WO2024022453A1 - 换热板、电池包和车辆 - Google Patents

换热板、电池包和车辆 Download PDF

Info

Publication number
WO2024022453A1
WO2024022453A1 PCT/CN2023/109649 CN2023109649W WO2024022453A1 WO 2024022453 A1 WO2024022453 A1 WO 2024022453A1 CN 2023109649 W CN2023109649 W CN 2023109649W WO 2024022453 A1 WO2024022453 A1 WO 2024022453A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
area
flow channel
level
junction
Prior art date
Application number
PCT/CN2023/109649
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
黄伟
马锐
阙衍升
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222893863.9U external-priority patent/CN219180598U/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024022453A1 publication Critical patent/WO2024022453A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the technical field of battery components. Specifically, this application relates to a heat exchange plate, a battery pack and a vehicle.
  • the existing harmonica tube is arranged in a single pipe or multiple pipes side by side, which makes the distribution of pipes in heat exchange components such as harmonica tubes The density is low.
  • the heat exchange component exchanges heat for the battery, it is easy to cause the temperature of the battery to be too high or too low, reducing the stability and life of the battery.
  • This application provides a new technical solution for heat exchange plates, battery packs and vehicles.
  • a heat exchange plate for a battery, including:
  • a flow channel the flow channel is arranged in the heat exchange plate, and the flow channel is configured for the heat exchange working fluid to flow therein;
  • a first port and a second port One end of the flow channel is connected to the first port, and the other end of the flow channel is connected to the second port.
  • the first port and the second port are configured to provide The heat exchange working fluid flows into the heat exchange plate;
  • the heat exchange plate includes a first type of area, and the first type of area is used to be arranged corresponding to the battery pole area; the flow channel includes a shunt junction, and the shunt junction includes a first-level shunt junction, and at least one of the first The first-level shunt junction is arranged in the first type area, the first-level shunt junction is arranged close to the first port or the second port, and the shunt junction shunts the flow channel.
  • the heat exchange plate includes a first heat exchange module and a second heat exchange module, and both the first heat exchange module and the second heat exchange module include the first type of area;
  • the first type area of the first heat exchange module includes a third sub-area and a first sub-area, and the first type area of the second heat exchange module includes a fourth sub-area and a second sub-area;
  • the first-level shunt junction is disposed in the third sub-region.
  • the shunt junction also includes a second-level shunt junction.
  • the second-level shunt junction is located in the first sub-region, the third sub-region and the fourth sub-region. At least one of.
  • the shunt junction includes at least two of the first-level shunt junctions, wherein the two second-level shunt junctions corresponding to part of the first-level shunt junctions are located in the second sub-region and are connected to another part of the first-level shunt junctions.
  • the two secondary shunt junctions corresponding to the shunt junction are located in the first sub-region and the fourth sub-region respectively.
  • the flow channel further includes a three-level shunt junction, and the three-level shunt junction is located in at least one of the first sub-region and the second sub-region.
  • the shunt junction further includes a four-stage shunt junction, and the four-stage shunt junction is provided in at least one of the third sub-region and the second sub-region.
  • the working fluid flows in from the first port and flows through the first-level shunt junction, the second-level shunt junction, and the third-level shunt junction, and then flows out through the second port.
  • the flow channel includes a trunk path and a branch path, the trunk path is connected to the first port or the second port, and the trunk path connects the branch path to the first port and the second port. connected;
  • the branch includes a first-level branch, a second-level branch, a third-level branch and a fourth-level branch,
  • the first-level shunt junction is connected between the main road and the first-level branch road;
  • the secondary shunt junction is connected between the primary branch and the secondary branch;
  • the third-level shunt junction is connected between the second-level branch and the third-level branch;
  • the fourth-level branch junction is connected between the third-level branch and the fourth-level branch.
  • the flow channel further includes a confluence junction, and the confluence junction includes a primary confluence junction, a secondary confluence junction, a third-level confluence junction and a fourth-level confluence junction;
  • the two ends of the four-level branch are respectively connected to a fourth-level shunt junction and a fourth-level converging junction;
  • the four-level branches converge to form a three-level branch through connected four-level junctions;
  • the third-level branches formed by the convergence are gathered through the third-level convergence junction to form the second-level branches;
  • the secondary branches formed by the convergence converge through the secondary convergence junction to form the primary branches
  • the first-level branches formed by the convergence converge through the first-level convergence junction to form the trunk road;
  • the main path is connected to the first port, or the main path is connected to the second port.
  • the heat exchange plate includes a first heat exchange module and a second heat exchange module, each of the first heat exchange module and the second heat exchange module includes a second type of area, and the second type of area is used for Set corresponding to the non-column area of the battery;
  • the second type of area of the first heat exchange module includes a first sub-area, and the second type of area of the second heat exchange module includes a second sub-area;
  • At least one of the first-level shunt junctions is close to the second port and is disposed in the third sub-region.
  • the shunt junctions also include a secondary shunt junction.
  • the second-level shunt junctions are located between the third sub-region and the third sub-region. Describe the first division.
  • the flow channel further includes a three-level shunt junction, and the three-level shunt junction is located in the second subdomain.
  • the shunt junction further includes a four-stage shunt junction, and the four-stage shunt junction is disposed in the second subdomain.
  • the working fluid flows in from the second port and flows through the first-level shunt junction, the second-level shunt junction, and the third-level shunt junction, and then flows out through the first port.
  • part of the secondary branches are distributed around the edges of the first heat exchange module and the second heat exchange module.
  • the flow channel performs N-level splitting in the first heat exchange module and M-level splitting in the second heat exchange module, and M ⁇ N.
  • the flow channel forms n1 branches after the first heat exchange module performs N-level shunting, and forms m1 branches after the second heat exchange module performs M-level shunting, m1>n1.
  • the heat exchange plate further includes a second type of area; the flow channels are distributed in the first type of area and the second type of area; the heat exchange plate is used to cool the battery, so The working fluid flows from the flow channel of the first type area to the flow channel of the second type area (27); or the heat exchange plate is used to heat the battery, and the working fluid flows from the second type area (27).
  • the flow channel of the class area flows to the flow channel of the first type area.
  • the first type of area includes a first zone and a second zone; when the heat exchange plate is used to cool the battery, the working fluid flows from the first zone into the second type of area. underwent at least 2 shunts during the process.
  • the heat exchange plate has a first area and a second area, the flow channels are distributed in the first area and the second area, and the average density of the flow channels in the first area is The degree is greater than the average density of the flow channel distribution in the second area.
  • the heat exchange plate includes a flow channel plate and a base plate.
  • the flow channel is provided on the flow channel plate.
  • the flow channel has a larger area than the flow channel. 70% of the slab area.
  • a battery pack including the heat exchange plate described in the first aspect.
  • a vehicle including the heat exchange plate described in the first aspect; or,
  • An embodiment of the present application provides a heat exchange plate.
  • the heat exchange plate includes a flow channel, the flow channel is arranged in the heat exchange plate, and the flow channel is configured to allow a heat exchange working medium to flow therein.
  • a first port and a second port one end of the flow channel is connected to the first port, the other end of the flow channel is connected to the second port, and the heat exchange plate includes a first type of area.
  • the primary shunt junction of the heat exchange plate described in this application is arranged close to the first port or the second port.
  • the first type area is an area corresponding to the pole area in the battery where the battery core generates high heat
  • the first-level shunt junction is installed in the first type area and is close to the first port or the second port, In order to facilitate the control of the flow distribution of the working fluid and improve the temperature uniformity of the heat exchange plate.
  • Figure 1 is a schematic diagram 1 of the partitions of a heat exchange plate provided by an embodiment of the present application
  • Figure 2 is a schematic diagram 2 of the partitioning of a heat exchange plate provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of a shunt junction on a heat exchange plate provided by an embodiment of the present application
  • Figure 4 is an overall schematic diagram of a heat exchange plate provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a flow distribution component of a heat exchange plate provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the cooperation between the battery module and the heat exchange plate of a battery pack provided by an embodiment of the present application;
  • Figure 7 is a schematic diagram of the first heat exchange module of a heat exchange plate provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a second heat exchange module of a heat exchange plate provided by an embodiment of the present application.
  • Figure 9 is an exploded top view of a battery structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of a heat exchange plate provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram 2 of a heat exchange plate provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram 1 of the flow direction of a flow channel of a heat exchange plate provided by an embodiment of the present application;
  • Figure 13 is a schematic diagram 2 of the flow direction of a flow channel of a heat exchange plate provided by an embodiment of the present application;
  • Figure 14 is a schematic diagram of the reversing junction of a heat exchange plate provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of a branch junction of a heat exchange plate provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of the partitions of a heat exchange plate provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram 1 of a battery structure provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of the flow direction (a) and partition (b) of the flow channel of a heat exchange plate provided by the embodiment of the present application;
  • Figure 19 is a second schematic diagram of the flow direction (a) and partition (b) of the flow channel of a heat exchange plate provided by the embodiment of the present application;
  • Figure 20 is a schematic diagram of the base plate and flow channel plate.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • the heat exchange plate 2 includes:
  • the flow channel 21 is arranged in the heat exchange plate 2, and the flow channel 21 is configured for the heat exchange working medium to flow therein.
  • a first port 221 and a second port 222 One end of the flow channel 21 is connected to the first port 221, and the other end of the flow channel 21 is connected to the second port 222.
  • the first port 221 and The second port 222 is configured to allow the heat exchange working fluid to pass into the heat exchange plate 2;
  • the heat exchange plate 2 includes a first type of area 26, which is configured to correspond to the battery pole area; the flow channel 21 includes a shunt junction 2120, and the shunt junction 2120 includes a first-level shunt junction. 21210, at least one of the first-level shunt junction 21210 is provided in the first type area 26, and the first-level shunt junction 21210 is set close to the first port 221 or the second port 222, and the The shunt junction 2120 shunts the flow channel 21 .
  • the first type of area 26 may correspond to an area in the battery where the battery core generates high heat. Since the battery core needs to be provided with poles for electrical connection, the heat generated in the pole area of the battery core during operation is relatively large, thus forming the above-mentioned battery pole area; the first type area 26 can It is used to be arranged corresponding to the pole area on the battery, and the area on the heat exchange plate 2 except the first type area 26 can be used to be arranged corresponding to the non-pole area of the cell body on the battery, so as to improve the Heat exchange efficiency of heat exchange plate 2.
  • the number of flow channels 21 at both ends of the split junction 2120 is different; the flow channels 21 at both ends of the split junction 2120 can be used as the inlet and outlet of the working fluid respectively, and in the face of different heat exchange situations of the heat exchange plate 2, the flow channels 21 at both ends of the split junction 2120 can be The flow channel inlets and outlets at both ends of the split junction 21220120 can be switched with each other, so that the working medium can flow in the forward or reverse direction in the split junction 21220120.
  • the flow channel 21 has at least two shunt junctions 2120, one of the shunt junctions 2120 is close to the first port 221 and will The flow channel 21 is divided, and the other branch junction 2120 is close to the second port and merges the flow channel 21 .
  • both ends of the flow channel 21 are plugged or threadedly connected to the first port 212201 and the second port 222 respectively.
  • the distribution of the flow channel 21 in the heat exchange plate 2 extends from the first port 212201 to the second port 222 after at least one branch and at least one confluence.
  • the branch can be It can be divided into two, one into three or one into more flow channels 21, and the confluence can be two-in-one, three-in-one or more flow channels 21 into one, so as to form a flow channel 21. Or multiple shunt junctions 21220120.
  • the flow channel 21 of the present application includes a shunt junction 21220120.
  • the shunt junction 2120 includes a first-level shunt junction 21210. At least one of the first-level shunt junctions 21210 is provided in the first type area 26.
  • the first-level shunt junction 21210 is disposed close to the first port 221 or the second port 222, and the shunt junction 2120 shunts the flow channel 21. Since the first type area 26 is an area corresponding to the pole area in the battery where the battery core generates high heat, the first-level shunt junction 21210 is disposed in the first type area 26 and is close to the first port.
  • the port 221 or the second port 222 is used to control the flow distribution of the working fluid to improve the temperature uniformity of the heat exchange plate 2 .
  • Changing the number of flow channels 21 in the primary branch junction 21210 can increase the distribution density of the flow channels 21 in the first type area 26, thereby improving the heat exchange effect of the heat exchange plate 2.
  • the heat exchange plate 2 includes a first heat exchange module 201 and a second heat exchange module 202, and both the first heat exchange module 201 and the second heat exchange module 202 include the first type area 26;
  • the first type area 26 of the first heat exchange module 201 includes a third sub-area 2621 and a first sub-area 2611, and the first type area 26 of the second heat exchange module 202 includes a fourth sub-area 2622 and Second sub-area 2612;
  • the first-level shunt junction 21210 is disposed in the third sub-area 2621.
  • the second-level shunt junction 21220 also includes a second-level shunt junction 21220.
  • the second-level shunt junction 21220 is located in the first sub-area 2611 and the third sub-area. 2621 and at least one of the fourth sub-region 2622.
  • the first type area 26 on the heat exchange plate 2 can correspond to the pole area on the battery, so as to ensure that the heat exchange plate 2 is suitable for the battery. heat exchange effect.
  • the actual structure of the battery may be composed of a group of battery cells, or may be composed of multiple groups of arranged battery cells.
  • the heat exchange plate 2 when the heat exchange plate 2 is exchanging heat for a battery composed of two groups of cells, the heat exchange plate 2 can be divided into a first heat exchange module 201 and a second heat exchange module 202.
  • One heat exchange module 201 corresponds to one group of battery cores
  • the second heat exchange module 202 corresponds to another group of battery cores.
  • the flow channel 21 is curved in each of the first heat exchange module 201 and the second heat exchange module 202, so that the first heat exchange module 201 and the second heat exchange module 202 can be enlarged.
  • the installation area of the middle flow channel 21 further increases the effective heat exchange area of the heat exchange plate 2 and improves the heat exchange amount of the heat exchange plate 2 for the battery.
  • the first heat exchange module 201 may be the left area in FIG. 1
  • the second heat exchange module 202 may be the right area in FIG. 1
  • the first type area 26 in the first heat exchange module 201 It includes a third sub-area 2621 and a first sub-area 2611
  • the first type area 26 in the second heat exchange module 202 includes a fourth sub-area 2622 and a second sub-area 2612.
  • the first port 221 and the second port 222 may be disposed close to the third sub-area 2621.
  • the first-level shunt junction 21210 is a shunt junction in the flow channel 21 close to the first port 221 and the second port 222, so that the first-level shunt junction 21210 is disposed in the third sub-region 2621.
  • the shunt junction 2120 also includes a secondary shunt junction 21220.
  • the secondary shunt junction 21220 is located away from the primary shunt junction 21210 and the first port 221.
  • One end of the second port 222, that is, the secondary shunt junction 21220 is located in at least one of the first sub-region 2611, the third sub-region 2621 and the fourth sub-region 2622, and is connected from the first port 221 and the fourth sub-region 2622.
  • the flow channel 21 extended from the second port 222 is diverted by the primary diverter junction 21210, it can continue to be diverted according to the secondary diverter junction 21220 to further increase the distribution density of the flow passages 21 in the heat exchange plate 2, thereby improving the overall flow rate. Describe the heat exchange effect of heat exchange plate 2.
  • first type area 26 may include a first sub-area 261 and a second sub-area 262.
  • the first sub-area 261 includes the above-mentioned first sub-area 2611 and the second sub-area 2612.
  • the second sub-area 262 includes the above-mentioned third sub-area 2621 and Fourth sub-area 2622.
  • the shunt junction 2120 includes at least two first-level shunt junctions 21210, wherein the two second-level shunt junctions 21220 corresponding to part of the first-level shunt junctions 21210 are located in the second sub-region 2612, and the other two second-level shunt junctions 21210 are located in the second sub-region 2612. Two secondary shunt junctions 21220 corresponding to a part of the first-level shunt junctions 21210 are located in the first sub-region 2611 and the fourth sub-region 2622 respectively.
  • the second sub-area 2612 when the heat exchange plate 2 is used to cool the battery, in the first type area 26, the second sub-area 2612 can be a high heat exchange area in the heat exchange plate 2 that is far away from the third sub-area 2621. , and the first sub-region 2611 and the fourth sub-region 2622 may be high heat exchange regions between the second sub-region 2612 and the third sub-region 2621.
  • the secondary shunt junction 21220 partially located in the second sub-area 2612 can be increased in the second sub-area 2612.
  • the flow channel 21 density of the first sub-area 2611 and the fourth sub-area 2622 is increased at the same time through another part of the secondary shunt junction 21220 located in the first sub-area 2611 and the fourth sub-area 2622, ensuring that the The heat exchange efficiency between the high heat exchange area on the heat exchange plate 2 and the battery.
  • the flow channel 21 further includes a three-stage shunt junction, which is located in at least one of the first sub-region 2611 and the second sub-region 2612.
  • the flow channel 21 can be divided by the secondary shunt junction 21220 in the first sub-area 2611, and then continue to pass through the first sub-area 2611 and the secondary shunt junction 21220.
  • the three-stage shunt junction connected to the shunt junction 21220 performs shunting; similarly, after the flow channel 21 is shunted by the secondary shunt junction 21220 in the second sub-region 2612, it can continue to pass through the secondary shunt junction in the second sub-region 2612. 21220 connection is made by the three-stage shunt junction Divide the flow to increase the density of the flow channels 21 in the first sub-region 2611 and the second sub-region 2612.
  • the shunt junction 2120 further includes a four-stage shunt junction, and the four-stage shunt junction is provided in at least one of the third sub-region 2621 and the second sub-region 2612.
  • the shunt junction 2120 further includes a four-stage shunt junction, and the four-stage shunt junction is provided in at least one of the third sub-region 2621 and the second sub-region 2612.
  • the third sub-area 2621 since the third sub-area 2621 is close to the first port 221 and the second port 222, that is, the number of flow channels 21 branched out by the third sub-area 2621 through the first-level shunt junction 21210 is small.
  • a four-stage shunt junction can be set up in the third sub-area 2621 to increase the density of the flow channel 21 of the third sub-area 2621; and since the second sub-area 2612 is far away from the first port 221 and The second port 222, that is, the second sub-area 2612 is the far end of the heat exchange plate 2 from the first port 221 and the second port 222.
  • the second sub-area can be A four-stage shunt junction is provided in 2612 to increase the density of the flow channel 21 in the second sub-region 2612.
  • the working fluid flows in from the first port 221 and flows through the primary shunt junction 21210 and the secondary shunt junction 21220. , the three-stage shunt junction, and then flows out through the second port 222.
  • the heat exchange plate 2 when used to cool the battery, after the working fluid flows in from the first port 221, it will first pass through the first-level shunt junction 21210 for shunting to the first The number of flow channels 21 is increased through the primary split junction 21210.
  • the secondary split junction 21220 is connected to the primary split junction 21210 through the flow channel 21. Then the working medium can increase the number of flow channels 21 through the secondary split junction 21220.
  • the third-level split junction is connected to the secondary split junction 21220 through the flow channel 21.
  • the working fluid can increase the number of flow channels 21 through the third-level split junction to ensure the density of the flow channels 21 in the heat exchange plate 2; finally, the working fluid After one or more confluences, it flows out through the second port 222 to form a circulation of the flow channel 21 in the heat exchange plate 2 to ensure the heat exchange efficiency of the heat exchange plate 2 .
  • the flow channel 21 includes a trunk path and a branch path.
  • the trunk path is connected to the first port 221 or the second port 222 .
  • the trunk path connects the branch path to the first port 221 Connected to the second port 222.
  • the main path of the flow channel 21 may be the part of the flow channel 21 that is directly connected to the first port 221 and the second port 222 and has not been branched or merged, while the branch path may be connected to and branched off from the main road. Or the part of the flow channel 21 that is connected to the trunk path after merging, so that the number of branch paths is greater than the number of trunk paths to ensure the distribution density of the flow path 21 on the heat exchange plate 2 .
  • the number of the trunk roads is at least 4, the first port 221 is connected to at least 2 trunk roads, and the second port 222 is connected to at least 2 trunk roads.
  • the main circuit connected to the first port 212201 and the main circuit connected to the second port 222 are opposite to each other at the edge of the first heat exchange module 201 set up.
  • the main circuit connected to the first port 212201 and the main circuit connected to the second port 222 are arranged side by side at the edge of the first heat exchange module 201 .
  • the flow channel 21 in the process of the flow channel 21 extending from the first port 212201 to the second port 222, or the flow channel 21 extends from the second port 222 to the second port 222.
  • the flow channel 21 can first be divided by the shunt junction 2120 to increase the number of the flow channels 21 and the heat exchanger plate. The distribution density in 2 improves the heat exchange effect of the heat exchange plate 2.
  • the branch junction 2120 includes a first-level branch junction 21210, the branch includes a first-level branch, and the first-level branch junction 21210 is connected between the trunk road and the first-level branch.
  • the first-level shunt junction 21210 serves as a shunt or merging structure between the main road and the first-level branch, and can evenly divide the working fluid in the main road to two or more first-level branches. , so as to disperse the working fluid in the heat exchange plate 2 as early as possible to ensure the density of distribution of flow channels 21 in the heat exchange plate 2 and the flexibility of heat exchange adjustment.
  • the first-level branches are provided with at least 2, that is, the first-level shunt junction 21210 can evenly divide the working fluid in the main road into 2, 3 or more first-level branches to ensure The flow channels 21 are distributed densely in the heat exchange plate 2 .
  • one end of the first-level shunt junction 21210 is connected to one of the trunk roads, and the other end of the first-level shunt junction 21210 is connected to two of the first-level branch roads, that is, one
  • the stage splitting junction 21210 can evenly divide the working fluid in the main path into two first-level branches, so as to control the balance of the working fluid flow in the two first-level branches and ensure the working fluid flow in the two first-level branches. The flow remains equal.
  • the shunt junction 2120 further includes a secondary shunt junction 21220, the branch includes a secondary branch, and the secondary shunt junction 21220 is connected between the primary branch and the secondary branch. between.
  • the secondary branch junction 21220 serves as a branch or converging structure between the primary branch and the secondary branch, and can evenly divide the working fluid in the primary branch into two or more In the secondary branch, the working fluid is dispersed in the heat exchange plate 2 to ensure the density of distribution of flow channels 21 in the heat exchange plate 2 and the flexibility of heat exchange adjustment.
  • the secondary splitting junction 21220 can evenly divide the working fluid in the primary branch into 2, 3 or more secondary branches to ensure that the flow channel 21 is distributed in the heat exchange plate 2 density.
  • one end of the secondary shunt junction 21220 is connected to one of the primary branches, and the other end of the secondary shunt junction 21220 is connected to two of the secondary branches. That is to say, the secondary splitting junction 21220 can evenly divide the working fluid in the primary branch into two secondary branches, so as to control the balance of the working fluid flow in the two secondary branches.
  • the number of primary shunt junctions 21210 is smaller than the number of secondary shunt junctions 21220 .
  • the primary branch junction 21210 When the primary branch junction 21210 is connected between the main road and the primary branch, the working medium in the main road is evenly divided into two or more primary branches, that is, the first level
  • the number of branch roads must be greater than the number of trunk roads, and one trunk road can correspond to a first-level shunt junction.
  • one first-level branch can be divided into multiple second-level branches through the second-level branch junction 21220, that is, one first-level branch.
  • a secondary shunt junction 21220 can be set correspondingly.
  • the number of the secondary shunt junctions 21220 is greater than the number of the first level shunt junctions 21210, which improves the overall efficiency. Describe the heat exchange efficiency of heat exchange plate 2.
  • the shunt junction 2120 further includes a third-level shunt junction, the branch includes a third-level branch, and the third-level shunt junction is connected between the second-level branch and the third-level branch.
  • the third-level branch junction serves as a shunt or confluence structure between the second-level branch and the third-level branch, and can evenly divide the working fluid in the second-level branch to two or more third-level branches.
  • the working fluid is dispersed in the heat exchange plate 2 to ensure the density of the distribution of the flow channels 21 in the heat exchange plate 2 and the flexibility of heat exchange adjustment.
  • the three-stage splitting junction can evenly divide the working fluid in the secondary branch into 2, 3 or more third-level branches, ensuring that the flow channel 21 is distributed in the heat exchange plate 2 density.
  • the number of secondary shunt junctions 21220 is smaller than the number of third-level shunt junctions.
  • the number of secondary branches must be greater than the number of primary branches
  • the number of the three-stage split junctions is greater than the number of the two-stage split junctions 21220.
  • the shunt junction 21220120 further includes a fourth-level shunt junction, the branch includes a fourth-level branch, and the fourth-level shunt junction is connected between the third-level branch and the fourth-level branch.
  • the four-level branch junction serves as a branch or converging structure between the three-level branch and the fourth-level branch, and can evenly divide the working fluid in the three-level branch into two or more four-level branches.
  • the working fluid is dispersed in the heat exchange plate 2 to ensure the density of the distribution of the flow channels 21 in the heat exchange plate 2 and the flexibility of heat exchange adjustment.
  • the four-stage splitting junction can evenly divide the working fluid in the three-stage branches into 2, 3 or more four-stage branches, ensuring that the flow channels 21 are distributed in the heat exchange plate 2 density.
  • the flow channel 21 also includes a confluence junction, which includes a primary confluence junction, a secondary confluence junction, a third-level confluence junction and a fourth-level confluence junction;
  • the two ends of the four-level branch are respectively connected to a fourth-level shunt junction and a fourth-level converging junction;
  • the four-level branches converge to form a three-level branch through connected four-level junctions;
  • the third-level branches formed by the convergence are gathered through the third-level convergence junction to form the second-level branches;
  • the secondary branches formed by the convergence converge through the secondary convergence junction to form the primary branches
  • the first-level branches formed by the convergence converge through the first-level convergence junction to form the trunk road;
  • the main path is connected to the first port 221 , or the main path is connected to the second port 222 .
  • the flow channels 21 in order to prevent the number of extended flow channels 21 from being too large and causing the dispersion of the working fluid flowing out of the flow channels 21, the flow channels can be connected through the converging junction. 21 converge, ultimately resulting in a small number of flow channels 21 at the beginning and end of the flow channels 21, and a large number of flow channels 21 in the middle mainly used for heat exchange, to ensure a balanced distribution of the flow channels 21 in the heat exchange plate 2.
  • the heat exchange plate 2 includes a first heat exchange module 201 and a second heat exchange module 202.
  • Both the first heat exchange module 201 and the second heat exchange module 202 include a second type area 27.
  • the second type of area 27 is used to be set corresponding to the non-pillar area of the battery;
  • the second type area 27 of the first heat exchange module 201 includes a first sub-area 271, and the second type area 27 of the second heat exchange module 202 includes a second sub-area 272;
  • At least one of the first-level shunt junction 21210 is close to the second port and the second port 222 and is disposed in the third sub-region 2621.
  • the shunt junction 2120 also includes a secondary shunt junction 21220.
  • the second-level shunt junction 21220 Located in the third sub-area 2621 and the first sub-area 271.
  • the first type of area 26 may correspond to the area where the battery core temperature is relatively low
  • the second type of area 27 may correspond to the area where the battery core temperature is relatively low. lower area. Since the battery core needs to be provided with poles for electrical connection, the heat generated in the pole area of the battery core during operation is relatively large, thus forming the above-mentioned battery pole area; while the area of the battery core body generates relatively high heat. Smaller, thus forming the non-pole area of the above-mentioned battery; the first type area 26 can be used to be arranged corresponding to the pole area on the battery, and the second type area 27 is used to be arranged corresponding to the cell body on the battery. The non-pole areas are arranged correspondingly to improve the heat exchange efficiency of the heat exchange plate 2 .
  • the first port 221 and the second port 222 can be disposed close to the first sub-area 271.
  • the first-level shunt junction 21210 is located in the third sub-area 2621
  • the second-level shunt junction 21220 is located in the first-level shunt junction.
  • the end of the junction 21210 away from the first port 221 and the second port 222, that is, the secondary shunt junction 21220 is located in the third sub-region 2621 and the first sub-region 271, which can further improve the heat transfer.
  • the distribution density of the flow channels 21 in the plate 2 improves the heat exchange effect of the heat exchange plate 2 .
  • the flow channel 21 further includes a three-level split junction, and the three-level split junction is located in the second sub-area 272 .
  • the third-level branch junction serves as a shunt or confluence structure between the second-level branch and the third-level branch, and can evenly divide the working fluid in the second-level branch to two or more third-level branches.
  • the working fluid is dispersed in the second subarea 272 of the heat exchange plate 2 to ensure the density of the distribution of the flow channels 21 in the heat exchange plate 2 and the flexibility of heat exchange adjustment.
  • the shunt junction 21220120 further includes a four-stage shunt junction, and the four-stage shunt junction is provided in the second sub-domain 272 .
  • the fourth-level branch junction is connected between the third-level branch and the fourth-level branch, and the working medium in the third-level branch can be evenly divided into two or more fourth-level branches. , so that the number of four-level branches is greater than the number of three-level branches, so as to disperse the working fluid in the second sub-area 272 of the heat exchange plate 2 and improve the efficiency of the flow channel 21 in the heat exchange plate 2 Distribution density.
  • the working fluid flows in from the second port 222 and flows through the primary shunt junction 21210 and the secondary shunt junction 21220. , the three-stage shunt junction, and then flows out through the first port 221.
  • the heat exchange plate 2 when used to heat the battery, after the working fluid flows in from the second port 222, it will first pass through the first-level shunt junction 21210 for shunting.
  • the number of flow channels 21 is increased through the primary split junction 21210.
  • the secondary split junction 21220 is connected to the primary split junction 21210 through the flow channel 21.
  • the working medium can increase the number of flow channels 21 through the secondary split junction 21220.
  • the third-level split junction is connected to the secondary split junction 21220 through the flow channel 21.
  • the working fluid can increase the number of flow channels 21 through the third-level split junction to ensure the density of the flow channels 21 in the heat exchange plate 2; finally, the working fluid After one or more confluences, it flows out through the first port 221 to form a circulation of the flow channel 21 in the heat exchange plate 2 to ensure the heat exchange efficiency of the heat exchange plate 2 .
  • the heat exchange plate 2 includes a first heat exchange module 201 and a second heat exchange module 202;
  • Part of the first-level branch, part of the second-level branch, part of the third-level branch and part of the fourth-level branch are distributed in the first heat exchange module 201;
  • Part of the second-level branch, part of the third-level branch and part of the fourth-level branch are distributed in the second heat exchange module 202.
  • the number of secondary branches in the second heat exchange module 202 is greater than The number of secondary branches in the first heat exchange module 201 is to ensure the heat exchange effect of the second heat exchange module 202 on the battery.
  • the number of the four-level branches is greater than the number of the three-level branches.
  • the fourth-level branch junction is connected between the third-level branch and the fourth-level branch, and the working medium in the third-level branch can be evenly divided into two or more fourth-level branches. , so that the number of fourth-level branches is greater than the number of three-level branches, so as to disperse the working fluid in the heat exchange plate 2 .
  • the first port 221 and the second port 222 are located on the same side of the heat exchange plate 2 .
  • the shape of the heat exchange plate 2 can match the shape structure of the battery (which can refer to the shape of the large surface of the battery).
  • the heat exchange plate 2 when exchanging heat for a square battery, can be set in a square shape.
  • the heat exchange plate 2 when exchanging heat for a rhombus-shaped battery, can be set in a rhombus shape to ensure that the heat exchange plate 2 and the battery are in contact with each other. Adequate heat exchange after combining.
  • the working fluid enters the heat exchange plate 2 from the first port 221 or from the heat exchange plate 2.
  • the working fluid can flow to other sides of the heat exchange plate 2 (different from the first port 222).
  • the side of the port 221 and the second port 222) and the middle area of the heat exchange plate 2 facilitate the circulation of the working fluid in the heat exchange plate 2 and increase the heat exchange capacity of the heat exchange plate 2 for the battery.
  • the shape of the heat exchange plate 2 is a rectangle that matches the rectangular battery.
  • the first port 221 and the second port 222 are located on a short side of the heat exchange plate 2 and are close to each other. They can be connected to the working medium.
  • the working fluid flows to the two long sides, the other short side and the two long sides of the heat exchange plate 2.
  • the middle area finally flows out of the heat exchange plate 2 from the second port 222 or the first port 221 to form a circulating flow of the working fluid in the heat exchange plate 2 .
  • the shunt junction 2120 is provided on the side of the heat exchange plate close to the first port 221 and the second port 222 .
  • the first port 221 and the second port 222 can be the inlet and outlet of the working fluid in the heat exchange plate 2, so that the working fluid can enter and leave as quickly as possible from the first port 221 and the second port 222.
  • a shunt junction 2120 can be provided on the side of the heat exchange plate 2 close to the first port 221 and the second port 222, which can not only ensure the concentration of the working fluid at the first port 221 and the second port 222, but also The number of flow channels 21 can be increased in the heat exchange plate 2 in time to improve the heat exchange efficiency of the heat exchange plate 2 .
  • part of the secondary branches are distributed on the edge of the heat exchange plate 2 .
  • the first-level branches can be distributed preferentially on the heat exchanger plate 2.
  • Edge of hot plate 2 When the primary branch is divided into multiple secondary branches through the secondary shunt junction 21220, part of the secondary branches can be distributed on the edge of the heat exchange plate 2 so as to be densely packed at the edge of the heat exchange plate 2 Arrange the flow channel 21.
  • the remaining secondary branches may also be extended into the middle of the heat exchange plate 2 to ensure a balanced arrangement of the flow channels 21 on the heat exchange plate 2 .
  • part of the secondary branches are distributed at the edges of the heat exchange plate 2
  • part of the third-level branches are distributed in the middle of the heat exchange plate 2 .
  • part of the secondary branch can be distributed on the edge of the heat exchange plate 2 so that the edge of the heat exchange plate 2 can be
  • the flow channels 21 are densely arranged.
  • Part of the third-level branch branch from the second-level branch can be extended to the middle of the heat exchange plate 2 to ensure that as many flow channels 21 are distributed on the heat exchange plate 2 as possible. .
  • the heat exchange plate 2 includes a first heat exchange module 201 and a second heat exchange module 202, and part of the secondary branches are distributed on the edges of the first heat exchange module 201 and the second heat exchange module 202.
  • first heat exchange module 201 and the second heat exchange module 202 can be arranged adjacently, and the first port 221 and the second port 222 can both be located on the side of the first heat exchange module 201 away from the second heat exchange module 202 .
  • the secondary branch extends from the first heat exchange module 201 to the second heat exchange module 202, part of the secondary branch can be kept along the edges of the first heat exchange module 201 and the second heat exchange module 202. Set up to ensure the heat exchange effect at the edge of the heat exchange plate 2.
  • the heat exchange plate 2 includes a first heat exchange module 201 and a second heat exchange module 202.
  • the flow channel 21 is divided into N stages in the first heat exchange module 201 and in the second heat exchange module 202. M-level shunting, where M ⁇ N.
  • the flow path, part of the third-level branch and part of the fourth-level branch are distributed in the first heat exchange module 201, that is, the flow channel 21 performs a 4-level split with N of 4 in the first heat exchange module 201, and some of the second-level branches path, part of the third-level branch and part of the fourth-level branch are distributed in the second heat exchange module 202 (part of the first-level branch flows from the interface through the first heat exchange module to the second heat exchange module), so that the flow channel 21 flows in the second heat exchange module 202.
  • the thermal module 202 performs 4-stage shunting with M equal to 4, and M is equal to N at this time.
  • part of the first-level branch, part of the second-level branch, part of the third-level branch and part of the fourth-level branch are distributed in the first heat exchange module 201, that is, the flow channel is in the first heat exchange module 201.
  • the flow channel 21 forms n1 branches after the first heat exchange module 201 performs N-level splitting, and forms m1 branches after the second heat exchange module 202 performs M-level splitting, m1>n1.
  • the flow channel 21 of the first heat exchange module 201 part of the first-level branch, part of the second-level branch, part of the third-level branch and part of the fourth-level branch are distributed in the first heat exchange module 201 , that is, the flow channel 21 forms 8 branches with n1 equal to 8 after the first heat exchange module 201 performs 4-level branching (the first branching is the trunk road and is divided into a first-level branch).
  • the flow channels 21 branched in the second heat exchange module 202 may include first-type flow channels and second-type flow channels.
  • first-type flow channels some of the secondary branches, part of the third-level branches and the fourth-level The branches are distributed in the second heat exchange module 202 (part of the first-level branches flows from the interface through the first heat exchange module 201 into the second heat exchange module 202), so that the flow channel is formed after the second heat exchange module 202 performs 4-stage shunting.
  • 8 branch roads (the first diversion is a trunk road divided into a first-level branch).
  • part of the secondary branch and part of the third branch are distributed in the second heat exchange module 202 (part of the primary branch flows from the interface through the first heat exchange module 201 into the second heat exchange module 202 ), so that the flow channel 21 forms 8 branches after three-level splitting in the second heat exchange module 202, that is, the flow channel 21 forms 16 branches with m1 equal to 16 after splitting in the second heat exchange module 202, so that Make m1>n1, and optionally m1 is equal to twice n1.
  • An embodiment of the present application also provides a battery pack, which includes the heat exchange plate 2 .
  • the battery pack includes the heat exchange plate 2 and a plurality of battery modules 1.
  • Each battery module 1 is provided with poles at both ends.
  • the plurality of battery modules 1 is distributed along the first direction, which can be the X direction in Figure 1 to increase the energy density of the battery pack;
  • the heat exchange plate 2 is arranged on one side of the battery module 1 along the second direction Or both sides.
  • the second direction may be the Z direction in Figure 1.
  • the multiple sides of the battery module 1 along the second direction form the large surface of the battery module 1.
  • the heat exchange plate 2 is close to the battery module.
  • the arrangement of one or two large surfaces of the group 1 can ensure the heat exchange effect of the heat exchange plate 2 on the battery module 1.
  • a plurality of the battery modules 1 may form a first battery module 11 and a second battery module 12 .
  • the second battery module 12 is located on a side of the first battery module 11 away from the shunt component 22 , and the first port 221 and the second port 222 are located on the shunt component 22 .
  • the first battery module 11 may correspond to the first heat exchange module 201 on the heat exchange plate 2
  • the second battery module 12 may correspond to the second heat exchange module 202 on the heat exchange plate 2 .
  • the flow channel 21 of the first type area 26 may be opposite to the first battery module 11 and may be close to the flow distribution assembly 22 , that is, the flow channel 21 of the first type area 26 is located near the heat exchange plate 2 end; and the flow channel 21 of the second type area 27 can be far away from the splitter assembly 22, that is, the flow channel 21 of the second type area 27 is located at the far end of the heat exchange plate 2; in order to ensure that the proximal end of the heat exchange plate 2 and The balance of the remote heat exchange effect can increase the flow rate of the remote flow channel 21, for example, setting the flow rate of the channel opposite to the second battery module 12 in the flow channel 21 to the second flow rate, and the third flow rate can be increased. A flow rate is less than the second flow rate.
  • the direction in which the poles at both ends of the battery module 1 are connected is a third direction, and the third direction can be the Y direction in Figure 1, that is, each battery module 1 can extend along the third direction.
  • the first direction, the second direction and the third direction may be parallel to the width direction, height direction and length direction of the battery module 1 respectively.
  • the second direction and the third direction are perpendicular to each other, multiple battery modules 1 can form a compact structure. Compact battery pack structure to ensure the energy density of the battery pack.
  • the heat exchange plate 2 is a bottom plate or an upper cover.
  • the heat exchange plate 2 can be disposed on one side or both sides of the battery module 1 along the second direction; On one side, for example, when the heat exchange plate 2 is disposed on the bottom side of multiple battery modules 1, the heat exchange plate 2 can form the bottom plate of the battery pack. On the one hand, it can ensure that the heat exchange plate 2 is attached to the battery module 1.
  • the heat exchange effect of the battery module 1 can also provide good protection for the battery pack when the bottom of the battery pack is impacted; and when the heat exchange plate 2 is arranged on the top side of multiple battery modules 1,
  • the heat exchange plate 2 can form the upper cover of the battery pack. It can also ensure the heat exchange effect on the battery module 1 when the heat exchange plate 2 is attached to the battery module 1, and can also protect the battery pack.
  • Embodiments of the present application also provide a vehicle, which includes the heat exchange plate 2; or,
  • the vehicle includes the battery pack.
  • This technical solution provides a heat exchange flow channel device that can be used on electric vehicles, and the heat exchange flow channel device can provide good heat exchange effect on the battery.
  • the heat exchange agent with heat can be transported to various areas of the battery through the flow channel 21 to assist in heating the battery.
  • the flow channel 21 can be used in reverse to transport the low-temperature heat exchange agent through the flow channel 21 to various areas of the battery to assist in cooling the battery.
  • the heat exchange plate 2 and the battery tray can also be formed, and the battery structure can also be integrated.
  • the heat exchange flow channel device provided by this technical solution is designed to provide stable heat exchange performance for the battery of new energy electric vehicles and provide a better temperature environment for the battery.
  • this technical solution provides a heat exchange plate 2 on which a first port 221 , a second port 222 and a flow channel 21 are formed.
  • the flow channel 21 converges to the first port 221 and the second port 222 through the converging end.
  • the heat exchange plate 2 may include a flow channel plate 24 and a base plate 23.
  • Various flow channels 21 are provided on the flow channel plate 24.
  • the flow channel 21 goes from the converging end to the inside of the flow channel plate 24.
  • the flow channel 21 is divided through the branch converging junction to form more levels of branch pipes.
  • These flow channels 21 are also arranged in turns through reversing knots, so that the branch pipes cover the entire flow channel plate 24 to achieve flow and heat exchange in each area.
  • the flow channel plate 24 and the base plate 23 are combined to form the heat exchange plate 2 .
  • the flow channel 21 may have a groove structure, and its top surface is not sealed.
  • the base plate 23 can form a top seal on the flow channel 21 .
  • the base plate 23 and the flow channel 21 form the heat exchange plate 2 as a whole.
  • the first port 221 and the second port 222 may be formed by combining port components provided on the base plate 23 with the flow channel plate 24 .
  • the port component is provided with a first port 221 and a second port 222.
  • this scheme can be divided into different sections. Different sections represent different technical features that this plan focuses on.
  • the flow channel 21 is designed based on the technical features of concern as a starting point to obtain a more uniform heat exchange plan.
  • This technical solution can divide the heat exchange plate 2 into different areas to perform different degrees of heat exchange treatment on different areas.
  • the layout characteristics that after the working fluid flows into the flow channel 21 from the port, it will first flow into a certain area for heat exchange, and then flow into a certain area for heat exchange, the flow channel 21 can be selectively laid out according to the heat conditions in different areas.
  • the heat exchange plate 2 may include a first type of area 26 and a second type of area 27.
  • the first type of area 26 corresponds to the area where the pole core generates relatively high heat in the integrated battery structure
  • the second type of area 27 corresponds to the area where the pole core generates relatively low heat in the integrated battery structure.
  • the pole cores of the battery can be arranged in two columns side by side, as shown in FIG. 9 . Since pole tabs are usually provided at both ends of the pole core for electrical connection, the heat generation is relatively large.
  • the leftmost longitudinal area in Figure 3 belongs to the first category area 26
  • the middle longitudinally wider area belongs to the first category area 26
  • the rightmost longitudinal area belongs to the first category area 26 .
  • the heat exchange plate 2 is provided with a flow channel 21, and the flow channel 21 is used to pass in the working fluid.
  • the working fluid can exchange heat and gradually exchange heat as it flows to different areas.
  • the flow channel 21 will completely extend to the first type area 26 and the second type area 27 .
  • the heat exchange plate 2 can be switched to two states: cooling mode and heating mode. In these two states, the heat exchange plate 2 or the pump device will cause the working fluid to flow in the opposite direction, thereby achieving the purpose of limiting which area is to be heat exchanged.
  • the flow channel 21 is designed in such a way that the working fluid can flow from the first type of area 26 to the second type of area 27 . That is, the flow channel 21 is designed such that the working fluid first flows into the flow channel 21 located in the first type area 26 and then flows into the flow channel 21 in the second type area 27 . In this way, the working fluid can first perform heat exchange in the first type area 26, and the working fluid preferentially absorbs the heat generated by the battery structure corresponding to the first type area 26, and then the heat exchange capability of the working fluid will decrease. The working fluid then flows to the second type area 27 to exchange the heat generated by the battery corresponding to this area. Finally, the working fluid will flow to the port and flow out from the heat exchange plate 2.
  • the flow channel 21 is designed in such a way that the working fluid can flow from the second type area 27 to the first type area 26 . That is, the flow channel 21 is designed such that when flowing in the reverse direction, the working fluid can first flow into the flow channel 21 in the second type area 27 and then flow into the flow channel 21 in the first type area 26 .
  • the working medium can first exchange heat with the second type area 27 and dissipate the heat to the space where the battery structure corresponding to the second type area 27 is located. After that, the heat exchange capacity of the working fluid decreases and flows into the first type area 26 .
  • the working fluid dissipates the remaining heat in the first type area 26 to the space where the battery structure is located, and then flows back to the port.
  • the heating of the battery pole core is usually constant. No matter what the external environment is, whether the battery itself is in a discharging or charging state, the part of the pole core with tabs and electrical connection points is always an area with higher heat, as shown in the figure. As shown in Figure 9, the middle area of the pole core generates moderate heat and less heat, that is, there are no electrical connection points on the pole core and the part of the pole lug is not prone to heat.
  • heating the area on the pole core without tabs is often colder and requires more heating.
  • cooling the area where the pole tabs are provided on the pole core is often hotter and needs more cooling.
  • the advantage of this part of the design is that by utilizing the working characteristics of the battery pole core, the flow channels 21 of the heat exchange plate 2 are arranged differently according to the regions where the structures that generate different heat are located. Moreover, the working fluid flow directions used in the heating and cooling modes are opposite. During heat dissipation, the working fluid first flows along the flow channel 21 to the area with higher heat. During heating, the working fluid first flows along the flow channel 21 to the area with lower heat. This allows the working fluid to flow preferentially to areas that require heat exchange.
  • the first type of area 26 corresponds to the first position of the battery
  • the second type of area 27 corresponds to the second position of the battery.
  • the heat generated by the battery in the first position is basically greater than the heat generated by the battery in the first position.
  • the first position corresponds to the left side shown in Figure 10 vertical bar, middle vertical bar and right vertical bar.
  • the second position may correspond to the area sandwiched between the left vertical bar and the middle vertical bar, and to the area between the right vertical bar and the middle vertical bar.
  • the arrangement and quantity of the first position and the second position will change, but this does not deviate from the layout idea of the flow channel 21 mentioned above.
  • the flow channel 21 can always be extended to the first type area 26 and then to the second type area 27 without repeatedly extending between the first type area 26 and the second type area 27 .
  • the heat exchange plate 2 includes a first converging end and a second converging end.
  • the first converging end is the connection point where the flow channel 21 converges to the first port 221.
  • the second converging end is The flow channels 21 converge to the connection point of the second port 222 .
  • the working fluid can flow into the heat exchange plate 2 from the second bus end.
  • the working fluid will preferentially flow into the second type area 27 with a lower temperature, and the second type area 27 will be heated. Then it flows into the first type area 26. Finally, the working fluid can flow out from the first converging end after converging. Prioritizing heating of the position corresponding to the second type area 27 can better protect the battery and provide sufficient operating temperature for the battery.
  • the heat exchange plate 2 can cooperate with the self-heating function to better provide temperature protection for the central area of the pole core that generates uneven heat and prevent the temperature from being too low.
  • the working fluid can flow into the heat exchange plate 2 from the first bus end.
  • the working fluid will preferentially flow into the first type area 26 with a higher temperature, thereby cooling the first type area 26 . Then it flows into the second type area 27.
  • the first and second converging ends are concentrated on the left side of the heat exchange plate 2.
  • the flow channels 21 due to the panel space limitations, there are flow channels 21 Situations that cannot be arranged in the ideal way described above.
  • 272 can be heated preferentially or 2622 and 2612 can be cooled down in a limited manner according to the optional flow channel 21 arrangement.
  • the three areas 2621, 2611 and 271 located on the left side near the confluence end and the entrance and exit due to the relative congestion of the flow channel 21, the above optional arrangement may not be realized.
  • the flow channel 21 can divert the working fluid by diverting the flow to better achieve temperature control on the entire surface.
  • the working fluid flowing into the first type area 26 from the first confluence end can be divided into more branch flow channels 21 in the first type area 26 .
  • confluence and divergence are not required, as shown in area 271 of Figure 10.
  • the flow channels 21 can merge to collect the working fluid so that it can be discharged from the second converging end.
  • the flow channel 21 has the opposite extension characteristic to that during cooling.
  • the working fluid is first divided once or twice, dispersed to various areas along the pipeline, and then merged at least once to flow to the first confluence end.
  • the working fluid mentioned in this solution can be selected as a refrigerant working fluid that can switch between gas and liquid phases.
  • This kind of refrigerant working fluid can effectively realize heat exchange through phase state transformation, and the heat exchange efficiency is more effective than traditional water cooling, coolant and other methods.
  • this plan tries to use splitting methods such as one-to-two and two-to-four to improve the uniformity of the flow of the working fluid in the flow channel 21.
  • this solution tries to use parallel multi-path flow channels 21 with uniform lengths to jointly conduct heat exchange between the first type area 26 and the second type area 27 to further reduce the concentrated phase change of the working medium due to uneven flow. Case.
  • this plan can arrange the shunt junction and the confluence junction at 2621 and 2611 Among the two areas, these two areas correspond to the high-heat areas of the battery.
  • the shunting and converging here help to reduce the rapid and concentrated heat exchange of the working fluid in a narrow space, so that the working fluid can be more evenly distributed.
  • These areas undergo heat exchange.
  • the working fluid flowing in from the first confluence end can be concentrated at the corner of area 2621 for the first splitting, and then split for the second time at the upper part of 2611.
  • the space is relatively loose.
  • This solution can evenly distribute shunt connections and merging junctions at the upper and lower ends of the three areas, and the number of shunts and merging junctions can be correspondingly larger.
  • the flow channel 21 extending from the first converging end on the left to the right can be separately divided and extended into the 2622 area and the 2612 area respectively. In these two areas, the flow channel 21 can extend straightly and longitudinally across most of the area of the two areas. After that, the flow channel 21 can turn to the 272 area located between 2622 and 2612.
  • the flow channel 21 usually extends straight through the 272 area, and finally merges the parallel flow channels 21 on the lower side of the 272 area. Finally, the flow channel 21 extends to the left back to the second confluence end.
  • the flow channel 21 can be diverted two to three times to achieve the layout features of large area parallel and long-distance extension. After that, it goes through two to three confluences and converges to the main road and returns to the confluence end.
  • the working fluid flows in from the second confluence end and directly flows to the lower side of area 272, where it is divided multiple times to form Multiple parallel flow paths.
  • the outermost flow channel 21 basically no longer splits the flow after the initial flow splitting. It has been circling along the outer edge of the heat exchange plate 2, and finally Converge again at a location close to the second confluence end.
  • This part of the flow channel 21 is used to balance the temperature of the working fluid at the end of the flow.
  • this part of the flow channel 21 can play a better role.
  • the volume of the working fluid after phase change changes greatly, which is prone to problems such as accumulation, poor circulation, and temperature concentration. This problem is more likely to be highlighted at the confluence end.
  • the phase change of the working fluid in the outermost flow channel 21 is relatively small, and it can be used to balance the temperature and phase state of the working fluid in other flow channels 21 at the end of the entire cycle. Provide guarantee for the smoothness and uniformity of the overall circulation.
  • this solution provides a heat exchange plate for batteries, including:
  • the flow channel 21 is used to circulate the working fluid, and the flow channel 21 is distributed in the first type of area and the second type of area;
  • the heat exchange plate 2 is used to cool the battery, and the working fluid flows from the flow channel 21 of the first type area 26 to the flow channel 21 of the second type area 27; or
  • the heat exchange plate 2 is used to heat the battery, and the working fluid flows from the flow channel 21 of the second type area 27 to the flow channel 21 of the first type area 26 .
  • the first type of area is used to correspond to the first position of the battery
  • the second type of area is used to correspond to the second position of the battery.
  • the temperature of the first position is greater than that of the second position. temperature.
  • the heat exchange plate 2 includes a first converging end and a second converging end;
  • the working fluid flows into the second type area 27 from the second confluence end, and after passing through the first type area 26, it merges into the first confluence. end.
  • the heat exchange plate 2 includes a first converging end and a second converging end;
  • the working fluid flows from the first confluence end into the first type area 26, and after passing through the second type area 27, it merges into the second confluence. end.
  • the working fluid flows from the first converging end into the first type area 26, passes through the second type area 27 and then merges into the second converging end, and is divided at least once, and/or at least 1 confluence.
  • the working fluid is diverted at least twice, and/ Or at least 1 confluence.
  • At least one flow split is performed, and/ Or at least 1 confluence.
  • the first type area 26 includes a first partition 261 and a second partition 262;
  • the second type area 27 includes a first sub-area 271;
  • the working fluid flows from the first subarea 261 of the first type area 26 to the first subarea 271 of the second type area 27, and/or,
  • the working fluid flows from the second subarea 262 of the first type area 26 to the first subarea 271 of the second type area 27 .
  • the working fluid flows from the first subarea 261 of the first type area 26 into the first subarea 271 of the second type area 27 Passed through at least 1 shunt during the process.
  • the working fluid passes through at least one branch flow and at least one confluence in the process of flowing from the first sub-area 261 of the first type area 26 into the first sub-area 271 of the second type area 27 .
  • the working fluid flows into the first subregion 271 of the second type area 27 after being diverted at least once in the first subregion 261 .
  • the working fluid flows into the first subregion 271 of the second type area 27 after being diverted at least once in the first subregion 261, And there is at least one confluence in the first sub-area 271 of the second type area 27 .
  • the first partition 261 of the first type area 26 includes a first sub-area 2611
  • the second partition 262 of the first type area 26 includes a first sub-area 2621
  • the first sub-area 271 is located between the first sub-domain 2621 and the first sub-area 2611.
  • the working medium undergoes at least one open-loop cycle in the first sub-domain 2621, the first sub-domain 271 and the first sub-area 2611.
  • the open-loop cycle includes: the working medium moves from the first sub-region 2621 to the first sub-region 271 to the first sub-region 2611 to the first sub-region 271 to the first sub-region 2621 to the first sub-region. 271 to the first sub-region 2611 to the first sub-domain 271 to the first sub-domain 2621.
  • the working fluid undergoes at least two split flows and one confluence during the open-loop circulation process.
  • the working fluid is divided once in the first sub-area 2611, divided twice in the first sub-area 2621, and converged once in the first sub-area 2611.
  • the first type area 26 includes at least 2 sub-areas
  • the second type area 27 includes at least 2 sub-areas
  • the working fluid flows from the first zone 261 to the second zone 27 through at least two split flows.
  • the working fluid flows from the first zone 261 to the second zone 27 through at least two split flows.
  • the working fluid flows from the first partition 261 to the second type area 27 through at least two branching flows and at least one converging flow.
  • the first type area 26 includes a first partition 261 and a second partition 262;
  • the second type area 27 includes a second sub-area 272;
  • the working fluid flows from the first subarea 261 of the first type area 26 to the second subarea 272, and/or,
  • the working fluid flows from the second subarea 262 of the first type area 26 to the first subarea 271 .
  • the working fluid passes through at least 2 times while flowing from the first subarea 261 of the first type area 26 into the second subarea 272 . secondary diversion.
  • the working fluid passes through at least two branching flows and at least one converging flow in the process of flowing from the first subarea 261 of the first type area 26 into the second subarea 272 .
  • the working fluid flows into the second sub-area 272 after being divided at least twice in the first sub-area 261 .
  • the working fluid flows into the first sub-area 271 after at least two split flows in the first sub-area 261, and flows in the second sub-area 271.
  • Domain 272 has at least one confluence.
  • the first partition 261 of the first type area 26 includes a second sub-area 2612
  • the second partition 262 of the first type area 26 includes a second sub-area 2622
  • the second sub-area 272 is located between the second sub-domain 2622 and the second sub-region 2612.
  • the working medium flows through the second sub-area 2622, the second sub-area 272, the second sub-area 2612 and the second sub-area 272 in sequence.
  • the working fluid flows from the second sub-domain 2622 into the second sub-domain 272 .
  • the working fluid is divided in the second sub-region 26122.
  • the working fluid merges in the second sub-region 2721.
  • the first sub-area 2611 is adjacent to the second sub-domain 2622.
  • the working medium flows into the second sub-domain 2622 after passing through the first sub-domain 2621, the first sub-domain 271, and the first sub-area 2611.
  • the working medium flows from the second sub-area 2622 through the second sub-area 272, the second sub-area 2612 and the second sub-area 272, and flows from the second sub-area 272 Outflow.
  • the working fluid flows from the second sub-domain 2622 into the second sub-domain 272 and flows out from the second sub-domain 272 .
  • the heat exchange plate 2 also includes a third type of area.
  • the third type area is the area where the heat exchange plate 2 is covered by the battery pack.
  • the first type of area 26 and the second type of area are Area 27 forms a heat exchange area within which the third type of area is located.
  • the flow channel 21 located between the heat exchange area and the third type area undergoes at most 6 split flows, or at most 6 merge flows.
  • the flow channel 21 located between the heat exchange area and the third type area enters the second type area 27 after being diverted from the first type area 26 .
  • the flow channel 21 located between the heat exchange area and the third type area passes through the first sub-area 2621, the first sub-area 271, the first sub-area 2611, and the first sub-area 271.
  • a subdomain 2621 flows out.
  • the flow channel 21 located in the heat exchange area and the third type area passes through the first sub-area 2621, the first sub-area 271, the first sub-area 2611, the second sub-area 2622, and the second sub-area. 272.
  • the flow enters the first sub-domain 2621. out.
  • the flow channel 21 located between the heat exchange area and the third type area is branched in the first sub-domain 2621, and/or the flow channel 21 located between the heat exchange area and the third type area
  • the flow channels 21 converge in the first sub-domain 2621.
  • the first type area 26 includes a first partition 261 and a second partition 262;
  • the working fluid flows from the first sub-area 271 of the second type area 27 to the first sub-area 261 of the first type area 26, and/or,
  • the working medium flows from the first sub-area 271 of the second type area 27 to the second sub-area 262 of the first type area 26 .
  • the working fluid flows from the first sub-area 271 of the second type area 27 into the second sub-area 262 of the first type area 26 It passes through at least one confluence in the process.
  • the working fluid passes through at least one branch flow before flowing from the first sub-area 271 of the second type area 27 into the second sub-area 262 of the first type area 26, and passes through at least one flow after flowing into the second sub-area 262. 1 confluence.
  • the working fluid flows into the second subarea 262 of the first type area 26 after at least one flow split in the first subarea 271 .
  • the working fluid flows into the first partition 261 of the first type area 26 after at least one branching, and flows in the first type area 26
  • the first partition 261 has been diverted at least once.
  • the first partition 261 of the first type area 26 includes a first sub-area 2611
  • the second partition 262 of the first type area 26 includes a first sub-area 2621
  • the first sub-area 271 is located between the first sub-domain 2621 and the first sub-area 2611.
  • the working medium undergoes at least one open-loop cycle in the first sub-domain 2621, the first sub-domain 271 and the first sub-area 2611.
  • the open-loop cycle includes: the working medium moves from the first sub-region 2621 to the first sub-region 271 to the first sub-region 2611 to the first sub-region 271 to the first sub-region 2621 to the first sub-region. 271 to the first sub-region 2611 to the first sub-domain 271 to the first sub-domain 2621.
  • the open-loop circulation process undergoes at least 2 split flows and 1 merge flow.
  • the working medium is divided once in the first sub-area 2621, divided twice in the first sub-area 2611, and then merges once after returning to the first sub-area 2621.
  • the working fluid flows into the flow channel 21 from a position close to the first sub-domain 2621, and the working fluid flows from the first sub-domain 2621 to the first sub-domain 271 and further returns to the first sub-domain 271.
  • the process of the domain 2621 flowing out of the flow channel 21 goes through at least two divisions and two confluences.
  • the first partition 261 of the first type area 26 includes a first sub-area 2611 and a second sub-area 2612, and the second partition 262 of the first type area 26 includes a first sub-area. 2621 and second subfield 2622;
  • the second type area 27 includes a first sub-area 271 and a second sub-area 272;
  • the second sub-area 272 is located between the second sub-area 2622 and the second sub-area 2612, and the first sub-area 271 is located between the first sub-area 2611 and the first sub-area 2621;
  • the first sub-area 2611 and the first sub-domain 2622 are adjacent to each other.
  • a part of the flow channel 21 allows the working fluid to pass through the edges of the first sub-domain 2621, the first sub-domain 271, the first sub-area 2611 and the second sub-domain 2622, and first flows into the second sub-domain 272. within, and then branched to the second sub-domain 2622 and the second sub-area 2612.
  • another part of the flow channel 21 allows the working fluid to pass through the first sub-region 2621 and the edge of the first sub-region 271, first flow into the first sub-region 2611, and then branch and flow into the first sub-region. Domain 271 finally flows into the first sub-domain 2621.
  • the flow channel 21 diverts the working fluid at least twice in the second subregion 272;
  • the flow channel 21 allows the working fluid to converge at least once in the second sub-region 2612 and the second sub-region 2622 respectively.
  • the working fluid flowing out from the second sub-region 2612 and the second sub-region 2622 passes through the first sub-region 2611, the first sub-region 271, the first sub-region 2611, the first sub-region 271 along the edge of the heat exchange plate 2.
  • Domain 2621 flows out from the heat exchange plate 2 after reflow.
  • the flow channel 21 allows the working fluid flowing into the first sub-region 2621 to merge once in the first sub-region 2621, and then the flow returns to the first sub-region 2611 for another merge.
  • the working fluid flows out from the edge of the heat exchange plate 2.
  • the working fluid flows into the second type area 27 after at least two flows in the first partition 261, and flows into the second type area 27 after at least two flows. After the primary confluence, it flows into the second confluence end.
  • the working fluid flows into the second type area 27 after at least two flows in the first partition 261, and flows into the second type area 27 after at least two flows. After two confluences, it flows into the second confluence end.
  • the first converging end is close to the second converging end and located on the first side of the heat exchange plate 2;
  • the heat exchange plate 2 includes a first heat exchange area and a second heat exchange area.
  • the second heat exchange area is located between the first heat exchange area and the first side.
  • the first heat exchange area It includes a second type area 27 and first type areas 26 distributed on opposite sides of the second type area 27;
  • the second heat exchange area includes a second type area 27 and first type areas 26 distributed on opposite sides of the second type area 27 .
  • the working fluid flows into another first type area after being diverted once in one of the first type areas 26 26.
  • the other first type area 26 it flows into the second type area 27 after one division, and flows into the second confluence end in the second type area 27 after two confluences.
  • the working fluid flows into the second type area 27 after being diverted once in one of the first type areas 26, And after two confluences in the second type area 27, it flows into the second confluence end;
  • the working fluid flows into the second type area 27 after being divided twice in another first type area 26, and flows into the second confluence end after being merged twice in the second type area 27.
  • the first type areas 26 distributed on opposite sides of the second type area 27 are respectively the first partition 261 and the second partition 262;
  • the working fluid flows into the second type area 27 after being diverted once in the first zone 261, and flows therein.
  • the second type area 27 flows into the second confluence end after two confluences;
  • the working fluid flows into the second type area 27 after being divided twice in the second partition 262, and flows into the second converging end after being merged twice in the second type area 27.
  • the first and second converging ends are both located in the second heat exchange area, and the number of the first and second converging ends is two.
  • the embodiment of the present application also provides flow channel integrated plates in four aspects.
  • a flow channel integrated plate which includes:
  • first port 221 and second port 222
  • a first common end and a second common end is connected to the first port 221, and the second common end is connected to the second port 222;
  • the flow channel 21 is used to connect the first converging end and the second converging end.
  • the flow channel extends from the first converging end to the second converging end after at least one reversal. confluence end.
  • the heat exchange plate 2 may be provided with a flow distribution component 22, and the first port 221 and the second port 222 may be provided on the flow distribution component 22, as shown in FIG. 5 .
  • the first port 221 and the second port 222 can be used to connect the flow channel integrated plate to the external component that provides working fluid.
  • an external pump body can be connected to the flow channel integrated plate through the first port 221 and the second port 222.
  • the flow channel integrated plate is connected.
  • the first converging end and the second converging end can be used as end structures at both ends of the flow channel 21.
  • the first converging end and the second converging end can be used as both ends of the flow channel 21 and are connected to the first port respectively. 221 and the second port 222 are plugged or threadedly connected to the end structure.
  • the distribution of the flow channels 21 in the flow channel integrated plate extends from the first converging end to the second converging end after at least one reversal, so as to improve the distribution of the flow channels 21 in the flow channel.
  • the distribution density in the integrated plate for example, the flow channel 21 is distributed in a zigzag or serpentine shape in the integrated plate, ensures the distribution density of the flow channel 21 in the integrated plate, thereby improving the overall distribution density of the flow channel 21 in the integrated plate. Describe the heat transfer effect of the flow channel integrated plate.
  • a reversing junction 211 is formed at the reversing point of the flow channel 21.
  • the reversing junction includes a first type of reversing junction 2111.
  • the flow channel at one end of the first type of reversing junction 2111 The direction is at a reversing angle with the flow channel direction at the other end of the first type reversing junction 2111, and the number of flow channels at one end of the first type reversing junction 2111 is greater than the other end of the first type reversing junction 2111 number of flow channels.
  • the structure of the first type of reversing junction 2111 can be as shown in Figure 14.
  • the flow channel 21 passes through the first type of reversing junction 2111, it can be bent at a reversing angle, such as through 90°. Or a 180° bend to achieve flexible reversal of the flow channel 21 and ensure the distribution density of the flow channel 21 in the flow channel integrated plate.
  • the first type of reversing knot 2111 can also adjust the number of flow channels while playing a bending role. For example, when the flow channel 21 passes through the first type of reversing knot 2111, it forms one into two and one into two. A flow channel structure with a number of three or more flow channels improves the flexibility of the distribution of the flow channels 21 in the flow channel integrated plate.
  • the number of flow channels at one end of the first type of reversing junction 2111 is twice the number of flow channels at the other end of the first type of reversing junction 2111, that is, the flow channel 21 passes through the first type of reversing junction 2111.
  • the flow can be divided or merged during the reversal junction.
  • the reversing junction 211 includes a second type of reversing junction 2112.
  • the direction of the flow channel at one end of the second type of reversing junction 2112 is the same as that of the other end of the first type of reversing junction 2112.
  • the direction of the flow channel is a reversal angle.
  • the first type of reversing junction 2111 is located on the peripheral side of the flow channel integrated plate
  • the second type of reversing junction 2112 is located at the middle position of the flow channel integrated plate. . Since both the first type of reversing junction 2111 and the second type of reversing junction 2112 have the function of reversing, the flow channel 21 can be switched during bending at both the circumferential side and the middle position of the flow channel integrated plate. Towards.
  • the flow channel 21 can be formed on the peripheral side of the flow channel integrated plate. After the flow is divided and merged, the smooth flow of the flow channel 21 in the middle part of the flow channel integrated plate is ensured.
  • the first port 221, the second port 222, the first bus end and the second bus end are all located on the first side of the flow channel integrated plate.
  • the flow channel integrated plate can be a square plate, and the first side can be the left side of the flow channel integrated plate in Figure 10.
  • refrigerants such as R123a and R32, CO2, water and other working fluids can be removed from the flow channel 21.
  • the left side of the channel integrated plate enters the flow channel 21, and then flows out of the flow channel 21 from the left side of the channel integrated plate after the flow channel integrated plate flows around and performs heat exchange, and the working fluid in the flow channel 21 is raised. Describe the efficiency of heat exchange in the flow channel integrated plate.
  • the first bus end is connected to two second-type reversing nodes 2112, and the second bus end is connected to two first-type reversing nodes 2111.
  • the first converging end can be the inlet of the working fluid in the flow channel 21
  • the second converging end can be the outlet of the working fluid in the flow channel 21.
  • the working fluid passes through the first When the converging end flows into the flow channel 21, a preliminary reversal can be performed; and when the working fluid passes through the second converging end and flows out of the flow channel 21, it can be converging while reversing, that is, the working fluid can be polymerized from one
  • the confluence end flows out of the flow channel 21, which simplifies the connection between the flow channel 21 and external components.
  • the second converging end can be the inlet of the working fluid in the flow channel 21
  • the first converging end can be the outlet of the working fluid in the flow channel 21 .
  • the flow channel integrated plate is in a square shape, and the first type of reversing junctions 2111 and the second type of reversing junctions 2112 are provided at three corner positions of the flow channel integrated plate.
  • a first type reversing junction 2111 is provided at a corner position of the flow channel integrated plate.
  • the flow channel integrated plate can be a square flow channel integrated plate as shown in Figure 10.
  • one or more first-type reversing nodes 2111 and one or more second-type reversing nodes 2112 can be provided on the lower left corner and right corner of the flow channel integrated plate to ensure that the flow channel
  • the working fluid in 21 can be flexibly divided and merged while changing direction in the flow channel integrated plate.
  • a plurality of the second type reversing junctions 2112 extend in a rectangular shape.
  • the second type reversing knots 2112 can be bent at 90° or 180° during reversing.
  • multiple continuous second type reversing knots 2112 A combination of rectangular second type reversing junctions 2112 can be formed, that is, multiple second type reversing junctions 2112 are formed in a rectangular zigzag-shaped structure.
  • the second type of reversing junctions 2112 with multiple zigzag structures can be formed. Improve the heat exchange efficiency of the flow channel integrated plate.
  • a plurality of the first type reversing junctions 2111 are arranged side by side. Specifically, when the horizontal flow channel is switched into the vertical flow channel, the flow channels can be divided or merged at the same time, so that the first type of reversing junction 2111 can be formed between the horizontal flow channel and the vertical flow channel. When multiple rows of horizontal flow channels are reversed into multiple rows of vertical flow channels, multiple first-type reversing junctions 2111 arranged side by side can be formed to increase the flow channel density of the horizontal flow channels and the vertical flow channels after reversing. .
  • the flow channel integrated plate also includes the heat exchange plate 2.
  • a flow channel integrated plate which includes:
  • the flow channel 21 is used to connect the first bus end and the second bus end;
  • Branch bus junctions 212 are distributed on the flow channels 21 , and the number of flow channels 21 at both ends of the branch bus junctions 212 is different.
  • first converging end and the second converging end can be used as end structures at both ends of the flow channel 21.
  • the first converging end and the second converging end can be used as both ends of the flow channel 21 and are respectively connected with each other.
  • the first port 221 and the second port 222 are end structures that are plugged or threaded.
  • the flow channel 21 is located in the flow channel integrated plate.
  • the distribution extends from the first converging end to the second converging end after at least one split and at least one confluence.
  • the split can be divided into two, one into three, or one into more channels.
  • the confluence can be It is a two-in-one, three-in-one or more flow channel integration method to form one or more branch junctions 212 on the flow channel 21 to enhance the flow channel 21 on the flow channel integrated plate.
  • the distribution density in the flow channel integrated plate improves the heat exchange effect.
  • the flow channel 21 includes a trunk path and a branch path.
  • the trunk path is connected to the first converging end and the second converging end.
  • the branch path is connected to the trunk path away from the main path. One end of the first converging end and the second converging end.
  • the trunk path of the flow channel 21 may be a portion of the flow path that is directly connected to the first converging end and the second converging end and has not been branched or merged, while the branch path may be connected to and branched off from the trunk path or After merging, the flow channel portion is connected to the main road, so that the number of branch roads is greater than the number of main roads, ensuring the distribution density of the flow channels 21 on the flow channel integrated plate.
  • the branch bus junction 212 includes a first-level branch junction 2121, the branch includes a first-level branch, and the first-level branch junction 2121 is connected to the main road and the between first-level branches.
  • the first-level branch junction 2121 serves as a branch or confluence structure between the main road and the first-level branch road, and can evenly divide the working fluid in the main road to two or more first-level branches.
  • the working fluid is dispersed in the flow channel integrated plate as early as possible to ensure the density of distribution of flow channels 21 in the flow channel integrated plate and the flexibility of heat exchange adjustment.
  • the first-level branches are provided with at least 2, that is, the first-level branch junction 2121 can evenly divide the working fluid in the main path into 2, 3 or more first-level branches. , ensuring the density of distribution of the flow channels 21 in the flow channel integrated plate.
  • one end of the first-level shunt junction 2121 is connected to one of the trunk lines, and the other end of the first-level shunt junction 2121 is connected to two of the first-level branches.
  • the first-level branch that is, the first-level shunt junction 2121 can evenly divide the working fluid in the main road into two first-level branches, so as to control the balance of the working fluid flow in the two first-level branches. Ensure that the working fluid flow in the two first-level branches remains equal.
  • the branch bus junction 212 also includes a second-level branch junction 2122, the branch includes a second-level branch, and the second-level branch junction 2122 is connected to the second-level branch junction. between the first-level branch and the second-level branch.
  • the second-level branch junction 2122 serves as a branch or converging structure between the first-level branch and the second-level branch, and can evenly divide the working fluid in the first-level branch to the two.
  • the working fluid is dispersed in the flow channel integrated plate to ensure the density of distribution of flow channels 21 in the flow channel integrated plate and the flexibility of heat exchange adjustment.
  • the second-level splitting junction 2122 can evenly divide the working fluid in the first-level branch into 2, 3 or more second-level branches, ensuring that the flow channel 21 is integrated in the flow channel. The density of distribution in the plate.
  • one end of the second-level shunt junction 2122 is connected to one of the first-level branches, and the other end of the second-level shunt junction 2122 is connected to two branches. Describe the second level branch. That is to say, the second-stage splitting junction 2122 can evenly divide the working fluid in the first-level branch into two second-level branches, so as to control the balance of the working fluid flow in the two second-level branches.
  • the branch bus junction 212 is located on the peripheral side of the flow channel integrated plate.
  • a continuous flow channel 21 can be formed in the middle of the flow channel integrated plate to improve the flow rate of the working fluid in the flow channel 21. Smooth flow in the flow channel integrated plate.
  • the first-level branch includes an annular branch.
  • the annular branch can be the annular channel 25 in Figure 17. Both ends of the annular branch are directly connected to the trunk road. Since the flow channel
  • the main path 21 is the flow channel portion directly connected to the first converging end and the second converging end and has not been divided or merged.
  • the setting of the annular branch can simplify the flow path of the working medium in the annular branch and avoid the following problems.
  • the overheating or undercooling of the first converging end and the second converging end ensures the temperature balance during heat exchange in the flow channel 21.
  • the branch junction 212 also includes a third-level branch junction, the branch includes a third-level branch, and the first-level branch, the second-level branch, and the second-level branch are connected in sequence on the main road.
  • the first-level shunt junction 2121 is connected between the main road and the first-level branch
  • the second-level shunt junction 2122 is connected between the first-level branch and the second-level branch.
  • the third-level branch junction is connected between the second-level branch and the third-level branch, so that the number of the first-level branches is twice the number of the main roads.
  • the number of the second-level branches is twice the number of the first-level branches
  • the number of the third-level branches is twice the number of the second-level branches.
  • the branch bus junction 212 may also include a fourth-level shunt junction, a fifth-level shunt junction, a sixth-level shunt junction, or more shunt junctions
  • the branches include fourth-level branches, fifth-level branches , a sixth-level branch or more branches, the fourth-level shunt junction is connected between the third-level branch and the fourth-level branch, and the fifth-level shunt junction is connected to the Between the fourth-level branch and the fifth-level branch, the sixth-level branch junction is connected between the fifth-level branch and the sixth-level branch, so that the flow channel 21 Form multi-level shunts and confluences.
  • the flow channel integrated plate also includes the heat exchange plate 2.
  • the flow channel integrated plate includes:
  • first area 28 and second area 29 are first area 28 and second area 29;
  • the flow channels 21 are distributed in the first area 28 and the second area 29.
  • the average density of the flow channels 21 in the first area 28 is greater than that in the second area 29. Describe the average density of distribution of flow channels 21.
  • the flow channel integrated plate can be used to cool or heat the battery.
  • the flow channel integrated plate cools the battery, a large amount of heat will be generated at the positive and negative electrode positions during the battery operation, which means that the flow channel integrated plate needs to provide greater cooling effect on the positive and negative electrode positions of the battery.
  • the average density of the distribution of the flow channels 21 in the first region 28 is greater than the average density of the distribution of the flow channels 21 in the second region 29, the positive electrode position of the battery can be faced through the first region 28. and the negative electrode position, and the second area 29 is facing the middle position of the battery to improve the heat exchange effect of the flow channel integrated plate on the battery.
  • the width dimension of the flow channel 21 is less than 15 mm.
  • the heat exchange efficiency of the flow channel integrated plate can be improved through distribution of flow channels 21 with different densities, that is, The flow channel 21 with a smaller width can be used for heat exchange.
  • the width of the flow channel 21 can be 3-12 mm.
  • the width of the flow channel 21 is also the radial size of the flow channel 21 .
  • the width of the flow channels 21 can be set to 5-10 mm.
  • the flow channel integrated plate also includes the heat exchange plate 2.
  • a flow channel integrated plate which includes:
  • the flow channel 21 is distributed in the flow channel plate 24. In the plane where the flow channel integrated plate is located, the installation area of the flow channel 21 is greater than 70% of the area of the flow channel plate 24. .
  • the area ratio of the flow channels 21 in the flow channel plate 24 can be flexibly set according to the heat exchange object of the flow channel integrated plate.
  • the setting area of the flow channel 21 can be set to 75%, 80%, and 85% of the area of the flow channel plate 24 , 90% or 95% to improve the heat exchange flexibility of the flow channel integrated plate.
  • the width dimension of the flow channel is less than 15 mm.
  • the heat exchange efficiency of the flow channel integrated plate can be improved through flow channel distribution with different densities, that is, the heat exchange efficiency of the flow channel integrated plate can be improved.
  • the flow channel 21 with a smaller width is used for heat exchange.
  • the width of the flow channel 21 can be 3-12 mm.
  • the width of the flow channel 21 is also the radial size of the flow channel 21 .
  • the width of the flow channels 21 can be set to 5-10 mm.
  • the flow channel integrated plate also includes the heat exchange plate 2.
  • An embodiment of the present application also provides a battery tray, which includes:
  • An embodiment of the present application also provides a battery structure, which includes the battery tray.
  • the battery structure includes:
  • Battery module 1 the battery module 1 has a polar position and a non-polar position;
  • Heat exchange plate 2 the heat exchange plate 2 is arranged at the bottom of the battery module 1, and a flow channel 21 for circulating working fluid is provided in the heat exchange plate 2.
  • the heat exchange plate 2 includes a A first type of area 26 opposite to the polar position and a second type of area 27 opposite to the non-polar position;
  • the working fluid flows from the flow channel 21 of the first type area 26 to the flow channel 21 of the second type area 27 ;
  • the working fluid flows from the flow channel 21 of the second type area 27 to the flow channel 21 of the first type area 26 .
  • the working fluid in the flow channel 21 can be refrigerant such as R123a, R32, CO2 or water.
  • the heat exchange plate 2 can supply the battery with a low-temperature and low-pressure refrigerant working fluid.
  • the working fluid flows from the flow channel 21 of the first type area 26 to the flow channel 21 of the second type area 27; the working fluid of high temperature and high pressure passes through the heat exchange plate 2
  • the battery module 1 is heated, the working fluid flows from the flow channel 21 of the second type area 27 to the flow channel 21 of the first type area 26 to ensure that the refrigerant working fluid can be in the air.
  • the equilibrium state of the two liquid phases is used to improve the heat exchange effect of the heat exchange plate 2 on the battery module 1 and ensure the long-term stable operation of the battery structure.
  • the flow channel 21 may be stamped in the heat exchange plate 2, and the battery module 1 may include multiple battery cells.
  • the cooling and reverse (the flow direction of the working fluid in the flow channel 21) heating can improve the cooling and heating operations of the battery module 1, ensure the temperature uniformity of the battery module 1, and improve the replacement of the battery module 1.
  • the polarity positions include a positive electrode position and a negative electrode position, and the positive electrode position and the negative electrode position are located on opposite sides of the battery module 1 that are far away from each other.
  • the heat exchange plate 2 can polarly heat and exchange heat for the opposite sides of the battery module 1 that are far away from each other. , to improve the heat exchange effect of the heat exchange plate 2 on the battery module 1.
  • the first type area 26 includes a first partition 261 and a second partition 262.
  • the first partition 261 is opposite to the positive electrode position, and the second partition 262 is opposite to the positive electrode position.
  • the negative electrode position is relative;
  • the working fluid flows from the flow channels 21 of the first partition and the second partition that are far away from each other to the second partition.
  • the flow channel 21 of the similar area 27; the working fluid at this time can be a low-temperature and low-pressure working fluid.
  • the low-temperature and low-pressure working fluid first cools the positive and negative electrode positions that generate more heat on the battery module 1, and then cools the battery module 1. Other areas on 1 are cooled to ensure the temperature uniformity of battery module 1.
  • the working fluid flows from the flow channel 21 of the second type area 27 to the first partition and the second partition.
  • the flow channel 21 can be a high-temperature and high-pressure working fluid.
  • the high-temperature and high-pressure working fluid first heats the areas on the battery module 1 that generate less heat except the positive electrode position and the negative electrode position, and then heats the positive electrode on the battery module 1. The position and the negative electrode position are heated to ensure the temperature uniformity of the battery module 1.
  • the working fluid flows from the flow channel 21 of the first partition 261 to the flow channel of the second partition. 21, and flows from the flow channel 21 of the second partition 262 to the flow channel 21 of the second type area 27.
  • the working fluid flowing through the first partition 261 and the second partition 262 will be collected into the flow channel 21 of the second type area 27 .
  • the working fluid in the first partition 261 can first flow through the second partition 262 and then flow to the third partition.
  • Second zone 262 and the working fluid in the second zone 262 can flow directly to the flow channel 21 of the second type area 27 to improve the heat exchange flexibility of the heat exchange plate 2 in the battery structure.
  • the number of flow channels 21 gradually increases in the direction of flow from the first type area 26 to the second type area 27 .
  • the number of the flow channels 21 can be gradually increased, for example, by increasing the number of flow channels 21 by dividing the flow, so as to The distribution density of the flow channels 21 is increased. After the flow channel 21 is divided, it can also be merged to facilitate the collection of the working fluid at the inlet and outlet of the flow channel 21 .
  • the flow channel 21 includes a first channel section and a second channel section that are connected with each other, and the second channel section
  • the number of channels is twice the number of channels of the first channel segment.
  • first channel section and the second channel section can be connected through a splitting junction, and the splitting junction can evenly divide the working fluid in the first channel section into two second channel sections, so as to facilitate the control of the two second channel sections. Balance of medium flow.
  • the flow channel 21 further includes a third channel section, and the third channel section is different from the second channel section. are connected, and the number of channels of the third channel segment is twice that of the second channel segment.
  • the second channel segment and the third channel segment can be connected through a splitter junction, and the splitter junction can evenly divide the working fluid in the second channel segment into two third channel segments to facilitate control of the two third channel segments. Balance of medium flow.
  • the radial size range of the cross section of the flow channel 21 is 6-9 mm.
  • the radial size of the flow channel 21 of the first type area 26 is smaller than the radial size of the flow channel 21 of the second type area 27 .
  • the flow channel 21 of the first type area 26 can be close to the inlet and outlet of the flow channel 21, that is, the flow channel 21 of the first type area 26 is located at the proximal end of the flow channel; while the flow channel 21 of the second type area 27
  • the flow channel 21 can be far away from the inlet and outlet of the flow channel 21, that is, the flow channel 21 of the second type area 27 is located at the far end of the flow channel 21; in order to ensure the flow
  • the radial size of the distal flow channel 21 can be gradually increased.
  • the radial size of the flow channel 21 of the first type region 26 can be set to be smaller than that of the third type area 26.
  • the radial size of the flow channel 21 of the second type area 27 can be close to the inlet and outlet of the flow channel 21, that is, the flow channel 21 of the first type area 26 is located at the proximal end of the flow channel; while the flow channel 21 of the second type area 27
  • the flow channel 21 can be far away from the inlet and outlet of the
  • the radial size range of the flow channel 21 of the first type area 26 is 6-7.5 mm
  • the radial size range of the flow channel 21 of the second type area 27 is 7.5-9 mm.
  • the polarity positions include a positive electrode position and a negative electrode position, and the positive electrode position and the negative electrode position are located on the same side of the battery module 1 . That is, the first partition 261 and the second partition 262 of the first type area 26 are close to each other, and jointly exchange heat for the positive electrode position and the negative electrode position of the battery module.
  • the heat exchange plate 2 is provided with a flow distribution component 22, the flow distribution component 22 has a first port 221 and a second port 222, the first port 221 and the second port 222 are respectively connected with the Both ends of the flow channel 21 are connected.
  • the first port 221 and the second port 222 can be used to connect the heat exchange plate 2 with the external component that provides working fluid.
  • an external pump body can be connected through the first port 221 and the second port 222 .
  • the port 222 is connected to the heat exchange plate 2 to ensure the flow stability of the working fluid in the heat exchange plate 2 .
  • the first port 221 is connected to the flow channel 21 of the first type area 26
  • the second port 222 is connected to the flow channel 21 of the second type area 27 .
  • the two ends of the flow channel 21 can be a first converging end and a second converging end.
  • the first converging end and the second converging end can be used as two ends of the flow channel 21 and are connected to the first port 221 and the third port respectively.
  • the end structure of the two ports 222 is plugged or threaded.
  • the distribution of the flow channels 21 in the flow channel integrated plate extends from the first confluence end through the flow channels 21 of the first type area 26 and the second type area 27 to the third type after at least one reversal.
  • the second converging end is to increase the distribution density of the flow channels 21 in the flow channel integrated plate.
  • the flow channels 21 are distributed in a zigzag or serpentine shape in the flow channel integrated plate to ensure that the flow channels 21 in the flow channel integrated plate, thereby improving the heat exchange effect of the flow channel integrated plate.
  • the battery module 1 includes a first battery module 11 and a second battery module 12.
  • the second battery module 12 is located far away from the first battery module 11.
  • the flow rate of the channel in the flow channel 21 that is opposite to the first battery module 11 is the first flow rate
  • the flow rate of the channel in the flow channel 21 that is opposite to the second battery module 12 is the second flow rate.
  • the first flow rate is less than the second flow rate.
  • the flow channel 21 of the first type area 26 can be connected with the third A battery module 11 is opposite and can be close to the splitter assembly 22 , that is, the flow channel 21 of the first type area 26 is located at the proximal end of the heat exchange plate 2 ; and the flow channel 21 of the second type area 27 can be far away from the splitter assembly 22 , that is, the flow channel 21 of the second type area 27 is located at the far end of the heat exchange plate 2; in order to ensure the balance of the heat exchange effect between the proximal end and the far end of the heat exchange plate 2, the flow rate of the distal flow channel 21 can be increased. , for example, the flow rate of the channel in the flow channel 21 opposite to the second battery module 12 is set to the second flow rate, and the first flow rate is smaller than the second flow rate.
  • the two batteries formed by the first battery module 11 and the second battery module 12 can charge and discharge each other after being connected through the coils of the motor, that is, the temperature of the batteries is increased by self-heating, so that the batteries can perform better. Discharge.
  • the average radial size of the passage in the flow channel 21 opposite to the first battery module 11 is smaller than the average radial size of the passage in the flow channel 21 opposite to the second battery module 12 .
  • Average radial size is smaller.
  • the number of channels in the flow channel 21 facing the first battery module 11 may also be set to be smaller than the number of channels in the flow channel 21 facing the second battery module 12 .
  • the flow channel 21 includes an annular channel 25 located on the outer periphery of the flow channel 21, and the annular channel 25 is located outside the projection of the battery module 1 on the heat exchange plate 2;
  • the flow rate of the annular channel 25 is 20%-25% of the total flow rate of the flow channel 21, the first flow rate is 30%-40% of the total flow rate of the flow channel 21, and the second flow rate is the 40%-50% of the total flow rate of flow channel 21.
  • both ends of the annular channel 25 are directly connected to the main path of the flow channel, because the main path of the flow channel 21 is directly connected to the first converging end and the second converging end and has not been divided or merged.
  • the flow channel part, the arrangement of the annular channel 25 can simplify the flow path of the working medium in the annular channel 25, avoid overheating or undercooling of the first and second converging ends, and ensure heat exchange in the flow channel 21 temperature equilibrium.
  • the heat exchange plate 2 includes a third area located between the first type area 26 and the second type area 27 .
  • the first type area 26 and the second type area 27 can correspond to the positive electrode position and the negative electrode position of the battery module 1, while the third area It can correspond to the non-polar position in the middle of the battery module or the gap position between the cells in the battery module.
  • the following two implementations can be implemented Example to achieve.
  • the density of the flow channels 21 in the first type area 26 is greater than the density of the flow channels 21 in the third area.
  • the density of the flow channels 21 in the second type area 27 is greater than the density of the flow channels 21 in the third area.
  • the heat exchange plate 2 includes a base plate 23 and a flow channel plate 24.
  • the base plate 23 is sandwiched between the flow channel plate 24 and the battery module 1.
  • the flow channel 21 is provided on the in the flow channel plate 24.
  • An embodiment of the present application also provides a vehicle, which includes the battery structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种换热板、电池包和车辆,换热板包括流道、第一端口和第二端口,流道布设在换热板内,流道被配置为供换热工质在其中流动;流道的一端与第一端口连通,流道的另一端与第二端口连通,第一端口和第二端口被配置为供换热工质通入换热板内;换热板包括第一类区域,第一类区域用于与电池极柱区域对应设置;流道包括分流结,分流结包括一级分流结,至少一个一级分流结设于第一类区域,一级分流结靠近第一端口或者第二端口设置,分流结将流道分流。

Description

换热板、电池包和车辆
相关申请的交叉引用
本申请要求申请日为2022年07月29日、申请号为202210911342.3、专利申请名称为“换热板、电池包和车辆”的优先权,以及申请日为2022年10月31日、申请号为202222893863.9、专利申请名称为“换热板、流道集成板、电池托盘、电池结构和车辆”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电池组件技术领域,具体地,本申请涉及一种换热板、电池包和车辆。
背景技术
随着人们环保意识的不断增强,越来越多的电动汽车走进了人们的视野。电池作为电动汽车的主要动力组件,对电动汽车的长期稳定运行起着重要的作用。
现有技术中,采用水通入口琴管后对电池进行冷却或加热,但现有的口琴管采用单根管道或者多个管道并排的形式排布,使得口琴管等换热组件中的管道分布密度较低,在该换热组件对电池进行换热时,容易导致电池的温度过高或者过低,降低了电池使用的稳定性和寿命。
申请内容
本申请提供一种换热板、电池包和车辆的新技术方案。
根据本申请实施例的第一方面,提供了一种换热板,用于电池,包括:
流道,所述流道布设在所述换热板内,所述流道被配置为供换热工质在其中流动;
第一端口和第二端口,所述流道的一端与所述第一端口连通,所述流道的另一端与所述第二端口连通,所述第一端口和第二端口被配置为供换热工质通入所述换热板内;
所述换热板包括第一类区域,所述第一类区域用于与电池极柱区域对应设置;所述流道包括分流结,所述分流结包括一级分流结,至少一个所述一级分流结设于所述第一类区域,所述一级分流结靠近所述第一端口或者第二端口设置,所述分流结将所述流道分流。
可选地,所述换热板包括第一换热模块和第二换热模块,所述第一换热模块和第二换热模块均包括所述第一类区域;
所述第一换热模块的所述第一类区域包括第三子区和第一子区,第二换热模块的所述第一类区域包括第四子区和第二子区;
所述一级分流结设置于所述第三子区,所述分流结还包括二级分流结,所述二级分流结位于所述第一子区、第三子区和第四子区中的至少一者。
可选地,所述分流结包括至少两个所述一级分流结,其中与部分所述一级分流结对应的两个二级分流结均位于第二子区,与另一部分所述一级分流结对应的两个二级分流结分别位于第一子区和第四子区。
可选地,所述流道还包括三级分流结,所述三级分流结位于第一子区和第二子区中的至少一者。
可选地,所述分流结还包括四级分流结,所述四级分流结设于所述第三子区和第二子区中的至少一者。
可选地,所述换热板用对所述电池冷却时,所述工质从所述第一端口流入,并流经所述一级分流结、二级分流结、三级分流结,再经所述第二端口流出。
可选地,所述流道包括干路和支路,所述干路与所述第一端口或第二端口连接,所述干路将所述支路与所述第一端口和第二端口连通;
所述支路包括一级支路、二级支路、三级支路和四级支路,
所述一级分流结连接于所述干路和所述一级支路之间;
所述二级分流结连接于所述一级支路与所述二级支路之间;
所述三级分流结连接在所述二级支路与所述三级支路之间;
所述四级分流结连接在所述三级支路与所述四级支路之间。
可选地,所述流道还包括汇流结,所述汇流结包括一级汇流结、二级汇流结、三级汇流结和四级汇流结;
所述四级支路的两端分别连接有四级分流结和四级汇流结;
所述四级支路通过连接的四级汇流结汇聚形成三级支路;
所述汇聚形成的三级支路通过三级汇流结汇聚形成所述二级支路;
所述汇聚形成的二级支路通过二级汇流结汇聚形成所述一级支路;
所述汇聚形成的一级支路通过一级汇流结汇聚形成所述干路;
所述干路与所述第一端口连接,或者所述干路与所述第二端口连接。
可选地,所述换热板包括第一换热模块和第二换热模块,所述第一换热模块和第二换热模块均包括第二类区域,所述第二类区域用于与电池的非柱区域对应设置;
所述第一换热模块的所述第二类区域包括第一分域,第二换热模块的所述第二类区域包括第二分域;
至少一个所述一级分流结靠近所述第二端口并设置于所述第三子区,所述分流结还包括二级分流结,所述二级分流结位于所述第三子区和所述第一分域。
可选地,所述流道还包括三级分流结,所述三级分流结位于所述第二分域中。
可选地,所述分流结还包括四级分流结,所述四级分流结设于所述第二分域中。
可选地,所述换热板用对所述电池加热时,所述工质从所述第二端口流入,并流经所述一级分流结、二级分流结、三级分流结,再经所述第一端口流出。
可选地,部分所述二级支路分布于第一换热模块和第二换热模块边缘。
可选地,所述流道在第一换热模块进行N级分流,在第二换热模块进行M级分流,所述M≤N。
可选地,所述流道在第一换热模块进行N级分流后形成n1条支路,在第二换热模块进行M级分流后形成m1条支路,m1>n1。
可选地,所述换热板还包括第二类区域;所述流道分布于所述第一类区域和所述第二类区域;所述换热板用于对所述电池冷却,所述工质从所述第一类区域的流道流向所述第二类区域(27)的流道;或所述换热板用于对所述电池加热,所述工质从所述第二类区域的流道流向所述第一类区域的流道。
可选地,所述第一类区域包括第一分区和第二分区;所述换热板用于对所述电池冷却时,所述工质从所述第一分区流入所述第二类区域的过程中经至少2次分流。
可选地,所述换热板具有第一区域和第二区域,所述流道分布于所述第一区域和所述第二区域,所述第一区域内所述流道分布的平均密集度大于所述第二区域内所述流道分布的平均密集度。
可选地,所述换热板包括流道板和基板,所述流道设于所述流道板,在所述换热板所在的平面内,所述流道的设置面积大于所述流道板面积的70%。
根据本申请实施例的第二方面,提供了一种电池包,包括第一方面所述的换热板。
根据本申请实施例的第三方面,提供了一种车辆,包括第一方面所述的换热板;或,
包括第二方面所述的电池包。
本申请的一个技术效果在于:
本申请实施例提供了一种换热板,所述换热板包括流道,所述流道布设在所述换热板内,所述流道被配置为供换热工质在其中流动。第一端口和第二端口,所述流道的一端与所述第一端口连通,所述流道的另一端与所述第二端口连通,所述换热板包括第一类区域。本申请所述换热板的一级分流结靠近所述第一端口或者第二端口设置。由于所述第一类区域为与电池中电芯发热较高的极柱区域相对应的区域,一级分流结设于所述第一类区域,且靠近所述第一端口或者第二端口,以便于控制工质的流量分配,以提升换热板的均温性。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1为本申请实施例提供的一种换热板的分区示意图一;
图2为本申请实施例提供的一种换热板的分区示意图二;
图3为本申请实施例提供的一种换热板上分流结的示意图;
图4为本申请实施例提供的一种换热板的整体示意图;
图5为本申请实施例提供的一种换热板的分流组件示意图;
图6为本申请实施例提供的一种电池包的电池模组和换热板的配合示意图;
图7为本申请实施例提供的一种换热板的第一换热模块示意图;
图8为本申请实施例提供的一种换热板的第二换热模块示意图;
图9为本申请实施例提供的一种电池结构的拆分俯视图;
图10为本申请实施例提供的一种换热板的示意图一;
图11为本申请实施例提供的一种换热板的示意图二;
图12为本申请实施例提供的一种换热板的流道的流向示意图一;
图13为本申请实施例提供的一种换热板的流道的流向示意图二;
图14为本申请实施例提供的一种换热板的换向结示意图;
图15为本申请实施例提供的一种换热板的分汇流结示意图;
图16为本申请实施例提供的一种换热板的分区示意图;
图17为本申请实施例提供的一种电池结构的示意图一;
图18为本申请实施例提供的一种换热板的流道流向(a)和分区(b)示意图一;
图19为本申请实施例提供的一种换热板的流道流向(a)和分区(b)示意图二;
图20是基板和流道板的示意图。
其中:1、电池模组;11、第一电池模组;12、第二电池模组;2、换热板;21、流道;211、换向结;2111、第一类换向结;2112、第二类换向结;212、分汇流结;2121、第一级分流结;2122、第二级分流结;22、分流组件;221、第一端口;222、第二端口;23、基板;24、流道板;25、环形通道;26、第一类区域;261、第一分区;2611、第一子区;2612、第二子区;262、第二分区;2621、第一子域;2622、第二子域;27、第二类区域;271、第一分域;272、第二分域;28、第一区域;29、第二区域;
2120、分流结;21210、一级分流结;21220、二级分流结。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参照图1至图5,本申请实施例提供了一种换热板2,所述换热板2包括:
流道21,所述流道21布设在所述换热板2内,所述流道21被配置为供换热工质在其中流动。
第一端口221和第二端口222,所述流道21的一端与所述第一端口221连通,所述流道21的另一端与所述第二端口222连通,所述第一端口221和第二端口222被配置为供换热工质通入所述换热板2内;
所述换热板2包括第一类区域26,所述第一类区域26用于与电池极柱区域对应设置;所述流道21包括分流结2120,所述分流结2120包括一级分流结21210,至少一个所述一级分流结21210设于所述第一类区域26,所述一级分流结21210靠近所述第一端口第一端口221或者第二端口第二端口222设置,所述分流结2120将所述流道21分流。
具体地,所述第一类区域26可以对应于电池中电芯发热较高的区域。由于电芯上需要设置有极柱用于电连接,所以电芯在运行过程中的极柱区域的发热相对较大,也就形成了上述的电池极柱区域;所述第一类区域26可以用于与电池上的极柱区域对应设置,而所述换热板2上除了第一类区域26外的区域可以用于与电池上电芯本体的非极柱区域对应设置,以提高所述换热板2的换热效率。
具体地,所述分流结2120两端的流道21数量不同;所述2120两端的流道21可以分别作为工质的进口和出口,而且在面对换热板2不同的换热情况下,所述分流结21220120两端的流道进出口可以相互切换,使得工质在分流结21220120中可以正向或者反向流动。
在一种实施例中,从所述第一端口221到第二端口222,所述流道21具有至少两个分流结2120,其中一个所述分流结2120靠近第一端口第一端口221并将所述流道21分流,另一个所述分流结2120靠近第二端口并将所述流道21汇流。
具体地,所述流道21两端分别与第一端口第一端口212201和第二端口第二端口222插接或者螺纹连接。所述流道21在所述换热板2中的分布至少经过1次分流和至少1次汇流后从所述第一端口第一端口212201延伸至所述第二端口第二端口222,分流可以为一分二、一分三或者一分更多流道21的方式,汇流可以为二合一、三合一或者更多流道21合一的方式,以在所述流道21上形成一个或者多个分流结21220120。
本申请的所述流道21包括分流结21220120,所述分流结2120包括一级分流结21210,至少一个所述一级分流结21210设于所述第一类区域26,所述一级分流结21210靠近所述第一端口第一端口221或者第二端口第二端口222设置,所述分流结2120将所述流道21分流。由于所述第一类区域26为与电池中电芯发热较高的极柱区域相对应的区域,一级分流结21210设于所述第一类区域26,且靠近所述第一端口第一端口221或者第二端口第二端口222,以便于控制工质的流量分配,以提升换热板2的均温性。使得所述一级分流结21210通过流道21数量的改变可以提高所述第一类区域26的流道21分布密度,进而提升所述换热板2的换热效果。
可选地,所述换热板2包括第一换热模块201和第二换热模块202,所述第一换热模块201和第二换热模块202均包括所述第一类区域26;
所述第一换热模块201的所述第一类区域26包括第三子区2621和第一子区2611,第二换热模块202的所述第一类区域26包括第四子区2622和第二子区2612;
所述一级分流结21210设置于所述第三子区2621,所述分流结2120还包括二级分流结21220,所述二级分流结21220位于所述第一子区2611、第三子区2621和第四子区2622中的至少一者。
具体地,所述换热板2在对电池进行换热时,所述换热板2上第一类区域26可以与电池上的极柱区域相对应,以保证所述换热板2对电池的换热效果。而所述电池的实际结构可以由一组电芯组成,也可以有多组排列的电芯组成。比如参见图6,所述换热板2在对由两组电芯组成的电池进行换热时,可以将换热板2分成第一换热模块201和第二换热模块202,所述第一换热模块201与一组电芯相对应,所述第二换热模块202与另一组电芯相对应。而至少部分所述流道21在第一换热模块201和第二换热模块202中的每换热模块内弯曲设置,可以增大所述第一换热模块201和第二换热模块202中流道21的设置面积,进而增加了所述换热板2的有效换热面积,提升了所述换热板2对电池的换热量。
具体地,第一换热模块201可以为图1中的左侧区域,第二换热模块202可以为图1中的右侧区域,第一换热模块201中的所述第一类区域26包括第三子区2621和第一子区2611,第二换热模块202中的所述第一类区域26包括第四子区2622和第二子区2612。第一端口221和第二端口222可以靠近第三子区2621设置。而所述一级分流结21210为流道21中靠近第一端口221和第二端口222的分流结,使得一级分流结21210设置于所述第三子区2621。
可选地,所述换热板2用对所述电池冷却时,所述分流结2120还包括二级分流结21220,二级分流结21220位于一级分流结21210远离所述第一端口221和第二端口222的一端,也就是所述二级分流结21220位于所述第一子区2611、第三子区2621和第四子区2622中的至少一者,并且从第一端口221和第二端口222延伸出的流道21在经过一级分流结21210分流后,还可以继续根据二级分流结21220进行分流,以进一步提高所述换热板2中流道21的分布密度,进而提升所述换热板2的换热效果。
另外,第一类区域26可以包括第一分区261和第二分区262,第一分区261包括上述和第一子区2611和第二子区2612,第二分区262包括上述第三子区2621和第四子区2622。
可选地,所述分流结2120包括至少两个所述一级分流结21210,其中与部分所述一级分流结21210对应的两个二级分流结21220均位于第二子区2612,与另一部分所述一级分流结21210对应的两个二级分流结21220分别位于第一子区2611和第四子区2622。
具体地,所述换热板2用对所述电池冷却时,在第一类区域26中,所述第二子区2612可以为换热板2中远离第三子区2621的高换热区域,而第一子区2611和第四子区2622可以为处于第二子区2612和第三子区2621之间的高换热区域。为了分别保证第二子区2612以及第一子区2611和第四子区2622中流道21的分布密度,可以通过部分位于第二子区2612的二级分流结21220来增加第二子区2612中的流道21密度,同时通过另一部分位于第一子区2611和第四子区2622的二级分流结21220来增加第一子区2611和第四子区2622的流道21密度,保证所述换热板2上高换热区域与电池之间的换热效率。
可选地,所述流道21还包括三级分流结,所述三级分流结位于第一子区2611和第二子区2612中的至少一者。
具体地,所述换热板2用对所述电池冷却时,由于第一子区2611和第二子区2612距离设置第一端口221和第二端口222的第三子区2621较远,为了保证第一子区2611和第二子区2612的换热效果,可以在第一子区2611中的二级分流结21220进行流道21分流后,在第一子区2611中继续通过与二级分流结21220连接的三级分流结进行分流;类似地,可以在第二子区2612中的二级分流结21220进行流道21分流后,在第二子区2612中继续通过与二级分流结21220连接的三级分流结进行 分流,以增加所述第一子区2611和第二子区2612中的流道21密度。
可选地,所述分流结2120还包括四级分流结,所述四级分流结设于所述第三子区2621和第二子区2612中的至少一者。比如在第三子区2621中,由于第三子区2621靠近第一端口221和第二端口222,也就是第三子区2621经过一级分流结21210分出的流道21数量较少,为了保证第三子区2621的换热效果,可在第三子区2621中设置四级分流结来增加第三子区2621的流道21密度;而由于第二子区2612远离第一端口221和第二端口222,也就是第二子区2612为换热板2上距离第一端口221和第二端口222的远端,为了保证第二子区2612的换热效果,可在第二子区2612中设置四级分流结来增加第二子区2612的流道21密度。
可选地,所述换热板2用对所述电池冷却时,所述工质从所述第一端口第一端口221流入,并流经所述一级分流结21210、二级分流结21220、三级分流结,再经所述第二端口第二端口222流出。
具体地,所述换热板2用对所述电池冷却的情况下,所述工质从所述第一端口第一端口221流入后,会首先经过一级分流结21210进行分流,以第一次通过一级分流结21210来增加流道21的数量,二级分流结21220通过流道21连接至一级分流结21210,进而工质可以通过二级分流结21220来增加流道21的数量,而三级分流结通过流道21连接至二级分流结21220,工质在可以通过三级分流结来增加流道21的数量,以保证换热板2中的流道21密度;最后工质经过一次或者多次汇流后再经所述第二端口第二端口222流出,以形成换热板2中流道21的循环,保证换热板2的换热效率。
可选地,所述流道21包括干路和支路,所述干路与所述第一端口221或第二端口222连接,所述干路将所述支路与所述第一端口221和第二端口222连通。
具体地,流道21的干路可以为与第一端口221和第二端口222直接连通并且未经过分流和汇流的流道21部分,而支路可以为与干路连通并从干路上分出或者汇合后连通至干路的流道21部分,以使得支路的数量大于干路的数量,保证流道21在换热板2上的分布密度。
所述干路的数量至少为4个,所述第一端口第一端口221与至少2个所述干路连接,所述第二端口第二端口222与至少2个所述干路连接。
另外,在一种实施例中,连接在所述第一端口第一端口212201的干路和连接在所述第二端口第二端口222的干路在所述第一换热模块201的边缘相对设置。
在另一种实施例中,连接在所述第一端口第一端口212201的干路和连接在所述第二端口第二端口222的干路在所述第一换热模块201的边缘并列设置。
具体地,在所述流道21从所述第一端口第一端口212201延伸至所述第二端口第二端口222的过程中,或者所述流道21从所述第二端口第二端口222延伸至所述第一端口第一端口212201的过程中,所述流道21可以先通过所述分流结2120将所述流道21分流,以增加所述流道21的数量和在换热板2中的分布密度,提升所述换热板2的换热效果。
可选地,所述分流结2120包括一级分流结21210,所述支路包括一级支路,所述一级分流结21210连接于所述干路和所述一级支路之间。
具体地,所述一级分流结21210作为所述干路和所述一级支路之间的分流或者汇流结构,可以将干路中的工质均分至两个或者多个一级支路中,以在所述换热板2中尽早地将工质进行分散,保证所述换热板2中流道21分布的密集度以及换热调节的灵活性。
可选地,所述一级支路设置有至少2条,也就是一级分流结21210可以将干路中的工质均分至2个、3个或者更多个一级支路中,保证所述流道21在所述换热板2中分布的密集度。
在一种具体的实施例中,所述一级分流结21210的一端连接有一条所述干路,所述一级分流结21210的另一端连接有2条所述一级支路,也就是一级分流结21210可以将干路中的工质均分至2个一级支路中,以便于控制2个一级支路中工质流量的均衡性,保证2个一级支路中工质流量维持相等。
可选地,所述分流结2120还包括二级分流结21220,所述支路包括二级支路,所述二级分流结21220连接于所述一级支路与所述二级支路之间。
具体地,所述二级分流结21220作为所述一级支路和所述二级支路之间的分流或者汇流结构,可以将一级支路中的工质均分至两个或者多个二级支路中,以在所述换热板2中将工质进行分散,保证所述换热板2中流道21分布的密集度以及换热调节的灵活性。
可选地,所述二级支路设置有至少2条。也就是二级分流结21220可以将一级支路中的工质均分至2个、3个或者更多个二级支路中,保证所述流道21在所述换热板2中分布的密集度。
在一种具体的实施例中,所述二级分流结21220的一端连接有一条所述一级支路,所述二级分流结21220的另一端连接有2条所述二级支路。也就是二级分流结21220可以将一级支路中的工质均分至2个二级支路中,以便于控制2个二级支路中工质流量的均衡性。
可选地,所述一级分流结21210的数量小于所述二级分流结21220的数量。
具体地。所述一级分流结21210连接于所述干路和所述一级支路之间时,以将干路中的工质均分至两个或者多个一级支路中,也就是一级支路的数量必然大于干路的数量,而一个干路可以对应一个一级分流结21210。而为了进一步提高流道21的数量和分布密度,可以通过所述二级分流结21220将一个所述一级支路分为多个所述二级支路之间,也就是一个一级支路可以对应设置一个二级分流结21220,在一级支路的数量必然大于干路的数量的基础上,所述二级分流结21220的数量大于所述一级分流结21210的数量,提高了所述换热板2的换热效率。
可选地,所述分流结2120还包括三级分流结,所述支路包括三级支路,所述三级分流结连接在所述二级支路与所述三级支路之间。
具体地,所述三级分流结作为所述二级支路和所述三级支路之间的分流或者汇流结构,可以将二级支路中的工质均分至两个或者多个三级支路中,以在所述换热板2中将工质进行分散,保证所述换热板2中流道21分布的密集度以及换热调节的灵活性。
可选地,所述三级支路设置有至少2条。也就是三级分流结可以将二级支路中的工质均分至2个、3个或者更多个三级支路中,保证所述流道21在所述换热板2中分布的密集度。
类似地,所述二级分流结21220的数量小于所述三级分流结的数量。在二级支路的数量必然大于一级支路的数量的基础 上,所述三级分流结的数量大于所述二级分流结21220的数量,以提高所述换热板2的换热效率。
可选地,所述分流结21220120还包括四级分流结,所述支路包括四级支路,所述四级分流结连接在所述三级支路与所述四级支路之间。
具体地,所述四级分流结作为所述三级支路和所述四级支路之间的分流或者汇流结构,可以将三级支路中的工质均分至两个或者多个四级支路中,以在所述换热板2中将工质进行分散,保证所述换热板2中流道21分布的密集度以及换热调节的灵活性。
可选地,所述四级支路设置有至少2条。也就是四级分流结可以将三级支路中的工质均分至2个、3个或者更多个四级支路中,保证所述流道21在所述换热板2中分布的密集度。
可选地,所述流道21还包括汇流结,所述汇流结包括一级汇流结、二级汇流结、三级汇流结和四级汇流结;
所述四级支路的两端分别连接有四级分流结和四级汇流结;
所述四级支路通过连接的四级汇流结汇聚形成三级支路;
所述汇聚形成的三级支路通过三级汇流结汇聚形成所述二级支路;
所述汇聚形成的二级支路通过二级汇流结汇聚形成所述一级支路;
所述汇聚形成的一级支路通过一级汇流结汇聚形成所述干路;
所述干路与所述第一端口221连接,或者所述干路与所述第二端口222连接。
具体地,在流道21延伸出换热板2的过程中,为了避免延伸出的流道21数量太多,造成流道21流出工质的分散,可以通过所述汇流结将所述流道21汇流,最终使得所述流道21的始末端的流道21数量少,而中间主要用于换热的流道21数量较多,以保证换热板2中流道21的分布均衡性。
可选地,所述换热板2包括第一换热模块201和第二换热模块202,所述第一换热模块201和第二换热模块202均包括第二类区域27,所述第二类区域27用于与电池的非柱区域对应设置;
所述第一换热模块201的所述第二类区域27包括第一分域271,第二换热模块202的所述第二类区域27包括第二分域272;
至少一个所述一级分流结21210靠近所述第二端口第二端口222并设置于所述第三子区2621,所述分流结2120还包括二级分流结21220,所述二级分流结21220位于所述第三子区2621和所述第一分域271。
具体地,所述换热板2用对所述电池加热时,所述第一类区域26可以对应于电池中电芯温度较低的区域,第二类区域27可以对应于电池中电芯温度更低的区域。由于电芯上需要设置有极柱用于电连接,所以电芯在运行过程中的极柱区域的发热相对较大,也就形成了上述的电池极柱区域;而电芯本体的区域发热相对较小,也就形成了上述电池的非极柱区域;所述第一类区域26可以用于与电池上的极柱区域对应设置,所述第二类区域27用于与电池上电芯本体的非极柱区域对应设置,以提高所述换热板2的换热效率。
在一种实施例中,第一端口221和第二端口222可以靠近第一分域271设置,在一级分流结21210位于第三子区2621的情况下,二级分流结21220位于一级分流结21210远离所述第一端口221和第二端口222的一端,也就是所述二级分流结21220位于所述第三子区2621和所述第一分域271,可以进一步提高所述换热板2中流道21的分布密度,提升所述换热板2的换热效果。
可选地,所述流道21还包括三级分流结,所述三级分流结位于所述第二分域272中。
具体地,所述三级分流结作为所述二级支路和所述三级支路之间的分流或者汇流结构,可以将二级支路中的工质均分至两个或者多个三级支路中,以在所述换热板2的第二分域272中将工质进行分散,保证所述换热板2中流道21分布的密集度以及换热调节的灵活性。
可选地,所述分流结21220120还包括四级分流结,所述四级分流结设于所述第二分域272中。
具体地,所述四级分流结连接在所述三级支路与所述四级支路之间,可以将三级支路中的工质均分至两个或者多个四级支路中,使得四级支路的数量大于所述三级支路的数量,以在所述换热板2的第二分域272中将工质进行分散,提高所述换热板2中流道21的分布密度。
可选地,所述换热板2用对所述电池加热时,所述工质从所述第二端口第二端口222流入,并流经所述一级分流结21210、二级分流结21220、三级分流结,再经所述第一端口第一端口221流出。
具体地,所述换热板2用对所述电池加热的情况下,所述工质从所述第二端口第二端口222流入后,会首先经过一级分流结21210进行分流,以第一次通过一级分流结21210来增加流道21的数量,二级分流结21220通过流道21连接至一级分流结21210,进而工质可以通过二级分流结21220来增加流道21的数量,而三级分流结通过流道21连接至二级分流结21220,工质在可以通过三级分流结来增加流道21的数量,以保证换热板2中的流道21密度;最后工质经过一次或者多次汇流后再经所述第一端口第一端口221流出,以形成换热板2中流道21的循环,保证换热板2的换热效率。
可选地,所述换热板2包括第一换热模块201和第二换热模块202;
部分所述一级支路、部分二级支路、部分三级支路和部分四级支路分布于第一换热模块201;
部分所述二级支路、部分三级支路和四级支路分布于第二换热模块202。
具体地,在第一端口221和第二端口222设置于第一换热模块201远离第二换热模块202一侧的情况下,所述第二换热模块202中二级支路的数量大于第一换热模块201中二级支路的数量,以保证所述第二换热模块202对电池的换热效果。
可选地,所述四级支路的数量大于所述三级支路的数量。
具体地,所述四级分流结连接在所述三级支路与所述四级支路之间,可以将三级支路中的工质均分至两个或者多个四级支路中,使得四级支路的数量大于所述三级支路的数量,以在所述换热板2中将工质进行分散。
可选地,所述第一端口221和第二端口222位于所述换热板2的同一侧。
具体地,所述换热板2的形状可以与电池的形状结构(可以指电池大面的形状)相匹配。比如在对方形电池进行换热时,换热板2可以设置为方形,对菱形电池进行换热时,换热板2可以设置为菱形,以保证所述换热板2与电池之间在贴合后的充分换热。而所述第一端口221和第二端口222位于所述换热板2的同侧时,所述工质无论从所述第一端口221进入到所述换热板2中,还是从所述第二端口222进入到所述换热板2中,都可以将工质流向换热板2中的其他侧(不同于设置第一端 口221和第二端口222的那一侧)以及换热板2的中间区域,便于所述工质在换热板2中形成循环流动,提高所述换热板2对电池的换热量。
在一种具体的实施例中,换热板2的形状为与长方形电池匹配的长方形,第一端口221和第二端口222位于换热板2的一个短边侧并且相互靠近,可以在工质从所述第一端口221或者第二端口222进入到所述换热板2中时,使得工质流向换热板2中的两个长边侧、另一个短边侧以及换热板2的中间区域,最后从第二端口222或者第一端口221流出所述换热板2,以形成是工质在换热板2中的循环流动。
可选地,所述换热板靠近所述第一端口221和第二端口222一侧设置有所述分流结2120。
具体地,所述第一端口221和第二端口222可以为所述换热板2中工质的进出口,以便于所述工质从所述第一端口221和第二端口222进出时尽快进行分流和汇流,可以在换热板2靠近所述第一端口221和第二端口222一侧设置有分流结2120,既可以保证第一端口221和第二端口222处工质的集中,又可以及时在换热板2中增加流道21的数量,提高换热板2的换热效率。
可选地,部分所述二级支路分布于所述换热板2的边缘。
具体地,位于换热板2边缘的干路在通过一级分流结21210分成多个一级支路时,由于换热板2边缘的周长较大,可以优先将一级支路分布于换热板2的边缘。而在一级支路通过二级分流结21220分成多个二级支路时,部分所述二级支路可以分布于所述换热板2的边缘,以便于在换热板2的边缘密集布置流道21。另外,也可以有剩余部分的二级支路延伸进所述换热板2的中间,保证换热板2上流道21的布置均衡。
可选地,部分所述二级支路分布于所述换热板2的边缘,部分所述三级支路分布于所述换热板2的中间。
具体地,在二级支路通过三级分流结分成多个三级支路时,部分所述二级支路可以分布于所述换热板2的边缘,以便于在换热板2的边缘密集布置流道21。而部分所述三级支路从所述二级支路分出后可以延伸至所述换热板2的中间,以保证在所述换热板2上尽可能多的分布所述流道21。
可选地,所述换热板2包括第一换热模块201和第二换热模块202,部分所述二级支路分布于第一换热模块201和第二换热模块202边缘。
具体地,第一换热模块201和第二换热模块202可以相邻设置,而第一端口221和第二端口222可以均位于第一换热模块201远离第二换热模块202的一侧。在二级支路从所述第一换热模块201延伸到第二换热模块202上时,可以保持部分所述二级支路沿第一换热模块201和第二换热模块202的边缘设置,以保证所述换热板2边缘的换热效果。
可选地,所述换热板2包括第一换热模块201和第二换热模块202,所述流道21在第一换热模块201进行N级分流,在第二换热模块202进行M级分流,所述M≤N。
在一种实施例中,在第一端口221和第二端口222设置于第一换热模块201远离第二换热模块202一侧的情况下,部分所述一级支路、部分二级支路、部分三级支路和部分四级支路分布于第一换热模块201,也就是流道21在第一换热模块201进行N为4的4级分流,而部分所述二级支路、部分三级支路和四级支路分布于第二换热模块202(部分一级支路从接口通过第一换热模块流入第二换热模块),使得流道21在第二换热模块202进行M为4的4级分流,此时M等于N。
在另一种实施例中,部分所述一级支路、部分二级支路、部分三级支路和和部分四级支路分布于第一换热模块201,也就是流道在第一换热模块201进行N为4的4级分流,而部分所述二级支路和部分三级支路分布于第二换热模块202(部分一级支路从接口通过第一换热模块流入第二换热模块),使得流道21在第二换热模块202进行M为3的3级分流,此时M小于N。
可选地,所述流道21在第一换热模块201进行N级分流后形成n1条支路,在第二换热模块202进行M级分流后形成m1条支路,m1>n1。
具体地,在第一换热模块201进行分流的流道21中,部分所述一级支路、部分二级支路、部分三级支路和四级支路分布于第一换热模块201,也就是流道21在第一换热模块201进行4级分流后形成n1为8的8条支路(第一次分流为干路分成一个一级支路)。
在第二换热模块202进行分流的流道21可以包括第一类流道和第二类流道,在第一类流道中,部分所述二级支路、部分三级支路和四级支路分布于第二换热模块202(部分一级支路从接口通过第一换热模块201流入第二换热模块202),使得流道在第二换热模块202进行4级分流后形成8条支路(第一次分流为干路分成一个一级支路)。在第二类流道中,部分所述二级支路和部分三级支路分布于第二换热模块202(部分一级支路从接口通过第一换热模块201流入第二换热模块202),使得流道21在第二换热模块202进行3级分流后形成8条支路,也就是流道21在第二换热模块202进行分流后形成m1为16的16条支路,以使得m1>n1,而且可选m1等于n1的两倍。
本申请实施例还提供了一种电池包,所述电池包包括所述的换热板2。
具体地,参见图6,所述电池包包括所述的换热板2和多个电池模组1,每个所述电池模组1的两端设置有极柱,多个所述电池模组1沿第一方向分布,第一方向可以为图1中的X方向,以增加所述电池包的能量密度;所述换热板2沿第二方向设置于所述电池模组1的一侧或者两侧,第二方向可以为图1中的Z方向,沿第二方向的多个所述电池模组1的侧面形成了电池模组1的大面,所述换热板2靠近电池模组1的一个或者两个大面设置,可以保证所述换热板2对电池模组1的换热效果。
另外,多个所述电池模组1可以形成第一电池模组11和第二电池模组12。所述第二电池模组12位于所述第一电池模组11远离分流组件22的一侧,第一端口221和第二端口222位于所述分流组件22。所述第一电池模组11可以与换热板2上的第一换热模块201相对应,所述第二电池模组12可以与换热板2上的第二换热模块202相对应。
具体地,所述第一类区域26的流道21可以与所述第一电池模组11相对并且可以靠近分流组件22,也就是第一类区域26的流道21位于换热板2的近端;而所述第二类区域27的流道21可以远离分流组件22,也就是第二类区域27的流道21位于换热板2的远端;为了保证换热板2的近端和远端换热效果的均衡性,可以将远端流道21的流量增加,比如设置所述流道21中与所述第二电池模组12相对的通道的流量为第二流量,所述第一流量小于所述第二流量。
可选地,所述电池模组1两端极柱连线所在方向为第三方向,第三方向可以为图1中的Y方向,也就是每个电池模组1都可以沿第三方向延伸而形成长条形电芯,所述第一方向、所述第二方向和第三方向可以分别平行于电池模组1的宽度方向、高度方向和长度方向,在所述第一方向、所述第二方向和第三方向互相垂直的情况下,多个所述电池模组1可以形成结构紧 凑的电池包结构,以保证所述电池包的能量密度。
可选地,所述换热板2为底板或上盖。
具体地,所述换热板2可以沿第二方向设置于所述电池模组1的一侧或者两侧,在所述换热板2可以沿第二方向设置于所述电池模组1的一侧时,比如换热板2设置于多个电池模组1的底侧时,换热板2可以形成电池包的底板,一方面可以在换热板2与电池模组1贴合时保证对电池模组1的换热效果,还可以在电池包的底部受到撞击时,给电池包起到很好的防护作用;而换热板2设置于多个电池模组1的顶侧时,换热板2可以形成电池包的上盖,同样可以在换热板2与电池模组1贴合时保证对电池模组1的换热效果,还可以对电池包形成防护。
本申请实施例还提供了一种车辆,所述车辆包括所述的换热板2;或,
所述车辆包括所述的电池包。
本技术方案提供了可以用在电动车辆上的换热流道装置,该换热流道装置可以对电池提供良好的换热作用。在电池需要加热时,其可以通过流道21将带有热量的热交换剂输送到电池的各个区域,辅助电池加热。在电池需要降温时,其可以反向利用流道21,将低温的热交换剂反向通过流道21输送至电池的各个区域,辅助电池降温。
基于该换热流道装置,还可以形成换热板2、电池托盘,也可以集成电池结构。本技术方案提供的换热流道装置旨在为新能源电车的电池提供稳定的热交换性能,为电池提供更好的温度环境。
如图20所示,本技术方案提供了一种换热板2,所述换热板2上形成有第一端口221、第二端口222、流道21。流道21通过汇流端汇聚到第一端口221和第二端口222。
换热板2可以包括流道板24和基板23,所述流道板24上设置有各种流道21。流道21从汇流端向流道板24内部,所述流道21经过分汇流结进行分流,形成更多级别的支管。这些流道21也通过换向结进行拐弯布置,从而使支管布满整个流道板24,对各个区域实现流通换热。
如图20所示,所述流道板24与基板23组合构成换热板2。在所述流道板24上,所述流道21可以呈凹槽结构,其顶面并没有封死。将所述基板23盖设在所述流道集成板上后,基板23能够对流道21形成顶面密封。这样,所述基板23与所述流道21合成换热板2整体。所述第一端口221、第二端口222可以通过设置在基板23上的端口部件与所述流道板24组合形成。端口部件上开设有第一端口221和第二端口222,将基板23盖设在所述流道板24上后,流道21的第一汇流端和第二汇流端能够连通到第一端口221和第二端口222上。
根据本方案对换热板2的各个特征的设计思路,可以将本方案划分成不同的板块。不同板块代表着本方案关注的技术特征不同,针对关注的技术特征作为出发点对流道21进行设计,以获得更均匀的换热方案。
第一方面
本技术方案可以将换热板2划分成不同的区域,以对不同区域进行不同程度的换热处理。利用工质从端口流入流道21后必然会先流入某个区域进行换热,而后再流入某个区域进行换热的布局特点,来根据不同区域的热量情况选择性的布设流道21。
在实际应用中,由于集成电池结构的不同区域处设置的电池结构不同,所以工作时发热程度也有所不同。这与电池极芯的摆放、排列方式有关。如图10所示,所述换热板2上可以包括第一类区域26和第二类区域27。第一类区域26对应于集成电池结构中极芯发热较高的区域,第二类区域27对应于集成电池结构中极芯发热相对较低的区域。在图10所示的实施方式中,电池的极芯可以并排分布两列,如图9所示。由于极芯的两端通常设置有极耳,用于电连接,所以发热较大。所以图三中最靠左的纵向一条区域属于第一类区域26,中间的纵向较宽的一条区域属于第一类区域26,最靠右侧的纵向一条区域属于第一类区域26。这三个区域均对应于极芯两端的大发热量区域。
在集成电池结构的极芯采用其它排布方式、极芯电连接方式采用其它方式等情况下,所述第一类区域26和第二类区域27的位置、数量都会有所不同。本技术方案以图9和图10所示的情况为例,对该部分的设计特点进行说明。
所述换热板2中设置有流道21,流道21用于通入工质。工质能够进行热量交换,随着流动到不同的区域进行逐渐换热。所述流道21会完整的延伸至第一类区域26和第二类区域27。
所述换热板2能够切换至冷却模式和加热模式两种状态。在这两种状态下,换热板2或者泵装置会趋势工质沿着相反的方向流动,从而实现有限对哪个区域进行换热的目的。
在所述换热板2处在冷却模式的情况下,所述流道21的设计方式使得工质能够从所述第一类区域26流动到第二类区域27。也即,流道21的设计使得工质先流入位于第一类区域26中的流道21,之后再流动到第二类区域27中的流道21。这样,工质能够先在第一类区域26中进行换热,工质优先吸收第一类区域26对应的电池结构产生的热量,之后工质的换热能力会有所下降。工质后续再流动至第二类区域27,对该区域所对应的电池产生的热量进行交换。最后,工质会流通至端口,从换热板2上流出。
相反的,在所述换热板2处在加热模式的情况下,所述流道21的设计方式使得工质能够从所述第二类区域27流动到第一类区域26。也即,流道21的设计使得再反向流动时,工质能够先流入第二类区域27中的流道21,之后再流动到第一类区域26中的流道21。工质能够先对第二类区域27进行换热,将热量散发到第二类区域27对应的电池结构所在的空间。之后,工质的换热能力有所下降,并流入至第一类区域26。工质在第一类区域26中将剩余的热量排除散发到电池结构所在的空间中,之后流回到端口。
电池极芯的发热情况通常是不变的,无论外界环境如何,电池自身是处于放电还是充电状态,极芯上设置有极耳、电连接点的部分始终是发热较高的区域,而如图9所示,极芯的中间区域则发热适中较少,也即极芯上不设置电连接点、极耳的部分不容易发热。在需要加热时,往往是极芯上没有不设置极耳的区域较冷,需要更多升温。在需要冷却时,往往是极芯上设置有极耳的区域较热,更需要冷却降温。本部分设计方案的优点在于,利用电池极芯的工作特点,根据发热不同的结构所在的区域不同布置换热板2的流道21。而且,加热和冷却模式采用的工质流通方向相反,散热时工质先随流道21流动至热量较高的区域,加热时工质先随流道21流动至热量交底的区域。使得工质能够优先流动到需要换热的区域。
可选地,所述第一类区域26对应于电池的第一位置,第二类区域27对应于电池的第二位置。在电池工作时,电池在第一位置产生的热量基本均大于电池在第一位置产生的热量。对应到如图9所示的实施方式中,第一位置及对应图10所示左侧 纵条、中间纵条和右侧纵条。所述第二位置则可以对应到夹在左侧纵条和中间纵条之间的区域,以及对应到右侧纵条和中间纵条之间的区域。在其它的电池、极芯分布方案中,第一位置和第二位置的排布、数量会有所变化,但并不脱离上述流道21的布设思想。可以始终让流道21延伸至第一类区域26再延伸至第二类区域27,不会在第一类区域26和第二类区域27之间反复穿插延伸。
如图14所示,所述换热板2包括第一汇流端和第二汇流端,所述第一汇流端为流道21汇聚至第一端口221的连接点,所述第二汇流端为流道21汇聚至第二端口222的连接点。
在换热板2用于对电池进行加热时,工质能够从第二汇流端流入换热板2。在流道21排布可行的情况下,工质优先流入温度较低的第二类区域27,对第二类区域27实现升温。而后在流入第一类区域26。最后,工质可以汇流后从第一汇流端流出。优先对第二类区域27对应的位置进行加热能够更好的保护电池,为电池提供足够的工作温度。尤其是在电池模块具备自加热功能的情况下,该换热板2能够与自加热功能配合,更好的为极芯上不一发热的中心区域提供温度保障,防止温度过低。
在换热板2用于对电池模块进行冷却时,工质能够从第一汇流端流入换热板2。在流道21排布可行的情况下,工质优先流入温度较高的第一类区域26,对第一类区域26实现降温。而后再流入第二类区域27中。
在实际应用中,如图10所示,所述第一汇流端和第二汇流端集中在换热板2的左侧,在对流道21进行排布时,由于面板空间限制,存在流道21无法按照上述理想方式排布的情况。在图10所示的实施方式中,对于位于右侧的2622、2612和272三个区域,可以按照可选的流道21排布方式,优先对272进行升温或者有限对2622和2612进行降温。而在位于左侧靠近汇流端和出入口的2621、2611和271三个区域,则由于流道21相对拥挤,可能无法实现上述可选排布。对此,也可以采用流道21从第一汇流端引入后先排布到2611区,之后再延伸至271和2621两个区,最后再回到第二汇流端的实施方式。
可选地,在流道21从第一汇流端引入后,其可以通过分流的方式让工质分流,更好的在整个表面实现温度控制。例如,从第一汇流端流入第一类区域26的工质可以在第一类区域26中进行分流,分成过更多个支线流道21。而后,在流入第二类区域27时可以不做汇流和分流,如图10的271区所示。最后,在工质随流道21进入2621区后,流道21可以汇流以将工质收集起来,便于从第二汇流端留出。
工质经过第一类区域26并经过第二类区域27后汇入第二汇流端的过程中,至少进行一次分流和汇流。
对于利用工质对电池模块进行加热的情况,也即从第二汇流端流入工质,从第一汇流端流出工质的情况,流道21具有与在冷却时相反的延伸特点。工质先进行一到两次分流,随管路分散到各个区域,之后在进行至少一次汇流,向第一汇流端流动。
特别地,本方案提到的工质可选为能够气液两相切换的冷媒工质。这种冷媒工质能够通过相态转变而有效的实现换热,换热效率相对于传统的水冷、冷却剂等方式更有效。相对的,由于冷媒工质存在相态变化,如果其集中在某一区域大量进行相变,就会造成其它区域无法得到良好的热交换效果。对此,本方案尽量采用一分二、二分四这类分流方式,以提高流道21内工质流动的均匀性。可选地,本方案尽量采用平行的、长度均匀变化的多路流道21共同对第一类区域26、第二类区域27进行热交换,进一步降低工质因流动不均而出现集中相变的情况。
如图10和图11所示,在位于靠近汇流端的左侧区域中,也即2621、271、2611三个区中,由于空间比较拥挤,本方案可将分流结、汇流结布置在2621和2611两个区域中,这两个区域对应电池的高发热区域,在此处进行分流和汇流,有助于在狭窄空间内降低工质快速、集中换热的情况,使工质能够更均匀的对这些区域进行换热。例如,从第一汇流端流入的工质可以集中在2621区的边角位置进行第一次分流,之后在2611的上部进行第二次分流。此后,有部分流道21可以在271区的下部再分流,另一部分流道21则无需分流。最后,在流道21延伸至2621区的下部时,可以集中进行汇流,进而绕回第二汇流端。通常可以进行一至两次汇流。以上介绍均以散热时为例,加热时则是完全相反的分流、汇流形式。
可选地,如图10和图11所示,在位于远离汇流端的右侧区域中,也即2622、2612、272三个区域中,空间相对宽松。本方案可将分流接、汇流结均匀的分布在三个区域的上下两端,分汇流的数量也可以相应更多。以冷却方案为例,从左侧的第一汇流端延伸至右侧的流道21可以分别分流,并分别延伸进入2622区和2612区。在这两个区域内,流道21可以平直延伸,沿纵向延伸过两区的大部分面积。之后,流道21可以向位于2622和2612之间的272区拐弯,流道21通常采用平直延伸的方式穿过272区,最后在272区的下侧对各个平行的流道21进行汇流。最后,流道21向左延伸回到第二汇流端。在该方案中,流道21可以经过两至三次分流,以实现大面积平行、长距离延伸的布局特点。之后,再经过两至三次汇流,汇聚到主干道上回到汇流端相似的,在加热模式中,工质从第二汇流端流入并直接流动至272区的下侧,进行多次分流,形成多个平行的流路。
特别地,从第一汇流端引出的流道21中,最外圈的流道21经过初次的分流后,基本不再做分流,其一直沿着换热板2的外边缘环绕一圈,最后于靠近第二汇流端的位置再进行汇流。该部分流道21用于平衡工质在流通尾端处的温度。尤其是针对采用相变冷媒工质的情况下,这部分流道21更能发挥作用。相变后的工质体积变化很大,容易出现堆积、流通不畅、温度集中等问题。该问题在汇流端处更容易凸显。环绕在最外圈的流道21中的工质相变相对较少,正好可以在整个循环的尾端用于平衡其它流道21中的工质的温度和相态。为整体循环的流畅性、均匀性提供保障。
根据本申请的第一方面,本方案提供了一种换热板,所述换热板用于电池,包括:
第一类区域26和第二类区域27;
流道21,所述流道21用于流通工质,所述流道21分布于所述第一类区域和所述第二类区域;
所述换热板2用于对所述电池冷却,所述工质从所述第一类区域26的流道21流向所述第二类区域27的流道21;或
所述换热板2用于对所述电池加热,所述工质从所述第二类区域27的流道21流向所述第一类区域26的流道21。
可选地,所述第一类区域用于对应电池的第一位置,所述第二类区域用于对应电池的第二位置,电池在运行的过程中,第一位置的温度大于第二位置的温度。
可选地,所述换热板2包括第一汇流端和第二汇流端;
所述换热板2用于对所述电池加热时,所述工质从第二汇流端流入所述第二类区域27,并经过所述第一类区域26后汇入所述第一汇流端。
可选地,所述换热板2包括第一汇流端和第二汇流端;
所述换热板2用于对所述电池冷却时,所述工质从第一汇流端流入所述第一类区域26,并经过所述第二类区域27后汇入所述第二汇流端。
可选地,所述工质从所述第一汇流端流入所述第一类区域26,经所述第二类区域27后汇入所述第二汇流端的过程中,进行至少1次分流,和/或至少1次汇流。
可选地,所述工质从第二汇流端流入所述第二类区域27,并经过所述第一区域26后汇入所述第一汇流端的过程中,进行至少2次分流,和/或至少1次汇流。
可选地,所述工质从第二汇流端流入所述第二类区域27,并经过所述第一区域26后汇入所述第一汇流端的过程中,进行至少1次分流,和/或至少1次汇流。
可选地,所述第一类区域26包括第一分区261和第二分区262;
所述第二类区域27包括第一分域271;
所述换热板2用于对电池进行冷却时,所述工质从所述第一类区域26的第一分区261流向所述第二类区域27的第一分域271,和/或,
所述工质从所述第一类区域26的第二分区262流向所述第二类区域27的第一分域271。
可选地,所述换热板2用于冷却所述电池时,所述工质从所述第一类区域26的第一分区261流入所述第二类区域27的第一分域271的过程中经过至少1次分流。
可选地,所述工质从所述第一类区域26的第一分区261流入所述第二类区域27的第一分域271的过程中经过至少1次分流和至少1次汇流。
可选地,所述换热板2用于冷却所述电池时,所述工质在所述第一分区261经至少1次分流后流入所述第二类区域27的第一分域271。
可选地,所述换热板2用于冷却所述电池时,所述工质在所述第一分区261经至少1次分流后流入所述第二类区域27的第一分域271,并在所述第二类区域27的第一分域271经至少1次汇流。
可选地,所述第一类区域26的第一分区261包括第一子区2611,所述第一类区域26的所述第二分区262包括第一子域2621,所述第一分域271位于所述第一子域2621和所述第一子区2611之间。
可选地,所述工质在第一子域2621、第一分域271和第一子区2611经过至少1次开环循环。
可选地,所述开环循环包括:所述工质从第一子域2621到第一分域271到第一子区2611到第一分域271到第一子域2621到第一分域271到第一子区2611到第一分域271到第一子域2621。
可选地,所述工质在所述开环循环过程经过至少2次分流和1次汇流。
可选地,所述工质在第一子区2611一次分流,在所述第一子域2621二次分流,在第一子区2611一次汇流。
可选地,第一类区域26包括至少2个子区,和/或第二类区域27包括至少2个子域。
可选地,所述换热板2处于所述冷却模式时,所述工质从所述第一分区261流入所述第二类区域27的过程中经至少2次分流。
可选地,所述换热板2处于所述冷却模式时,所述工质从所述第一分区261流入所述第二类区域27的过程中经至少2次分流。
可选地,所述工质从所述第一分区261流入所述第二类区域27的过程中经至少2次分流和至少1次汇流。
可选地,所述第一类区域26包括第一分区261和第二分区262;
所述第二类区域27包括第二分域272;
所述换热板2处于所述冷却模式时,所述工质从所述第一类区域26的第一分区261流向所述第二分域272,和/或,
所述工质从所述第一类区域26的第二分区262流向所述第一分域271。
可选地,所述换热板2处于所述冷却模式的情况下,所述工质从所述第一类区域26的第一分区261流入所述第二分域272的过程中经过至少2次分流。
可选地,所述工质从所述第一类区域26的第一分区261流入所述第二分域272的过程中经过至少2次分流和至少1次汇流。
可选地,所述换热板2处于所述冷却模式时,所述工质在所述第一分区261经至少2次分流后流入所述第二分域272。
可选地,所述换热板2处于所述冷却模式时,所述工质在所述第一分区261经至少2次分流后流入所述第一分域271,并在所述第二分域272经至少1次汇流。
可选地,所述第一类区域26的第一分区261包括第二子区2612,所述第一类区域26的所述第二分区262包括第二子域2622,所述第二分域272位于所述第二子域2622和所述第二子区2612之间。
可选地,所述工质依次流经所述第二子域2622、所述第二分域272、第二子区2612和所述第二分域272。
可选地,所述工质从所述第二子域2622流入所述第二分域272。
可选地,所述工质在第二子区26122次分流。
可选地,所述工质在所述第二分域2721次汇流。
可选地,第一子区2611与第二子域2622相邻。
可选地,所述工质经第一子域2621、第一分域271、第一子区2611后,流入所述第二子域2622。
可选地,所述工质从所述第二子域2622依次流经所述第二分域272、第二子区2612和所述第二分域272,并从所述第二分域272流出。
可选地,所述工质从所述第二子域2622流入所述第二分域272,并从所述第二分域272流出。
可选地,所述换热板2还包括第三类区域,第三类区域为所述换热板2被所述电池包覆盖的区域,所述第一类区域26和所述第二类区域27形成换热区,所述第三类区域位于换热区内。
可选地,位于所述换热区和所述第三类区域之间的流道21经过至多6次分流,或者至多6次汇流。
可选地,位于所述换热区和所述第三类区域之间的流道21,在所述第一类区域26分流后,进入所述第二类区域27。
可选地,位于所述换热区和所述第三类区域之间的流道21经第一子域2621、第一分域271、第一子区2611、第一分域271后从第一子域2621流出。
可选地,位于所述换热区和所述第三类区域的流道21经第一子域2621、第一分域271、第一子区2611、第二子域2622、第二分域272、第二子区2612、第二分域272、第二子域2622、第一子区2611、第一分域271后,进入第一子域2621后流 出。
可选地,位于所述换热区和所述第三类区域之间的流道21在第一子域2621分流,和/或位于所述换热区和所述第三类区域之间的流道21在第一子域2621汇流。
可选地,所述第一类区域26包括第一分区261和第二分区262;
所述换热板2用于对电池进行加热时,所述工质从所述第二类区域27的第一分域271流向所述第一类区域26的第一分区261,和/或,
所述工质从所述第二类区域27的第一分域271流向所述第一类区域26的第二分区262。
可选地,所述换热板2用于加热所述电池时,所述工质从所述第二类区域27的第一分域271流入所述第一类区域26的第二分区262的过程中经过至少1次汇流。
可选地,所述工质从所述第二类区域27的第一分域271流入所述第一类区域26的第二分区262之前经过至少1次分流,流入第二分区262之后经过至少1次汇流。
可选地,所述换热板2用于加热所述电池时,所述工质在所述第一分域271经过至少1次分流后流入所述第一类区域26的第二分区262。
可选地,所述换热板2用于加热所述电池时,所述工质经至少一次分流后流入所述第一类区域26的第一分区261,并在所述第一类区域26的第一分区261经至少1次分流。
可选地,所述第一类区域26的第一分区261包括第一子区2611,所述第一类区域26的所述第二分区262包括第一子域2621,所述第一分域271位于所述第一子域2621和所述第一子区2611之间。
可选地,所述工质在第一子域2621、第一分域271和第一子区2611经过至少1次开环循环。
可选地,所述开环循环包括:所述工质从第一子域2621到第一分域271到第一子区2611到第一分域271到第一子域2621到第一分域271到第一子区2611到第一分域271到第一子域2621。
可选地,所述开环循环过程经过至少2次分流和1次汇流。
可选地,所述工质在第一子域2621一次分流,在所述第一子区2611二次分流,回到第一子域2621后一次汇流。
可选地,所述工质从靠近所述第一子域2621的位置流入流道21,所述工质从所述第一子域2621流动至第一分域271并进一步回到第一子域2621流出流道21的过程经过至少两次分流和两次汇流。
可选地,所述第一类区域26的所述第一分区261包括第一子区2611和第二子区2612,所述第一类区域26的所述第二分区262包括第一子域2621和第二子域2622;
所述第二类区域27包括第一分域271和第二分域272;
所述第二分域272位于所述第二子域2622和所述第二子区2612之间,所述第一分域271位于所述第一子区2611和第一子域2621之间;
所述第一子区2611和第一子域2622相互比邻。
可选地,一部分流道21使所述工质穿过第一子域2621、第一分域271、第一子区2611和第二子域2622的边缘,先流入所述第二分域272内,而后分流至第二子域2622和第二子区2612。
可选地,另一部分流道21使所述工质穿过第一子域2621、第一分域271的边缘,先流入所述第一子区2611内,而后分流并流入所述第一分域271,最后流入所述第一子域2621。
可选地,所述流道21使所述工质在所述第二分域272至少分流2次;
所述流道21使所述工质在所述第二子区2612和第二子域2622分别至少汇流1次。
可选地,从所述第二子区2612和所述第二子域2622流出的工质沿所述换热板2的边缘穿过第一子区2611、第一分域271、第一子域2621,回流后从所述换热板2上流出。
可选地,所述流道21使流入所述第一子域2621的工质在第一子域2621中汇流1次,之后流动返回至第一子区2611中再进行1次汇流。
可选地,经过所述第一子区2611中汇流后,所述工质从换热板2的边缘流出。
所述换热板2处于所述冷却模式时,所述工质在所述第一分区261经至少2次分流后流入所述第二类区域27,并在所述第二类区域27经至少1次汇流后流入所述第二汇流端。
所述换热板2处于所述冷却模式时,所述工质在所述第一分区261经至少2次分流后流入所述第二类区域27,并在所述第二类区域27经至少2次汇流后流入所述第二汇流端。
所述第一汇流端靠近所述第二汇流端并位于所述换热板2的第一侧;
所述换热板2包括第一换热区和第二换热区,所述第二换热区位于所述第一换热区和所述第一侧之间,所述第一换热区包括一个第二类区域27和分布在所述第二类区域27相对两侧的第一类区域26;
所述第二换热区包括一个第二类区域27和分布在所述第二类区域27相对两侧的第一类区域26。
所述换热板2处于所述冷却模式时,在所述第二换热区中,所述工质在一个所述第一类区域26经1次分流后流入另一个所述第一类区域26,在另一个所述第一类区域26经1次分流后流入所述第二类区域27,并在所述第二类区域27经2次汇流后流入所述第二汇流端。
所述换热板2处于所述冷却模式时,在所述第一换热区中,所述工质在一个所述第一类区域26经1次分流后流入所述第二类区域27,并在所述第二类区域27经2次汇流后流入所述第二汇流端;
所述工质在另一个所述第一类区域26经2次分流后流入所述第二类区域27,并在所述第二类区域27经2次汇流后流入所述第二汇流端。
分布在所述第二类区域27相对两侧的第一类区域26分别为第一分区261和第二分区262;
所述换热板2处于所述冷却模式时,在所述第一换热区中,所述工质在所述第一分区261经1次分流后流入所述第二类区域27,并在所述第二类区域27经2次汇流后流入所述第二汇流端;
所述工质在所述第二分区262经2次分流后流入所述第二类区域27,并在所述第二类区域27经2次汇流后流入所述第二汇流端。
所述第一汇流端和第二汇流端均位于所述第二换热区中,所述第一汇流端和第二汇流端的数量均为2个。
本申请实施例还提供了四个方面的流道集成板。
第一方面,参照图4至图5、图10至图17,本申请实施例提供了一种流道集成板,所述流道集成板包括:
第一端口221和第二端口222;
第一汇流端和第二汇流端,所述第一汇流端连接所述第一端口221,所述第二汇流端连接所述第二端口222;
流道21,所述流道21用于连接所述第一汇流端和所述第二汇流端,所述流道至少经过1次换向后从所述第一汇流端延伸至所述第二汇流端。
具体地,所述换热板2上可以设置有分流组件22,所述第一端口221和第二端口222可以为设置于所述分流组件22上,如图5所示。所述第一端口221和第二端口222可以用于所述流道集成板与所述外部提供工质的组件连接,比如外部的泵体可以通过所述第一端口221和第二端口222与所述流道集成板连接。
所述第一汇流端和第二汇流端可以作为所述流道21两端的端部结构,比如所述第一汇流端和第二汇流端可以作为所述流道21两端分别与第一端口221和第二端口222插接或者螺纹连接的端部结构。所述流道21在所述流道集成板中的分布至少经过1次换向后从所述第一汇流端延伸至所述第二汇流端,以提升所述流道21在所述流道集成板中的分布密度,比如所述流道21在所述流道集成板中呈回字形或者蛇形分布,保证所述流道21在所述流道集成板中的分布密度,进而提升所述流道集成板的换热效果。
可选地,参见图14,所述流道21的换向处形成换向结211,所述换向结包括第一类换向结2111,所述第一类换向结2111一端的流道方向与所述第一类换向结2111另一端的流道方向呈换向夹角,并且所述第一类换向结2111一端的流道数量大于所述第一类换向结2111另一端的流道数量。
具体地,所述第一类换向结2111的结构可以如图14所示,所述流道21在通过第一类换向结2111时可以进行换向夹角的弯折,比如经过90°或者180°的弯折,以实现所述流道21的灵活换向,保证所述流道21在所述流道集成板中的分布密度。而所述第一类换向结2111在起到弯折作用的同时还可以进行流道数量的调整,比如所述流道21在通过第一类换向结2111时形成一分二、一分三或者一分更多流道数量的流道结构,提升所述流道21在所述流道集成板中分布的灵活性。
可选地,所述第一类换向结2111一端的流道数量为所述第一类换向结2111另一端的流道数量的两倍,也就是所述流道21在通过第一类换向结2111时可以进行分流或者汇流,通过流道数量和单个流道流量的调整,保证所述流道集成板在换热时的均温性。
可选地,参见图14,所述换向结211包括第二类换向结2112,所述第二类换向结2112一端的流道方向与所述第一类换向结2112另一端的流道方向呈换向夹角。所述流道21在通过第二类换向结2112时可以进行换向夹角的弯折,比如经过90°或者180°的弯折,以实现所述流道21的灵活换向,保证所述流道21在所述流道集成板中的分布密度。
可选地,参见图10和图14,所述第一类换向结2111位于所述流道集成板的周侧,所述第二类换向结2112位于所述流道集成板的中间位置。由于第一类换向结2111和第二类换向结2112均具有换向的作用,使得所述流道21在所述流道集成板的周侧和中间位置均可以在弯折时进行换向。而且由于所述第一类换向结2111一端的流道数量大于所述第一类换向结2111另一端的流道数量,使得所述流道21在所述流道集成板的周侧可以进行分流和汇流后,保证所述流道21在所述流道集成板中部流动的顺畅性。
可选地,参见图5和图10,所述第一端口221、第二端口222、第一汇流端和第二汇流端均位于所述流道集成板的第一侧。比如所述流道集成板可以为方形板,所述第一侧可以为图10中流道集成板的左侧,所述流道21中R123a、R32等冷媒、CO2以及水等工质可以从流道集成板的左侧进入到流道21中,然后在流道集成板环绕流动并进行换热后从流道集成板的左侧流出流道21,提升所述流道21中工质在所述流道集成板中换热的效率。
可选地,参见图10和图12,所述第一汇流端连接有2个第二类换向结2112,所述第二汇流端连接有2个第一类换向结2111。具体地,所述流道集成板在进行冷却时,第一汇流端可以为流道21中工质的入口,第二汇流端可以为流道21中工质的出口,工质在经过第一汇流端并流入流道21时,可以进行初步的换向;而工质在经过第二汇流端并流出流道21时可以在换向的同时进行汇流,也就是工质可以在聚合后从一个汇流端流出流道21,简化了所述流道21与外部组件的连接。
而所述流道集成板在进行加热时,第二汇流端可以为流道21中工质的入口,第一汇流端可以为流道21中工质的出口。
可选地,参见图10和图11,所述流道集成板呈方形,所述流道集成板的三个边角位置设置有第一类换向结2111和第二类换向结2112,所述流道集成板的一个边角位置设置有第一类换向结2111。
具体地,流道集成板可以为图10所示的方形流道集成板,在图10中流道集成板的左上角,也就是流道集成板上靠近第一汇流端的边角上可以设置有一个或者多个第一类换向结2111,以便于从第一汇流端流入或者将要从第一汇流端流出流道21的工质可以快速进行分流或者汇流。
而在图10中流道集成板的左下角以及右侧两个边角上可以设置有一个或者多个第一类换向结2111和一个或者多个第二类换向结2112,以保证流道21中的工质可以在流道集成板中换向的同时,灵活进行分流和汇流。
可选地,参见图10,多个所述第二类换向结2112呈矩形延伸。
具体地,第二类换向结2112在换向时可以呈90°或者180°弯折,比如第二类换向结2112呈90°弯折时,多个连续的第二类换向结2112可以形成矩形状的第二类换向结2112的组合,也就是形成多个所述第二类换向结2112呈矩形延伸的回字形结构,多重回字形结构的第二类换向结2112可以提升所述流道集成板的换热效率。
可选地,参见图10,多个所述第一类换向结2111并排设置。具体地,在水平流道换向成竖直流道时,可以同时进行流道的分流或者汇流,也就可以在水平流道和竖直流道之间形成第一类换向结2111。而在多排水平流道换向成多排竖直流道时,可以形成多个并排设置的第一类换向结2111,以提升水平流道和竖直流道在换向后的流道密度。
可选地,所述流道集成板还包括所述的换热板2。
第二方面,参照图4至图5、图10至图17,本申请实施例提供了一种流道集成板,所述流道集成板包括:
第一汇流端和第二汇流端;
流道21,所述流道21用于连接所述第一汇流端和所述第二汇流端;
分汇流结212,所述分汇流结212分布于所述流道21上,所述分汇流结212两端的流道21数量不同。
具体地,所述第一汇流端和第二汇流端可以作为所述流道21两端的端部结构,比如所述第一汇流端和第二汇流端可以作为所述流道21两端分别与第一端口221和第二端口222插接或者螺纹连接的端部结构。所述流道21在所述流道集成板中的 分布至少经过1次分流和至少1次汇流后从所述第一汇流端延伸至所述第二汇流端,分流可以为一分二、一分三或者一分更多流道的方式,汇流可以为二合一、三合一或者更多流道合一的方式,以在所述流道21上形成一个或者多个分汇流结212,以提升所述流道21在所述流道集成板中的分布密度,提升所述流道集成板的换热效果。
可选地,参见图10,所述流道21包括干路和支路,所述干路与所述第一汇流端和第二汇流端连接,所述支路连接于所述干路远离所述第一汇流端和第二汇流端的一端。
具体地,流道21的干路可以为与第一汇流端和第二汇流端直接连通并且未经过分流和汇流的流道部分,而支路可以为与干路连通并从干路上分出或者汇合后连通至干路的流道部分,以使得支路的数量大于干路的数量,保证流道21在流道集成板上的分布密度。
可选地,参见图15,所述分汇流结212包括第一级分流结2121,所述支路包括第一级支路,所述第一级分流结2121连接于所述干路和所述第一级支路之间。
具体地,所述第一级分流结2121作为所述干路和所述第一级支路之间的分流或者汇流结构,可以将干路中的工质均分至两个或者多个第一级支路中,以在所述流道集成板中尽早地将工质进行分散,保证所述流道集成板中流道21分布的密集度以及换热调节的灵活性。
可选地,所述第一级支路设置有至少2条,也就是第一级分流结2121可以将干路中的工质均分至2个、3个或者更多个第一级支路中,保证所述流道21在所述流道集成板中分布的密集度。
在一种具体的实施例中,参见图15,所述第一级分流结2121的一端连接有一条所述干路,所述第一级分流结2121的另一端连接有2条所述第一级支路,也就是第一级分流结2121可以将干路中的工质均分至2个第一级支路中,以便于控制2个第一级支路中工质流量的均衡性,保证2个第一级支路中工质流量维持相等。
可选地,参见图10和图15,所述分汇流结212还包括第二级分流结2122,所述支路包括第二级支路,所述第二级分流结2122连接于所述第一级支路和所述第二级支路之间。
具体地,所述第二级分流结2122作为所述第一级支路和所述第二级支路之间的分流或者汇流结构,可以将第一级支路中的工质均分至两个或者多个第二级支路中,以在所述流道集成板中将工质进行分散,保证所述流道集成板中流道21分布的密集度以及换热调节的灵活性。
可选地,所述第二级支路设置有至少2条。也就是第二级分流结2122可以将第一级支路中的工质均分至2个、3个或者更多个第二级支路中,保证所述流道21在所述流道集成板中分布的密集度。
在一种具体的实施例中,参见图15,所述第二级分流结2122的一端连接有一条所述第一级支路,所述第二级分流结2122的另一端连接有2条所述第二级支路。也就是第二级分流结2122可以将第一级支路中的工质均分至2个第二级支路中,以便于控制2个第二级支路中工质流量的均衡性。
可选地,参见图10,所述分汇流结212位于所述流道集成板的周侧。
具体地,在所述分汇流结212位于所述流道集成板的周侧时,可以在所述流道集成板的中部形成连续的流道21,以提高流道21中工质在所述流道集成板中流动的顺畅性。
可选地,所述第一级支路包括环形支路,环形支路可以为图17中的环形通道25,所述环形支路的两端直接连接至所述干路,由于所述流道21的干路为与第一汇流端和第二汇流端直接连通并且未经过分流和汇流的流道部分,所述环形支路的设置可以简化工质在环形支路中的流动路径,避免所述第一汇流端和第二汇流端的过热或者过冷,保证所述流道21换热时的温度均衡性。
可选地,参见图10,所述分汇流结212还包括第三级分流结,所述支路包括第三级支路,所述干路上依次连接有所述第一级支路、第二级支路和所述第三级支路;
所述第一级分流结2121连接于所述干路和所述第一级支路之间,所述第二级分流结2122连接于所述第一级支路和所述第二级支路之间,所述第三级分流结连接于所述第二级支路和所述第三级支路之间,以使所述第一级支路的数量为所述干路数量的2倍,所述第二级支路的数量为所述第一级支路数量的2倍,所述第三级支路的数量为所述第二级支路数量的2倍。
另外,所述分汇流结212还可以包括第四级分流结、第五级分流结、第六级分流结或者更多分流结,所述支路包括第四级支路、第五级支路、第六级支路或者更多支路,所述第四级分流结连接于所述第三级支路和所述第四级支路之间,所述第五级分流结连接于所述第四级支路和所述第五级支路之间,所述第六级分流结连接于所述第五级支路和所述第六级支路之间,以使所述流道21形成多级的分流和汇流。
可选地,所述流道集成板还包括所述的换热板2。
第三方面,参照图4至图5、图10至图17,本申请实施例提供了一种流道集成板,参见图16,所述流道集成板包括:
第一区域28和第二区域29;
流道21,所述流道分布于所述第一区域28和所述第二区域29,所述第一区域28内所述流道21分布的平均密集度大于所述第二区域29内所述流道21分布的平均密集度。
具体地,所述流道集成板可以用于对电池进行冷却或者加热。比如流道集成板在对电池进行冷却时,电池运行过程中会在正极位置和负极位置产生较大的热量,也就是需要流道集成板对电池的正极位置和负极位置提供更大的冷却效果。而所述第一区域28内所述流道21分布的平均密集度大于所述第二区域29内所述流道21分布的平均密集度时,可以通过第一区域28正对电池的正极位置和负极位置,而第二区域29正对电池的中部位置,以提高流道集成板对电池的换热效果。
可选地,所述流道21的宽度尺寸小于15mm。
具体地,本申请实施例提供的所述流道集成板在面对不同位置的换热要求不同时,可以通过不同密集度的流道21分布来提高流道集成板的换热效率,也就是可以使用宽度更小的流道21来进行换热,所述流道21的宽度可以为3-12mm,流道21的宽度也就是流道21的径向尺寸。可选地,为了提高流道21的分布密集度,可以将流道21的宽度设定为5-10mm。
可选地,所述流道集成板还包括所述的换热板2。
第四方面,参照图4至图5、图10至图17,本申请实施例提供了一种流道集成板,所述流道集成板包括:
流道板24;
流道21,所述流道21分布于所述流道板24中,在所述流道集成板所在的平面内,所述流道21的设置面积大于所述流道板24面积的70%。
具体地,所述流道21在所述流道板24中的设置面积比例可以根据所述流道集成板的换热对象来进行灵活设置。比如针对换热要求较高的电池等换热对象进行换热时,面对不同功率和电压的电池,可以将流道21的设置面积设置为流道板24面积75%、80%、85%、90%或者95%,以提高所述流道集成板的换热灵活性。
可选地,所述流道的宽度尺寸小于15mm。
具体地,本申请实施例提供的所述流道集成板在面对不同位置的换热要求不同时,可以通过不同密集度的流道分布来提高流道集成板的换热效率,也就是可以使用宽度更小的流道21来进行换热,所述流道21的宽度可以为3-12mm,流道21的宽度也就是流道21的径向尺寸。可选地,为了提高流道21的分布密集度,可以将流道21的宽度设定为5-10mm。
可选地,所述流道集成板还包括所述的换热板2。
本申请实施例还提供了一种电池托盘,所述电池托盘包括:
所述的换热板;
或者所述的流道集成板。
本申请实施例还提供了一种电池结构,所述电池结构包括所述的电池托盘。
具体地,所述电池结构包括:
电池模组1,所述电池模组1具有极性位置和非极性位置;
换热板2,所述换热板2设置于所述电池模组1的底部,所述换热板2内设置有流通工质的流道21,所述换热板2包括与所述极性位置相对的第一类区域26和与所述非极性位置相对的第二类区域27;
在所述换热板2通过工质给所述电池模组1冷却的情况下,所述工质从所述第一类区域26的流道21流向所述第二类区域27的流道21;
在所述换热板2通过工质给所述电池模组1加热的情况下,所述工质从所述第二类区域27的流道21流向所述第一类区域26的流道21。
具体地,所述流道21中的工质可以为R123a、R32等冷媒、CO2或者水,比如工质为冷媒时,在所述换热板2可以通过低温低压的冷媒工质给所述电池模组1冷却的情况下,所述工质从所述第一类区域26的流道21流向所述第二类区域27的流道21;在所述换热板2通过高温高压的工质给所述电池模组1加热的情况下,所述工质从所述第二类区域27的流道21流向所述第一类区域26的流道21,以保证冷媒工质可以处在气液两相的平衡状态,以提高所述换热板2对电池模组1的换热效果,保证所述电池结构的长期稳定运行。
另外,所述流道21可以是在换热板2中冲压而成,所述电池模组1中可以包括多个电池单体,所述换热板2对电池模组1的正向(流道21中工质的流向)冷却和反向(流道21中工质的流向)加热,可以改善电池模组1的冷却和加热操作,保证电池模组1的均温性,提高所述换热板2对所述电池模组1的换热能力。
可选地,所述极性位置包括正极位置和负极位置,所述正极位置和所述负极位置位于所述电池模组1上相互远离的相对两侧。
具体地,电池模组1运行过程中会在正极位置和负极位置产生较大的热量,也就是需要换热板对电池模组的正极位置和负极位置提供更大的冷却效果。而所述正极位置和所述负极位置位于所述电池模组1上相互远离的相对两侧时,所述换热板2可以针对电池模组1上相互远离的相对两侧极性加热换热,以提高换热板2对电池模组1的换热效果。
可选地,参见图10和图11,所述第一类区域26包括第一分区261和第二分区262,所述第一分区261与所述正极位置相对,所述第二分区262与所述负极位置相对;
在所述换热板2通过工质给所述电池模组1冷却的情况下,所述工质从相互远离的所述第一分区和所述第二分区的流道21流向所述第二类区域27的流道21;此时的工质可以为低温低压的工质,低温低压的工质首先给电池模组1上发热较多的正极位置和负极位置进行冷却,然后给电池模组1上的其他区域进行冷却,以保证电池模组1的均温性。
在所述换热板2通过工质给所述电池模组1加热的情况下,所述工质从所述第二类区域27的流道21流向所述第一分区和所述第二分区的流道21。此时的工质可以为高温高压的工质,高温高压的工质首先给电池模组1上发热较少的除了正极位置和负极位置以外的区域进行加热,然后给电池模组1上的正极位置和负极位置进行加热,以保证电池模组1的均温性。
可选地,在所述换热板2通过工质给所述电池模组1冷却的情况下,所述工质从所述第一分区261的流道21流向所述第二分区的流道21,并从所述第二分区262的流道21流向所述第二类区域27的流道21。
具体地,流经所述第一分区261和所述第二分区262的工质都会汇集到第二类区域27的流道21。而在所述第一分区261的换热要求高于所述第二分区262的换热要求时,所述第一分区261中的工质可以先流经所述第二分区262后再流向第二分区262,而第二分区262中的工质可以直接流向第二类区域27的流道21,以提高所述电池结构中换热板2的换热灵活性。
可选地,在从所述第一类区域26流向所述第二类区域27的方向上,所述流道21的数量逐渐增加。
具体地,在从所述第一类区域26流向所述第二类区域27的方向上,所述流道21的数量可以逐渐增加,比如通过分流的方式增加所述流道21的数量,以提高所述流道21的分布密集度。而在所述流道21进行分流后还可以进行汇流,以便于流道21进出口的工质汇集。
可选地,在从所述第一类区域26流向所述第二类区域27的方向上,所述流道21包括相互连通的第一通道段和第二通道段,所述第二通道段的通道数量为所述第一通道段的通道数量的两倍。
具体地,可以通过分流结连接第一通道段和第二通道段,分流结可以将第一通道段中的工质均分至2个第二通道段中,以便于控制2个第二通道段中工质流量的均衡性。
可选地,在从所述第一类区域26流向所述第二类区域27的方向上,所述流道21还包括第三通道段,所述第三通道段与所述第二通道段连通,并且所述第三通道段的通道数量为所述第二通道段的通道数量的两倍。
具体地,可以通过分流结连接第二通道段和第三通道段,分流结可以将第二通道段中的工质均分至2个第三通道段中,以便于控制2个第三通道段中工质流量的均衡性。
可选地,所述流道21的横截面的径向尺寸范围为6-9mm。
具体地,所述第一类区域26的流道21的径向尺寸小于所述第二类区域27的流道21的径向尺寸。
具体地,所述第一类区域26的流道21可以靠近流道21的进出口,也就是第一类区域26的流道21位于流道的近端;而所述第二类区域27的流道21可以远离流道21的进出口,也就是第二类区域27的流道21位于流道21的远端;为了保证流 道21的近端和远端换热效果的均衡性,可以将远端流道21的径向尺寸逐渐增加,比如设置所述第一类区域26的流道21的径向尺寸小于所述第二类区域27的流道21的径向尺寸。
具体地,所述第一类区域26的流道21的径向尺寸范围为6-7.5mm,所述第二类区域27的流道21的径向尺寸范围为7.5-9mm。
可选地,所述极性位置包括正极位置和负极位置,所述正极位置和所述负极位置位于所述电池模组1上的同一侧。也就是所述第一类区域26的第一分区261和第二分区262相互靠近,并且共同为所述电池模组的正极位置和负极位置进行换热。
可选地,所述换热板2上设置有分流组件22,所述分流组件22具有第一端口221和第二端口222,所述第一端口221和所述第二端口222分别与所述流道21的两端连通。
具体地,所述第一端口221和第二端口222可以用于所述换热板2与所述外部提供工质的组件连接,比如外部的泵体可以通过所述第一端口221和第二端口222与所述换热板2连接,保证换热板2中工质的流通稳定性。
可选地,所述第一端口221与所述第一类区域26的流道21连通,所述第二端口222与所述第二类区域27的流道21连通。
具体地,述流道21两端可以为第一汇流端和第二汇流端,比如所述第一汇流端和第二汇流端可以作为所述流道21两端分别与第一端口221和第二端口222插接或者螺纹连接的端部结构。所述流道21在所述流道集成板中的分布至少经过1次换向后从所述第一汇流端经过第一类区域26和第二类区域27的流道21延伸至所述第二汇流端,以提升所述流道21在所述流道集成板中的分布密度,比如所述流道21在所述流道集成板中呈回字形或者蛇形分布,保证所述流道21在所述流道集成板中的分布密度,进而提升所述流道集成板的换热效果。
可选地,参见图6和图9,所述电池模组1包括第一电池模组11和第二电池模组12,所述第二电池模组12位于所述第一电池模组11远离所述分流组件22的一侧;
所述流道21中与所述第一电池模组11相对的通道的流量为第一流量,所述流道21中与所述第二电池模组12相对的通道的流量为第二流量,所述第一流量小于所述第二流量。
具体地,所述第二电池模组12位于所述第一电池模组11远离所述分流组件22的一侧时,具体地,所述第一类区域26的流道21可以与所述第一电池模组11相对并且可以靠近分流组件22,也就是第一类区域26的流道21位于换热板2的近端;而所述第二类区域27的流道21可以远离分流组件22,也就是第二类区域27的流道21位于换热板2的远端;为了保证换热板2的近端和远端换热效果的均衡性,可以将远端流道21的流量增加,比如设置所述流道21中与所述第二电池模组12相对的通道的流量为第二流量,所述第一流量小于所述第二流量。
另外,第一电池模组11和第二电池模组12形成的两组电池经过电机的线圈连接之后可以相互充放电,也就是以自加热的方式提高电池的温度,以使电池能更好的充放电。
在一种具体地实施例中,所述流道21中与所述第一电池模组11相对通道的平均径向尺寸小于所述流道21中与所述第二电池模组12相对通道的平均径向尺寸。
另外,也可以将所述流道21中与所述第一电池模组11相对通道的数量设置为小于所述流道21中与所述第二电池模组12相对通道的数量。
可选地,所述流道21包括位于流道21外周的环形通道25,所述环形通道25位于所述电池模组1在所述换热板2上投影的外部;
所述环形通道25的流量为所述流道21总流量的20%-25%,所述第一流量为所述流道21总流量的30%-40%,所述第二流量为所述流道21总流量的40%-50%。
具体地,所述环形通道25的两端直接连接至所述流道的干路,由于所述流道21的干路为与第一汇流端和第二汇流端直接连通并且未经过分流和汇流的流道部分,所述环形通道25的设置可以简化工质在环形通道25中的流动路径,避免所述第一汇流端和第二汇流端的过热或者过冷,保证所述流道21换热时的温度均衡性。
可选地,所述换热板2包括位于所述第一类区域26和所述第二类区域27之间的第三区域。
具体地,所述换热板2在对电池模组1进行换热时,第一类区域26和所述第二类区域27可以对应电池模组1的正极位置和负极位置,而第三区域可以对应电池模组中间的非极性位置或者电池模组中单体之间的间隙位置。为了使得换热板2可以给电池模组1的正极位置和负极位置进行高效换热,而对与第三区域相对的电池模组1的位置可以降低换热的效率,可以通过以下两个实施例来实现。
在一种实施例中,所述第一类区域26的所述流道21的密集度大于所述第三区域的所述流道21的密集度。
在另一种实施例中,所述第二类区域27大于的所述流道21的密集度大于所述第三区域的所述流道21的密集度。
可选地,所述换热板2包括基板23和流道板24,所述基板23夹设于所述流道板24和所述电池模组1之间,所述流道21设置于所述流道板24中。
本申请实施例还提供了一种车辆,所述车辆包括所述的电池结构。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (21)

  1. 一种换热板,用于电池,其特征在于,包括:
    流道(21),所述流道(21)布设在所述换热板内,所述流道(21)被配置为供换热工质在其中流动;和
    第一端口(221)和第二端口(222),所述流道(21)的一端与所述第一端口(221)连通,所述流道(21)的另一端与所述第二端口(222)连通,所述第一端口(221)和第二端口(222)被配置为供换热工质通入所述换热板内;
    所述换热板包括第一类区域(26),所述第一类区域(26)用于与电池极柱区域对应设置;所述流道(21)包括分流结(2120),所述分流结(2120)包括一级分流结(21210),至少一个所述一级分流结(21210)设于所述第一类区域(26),所述一级分流结(21210)靠近所述第一端口(221)或者第二端口(222)设置,所述分流结(2120)将所述流道(21)分流。
  2. 根据权利要求1所述的换热板,其特征在于,所述换热板包括第一换热模块(201)和第二换热模块(202),所述第一换热模块(201)和所述第二换热模块(202)均包括所述第一类区域(26);
    所述第一换热模块(201)的所述第一类区域(26)包括第三子区(2621)和第一子区(2611),所述第二换热模块(202)的所述第一类区域(26)包括第四子区(2622)和第二子区(2612);
    所述一级分流结(21210)设置于所述第三子区(2621),所述分流结(2120)还包括二级分流结(21220),所述二级分流结(21220)位于所述第一子区(2611)、所述第三子区(2621)和所述第四子区(2622)中的至少一者。
  3. 根据权利要求2所述的换热板,其特征在于,所述分流结(2120)包括至少两个所述一级分流结(21210),其中与部分所述一级分流结(21210)对应的两个二级分流结(21220)均位于所述第二子区(2612),与另一部分所述一级分流结(21210)对应的两个二级分流结(21220)分别位于所述第一子区(2611)和所述第四子区(2622)。
  4. 根据权利要求2所述的换热板,其特征在于,所述流道(21)还包括三级分流结,所述三级分流结位于所述第一子区(2611)和所述第二子区(2612)中的至少一者。
  5. 根据权利要求4所述的换热板,其特征在于,所述分流结(2120)还包括四级分流结,所述四级分流结设于所述第三子区(2621)和所述第二子区(2612)中的至少一者。
  6. 根据权利要求5所述的换热板,其特征在于,所述换热板用对所述电池冷却时,所述工质从所述第一端口(221)流入,并流经所述一级分流结(21210)、所述二级分流结(21220)、所述三级分流结,再经所述第二端口(222)流出。
  7. 根据权利要求5或6所述的换热板,其特征在于,所述流道(21)包括干路和支路,所述干路与所述第一端口(221)或所述第二端口(222)连接,所述干路将所述支路与所述第一端口(221)和所述第二端口(222)连通;
    所述支路包括一级支路、二级支路、三级支路和四级支路,
    所述一级分流结(21210)连接于所述干路和所述一级支路之间;
    所述二级分流结(21220)连接于所述一级支路与所述二级支路之间;
    所述三级分流结连接在所述二级支路与所述三级支路之间;
    所述四级分流结连接在所述三级支路与所述四级支路之间。
  8. 根据权利要求7所述的换热板,其特征在于,所述流道还包括汇流结,所述汇流结包括一级汇流结、二级汇流结、三级汇流结和四级汇流结;
    所述四级支路的两端分别连接有四级分流结和四级汇流结;
    所述四级支路通过连接的四级汇流结汇聚形成三级支路;
    所述汇聚形成的三级支路通过三级汇流结汇聚形成所述二级支路;
    所述汇聚形成的二级支路通过二级汇流结汇聚形成所述一级支路;
    所述汇聚形成的一级支路通过一级汇流结汇聚形成所述干路;
    所述干路与所述第一端口(221)连接,或者所述干路与所述第二端口(222)连接。
  9. 根据权利要求2所述的换热板,其特征在于,所述第一换热模块(201)和第二换热模块(202)均包括第二类区域(27),所述第二类区域(27)用于与电池的非柱区域对应设置;
    所述第一换热模块(201)的所述第二类区域(27)包括第一分域(271),所述第二换热模块(202)的所述第二类区域(27)包括第二分域(272);
    至少一个所述一级分流结(21210)靠近所述第二端口(222)并设置于所述第三子区(2621),所述分流结还包括二级分流结(21220),所述二级分流结(21220)位于所述第三子区(2621)和所述第一分域(271)。
  10. 根据权利要求9所述的换热板,其特征在于,所述流道(21)还包括三级分流结,所述三级分流结位于所述第二分域(272)中。
  11. 根据权利要求9或10所述的换热板,其特征在于,所述分流结(2120)还包括四级分流结,所述四级分流结设于所述第二分域(272)中。
  12. 根据权利要求10所述的换热板,其特征在于,所述换热板用对所述电池加热时,所述工质从所述第二端口(222)流入,并流经所述一级分流结(21210)、所述二级分流结(21220)、所述三级分流结,再经所述第一端口(221)流出。
  13. 根据权利要求8所述的换热板,其特征在于,部分所述二级支路分布于所述第一换热模块(201)和所述第二换热模块(202)边缘。
  14. 根据权利要求13所述的换热板,其特征在于,所述流道在所述第一换热模块(201)进行N级分流,在所述第二换热模块(202)进行M级分流,所述M≤N。
  15. 根据权利要求13所述的换热板,其特征在于,所述流道(21)在所述第一换热模块(201)进行N级分流后形成n1条支路,在所述第二换热模块(202)进行M级分流后形成m1条支路,m1>n1。
  16. 根据权利要求1-8中任一项所述的换热板,其特征在于,所述换热板还包括第二类区域(27);所述流道(21)分布于所述第一类区域(26)和所述第二类区域(27);
    所述换热板(2)用于对所述电池冷却,所述工质从所述第一类区域(26)的流道(21)流向所述第二类区域(27)的流道(21);或
    所述换热板(2)用于对所述电池加热,所述工质从所述第二类区域(27)的流道(21)流向所述第一类区域(26)的流 道(21)。
  17. 根据权利要求16所述的换热板,其特征在于,所述第一类区域(26)包括第一分区(261)和第二分区(262);
    所述换热板(2)用于对所述电池冷却时,所述工质从所述第一分区(261)流入所述第二类区域(27)的过程中经至少2次分流。
  18. 根据权利要求1-17中任一项所述的换热板,其特征在于,所述换热板具有第一区域(28)和第二区域(29),所述流道分布于所述第一区域(28)和所述第二区域(29),所述第一区域(28)内所述流道(21)分布的平均密集度大于所述第二区域(29)内所述流道(21)分布的平均密集度。
  19. 根据权利要求1-18中任一项所述的换热板,其特征在于,所述换热板包括流道板和基板,所述流道设于所述流道板,在所述换热板所在的平面内,所述流道的设置面积大于所述流道板(24)面积的70%。
  20. 一种电池包,其特征在于,包括权利要求1-19任一项所述的换热板。
  21. 一种车辆,其特征在于,包括权利要求1-19任一项所述的换热板;或,
    包括权利要求20所述的电池包。
PCT/CN2023/109649 2022-07-29 2023-07-27 换热板、电池包和车辆 WO2024022453A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210911342.3 2022-07-29
CN202210911342 2022-07-29
CN202222893863.9U CN219180598U (zh) 2022-05-20 2022-10-31 换热板、电池包和车辆
CN202222893863.9 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024022453A1 true WO2024022453A1 (zh) 2024-02-01

Family

ID=89705475

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2023/109652 WO2024022455A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆
PCT/CN2023/109655 WO2024022456A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆
PCT/CN2023/109649 WO2024022453A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/109652 WO2024022455A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆
PCT/CN2023/109655 WO2024022456A1 (zh) 2022-07-29 2023-07-27 换热板、电池包和车辆

Country Status (1)

Country Link
WO (3) WO2024022455A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214254533U (zh) * 2021-02-01 2021-09-21 比亚迪股份有限公司 电池包的冷却装置、蓄电设备及其空调直冷系统
CN214706042U (zh) * 2021-04-14 2021-11-12 比亚迪股份有限公司 电池包及车辆
CN215771341U (zh) * 2021-08-20 2022-02-08 比亚迪股份有限公司 电池包及车辆
CN114156500A (zh) * 2021-09-15 2022-03-08 国家电投集团氢能科技发展有限公司 双极板和燃料电池电堆
CN114400347A (zh) * 2021-10-08 2022-04-26 东风汽车集团股份有限公司 一种用于燃料电池的双极板以及燃料电池
CN218827404U (zh) * 2022-05-20 2023-04-07 比亚迪股份有限公司 换热板、电池包和车辆

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301877A (ja) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd 組電池装置
CA2860465C (en) * 2012-01-05 2020-07-14 Electrovaya Inc. Fluid-cooled battery module containing battery cells
GB2502977B (en) * 2012-06-11 2015-07-15 Jaguar Land Rover Ltd A vehicle battery pack, a system for cooling a battery pack and a cooling plate for use in the system
JP6768227B2 (ja) * 2016-09-29 2020-10-14 三浦工業株式会社 シェルアンドプレート式熱交換器
CN114744322A (zh) * 2021-01-07 2022-07-12 比亚迪股份有限公司 电池包及车辆
CN214280133U (zh) * 2021-02-04 2021-09-24 无锡明恒混合动力技术有限公司 一种用于方形电池模组的翅片式热交换侧板
CN214505645U (zh) * 2021-03-29 2021-10-26 蜂巢能源科技有限公司 用于电池包的冷却板、电池包以及车辆
CN215771271U (zh) * 2021-06-30 2022-02-08 比亚迪股份有限公司 电池包及车辆
CN216648424U (zh) * 2021-11-30 2022-05-31 江苏正力新能电池技术有限公司 电池水冷板和电池水冷系统
CN216648468U (zh) * 2021-12-07 2022-05-31 上海兰钧新能源科技有限公司 电池包冷却组件和电池包
CN217691361U (zh) * 2022-05-19 2022-10-28 欣旺达电动汽车电池有限公司 电池包及车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214254533U (zh) * 2021-02-01 2021-09-21 比亚迪股份有限公司 电池包的冷却装置、蓄电设备及其空调直冷系统
CN214706042U (zh) * 2021-04-14 2021-11-12 比亚迪股份有限公司 电池包及车辆
CN215771341U (zh) * 2021-08-20 2022-02-08 比亚迪股份有限公司 电池包及车辆
CN114156500A (zh) * 2021-09-15 2022-03-08 国家电投集团氢能科技发展有限公司 双极板和燃料电池电堆
CN114400347A (zh) * 2021-10-08 2022-04-26 东风汽车集团股份有限公司 一种用于燃料电池的双极板以及燃料电池
CN218827404U (zh) * 2022-05-20 2023-04-07 比亚迪股份有限公司 换热板、电池包和车辆
CN219180599U (zh) * 2022-05-20 2023-06-13 比亚迪股份有限公司 换热板、电池包和车辆
CN219180598U (zh) * 2022-05-20 2023-06-13 比亚迪股份有限公司 换热板、电池包和车辆
CN219329297U (zh) * 2022-05-20 2023-07-11 比亚迪股份有限公司 换热板、电池包和车辆

Also Published As

Publication number Publication date
WO2024022455A1 (zh) 2024-02-01
WO2024022455A9 (zh) 2024-03-14
WO2024022456A9 (zh) 2024-03-14
WO2024022456A1 (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
CN219180599U (zh) 换热板、电池包和车辆
CN106505276B (zh) 一种热管理系统
US20200373638A1 (en) Heat exchanger with thermoelectric module and system for managing heat of battery including same
KR20180133728A (ko) 배터리 팩
KR101761461B1 (ko) 냉각 기능을 구비하는 전해액 분배블럭 및 이를 포함하는 스택 분할형 레독스 흐름 전지
CN105526813A (zh) 一种微通道散热器
CN211088450U (zh) 电池热管理系统及其水路系统
CN110247133A (zh) 一种动力电池模组用冷却板及液冷循环系统
WO2024022453A1 (zh) 换热板、电池包和车辆
KR20180131220A (ko) 전기소자 냉각용 열교환기
KR102607665B1 (ko) 배터리 팩
CN210200914U (zh) 电池包冷却系统及电池包
WO2024002201A1 (zh) 直冷板、换热器、动力电池包及车辆
CN209929443U (zh) 电池包热交换系统
CN109599640B (zh) 一种圆柱形动力电池模组液体热管理方案
CN115810831A (zh) 电池冷却装置、新能源车
CN219892239U (zh) 一种换热板、热管理组件及电池
TW202223319A (zh) 熱交換器
CN211607166U (zh) 一种散热器
CN220209066U (zh) 三层式冷却系统
CN220420613U (zh) 电池热管理系统、热管理系统、储能系统和用电装置
CN219917285U (zh) 一种换热板、热管理组件及电池
WO2024140789A1 (zh) 一种液冷组件以及电池换热系统
CN221354820U (zh) 换热器、功率模块组件和车辆
CN118412573A (zh) 一种双层交叉流动式液冷板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845659

Country of ref document: EP

Kind code of ref document: A1