WO2024022456A1 - 换热板、电池包和车辆 - Google Patents

换热板、电池包和车辆 Download PDF

Info

Publication number
WO2024022456A1
WO2024022456A1 PCT/CN2023/109655 CN2023109655W WO2024022456A1 WO 2024022456 A1 WO2024022456 A1 WO 2024022456A1 CN 2023109655 W CN2023109655 W CN 2023109655W WO 2024022456 A1 WO2024022456 A1 WO 2024022456A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
heat exchange
sub
battery
flow channel
Prior art date
Application number
PCT/CN2023/109655
Other languages
English (en)
French (fr)
Other versions
WO2024022456A9 (zh
Inventor
廉玉波
凌和平
黄伟
马锐
阙衍升
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211352187.2A external-priority patent/CN117134019A/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024022456A1 publication Critical patent/WO2024022456A1/zh
Publication of WO2024022456A9 publication Critical patent/WO2024022456A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the technical field of battery components. Specifically, this application relates to a heat exchange plate, a battery pack and a vehicle.
  • the harmonica tube can only pass water through a fixed inlet and discharge the water from a fixed outlet, that is, the harmonica tube is heating or cooling.
  • the same water flow direction is used during operation, so heat exchange components such as harmonica tubes can easily cause the temperature of local parts of the battery to be too high or too low, reducing the stability and life of the battery.
  • One purpose of this application is to provide a new technology solution for heat exchange plates, battery packs and vehicles, which can solve the problem of low heat exchange efficiency of traditional heat exchange plates.
  • a heat exchange plate for use in batteries.
  • the heat exchange plate includes: a first interface, a second interface, and a flow channel connecting the first interface and the second interface;
  • the hot plate is used to exchange heat for the battery, and the flow channel is used to circulate working fluid.
  • the working fluid flows into the first interface from the first interface.
  • the flow channel flows out from the second interface.
  • the heat exchange plate is used to heat the battery, the working fluid flows into the flow channel from the second interface and flows out from the first interface.
  • the working fluid flows from the first interface and preferentially flows through the first type area;
  • the working fluid flows in from the second interface and preferentially flows through the second type area;
  • the first type of area is used to be arranged corresponding to the battery pole area
  • the second type of area is used to be arranged corresponding to the non-pole area of the battery.
  • the flow channel includes a first section of flow channel connected to the first interface and a second section of flow channel connected to the second interface;
  • the working fluid flows in from the first interface and flows through the first flow channel and the second flow channel successively, and then flows from the first flow channel to the second flow channel.
  • the second interface flows out, and the length of the flow channel flowing through the first type of area in the first section of the flow channel is greater than the length of the flow channel flowing through the second type of area, and the length of the flow channel flowing through the second section of the flow channel is greater than the length of the flow channel flowing through the second type of area.
  • the length of the flow channel in the first type of area is smaller than the length of the flow channel flowing through the second type of area;
  • the working fluid flows in from the second interface and flows through the second flow channel and the first flow channel successively, and then flows from the second flow channel to the first flow channel.
  • the first interface flows out, and the length of the flow channel flowing through the first type of area in the second section of the flow channel is smaller than the length of the flow channel flowing through the second type of area.
  • the length of the flow channel flowing through the first section of the flow channel is The length of the flow channel in the first type of area is greater than the length of the flow channel flowing through the second type of area.
  • the ratio of the length of the first flow channel to the length of the second flow channel ranges from 0.5 to 5.
  • the ratio of the width of the second type area to the width of the first type area ranges from 1 to 8.
  • the ratio range of the first type area width to the battery length is 0.1-0.4, and the ratio range of the second type area width to the battery length is 0.1-0.6.
  • the first interface and the second interface are located on the same side of the heat exchange plate.
  • the heat exchange plate includes an inlet and outlet assembly, and the first interface and the second interface are located in the inlet and outlet assembly.
  • the heat exchange plate includes a first type of area and a second type of area, and the flow channels are distributed in the first type of area and the second type of area;
  • the first type of area includes a first zone and a second zone.
  • the second type of area includes a first subarea, and the first subarea is located between the first subarea and the second subarea; when the heat exchange plate is used to exchange heat for the battery, the workpiece
  • the substance performs at least one cyclic flow in the first partition, the first sub-region and the second partition; the first type of area is used to be arranged corresponding to the battery pole area, and the second type of area is used to be arranged corresponding to the battery pole area. corresponding settings for the non-pole area.
  • the first type of area includes a fourth sub-area; the second type of area includes a second sub-area; when the heat exchange plate is used to cool the battery, the working medium is The first interface flows through the fourth sub-area, the second sub-area and the fourth sub-area, and flows from the fourth sub-area into the second interface; the heat exchange plate is used to heat the battery When heating is performed, the working fluid flows from the second interface through the fourth sub-region, the second sub-region and the fourth sub-region, and flows from the fourth sub-region into the first interface.
  • the first type of area includes a fourth sub-area and a second sub-area
  • the second type of area includes a second sub-area
  • the second sub-area is located between the fourth sub-area and the second sub-area. between districts;
  • the working fluid flows from the first interface into the fourth sub-area, the second sub-area and the second sub-area, and is passed by the The second sub-region flows back to the second sub-region and the fourth sub-region and then flows into the second interface; when the heat exchange plate is used to heat the battery, the working fluid flows from the The second interface flows into the fourth sub-area, the second sub-area and the second sub-area, and flows back from the second sub-area to the second sub-area and the fourth sub-area and then flows into the The first interface.
  • the heat exchange plate includes a first heat exchange module and a second heat exchange module, each of the first heat exchange module and the second heat exchange module includes a first type of area and a second type of area;
  • a type of area includes a third sub-area, a first sub-area, a fourth sub-area and a second sub-area;
  • the second type of area includes a first sub-area and a second sub-area; the first sub-area is located in the Between the third sub-region and the first sub-region, the second sub-region is located between the fourth sub-region and the second sub-region, and the first sub-region and the fourth sub-region are arranged adjacently.
  • the working medium when the heat exchange plate is used to exchange heat for the battery, the working medium is in the third sub-area, the first sub-region and the first At least one circulation flow is carried out in the flow channel in the sub-zone.
  • the working fluid flows from the first interface into the first heat exchange module, It flows into the fourth sub-area and the second sub-area through the first heat exchange module, flows into the second sub-area from the fourth sub-area and the second sub-area, and then flows into the Second interface; when the heat exchange plate is used to heat the battery, the working fluid flows from the second interface into the second sub-area, and flows from the second sub-area into the third sub-area. The fourth sub-area and the second sub-area then flow into the first interface.
  • the flow channel includes a shunt junction
  • the shunt junction includes a first-level shunt junction
  • at least one of the first-level shunt junctions is provided in the first type area, and the first-level shunt junction is close to the first An interface or a second interface is provided, and the shunt junction shunts the flow channel.
  • the heat exchange plate includes a first heat exchange module and a second heat exchange module, both of the first heat exchange module and the second heat exchange module include the first type of area; the first heat exchange module The first type area of the module includes a third sub-area and a first sub-area, and the first type area of the second heat exchange module includes a fourth sub-area and a second sub-area; the first-level shunt junction is disposed on In the third sub-region, the shunt junction further includes a secondary shunt junction, the secondary shunt junction is located in at least one of the first sub-region, the second sub-region and the fourth sub-region.
  • the heat exchange area is arranged around the battery area.
  • the battery area is a battery projection area formed by the battery on the heat exchange plate.
  • the flow channel includes a first type of flow channel. and a second type of flow channel; the first type of flow channel is located in the heat exchange area, and the second type of flow channel is distributed in the battery area.
  • the length of the first type of flow channel is less than the length of the second type of flow channel, and/or the number of branching times of the first type of flow channel is less than the number of branching times of the second type of flow channel.
  • a battery pack including the heat exchange plate described in the first aspect.
  • a vehicle including the heat exchange plate described in the first aspect; or,
  • the embodiment of the present application provides a heat exchange plate.
  • the heat exchange plate can improve the heat exchange efficiency of the heat exchange plate through heat exchange between the working fluid and the battery, and can be flexibly switched when the heat exchange plate is used to cool or heat the battery.
  • the flow direction of the working fluid in the flow channel makes the area that is heated first when the heat exchange plate heats the battery is different from the area that is cooled first when the heat exchange plate cools the battery, thereby improving the average heat exchange temperature of the heat exchange plate. sex.
  • Figure 1 is a disassembled schematic diagram of a battery pack provided by an embodiment of the present application
  • Figure 2 is a top view of a battery pack provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the flow direction (a) and partition (b) of the flow channel of a heat exchange plate provided by the embodiment of the present application;
  • Figure 4 is a second schematic diagram of the flow direction (a) and partition (b) of the flow channel of a heat exchange plate provided by the embodiment of the present application;
  • FIG. 5 is a schematic diagram 1 of a heat exchange plate provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram 2 of a heat exchange plate provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram 1 of the flow direction of a flow channel of a heat exchange plate provided by an embodiment of the present application;
  • Figure 8 is a schematic diagram 2 of the flow direction of a flow channel of a heat exchange plate provided by an embodiment of the present application;
  • Figure 9 is a schematic diagram of a reversing junction of a heat exchange plate provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a branching and converging junction of a heat exchange plate provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the partitions of a heat exchange plate provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram 1 of a battery pack provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram three of a heat exchange plate provided by an embodiment of the present application.
  • Figure 14 is an enlarged view of point A in Figure 13;
  • Figure 15 is a schematic diagram 4 of a heat exchange plate provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of the first heat exchange module of a heat exchange plate provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a second heat exchange module of a heat exchange plate provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of the partitions of a heat exchange plate provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of the base plate and flow channel plate.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • This technical solution provides a heat exchange plate that can be used on electric vehicles, and the heat exchange plate can provide good heat exchange for the battery.
  • the battery needs to be heated, it can transport the heat exchange agent with heat to various areas of the battery through the flow channels to heat the battery.
  • the flow channel can be used in reverse to transport the low-temperature heat exchange agent through the flow channel to various areas of the battery to cool the battery.
  • the heat exchange plate provided by this technical solution is designed to provide stable heat exchange performance for the battery of new energy electric vehicles and provide a better temperature environment for the battery.
  • the heat exchange plate includes:
  • the heat exchange plate 2 is used to exchange heat for the battery, and the flow channel is used to circulate working fluid, which can be refrigerant such as R123a, R32, CO 2 or water.
  • the heat exchange plate 2 When the heat exchange plate 2 is used to cool the battery, for example, when the heat exchange plate 2 can cool the battery through a low-temperature working fluid, the working fluid is supplied from the first interface. 221 flows into the flow channel 21 and flows out from the second interface 222; through the phase change of the working fluid and the heat exchange between the batteries, it can have a good cooling effect on the battery.
  • the heat exchange plate 2 When the heat exchange plate 2 is used to heat the battery, for example, when the heat exchange plate 2 heats the battery through a high-temperature working fluid, the working fluid is supplied from the second interface 222 It flows into the flow channel 21 and flows out from the first interface 221. Through the phase change of the working fluid and the heat exchange between the batteries, it can play a good heating role in the battery. Improve the heat exchange effect of the heat exchange plate 2 on the battery and ensure the long-term stable operation of the battery.
  • the heat exchange plate provided in the embodiment of the present application exchanges heat between the working fluid and the battery through the phase change of the working fluid, which can improve the heat exchange efficiency of the heat exchange plate 2, and when the heat exchange plate 2 is used for all
  • the area heated first by the heat exchange plate when heating the battery is different from the area cooled first by the heat exchange plate when cooling the battery, thereby improving the heat exchange temperature uniformity of the heat exchange plate.
  • the flow channel 21 can be punched in the heat exchange plate 2, and the battery can include multiple battery cells.
  • the heat exchange plate 2 is opposite to the forward direction of the battery (the flow direction of the working fluid in the flow channel). Cooling and reverse (flow direction of working fluid in the flow channel) heating can improve the cooling and heating effects of the battery, ensure the temperature uniformity of the battery, and improve the heat exchange capacity of the heat exchange plate 2 for the battery.
  • the heat exchange plate 2 can be switched to two states: cooling mode and heating mode. In these two states, the heat exchange plate or pump device will drive the working fluid to flow in opposite directions, thereby achieving the purpose of giving priority to which area is heat exchanged.
  • the working fluid flows in from the first interface 221 and preferentially flows through the first type area;
  • the working fluid flows in from the second interface 222 and preferentially flows through the second type of area;
  • the first type of area 26 is used to be arranged corresponding to the battery pole area, and the second type of area 27 is used to be arranged corresponding to the non-pole area of the battery.
  • the first type of area 26 may correspond to the area in the battery where the battery core generates high heat
  • the second type of area 27 may correspond to the area in the battery. The area where the battery core generates relatively low heat.
  • the heat generated in the pole area (area near the pole) of the battery core during operation is relatively large, thus forming the above-mentioned battery pole area; and
  • the area of the battery core body generates relatively little heat, thus forming the non-pole area (area far away from the pole) of the above-mentioned battery;
  • the first type area 26 can be used to be arranged corresponding to the pole area on the battery, so
  • the second type of area 27 is configured to correspond to the non-pole area of the cell body on the battery, so as to improve the heat exchange efficiency of the heat exchange plate 2 .
  • the working fluid can be a low-temperature refrigerant.
  • the low-temperature working fluid flows in from the first interface 221, will preferentially flow through the first type area, that is, the low-temperature working fluid can be used to preferentially cool the battery pole area on the battery that generates greater heat, so as to improve the efficiency of heat exchange between the heat exchange plate and the battery pole area.
  • the working fluid in the flow channel flows through the second type area to cool the non-pole area of the battery that generates less heat, ensuring the balance of heat exchange between the heat exchange plate and the battery, and maintaining the stability of the battery during operation. Uniformity of temperature.
  • the preferential flow of the working fluid through the first type of area may be that the flow channel length of the working fluid flowing through the first type of area is longer than that of the working fluid flowing through the first type of area.
  • the flow channel length of the second type area can also be such that the flow rate of the working fluid flowing through the first type area is greater than the flow rate flowing through the second type area to ensure that the cooling amount provided by the first type area to the battery is greater than that provided by the second type area.
  • the amount of cooling provided to the battery is such that the temperature of the first type area is close to the temperature of the second type area, thereby ensuring the temperature uniformity of the heat exchange plate.
  • the working fluid can be a high-temperature refrigerant.
  • the high-temperature working fluid flows in from the second interface 222, will preferentially flow through the second type area, that is, the high-temperature working fluid can preferentially heat the non-pole area of the battery with a lower temperature on the battery, so as to improve the heat exchange efficiency between the heat exchange plate and the battery pole area. efficiency, and then the working fluid in the flow channel flows through the first type area to heat the battery pole area with lower temperature on the battery to ensure the balance of heat exchange between the heat exchange plate and the battery, thus maintaining the battery during operation. uniformity of temperature.
  • the preferential flow of the working fluid through the second type of area may be that the length of the flow channel of the working fluid flowing through the second type of area is longer than that of the working fluid flowing through the second type of area.
  • the flow channel length of the first type area can also be such that the flow rate of the working fluid flowing through the second type area is greater than the flow rate flowing through the first type area to ensure that the heating amount provided by the second type area to the battery is greater than that provided by the first type area.
  • the amount of heating given to the battery is such that the temperature of the first type area is close to the temperature of the second type area, thereby ensuring the temperature uniformity of the heat exchange plate.
  • the priority of the working fluid flowing through the first type area or the second type area in this application does not limit the order of circulation, but the relationship between the working fluid and the battery in the first type area or the second type area. Correspondence to the amount of heat exchanged between times.
  • the flow channel includes a first section of flow channel connected to the first interface 221 and a second section of flow channel connected to the second interface;
  • the working fluid flows in from the first interface 221 and flows through the first flow section successively. After the channel and the second section of the flow channel, it flows out from the second interface, and the length of the flow channel flowing through the first type of area in the first section of flow channel is greater than the length of the flow channel flowing through the second type of area. , the length of the flow channel flowing through the first type area in the second section flow channel is smaller than the length of the flow channel flowing through the second type area;
  • the working fluid flows in from the second interface 222 and flows through the second flow channel and the first flow channel successively.
  • the first interface 221 flows out, and the length of the flow channel flowing through the first type area in the second section flow channel is smaller than the length of the flow channel flowing through the second type area.
  • the flow channel in the first section flow channel The length of the flow channel passing through the first type of area is greater than the length of the flow channel flowing through the second type of area.
  • the first section of the flow channel can be the front section of the flow channel, and the second section of the flow channel can be the rear section of the flow channel; the first section The length of the flow channel flowing through the first type of area is greater than the length of the flow channel flowing through the second type of area, so that the low-temperature working fluid in the first section of the flow channel can better communicate with the relatively hot components of the battery.
  • Heat exchange is carried out in the battery pole area; and when the working fluid flows into the second section of the flow channel, the heat exchange efficiency of the working fluid is reduced.
  • the length of the channel is less than the length of the flow channel flowing through the second type of area, that is, the working fluid in the second section of the flow channel can be used to exchange heat between the heat exchange plate and the non-pole area of the battery that generates less heat, so as to Make full use of the heat exchange efficiency of the flow channels in different stages of the heat exchange plate to improve the heat exchange effect of the heat exchange plate.
  • the second section of the flow channel can be the front section of the flow channel, and the first section of the flow channel can be the rear section of the flow channel; the flow in the second section of the flow channel can be The length of the flow channel passing through the first type of area is smaller than the length of the flow channel flowing through the second type of area, so that the high-temperature working fluid in the second section of the flow channel can better cope with the abnormal conditions of the lower-temperature battery on the battery.
  • Heat exchange is carried out in the pole area; and when the working fluid flows into the first section of the flow channel, the heat exchange efficiency of the working fluid is reduced.
  • the working fluid in the first section of the flow channel can be used to realize heat exchange between the heat exchange plate and the battery pole area with a lower temperature on the battery, which can also improve the overall temperature of the battery. Describe the heat exchange effect of the heat exchange plate.
  • the first section of flow channel connected to the first interface 221 and the second section of the flow channel connected to the second interface 222 form a circulating flow channel
  • the black solid line in Figure 11 The extended area can correspond to the first section of the flow channel, and the flow channel between the end of the black solid line and the second interface can correspond to the second section of the flow channel; obviously, the main extension and heat exchange stage of the first section of the flow channel is in the first category. area, while the main extension and heat exchange stage of the second section of the flow channel are in the second type area.
  • the ratio of the length of the first flow channel to the length of the second flow channel ranges from 0.5 to 5.
  • the first section of the flow channel is mainly used to exchange heat between the heat exchange plate and the battery pole area, while the second section of the flow channel is mainly used to achieve heat exchange between the heat exchange plate and the non-pole area of the battery;
  • set the ratio a of the length of the first flow channel to the length of the second flow channel. 1 ⁇ a ⁇ 3, for example: 1.2, 1.6, 2.0, 2.4, 2.6 or 2.8.
  • the ratio a of the length of the first flow channel to the length of the second flow channel 2 ⁇ a ⁇ 5, for example: 2.2, 2.6, 3.0, 3.4, 3.6, 3.8, 4.0, 4.4, 4.6 or 5.
  • set the ratio a of the length of the first flow channel to the length of the second flow channel 3 ⁇ a ⁇ 5, 3.0, 3.4, 3.6, 3.8, 4.0, 4.4, 4.6 or 5; or set the length of the first flow channel and The ratio a of the length of the second flow channel, 1 ⁇ a ⁇ 2, for example: 1.2, 1.6 or 2.0. 2 ⁇ a ⁇ 4, for example: 2.2, 2.6, 3.0, 3.4, 3.6, 3.8 or 4.0; to achieve According to the battery heat exchange mode of the heat exchange plate, different areas can be prioritized for heat exchange.
  • the ratio of the width of the second type area to the width of the first type area ranges from 1 to 8.
  • the second type area 27 may include a first sub-area 271
  • the first type area 26 includes a third sub-area 2621 and a first sub-area 2611
  • the first sub-area 271 is located Between the third sub-area 2621 and the first sub-area 2611.
  • the width of the second type of area may include the width H2 of the first sub-area 271
  • the width of the first type of area may include the width H1 of the third sub-area 2621 and the width H3 of the first sub-area 2611
  • the third sub-area 2611 may have a width H2.
  • the width H1 of 2621 and the width H3 of the first sub-area 2611 may be equal to or different from each other.
  • the pole area on the battery is mainly used for the power supply in the battery.
  • the connection between the core and external equipment, and the non-pole area on the battery is mainly used to set the battery core.
  • the non-pole area on the battery will be larger than the pole area on the battery.
  • the width of the second type of area can be set to be larger than the width of the first type of area.
  • the width H2 of the first sub-area 271 is larger than the width of the third type of area.
  • the width H1 of the sub-area 2621 may specifically be that the ratio of the width H2 of the first sub-area 271 to the width H1 of the third sub-area 2621 is 2, 3, 4, 5 or 6, and/or the ratio of the width H1 of the first sub-area 271
  • the width H2 is greater than the width H3 of the first sub-region 2611.
  • the ratio of the width H2 of the first sub-region 271 to the width H3 of the first sub-region 2611 is 4, 5, 6, 7 or 8, so as to improve the exchange rate. Hot plate for battery heat exchange flexibility.
  • the ratio range of the first type area width to the battery length is 0.1-0.4, and the ratio range of the second type area width to the battery length is 0.1-0.6.
  • the poles of the battery can be located at one end of the battery along its length direction, or the poles of the battery can be located at both ends of the battery along its length direction; since the first type area 26 is used to correspond to the battery pole area
  • the second type area 27 is configured to correspond to the non-pole area of the battery, that is, the ratio of the first type area width to the battery length corresponds to the ratio of the width of the pole area to the battery length, and the second type area 27 is configured to correspond to the non-pole area of the battery.
  • the ratio of the area width to the cell length corresponds to the ratio of the width of the non-post area on the cell to the cell length.
  • the ratio of the second type area width to the battery length can be set to be greater than the ratio of the first type area width to the battery length, for example
  • the ratio of the width of the first type of area to the length of the battery ranges from 0.1 to 0.4
  • the ratio of the width of the second type of area to the length of the battery ranges from 0.1 to 0.6.
  • the width of the pole area and the width of the non-pole area on the battery will also change accordingly, and then the ratio of the first type area width to the battery length and the second type area width to the battery length The ratio will also be adjusted accordingly.
  • the ratio of the width of the first type of area to the length of the battery ranges from 0.05 to 0.3
  • the ratio of the width of the second type of area to the length of the battery ranges from 0.05 to 0.3. is 0.2-0.6.
  • the ratio of the width of the first type of area to the length of the battery ranges from 0.3 to 0.4, and the ratio of the width of the second type of area to the length of the battery.
  • the range is 0.1-0.4.
  • the first type of area can correspond to the high temperature area on the battery.
  • the strong temperature area on the battery can be the area on the battery where the temperature changes greatly.
  • the strong temperature area is the area on the battery that is 5-10°C higher than the normal operating temperature of the battery.
  • the second type of area can correspond to the low temperature area on the battery.
  • the weak temperature area on the battery can be the area on the battery where the temperature changes are small.
  • the weak temperature area is 0-5°C higher than the normal operating temperature of the battery. range area.
  • the heat exchange plate 2 includes a first type of area 26 and a second type of area 27, and the flow channels 21 are distributed in the first type of area 26 and the second type of area 27. ;
  • the working fluid circulates at least once in the first type area 26 and the second type area 27;
  • the working fluid flows from the first interface 221 through the first type area 26 and the second type area 27, and from the The second type area 27 flows into the second interface 222;
  • the working fluid flows from the second interface 222 through the second type area 27 and the first type area 26, and flows from the second type area 27 to the first type area 26.
  • the first type area 26 flows into the first interface 221 .
  • the working fluid flows into the heat exchange plate 2 from the first interface 221, and then flows from the first type
  • the flow channel 21 of the area 26 flows to the flow channel 21 of the second type area 27, and finally flows out of the heat exchange plate 2 from the second interface 222; in the heat exchange plate 2, the high-temperature working fluid is supplied to the heat exchanger plate 2.
  • the working fluid flows into the heat exchange plate 2 from the second interface 222, and then flows from the flow channel 21 of the second type area 27 to the flow channel 21 of the first type area 26.
  • the heat exchange plate 2 from the first interface 221 to improve the heat exchange effect of the heat exchange plate 2 on the battery and ensure the long-term stable operation of the battery.
  • the flow channel 21 is designed in such a way that the working fluid can flow from the first type of area 26 to the second type of area 27 . That is, the flow channel 21 is designed such that the working fluid first flows into the flow channel in the first type area 26 and then flows into the flow channel in the second type area 27 . In this way, the working fluid can first perform heat exchange in the first type area 26, and the working fluid preferentially absorbs the heat generated by the battery corresponding to the first type area 26, and then the heat exchange capability of the working fluid will decrease. The working fluid then flows to the second type area 27 to exchange the heat generated by the battery corresponding to this area. Finally, the working fluid will flow to the second interface 222 and flow out of the heat exchange plate 2 .
  • the flow channel 21 is designed in such a way that the working fluid can flow from the second type area 27 to the first type area 26 . That is, the flow channel is designed such that when the working fluid flows in the reverse direction, the working fluid can first flow into the flow channel in the second type area 27 and then flow into the flow channel in the first type area 26 .
  • the working medium can first exchange heat in the second type area 27 and dissipate the heat to the space where the battery corresponding to the second type area 27 is located. After that, the heat exchange capacity of the working fluid decreases and flows into the first type area 26 .
  • the working fluid dissipates the remaining heat in the first type area 26 to the space where the battery is located, and then flows back to the first interface 221 and out of the heat exchange plate 2 .
  • the flow channel 21 is configured as a circulating flow channel.
  • the flow channel 21 undergoes one or more reversals in the first type area 26, or the flow channel 21 undergoes one or more reversals in the second type area 27.
  • the flow channel 21 is bent after being reversed in both the first type area 26 and the second type area 27 to form one or more circles of circulating flow channels, so as to realize the flow of the working medium.
  • One circulation flow or multiple circulation flows are performed in the first type area 26 and the second type area 27 to improve the heat exchange efficiency of the heat exchange plate 2 .
  • the first type area 26 and the second type area 27 are arranged adjacently, the first interface 221 is arranged close to the first type area 26, and the second interface 222 is arranged close to the second type area 27.
  • the working fluid flows from the first interface 221 through the first type area 26 and the second type area 27.
  • a circular flow may be formed after bending and switching in the first type area 26 , or the working fluid may form a circulating flow after bending and switching in the second type area 27 , and finally flows into the second type area 27 from the second type area 27 .
  • the second interface 222 allows the working fluid to circulate at least once in the first type area 26 and the second type area 27 .
  • the working fluid flows from the second interface 222 through the second type area 27 and the first type area 26.
  • a circular flow may be formed after bending and switching in the second type area 27 , or the working fluid may form a circulating flow after bending and switching in the first type area 26 , and finally flows into the first type area 26 from the first type area 26 .
  • the first interface 221 allows the working fluid to circulate at least once in the first type area 26 and the second type area 27 .
  • At least part of the flow channel 21 is a curved flow channel.
  • the flow channels 21 in the first type area 26 and the second type area 27 can be set as curved flow channels, for example, the flow channels 21 in the first type area 26 and the second type area 27 It is set as a circulating zigzag flow channel or annular flow channel to increase the length of the flow channel 21 in the heat exchange plate 2, thereby increasing the effective heat exchange area of the heat exchange plate 2 and improving the heat exchange efficiency. Plate 2 heat transfer to the battery.
  • the first interface 221 and the second interface 222 are located on the same side of the heat exchange plate 2 .
  • the shape of the heat exchange plate 2 can match the shape structure of the battery (which can refer to the shape of the large surface of the battery).
  • the heat exchange plate 2 when exchanging heat for a square battery, can be set in a square shape.
  • the heat exchange plate 2 when exchanging heat for a rhombus-shaped battery, can be set in a rhombus shape to ensure that the heat exchange plate 2 and the battery are in contact with each other. Adequate heat exchange after combining.
  • the working fluid enters the heat exchange plate from the first interface 221 or enters the heat exchange plate from the third interface.
  • the working fluid can flow to other sides of the heat exchange plate 2 (different from the side where the first interface 221 and the second interface 222 are provided) and the heat exchange plate 2
  • the middle area facilitates the circulating flow of the working fluid in the heat exchange plate 2 and improves the heat exchange amount of the heat exchange plate 2 to the battery.
  • the shape of the heat exchange plate 2 is a rectangle that matches the rectangular battery.
  • the first interface 221 and the second interface 222 are located on a short side of the heat exchange plate 2 and are close to each other. They can be used in the working medium.
  • the working fluid flows to the two long sides, the other short side and the two long sides of the heat exchange plate 2.
  • the middle area finally flows out of the heat exchange plate 2 from the second interface 222 or the first interface 221 to form a circulating flow of the working fluid in the heat exchange plate 2 .
  • the heat exchange plate 2 includes an inlet and outlet assembly 22, and the first interface 221 and the second interface 222 are located in the inlet and outlet assembly 22.
  • the inlet and outlet assembly 22 has a first interface 221 and a second interface 222, and the first interface 221 and the second interface 222 are respectively connected to both ends of the flow channel 21.
  • the first interface 221 and the second interface 222 can be used to connect the heat exchange plate 2 with an external component that provides working fluid.
  • an external pump body can be connected to the heat exchanger plate 2 through the first interface 221 and the second interface 222.
  • the heat exchange plates 2 are connected to ensure the flow stability of the working fluid in the heat exchange plates 2 .
  • the heat exchange plate includes a first type of area 26 and a second type of area 27, and the flow channels are distributed in the first type of area 26 and the second type of area 27;
  • the first type area 26 includes a first partition 261 and a second partition 262;
  • the second type area 27 includes a first sub-area 271 located between the first sub-area 261 and the second sub-area 262;
  • the working fluid circulates at least once in the first sub-area 261, the first sub-area 271 and the second sub-area 262;
  • the first type of area 26 is used to be arranged corresponding to the battery pole area, and the second type of area 27 is used to be arranged corresponding to the non-pole area of the battery.
  • the first partition 261, the first sub-area 261 and the second sub-area 262 can be
  • the flow channel 21 in the sub-area 271 and the second sub-area 262 is configured as a circular flow channel.
  • the flow channel 21 is bent after multiple changes in the first sub-area 261, the first sub-area 271 and the second sub-area 262.
  • One or more circles of circulation channels are formed to realize one or multiple circulation flows of the working fluid in the first partition 261, the first sub-area 271 and the second partition 262, thereby improving the Heat exchange efficiency of heat exchange plate 2.
  • the first type of area 26 corresponds to the area where the battery core generates relatively high heat
  • the second type of area 27 corresponds to the area where the battery core generates relatively low heat. Area.
  • the cells of the battery may be distributed in two columns side by side. Since poles are usually provided at both ends of the battery core for electrical connection, the pole areas at both ends of the battery formed by the battery core generate greater heat, while the area of the middle battery core body generates less heat.
  • the first type of area 26 can be used to be arranged corresponding to the pole areas at both ends of the battery
  • the second type area 27 is used to be arranged corresponding to the non-pole area in the middle of the battery.
  • the pole area of the battery may include a positive electrode position and a negative electrode position, which are located at both ends of the battery, such that the first partition 261 is opposite to the positive electrode position, and the second partition 262 is opposite to the positive electrode position.
  • the positions of the negative electrodes are opposite.
  • the working fluid flows from the flow channels of the first partition 261 and the second partition 262 that are far away from each other. 21 simultaneously flows to the flow channel 21 of the second type area 27 (at this time, the flow channel 21 of the first partition 261 and the second partition 262 can each have an independent working fluid inlet); the working fluid at this time can be a low-temperature working fluid.
  • the low-temperature working medium first cools the positive and negative electrode positions on the battery that generate more heat, and then cools other areas on the battery to ensure the uniform temperature of the battery.
  • the working fluid flows from the flow channel 21 of the second type area 27 to the first partition 261 and the second partition 262.
  • Runner 21 The working fluid at this time can be a high-temperature working fluid.
  • the high-temperature working fluid first heats the areas on the battery that generate less heat except the positive and negative electrode positions, and then heats the positive and negative electrode positions on the battery. Ensure battery temperature uniformity.
  • the working fluid when the heat exchange plate 2 uses working fluid to cool the battery, can flow from the flow channel 21 of the first partition 261 to the second partition.
  • the flow channel 21 (at this time, the flow channel 21 of the first partition 261 and the second partition 262 can share a working fluid inlet), and flows from the flow channel 21 of the second partition 262 to the flow channel of the second type area 27 twenty one.
  • the working fluid flowing through the first partition 261 and the second partition 262 will be collected into the flow channel 21 of the second type area 27 .
  • the working fluid in the first partition 261 can first flow through the second partition 262 and then flow to the third partition.
  • Second zone 262 and the working fluid in the second zone 262 can flow directly to the flow channel 21 of the second type area 27 to improve the heat exchange flexibility of the heat exchange plate 2 in the battery.
  • the longitudinal area on the left side in Figure 3 belongs to the second subarea 262 of the first type area 26, the longitudinal area in the middle belongs to the first subarea 271 of the second type area 27, and the longitudinal area on the right side belongs to the second subarea 262 of the first type area 26.
  • An area also belongs to the first partition 261 of the first type area 26, so that the first type area 26 corresponds to the area where the battery generates greater heat, and the second type area 27 corresponds to the area where the battery generates less heat. Set up to ensure the heat exchange rate of the battery by the heat exchange plate 2.
  • first interface 221 and the second interface 222 are provided on the side of the first partition 261 away from the second partition 262, so that the working fluid can pass through the first partition 261 and the first sub-area 271 in sequence. and the second zone 262 flows into the heat exchange plate.
  • the first partition 261 and the second partition 262 both belong to the areas corresponding to the relatively large heat generation of the battery, so the first partition 261 and the second partition 262 are interchangeable in structure and function.
  • the first interface 221 and the second interface 222 are interchangeable.
  • the heat exchange plate 2 can also achieve efficient heat exchange for the battery.
  • the interchange of the first type areas 26 on both sides of the second type area 27 can also be applied to the structure of the heat exchange plate 2 formed by multiple groups of first type areas 26 and second type areas 27 .
  • the heating of battery cells is usually constant. No matter what the external environment is, whether the battery itself is in a discharging or charging state, the parts of the battery core with poles and electrical connection points are always areas with higher heat generation. As shown in Figure 2, the middle area of the battery core generates moderate heat and less heat. That is, the part of the battery core that does not have electrical connection points or poles is not prone to heat.
  • heating is required, the area on the battery core without poles is often colder and requires more heating.
  • cooling the area where the poles are installed on the battery core is often hotter and needs more cooling.
  • the advantage of this part of the design is that it takes advantage of the working characteristics of the cells in the battery to arrange the flow channels of the heating plate differently according to the areas where the structures that generate different heat are located. Moreover, the working fluid flow directions used in the heating and cooling modes are opposite. During heat dissipation, the working fluid first flows along the flow channel to an area with higher heat. During heating, the working fluid first flows along the flow channel to an area with lower heat. This enables the working medium to maintain high heat exchange efficiency with the larger heating area of the battery.
  • Figures 3a and 4a are schematic diagrams of the flow direction of the heat exchange plate 2.
  • Figures 3b and 4b are schematic diagrams of the area division of the heat exchange plate 2.
  • the first type area 26 includes a fourth sub-area 2622,
  • the second type area 27 includes a second sub-area 272;
  • the working fluid flows from the first interface through the fourth sub-area 2622, the second sub-area 272 and the fourth sub-area 2622, and Flows into the second interface from the fourth sub-area 2622;
  • the working fluid flows from the second interface through the fourth sub-region 2622, the second sub-region 272 and the fourth sub-region 2622, and From the fourth sub-area 2622 flows into the first interface.
  • the heat exchange plate 2 may include a fourth sub-area 2622 and a second sub-area 272 arranged adjacently, and the first interface 221 and the second interface 222 may be located away from the fourth sub-area 2622.
  • One side of the second sub-region 272; the heat exchange plate 2 is used to exchange heat for a battery with a single-sided pole.
  • the working fluid flows from the first interface 221 through the fourth sub-area 2622, the second sub-area 272 and the fourth sub-area 2622,
  • the working fluid in the fourth sub-region 2622 can quickly cool down the hot locations on the battery, and then use the working fluid in the second sub-region 272 to cool down the relatively hot locations on the battery.
  • the working fluid flows from the fourth sub-region 2622 into the second interface 222;
  • the working fluid flows from the second interface through the fourth sub-region 2622, the second sub-region 272 and the fourth sub-region 2622, and From the fourth sub-area 2622 flows into the first interface.
  • first interface 221 and the second interface 222 can also be located on the fourth sub-area 2622 and the second sub-area 272 respectively, so as to realize the use of the heat exchange plate 2 for conducting the battery operation.
  • the working fluid flows from the first interface 221 through the fourth sub-region 2622 and the second sub-area 272, and when the heat exchange plate 2 is used to heat the battery, the The working medium flows from the second interface through the second sub-area 272 and the fourth sub-area 2622, fully realizing that when the battery is cooled, the low-temperature working fluid flows from the fourth sub-area 2622 opposite to the high-temperature area of the battery to the high-temperature area of the battery.
  • the high-temperature working fluid flows from the second sub-region 272 opposite to the low-temperature region of the battery to the fourth sub-region 2622 opposite to the high-temperature region of the battery.
  • the first type area 26 includes a fourth sub-area 2622 and a second sub-area 2612;
  • the second type area 27 includes a second sub-area 272, and the second sub-area 272 is located between the fourth sub-area 2622 and the second sub-area 2612;
  • the working fluid flows from the first interface into the fourth sub-area 2622, the second sub-area 272 and the second sub-area 2612, And flows from the second sub-area 2612 back to the second sub-area 272 and the fourth sub-area 2622 and then flows into the second interface;
  • the working fluid flows from the second interface into the fourth sub-area 2622, the second sub-area 272 and the second sub-area 2612, And flows from the second sub-area 2612 back to the second sub-area 272 and the fourth sub-area 2622 and then flows into the first interface.
  • the first interface 221 and the second interface 222 can be located on the side of the fourth sub-area 2622 away from the second sub-area 272; the heat exchange plate 2 is used to heat the heat exchanger with double-sided poles. The battery undergoes heat exchange.
  • the working fluid flows from the first interface 221 through the fourth sub-area 2622, the second sub-area 272 and the second sub-area 2612.
  • the working fluid in the fourth sub-region 2622 and the second sub-region 2612 can quickly cool down the hot locations on the battery, and then use the working fluid in the second sub-region 272 to cool down the battery.
  • the less heated locations on the battery are cooled down, and finally flow from the second sub-area 2612 back to the second sub-area 272 and the fourth sub-area 2622 and then flow into the second interface 222;
  • the working fluid flows from the second interface into the fourth sub-area 2622, the second sub-area 272 and the second sub-area 2612, And flows from the second sub-area 2612 back to the second sub-area 272 and the fourth sub-area 2622 and then flows into the first interface.
  • first interfaces 221 there may be two first interfaces 221 , and the two first interfaces 221 may be respectively located on the fourth sub-area 2622 and the second sub-area 2612 , and the second interface 222 may be provided on on the second sub-area 272.
  • the heat exchange plate includes multiple heat exchange modules, the working fluid circulates between multiple heat exchange modules, and the working fluid flows through each heat exchange module at least once. Circular flow.
  • the heat exchange plate 2 includes a first heat exchange module and a second heat exchange module.
  • the first heat exchange module and the second heat exchange module are arranged at intervals, and at least part of the flow
  • the channel 21 is curved in each of the first heat exchange module and the second heat exchange module, so that the working fluid circulates at least once in the first heat exchange module, and the working fluid circulates in the first heat exchange module. At least one circulation flow is performed in the second heat exchange module.
  • the regional distribution of the first type of area 26 and the second type of area 27 on the heat exchange plate 2 can correspond to the heating area on the battery to ensure that The heat exchange effect of the heat exchange plate 2 on the battery.
  • the actual structure of the battery may be composed of a group of battery cells, or may be composed of multiple groups of arranged battery cells.
  • the heat exchange plate 2 when the heat exchange plate 2 is exchanging heat for a battery composed of two groups of cells, the heat exchange plate 2 can be divided into a first heat exchange module and a second heat exchange module.
  • the first heat exchange module is connected with a second heat exchange module.
  • One group of battery cores corresponds to one group
  • the second heat exchange module corresponds to another group of battery cores.
  • At least part of the flow channel 21 is curved in each of the first heat exchange module and the second heat exchange module, which can increase the diameter of the flow channel 21 in the first heat exchange module and the second heat exchange module.
  • the installation area further increases the effective heat exchange area of the heat exchange plate 2 and improves the heat exchange amount of the heat exchange plate 2 for the battery.
  • each heat exchange module includes a first type of area 26 and a second type of area 27,
  • the first type area 26 includes a third sub-area 2621, a first sub-area 2611, a fourth sub-area 2622 and a second sub-area 2612;
  • the second type area 27 includes a first sub-area 271 and a second sub-area 272;
  • the first sub-region 271 is located between the third sub-region 2621 and the first sub-region 2611, so that the first sub-region 271, the third sub-region 2621 and the first sub-region 2611 form a first sub-region 2611.
  • Thermal module at the same time, the second sub-area 272 is located between the fourth sub-area 2622 and the second sub-area 2612, so that the second sub-area 272, the fourth sub-area 2622 and the second sub-area 2612 form Second heat exchange module.
  • the first sub-area 2611 and the fourth sub-area 2622 are arranged adjacently, which realizes the adjacent arrangement of the first heat exchange module and the second heat exchange module, ensuring that the heat exchange plate 2 is Effective heat exchange for batteries composed of multiple sets of cells.
  • the flow channel 21 includes a first converging end and a second converging end, and the first converging end is the connection point where the flow channel 21 converges to the first interface 221, so The second converging end is the connection point where the flow channel 21 converges to the second interface 222 .
  • the working fluid can flow into the heat exchange plate 2 from the first bus end.
  • the working fluid in the flow channel 21 preferentially flows into the first type area 26 corresponding to the battery area with a higher temperature, thereby cooling the high-temperature area of the battery. Then it flows into the second type area 27. Finally, the working fluid can flow out from the second confluence end after converging.
  • the working fluid can flow into the heat exchange plate from the second bus end.
  • the working fluid in the flow channel preferentially flows into the second type area 27 corresponding to the battery area with a lower temperature, thereby heating the low-temperature area of the battery. Then it flows into the first type area 26. Finally, the working fluid can flow out from the first converging end after converging.
  • Prioritizing heating of the position corresponding to the second type area 27 can better protect the battery and provide sufficient operating temperature for the battery.
  • the heat exchange plate can cooperate with the self-heating function to better heat the central area of the battery core that is not prone to heat. Provide temperature protection to prevent the temperature from being too low.
  • the first converging end and the second converging end are concentrated on the left side of the heat exchange plate 2.
  • the flow channel 21 due to the panel space limitations, there is a problem that the flow channel cannot be Arranged according to the above ideal arrangement.
  • priority can be given to the flow channel arrangement according to the preferred flow channel arrangement.
  • the second sub-area 272 is heated or the fourth sub-area 2622 and the second sub-area 2612 are cooled preferentially.
  • the above preferred arrangement may not be achieved due to the relative congestion of the flow channel 21.
  • the flow channel 21 can also be introduced from the first confluence end and first arranged to the first sub-area 2611, and then extended to the first sub-area 271 and the third sub-area 2621, and finally returns to the first sub-area 2621. 2. Implementation of the confluence end.
  • the working medium is in the third sub-region 2621, At least one circulation flow occurs in the flow channel in one sub-region 271 and the first sub-region 2611.
  • the first sub-region 271 and the first sub-region 2611, the third sub-region 2621, the first sub-region 2611 can be
  • the flow channel 21 of the sub-area 271 and the first sub-area 2611 is configured as a circulating flow channel.
  • the flow channel 21 extends in the third sub-area 2621, the first sub-area 271 and the first sub-area 2611, it can After commutation in the third sub-region 2621, it extends to the first sub-region 271, and then extends from the first sub-region 271 to the third sub-region 2621 before commutation.
  • the flow channel 21 is in the The third sub-region 2621, the first sub-region 271 and the first sub-region 2611 are bent after multiple commutations to form one or more circles of circulation channels, so as to achieve the flow of the working fluid in the third sub-region. 2621. Perform one circulation flow or multiple circulation flows in the first sub-area 271 and the first sub-area 2611 to improve the heat exchange efficiency of the heat exchange plate 2.
  • the first interface 221 may be connected to the fourth sub-area 2622, and the second interface 222 may be connected to the second sub-area 272;
  • the working medium flows into the first heat exchange module from the first interface 221 and flows into the third heat exchange module through the first heat exchange module.
  • the fourth sub-area 2622, the second sub-area 272 and the second sub-area 2612 flow into the second sub-area 272 from the fourth sub-area 2622 and the second sub-area 2612, and then flow into the third sub-area 2622.
  • the working fluid flows from the second interface 222 into the second sub-area 272 and flows from the second sub-area 272 into the third sub-area 272 .
  • the fourth sub-area 2622 and the second sub-area 2612 then flow into the first interface 221 .
  • the flow channel 21 includes a shunt junction 212
  • the first interface 221 is provided on one side of the third sub-area 2621
  • the number of the shunt junctions 212 in the third sub-area 2621 is greater than The number of shunt junctions 212 in the first sub-area 271.
  • the first interface 221 is disposed on one side of the third sub-area 2621.
  • the working fluid passes through it at a low temperature.
  • it can flow through the third sub-region 2621 and the first sub-region 271 in sequence.
  • the working fluid state passing through the first interface 221 is in a liquid state.
  • the number of shunt junctions 212 in the third sub-area 2621 is greater than the number of shunt junctions 212 in the first sub-area 271, more shunt junctions 212 may be provided in the third sub-area 2621.
  • split junctions 212 that is, the process of the working fluid flowing in the third sub-region 2621 can increase the flow channel through the split junctions 212, and the working fluid in the liquid state can ensure balanced distribution of the split during the split. properties to improve the temperature uniformity of the heat exchange plate 2 during heat exchange.
  • the shunt junction 212 is used to divert the flow, and when the heat exchange plate 2 is used to heat the battery, due to For the reverse direction of the working fluid in the flow channel, the branch junction 212 can be used to merge the flow.
  • the number of the shunt junctions 212 in the first type area 26 is greater than the number of the shunt junctions 212 in the second type area 27 .
  • the working fluid flows from the first interface 221 through the first type area 26 and the second type at a low temperature. type area 27, and flows from the second type area 27 into the second interface 222.
  • the working fluid is in a liquid state when flowing from the first interface 221 through the first type area 26; and the When the number of shunt junctions 212 in the first type area 26 is greater than the number of shunt junctions 212 in the second type area 27 , more shunt junctions 212 can be provided in the first type area 26 , that is, the process of the working medium flowing in the first type area 26 can increase the flow channel through the splitting node 212, and the working fluid in the liquid state can ensure the distribution balance of the splitting during the splitting.
  • the flow channel 21 is diverted for the first time in the third sub-region 2621. That is to say, the flow process of the working fluid in the third sub-region 2621 can be realized through the shunt junction 212 to achieve confluence or divergence, and when the shunt junction 212 in the third sub-region 2621 is used for shunting, the flow in the liquid state can be The working medium is diverted through the diverter junction 212 to ensure the balance of distribution during the diverting of the working medium.
  • the heat exchange plate 2 when used to cool the battery, after the flow channel is divided once in the third sub-area 2621, it is divided into a third sub-area in the first sub-area 2611. Secondary divergence and primary confluence;
  • the flow channel is divided in the first sub-region 2611 and then passes through the first confluence in the first sub-region 2611. Then a second confluence is performed in the third sub-area 2621.
  • the flow channel branches in the fourth sub-region 2622 and the second sub-region 2612, and then flows in the second branch.
  • Domain 272 Confluence
  • the flow channel branches in the second sub-region 272 and then merges in the fourth sub-region 2622 and the second sub-region 2612.
  • the heat exchange plate 2 is located in the left area close to the first interface 221 and the second interface 222, that is, the first sub-area 271, the third sub-area 2621 and the first sub-area 2611 forms the first heat exchange module. Since the space of the first heat exchange module is close to the first interface 221 and the second interface 222, which will cause the flow channel 21 of the first heat exchange module to be crowded, this solution can preferably arrange the shunt junction at Among the two areas of the third sub-area 2621 and the first sub-area 2611, these two areas correspond to the high-heat areas of the battery, where the flow is divided and merged, which helps to reduce the rapid and concentrated exchange of the working medium in a narrow space. The hot conditions enable the working fluid to exchange heat in these areas more evenly.
  • the working fluid flowing in from the first confluence end can be concentrated at the corner of the third sub-area 2621 for the first splitting, and then in the first sub-area 2611 The upper part undergoes a second shunt. Thereafter, some of the flow channels can be branched again in the lower part of the first sub-area 271, while other parts of the flow channels do not need to be branched. Finally, when the flow channel extends to the lower part of the third sub-area 2621, the flow can be concentrated and then circled back to the second confluence end. Usually one or two confluences can be made.
  • the above introduction takes cooling as an example. During heating, it is completely opposite to the splitting and converging forms.
  • the space for flow channel arrangement is relatively loose.
  • the flow channels extending from the first converging end on the left to the right can be separately divided and extended into the fourth sub-region 2622 and the second sub-region 2612 respectively. In these two areas, the flow channel can extend straight and longitudinally across most of the area of the two areas.
  • the flow channel can turn to the second sub-area 272 located between the fourth sub-area 2622 and the second sub-area 2612.
  • the flow channel usually extends straight through the second sub-area 272, and finally ends in the second sub-area 272.
  • the lower side of domain 272 merges the parallel flow channels. Finally, the flow channel extends to the left back to the second confluence end.
  • the flow channel can be divided two or three times to achieve the layout characteristics of large area parallel and long-distance extension. After that, after two to three confluences, it converges to the main road and returns to the confluence end. Similarly, in the heating mode, the working fluid flows in from the second confluence end and directly flows to the lower side of the second sub-region 272 for multiple times. Divide the flow to form multiple parallel flow paths.
  • At least part of the flow channel 21 has at least one branch flow in the process of extending from the first subarea 261 into the first subarea 271 .
  • the working fluid mentioned in this solution is preferably a refrigerant working fluid that can switch between gas and liquid phases.
  • This kind of refrigerant working fluid can effectively realize heat exchange through phase state transformation, and the heat exchange efficiency is more effective than traditional water cooling, coolant and other methods.
  • the cooling scheme as an example, when at least part of the flow channel 21 extends from the first subarea 261 into the first subarea 271 and has at least one branch, the flow channel can be arranged in the heat exchange plate.
  • the increased number of arrangements improves the heat exchange efficiency of the heat exchange plates; and there is at least one confluence in the process of extending from the first subarea 261 into the first subarea 271, which can concentrate the heat exchange
  • the port of the flow channel in the plate improves the structural compactness of the heat exchange plate.
  • this plan tries to use splitting modes such as one-to-two and two-to-four, such as the splitting modes in areas a, b, c, and d in Figure 15, to improve the uniformity of the flow of the working fluid in the flow channel. Furthermore, this plan tries to use parallel multi-path flow channels with uniformly changing lengths to jointly conduct heat exchange between the first type area and the second type area, further reducing the concentrated phase change of the working medium due to uneven flow.
  • the flow channel 21 includes a dry circulation channel 100, which is distributed on the edge of the heat exchange plate, and one end of the dry circulation channel 100 is connected to the edge of the heat exchange plate.
  • the first interface 221 is connected, and the other end of the main circulation flow channel 100 is connected with the second interface 222 .
  • the main circulation flow channel 100 can be divided up to three times in the first type area 26 .
  • the outermost trunk circulation flow channel 100 is divided once or twice, it basically no longer divides the flow, but continues along the outer edge of the heat exchange plate. It goes around in a circle and finally merges at a position close to the second interface 222 .
  • This part of the flow channel is used to balance the temperature of the working fluid at the end of the flow.
  • phase change refrigerant is used, this part of the flow channel is more effective.
  • the volume of the working fluid after phase change changes greatly, which is prone to problems such as accumulation, poor circulation, and temperature concentration. This problem is more likely to be highlighted at the confluence end.
  • the working fluid surrounding the outermost flow channel has relatively few phase changes due to the small number of splits. It can be used to balance the work in other flow channels at the end of the entire cycle. Temperature and phase state of matter. Provide guarantee for the smoothness and uniformity of the overall circulation.
  • the heat exchange plate includes a first area, which is used to form a battery projection area on the heat exchange plate corresponding to the battery, and the dry circulation flow channel 100 is located on the heat exchange plate.
  • the periphery of the battery's projection area is located on the heat exchange plate.
  • the first area may be the battery coverage area shown in FIG. 6.
  • the main circulation flow channel 100 When the main circulation flow channel 100 is located at the periphery of the battery projection area, it can not only exchange heat for the area around the battery, but also The integrity of the heat exchange plate for the battery can be ensured and the heat exchange efficiency of the heat exchange plate can be improved.
  • the dry circulation channel 100 can be used as the first circulation channel in the heat exchange plate.
  • a second circulation channel 200, a third circulation channel 300 and a fourth circulation channel can also be formed. 400, as shown in Figures 7 and 8.
  • a reversing knot 211 is formed at the reversing point of the flow channel 21.
  • the reversing knot includes a first type of reversing junction 2111 and a second type of reversing junction 2112.
  • the second type of reversing junction 2112 The direction of the flow channel at one end and the direction of the flow channel at the other end of the first type reversing junction 2111 form a reversing angle.
  • the flow channel 21 can be bent at a reversing angle, such as a 90° or 180° bend, to achieve flexible reversing of the flow channel 21 and ensure that the flow channel 21 can be reversed flexibly.
  • the distribution density of the flow channels 21 in the heat exchange plate is not limited to negotiate a 90° or 180° bend.
  • the shunt junction 212 includes a first-level shunt junction 2121 and a second-level shunt junction 2122.
  • the branch includes a first-level branch.
  • the first-level shunt junction 2121 is connected to the trunk road and the first-level branch.
  • the branch includes a secondary branch, and the secondary shunt junction 2122 is connected between the primary branch and the secondary branch.
  • the heat exchange plate includes:
  • the flow channel is arranged in the heat exchange plate, and the flow channel is configured for the heat exchange working medium to flow therein;
  • the first interface 221 and the second interface 222 One end of the flow channel is connected to the first interface 221, and the other end of the flow channel is connected to the second interface 222.
  • the first interface 221 and the second interface 222 are connected to each other.
  • the interface 222 is configured to allow the heat exchange working fluid to pass into the heat exchange plate;
  • the heat exchange plate includes a first type area 26, and the first type area 26 is configured to correspond to the battery pole area; the flow channel includes a shunt junction 212, and the shunt junction includes a first-level shunt junction 2121, at least One of the first-level shunt junctions is arranged in the first type area, the first-level shunt junction is arranged close to the first interface or the second interface, and the shunt junction shunts the flow channel.
  • the first type of area 26 may correspond to an area in the battery where the battery core generates high heat. Since the battery core needs to be provided with poles for electrical connection, the heat generated in the pole area of the battery core during operation is relatively large, thus forming the above-mentioned battery pole area; the first type area 26 can It is used to be arranged corresponding to the pole area on the battery, and the area on the heat exchange plate except the first type area can be used to be arranged corresponding to the non-pole area of the cell body on the battery to improve the heat exchange.
  • the number of flow channels at both ends of the split junction 212 is different; the flow channels at both ends of the split junction 212 can be used as the inlet and outlet of the working medium, respectively.
  • the flow channel inlets and outlets at both ends of the splitter junction 212 can be switched to each other, so that the working medium can flow in the forward or reverse direction in the splitter junction 212 .
  • the flow channel has at least two branch junctions 212, one of which is close to the first interface and branches the flow channel. , the other branch junction 212 is close to the second interface and merges the flow channels.
  • both ends of the flow channel 21 are plugged or threadedly connected to the first interface 221 and the second interface 222 respectively.
  • the distribution of the flow channel 21 in the heat exchange plate extends from the first interface 221 to the second interface 222 after at least one branching and at least one converging process.
  • the branching can be divided into two or one divided.
  • Three or more flow channels can be divided into one, and the confluence can be two-in-one, three-in-one, or more flow channels into one, so as to form one or more branch junctions 212 on the flow channel 21 .
  • the flow channel of the present application includes a shunt junction 212, and the shunt junction includes a first-level shunt junction 2121. At least one of the first-level shunt junctions is provided in the first type area, and the first-level shunt junction is close to the first-level shunt junction. An interface or a second interface is provided, and the shunt junction shunts the flow channel. Since the first type of area is the area corresponding to the pole area of the battery where the cell heat is relatively high, changing the number of flow channels through the first-level shunt junction can improve the flow channel distribution of the first type of area. density, thereby improving the heat exchange effect of the heat exchange plate.
  • the heat exchange plate includes a first heat exchange module 201 and a second heat exchange module 202.
  • Both the first heat exchange module 201 and the second heat exchange module 202 include the Category 1 area 26;
  • the first type area 26 of the first heat exchange module includes a third sub-area 2621 and a first sub-area 2611, and the first type area 26 of the second heat exchange module includes a fourth sub-area 2622 and a second Subarea 2612;
  • the first-level shunt junction is disposed in the third sub-area 2621.
  • the first-level shunt junction also includes a second-level shunt junction 2122.
  • the second-level shunt junction is located in the first sub-area 2611, the second sub-area and the fourth sub-area. At least one of the subregions.
  • the first type area 26 on the heat exchange plate 2 can correspond to the pole area on the battery, so as to ensure that the heat exchange plate 2 is suitable for the battery. heat exchange effect.
  • the actual structure of the battery may be composed of a group of battery cells, or may be composed of multiple groups of arranged battery cells.
  • the heat exchange plate 2 when the heat exchange plate 2 is used to exchange heat for a battery composed of two groups of cells, the heat exchange plate 2 can be divided into a first heat exchange module and a second heat exchange module.
  • the thermal module corresponds to one group of electric cores
  • the second heat exchange module corresponds to another group of electric cores.
  • At least part of the flow channel 21 is curved in each of the first heat exchange module and the second heat exchange module, which can increase the diameter of the flow channel 21 in the first heat exchange module and the second heat exchange module.
  • the installation area further increases the effective heat exchange area of the heat exchange plate 2 and improves the heat exchange amount of the heat exchange plate 2 for the battery.
  • the first heat exchange module may be the left area in FIG. 5
  • the second heat exchange module may be the right area in FIG. 5
  • the first type area 26 in the first heat exchange module includes a third Sub-area 2621 and first sub-area 2611
  • the first type area 26 in the second heat exchange module includes fourth sub-area 2622 and second sub-area 2612.
  • the first interface 221 and the second interface 222 may be disposed close to the third sub-area 2621.
  • the first-level shunt junction is a shunt junction in the flow channel close to the first interface 221 and the second interface 222, so that the first-level shunt junction is disposed in the third sub-region 2621.
  • the heat exchange plate includes:
  • a heat exchange area and a battery area The heat exchange area is arranged around the battery area.
  • the battery area is a battery projection area formed by the battery on the heat exchange plate.
  • the flow channel 21 is arranged in the heat exchange plate.
  • the flow channel is configured for the heat exchange working fluid to flow therein.
  • the flow channel includes a first type of flow channel and a second type of flow channel. ;
  • the first type of flow channel is located in the heat exchange area, and the second type of flow channel is distributed in the battery area.
  • the flow channel 21 extends in the heat exchange plate, after the first type of flow channel in the outermost ring is diverted once or twice, it basically no longer branches, but continues to surround the outer edge of the heat exchange plate. circle, and finally merge at a position close to the outlet of the flow channel.
  • This part of the flow channel is used to balance the temperature of the working fluid at the end of the flow.
  • phase change refrigerant is used, this part of the flow channel is more effective.
  • the volume of the working fluid after phase change changes greatly, which is prone to problems such as accumulation, poor circulation, and temperature concentration. This problem is more likely to be highlighted at the confluence end.
  • the working fluid surrounding the outermost flow channel has relatively few phase changes due to the small number of splits. It can be used to balance the work in other flow channels at the end of the entire cycle. Temperature and phase state of matter. Provide guarantee for the smoothness and uniformity of the overall circulation.
  • the first type of flow channel surrounds the battery area and is located at the periphery of the battery projection area, it can not only exchange heat for the area around the battery, but also ensure the integrity of the heat exchange plate for the battery. , improve the heat exchange efficiency of the heat exchange plate.
  • the first type of flow channel can be used as the first circulation flow channel in the heat exchange plate.
  • a third circulation flow channel including a second circulation flow channel, a third circulation flow channel and a fourth circulation flow channel can also be formed.
  • the second type of flow channel is used to improve the heat exchange balance of the heat exchange plate.
  • the length of the first type of flow channel is less than the length of the second type of flow channel; and/or,
  • the number of branching of the first type of flow channel is smaller than the number of branching of the second type of flow channel.
  • the first type of flow channel is located in the heat exchange area, that is, the first type of flow channel surrounds a circle along the outer edge of the heat exchange plate, so that the second type of flow channel is located inside the first type of flow channel;
  • the first type of flow channel is divided once or twice, it is basically no longer divided, and the number of reversals of the first type of flow channel is less, while the second type of flow channel needs to be divided multiple times in the heat exchange plate. and reversal, so that the flow channels are evenly distributed in the heat exchange plate, so the length of the first type of flow channel is smaller than the length of the second type of flow channel, and the number of splits of the first type of flow channel is smaller than that of the second type of flow channel.
  • Embodiments of the present application also provide a battery pack, including the heat exchange plate 2 and a plurality of battery cores 1.
  • Each battery core is provided with poles at both ends.
  • the plurality of battery cores Distributed along a first direction, which may be the X direction in Figure 1, to increase the energy density of the battery pack; the heat exchange plate is disposed on one side or both sides of the battery core along the second direction , the second direction may be the Z direction in Figure 1, the side surfaces of the plurality of battery cores along the second direction form a large surface of the battery core, and the heat exchange plate is close to one or two of the battery cores.
  • the large surface arrangement can ensure the heat exchange effect of the heat exchange plate on the battery core.
  • a plurality of the battery cores 1 may form a first battery module 11 and a second battery module 12 .
  • the second battery module 12 is located on the side of the first battery module 11 away from the inlet and outlet assembly 22 .
  • the flow channel of the first type area 26 may be opposite to the first battery module 11 and may be close to the inlet and outlet assembly 22 , that is, the flow channel of the first type area 26 is located at the proximal end of the heat exchange plate.
  • the flow channel 21 of the second type area 27 can be far away from the inlet and outlet assembly 22, that is, the flow channel 27 of the second type area 27 is located at the far end of the heat exchange plate; in order to ensure that the proximal and far ends of the heat exchange plate
  • the flow rate of the distal flow channel 21 can be increased.
  • the flow rate of the channel opposite to the second battery module 12 in the flow channel 21 can be set as the second flow rate, and the first flow rate can be increased. less than the second flow rate.
  • the direction in which the poles at both ends of the battery core are connected is a third direction.
  • the third direction can be the Y direction in Figure 1.
  • the first direction, the second direction and the third direction can be are respectively parallel to the width direction, height direction and length direction of the battery core body.
  • multiple battery core bodies can form a compact structure. Battery pack structure to ensure the energy density of the battery pack.
  • the heat exchange plate is a bottom plate or an upper cover.
  • the heat exchange plate can be disposed on one side or both sides of the battery core body along the second direction.
  • the heat exchange plate can be disposed on one side of the battery core body along the second direction,
  • the heat exchange plate can form the bottom plate of the battery pack.
  • it can ensure the heat exchange effect on the battery core when the heat exchange plate is attached to the battery core.
  • the heat exchange plate can form the upper cover of the battery pack, which can also When the heat exchange plate is attached to the battery core body, the heat exchange effect on the battery core body is ensured, and the battery pack can also be protected.
  • Embodiments of the present application provide a vehicle, including the heat exchange plate; or,
  • an embodiment of the present application provides a flow channel integrated plate.
  • the flow channel integrated plate includes:
  • first area 28 and second area 29 are first area 28 and second area 29;
  • the flow channels 21 are distributed in the first area 28 and the second area 29.
  • the average density of the flow channels 21 in the first area 28 is greater than that in the second area 29. Describe the average density of distribution of flow channels 21.
  • the flow channel integrated plate can be used to cool or heat the battery.
  • the flow channel integrated plate cools the battery, a large amount of heat will be generated at the positive and negative electrode positions during the battery operation, which means that the flow channel integrated plate needs to provide greater cooling effect on the positive and negative electrode positions of the battery.
  • the average density of the distribution of the flow channels 21 in the first region 28 is greater than the average density of the distribution of the flow channels 21 in the second region 29, the positive electrode position of the battery can be faced through the first region 28. and the negative electrode position, and the second area 29 is facing the middle position of the battery to improve the heat exchange effect of the flow channel integrated plate on the battery.
  • the width dimension of the flow channel 21 is less than 15 mm.
  • the heat exchange efficiency of the flow channel integrated plate can be improved through distribution of flow channels 21 with different densities, that is, The flow channel 21 with a smaller width can be used for heat exchange.
  • the width of the flow channel 21 can be 3-12 mm.
  • the width of the flow channel 21 is also the radial size of the flow channel 21 .
  • the width of the flow channels 21 can be set to 5-10 mm.
  • the flow channel integrated plate also includes the heat exchange plate 2.
  • a flow channel integrated plate which includes:
  • the flow channel 21 is distributed in the flow channel plate 24. In the plane where the flow channel integrated plate is located, the installation area of the flow channel 21 is greater than 70% of the area of the flow channel plate 24. .
  • the area ratio of the flow channels 21 in the flow channel plate 24 can be flexibly set according to the heat exchange object of the flow channel integrated plate.
  • the setting area of the flow channel 21 can be set to 75%, 80%, and 85% of the area of the flow channel plate 24 , 90% or 95% to improve the heat exchange flexibility of the flow channel integrated plate.
  • the width dimension of the flow channel is less than 15 mm.
  • the heat exchange efficiency of the flow channel integrated plate can be improved through flow channel distribution with different densities, that is, the heat exchange efficiency of the flow channel integrated plate can be improved.
  • the flow channel 21 with a smaller width is used for heat exchange.
  • the width of the flow channel 21 can be 3-12 mm.
  • the width of the flow channel 21 is also the radial size of the flow channel 21 .
  • the width of the flow channels 21 can be set to 5-10 mm.
  • the flow channel integrated plate also includes the heat exchange plate 2.
  • the flow channel 21 may be stamped in the heat exchange plate 2, and the battery module 1 may include multiple battery cells.
  • the cooling and reverse (the flow direction of the working fluid in the flow channel 21) heating can improve the cooling and heating operations of the battery module 1, ensure the temperature uniformity of the battery module 1, and improve the replacement of the battery module 1.
  • the flow channel 21 extends from the converging end toward the inside of the flow channel plate 24.
  • the flow channel 21 is divided through the branch converging junction to form more levels of branch pipes.
  • These flow channels 21 are also arranged in turns through reversing knots, so that the branch pipes cover the entire flow channel plate 24 to achieve flow and heat exchange in each area.
  • the flow channel plate 24 and the base plate 23 are combined to form the heat exchange plate 2 .
  • the flow channel 21 may have a groove structure, and its top surface is not sealed.
  • the base plate 23 can form a top seal on the flow channel 21 .
  • the base plate 23 and the flow channel 21 form the heat exchange plate 2 as a whole.
  • the first interface 221 and the second interface 222 may be formed by combining port components provided on the base plate 23 with the flow channel plate 24 .
  • the port component is provided with a first interface 221 and a second interface 222.
  • this scheme can be divided into different sections. Different sections represent different technical features that this plan focuses on.
  • the flow channel 21 is designed based on the technical features of concern as a starting point to obtain a more uniform heat exchange plan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种换热板、电池包和车辆。换热板包括第一接口、第二接口以及连通第一接口和第二接口的流道;换热板用于对电池换热,流道用于流通工质。在换热板用于对电池进行冷却时,工质从第一接口流入流道并从第二接口流出;在换热板用于对电池进行加热时,工质从第二接口流入流道并从第一接口流出。

Description

换热板、电池包和车辆
相关申请的交叉引用
本申请基于申请号为:202210911342.3、申请日为2022年07月29日和申请号为:202211352187.2、申请号为2022年10月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于电池组件技术领域,具体地,本申请涉及一种换热板、电池包和车辆。
背景技术
随着人们环保意识的不断增强,越来越多的电动汽车走进了人们的视野。电池作为电动汽车的主要动力组件,对电动汽车的长期稳定运行起着关键的作用。
现有技术中,采用水通入口琴管后对电池进行冷却或加热,但由于口琴管只能从固定的入口通入水流,并从固定的出口将水流排出,也就是口琴管在加热或者冷却操作时均采用同样的水流流向,使得口琴管等换热组件容易导致电池局部位置的温度过高或者过低,降低了电池使用的稳定性和寿命。
申请内容
本申请的一个目的是提供一种换热板、电池包和车辆的新技术方案,能够解决传统换热板换热效率低的问题。
根据本申请的第一方面,提供了一种换热板,应用于电池,所述换热板包括:第一接口、第二接口以及连通第一接口和第二接口的流道;所述换热板用于对所述电池换热,所述流道用于流通工质,在所述换热板用于对所述电池进行冷却时,所述工质从所述第一接口流入所述流道并从第二接口流出,在所述换热板用于对所述电池进行加热时,所述工质从所述第二接口流入所述流道并从第一接口流出。
可选地,在所述换热板用于对所述电池进行冷却时,所述工质从所述第一接口流入,并优先流经第一类区域;在所述换热板用于对所述电池进行加热时,所述工质从所述第二接口流入,并优先流经第二类区域;
其中,所述第一类区域用于与电池极柱区域对应设置,所述第二类区域用于与电池的非极柱区域对应设置。
可选地,所述流道包括与第一接口连接的第一段流道以及与所述第二接口连接的第二段流道;
在所述换热板用于对所述电池进行冷却时,所述工质从所述第一接口流入,并先后流经所述第一段流道和第二段流道后,从所述第二接口流出,并且所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度,所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度;
在所述换热板用于对所述电池进行加热时,所述工质从所述第二接口流入,并先后流经所述第二段流道和第一段流道后,从所述第一接口流出,并且所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度,所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度。
可选地,所述第一段流道长度与所述第二段流道长度的比值的范围为0.5-5。
可选地,所述第二类区域宽度与所述第一类区域宽度的比值范围为1-8。
可选地,所述第一类区域宽度与电池长度的比值范围为0.1-0.4,所述第二类区域宽度与电池长度的比值范围为0.1-0.6。
可选地,所述第一接口和第二接口位于所述换热板的同侧。
可选地,所述换热板包括进出口总成,所述第一接口和第二接口位于所述进出口总成。
可选地,所述换热板包括第一类区域和第二类区域,所述流道分布于所述第一类区域和第二类区域;第一类区域包括第一分区和第二分区;第二类区域包括第一分域,所述第一分域位于所述第一分区和所述第二分区之间;所述换热板用于对所述电池换热时,所述工质在所述第一分区、第一分域和第二分区中进行至少1次循环流动;所述第一类区域用于与电池极柱区域对应设置,所述第二类区域用于与电池的非极柱区域对应设置。
可选地,所述第一类区域包括第四子区;所述第二类区域包括第二分域;在所述换热板用于对所述电池进行冷却时,所述工质从所述第一接口流经所述第四子区、第二分域和第四子区,并从所述第四子区流入所述第二接口;在所述换热板用于对所述电池进行加热时,所述工质从所述第二接口流经所述第四子区、第二分域和第四子区,并从所述第四子区流入所述第一接口。
可选地,所述第一类区域包括第四子区和第二子区;所述第二类区域包括第二分域,所述第二分域位于所述第四子区和第二子区之间;
在所述换热板用于对所述电池进行冷却时,所述工质从所述第一接口流入所述第四子区、第二分域和所述第二子区,并由所述第二子区流回所述第二分域和所述第四子区后流入所述第二接口;在所述换热板用于对所述电池进行加热时,所述工质从所述第二接口流入所述第四子区、第二分域和所述第二子区,并由所述第二子区流回所述第二分域和所述第四子区后流入所述第一接口。
可选地,所述换热板包括第一换热模块和第二换热模块,所述第一换热模块和第二换热模块均包括第一类区域和第二类区域;所述第一类区域包括第三子区、第一子区、第四子区和第二子区;所述第二类区域包括第一分域和第二分域;所述第一分域位于所述第三子区和所述第一子区之间,所述第二分域位于所述第四子区和第二子区之间,所述第一子区与第四子区相邻设置。
可选地,在所述第一换热模块内,在所述换热板用于对所述电池进行换热时,所述工质在所述第三子区、第一分域和第一子区内的流道中进行至少1次循环流动。
可选地,在所述第二换热模块内,在所述换热板用于对所述电池进行冷却时,所述工质从所述第一接口流入所述第一换热模块内,经所述第一换热模块流入所述第四子区和所述第二子区,并由所述第四子区和所述第二子区流入所述第二分域,后流入所述第二接口;在所述换热板用于对所述电池进行加热时,所述工质从所述第二接口流入所述第二分域,并由所述第二分域流入所述第四子区和所述第二子区,后流入所述第一接口。
可选地,所述流道包括分流结,所述分流结包括一级分流结,至少一个所述一级分流结设于所述第一类区域,所述一级分流结靠近所述第一接口或者第二接口设置,所述分流结将所述流道分流。
可选地,所述换热板包括第一换热模块和第二换热模块,所述第一换热模块和第二换热模块均包括所述第一类区域;所述第一换热模块的所述第一类区域包括第三子区和第一子区,第二换热模块的所述第一类区域包括第四子区和第二子区;所述一级分流结设置于所述第三子区,所述分流结还包括二级分流结,所述二级分流结位于所述第一子区、第二子区和第四子区中的至少一者。
可选地,包括:换热区域和电池区域,换热区域环绕于所述电池区域设置,电池区域为电池在所述换热板上形成电池投影区域,所述流道包括第一类流道和第二类流道;所述第一类流道位于所述换热区域,所述第二类流道分布于电池区域。
可选地,所述第一类流道的长度小于所述第二类流道的长度,和/或,所述第一类流道分流次数小于第二类流道的分流次数。
根据本申请的第二方面,提供了一种电池包,包括第一方面所述的换热板。
根据本申请的第三方面,提供了一种车辆,包括第一方面所述的换热板;或,
包括第二方面所述的电池包。
本申请的一个技术效果在于:
本申请实施例提供了一种换热板。所述换热板通过工质与电池之间的热量交换,可以提高所述换热板的换热效率,而且在所述换热板用于对所述电池进行冷却或者加热时,可以灵活切换所述流道中工质的流向,使得所述换热板对电池加热时先加热的区域与换热板对电池冷却时,先冷却的区域不同,提高了所述换热板的换热均温性。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1为本申请实施例提供的一种电池包的拆分示意图;
图2为本申请实施例提供的一种电池包的俯视图;
图3为本申请实施例提供的一种换热板的流道流向(a)和分区(b)示意图一;
图4为本申请实施例提供的一种换热板的流道流向(a)和分区(b)示意图二;
图5为本申请实施例提供的一种换热板的示意图一;
图6为本申请实施例提供的一种换热板的示意图二;
图7为本申请实施例提供的一种换热板的流道的流向示意图一;
图8为本申请实施例提供的一种换热板的流道的流向示意图二;
图9为本申请实施例提供的一种换热板的换向结示意图;
图10为本申请实施例提供的一种换热板的分汇结示意图;
图11为本申请实施例提供的一种换热板的分区示意图;
图12为本申请实施例提供的一种电池包的示意图一;
图13为本申请实施例提供的一种换热板的示意图三;
图14为图13中A处的放大图;
图15为本申请实施例提供的一种换热板的示意图四;
图16为本申请实施例提供的一种换热板的第一换热模块示意图;
图17为本申请实施例提供的一种换热板的第二换热模块示意图;
图18为本申请实施例提供的一种换热板的分区示意图;
图19是基板和流道板的示意图。
其中:
1、电池芯体;11、第一电池模组;12、第二电池模组;
2、换热板;21、流道;
211、换向结;2111、第一类换向结;2112、第二类换向结;
212、分流结;2121、一级分流结;2122、二级分流结;
22、进出口总成;221、第一接口;222、第二接口;26、第一类区域;261、第一分区;2611、第一子区;
2612、第二子区;262、第二分区;2621、第三子区;2622、第四子区;27、第二类区域;271、第一分域;272、第二分域;
100、干路循环流道;200、第二循环流道;300、第三循环流道;400、第四循环流道;
201、第一换热模块;202、第二换热模块。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本技术方案提供了可以用在电动车辆上的换热板,该换热板可以对电池提供良好的换热作用。在电池需要加热时,其可以通过流道将带有热量的热交换剂输送到电池的各个区域,以对电池加热。在电池需要降温时,其可以反向利用流道,将低温的热交换剂反向通过流道输送至电池的各个区域,以对电池降温。
本技术方案提供的换热板旨在为新能源电车的电池提供稳定的热交换性能,为电池提供更好的温度环境。
参照图1至图15,本申请实施例提供了一种换热板,应用于电池,所述换热板包括:
第一接口221、第二接口222以及连通第一接口221和第二接口222的流道21;
所述换热板2用于对所述电池换热,所述流道用于流通工质,所述可以为R123a、R32等冷媒、CO2或者水。
在所述换热板2用于对所述电池进行冷却时,比如在所述换热板2可以通过低温的工质给所述电池冷却的情况下,所述工质从所述第一接口221流入所述流道21并从第二接口222流出;通过工质的相变与电池之间的热量交换,可以对电池起到很好的冷却作用。
在所述换热板2用于对所述电池进行加热时,比如在所述换热板2通过高温的工质给所述电池加热的情况下,所述工质从所述第二接口222流入所述流道21并从第一接口221流出,通过工质的相变与电池之间的热量交换,可以对电池起到很好的加热作用。提高所述换热板2对电池的换热效果,保证所述电池的长期稳定运行。
本申请实施例提供的所述换热板通过工质的相变与电池之间的热量交换,可以提高所述换热板2的换热效率,而且在所述换热板2用于对所述电池进行冷却或者加热时,使得换热板对电池加热时先加热的区域与换热板对电池冷却时先冷却的区域不同,提高了所述换热板的换热均温性。
另外,所述流道21可以是在换热板2中冲压而成,所述电池中可以包括多个电池单体,所述换热板2对电池的正向(流道中工质的流向)冷却和反向(流道中工质的流向)加热,可以改善电池的冷却和加热效果,保证电池的均温性,提高所述换热板2对所述电池的换热能力。
所述换热板2能够切换至冷却模式和加热模式两种状态。在这两种状态下,换热板或者泵装置会驱使工质沿着相反的方向流动,从而实现优先对哪个区域进行换热的目的。
可选地,包括:
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流入,并优先流经第一类区域;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口222流入,并优先流经第二类区域;
其中,所述第一类区域26用于与电池极柱区域对应设置,所述第二类区域27用于与电池的非极柱区域对应设置。
具体地,在所述换热板2用于对所述电池换热时,所述第一类区域26可以对应于电池中电芯发热较高的区域,第二类区域27可以对应于电池中电芯发热相对较低的区域。由于电芯上需要设置有极柱用于电连接,所以电芯在运行过程中的极柱区域(极柱附近的区域)的发热相对较大,也就形成了上述的电池极柱区域;而电芯本体的区域发热相对较小,也就形成了上述电池的非极柱区域(远离极柱的区域);所述第一类区域26可以用于与电池上的极柱区域对应设置,所述第二类区域27用于与电池上电芯本体的非极柱区域对应设置,以提高所述换热板2的换热效率。
在所述换热板2用于对所述电池进行冷却时,此时电池的整体温度较高,所述工质可以采用低温的冷媒,低温的工质从所述第一接口221流入后,会优先流经第一类区域,也就可以通过低温的工质优先对电池上发热较大的电池极柱区域进行冷却,以提高所述换热板与电池极柱区域进行换热的效率,然后流道中的工质再流经第二类区域,以对电池上发热较小的电池的非极柱区域进行冷却,保证换热板对电池换热的均衡性,维持电池在运行过程中的均温性。
具体地,在所述换热板2用于对所述电池进行冷却时,工质优先流经第一类区域可以是工质流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度,也可以是工质流经第一类区域的流量大于流经第二类区域的流量,以保证第一类区域提供给电池的冷却量大于第二类区域提供给电池的冷却量,以使第一类区域的温度和第二类区域的温度接近,进而保证所述换热板的均温性。
在所述换热板2用于对所述电池进行加热时,此时电池的整体温度较低,所述工质可以采用高温的冷媒,高温的工质从所述第二接口222流入后,会优先流经第二类区域,也就可以通过高温的工质优先对电池上温度更低的电池的非极柱区域进行加热,以提高所述换热板与电池极柱区域进行换热的效率,然后流道中的工质再流经第一类区域,以对电池上温度较低的电池极柱区域进行加热,保证换热板对电池换热的均衡性,进而可以维持电池在运行过程中的均温性。
具体地,在所述换热板2用于对所述电池进行加热时,工质优先流经第二类区域可以是工质流经所述第二类区域的流道长度大于流经所述第一类区域的流道长度,也可以是工质流经第二类区域的流量大于流经第一类区域的流量,以保证第二类区域提供给电池的加热量大于第一类区域提供给电池的加热量,以使第一类区域的温度和第二类区域的温度接近,进而保证所述换热板的均温性。
值得注意的是,本申请的工质优先流经第一类区域或者第二类区域并不是对流通前后顺序的限定,而是对工质在第一类区域或者第二类区域中与电池之间换热量大小的对应。
可选地,所述流道包括与第一接口221连接的第一段流道以及与所述第二接口连接的第二段流道;
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流入,并先后流经所述第一段流 道和第二段流道后,从所述第二接口流出,并且所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度,所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口222流入,并先后流经所述第二段流道和第一段流道后,从所述第一接口221流出,并且所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度,所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度。
具体地,在所述换热板2用于对所述电池进行冷却时,第一段流道可以为流道的前段,第二段流道可以为流道的后段;所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度,便可以借助第一段流道中低温的工质更好地与电池上发热较大的电池极柱区域进行换热;而在工质流入到第二段流道时工质的换热效率有所降低,此时由于所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度,也就可以利用第二段流道中的工质实现换热板与电池上发热较小的电池的非极柱区域进行换热,以充分利用换热板不同阶段流道的换热效率,提高所述换热板的换热效果。
在所述换热板2用于对所述电池进行加热时,第二段流道可以为流道的前段,第一段流道可以为流道的后段;所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度,便可以借助第二段流道中高温的工质更好地与电池上温度更低的电池的非极柱区域进行换热;而在工质流入到第一段流道时工质的换热效率有所降低,此时由于所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度,也就可以利用第一段流道中的工质实现换热板与电池上温度较小的电池极柱区域进行换热,同样可以提高所述换热板的换热效果。
在一种实施例中,参见图5,与第一接口221连接的第一段流道以及与所述第二接口222连接的第二段流道形成循环流道,而图11中黑实线延伸的区域可以对应第一段流道,黑实线末端和第二接口之间的流道可以对应第二段流道;显然,第一段流道的主要延伸和换热阶段处于第一类区域,而第二段流道的主要延伸和换热阶段处于第二类区域。
可选地,所述第一段流道长度与所述第二段流道长度的比值的范围为0.5-5。
具体地,第一段流道主要用于实现换热板与电池极柱区域进行换热,而第二段流道主要用于实现换热板与电池的非极柱区域进行换热;在换热板对极柱区域发热明显的电池进行换热时,可以设置第一段流道的长度大于第二段流道长度,比如设置第一段流道长度与第二段流道长度的比值a,1<a≤3,例如:为1.2、1.6、2.0、2.4、2.6或者2.8。或者设置第一段流道长度与第二段流道长度的比值a,2≤a≤5,例如:为2.2、2.6、3.0、3.4、3.6、3.8、4.0、4.4、4.6或者5。或者设置第一段流道长度与第二段流道长度的比值a,3≤a≤5,3.0、3.4、3.6、3.8、4.0、4.4、4.6或者5;或者设置第一段流道长度与第二段流道长度的比值a,1<a≤2,例如:为1.2、1.6或者2.0。2≤a≤4,例如:为2.2、2.6、3.0、3.4、3.6、3.8或者4.0;以实现根据所述换热板对电池换热模式,可以对不同的区域进行优先换热。
可选地,所述第二类区域宽度与所述第一类区域宽度的比值范围为1-8。
具体地,参见图5,所述第二类区域27可以包括第一分域271,所述第一类区域26包括第三子区2621和第一子区2611,所述第一分域271位于所述第三子区2621和所述第一子区2611之间。第二类区域的宽度可以包括第一分域271的宽度H2,所述第一类区域的宽度可以包括第三子区2621的宽度H1和第一子区2611的宽度H3,而第三子区2621的宽度H1和第一子区2611的宽度H3可以相等,也可以不同。
由于所述第一类区域26用于与电池上的极柱区域对应设置,所述第二类区域27与电池上的非极柱区域对应设置,电池上的极柱区域主要用于电池中电芯与外部设备的连接,而电池上的非极柱区域主要用于设置电芯,为了保证电池的容量,电池上的非极柱区域会大于电池上的极柱区域。为了实现所述换热板上不同区域与电池上高低温区域之间换热的对应性,可以设置第二类区域宽度大于第一类区域宽度,比如第一分域271的宽度H2大于第三子区2621的宽度H1,具体可以是第一分域271的宽度H2与第三子区2621的宽度H1的比值为2、3、4、5或者6,和/或,第一分域271的宽度H2大于第一子区2611的宽度H3,具体可以是第一分域271的宽度H2与第一子区2611的宽度H3的比值为4、5、6、7或者8,以提高所述换热板对电池的换热灵活性。
可选地,所述第一类区域宽度与电池长度的比值范围为0.1-0.4,所述第二类区域宽度与电池长度的比值范围为0.1-0.6。
具体地,电池的极柱可以沿其长度方向位于电池的一端,也可以是电池的极柱沿其长度方向位于电池的两端;由于所述第一类区域26用于与电池极柱区域对应设置,所述第二类区域27用于与电池的非极柱区域对应设置,也就是第一类区域宽度与电池长度的比值对应于极柱区域的宽度与电池长度的比值,而第二类区域宽度与电池长度的比值对应于电池上非极柱区域的宽度与电池长度的比值。为了在保证电池通过极柱与外部连接的基础上,提高非极柱区域设置电芯的尺寸,可以设置第二类区域宽度与电池长度的比值大于第一类区域宽度与电池长度的比值,比如第一类区域宽度与电池长度的比值范围为0.1-0.4,第二类区域宽度与电池长度的比值范围为0.1-0.6。另外,在面对不同尺寸的电池时,电池上的极柱区域宽度和非极柱区域宽度也会随之变化,进而第一类区域宽度与电池长度的比值和第二类区域宽度与电池长度的比值也会随之调整。
在一种实施例中,换热板在对长度为1.2m的电池进行换热时,第一类区域宽度与电池长度的比值范围为0.05-0.3,第二类区域宽度与电池长度的比值范围为0.2-0.6。
在另一种实施例中,换热板在对长度为0.8m的电池进行换热时,第一类区域宽度与电池长度的比值范围为0.3-0.4,第二类区域宽度与电池长度的比值范围为0.1-0.4。
第一类区域可以对应于电池上的高温区域,电池上的强温区域可以为电池上温度变化幅度大的区域,比如强温区域为电池上高于电池正常工作温度5-10℃范围的区域;而第二类区域可以对应于电池上的低温区域,电池上的弱温区域可以为电池上温度变化幅度较小的区域,比如弱温区域为电池上高于电池正常工作温度0-5℃范围的区域。
可选地,参见图3和图4,所述换热板2包括第一类区域26和第二类区域27,所述流道21分布于所述第一类区域26和第二类区域27;
所述换热板2用于对所述电池换热时,所述工质在所述第一类区域26和第二类区域27中进行至少1次循环流动;
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流经所述第一类区域26和所述第二类区域27,并从所述第二类区域27流入所述第二接口222;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口222流经所述第二类区域27和所述第一类区域26,并从所述第一类区域26流入所述第一接口221。
具体地,在所述换热板2通过低温的工质给所述电池冷却的情况下,所述工质从所述第一接口221流入所述换热板2,进而从所述第一类区域26的流道21流向所述第二类区域27的流道21,最后从所述第二接口222流出所述换热板2;在所述换热板2通过高温的工质给所述电池加热的情况下,所述工质从所述第二接口222流入所述换热板2,进而从所述第二类区域27的流道21流向所述第一类区域26的流道21,最后从所述第一接口221流出所述换热板2,提高所述换热板2对电池的换热效果,保证所述电池的长期稳定运行。
在所述换热板2处在冷却模式的情况下,所述流道21的设计方式使得工质能够从所述第一类区域26流动到第二类区域27。也即,流道21的设计使得工质先流入位于第一类区域26中的流道,之后再流动到第二类区域27中的流道。这样,工质能够先在第一类区域26中进行换热,工质优先吸收第一类区域26对应的电池产生的热量,之后工质的换热能力会有所下降。工质后续再流动至第二类区域27,对该区域所对应的电池产生的热量进行交换。最后,工质会流通至第二接口222并从换热板2上流出。
相反的,在所述换热板3处在加热模式的情况下,所述流道21的设计方式使得工质能够从所述第二类区域27流动到第一类区域26。也即,流道的设计使得在工质反向流动时,工质能够先流入第二类区域27中的流道,之后再流动到第一类区域26中的流道。工质能够先对第二类区域27进行换热,将热量散发到第二类区域27对应的电池所在的空间。之后,工质的换热能力有所下降,并流入至第一类区域26。工质在第一类区域26中将剩余的热量排除散发到电池所在的空间中,之后流回到第一接口221并从换热板2上流出。
而为了提高所述工质在所述第一类区域26和第二类区域27中流动时与电池之间的换热效率,可以将所述第一类区域26和第二类区域27中的流道21设置成循环流道,比如流道21在所述第一类区域26中经过一次或者多次换向,或者,流道21在所述第二类区域27中经过一次或者多次换向,也可以是流道21在所述第一类区域26和所述第二类区域27中都经过换向后弯折形成一圈或者多圈的循环流道,以实现所述工质在所述第一类区域26和第二类区域27中进行1次循环流动或者多次循环流动,提高所述换热板2的换热效率。
比如第一类区域26和第二类区域27相邻设置,第一接口221靠近第一类区域26设置,第二接口222靠近第二类区域27设置。在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流经所述第一类区域26和所述第二类区域27,所述工质可以在第一类区域26内弯折换向后形成循环流动,或者所述工质在第二类区域27内弯折换向后形成循环流动,最后从所述第二类区域27流入所述第二接口222,以使得所述工质在所述第一类区域26和第二类区域27中进行至少1次循环流动。
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口222流经所述第二类区域27和所述第一类区域26,所述工质可以在第二类区域27内弯折换向后形成循环流动,或者所述工质在第一类区域26内弯折换向后形成循环流动,最后从所述第一类区域26流入所述第一接口221,以使得所述工质在所述第一类区域26和第二类区域27中进行至少1次循环流动。
可选地,至少部分流道21为弯曲流道。
具体地,所述工质在所述换热板2中进行流动时,为了充分利用所述工质在相变时的换热作用,避免所述工质在所述流道21中直进直出,可以将所述第一类区域26和所述第二类区域27中的流道21设置为弯曲流道,比如将第一类区域26和所述第二类区域27中的流道21设置为循环的回字形流道或者圆环形流道,以增加所述换热板2中流道21的长度,进而增加了所述换热板2的有效换热面积,提升了所述换热板2对电池的换热量。
可选地,参见图5,所述第一接口221和第二接口222位于所述换热板2的同侧。
具体地,所述换热板2的形状可以与电池的形状结构(可以指电池大面的形状)相匹配。比如在对方形电池进行换热时,换热板2可以设置为方形,对菱形电池进行换热时,换热板2可以设置为菱形,以保证所述换热板2与电池之间在贴合后的充分换热。而所述第一接口221和第二接口222位于所述换热板2的同侧时,所述工质无论从所述第一接口221进入到所述换热板中,还是从所述第二接口222进入到所述换热板2中,都可以将工质流向换热板2中的其他侧(不同于设置第一接口221和第二接口222的那一侧)以及换热板2的中间区域,便于所述工质在换热板2中形成循环流动,提高所述换热板2对电池的换热量。
在一种具体的实施例中,换热板2的形状为与长方形电池匹配的长方形,第一接口221和第二接口222位于换热板2的一个短边侧并且相互靠近,可以在工质从所述第一接口221或者第二接口222进入到所述换热板2中时,使得工质流向换热板2中的两个长边侧、另一个短边侧以及换热板2的中间区域,最后从第二接口222或者第一接口221流出所述换热板2,以形成是工质在换热板2中的循环流动。
可选地,参见图13和图14,所述换热板2包括进出口总成22,所述第一接口221和第二接口222位于所述进出口总成22。
具体地,所述进出口总成22具有第一接口221和第二接口222,所述第一接口221和所述第二接口222分别与所述流道21的两端连通。所述第一接口221和第二接口222可以用于所述换热板2与外部提供工质的组件连接,比如外部的泵体可以通过所述第一接口221和第二接口222与所述换热板2连接,保证所述换热板2中工质的流通稳定性。
可选地,参见图3和图4,所述换热板包括第一类区域26和第二类区域27,所述流道分布于所述第一类区域26和第二类区域27;
第一类区域26包括第一分区261和第二分区262;
第二类区域27包括第一分域271,所述第一分域271位于所述第一分区261和所述第二分区262之间;
所述换热板2用于对所述电池换热时,所述工质在所述第一分区261、第一分域271和第二分区262中进行至少1次循环流动;
所述第一类区域26用于与电池极柱区域对应设置,所述第二类区域27用于与电池的非极柱区域对应设置。
具体地,为了提高所述工质在所述第一分区261、第一分域271和第二分区262中流动时与电池之间的换热效率,可以将所述第一分区261、第一分域271和第二分区262中的流道21设置成循环流道,比如流道21在所述第一分区261、第一分域271和第二分区262中经过多次换向后弯折形成一圈或者多圈的循环流道,以实现所述工质在所述第一分区261、第一分域271和第二分区262中进行1次循环流动或者多次循环流动,提高所述换热板2的换热效率。
而在所述换热板2用于对所述电池换热时,第一类区域26对应于电池中电芯发热较高的区域,第二类区域27对应于电池中电芯发热相对较低的区域。在图5和图6所示的实施方式中,电池的电芯可以并排分布两列。由于电芯的两端通常设置有极柱用于电连接,所以电芯形成的电池上两端的极柱区域的发热较大,而中间电芯本体的区域发热较小,所述第一类区域26可以用于与电池两端的极柱区域对应设置,所述第二类区域27用于与电池中间的非极柱区域对应设置。
可选地,电池的极柱区域可以包括正极位置和负极位置,正极位置和负极位置分别位于电池的两端,使得所述第一分区261与所述正极位置相对,所述第二分区262与所述负极位置相对.
在一种实施例中,在所述换热板2通过工质给所述电池冷却的情况下,所述工质从相互远离的所述第一分区261和所述第二分区262的流道21同时流向所述第二类区域27的流道21(此时第一分区261和第二分区262的流道21可以分别具有独立的工质入口);此时的工质可以为低温的工质,低温的工质首先给电池上发热较多的正极位置和负极位置进行冷却,然后给电池上的其他区域进行冷却,以保证电池的均温性。
在所述换热板2通过工质给所述电池加热的情况下,所述工质从所述第二类区域27的流道21流向所述第一分区261和所述第二分区262的流道21。此时的工质可以为高温的工质,高温的工质首先给电池上发热较少的除了正极位置和负极位置以外的区域进行加热,然后给电池上的正极位置和负极位置进行加热,以保证电池的均温性。
在另一种实施例中,在所述换热板2通过工质给所述电池冷却的情况下,所述工质可以从所述第一分区261的流道21流向所述第二分区的流道21(此时第一分区261和第二分区262的流道21可以共用一个工质入口),并从所述第二分区262的流道21流向所述第二类区域27的流道21。
具体地,流经所述第一分区261和所述第二分区262的工质都会汇集到第二类区域27的流道21。而在所述第一分区261的换热要求高于所述第二分区262的换热要求时,所述第一分区261中的工质可以先流经所述第二分区262后再流向第二分区262,而第二分区262中的工质可以直接流向第二类区域27的流道21,以提高所述电池中换热板2的换热灵活性。
在一种实施例中,图3中左侧的纵向一条区域属于第一类区域26的第二分区262,中间的纵向一条区域属于第二类区域27的第一分域271,右侧的纵向一条区域也属于第一类区域26的第一分区261,以在所述第一类区域26与电池发热较大的区域对应设置,所述第二类区域27与电池的发热较小的区域对应设置,保证所述换热板2对电池的换热量。
而且,第一接口221和第二接口222设置于所述第一分区261远离所述第二分区262的一侧,使得所述工质可以依次经过所述第一分区261、第一分域271和第二分区262流入所述换热板。而第一分区261和第二分区262都属于对应电池发热较大的区域,所以第一分区261和第二分区262在结构和功能上可以互换,比如将第一接口221和第二接口222设置于所述第二分区262远离所述第一分区261的一侧,同样可以实现所述换热板2对电池的高效换热。而且第二类区域27两侧的第一类区域26的互换也可以适用于有多组第一类区域26和第二类区域27形成的换热板2结构。
另外,电池电芯的发热情况通常是不变的,无论外界环境如何,电池自身是处于放电还是充电状态,电芯上设置有极柱、电连接点的部分始终是发热较高的区域,而如图2所示,电芯的中间区域则发热适中较少,也即电芯上不设置电连接点、极柱的部分不容易发热。在需要加热时,往往是电芯上没有设置极柱的区域较冷,需要更多升温。在需要冷却时,往往是电芯上设置有极柱的区域较热,更需要冷却降温。本部分设计方案的优点在于,利用电池中电芯的工作特点,根据发热不同的结构所在的区域不同布置换热板的流道。而且,加热和冷却模式采用的工质流通方向相反,散热时工质先随流道流动至热量较高的区域,加热时工质先随流道流动至热量较低的区域。使得工质能够保持与电池发热较大区域的高换热效率。
在电池的电芯采用其它排布方式、电芯电连接方式采用其它方式等情况下,所述第一类区域26和第二类区域27的位置、数量都会有所不同。本技术方案以图3和图4所示的情况为例,图3a和图4a为换热板2的流道流向示意图,图3b和图4b为换热板2的区域划分示意图,以对该部分的设计特点进行说明。可选地,参见图3,
所述第一类区域26包括第四子区2622,
所述第二类区域27包括第二分域272;
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口流经所述第四子区2622、第二分域272和第四子区2622,并从所述第四子区2622流入所述第二接口;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口流经所述第四子区2622、第二分域272和第四子区2622,并从所述第四子区2622流入所述第一接口。
具体地,所述换热板2可以包括相邻设置的第四子区2622和第二分域272,并且所述第一接口221和第二接口222可以位于所述第四子区2622远离所述第二分域272的一侧;所述换热板2用于对具有单侧极柱的电池进行换热。
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流经所述第四子区2622、第二分域272和第四子区2622,所述第四子区2622中的工质可以对所述电池上发热较大的位置进行快速降温,然后通过第二分域272中的工质对所述电池上发热较小的位置进行降温,最后所述工质从所述第四子区2622流入所述第二接口222;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口流经所述第四子区2622、第二分域272和第四子区2622,并从所述第四子区2622流入所述第一接口。
另外,所述第一接口221和第二接口222也可以分别位于所述第四子区2622和所述第二分域272上,以实现在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流经所述第四子区2622、第二分域272,而在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口流经所述第二分域272和第四子区2622,完全实现在对电池进行冷却时,低温工质从与电池高温区域相对的第四子区2622流向与电池低温区域相对的第二分域272,在对电池进行加热时,高温工质从与电池低温区域相对的第二分域272流向与电池高温区域相对的第四子区2622。
可选地,参见图3,所述第一类区域26包括第四子区2622和第二子区2612;
所述第二类区域27包括第二分域272,所述第二分域272位于所述第四子区2622和第二子区2612之间;
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口流入所述第四子区2622、第二分域272和所述第二子区2612,并由所述第二子区2612流回所述第二分域272和所述第四子区2622后流入所述第二接口;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口流入所述第四子区2622、第二分域272和所述第二子区2612,并由所述第二子区2612流回所述第二分域272和所述第四子区2622后流入所述第一接口。
具体地,所述第一接口221和第二接口222可以位于所述第四子区2622远离所述第二分域272的一侧;所述换热板2用于对具有双侧极柱的电池进行换热。
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流经所述第四子区2622、第二分域272和所述第二子区2612,所述第四子区2622和所述第二子区2612中的工质可以对所述电池上发热较大的位置进行快速降温,然后通过第二分域272中的工质对所述电池上发热较小的位置进行降温,最后由所述第二子区2612流回所述第二分域272和所述第四子区2622后流入所述第二接口222;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口流入所述第四子区2622、第二分域272和所述第二子区2612,并由所述第二子区2612流回所述第二分域272和所述第四子区2622后流入所述第一接口。
另外,所述第一接口221可以设置有两个,两个所述第一接口221可以分别位于所述第四子区2622和所述第二子区2612上,所述第二接口222设置于所述第二分域272上。
可选地,所述换热板包括多个换热模块,所述工质在多个所述换热模块之间循环流动,所述工质在每个所述换热模块中进行至少1次循环流动。
具体地,参见图5和图6,所述换热板2包括第一换热模块和第二换热模块,所述第一换热模块和第二换热模块间隔设置,至少部分所述流道21在第一换热模块和第二换热模块中的每换热模块内弯曲设置,使得所述工质在所述第一换热模块中进行至少1次循环流动,所述工质在所述第二换热模块中进行至少1次循环流动。
具体地,所述换热板2在对电池进行换热时,所述换热板2上第一类区域26和第二类区域27的区域分布可以与电池上的发热区域相对应,以保证所述换热板2对电池的换热效果。而所述电池的实际结构可以由一组电芯组成,也可以有多组排列的电芯组成。比如所述换热板2在对由两组电芯组成的电池进行换热时,可以将换热板2分成第一换热模块和第二换热模块,所述第一换热模块与一组电芯相对应,所述第二换热模块与另一组电芯相对应。而至少部分所述流道21在第一换热模块和第二换热模块中的每换热模块内弯曲设置,可以增大所述第一换热模块和第二换热模块中流道21的设置面积,进而增加了所述换热板2的有效换热面积,提升了所述换热板2对电池的换热量。
在一种实施例中,参见图5和图6,所述每换热模块包括第一类区域26和第二类区域27,
所述第一类区域26包括第三子区2621、第一子区2611、第四子区2622和第二子区2612;
所述第二类区域27包括第一分域271和第二分域272;
所述第一分域271位于所述第三子区2621和所述第一子区2611之间,使得第一分域271、第三子区2621和所述第一子区2611形成第一换热模块;同时,所述第二分域272位于所述第四子区2622和第二子区2612之间,使得所述第二分域272、第四子区2622和第二子区2612形成第二换热模块。并且所述第一子区2611与第四子区2622相邻设置,也就实现了所述第一换热模块和第二换热模块的相邻设置,保证了所述换热板2对由多组电芯组成的电池的有效换热。
在一种实施例中,如图5所示,所述流道21包括第一汇流端和第二汇流端,所述第一汇流端为流道21汇聚至第一接口221的连接点,所述第二汇流端为流道21汇聚至第二接口222的连接点。
在换热板2用于对电池进行冷却时,工质能够从第一汇流端流入换热板2。流道21中的工质优先流入对应温度较高电池区域的第一类区域26,对电池的高温区域实现降温。而后再流入第二类区域27中。最后,工质可以汇流后从第二汇流端流出。
在换热板2用于对电池进行加热时,工质能够从第二汇流端流入换热板。流道中的工质优先流入对应温度较低电池区域的第二类区域27,对电池的低温区域实现升温。而后在流入第一类区域26。最后,工质可以汇流后从第一汇流端流出。优先对第二类区域27对应的位置进行加热能够更好的保护电池,为电池提供足够的工作温度。尤其是在电池具备自加热功能的情况下,该换热板能够与自加热功能配合,更好地为电芯上不易发热的中心区域 提供温度保障,防止温度过低。
在实际应用中,如图5所示,所述第一汇流端和第二汇流端集中在换热板2的左侧,在对流道21进行排布时,由于面板空间限制,存在流道无法按照上述理想方式排布的情况。在图5所示的实施方式中,对于位于右侧的第四子区2622、第二分域272和所述第二子区2612三个区域,可以按照优选的流道排布方式,优先对第二分域272进行升温或者优先对第四子区2622和第二子区2612进行降温。而在位于左侧靠近汇流端的第一分域271、第三子区2621和所述第一子区2611三个区域,则由于流道21相对拥挤,可能无法实现上述优选排布。对此,也可以采用流道21从第一汇流端引入后先排布到第一子区2611,之后再延伸至第一分域271和第三子区2621两个区域,最后再回到第二汇流端的实施方式。
可选地,参见图5,在所述第一换热模块内,在所述换热板2用于对所述电池进行换热时,所述工质在所述第三子区2621、第一分域271和第一子区2611内的流道中进行至少1次循环流动。
为了提高所述工质在所述第三子区2621、第一分域271和第一子区2611中流动时与电池之间的换热效率,可以将所述第三子区2621、第一分域271和第一子区2611的流道21设置成循环流道,比如流道21在所述第三子区2621、第一分域271和第一子区2611中延伸的过程中,可以在第三子区2621中进行换向后延伸至第一分域271,然后在从所述第一分域271延伸至所述第三子区2621后再进行换向,流道21在所述第三子区2621、第一分域271和第一子区2611中经过多次换向后弯折形成一圈或者多圈的循环流道,以实现所述工质在所述第三子区2621、第一分域271和第一子区2611中进行1次循环流动或者多次循环流动,提高所述换热板2的换热效率。
可选地,在所述第二换热模块内,所述第一接口221可以连接于所述第四子区2622,所述第二接口222连接于所述第二分域272;
在所述换热板2用于对所述电池进行冷却时,所述工质从所述第一接口221流入所述第一换热模块内,经所述第一换热模块流入所述第四子区2622、第二分域272和所述第二子区2612,并由所述第四子区2622和所述第二子区2612流入所述第二分域272,后流入所述第二接口222;
在所述换热板2用于对所述电池进行加热时,所述工质从所述第二接口222流入所述第二分域272,并由所述第二分域272流入所述第四子区2622和所述第二子区2612,后流入所述第一接口221。
可选地,所述流道21包括分流结212,所述第一接口221设置于所述第三子区2621的一侧,所述第三子区2621内的所述分流结212的数量大于所述第一分域271内的所述分流结212的数量。
具体地,所述第一接口221设置于所述第三子区2621的一侧,在所述换热板2用于对所述电池进行冷却时,所述工质在低温的状态下通过所述第一接口221后可以依次流经所述第三子区2621和所述第一分域271,比如通过所述第一接口221的工质状态为液态。在所述第三子区2621内的所述分流结212的数量大于所述第一分域271内的所述分流结212的数量的情况下,可以在所述第三子区2621内设置更多的分流结212,也就是工质在所述第三子区2621内流动的过程可以通过分流结212来实现流道的增加,而且液态状态下的工质可以在分流时保证分流的分配均衡性,提升所述换热板2在进行换热时的均温性。
需要注意的是,在所述换热板2用于对所述电池进行冷却时,所述分流结212用于分流,而在所述换热板2用于对所述电池进行加热时,由于工质在流道中的反向,所述分流结212可以用于汇流。
可选地,所述第一类区域26内的所述分流结212的数量大于所述第二类区域27内的所述分流结212的数量。
具体地,在所述换热板2用于对所述电池进行冷却时,所述工质在低温的状态下从所述第一接口221流经所述第一类区域26和所述第二类区域27,并从所述第二类区域27流入所述第二接口222,比如工质在从所述第一接口221流经所述第一类区域26时的状态为液态;而所述第一类区域26内的所述分流结212的数量大于所述第二类区域27内的所述分流结212的数量时,可以在所述第一类区域26内设置更多的分流结212,也就是工质在所述第一类区域26内流动的过程可以通过分流结212来实现流道的增加,而且液态状态下的工质可以在分流时保证分流的分配均衡性。
在一种实施例中,所述换热板2用于对所述电池换热时,所述流道21在第三子区2621内进行第一次分流。也就是工质在所述第三子区2621内流动的过程可以通过分流结212来实现汇流或者分流,而且第三子区2621中的分流结212在用于分流时,可以将液态状态下的工质通过分流结212进行分流,以保证工质分流时分配的均衡性。
可选地,在所述换热板2用于对所述电池进行冷却时,所述流道在所述第三子区2621内进行一次分流后,在所述第一子区2611内进行第二次分流和第一次汇流;
在所述换热板2用于对所述电池进行加热时,所述流道在所述第一子区2611内分流后在所述第一子区2611区域经过第一次汇流。再在所述第三子区2621内进行第二次汇流。
可选地,在所述换热板2用于对所述电池进行冷却时,所述流道在所述第四子区2622和所述第二子区2612分流,后在所述第二分域272汇流;
在所述换热板2用于对所述电池进行加热时,所述流道在所述第二分域272分流,后在所述第四子区2622和所述第二子区2612汇流。
如图5和6所示,在换热板2位于靠近第一接口221和第二接口222的左侧区域中,也即第一分域271、第三子区2621和所述第一子区2611形成第一换热模块中,由于第一换热模块的空间靠近第一接口221和第二接口222会使得第一换热模块的流道21比较拥挤,本方案可以优选将分流结布置在第三子区2621和第一子区2611的两个区域中,这两个区域对应电池的高发热区域,在此处进行分流和汇流,有助于在狭窄空间内降低工质快速、集中换热的情况,使工质能够更均匀的对这些区域进行换热。
例如,从第一汇流端流入的工质可以集中在第三子区2621的边角位置进行第一次分流,之后在第一子区2611 的上部进行第二次分流。此后,有部分流道可以在第一分域271的下部再分流,另一部分流道则无需分流。最后,在流道延伸至第三子区2621的下部时,可以集中进行汇流,进而绕回第二汇流端。通常可以进行一至两次汇流。以上介绍均以冷却时为例,加热时则是完全相反的分流、汇流形式。
可选地,如图5和6所示,在位于远离第一接口221和第二接口222的右侧区域中,也即第二分域272、第四子区2622和第二子区2612形成第二换热模块中,流道布置的空间相对宽松。本方案优选将分流结均匀的分布在三个区域的上下两端,分汇流的数量也可以相应更多。以冷却方案为例,从左侧的第一汇流端延伸至右侧的流道可以分别分流,并分别延伸进入第四子区2622和第二子区2612。在这两个区域内,流道可以平直延伸,沿纵向延伸过两区的大部分面积。之后,流道可以向位于第四子区2622和第二子区2612之间的第二分域272拐弯,流道通常采用平直延伸的方式穿过第二分域272,最后在第二分域272的下侧对各个平行的流道进行汇流。最后,流道向左延伸回到第二汇流端。
在该方案中,流道可以经过两至三次分流,以实现大面积平行、长距离延伸的布局特点。之后,再经过两至三次汇流,汇聚到主干道上回到汇流端相似的,在加热模式中,工质从第二汇流端流入并直接流动至第二分域272的下侧,进行多次分流,形成多个平行的流路。
可选地,参见图3,至少部分所述流道21在从所述第一分区261延伸进入所述第一分域271的过程中具有至少1次分流,所述流道21在从所述第一分区261延伸进入所述第一分域271的过程中具有至少1次汇流。
特别地,本方案提到的工质优选为能够气液两相切换的冷媒工质。这种冷媒工质能够通过相态转变而有效的实现换热,换热效率相对于传统的水冷、冷却剂等方式更有效。以冷却方案为例,至少部分所述流道21从所述第一分区261延伸进入所述第一分域271的过程中具有至少1次分流时,可以使得流道在所述换热板中的排布数量增加,提高所述换热板的换热效率;而在从所述第一分区261延伸进入所述第一分域271的过程中具有至少1次汇流,可以集中所述换热板中流道的端口,提高所述换热板的结构紧凑性。
相对的,由于冷媒工质存在相态变化,如果其集中在某一区域大量进行相变,就会造成其它区域无法得到良好的热交换效果。对此,本方案尽量采用一分二、二分四这类分流方式,如图15中a、b、c、d区域的分流方式,以提高流道内工质流动的均匀性。进一步地,本方案尽量采用平行的、长度均匀变化的多路流道共同对第一类区域、第二类区域进行热交换,进一步降低工质因流动不均而出现集中相变的情况。
可选地,参见图12,所述流道21包括干路循环流道100,所述干路循环流道100分布于所述换热板的边缘,所述干路循环流道100的一端与所述第一接口221连通,所述干路循环流道100的另一端与所述第二接口222连通,所述干路循环流道100在第一类区域26内至多进行3次分流。
具体地,从第一接口221引出的流道21中,最外圈的干路循环流道100经过一次或者两次分流后,基本不再做分流,而是一直沿着换热板的外边缘环绕一圈,最后于靠近第二接口222的位置再进行汇流。该部分流道用于平衡工质在流通尾端处的温度。尤其是针对采用相变冷媒工质的情况下,这部分流道更能发挥作用。相变后的工质体积变化很大,容易出现堆积、流通不畅、温度集中等问题。该问题在汇流端处更容易凸显。环绕在最外圈的流道中的工质由于分流的次数较少,使得最外圈的流道中的工质相变相对较少,正好可以在整个循环的尾端用于平衡其它流道中的工质的温度和相态。为整体循环的流畅性、均匀性提供保障。
可选地,参见图6,所述换热板包括第一区域,所述第一区域用于对应电池在所述换热板上形成电池投影区域,所述干路循环流道100位于所述电池投影区域的外围。
具体地,所述第一区域可以为图6中示出的电池覆盖区域,所述干路循环流道100位于所述电池投影区域的外围时,不仅可以对电池周围的区域进行换热,还可以保证所述换热板对电池换热的完整性,提高所述换热板的换热效率。
所述干路循环流道100可以作为换热板中的第一循环流道,在换热板的中部,还可以形成第二循环流道200、第三循环流道300和第四循环流道400,如图7和图8所示。
参见图9,所述流道21的换向处形成换向结211,所述换向结包括第一类换向结2111和第二类换向结2112,所述第二类换向结2112一端的流道方向与所述第一类换向结2111另一端的流道方向呈换向夹角。所述流道21在通过第二类换向结2112时可以进行换向夹角的弯折,比如经过90°或者180°的弯折,以实现所述流道21的灵活换向,保证所述流道21在所述换热板中的分布密度。
参见图10,所述分流结212包括一级分流结2121和二级分流结2122,所述支路包括一级支路,所述一级分流结2121连接于所述干路和所述一级支路之间,所述支路包括二级支路,所述二级分流结2122连接于所述一级支路和所述二级支路之间。
可选地,所述换热板包括:
流道21,所述流道布设在所述换热板内,所述流道被配置为供换热工质在其中流动;
第一接口221和第二接口222,所述流道的一端与所述第一接口221连通,所述流道的另一端与所述第二接口222连通,所述第一接口221和第二接口222被配置为供换热工质通入所述换热板内;
所述换热板包括第一类区域26,所述第一类区域26用于与电池极柱区域对应设置;所述流道包括分流结212,所述分流结包括一级分流结2121,至少一个所述一级分流结设于所述第一类区域,所述一级分流结靠近所述第一接口或者第二接口设置,所述分流结将所述流道分流。
具体地,所述第一类区域26可以对应于电池中电芯发热较高的区域。由于电芯上需要设置有极柱用于电连接,所以电芯在运行过程中的极柱区域的发热相对较大,也就形成了上述的电池极柱区域;所述第一类区域26可以用于与电池上的极柱区域对应设置,而所述换热板上除了第一类区域外的区域可以用于与电池上电芯本体的非极柱区域对应设置,以提高所述换热板2的换热效率。
具体地,所述分流结212两端的流道数量不同;所述分流结212两端的流道可以分别作为工质的进口和出口, 而且在面对换热板不同的换热情况下,所述分流结212两端的流道进出口可以相互切换,使得工质在分流结212中可以正向或者反向流动。
在一种实施例中,从所述第一接口221到第二接口222,所述流道具有至少两个分流结212,其中一个所述分流结212靠近第一接口并将所述流道分流,另一个所述分流结212靠近第二接口并将所述流道汇流。
具体地,所述流道21两端分别与第一接口221和第二接口222插接或者螺纹连接。所述流道21在所述换热板中的分布至少经过1次分流和至少1次汇流后从所述第一接口221延伸至所述第二接口222,分流可以为一分二、一分三或者一分更多流道的方式,汇流可以为二合一、三合一或者更多流道合一的方式,以在所述流道21上形成一个或者多个分流结212。
本申请的所述流道包括分流结212,所述分流结包括一级分流结2121,至少一个所述一级分流结设于所述第一类区域,所述一级分流结靠近所述第一接口或者第二接口设置,所述分流结将所述流道分流。由于所述第一类区域为与电池中电芯发热较高的极柱区域相对应的区域,使得所述一级分流结通过流道数量的改变可以提高所述第一类区域的流道分布密度,进而提升所述换热板的换热效果。
可选地,参见图16和图17,所述换热板包括第一换热模块201和第二换热模块202,所述第一换热模块201和第二换热模块202均包括所述第一类区域26;
所述第一换热模块的所述第一类区域26包括第三子区2621和第一子区2611,第二换热模块的所述第一类区域26包括第四子区2622和第二子区2612;
所述一级分流结设置于所述第三子区2621,所述分流结还包括二级分流结2122,所述二级分流结位于所述第一子区2611、第二子区和第四子区中的至少一者。
具体地,所述换热板2在对电池进行换热时,所述换热板2上第一类区域26可以与电池上的极柱区域相对应,以保证所述换热板2对电池的换热效果。而所述电池的实际结构可以由一组电芯组成,也可以有多组排列的电芯组成。比如参见图6,所述换热板2在对由两组电芯组成的电池进行换热时,可以将换热板2分成第一换热模块和第二换热模块,所述第一换热模块与一组电芯相对应,所述第二换热模块与另一组电芯相对应。而至少部分所述流道21在第一换热模块和第二换热模块中的每换热模块内弯曲设置,可以增大所述第一换热模块和第二换热模块中流道21的设置面积,进而增加了所述换热板2的有效换热面积,提升了所述换热板2对电池的换热量。
具体地,第一换热模块可以为图5中的左侧区域,第二换热模块可以为图5中的右侧区域,第一换热模块中的所述第一类区域26包括第三子区2621和第一子区2611,第二换热模块中的所述第一类区域26包括第四子区2622和第二子区2612。第一接口221和第二接口222可以靠近第三子区2621设置。而所述一级分流结为流道中靠近第一接口221和第二接口222的分流结,使得一级分流结设置于所述第三子区2621。
可选地,所述换热板包括:
换热区域和电池区域,换热区域环绕于所述电池区域设置,电池区域为电池在所述换热板上形成电池投影区域,
流道21,所述流道21布设在所述换热板内,所述流道被配置为供换热工质在其中流动,所述流道包括第一类流道和第二类流道;
第一类流道位于所述换热区域,第二类流道分布于电池区域。
具体地,流道21在换热板中延伸时,最外圈的第一类流道经过一次或者两次分流后,基本不再做分流,而是一直沿着换热板的外边缘环绕一圈,最后于靠近流道出口的位置再进行汇流。该部分流道用于平衡工质在流通尾端处的温度。尤其是针对采用相变冷媒工质的情况下,这部分流道更能发挥作用。相变后的工质体积变化很大,容易出现堆积、流通不畅、温度集中等问题。该问题在汇流端处更容易凸显。环绕在最外圈的流道中的工质由于分流的次数较少,使得最外圈的流道中的工质相变相对较少,正好可以在整个循环的尾端用于平衡其它流道中的工质的温度和相态。为整体循环的流畅性、均匀性提供保障。
所述第一类流道环绕于所述电池区域并位于所述电池投影区域的外围时,不仅可以对电池周围的区域进行换热,还可以保证所述换热板对电池换热的完整性,提高所述换热板的换热效率。
所述第一类流道可以作为换热板中的第一循环流道,在换热板的中部,还可以形成包括第二循环流道、第三循环流道和第四循环流道的第二类流道,以提高所述换热板的换热均衡性。
可选地,所述第一类流道的长度小于所述第二类流道的长度;和/或,
所述第一类流道分流次数小于第二类流道的分流次数。
具体地,虽然第一类流道位于所述换热区域,也就是第一类流道沿着换热板的外边缘环绕一圈,使得第二类流道位于第一类流道的内部;但由于第一类流道经过一次或者两次分流后,基本不再做分流,并且第一类流道的换向次数较少,而第二类流道在换热板中需要进行多次分流和换向,以使得换热板中均衡分布流道,所以第一类流道的长度小于所述第二类流道的长度,并且第一类流道分流次数小于第二类流道的分流次数,保证了所述换热板中流道分布的均衡性。本申请实施例还提供了一种电池包,包括所述的换热板2和多个电池芯体1,每个所述电池芯体的两端设置有极柱,多个所述电池芯体沿第一方向分布,第一方向可以为图1中的X方向,以增加所述电池包的能量密度;所述换热板沿第二方向设置于所述电池芯体的一侧或者两侧,第二方向可以为图1中的Z方向,沿第二方向的多个所述电池芯体的侧面形成了电池芯体的大面,所述换热板靠近电池芯体的一个或者两个大面设置,可以保证所述换热板对电池芯体的换热效果。
另外,多个所述电池芯体1可以形成第一电池模组11和第二电池模组12。所述第二电池模组12位于所述第一电池模组11远离所述进出口总成22的一侧。具体地,所述第一类区域26的流道可以与所述第一电池模组11相对并且可以靠近进出口总成22,也就是第一类区域26的流道位于换热板的近端;而所述第二类区域27的流道21可以远离进出口总成22,也就是第二类区域27的流道位于换热板的远端;为了保证换热板的近端和远端换热效果的均衡性,可以将远端流道21的流量增加,比如设置所述流道21中与所述第二电池模组12相对的通道的流量为第二流量,所述第一流量小于所述第二流量。
可选地,所述电池芯体两端极柱连线所在方向为第三方向,第三方向可以为图1中的Y方向,所述第一方向、所述第二方向和第三方向可以分别平行于电池芯体的宽度方向、高度方向和长度方向,在所述第一方向、所述第二方向和第三方向互相垂直的情况下,多个所述电池芯体可以形成结构紧凑的电池包结构,以保证所述电池包的能量密度。
可选地,所述换热板为底板或上盖。具体地,所述换热板可以沿第二方向设置于所述电池芯体的一侧或者两侧,在所述换热板可以沿第二方向设置于所述电池芯体的一侧时,比如换热板设置于多个电池芯体的底侧时,换热板可以形成电池包的底板,一方面可以在换热板与电池芯体贴合时保证对电池芯体的换热效果,还可以在电池包的底部受到撞击时,给电池包起到很好的防护作用;而换热板设置于多个电池芯体的顶侧时,换热板可以形成电池包的上盖,同样可以在换热板与电池芯体贴合时保证对电池芯体的换热效果,还可以对电池包形成防护。
本申请实施例提供了一种车辆,包括所述的换热板;或,
包括所述的电池包。
第三方面,参照图3至图18,本申请实施例提供了一种流道集成板,参见图18,所述流道集成板包括:
第一区域28和第二区域29;
流道21,所述流道分布于所述第一区域28和所述第二区域29,所述第一区域28内所述流道21分布的平均密集度大于所述第二区域29内所述流道21分布的平均密集度。
具体地,所述流道集成板可以用于对电池进行冷却或者加热。比如流道集成板在对电池进行冷却时,电池运行过程中会在正极位置和负极位置产生较大的热量,也就是需要流道集成板对电池的正极位置和负极位置提供更大的冷却效果。而所述第一区域28内所述流道21分布的平均密集度大于所述第二区域29内所述流道21分布的平均密集度时,可以通过第一区域28正对电池的正极位置和负极位置,而第二区域29正对电池的中部位置,以提高流道集成板对电池的换热效果。
可选地,所述流道21的宽度尺寸小于15mm。
具体地,本申请实施例提供的所述流道集成板在面对不同位置的换热要求不同时,可以通过不同密集度的流道21分布来提高流道集成板的换热效率,也就是可以使用宽度更小的流道21来进行换热,所述流道21的宽度可以为3-12mm,流道21的宽度也就是流道21的径向尺寸。可选地,为了提高流道21的分布密集度,可以将流道21的宽度设定为5-10mm。
可选地,所述流道集成板还包括所述的换热板2。
第四方面,参照图3至图19,本申请实施例提供了一种流道集成板,所述流道集成板包括:
流道板24;
流道21,所述流道21分布于所述流道板24中,在所述流道集成板所在的平面内,所述流道21的设置面积大于所述流道板24面积的70%。
具体地,所述流道21在所述流道板24中的设置面积比例可以根据所述流道集成板的换热对象来进行灵活设置。比如针对换热要求较高的电池等换热对象进行换热时,面对不同功率和电压的电池,可以将流道21的设置面积设置为流道板24面积75%、80%、85%、90%或者95%,以提高所述流道集成板的换热灵活性。
可选地,所述流道的宽度尺寸小于15mm。
具体地,本申请实施例提供的所述流道集成板在面对不同位置的换热要求不同时,可以通过不同密集度的流道分布来提高流道集成板的换热效率,也就是可以使用宽度更小的流道21来进行换热,所述流道21的宽度可以为3-12mm,流道21的宽度也就是流道21的径向尺寸。可选地,为了提高流道21的分布密集度,可以将流道21的宽度设定为5-10mm。
可选地,所述流道集成板还包括所述的换热板2。
另外,所述流道21可以是在换热板2中冲压而成,所述电池模组1中可以包括多个电池单体,所述换热板2对电池模组1的正向(流道21中工质的流向)冷却和反向(流道21中工质的流向)加热,可以改善电池模组1的冷却和加热操作,保证电池模组1的均温性,提高所述换热板2对所述电池模组1的换热能力。
流道21从汇流端朝向流道板24内部延伸,所述流道21经过分汇流结进行分流,形成更多级别的支管。这些流道21也通过换向结进行拐弯布置,从而使支管布满整个流道板24,对各个区域实现流通换热。
如图19所示,所述流道板24与基板23组合构成换热板2。在所述流道板24上,所述流道21可以呈凹槽结构,其顶面并没有封死。将所述基板23盖设在所述流道板24上后,基板23能够对流道21形成顶面密封。这样,所述基板23与所述流道21合成换热板2整体。所述第一接口221、第二接口222可以通过设置在基板23上的端口部件与所述流道板24组合形成。端口部件上开设有第一接口221和第二接口222,将基板23盖设在所述流道板24上后,流道21的第一汇流端和第二汇流端能够连通到第一接口221和第二接口222上。
根据本方案对换热板2的各个特征的设计思路,可以将本方案划分成不同的板块。不同板块代表着本方案关注的技术特征不同,针对关注的技术特征作为出发点对流道21进行设计,以获得更均匀的换热方案。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (20)

  1. 一种换热板,应用于电池,其中,所述换热板包括:第一接口(221)、第二接口(222)以及连通第一接口(221)和第二接口(222)的流道(21);
    所述换热板(2)用于对所述电池换热,所述流道用于流通工质,
    在所述换热板(2)用于对所述电池进行冷却时,所述工质从所述第一接口(221)流入所述流道(21)并从第二接口(222)流出;
    在所述换热板(2)用于对所述电池进行加热时,所述工质从所述第二接口(222)流入所述流道(21)并从第一接口(221)流出。
  2. 根据权利要求1所述的换热板,其中,在所述换热板(2)用于对所述电池进行冷却时,所述工质从所述第一接口(221)流入,并优先流经第一类区域;
    在所述换热板(2)用于对所述电池进行加热时,所述工质从所述第二接口(222)流入,并优先流经第二类区域;
    其中,所述第一类区域(26)用于与电池极柱区域对应设置,所述第二类区域(27)用于与电池的非极柱区域对应设置。
  3. 根据权利要求2所述的换热板,其中,所述流道包括与第一接口(221)连接的第一段流道以及与所述第二接口(222)连接的第二段流道;
    在所述换热板(2)用于对所述电池进行冷却时,所述工质从所述第一接口(221)流入,并先后流经所述第一段流道和第二段流道后,从所述第二接口流出,并且所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度,所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度;
    在所述换热板(2)用于对所述电池进行加热时,所述工质从所述第二接口(222)流入,并先后流经所述第二段流道和第一段流道后,从所述第一接口(221)流出,并且所述第二段流道中流经所述第一类区域的流道长度小于流经所述第二类区域的流道长度,所述第一段流道中流经所述第一类区域的流道长度大于流经所述第二类区域的流道长度。
  4. 根据权利要求3所述的换热板,其中,所述第一段流道长度与所述第二段流道长度的比值的范围为0.5-5。
  5. 根据权利要求1-4中任一项所述的换热板,其中,所述第二类区域宽度与所述第一类区域宽度的比值范围为1-8。
  6. 根据权利要求1-5中任一项所述的换热板,其中,
    所述第一类区域宽度与电池长度的比值范围为0.1-0.4,所述第二类区域宽度与电池长度的比值范围为0.1-0.6。
  7. 根据权利要求1-6中任一项所述的换热板,其中,所述第一接口(221)和第二接口(222)位于所述换热板的同侧。
  8. 根据权利要求7所述的换热板,其中,所述换热板包括进出口总成(22),所述第一接口(221)和第二接口(222)位于所述进出口总成(22)。
  9. 根据权利要求3-8中任一项所述的换热板,其中,所述换热板包括第一类区域(26)和第二类区域(27),所述流道分布于所述第一类区域(26)和第二类区域(27),
    第一类区域(26)包括第一分区(261)和第二分区(262);
    第二类区域(27)包括第一分域(271),所述第一分域(271)位于所述第一分区(261)和所述第二分区(262)之间;
    所述换热板(2)用于对所述电池换热时,所述工质在所述第一分区(261)、第一分域(271)和第二分区(262)中进行至少1次循环流动;
    所述第一类区域(26)用于与电池极柱区域对应设置,所述第二类区域(27)用于与电池的非极柱区域对应设置。
  10. 根据权利要求3-8中任一项所述的换热板,其中,所述第一类区域(26)包括第四子区(2622),所述第二类区域(27)包括第二分域(272);
    在所述换热板(2)用于对所述电池进行冷却时,所述工质从所述第一接口(221)流经所述第四子区(2622)、第二分域(272)和第四子区(2622),并从所述第四子区(2622)流入所述第二接口(222);
    在所述换热板(2)用于对所述电池进行加热时,所述工质从所述第二接口(222)流经所述第四子区(2622)、第二分域(272)和第四子区(2622),并从所述第四子区(2622)流入所述第一接口(221)。
  11. 根据权利要求3-8中任一项所述的换热板,其中,所述第一类区域(26)包括第四子区(2622)和第二子区(2612),
    所述第二类区域(27)包括第二分域(272),所述第二分域(272)位于所述第四子区(2622)和第二子区(2612)之间;
    在所述换热板(2)用于对所述电池进行冷却时,所述工质从所述第一接口(221)流入所述第四子区(2622)、第二分域(272)和所述第二子区(2612),并由所述第二子区(2612)流回所述第二分域(272)和所述第四子区(2622)后流入所述第二接口(222);
    在所述换热板(2)用于对所述电池进行加热时,所述工质从所述第二接口(222)流入所述第四子区(2622)、第二分域(272)和所述第二子区(2612),并由所述第二子区(2612)流回所述第二分域(272)和所述第四子区(2622)后流入所述第一接口(221)。
  12. 根据权利要求3-8中任一项所述的换热板,其中,所述换热板包括第一换热模块和第二换热模块,所述第一换热模块和第二换热模块均包括第一类区域(26)和第二类区域(27),
    所述第一类区域(26)包括第三子区(2621)、第一子区(2611)、第四子区(2622)和第二子区(2612);
    所述第二类区域(27)包括第一分域(271)和第二分域(272);
    所述第一分域(271)位于所述第三子区(2621)和所述第一子区(2611)之间,所述第二分域(272)位于所述第四子区(2622)和第二子区(2612)之间,所述第一子区(2611)与第四子区(2622)相邻设置。
  13. 根据权利要求12所述的换热板,其中,在所述第一换热模块内,在所述换热板(2)用于对所述电池进行换热时,所述工质在所述第三子区(2621)、第一分域(271)和第一子区(2611)内的流道中进行至少1次循环流动。
  14. 根据权利要求12或13所述的换热板,其中,在所述第二换热模块内,
    在所述换热板(2)用于对所述电池进行冷却时,所述工质从所述第一接口(221)流入所述第一换热模块内,经所述第一换热模块流入所述第四子区(2622)和所述第二子区(2612),并由所述第四子区(2622)和所述第二子区(2612)流入所述第二分域(272),后流入所述第二接口(222);
    在所述换热板(2)用于对所述电池进行加热时,所述工质从所述第二接口(222)流入所述第二分域(272),并由所述第二分域(272)流入所述第四子区(2622)和所述第二子区(2612),后流入所述第一接口(221)。
  15. 根据权利要求3-14中任一项所述的换热板,其中,所述流道包括分流结(212),所述分流结包括一级分流结(2121),至少一个所述一级分流结设于所述第一类区域,所述一级分流结靠近所述第一接口或者第二接口设置,所述分流结将所述流道分流。
  16. 根据权利要求15所述的换热板,其中,所述换热板包括第一换热模块和第二换热模块,所述第一换热模块和第二换热模块均包括所述第一类区域(26);
    所述第一换热模块的所述第一类区域(26)包括第三子区(2621)和第一子区(2611),第二换热模块的所述第一类区域(26)包括第四子区(2622)和第二子区(2612);
    所述一级分流结设置于所述第三子区(2621),所述分流结还包括二级分流结(2122),所述二级分流结位于所述第一子区(2611)、第二子区和第四子区中的至少一者。
  17. 根据权利要求3-16中任一项所述的换热板,其中,包括:换热区域和电池区域,换热区域环绕于所述电池区域设置,电池区域为电池在所述换热板上形成电池投影区域,所述流道包括第一类流道和第二类流道;所述第一类流道位于所述换热区域,所述第二类流道分布于电池区域。
  18. 根据权利要求17所述的换热板,其中,所述第一类流道的长度小于所述第二类流道的长度,和/或,所述第一类流道分流次数小于第二类流道的分流次数。
  19. 一种电池包,其中,包括权利要求1-18任一项所述的换热板(2)。
  20. 一种车辆,其中,包括权利要求1-18任一项所述的换热板;或,
    包括权利要求19所述的电池包。
PCT/CN2023/109655 2022-07-29 2023-07-27 换热板、电池包和车辆 WO2024022456A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210911342.3 2022-07-29
CN202210911342 2022-07-29
CN202211352187.2A CN117134019A (zh) 2022-05-20 2022-10-31 换热板、电池包和车辆
CN202211352187.2 2022-10-31

Publications (2)

Publication Number Publication Date
WO2024022456A1 true WO2024022456A1 (zh) 2024-02-01
WO2024022456A9 WO2024022456A9 (zh) 2024-03-14

Family

ID=89705475

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2023/109652 WO2024022455A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆
PCT/CN2023/109655 WO2024022456A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆
PCT/CN2023/109649 WO2024022453A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109652 WO2024022455A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109649 WO2024022453A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆

Country Status (1)

Country Link
WO (3) WO2024022455A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140342195A1 (en) * 2012-01-05 2014-11-20 Electrovaya Inc. Fluid-cooled battery module containing battery cells
CN104471783A (zh) * 2012-06-11 2015-03-25 捷豹路虎有限公司 车辆电池组、用于冷却电池组的系统以及在该系统中使用的冷却板
CN214280133U (zh) * 2021-02-04 2021-09-24 无锡明恒混合动力技术有限公司 一种用于方形电池模组的翅片式热交换侧板
CN114744322A (zh) * 2021-01-07 2022-07-12 比亚迪股份有限公司 电池包及车辆
CN217691361U (zh) * 2022-05-19 2022-10-28 欣旺达电动汽车电池有限公司 电池包及车辆

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301877A (ja) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd 組電池装置
JP6768227B2 (ja) * 2016-09-29 2020-10-14 三浦工業株式会社 シェルアンドプレート式熱交換器
CN214254533U (zh) * 2021-02-01 2021-09-21 比亚迪股份有限公司 电池包的冷却装置、蓄电设备及其空调直冷系统
CN214505645U (zh) * 2021-03-29 2021-10-26 蜂巢能源科技有限公司 用于电池包的冷却板、电池包以及车辆
CN214706042U (zh) * 2021-04-14 2021-11-12 比亚迪股份有限公司 电池包及车辆
CN215771271U (zh) * 2021-06-30 2022-02-08 比亚迪股份有限公司 电池包及车辆
CN215771341U (zh) * 2021-08-20 2022-02-08 比亚迪股份有限公司 电池包及车辆
CN114156500A (zh) * 2021-09-15 2022-03-08 国家电投集团氢能科技发展有限公司 双极板和燃料电池电堆
CN114400347B (zh) * 2021-10-08 2024-04-16 东风汽车集团股份有限公司 一种用于燃料电池的双极板以及燃料电池
CN216648424U (zh) * 2021-11-30 2022-05-31 江苏正力新能电池技术有限公司 电池水冷板和电池水冷系统
CN216648468U (zh) * 2021-12-07 2022-05-31 上海兰钧新能源科技有限公司 电池包冷却组件和电池包
CN117134018A (zh) * 2022-05-20 2023-11-28 比亚迪股份有限公司 换热板、电池包和车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140342195A1 (en) * 2012-01-05 2014-11-20 Electrovaya Inc. Fluid-cooled battery module containing battery cells
CN104471783A (zh) * 2012-06-11 2015-03-25 捷豹路虎有限公司 车辆电池组、用于冷却电池组的系统以及在该系统中使用的冷却板
CN114744322A (zh) * 2021-01-07 2022-07-12 比亚迪股份有限公司 电池包及车辆
CN214280133U (zh) * 2021-02-04 2021-09-24 无锡明恒混合动力技术有限公司 一种用于方形电池模组的翅片式热交换侧板
CN217691361U (zh) * 2022-05-19 2022-10-28 欣旺达电动汽车电池有限公司 电池包及车辆

Also Published As

Publication number Publication date
WO2024022455A9 (zh) 2024-03-14
WO2024022455A1 (zh) 2024-02-01
WO2024022453A1 (zh) 2024-02-01
WO2024022456A9 (zh) 2024-03-14

Similar Documents

Publication Publication Date Title
KR20200134492A (ko) 열전모듈이 구비된 열교환기 및 이를 포함하는 배터리 열관리 시스템
KR20180081996A (ko) 간접 냉각 방식의 배터리 팩
CN219180599U (zh) 换热板、电池包和车辆
CN113851756A (zh) 一种风冷和液冷混合式电池热管理装置及热管理方法
WO2024022456A1 (zh) 换热板、电池包和车辆
CN113178639B (zh) 分形网络流道冷却板
CN210200914U (zh) 电池包冷却系统及电池包
WO2024002201A1 (zh) 直冷板、换热器、动力电池包及车辆
CN218896702U (zh) 电池包的冷板和具有其的电池包
CN217522115U (zh) 一种刀片动力电池液冷相变复合式冷却装置
CN115117514B (zh) 一种交错逆流式一体化冷却系统及电动车
CN110323516A (zh) 电池包热交换系统
CN114156609A (zh) 一种大电池用极柱
CN219892239U (zh) 一种换热板、热管理组件及电池
CN111864311A (zh) 电池包及其冷板
CN217509345U (zh) 功率模块装置和车辆
CN220209066U (zh) 三层式冷却系统
CN212162029U (zh) 一种水冷板流道
CN217444498U (zh) 一种预防储能电站热失控扩散的液冷装置
CN218783090U (zh) 储能电池
CN218069983U (zh) 一种均温储能液冷板
CN218783108U (zh) 一种液冷系统及电池包
CN219658801U (zh) 一种动力电池用微通道液冷和空气冷的复合冷却系统
CN220400698U (zh) 一种液冷板及电池模组
CN219988940U (zh) 一种车辆的热交换回路切换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845661

Country of ref document: EP

Kind code of ref document: A1