45bを含む例を説明した。しかしながら、山部の数はこれに限るものではない。例えば、図7、図8に示すように、第5実施形態では、中間電極45の複数の山部が、8つの第1山部45aと8つの第2山部45bを含む。
 (山部の数を多くすることの効果)
 山部の数を多くすることで、血管形状に沿った中間電極45の拡張を行いやすくなる。また、拡張する際に中間電極45の各部に均等に力がかかりやすい。ただし、山部の数を多くすると、中間電極45を構成する線を細くすることが難しくなる可能性がある。
 (山部の数を少なくすることの効果)
 山部の数を少なくすることで、小さい力で中間電極45の拡張を行いやすくなる。ただし、山部の数を少なくすると、扁平化した血管に沿うことが難しくなる可能性がある。
 また、第1山部45aの数、及び第2山部45bの数は、いずれも偶数に設定されるのが望ましい。第1山部45aの数、及び第2山部45bの数を奇数に設定する形態に比べて、中間電極45を作りやすく出来る。また、第1山部45aの数、及び第2山部45bの数を奇数に設定する形態に比べて、中間電極45をバランスよく拡張させやすく出来る。第1山部45aの数、及び第2山部45bの数を奇数に設定する形態に比べて、前側保持ワイヤ46a及び後側保持ワイヤ46bで中間電極45を形を崩さずに収縮させやすく出来る。
 第1山部45aを構成する山部のそれぞれに対して、1つの前側保持ワイヤ46aが接続され、第2山部45bを構成する山部のそれぞれに対して、1つの後側保持ワイヤ46bが接続される。ただし、1つの前側保持ワイヤ46aが、第1山部45aを構成する複数の山部に接続されてもよい。
 (正極と負極の応用例)
 第1実施形態~第5実施形態では、前電極41と後電極43が正極として用いられ、中間電極45が負極として用いられる例を説明した。しかしながら、前電極41と後電極43が負極として用いられ、中間電極45が正極として用いられてもよい。
 (中間電極45の形状の応用例)
 第1実施形態~第5実施形態では、中間電極45が、ステントを構成する複数のリングの1つのように、拡張及び収縮が可能な囲繞形状を有する例を説明した。しかしながら、中間電極45は、外径が不変であり、インナーシャフト30若しくはアウターシャフト20の側面を覆う囲繞形状を有してもよい。この場合でも、3つの電極を用いてパルスフィールドアブレーションを行うことの効果が得られる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態及びその変形は、発明の範囲及び要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 本明細書によれば、以下の態様のカテーテルが提供される。
 (態様1)
 態様1は、パルスフィールドアブレーション用のカテーテルであって、中空で細長い筒状のシャフトと、前記シャフトの先端に位置する電極部と、を備え、前記電極部は、第1の電極と、第2の電極と、第3の電極と、を有し、前記第2の電極は、前記シャフトの長手方向において、前記第1の電極と前記第3の電極との間に位置し、前記第1の電極と前記第2の電極との間に第1の直流電力が供給され、前記第2の電極と前記第3の電極との間に第2の直流電力が供給され、前記第1の直流電力及び前記第2の直流電力が交互に供給される。
 上述の態様によれば、第1の電極と第2の電極とで電場を発生させ、第2の電極と第3の電極とで電場を発生させる。これにより、第2の電極の近くで、2つの電場を発生させることが出来る。したがって、第1の電極と第2の電極とで発生される電場のみの形態、及び第2の電極と第3の電極とで発生される電場のみの形態に比べて、効率良くパルスフィールドアブレーションのためのエネルギー印加を行うことができ、標的組織の細胞に非可逆的な電気穿孔がより生じやすくなる。また、時間的に重複しない状態で、第1の電極と第2の電極との間のパルス駆動と、第2の電極と第3の電極との間のパルス駆動とが行われる。このため、第1の電極を使ったパルス駆動と、第3の電極を使ったパルス駆動とで、第2の電極を共用できる。
 (態様2)
 態様2では、前記第2の電極は、前記シャフトの中心軸線を囲う囲繞形状を有し、その外径は可変である。
 上述の態様によれば、第2の電極を拡張させない形態に比べて、第1の電極との間で発生する電場、及び第3の電極との間で発生する電場の範囲を広くし、標的組織の細胞に対して、非可逆的な電気穿孔を生じやすくすることが可能となる。
 (態様3)
 態様3では、前記囲繞形状は、シームレスである。
 上述の態様によれば、第2の電極が端部を有する形態と比べて、血管を傷つけにくい。血管を傷つけにくい
 (態様4)
 態様4は、前記第2の電極と前記シャフトとの間に位置するバスケットを、更に備え、前記バスケットは、複数の線状部材で形成され、前記第2の電極の拡張を補助する。
 上述の態様によれば、バスケットにより、第2の電極の拡張などを補助出来る。また、バスケットを構成する複数の線状部材の間に空きスペースがあるため、血流の淀みを発生させにくい。
 (態様5)
 態様5は、前記第2の電極と前記シャフトとの間に位置するバルーンを、更に備え、前記バルーンは、前記第2の電極の拡張を補助する。
 上述の態様によれば、バルーンにより、第2の電極の拡張などを補助出来る。
 また、バルーンがあることで、第2の電極の内側よりも第2の電極の外側に電場が形成されやすくなる。このため、バルーンが無い形態に比べて、第2の電極の近傍に位置する標的組織に非可逆的な電気穿孔を生じやすくすることが可能となる。
 (態様6)
 態様6は、前記シャフトを収納する収納シースを更に備え、前記シャフトは、前記収納シースの内部を通るアウターシャフトと、前記アウターシャフトの内部を通るインナーシャフトと、を有し、前記第1の電極は前記インナーシャフトの遠位端に位置し、前記第3の電極は前記アウターシャフトの遠位端に位置し、前記第2の電極は、前記第1の電極と前記アウターシャフトの遠位端との間で、前記インナーシャフトの側面を覆うように位置する。
 上述の態様によれば、第2の電極を収納シース内に収納した状態で患者の身体内、特に、血管などの細い管の中を移動させることが出来る。さらに、使用時は、第2の電極を収納シースから突出させることで、第2の電極を径方向に拡張させ、第2の電極を標的組織に近づけることが出来る。これにより、標的組織の細胞に対して、効率的なエネルギー印加が可能となり、標的組織の細胞に非可逆的な電気穿孔を生じやすくすることが可能となる。
 (態様7)
 態様7では、前記電極部は、前記インナーシャフトと前記第2の電極とを接続する第1の保持部と、前記アウターシャフトと前記第2の電極とを接続する第2の保持部と、を更に有し、前記第1の保持部及び前記第2の保持部の各々は、少なくとも1つの線状部材で形成され、前記第1の保持部の一端は、前記第1の電極と前記第2の電極との間で、前記インナーシャフトに接続され、前記第1の保持部の他端は、前記第2の電極に接続され、前記第2の保持部の一端は、前記第2の電極と前記第3の電極との間で、前記アウターシャフトに接続され、前記第2の保持部の他端は、前記第2の電極に接続されている。
 上述の態様によれば、第1の電極と第2の電極との間の距離、及び第2の電極と第3の電極との間の距離を長くして、電場が発生する領域を広く出来る。
 (態様8)
 態様8では、前記電極部は、前記インナーシャフトと前記第2の電極とを接続する第1の保持部と、前記アウターシャフトと前記第2の電極とを接続する第2の保持部と、を更に有し、前記第1の保持部及び前記第2の保持部の各々は、少なくとも1つの線状部材で形成され、前記第1の保持部の一端は、前記第1の電極の位置よりも前記第2の電極から離れた位置で、前記インナーシャフトに接続され、前記第1の保持部の他端は、前記第2の電極に接続され、前記第2の保持部の一端は、前記第3の電極の位置よりも前記第2の電極から離れた位置で、前記アウターシャフトに接続され、前記第2の保持部の他端は、前記第2の電極に接続されている。
 上述の態様によれば、第1の保持部及び第2の保持部を長くして、第2の電極の収縮させる際の動作抵抗を小さく出来る。
 (態様9)
 態様9では、前記第2の電極は、複数の山部を有する波状の曲線で構成され、前記複数の山部は、前記インナーシャフトの遠位端側に突出する第1山部と、インナーシャフトの基端側に突出する第2山部とを有し、前記第1山部は、第1の保持部を介して、前記インナーシャフトと接続され、前記第2山部は、第2の保持部を介して、前記アウターシャフトと接続され、複数の前記第1の保持部と複数の前記第2の保持部のうち、二以上の線状部材が、前記第2の電極の電気的な接続ケーブルを兼ねる。
 上述の態様によれば、当該電気的な接続ケーブルとして用いられる1つのワイヤ(線状部材)が断線しても、他のワイヤを使って電気的な接続状態を維持することが出来る。
 (態様10)
 態様10では、前記第1直流電力及び前記第2直流電力は、1以上の矩形波を含む。
 上述の態様によれば、波形の立ち上がりが急峻であり、標的組織の細胞における極性を急激に変化させて、当該細胞が壊死するまでの時間を短くすることが可能になる。
 本明細書によれば、以下の態様の医療システムが提供される。
 態様11は、パルスフィールドアブレーション用のカテーテルと、前記カテーテルに電力を供給する電力供給部と、を備えた医療システムであって、前記カテーテルは、中空で細長い筒状のシャフトと、前記シャフトの先端に位置し、前記先端から基端に向かって順に位置する第1の電極、第2の電極及び第3の電極と、を有し、前記電力供給部は、前記第1の電極と前記第2の電極との間への第1の直流電力の供給と、前記第2の電極と前記第3の電極との間への第2の直流電力の供給と、を交互に行う。
 上述の態様によれば、第1の電極と第2の電極とで電場を発生させ、第2の電極と第3の電極とで電場を発生させる。これにより、第2の電極の近くで、2つの電場を発生させることが出来、第1の電極と第2の電極とで発生される電場のみの形態、及び第2の電極と第3の電極とで発生される電場のみの形態に比べて、効率良くパルスフィールドアブレーションのためのエネルギー印加を行うことができ、標的組織の細胞に非可逆的な電気穿孔を引き起こしやすくできる。また、時間的に重複しない状態で、第1の電極と第2の電極との間のパルス駆動と、第2の電極と第3の電極との間のパルス駆動とが行われる。このため、第1の電極を使ったパルス駆動と、第3の電極を使ったパルス駆動とで、第2の電極を共用できる。
 本明細書によれば、以下の態様のカテーテルの操作方法が提供される。
 (態様12)
 態様12は、中空で細長い筒状のシャフトと、前記シャフトの先端から基端に向かって第1の電極、第2の電極及び第3の電極が位置する電極部と、を備える、パルスフィールドアブレーション用のカテーテルの操作方法であって、前記第1の電極と前記第2の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第1の工程と、前記第2の電極と前記第3の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第2の工程と、を含み、前記第1の工程と前記第2の工程とを交互に行う。
 上述の態様によれば、第1の電極と第2の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第1の工程と、第2の電極と第3の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第2の工程と、を交互に行うため、第2の電極の近くで、2つの電場を発生させることが出来、第1の電極と第2の電極とで発生される電場のみの形態、及び第2の電極と第3の電極とで発生される電場のみの形態に比べて、効率良くパルスフィールドアブレーションのためのエネルギー印加を行うことができ、標的組織の細胞に非可逆的な電気穿孔を生じやすくすることが可能となる。
 (態様13)
 態様13は、前記第1の電極及び前記第3の電極は、同一の極性を有し、前記第2の電極は、前記第1の電極及び前記第3の電極とは逆の極性を有し、前記第1の工程と前記第2の工程との間に直流電力の供給を休止する休止工程を有する。
 上述の態様によれば、第1の電極と第3の電極との極性が同一であり、第2の電極の極性が第1の電極の極性と第3の電極の極性とは逆の極性であるため、第1の電極を使ったパルス駆動と、第3の電極を使ったパルス駆動とで、第2の電極を共用できる。さらに、休止工程を有するため、細胞の焼灼を効率良く行うことが出来る。
 1 カテーテル、 10 収納シース、 20 アウターシャフト、 30 インナーシャフト、 40 電極部、 41 前電極、 43 後電極、 45 中間電極、 45a 第1山部、 45b 第2山部、 46 保持部、 46a 前側保持ワイヤ、 46b 後側保持ワイヤ、 50 ガイドワイヤ、 60 ハブ、 61 ワイヤーポート(ワイヤールーメン)、 62 止血弁、 63 バルーンポート(バルーンルーメン)、 65 電極コネクタ、 70 バルーン、 80 バスケット、90 電力供給装置
 

Claims (12)

  1.  パルスフィールドアブレーション用のカテーテルであって、
     中空で細長い筒状のシャフトと、
     前記シャフトの先端に位置する電極部と、を備え、
     前記電極部は、第1の電極と、第2の電極と、第3の電極と、を有し、
     前記第2の電極は、前記シャフトの長手方向において、前記第1の電極と前記第3の電極との間に位置し、
     前記第1の電極と前記第2の電極との間に第1の直流電力が供給され、前記第2の電極と前記第3の電極との間に第2の直流電力が供給され、
     前記第1の直流電力及び前記第2の直流電力が交互に供給される、カテーテル。
  2.  前記第2の電極は、前記シャフトの中心軸線を囲う囲繞形状を有し、その外径は可変である、
     請求項1に記載のカテーテル。
  3.  前記囲繞形状は、シームレスである、
     請求項2に記載のカテーテル。
  4.  前記第2の電極と前記シャフトとの間に位置するバスケットを、更に備え、
     前記バスケットは、複数の線状部材で形成され、前記第2の電極の拡張を補助する、
     請求項2に記載のカテーテル。
  5.  前記第2の電極と前記シャフトとの間に位置するバルーンを、更に備え、
     前記バルーンは、前記第2の電極の拡張を補助する、
     請求項2に記載のカテーテル。
  6.  前記シャフトを収納する収納シースを更に備え、
     前記シャフトは、前記収納シースの内部を通るアウターシャフトと、前記アウターシャフトの内部を通るインナーシャフトと、を有し、
     前記第1の電極は前記インナーシャフトの遠位端に位置し、
     前記第3の電極は前記アウターシャフトの遠位端に位置し、
     前記第2の電極は、前記第1の電極と前記アウターシャフトの遠位端との間で、前記インナーシャフトの側面を覆うように位置する、
     請求項1から請求項5のいずれか一項に記載のカテーテル。
  7.  前記電極部は、前記インナーシャフトと前記第2の電極とを接続する第1の保持部と、前記アウターシャフトと前記第2の電極とを接続する第2の保持部と、を更に有し、
     前記第1の保持部及び前記第2の保持部の各々は、少なくとも1つの線状部材で形成され、
     前記第1の保持部の一端は、前記第1の電極と前記第2の電極との間で、前記インナーシャフトに接続され、
     前記第1の保持部の他端は、前記第2の電極に接続され、
     前記第2の保持部の一端は、前記第2の電極と前記第3の電極との間で、前記アウターシャフトに接続され、
     前記第2の保持部の他端は、前記第2の電極に接続されている、
     請求項6に記載のカテーテル。
  8.  前記電極部は、前記インナーシャフトと前記第2の電極とを接続する第1の保持部と、前記アウターシャフトと前記第2の電極とを接続する第2の保持部と、を更に有し、
     前記第1の保持部及び前記第2の保持部の各々は、少なくとも1つの線状部材で形成され、
     前記第1の保持部の一端は、前記第1の電極の位置よりも前記第2の電極から離れた位置で、前記インナーシャフトに接続され、
     前記第1の保持部の他端は、前記第2の電極に接続され、
     前記第2の保持部の一端は、前記第3の電極の位置よりも前記第2の電極から離れた位置で、前記アウターシャフトに接続され、
     前記第2の保持部の他端は、前記第2の電極に接続されている、
     請求項6に記載のカテーテル。
  9.  前記第2の電極は、複数の山部を有する波状の曲線で構成され、
     前記複数の山部は、前記インナーシャフトの遠位端側に突出する第1山部と、インナーシャフトの基端側に突出する第2山部とを有し、
     前記第1山部は、第1の保持部を介して、前記インナーシャフトと接続され、
     前記第2山部は、第2の保持部を介して、前記アウターシャフトと接続され、
     複数の前記第1の保持部と複数の前記第2の保持部のうち、二以上の線状部材が、前記第2の電極の電気的な接続ケーブルを兼ねる、
     請求項6に記載のカテーテル。
  10.  前記第1直流電力及び前記第2直流電力は、1以上の矩形波を含む、
     請求項1から5のいずれか一項に記載のカテーテル。
  11.  パルスフィールドアブレーション用のカテーテルと、前記カテーテルに電力を供給する電力供給部と、を備えた医療システムであって、
     前記カテーテルは、
     中空で細長い筒状のシャフトと、
     前記シャフトの先端に位置し、前記先端から基端に向かって順に位置する第1の電極、第2の電極及び第3の電極と、を有し、
     前記電力供給部は、前記第1の電極と前記第2の電極との間への第1の直流電力の供給と、前記第2の電極と前記第3の電極との間への第2の直流電力の供給と、を交互に行う、
     医療システム
  12.  中空で細長い筒状のシャフトと、前記シャフトの先端から基端に向かって第1の電極、第2の電極及び第3の電極が位置する電極部と、を備える、パルスフィールドアブレーション用のカテーテルの操作方法であって、
     前記第1の電極と前記第2の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第1の工程と、
     前記第2の電極と前記第3の電極との間に少なくとも1つの矩形波を含む直流電力を供給する第2の工程と、を含み、
     前記第1の工程と前記第2の工程とを交互に行う、カテーテルの操作方法。
PCT/JP2023/013772 2022-07-26 2023-04-03 カテーテル及び医療システム並びにカテーテルの操作方法 WO2024024173A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022118404 2022-07-26
JP2022-118404 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024173A1 true WO2024024173A1 (ja) 2024-02-01

Family

ID=89705900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013772 WO2024024173A1 (ja) 2022-07-26 2023-04-03 カテーテル及び医療システム並びにカテーテルの操作方法

Country Status (1)

Country Link
WO (1) WO2024024173A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069573A1 (en) * 2001-10-09 2003-04-10 Kadhiresan Veerichetty A. RF ablation apparatus and method using amplitude control
US20170065343A1 (en) * 2014-06-12 2017-03-09 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
JP2020533050A (ja) * 2017-09-12 2020-11-19 ファラパルス,インコーポレイテッド 心室フォーカルアブレーションのためのシステム、装置、及び方法
JP2021171650A (ja) * 2020-04-22 2021-11-01 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. アクセス困難領域のアブレーション
JP2021178184A (ja) * 2016-12-15 2021-11-18 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 肺静脈隔離バルーンカテーテル
JP2022017174A (ja) * 2020-07-13 2022-01-25 バイオセンス・ウエブスター・(イスラエル)・リミテッド 不可逆的エレクトロポレーション(ire)中における電極対の連続的活性化
JP2022033039A (ja) * 2020-08-13 2022-02-25 バイオセンス・ウエブスター・(イスラエル)・リミテッド 短絡した電極群間の双極アブレーションエネルギーの印加

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069573A1 (en) * 2001-10-09 2003-04-10 Kadhiresan Veerichetty A. RF ablation apparatus and method using amplitude control
US20170065343A1 (en) * 2014-06-12 2017-03-09 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
JP2021178184A (ja) * 2016-12-15 2021-11-18 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 肺静脈隔離バルーンカテーテル
JP2020533050A (ja) * 2017-09-12 2020-11-19 ファラパルス,インコーポレイテッド 心室フォーカルアブレーションのためのシステム、装置、及び方法
JP2021171650A (ja) * 2020-04-22 2021-11-01 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. アクセス困難領域のアブレーション
JP2022017174A (ja) * 2020-07-13 2022-01-25 バイオセンス・ウエブスター・(イスラエル)・リミテッド 不可逆的エレクトロポレーション(ire)中における電極対の連続的活性化
JP2022033039A (ja) * 2020-08-13 2022-02-25 バイオセンス・ウエブスター・(イスラエル)・リミテッド 短絡した電極群間の双極アブレーションエネルギーの印加

Similar Documents

Publication Publication Date Title
JP6377613B2 (ja) 可撓性のある拡張可能な電極及びパルスパワーを管腔内送達する方法
WO2020026217A1 (ja) 医療デバイス
JP7279018B2 (ja) 医療デバイス
JP2019209142A (ja) 強化された大径のバルーンカテーテル
JP5318783B2 (ja) 内視鏡装置
WO2019181612A1 (ja) 医療デバイス
US9023040B2 (en) Electrosurgical cutting devices
KR20070004097A (ko) 센서 구조체를 구비하는 절제 장치
US20210212759A1 (en) Medical device
JP6362895B2 (ja) 治療デバイス
JP2009142640A (ja) 小型円形マッピングカテーテル
US20180228538A1 (en) Cutting system and method of tissue cutting for medical treatment
WO2024024173A1 (ja) カテーテル及び医療システム並びにカテーテルの操作方法
JP2015181704A (ja) 治療デバイス
US20230054269A1 (en) Basket Catheter with Porous Sheath
CN114027967B (zh) 脉冲电场球囊构件及应用其的消融导管装置
EP3949884A1 (en) Medical device
CN217390844U (zh) 消融导管
JP2016523584A (ja) 逆ループ型アブレーション器具
JP2011152181A (ja) バルーンカテーテル
CN216317941U (zh) 球囊形脉冲电场消融装置
CN216495608U (zh) 脉冲电场球囊构件及应用其的消融导管装置
EP4088676A1 (en) Distal assembly for catheter with lumens running along spines
US20230218309A1 (en) Adapter for an electrical modular catheter system
US20220304748A1 (en) Catheter device, catheter body, and catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845913

Country of ref document: EP

Kind code of ref document: A1