WO2024022281A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2024022281A1
WO2024022281A1 PCT/CN2023/108854 CN2023108854W WO2024022281A1 WO 2024022281 A1 WO2024022281 A1 WO 2024022281A1 CN 2023108854 W CN2023108854 W CN 2023108854W WO 2024022281 A1 WO2024022281 A1 WO 2024022281A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
antenna
electronic device
gap
frequency band
Prior art date
Application number
PCT/CN2023/108854
Other languages
English (en)
French (fr)
Inventor
柯李顺
孙利滨
应李俊
王汉阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024022281A1 publication Critical patent/WO2024022281A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas

Definitions

  • the present application relates to the field of wireless communications, and in particular, to an electronic device.
  • circularly polarized antennas In satellite navigation or communication systems, circularly polarized antennas have some unique advantages compared to linearly polarized antennas. For example, polarization rotation (generally known as polarization rotation) occurs when linearly polarized waves pass through the ionosphere. (called “Faraday rotation”), and circularly polarized waves can resist Faraday rotation due to their rotational symmetry. Therefore, circularly polarized antennas are generally used as transmitting or receiving antennas in satellite navigation or communications. At the same time, in satellite navigation or communication systems, if a traditional linearly polarized antenna is used to receive circularly polarized waves from satellites, half of the energy will be lost due to polarization mismatch.
  • An embodiment of the present application provides an electronic device, including an antenna, which is built into the electronic device and uses a metal frame as a radiator to achieve circular polarization in a small headroom environment.
  • an electronic device including: a conductive frame, the frame including a first frame and a second frame; an antenna, the first frame and the second frame serving as the main radiator of the antenna and Parasitic branches; floor, the first frame and the second frame are grounded through the floor; wherein the ratio of the length and width of the floor is greater than or equal to 1.5; the working frequency band of the antenna includes the first frequency band, so The main radiator and the parasitic branches are used to make the circular polarization axis ratio of the antenna in the first frequency band less than or equal to 10dB; the distance L between the first frame and the second frame satisfies: 0.5 ⁇ L ⁇ 1.5 ⁇ , ⁇ is the first wavelength corresponding to the first frequency band; the electrical length D1 of the first frame and the electrical length D2 of the second frame satisfy: D2 ⁇ 80% ⁇ D1 ⁇ D2 ⁇ 120%.
  • the first frame and the second frame are used as the main radiator (including the feed point) and the parasitic branch of the antenna respectively to generate two orthogonal polarization components.
  • the relative positions of the first frame and the second frame are used so that the radiation generated by the first frame and the second frame has a phase difference of about 90° (90° ⁇ 30°), so that the antenna has circular polarization characteristics.
  • the frame includes a first side and a second side that intersect at an angle, and the length of the first side is greater than the length of the second side;
  • the first side has a first position and a second position, the second side has a third position and a fourth position, the border between the first position and the second position is the first border, and the third
  • the frame between the position and the fourth position is a second frame; the first frame is grounded at the first position; the second frame is grounded at the third position; the frame is grounded at the second A first gap is provided at the fourth position, and a second gap is provided at the fourth position.
  • the first frame and the second frame may form an inverted F-shaped antenna structure, or a left-hand antenna structure.
  • the first frame and the second frame may also form other antenna structures.
  • the first frame The antenna structure formed by the second frame may be the same or different, and this application does not limit this.
  • the first frame includes a first feed point; the first gap is located between the midpoint of the first side and the third side of the first side. Between one end, the first end of the first side is an end of the first side close to the second side.
  • the distance between the first gap and the midpoint of the first side is large. At or equal to 5mm and less than or equal to 45mm.
  • the antenna can have better circular polarization characteristics.
  • the frame includes a third side that intersects the second side at an angle, and the third side has a fifth position and a sixth position, so The frame between the fifth position and the sixth position is a third frame; the third frame serves as the radiator of the antenna; the third frame is grounded at the fifth position, and the frame is at the A third gap is provided at the sixth position.
  • the first frame and the third frame serve as the main radiator of the antenna, and the second frame can be reused as a parasitic branch to form a circularly polarized antenna unit.
  • the first antenna unit may include a first frame and a second frame, the first frame may serve as a main radiator, the first antenna unit may generate a longitudinal mode, the second frame may act as a parasitic stub that is indirectly coupled to the energy by the floor, and the second frame may act as a parasitic stub.
  • One antenna element can produce a transverse mode, giving the first antenna element circular polarization characteristics.
  • the second antenna unit may include a third frame and a second frame, and may also have circular polarization characteristics.
  • the third frame includes a second feed point; the third gap is located between the midpoint of the third side and the third side of the third side. Between one end, the third sides on both sides of the midpoint of the third side have the same length, and the first end of the third side is the end of the third side close to the second side.
  • the distance between the third gap and the midpoint of the third side is greater than or equal to 5 mm and less than or equal to 45 mm.
  • the antenna can have better circular polarization characteristics.
  • the second frame includes a first feed point; the frame includes a fourth side that intersects the first side at an angle; the first The gap is located between the midpoint of the first side and the first end of the first side. The first end of the first side is an end of the first side close to the second side.
  • the third side The distance between a gap and the midpoint of the first side is less than or equal to 20mm, or the first gap is located between the midpoint of the first side and the second end of the first side, so The second end of the first side is an end of the first side close to the fourth side, and the distance between the first gap and the midpoint of the first side is less than or equal to 10 mm.
  • the antenna can have better circular polarization characteristics.
  • the frame includes a first side and a second side that intersect at an angle, and the length of the first side is greater than the length of the second side;
  • the intersection area of the first side and the second side includes a first position, and the intersection area includes part of the first side and part of the second side;
  • the first side has a second position, a third position, and The fourth position, the third position is between the second position and the fourth position, the border between the first position and the second position is the first border, the third position and
  • the frame between the fourth positions is a second frame; the first frame is grounded at the first position; the second frame is grounded at the third position; the frame is set at the second position A first gap is provided at the fourth position, and a second gap is provided at the fourth position.
  • the first frame and the second frame may form an inverted F-shaped antenna structure, or a left-hand antenna structure, and the first frame and the second frame may also form other antenna structures.
  • the first frame The antenna structure formed by the second frame may be the same or different, and this application does not limit this.
  • the first frame includes a first feed point; the second gap is located between the midpoint of the first side and the second position. .
  • the distance between the second gap and the midpoint of the first side is less than or equal to 35 mm.
  • the antenna can have better circular polarization characteristics.
  • the first frame is used to generate a current along the first direction on the floor; the second frame is used to generate a current along the first direction on the floor. Current in the second direction; the first direction and the second direction are perpendicular.
  • the first frame can serve as the main radiator
  • the antenna can generate a longitudinal mode
  • the direction of the current on the floor is the first direction.
  • the second frame can be used as a parasitic branch, which is indirectly coupled to the energy through the floor, and can generate a transverse mode.
  • the direction of the current on the floor is the first direction
  • the first direction is perpendicular to the second direction. Therefore, the antenna can produce both longitudinal and transverse modes, with components along the x-axis and y-axis directions, resulting in circular polarization.
  • the ratio of the length and width of the floor is less than or equal to 3.
  • the polarization mode of the antenna is left-handed circular polarization.
  • the electrical length D1 of the first frame and the electrical length D2 of the second frame satisfy: D2 ⁇ 90% ⁇ D1 ⁇ D2 ⁇ 110%.
  • the radiation generated by the first frame and the second frame in the first frequency band has a phase difference of approximately 90°.
  • a phase difference of about 90° can be understood as a phase difference within the range of 90° ⁇ 30°.
  • the phase difference is 90° ⁇ 10°, thereby achieving a circularly polarized antenna.
  • Figure 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a usage scenario of a circularly polarized antenna provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a circularly polarized antenna provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of energy flow distribution in the transverse mode and the longitudinal mode provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the current distribution of left-handed circular polarization provided by the embodiment of the present application.
  • Figure 7 is a gain pattern of left-handed circular polarization provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the current distribution generated by the first frame on the floor according to the embodiment of the present application.
  • Figure 9 is a schematic diagram of the current distribution generated by the first frame on the floor provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of the current distribution of right-handed circular polarization provided by the embodiment of the present application.
  • Figure 11 is a gain pattern of right-handed circular polarization provided by an embodiment of the present application.
  • FIG. 12 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 4 .
  • FIG. 13 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 4 .
  • Figure 14 is a schematic diagram of polarization orthogonality provided by an embodiment of the present application.
  • FIG. 15 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 4 .
  • FIG. 16 is a schematic structural diagram of another electronic device 100 provided by an embodiment of the present application.
  • FIG. 17 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 16 .
  • FIG. 18 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 16 .
  • FIG. 19 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 16 .
  • FIG. 20 is a schematic structural diagram of another electronic device 100 provided by an embodiment of the present application.
  • FIG. 21 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 20 .
  • FIG. 22 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 20 .
  • FIG. 23 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 20 .
  • FIG. 24 is a schematic structural diagram of another electronic device 100 provided by an embodiment of the present application.
  • FIG. 25 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 24 .
  • FIG. 26 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 24 .
  • FIG. 27 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 24 .
  • FIG. 28 is a schematic structural diagram of yet another electronic device 100 provided by an embodiment of the present application.
  • Figure 29 is a schematic diagram of the circular polarization direction of the antenna provided by the embodiment of the present application.
  • FIG. 30 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 28 .
  • FIG. 31 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 28 .
  • FIG. 32 is a plane (yoz plane) pattern of the gain of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 28 .
  • Coupling can be understood as direct coupling and/or indirect coupling, and "coupling connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the connection between different components in the circuit structure through printed circuit board (PCB) copper foil or wires, etc.
  • PCB printed circuit board
  • indirect coupling can be understood as the electrical conduction between two conductors through space/non-contact.
  • indirect coupling may also be called capacitive coupling, for example, signal transmission is achieved by forming an equivalent capacitance through coupling between a gap between two conductive members.
  • Connection/connection It can refer to a mechanical connection relationship or a physical connection relationship.
  • the connection between A and B or the connection between A and B can refer to the existence of fastening components (such as screws, bolts, rivets, etc.) between A and B. Or A and B are in contact with each other and A and B are difficult to separate.
  • connection The conduction or connection between two or more components through the above “electrical connection” or “indirect coupling” method for signal/energy transmission can be called connection.
  • Relative/relative setting The relative setting of A and B can refer to the setting of A and B face to face (opposite to, or face to face).
  • Capacitance can be understood as lumped capacitance and/or distributed capacitance.
  • Lumped capacitance refers to capacitive components, such as capacitor components; distributed capacitance (or distributed capacitance) refers to the equivalent capacitance formed by two conductive parts separated by a certain gap.
  • Resonance frequency is also called resonance frequency.
  • the resonant frequency can refer to the frequency at which the imaginary part of the antenna input impedance is zero.
  • the resonant frequency can have a frequency range, that is, the frequency range in which resonance occurs.
  • the frequency corresponding to the strongest resonance point is the center frequency point frequency.
  • the return loss characteristics of the center frequency can be less than -20dB.
  • Resonant frequency band The range of resonant frequency is the resonant frequency band.
  • the return loss characteristics of any frequency point in the resonant frequency band can be less than -6dB or -5dB.
  • Communication frequency band/working frequency band No matter what type of antenna, it always works within a certain frequency range (frequency band width).
  • the working frequency band of an antenna that supports the B40 frequency band includes frequencies in the range of 2300MHz to 2400MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
  • the frequency range that meets the index requirements can be regarded as the working frequency band of the antenna.
  • the resonant frequency band and the operating frequency band may be the same or different, or their frequency ranges may partially overlap.
  • the resonant frequency band of the antenna may cover multiple operating frequency bands of the antenna.
  • Electrical length It can refer to the ratio of physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave.
  • the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • Wavelength or working wavelength, which can be the wavelength corresponding to the center frequency of the resonant frequency or the center frequency of the working frequency band supported by the antenna.
  • the operating wavelength can be the wavelength calculated using the frequency of 1955MHz.
  • "working wavelength” can also refer to the wavelength corresponding to the resonant frequency or non-center frequency of the working frequency band.
  • the wavelength of the radiation signal in the medium can be calculated as follows: Among them, ⁇ is the relative dielectric constant of the medium.
  • the wavelength in the embodiment of this application usually refers to the medium wavelength, which can be the medium wavelength corresponding to the center frequency of the resonant frequency, or the medium wavelength corresponding to the center frequency of the working frequency band supported by the antenna.
  • the wavelength can be the medium wavelength calculated using the frequency of 1955MHz.
  • “medium wavelength” can also refer to the medium wavelength corresponding to the resonant frequency or non-center frequency of the operating frequency band.
  • the medium wavelength mentioned in the embodiments of the present application can be simply calculated by the relative dielectric constant of the medium filled on one or more sides of the radiator.
  • the middle (position) of the conductor can be a conductor section including the midpoint on the conductor, or a conductor section of one-eighth wavelength including the midpoint of the conductor, where the wavelength can be corresponding to the working frequency band of the antenna.
  • the wavelength can be the wavelength corresponding to the center frequency of the working frequency band, or the wavelength corresponding to the resonance point.
  • the middle (location) of the conductor may be a portion of the conductor on the conductor that is less than a predetermined threshold (eg, 1 mm, 2 mm, or 2.5 mm) from the midpoint.
  • a predetermined threshold eg 1 mm, 0.5 m, or 0.1 mm
  • a deviation less than a predetermined threshold eg 1 mm, 0.5 m, or 0.1 mm
  • a predetermined angle eg ⁇ 5°, ⁇ 10°
  • Polarization direction of the antenna At a given point in space, the electric field strength E (vector) is a function of time t. As time goes by, the vector endpoints periodically trace a trajectory in space. If the trajectory is straight and perpendicular to the ground, it is called vertical polarization. If it is horizontal to the ground, it is called horizontal polarization. This trajectory is an ellipse or circle. When viewed along the direction of propagation, it rotates in the right-hand or clockwise direction with time. It is called right-hand circular polarization (RHCP). It rotates in the left-hand or counter-clockwise direction with time. , called left-hand circular polarization (light-hand circular polarization, LHCP).
  • RHCP right-hand circular polarization
  • LHCP left-hand circular polarization
  • Axial ratio (AR) of the antenna Under circular polarization, the endpoints of the electric field vector periodically trace an ellipse in space. The ratio of the major axis to the minor axis of the ellipse is called the axial ratio.
  • the axial ratio is an important performance index of a circularly polarized antenna. It represents the purity of circular polarization and is an important index to measure the difference in signal gain of the whole machine in different directions. The closer the antenna's circular polarization axis ratio is to 1 (the electric field vector endpoints periodically trace a circle in space), the better its circular polarization performance is.
  • the clearance can refer to the distance between the radiator and the printed circuit board or electronic component (such as a camera).
  • Poynting vector Refers to the energy flow density vector in the electromagnetic field.
  • the electric field vector somewhere in space is The magnetic field vector is The energy flow density of the electromagnetic field here is direction by and Determined according to the right-hand screw rule, the unit is W/(m2).
  • Ground, or floor can generally refer to at least part of any ground layer, or ground plate, or ground metal layer, etc. in an electronic device (such as a mobile phone), or any combination of any of the above ground layers, or ground plates, or ground components, etc. At least in part, “ground” can be used to ground components within electronic equipment. In one embodiment, "ground” may be the grounding layer of the circuit board of the electronic device, or it may be the grounding plate formed by the middle frame of the electronic device or the grounding metal layer formed by the metal film under the screen.
  • the circuit board may be a printed circuit board (PCB), such as an 8-, 10-, or 12- to 14-layer board with 8, 10, 12, 13, or 14 layers of conductive material, or by a circuit board such as Components separated and electrically insulated by dielectric or insulating layers such as fiberglass, polymer, etc.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through vias.
  • components such as a display, touch screen, input buttons, transmitter, processor, memory, battery, charging circuit, system on chip (SoC) structure, etc. may be mounted on or connected to the circuit board; Or electrically connected to trace and/or ground planes in the circuit board.
  • SoC system on chip
  • ground layers, or ground plates, or ground metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on an insulating substrate, silver foil and tin-plated copper on an insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheet and aluminized substrate.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • the electronic device 10 may include: a cover (cover) 13, a display screen/module (display) 15, a printed circuit board (PCB) 17, a middle frame (middle frame) 19 and a rear panel.
  • Cover (rear cover)21 It should be understood that in some embodiments, the cover 13 can be a glass cover (cover glass), or can be replaced with a cover made of other materials, such as a PET (Polyethylene terephthalate, polyethylene terephthalate) material cover. Board etc.
  • the cover 13 can be placed close to the display module 15 and can be mainly used to protect the display module 15 and prevent dust.
  • the display module 15 may include a liquid crystal display panel (LCD), a light emitting diode (LED) display panel or an organic light-emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. , the embodiment of the present application does not limit this.
  • LCD liquid crystal display panel
  • LED light emitting diode
  • OLED organic light-emitting semiconductor
  • the middle frame 19 mainly plays a supporting role of the whole machine.
  • Figure 1 shows that the PCB 17 is disposed between the middle frame 19 and the back cover 21. It should be understood that in one embodiment, the PCB 17 can also be disposed between the middle frame 19 and the display module 15.
  • the printed circuit board PCB17 can use a flame-resistant material (FR-4) dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, etc.
  • FR-4 is the code for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • PCB17 carries electronic components, such as radio frequency chips, etc.
  • a metal layer may be provided on the printed circuit board PCB 17 .
  • This metal layer can be used for grounding the electronic components carried on the printed circuit board PCB17, and can also be used for grounding other components, such as bracket antennas, frame antennas, etc.
  • the metal layer can be called a floor, a ground plate, or a ground layer.
  • the metal layer may be formed by etching metal on the surface of any dielectric board in the PCB 17 .
  • the metal layer used for grounding may be disposed on a side of the printed circuit board PCB 17 close to the middle frame 19 .
  • the edge of the printed circuit board PCB 17 can be regarded as the edge of its ground plane.
  • the metal middle frame 19 can also be used for grounding the above components.
  • Electronic equipment 10 can also have other floors/ground plates/ground layers, as mentioned before and will not be described here.
  • the electronic device 10 may also include a battery (not shown in the figure).
  • the battery may be disposed between the middle frame 19 and the back cover 21 , or may be disposed between the middle frame 19 and the display module 15 , which is not limited in the embodiment of the present application.
  • the PCB 17 is divided into a main board and a sub-board.
  • the battery can be disposed between the main board and the sub-board.
  • the main board can be disposed between the middle frame 19 and the upper edge of the battery, and the sub-board can be disposed between the main board and the sub-board. Between the middle frame 19 and the lower edge of the battery.
  • the electronic device 10 may also include a frame 11, and the frame 11 may be formed of a conductive material such as metal.
  • the frame 11 may be disposed between the display module 15 and the back cover 21 and extend circumferentially around the periphery of the electronic device 10 .
  • the frame 11 may have four sides surrounding the display module 15 to help fix the display module 15 .
  • the frame 11 made of metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
  • the outer surface of the frame 11 can also be made of non-metal material, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for non-metal IDs.
  • the middle frame 19 may include a frame 11 , and the middle frame 19 including the frame 11 may act as an integral part to support electronic devices in the entire machine.
  • the cover 13 and the back cover 21 are respectively covered along the upper and lower edges of the frame to form a shell or housing of the electronic device.
  • the cover 13 , the back cover 21 , the frame 11 and/or the middle frame 19 can be collectively referred to as the casing or housing of the electronic device 10 .
  • casing or housing can be used to refer to part or all of any one of the cover 13 , the back cover 21 , the frame 11 or the middle frame 19 , or to refer to the cover 13 , the back cover 21 , or the frame 11 or any combination of part or all of box 19.
  • the frame 11 on the middle frame 19 can be at least partially used as an antenna radiator to receive/transmit frequency signals. There can be a gap between this part of the frame as the radiator and other parts of the middle frame 19, thereby ensuring that the antenna radiator has good performance. radiation environment.
  • the middle frame 19 may be provided with an aperture at this part of the frame serving as a radiator to facilitate radiation of the antenna.
  • the frame 11 may not be regarded as a part of the middle frame 19 .
  • the frame 11 can be connected to the middle frame 19 and formed integrally.
  • the frame 11 may include an inwardly extending protruding piece to be connected to the middle frame 19 , for example, through elastic pieces, screws, welding, etc.
  • the protruding parts of the frame 11 can also be used to receive feed signals, so that at least a part of the frame 11 acts as a radiator of the antenna to receive/transmit frequency signals.
  • the back cover 21 can be a back cover made of metal material; it can also be a back cover made of non-conductive materials, such as glass back cover, plastic back cover and other non-metal back covers; or it can also include both conductive materials and non-conductive materials. Material back cover.
  • the antenna of the electronic device 10 can also be disposed in the frame 11 .
  • the antenna radiator can be located in the electronic device 10 and arranged along the frame 11 .
  • the antenna radiator is arranged close to the frame 11 to minimize the volume occupied by the antenna radiator and to be closer to the outside of the electronic device 10 to achieve better signal transmission effects.
  • the arrangement of the antenna radiator close to the frame 11 means that the antenna radiator can be arranged close to the frame 11 or close to the frame 11 . For example, there can be a certain tiny gap between the antenna radiator and the frame 11 .
  • the antenna of the electronic device 10 may also be disposed in the housing, such as a bracket antenna, a millimeter wave antenna, etc. (not shown in FIG. 1 ).
  • the clearance of the antenna arranged in the housing can be obtained by the slits/openings on any one of the middle frame, and/or the frame, and/or the back cover, and/or the display screen, or it can be formed between any of them.
  • the non-conductive gap/aperture is obtained, and the clearance setting of the antenna can ensure the radiation performance of the antenna.
  • the clearance of the antenna may be a non-conductive area formed by any conductive component in the electronic device 10, and the antenna radiates signals to the external space through the non-conductive area.
  • the antenna 40 may be in the form of a flexible printed circuit (FPC)-based antenna, a laser-direct-structuring (LDS)-based antenna, or a microstrip antenna (microstrip disk antenna). , MDA) and other antenna forms.
  • the antenna may also adopt a transparent structure embedded inside the screen of the electronic device 10 , so that the antenna is a transparent antenna unit embedded inside the screen of the electronic device 10 .
  • FIG. 1 only schematically shows some components included in the electronic device 10 , and the actual shapes, actual sizes and actual structures of these components are not limited by FIG. 1 .
  • the side where the display screen of the electronic device is located can be considered to be the front, the side where the back cover is located is the back, and the side where the frame is located is the side.
  • the orientation of the electronic device has a top, a bottom, a left side, and a right side. It should be understood that in the embodiments of the present application, it is considered that when the user holds the electronic device (usually vertically and facing the screen), the orientation of the electronic device has a top, a bottom, a left side, and a right side.
  • Figure 2 is a schematic diagram of a usage scenario of a circularly polarized antenna provided by an embodiment of the present application.
  • circularly polarized antennas have some unique advantages compared to linearly polarized antennas. For example, because linearly polarized waves will undergo polarization rotation when passing through the ionosphere (commonly known as "Faraday rotation"), while circularly polarized waves can resist Faraday rotation due to their rotational symmetry, so they are generally used in satellite navigation or communications. All use circularly polarized antennas as transmitting or receiving antennas. At the same time, in satellite navigation or communication systems, if a traditional linearly polarized antenna is used to receive circularly polarized waves from satellites, half of the energy will be lost due to polarization mismatch. Moreover, circularly polarized antennas are not sensitive to the orientation of the transmitting and receiving antennas.
  • the satellite navigation or communication system can be the Beidou satellite system.
  • the operating frequency bands of the Beidou satellite system can include L band (1610MHz to 1626.5MHz), S band (2483.5MHz to 2500MHz), B1 (1559Hz to 1591MHz) band, B2 (1166MHz to 1217MHz) frequency band and B3 (1250MHz to 1286MHz) frequency band.
  • Figure 3 is a schematic diagram of a circularly polarized antenna provided by an embodiment of the present application.
  • an external circularly polarized antenna is usually used for satellite phones.
  • the specific antenna structure is shown in Figure 7.
  • the external circularly polarized antenna consists of four radiating arms printed on the outer wall of the dielectric cylinder.
  • the four radiating arms adopt a circularly polarized feed network.
  • the four radiating arms are in sequence [0°, 90°, 180° , 270°] phase difference for feeding, thereby achieving a wide-beam circularly polarized radiation pattern.
  • the size of the external circularly polarized antenna shown in Figure 7 is too large, and the antenna cannot be integrated into the electronic device.
  • the clearance of the antenna is generally very small (for example, the clearance of the antenna is less than or equal to 2mm, or less than or equal to 1.5mm), and it is difficult to reserve a large amount of space for realizing the circular shape of the antenna. polarization.
  • Embodiments of the present application provide an electronic device, including an antenna. Two parts of the frame of the electronic device are used as the main radiator and parasitic branches in the antenna.
  • the antenna can generate transverse modes and longitudinal modes, thereby achieving circular polarization.
  • FIG. 4 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may include a conductive frame 11 , an antenna 110 and a floor 120 .
  • the frame 11 includes a first frame 105 and a second frame 106 .
  • the frame 11 may have a first position 101 and a second position 102, and a third position 103 and a fourth position 104.
  • the frame between the first position 101 and the second position 102 is the first frame 105
  • the frame between the third position 103 and the fourth position 104 is the second frame 106.
  • the ratio of the length L1 and the width L2 of the floor 110 may be greater than or equal to 1.5.
  • the first frame 105 and the second frame 106 may be grounded through the floor 120 .
  • the length L1 and the width L2 of the floor 110 may be determined by an outline formed by superimposing metal parts within the electronic device 100 that may serve as the floor.
  • the length L1 and width L2 of the floor 110 can be formed by the edges of the middle frame, PCB and other metal parts of the floor.
  • the length and width of the rectangular outline are: allow.
  • a floor is usually provided in the internal space 0-2mm from the inner surface of the frame (for example, the middle frame, PCB, battery, etc. can be regarded as part of the floor),
  • the length and width of the rectangle formed by the inner surface contour of the filling medium can be regarded as the length and width of the floor.
  • the antenna 110 may include a first frame 105 and a second frame 106.
  • the first frame 105 and the second frame 106 serve as the main radiator (including the feed point) and the parasitic branches of the antenna 110 respectively.
  • the frame for example, the first frame 105 and the second frame 106
  • the first frame 105 and the second frame 106 may be a conductive frame, or may be a non-conductive frame with a conductive patch (disposed on the inner surface or disposed inline), then the first frame 105 and the second frame 105 may be a conductive frame.
  • the conductive parts of the frame 106 serve as the main radiator and parasitic branches of the antenna 110 respectively.
  • the working frequency band of the antenna 110 may include a first frequency band, and the circular polarization axis ratio of the antenna 100 in the first frequency band is less than or equal to 10 dB.
  • the main radiator eg, the first frame 105 or the second frame 1066 is used to generate the first resonance of the first frequency band.
  • the parasitic branches are mainly used to make the circular polarization axis ratio of the antenna 100 in the first frequency band less than or equal to 10 dB. If the parasitic branches are removed or short-circuited, the main radiator can still generate the above-mentioned third frequency band. A resonance, but the circular polarization axis ratio of the antenna 100 in the first frequency band will be greater than 10 dB.
  • the distance between the first frame 105 and the second frame 106 satisfies: 0.5 ⁇ L ⁇ 1.5 ⁇ , where ⁇ is the first wavelength corresponding to the first frequency band.
  • the distance between the first frame 105 and the second frame 106 can be understood as the distance between the center of the first frame 105 and the center of the second frame 106 .
  • the center of the first frame 105 can be understood as the geometric center of the first frame 105 , or it can also be understood as the center of the electrical length of the first frame 105 , and the midpoint of the second frame 106 can also be understood accordingly.
  • the first wavelength can be understood as the wavelength corresponding to the center frequency of the first frequency band (eg, vacuum wavelength), or it can also be understood as the wavelength corresponding to the resonance point of the antenna 110 in the first frequency band (eg, vacuum wavelength).
  • the first frame 105 and the second frame 106 are used as the main radiator (including the feed point) and the parasitic branches of the antenna 110, respectively, to generate two orthogonal polarizations. Portion.
  • the radiation generated by the first frame 105 and the second frame 106 has a phase difference of approximately 90° (90° ⁇ 30°), As a result, the antenna 110 exhibits circular polarization characteristics.
  • the electrical length D1 of the first frame 105 and the electrical length D2 of the second frame 106 satisfy: D2 ⁇ 80% ⁇ D1 ⁇ D2 ⁇ 120%.
  • the resonant frequency bands generated by the first frame 105 and the second frame 106 both include the first frequency band. Therefore, in the first frequency band, the radiation generated by the first frame 105 and the second frame 106 can have a phase difference of approximately 90°, so that the antenna 110 exhibits circular polarization characteristics.
  • a phase difference of about 90° can be understood as a phase difference within a range of 90° ⁇ 30°, for example, the phase difference is 90° ⁇ 10°.
  • the electrical length D1 of the first frame 105 and the electrical length D2 of the second frame 106 can be adjusted through electronic components.
  • the physical length of the first frame 105 or the second frame 106 can be reduced by providing electronic components (for example, capacitors or capacitors) that are electrically connected to the first frame 105 or the second frame 106 Inductance), so that the electrical length D1 of the first frame 105 and the electrical length D2 of the second frame 106 satisfy the above conditions.
  • the electrical length D1 of the first frame 105 and the electrical length D2 of the second frame 106 satisfy: D2 ⁇ 80% ⁇ D1 ⁇ D2 ⁇ 120%. It can be understood that if the first frame 105 and the second frame 106 are fed When using the same radio frequency signal, the resonance center frequencies generated by them will satisfy: f2 ⁇ 80% ⁇ f1 ⁇ f2 ⁇ 120%, where f1 is the resonance center frequency generated by the first frame 105, and f2 is the resonance center frequency generated by the second frame 106. the resonant center frequency.
  • the electrical length D1 of the first frame 105 and the electrical length D2 of the second frame 106 satisfy: D2 ⁇ 90% ⁇ D1 ⁇ D2 ⁇ 110%. As the electrical length D1 of the first frame 105 and the electrical length D2 of the second frame 106 gradually approach each other, the circular polarization characteristics of the antenna 110 are gradually optimized.
  • the ratio of the length L1 to the width L2 of the floor 120 is less than or equal to 3.
  • the frame 11 includes a first side 131 and a second side 132 that intersect at an angle.
  • the length of the first side 131 is greater than the length of the second side 132.
  • the first side 131 is arranged corresponding to the long side of the floor 120.
  • the second side 132 corresponds to the short side of the floor 120 .
  • the first frame 105 may be located on the first side 131
  • the second frame 106 may be located on the second side 132 .
  • first side 131 and the second side may have an overlapping area, wherein the overlapping area may be understood as the intersection area of the first side 131 and the second side 132 .
  • the length of the first side 131 can be understood as the length extending in the X direction, or the length of the electronic device; the length of the second side 132 can be understood as the length extending in the Y direction, or the length of the electronic device.
  • the width of the device When the electronic device is a foldable device, it can be understood as the length and width in the unfolded state of the electronic device.
  • the intersection of the first side 131 and the second side 132 of the frame is arc-shaped, the arc-shaped frame can be understood as the overlapping area/intersection area of the first side 131 and the second side 132 .
  • the first frame 105 is grounded at a first location 101 and the second frame 106 is grounded at a third location 103 .
  • the frame 11 is provided with a first gap 107 at the second position 102 and a second gap 108 at the fourth position 104 .
  • the first frame 105 and the second frame 106 are continuous with other parts of the frame, and may actually be connected with other parts of the frame. There are gaps between the borders.
  • the conductive patch may only include the parts used as radiators and parasitic radiators as shown in Figure 4, or may be continuously or discontinuously provided near other conductive patches.
  • the first frame 105 includes a feed point 141 for feeding electrical signals.
  • the feed point 141 may be disposed close to the first position 101 (ground point) (for example, the feed point 141 is disposed between the center of the first frame 105 and the first position 101) to form an inverted F antenna. antenna, IFA).
  • the feed point 141 can be disposed close to the second position 102 (the first gap) (for example, the feed point 141 is disposed between the center of the first frame 105 and the second position 102), and a capacitor less than 1 pF is connected in series, To form a left-hand antenna (composite right and left hand, CRLH).
  • the first frame 105 can form other antenna structures, for example, a T-shaped antenna (slits are provided at both the first position 101 and the second position 102 ), a slot antenna (both the first position 101 and the second position 102 are grounded). ) or other structural antenna.
  • the antenna structure formed by the first frame 105 and the antenna structure formed by the second frame 106 may be the same or different.
  • the first frame 105 may form an IFA
  • the second frame 106 may form a slot antenna, which is not limited in this application.
  • the energy flow (Poynting vector) generated by it has a component along the y-axis direction (the current direction is perpendicular to the energy flow direction, which is the x direction).
  • This energy flow distribution is understood as an antenna
  • the resulting longitudinal pattern is shown in (a) in Figure 5.
  • the energy flow generated by it has a component along the x-axis direction (the current direction is perpendicular to the energy flow direction, which is the y direction).
  • This energy flow distribution is understood as the transverse mode generated by the antenna, such as As shown in (b) in Figure 5.
  • the antenna can produce both transverse and longitudinal modes, for example, when the first frame is disposed in the intersection area (the first frame has more parts on the first side than on the second side). part), the energy flow (Poynting vector) generated by it is as shown in (c) in Figure 5.
  • the energy flow (Poynting vector) generated by it is shown in (d) in Figure 5.
  • intersection area of the first side and the second side can be understood as a distance where the intersection point is at the first threshold ( For example, the area within 5mm).
  • the intersection of the first side and the second side may be arc-shaped. Therefore, the intersection area of the first side and the second side can be understood as the overlapping area of the first side and the second side. This application The embodiment does not limit this.
  • the first frame When the first frame is fed with an electrical signal, the first frame can serve as the main radiator, the antenna can generate a longitudinal mode, and the direction of the current on the floor is the first direction.
  • the second frame can be used as a parasitic branch, which is indirectly coupled to the energy through the floor, and can generate a transverse mode.
  • the direction of the current on the floor is the first direction, and the first direction is perpendicular to the second direction. Therefore, the antenna can produce both a longitudinal mode and a transverse mode, with components along the x-axis and y-axis directions.
  • the current distribution on the floor At time 0 of a cycle, the current distribution on the floor is shown in (a) in Figure 6, showing a counterclockwise distribution.
  • T/4 T is the time of a current cycle
  • the current distribution on the floor is shown in (b) in Figure 6, showing a clockwise distribution.
  • the antenna is left-handed circularly polarized, and the pattern it produces is shown in Figure 7.
  • the main radiation direction is the z-axis direction, pointing to the screen side of the electronic device.
  • T/4 T is the time of a current cycle
  • the current distribution on the floor is counterclockwise, and the antenna is right-handed circularly polarized.
  • the position of the gap for example, the first gap opened at the second position
  • the grounding position of the radiator for example, the first position
  • the relative positional relationship between the positions of the slits controls the direction of the current generated by the radiator on the floor.
  • the position of the radiator opening the gap (for example, the first gap opening at the second position) can be adjusted.
  • the relative position of the radiator controls the direction of the current generated by the radiator on the floor.
  • the direction of the current generated by the first frame on the floor can be adjusted by controlling the relative position between the grounding position and the position where the gap is opened, thereby controlling the direction of the circular polarization generated by the antenna.
  • the current distribution on the floor is shown in (a) in Figure 10, showing a clockwise distribution.
  • T/4, T is the time of a current cycle the current distribution on the floor is shown in (b) in Figure 10, showing a counterclockwise distribution.
  • the antenna is right-handed circularly polarized, and the pattern it produces is shown in Figure 11.
  • the main radiation direction is the z-axis direction, pointing to the screen side of the electronic device.
  • the first slit 107 may be disposed at a position of the first side 131 close to the second side 132. For example, it may be disposed between the first end of the first side 131 and the midpoint of the first side 131. The first end of the side 131 is an end of the first side 131 close to the second side 132 .
  • the distance L3 between the first gap 107 and the midpoint of the first side 131 is greater than or equal to 5 mm and less than or equal to 45 mm. At this position of the first gap 107 , the antenna 110 can have a better circular pole. chemical characteristics. It should be understood that the distance L3 between the first gap 107 and the midpoint of the first side 131 can be understood as the distance between the edge of the frame forming the first gap 107 and the midpoint of the first side 131 , for example, close to the first side 131 The distance between the gap edge and the midpoint of is L3.
  • the distance L3 between the midpoint of the first gap 107 and the first side 131 can be understood as the midpoint of the first gap 107 and the first side.
  • the distance between the first gap 107 or the second gap 108 can also be understood accordingly.
  • FIG. 12 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 4 .
  • the axial ratio pattern generated by the antenna has an axial ratio pit in the z direction (the screen direction of the electronic device).
  • the axial ratio requirements of circular polarization can be met (for example, the axial ratio is ⁇ 10dB).
  • the antenna Shows circular polarization characteristics.
  • FIG. 13 to 15 are directional diagrams of the antenna 110 in the electronic device shown in FIG. 4 .
  • FIG. 13 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 4 .
  • Figure 14 is a schematic diagram of polarization orthogonality provided by an embodiment of the present application.
  • FIG. 15 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 4 .
  • the maximum radiation direction of the antenna is the z direction, and its maximum gain value is 3dBi.
  • the gain pattern of the antenna can be understood as a combination of the gain pattern of left-hand circular polarization and the gain pattern of right-hand circular polarization.
  • FIG. 16 is a schematic structural diagram of another electronic device 100 provided by an embodiment of the present application.
  • the only difference between the antenna 110 in the electronic device 100 and the antenna 110 shown in FIG. 4 lies in the positions of the feed point 141 , the third position 103 and the fourth position 104 in the antenna 10 .
  • the feeding point 141 is set on the first frame 105 located on the first side 131, with the first frame 105 serving as the main radiator, and the second frame 141 located on the second side 132. 106 as a parasitic branch.
  • the feed point 141 is set at the second frame 106 located at the second side 132 , the second frame 106 serves as the main radiator, and the first frame 105 located at the first side 131 serves as a parasitic Branches.
  • the working frequency band of the antenna 110 may include a first frequency band, and the circular polarization axis ratio of the antenna 100 in the first frequency band is less than or equal to 10 dB.
  • the main radiator (eg, the first frame 105) is used to generate a first resonance in a first frequency band.
  • the parasitic branches (for example, the second frame 106) are mainly used to make the circular polarization axis ratio of the antenna 100 in the first frequency band less than or equal to 10 dB. If the parasitic branches are removed or short-circuited, the main radiator will still The first resonance of the above-mentioned first frequency band may be generated, but the circular polarization axis ratio of the antenna 100 in the first frequency band will be greater than 10 dB.
  • the third position 103 ground position
  • the fourth position 104 the ground position
  • the positional relationship between the grounding position (first position 101) and the first gap (second position 102) of the parasitic branch can be adjusted according to the spatial layout within the electronic device.
  • the grounding position can be located at the first position 102.
  • a gap in the negative direction of the x-axis
  • the grounding position of the parasitic branch and the relative position of the gap do not affect the rotation direction in the circular polarization of the antenna. It should be understood that the direction of circular polarization of the antenna can be determined based on the current distribution on the floor during a quarter of a cycle.
  • the frame 11 includes a third side 133 that intersects the first side 131 at an angle.
  • the first gap 107 is located between the midpoint of the first side 131 and the first end of the first side 131 .
  • the first end of the first side 131 is an end of the first side 131 close to the second side 132 .
  • the first gap 107 is connected to the midpoint of the first side 131 .
  • the distance L3 between the midpoints of the first sides 131 is less than or equal to 20 mm.
  • the first gap 107 is located between the midpoint of the first side 131 and the second end of the first side 131.
  • the second end of the first side 131 is an end of the first side 131 close to the third side 133.
  • the first gap 107 is located between the midpoint of the first side 131 and the second end of the first side 131.
  • the distance L3 between 107 and the midpoint of the first side 131 is less than or equal to 10 mm. It should be understood that with the first slot 107 at this position, the antenna 110 can have better circular polarization characteristics.
  • FIG. 17 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 16 .
  • (c) of Figure 17 it is the axial ratio pattern when the first gap is between the above two positions and the circular polarization performance is optimal (for example, the first gap is located at the midpoint of the first side 131). .
  • the axial ratio pattern generated by the antenna has an axial ratio pit in the z direction (the screen direction of the electronic device).
  • the axial ratio requirements of circular polarization can be met (for example, the axial ratio is ⁇ 10dB).
  • the antenna Shows circular polarization characteristics.
  • FIG. 18 and 19 are directional diagrams of the antenna 110 in the electronic device shown in FIG. 16 .
  • FIG. 18 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 16 .
  • FIG. 19 is a gain pattern of left-hand circular polarization in the gain pattern generated by the antenna 110 in the electronic device shown in FIG. 16 .
  • the maximum radiation direction of the antenna is the z direction, and its maximum gain value is 3.4dBi.
  • FIG. 20 is a schematic structural diagram of another electronic device 100 provided by an embodiment of the present application.
  • the only difference between the antenna 110 in the electronic device 100 and the antenna 110 shown in FIG. 4 lies in the positions of the first frame 105 and the second frame 106 .
  • the first frame 105 and the second frame 106 can both be located on the first side 131, and the first position 103 can be located in the intersection area of the first side 131 and the second side 132, so that when the first frame 105 feeds an electrical signal, it can generate signals simultaneously.
  • Landscape mode and portrait mode are examples of the first frame 105 and the second frame 106 .
  • the polarization mode of the antenna 110 is circular polarization.
  • the second gap 108 may be located between the midpoint of the first side 131 and the second location 102 .
  • the distance between the second gap 108 and the midpoint of the first side 131 is less than or equal to 35 mm. It should be understood that with the second slot 108 in this position, the antenna 110 can have better circular polarization characteristics.
  • the working frequency band of the antenna 110 may include a first frequency band, and the circular polarization axis ratio of the antenna 100 in the first frequency band is less than or equal to 10 dB.
  • the main radiator eg, the first frame 105
  • the parasitic branches are mainly used to make the circular polarization axis ratio of the antenna 100 in the first frequency band less than or equal to 10 dB.
  • the main radiator will still The first resonance of the above-mentioned first frequency band can be generated, but the circular polarization axis ratio of the antenna 100 in the first frequency band will be greater than 10 dB.
  • the distance L between the first frame 105 and the second frame 106 satisfies: 0.5 ⁇ L ⁇ 1.5 ⁇ , ⁇ is the first wavelength corresponding to the first frequency band, and the second The border 11 between the position 102 and the fourth position 104 may not exist, and the first gap 107 and the second gap 108 may be the same gap.
  • FIG. 21 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 20 .
  • the axial ratio pattern generated by the antenna has an axial ratio pit in the z direction (the screen direction of the electronic device).
  • the axial ratio requirements of circular polarization can be met (for example, the axial ratio is ⁇ 10dB).
  • the antenna Shows circular polarization characteristics.
  • FIG. 22 and 23 are directional diagrams of the antenna 110 in the electronic device shown in FIG. 20 .
  • FIG. 22 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 20 .
  • FIG. 23 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 20 .
  • the maximum radiation direction of the antenna is the z direction, and its maximum gain value is 3.6dBi.
  • FIG. 24 is a schematic structural diagram of another electronic device 100 provided by an embodiment of the present application.
  • the only difference between the antenna 110 in the electronic device 100 and the antenna 110 shown in FIG. 20 is the position of the feeding point 141 in the antenna 10 .
  • the feed point 141 is set on the first frame 105 , the first frame 105 serves as the main radiator, and the second frame 106 serves as a parasitic stub.
  • the feed point 141 is located at the second frame 106 , the second frame 106 serves as the main radiator, and the first frame 105 serves as a parasitic stub.
  • the second gap 108 may be located between the midpoint of the first side 131 and the second location 102 .
  • the distance between the second gap 108 and the midpoint of the first side 131 is less than or equal to 35 mm.
  • FIG. 25 to 27 are directional diagrams of the antenna 110 in the electronic device shown in FIG. 24 .
  • FIG. 25 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 24 .
  • FIG. 26 is a gain pattern generated by the antenna 110 in the electronic device shown in FIG. 24 .
  • Figure 27 is shown in Figure 24 A gain pattern of left-hand circular polarization in the gain pattern produced by the antenna 110 in the electronic device.
  • the axial ratio pattern generated by the antenna has an axial ratio pit in the z direction (the screen direction of the electronic device).
  • the axial ratio requirements of circular polarization can be met (for example, the axial ratio is ⁇ 10dB).
  • the antenna exhibits circular polarization characteristics.
  • the maximum radiation direction of the antenna is the z direction, and its maximum gain value is 3.5dBi.
  • FIG. 28 is a schematic structural diagram of yet another electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may include a conductive frame 11 , an antenna 110 and a floor 120 .
  • the frame 11 has a first position 101 and a second position 102 , a third position 103 and a fourth position 104 , and a fifth position 201 and a sixth position 202 .
  • the border between the first position 101 and the second position 102 is the first border 105
  • the border between the third position 103 and the fourth position 104 is the second border 106
  • the border between the fifth position 201 and the sixth position 202 is The frame is the third frame 109.
  • the frame 11 includes a first side 131 and a fourth side 134 that respectively intersect the second side 132 at an angle.
  • the lengths of the first side 131 and the fourth side 134 are greater than the length of the second side 132 .
  • the first side 131 and the fourth side 134 are respectively arranged corresponding to the two long sides of the floor 120 , and the second side 132 corresponds to the short side of the floor 120 .
  • the antenna 110 may include a first frame 105, a second frame 106 and a third frame 109.
  • the first frame 105 may be located on the first side 131
  • the second frame 106 may be located on the second side 132
  • the third frame 109 may be located on the fourth side 134 .
  • the first frame 105 is grounded at a first position 101 , and a first gap 107 is provided at a second position 102 .
  • the second frame 106 is grounded at the third position 103 , and the second gap 108 is provided at the fourth position 104 .
  • the third frame 109 is grounded at the fifth position 201 , and a third gap 203 is provided at the sixth position 202 .
  • the first frame 105 includes a first feed point 141 for feeding electrical signals.
  • the third frame 109 includes a second feed point 142 for feeding electrical signals.
  • the only difference between the antenna 110 shown in Figure 28 and the antenna 110 shown in Figure 4 is the addition of a third frame 109, consisting of the first frame 105 provided on two opposite (non-adjacent) sides of the frame. and the third frame 109 serves as the main radiator of the antenna 110 .
  • the schematic structural diagram of the antenna in the electronic device shown in Figure 4 is shown in (a) of Figure 29.
  • the antenna includes a first frame 105 and a second frame 106, and its polarization form is left-handed circular polarization.
  • the polarization direction of the antenna changes from left-hand circular polarization to right-hand circular polarization, as shown in (b) of Figure 29 .
  • the polarization mode of the antenna can be changed from right-hand circular polarization to left-hand circular polarization, as shown in (c) in Figure 29.
  • the first frame 105 and the third frame 109 serve as the main radiators of the antenna 110
  • the second frame 106 can be reused as a parasitic branch to form a left-hand circularly polarized antenna unit.
  • the first antenna unit may include a first frame 105 and a second frame 106, the first frame may serve as a main radiator, the first antenna unit may generate a longitudinal mode, and the second frame may act as a parasitic stub, indirectly coupling energy to the floor.
  • the first antenna unit can generate a transverse mode, so that the first antenna unit exhibits circular polarization characteristics.
  • the second antenna unit may include a third frame 109 and a second frame 106, and may also have circular polarization characteristics.
  • the rotation directions of the first antenna unit and the second antenna unit can be made to be the same.
  • their polarization modes are both left-handed circular poles. change.
  • the antenna 110 includes a first antenna unit and a second antenna unit with left-hand circular polarization, and the polarization characteristics of the antenna 110 can be optimized compared with the antenna 110 shown in FIG. 4 .
  • the electrical length D1 of the first frame 105 and the electrical length D3 of the third frame 109 satisfy: D3 ⁇ 80% ⁇ D1 ⁇ D3 ⁇ 120%.
  • the resonant frequency bands generated by the first frame 105 and the third frame 109 both include the first frequency band, so that the circular polarization characteristics of the antenna 110 are obtained in the first frequency band. optimization.
  • the circular polarization axis ratio of the antenna 100 in the first frequency band is less than or equal to 10 dB.
  • the main radiator is used to generate the first resonance of the first frequency band (for example, the first frame 105 is used to generate the first resonance of the first frequency band, and the third frame 109 is used to generate the second resonance of the first frequency band).
  • the parasitic branches (for example, the second frame 106) are mainly used to make the circular polarization axis ratio of the antenna 100 in the first frequency band less than or equal to 10 dB.
  • the main radiator ( For example, the first frame 105 and/or the third frame 109) can still generate the first resonance of the first frequency band, but the circular polarization axis ratio of the antenna 100 in the first frequency band will be greater than 10 dB.
  • the electrical length D1 of the first frame 105 and the electrical length D3 of the third frame 109 satisfy: D3 ⁇ 90% ⁇ D1 ⁇ D3 ⁇ 110%.
  • the first slit 107 may be disposed at a position of the first side 131 close to the second side 132. For example, it may be disposed Between the first end of the first side 131 and the midpoint of the first side 131 , the first end of the first side 131 is an end of the first side 131 close to the second side 132 .
  • the distance L3 between the first gap 107 and the midpoint of the first side 131 is greater than or equal to 5 mm and less than or equal to 45 mm.
  • the third slit 203 may be disposed at a position of the fourth side 134 close to the second side 132. For example, it may be disposed between the first end of the fourth side 134 and the midpoint of the fourth side 134. The first end of the four sides 134 is an end of the fourth side 134 close to the second side 132 .
  • the distance L4 between the third gap 203 and the midpoint of the fourth side 134 is greater than or equal to 5 mm and less than or equal to 45 mm.
  • FIG. 30 to 32 are directional diagrams of the antenna 110 in the electronic device shown in FIG. 28 .
  • FIG. 30 is an axial ratio pattern of the antenna 110 in the electronic device shown in FIG. 28 .
  • FIG. 31 is a gain pattern of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 28 .
  • FIG. 32 is a plane (yoz plane) pattern of the gain of left-hand circular polarization generated by the antenna 110 in the electronic device shown in FIG. 28 .
  • the axial ratio pattern generated by the antenna has an axial ratio pit in the z direction (the screen direction of the electronic device).
  • the axial ratio requirements of circular polarization can be met (for example, the axial ratio is ⁇ 10dB).
  • the antenna exhibits circular polarization characteristics.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection between devices or units may be in electrical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例提供了一种电子设备,包括一种天线,利用电子设备的两部分边框分别作为天线中的主辐射体和寄生枝节,通过主辐射体和寄生枝节实现圆极化的天线。天线,包括电子设备的第一边框和第二边框,第一边框和第二边框通过地板接地。其中,地板的长度和宽度的比值大于或等于1.5。天线的工作频段包括第一频段,天线在第一频段的圆极化轴比小于或等于10dB。第一边框和第二边框之间的距离L满足:0.5λ≤L≤1.5λ,λ为第一频段对应的第一波长。

Description

一种电子设备
本申请要求于2022年7月26日提交中国专利局、申请号为202210885621.7、申请名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种电子设备。
背景技术
在卫星导航或通信系统中,相比于线极化天线,圆极化天线具有一些独特的优势,例如,由于线极化波经过电离层时会发生极化旋转现象(polarization rotation)(一般称作“法拉第旋转(Faraday rotation)”),而圆极化波由于具有旋转对称性可以抵抗法拉第旋转,因此在卫星导航或通信上一般均采用圆极化天线作为发射或接收天线。同时,在卫星导航或通信系统中,如果采用传统的线极化天线接收卫星发过来的圆极化波,由于极化失配会损失一半能量。
然而,考虑工业设计(industrial design,ID)以及电子设备整体的结构等因素,目前现有的终端电子设备设计天线均采用线极化天线,并未对天线的圆极化特性进行研究。而现有的专用卫星终端一般采用外置天线来实现圆极化,天线形式大多数为体积庞大的四壁螺旋天线,无法实现天线的内置集成。因此,设计内置或与外观共形的圆极化天线对于在终端电子设备中实现卫星通信或导航等功能具有重大的意义。
发明内容
本申请实施例提供了一种电子设备,包括一种天线,该天线内置于电子设备中,利用金属边框作为辐射体,在小净空的环境下实现圆极化。
第一方面,提供了一种电子设备,包括:导电边框,所述边框包括第一边框和第二边框;天线,所述第一边框和所述第二边框作为所述天线的主辐射体和寄生枝节;地板,所述第一边框和所述第二边框通过所述地板接地;其中,所述地板的长度和宽度的比值大于或等于1.5;所述天线的工作频段包括第一频段,所述主辐射体和所述寄生枝节用于使所述天线在所述第一频段的圆极化轴比小于或等于10dB;所述第一边框和所述第二边框之间的距离L满足:0.5λ≤L≤1.5λ,λ为所述第一频段对应的第一波长;所述第一边框的电长度D1和所述第二边框的电长度D2满足:D2×80%≤D1≤D2×120%。
根据本申请实施例的技术方案,利用第一边框和第二边框分别作为天线的主辐射体(包括馈电点)和寄生枝节,产生两个正交的极化分量。同时,利用第一边框和第二边框的相对位置,使第一边框和第二边框产生的辐射具有约90°(90°±30°)的相位差,从而使天线呈圆极化特性。
结合第一方面,在第一方面的某些实现方式中,所述边框包括呈角相交的第一边和第二边,所述第一边的长度大于所述第二边的长度;所述第一边具有第一位置和第二位置,所述第二边具有第三位置和第四位置,所述第一位置和所述第二位置之间的边框为第一边框,所述第三位置和所述第四位置之间的边框为第二边框;所述第一边框在所述第一位置接地;所述第二边框在所述第三位置接地;所述边框在所述第二位置设置第一缝隙,在所述第四位置设置第二缝隙。
根据本申请实施例的技术方案,第一边框和第二边框可以形成倒置的F型天线的结构,或者,左手天线的结构,第一边框和第二边框也可以形成其他天线结构,第一边框和第二边框形成的天线结构可以相同或不同,本申请对此并不做限制。
结合第一方面,在第一方面的某些实现方式中,所述第一边框包括第一馈电点;所述第一缝隙位于所述第一边的中点与所述第一边的第一端之间,所述第一边的第一端为所述第一边靠近所述第二边的一端。
结合第一方面,在第一方面的某些实现方式中,所述第一缝隙与所述第一边的中点之间的距离大 于或等于5mm且小于或等于45mm。
根据本申请实施例的技术方案,第一缝隙在该位置,天线可以具有更好的圆极化特性。
结合第一方面,在第一方面的某些实现方式中,所述边框包括与所述第二边呈角相交的第三边,所述第三边上具有第五位置和第六位置,所述第五位置和所述第六位置之间的边框为第三边框;所述第三边框作为所述天线的辐射体;所述第三边框在所述第五位置接地,所述边框在所述第六位置设置第三缝隙。
根据本申请实施例的技术方案,第一边框和第三边框作为天线的主辐射体,可以复用第二边框作为寄生枝节,形成圆极化的天线单元。例如,第一天线单元可以包括第一边框和第二边框,第一边框可以作为主辐射体,第一天线单元可以产生纵向模式,第二边框可以作为寄生枝节,由地板间接耦合到能量,第一天线单元可以产生横向模式,从而使第一天线单元呈圆极化特性。第二天线单元可以包括第三边框和第二边框,也可以呈圆极化特性。通过调整第一边框和第三边框中接地位置和缝隙位置之间的相对位置,可以使第一天线单元和第二天线单元的旋向相同,例如,其极化方式均为左旋圆极化。
结合第一方面,在第一方面的某些实现方式中,所述第三边框包括第二馈电点;所述第三缝隙位于所述第三边的中点与所述第三边的第一端之间,所述第三边的中点两侧的第三边的长度相同,所述第三边的第一端为所述第三边靠近所述第二边的一端。
结合第一方面,在第一方面的某些实现方式中,所述第三缝隙与所述第三边的中点之间的距离大于或等于5mm且小于或等于45mm。
根据本申请实施例的技术方案,第三缝隙在该位置,天线可以具有更好的圆极化特性。
结合第一方面,在第一方面的某些实现方式中,所述第二边框包括第一馈电点;所述边框包括与所述第一边呈角相交的第四边;所述第一缝隙位于所述第一边的中点与所述第一边的第一端之间,所述第一边的第一端为所述第一边靠近所述第二边的一端,所述第一缝隙与所述第一边的中点之间的距离小于或等于20mm,或者,所述第一缝隙位于所述第一边的中点与所述第一边的第二端之间,所述第一边的第二端为所述第一边靠近所述第四边的一端,所述第一缝隙与所述第一边的中点之间的距离小于或等于10mm。
根据本申请实施例的技术方案,第一缝隙在该位置,天线可以具有更好的圆极化特性。
结合第一方面,在第一方面的某些实现方式中,所述边框包括呈角相交的第一边和第二边,所述第一边的长度大于所述第二边的长度;所述第一边和所述第二边的相交区域包括第一位置,所述相交区域包括部分所述第一边和部分所述第二边;所述第一边具有第二位置,第三位置和第四位置,所述第三位置位于所述第二位置和所述第四位置之间,所述第一位置和所述第二位置之间的边框为第一边框,所述第三位置和所述第四位置之间的边框为第二边框;所述第一边框在所述第一位置接地;所述第二边框在所述第三位置接地;所述边框在所述第二位置设置第一缝隙,在所述第四位置设置第二缝隙。
根据本申请实施例的技术方案,第一边框和第二边框可以形成倒置的F型天线的结构,或者,左手天线的结构,第一边框和第二边框也可以形成其他天线结构,第一边框和第二边框形成的天线结构可以相同或不同,本申请对此并不做限制。
结合第一方面,在第一方面的某些实现方式中,所述第一边框包括第一馈电点;所述第二缝隙位于所述第一边的中点与所述第二位置之间。
结合第一方面,在第一方面的某些实现方式中,所述第二缝隙与所述第一边的中点之间的距离小于或等于35mm。
根据本申请实施例的技术方案,第二缝隙在该位置,天线可以具有更好的圆极化特性。
结合第一方面,在第一方面的某些实现方式中,所述第一边框用于在所述地板上产生沿第一方向的电流;所述第二边框用于在所述地板上产生沿第二方向的电流;所述第一方向和所述第二方向垂直。
根据本申请实施例的技术方案,例如,第一边框可以作为主辐射体,天线可以产生纵向模式,地板上的电流方向为第一方向。第二边框可以作为寄生枝节,由地板间接耦合到能量,可以产生横向模式,地板上的电流方向为第一方向,第一方向与第二方向垂直。因此,天线可以同时产生纵向模式和横向模式,具有沿x轴方向和y轴方向的分量,从而产生圆极化。
结合第一方面,在第一方面的某些实现方式中,所述地板的长度和宽度的比值小于或等于3。
结合第一方面,在第一方面的某些实现方式中,所述天线的极化方式为左旋圆极化。
结合第一方面,在第一方面的某些实现方式中,所述第一边框的电长度D1和所述第二边框的电长度D2满足:D2×90%≤D1≤D2×110%。
结合第一方面,在第一方面的某些实现方式中,所述第一边框和所述第二边框在所述第一频段产生的辐射具有约90°的相位差。约90°的相位差可以理解为范围在90°±30°以内的相位差,例如,相位差为90°±10°,从而实现圆极化天线。
附图说明
图1是本申请实施例提供的电子设备的示意图。
图2是本申请实施例提供的一种圆极化天线的使用场景示意图。
图3是本申请实施例提供的一种圆极化天线的示意图。
图4是本申请实施例提供的电子设备100的结构示意图。
图5是本申请实施例提供的横向模式和纵向模式的能流分布示意图。
图6是本申请实施例提供的左旋圆极化的电流分布示意图。
图7是本申请实施例提供的左旋圆极化的增益方向图。
图8是本申请实施例提供的第一边框在地板上产生的电流分布示意图。
图9是本申请实施例提供的第一边框在地板上产生的电流分布示意图。
图10是本申请实施例提供的右旋圆极化的电流分布示意图。
图11是本申请实施例提供的右旋圆极化的增益方向图。
图12是图4所示电子设备中天线110的轴比方向图。
图13是图4所示电子设备中天线110产生的增益方向图。
图14是本申请实施例提供的极化正交的示意图。
图15是图4所示电子设备中天线110产生的左旋圆极化的增益方向图。
图16是本申请实施例提供的另一种电子设备100的结构示意图。
图17是图16所示电子设备中天线110的轴比方向图。
图18是图16所示电子设备中天线110产生的增益方向图。
图19是图16所示电子设备中天线110产生的左旋圆极化的增益方向图。
图20是本申请实施例提供的另一种电子设备100的结构示意图。
图21是图20所示电子设备中天线110的轴比方向图。
图22是图20所示电子设备中天线110产生的增益方向图。
图23是图20所示电子设备中天线110产生的左旋圆极化的增益方向图。
图24是本申请实施例提供的另一种电子设备100的结构示意图。
图25是图24所示电子设备中天线110的轴比方向图。
图26是图24所示电子设备中天线110产生的增益方向图。
图27是图24所示电子设备中天线110产生的左旋圆极化的增益方向图。
图28是本申请实施例提供的又一种电子设备100的结构示意图。
图29是本申请实施例提供的天线的圆极化旋向的示意图。
图30是图28所示电子设备中天线110的轴比方向图。
图31是图28所示电子设备中天线110产生的左旋圆极化的增益方向图。
图32是图28所示电子设备中天线110产生的左旋圆极化的增益的平面(yoz平面)方向图。
具体实施方式
以下,对本申请实施例可能出现的术语进行解释。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接 的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
连接/相连:可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
接通:通过以上“电连接”或“间接耦合”的方式使得两个或两个以上的元器件之间导通或连通来进行信号/能量传输,都可称为接通。
相对/相对设置:A与B相对设置可以是指A与B面对面(opposite to,或是face to face)设置。
电容:可理解为集总电容和/或分布电容。集总电容指的是呈容性的元器件,例如电容元件;分布电容(或分布式电容)指的是两个导电件间隔一定间隙而形成的等效电容。
谐振/谐振频率:谐振频率又叫共振频率。谐振频率可以指天线输入阻抗虚部为零处的频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。共振最强点对应的频率就是中心频率点频率。中心频率的回波损耗特性可以小于-20dB。
谐振频段:谐振频率的范围是谐振频段,谐振频段内任一频点的回波损耗特性可以小于-6dB或-5dB。
通信频段/工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。
谐振频段和工作频段可以相同或不同,或者其频率范围可以部分重叠。在一个实施例中,天线的谐振频段可以覆盖该天线的多个工作频段。
电长度:可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
波长:或者工作波长,可以是谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
应理解的是,辐射信号在空气中的波长可以如下计算:(空气波长,或真空波长)=光速/频率,其中频率为辐射信号的频率(MHz),光速可以取3×108m/s。辐射信号在介质中的波长可以如下计算:其中,ε为该介质的相对介电常数。本申请实施例中的波长,通常指的是介质波长,可以是谐振频率的中心频率对应的介质波长,或者天线所支持的工作频段的中心频率对应的介质波长。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那波长可以为利用1955MHz这个频率计算出来的介质波长。不限于中心频率,“介质波长”也可以是指谐振频率或工作频段的非中心频率对应的介质波长。为便于理解,本申请实施例中提到的介质波长可以简单地通过辐射体的一侧或多侧所填充介质的相对介电常数来计算。
本申请实施例中提及的中间或中间位置等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。例如,导体的中间(位置)可以是指导体上包括中点的一段导体部分,可以是包括该导体中点的一段八分之一波长的导体部分,其中,波长可以是天线的工作频段对应的波长,可以是工作频段的中心频率对应的波长,或者,谐振点对应的波长。又例如,导体的中间(位置)可以是指导体上距离中点小于预定阈值(例如,1mm,2mm,或2.5mm)的一段导体部分。
本申请实施例中提及的共线、共轴、共面、对称(例如,轴对称、或中心对称等)、平行、垂直、相同(例如,长度相同、宽度相同等等)等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。共线的两个辐射枝节或者两个天线单元的边缘之间在线宽方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。共面的两个辐射枝节或者两个天线单元的边缘之间在垂直于其共面平面的方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。相互平行或垂直的两个天线单元之间可以存在预定角度(例如±5°,±10°)的偏差。
天线的极化方向:在空间给定点上,电场强度E(矢量)是时间t的函数,随着时间的推移,矢量端点在空间周期性地描绘出轨迹。该轨迹为直线且垂直地面,称垂直极化,如果水平于地面,称水平极化。该轨迹椭圆或圆,沿着传播方向观察时,随着时间沿右手或顺时针方向旋转,称右旋圆极化(right-hand circular polarization,RHCP),随着时间沿左手或逆时针方向旋转,称左旋圆极化(light-hand circular polarization,LHCP)。
天线的轴比(axial ratio,AR):在圆极化下,电场矢量端点在空间周期性地描绘出轨迹为椭圆,椭圆的长轴和短轴之比称为轴比。轴比是圆极化天线的一个重要的性能指标,它代表圆极化的纯度,是衡量整机对不同方向的信号增益差异性的重要指标。天线的圆极化轴比值越靠近1(电场矢量端点在空间周期性地描绘出轨迹为圆),其圆极化性能越好。
净空:指天线的辐射体与靠近辐射体的金属或电子元件之间的距离。例如,当电子设备的部分金属边框作为天线的辐射体,净空可以指辐射体与印刷电路板或电子元件(如摄像头)之间的距离。
坡印亭矢量(poynting vector)指电磁场中的能流密度矢量。空间某处的电场矢量为磁场矢量为该处电磁场的能流密度为方向由按右手螺旋定则确定,单位为W/(m2)。
地,或地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于电子设备内元器件的接地。一个实施例中,“地”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
下面将结合附图,对本申请实施例的技术方案进行描述。
如图1所示,电子设备10可以包括:盖板(cover)13、显示屏/模组(display)15、印刷电路板(printed circuit board,PCB)17、中框(middle frame)19和后盖(rear cover)21。应理解,在一些实施例中,盖板13可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。
其中,盖板13可以紧贴显示模组15设置,可主要用于对显示模组15起到保护、防尘作用。
在一个实施例中,显示模组15可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请实施例对此并不做限制。
中框19主要起整机的支撑作用。图1中示出PCB17设于中框19与后盖21之间,应可理解,在一个实施例中,PCB17也可设于中框19与显示模组15之间,本申请实施例对此并不做限制。其中,印刷电路板PCB17可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB17上承载电子元件,例如,射频芯片等。在一个实施例中,印刷电路板PCB17上可以设置一金属层。该金属层可用于印刷电路板PCB17上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB17中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在印刷电路板PCB17上靠近中框19的一侧。在一个实施例中,印刷电路板PCB17的边缘可以看作其接地层的边缘。可以在一个实施例中,金属中框19也可用于上述元件的接地。电子设备 10还可以具有其他地板/接地板/接地层,如前所述,此处不再赘述。
其中,电子设备10还可以包括电池(图中未示出)。电池可以设置于设于中框19与后盖21之间,或者可设于中框19与显示模组15之间,本申请实施例对此并不做限制。在一些实施例中,PCB17分为主板和子板,电池可以设于所述主板和所述子板之间,其中,主板可以设置于中框19和电池的上边沿之间,子板可以设置于中框19和电池的下边沿之间。
电子设备10还可以包括边框11,边框11可以由金属等导电材料形成。边框11可以设于显示模组15和后盖21之间并绕电子设备10的外围周向延伸。边框11可以具有包围显示模组15的四个侧边,帮助固定显示模组15。在一种实现方式中,金属材料制成的边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框11的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框19可以包括边框11,包括边框11的中框19作为一体件,可以对整机中的电子器件起支撑作用。盖板13、后盖21分别沿边框的上下边沿盖合从而形成电子设备的外壳或壳体(housing)。在一个实施例中,盖板13、后盖21、边框11和/或中框19,可以统称为电子设备10的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板13、后盖21、边框11或中框19中任一个的部分或全部,或者指代盖板13、后盖21、边框11或中框19中任意组合的部分或全部。
中框19上的边框11可以至少部分地作为天线辐射体以收/发射频信号,作为辐射体的这一部分边框,与中框19的其他部分之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境。在一个实施例中,中框19在作为辐射体的这一部分边框处可以设置孔径,以利于天线的辐射。
或者,可以不将边框11看做中框19的一部分。在一个实施例中,边框11可以和中框19连接并一体成型。在另一实施例中,边框11可以包括向内延伸的突出件,以与中框19相连,例如,通过弹片、螺丝、焊接等方式相连。边框11的突出件还可以用来接收馈电信号,使得边框11的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框30之间可以存在间隙42,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。
其中,后盖21可以是金属材料制成的后盖;也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖;还可以是同时包括导电材料和非导电材料制成的后盖。
电子设备10的天线还可以设置于边框11内。当电子设备10的边框11为非导电材料时,天线辐射体可以位于电子设备10内并延边框11设置。例如,天线辐射体贴靠边框11设置,以尽量减小天线辐射体占用的体积,并更加的靠近电子设备10的外部,实现更好的信号传输效果。需要说明的是,天线辐射体贴靠边框11设置是指天线辐射体可以紧贴边框11设置,也可以为靠近边框11设置,例如天线辐射体与边框11之间能够具有一定的微小缝隙。
电子设备10的天线还可以设置于外壳内,例如支架天线、毫米波天线等(图1中未示出)。设置于壳体内的天线的净空可以由中框、和/或边框、和/或后盖、和/或显示屏中任一个上的开缝/开孔来得到,或者由任几个之间形成的非导电缝隙/孔径来得到,天线的净空设置可以保证天线的辐射性能。应可理解,天线的净空可以是由电子设备10内的任意导电元器件来形成的非导电区域,天线通过该非导电区域向外部空间辐射信号。在一个实施例中,天线40的形式可以为基于柔性主板(flexible printed circuit,FPC)的天线形式,基于激光直接成型(laser-direct-structuring,LDS)的天线形式或者微带天线(microstrip disk antenna,MDA)等天线形式。在一个实施例中,天线也可采用嵌设于电子设备10的屏幕内部的透明结构,使得该天线为嵌设于电子设备10的屏幕内部的透明天线单元。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
应理解,在本申请的实施例中,可以认为电子设备的显示屏所在的面为正面,后盖所在的面为背面,边框所在的面为侧面。
应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。
图2是本申请实施例提供的一种圆极化天线的使用场景示意图。
如图2所示,在卫星导航或通信系统中,相比于线极化天线,圆极化天线具有一些独特的优势, 例如,由于线极化波经过电离层时会发生极化旋转现象(一般称作“法拉第旋转”),而圆极化波由于具有旋转对称性可以抵抗法拉第旋转,因此在卫星导航或通信上一般均采用圆极化天线作为发射或接收天线。同时,在卫星导航或通信系统中,如果采用传统的线极化天线接收卫星发过来的圆极化波,由于极化失配会损失一半能量。并且,圆极化天线对收发天线的朝向不敏感。
例如,卫星导航或通信系统可以是北斗卫星系统,北斗卫星系统的工作频段可以包括L频段(1610MHz至1626.5MHz),S频段(2483.5MHz至2500MHz),B1(1559Hz至1591MHz)频段,B2(1166MHz至1217MHz)频段和B3(1250MHz至1286MHz)频段。
图3是本申请实施例提供的一种圆极化天线的示意图。
对于卫星电话来说,通常会采用外置的圆极化天线,具体天线结构如图7所示。外置的圆极化天线由四根辐射臂共同印制在介质圆筒的外壁组成,四根辐射臂采用圆极化馈电网络,四根辐射臂依次以[0°,90°,180°,270°]相位差进行馈电,从而实现宽波束的圆极化辐射方向图。
但是,对于电子设备(例如,图1所示的手机)来说,图7所示的外置的圆极化天线尺寸过大,无法实现天线在电子设备内置集成。并且,由于电子设备内需要设置多种电子元件,天线的净空一般很小(例如,天线的净空小于或等于2mm,或小于或等于1.5mm),很难预留大量空间用于实现天线的圆极化。
本申请实施例提供了一种电子设备,包括一种天线,利用电子设备的两部分边框分别作为天线中的主辐射体和寄生枝节,天线可以产生横向模式和纵向模式,从而实现圆极化。
图4是本申请实施例提供的一种电子设备100的结构示意图。
如图4所示,电子设备100可以包括导电边框11,天线110和地板120。
其中,边框11包括第一边框105和第二边框106。在一个实施例中,边框11可以具有第一位置101和第二位置102,以及第三位置103和第四位置104。第一位置101和第二位置102之间的边框为第一边框105,第三位置103和第四位置104之间的边框为第二边框106。
地板110的长度L1和宽度L2的比值可以大于或等于1.5。第一边框105和第二边框106可以通过地板120接地。
应理解,地板110的长度L1和宽度L2可以由电子设备100内可以作为地板的金属部分所叠加形成的轮廓确定。例如,当电子设备为图1所示的手机时,地板110的长度L1和宽度L2可以由中框和PCB以及其他可以作为地板的金属部分整体来看的边缘所形成的矩形轮廓的长宽为准。在一个实施例中,基于电子设备内部的紧凑性,通常在距离边框内表面的0-2mm的内部空间均设置有地板(例如,中框、PCB、电池等均可以看作地板的一部分),而边框和地板之间填充介质,可以将填充介质的内表面轮廓,所包围形成的矩形的长和宽看作是地板的长和宽。
天线110可以包括第一边框105和第二边框106。由第一边框105和第二边框106分别作为天线110的主辐射体(包括馈电点)和寄生枝节。应理解,边框(例如,第一边框105和第二边框106)可以是导电边框,或者可以具有导电贴片(内表面设置或者内嵌设置)的非导电边框,则第一边框105和第二边框106的导电部分分别作为天线110的主辐射体和寄生枝节。天线110的工作频段可以包括第一频段,天线100在第一频段的圆极化轴比小于或等于10dB。在一个实施例中,主辐射体(例如,第一边框105或第二边框106)用于产生第一频段的第一谐振。在一个实施例中,寄生枝节主要用于使天线100在第一频段的圆极化轴比小于或等于10dB,若将寄生枝节移除或短路,主辐射体仍可以产生上述第一频段的第一谐振,但是天线100在第一频段的圆极化轴比将大于10dB。第一边框105和第二边框106之间的距离满足:0.5λ≤L≤1.5λ,λ为第一频段对应的第一波长。
应理解,第一边框105和第二边框106之间的距离可以理解为第一边框105的中心与第二边框106的中心之间的距离。第一边框105的中心可以理解为第一边框105的几何中心,或者,也可以理解为第一边框105的电长度的中心,第二边框106的中点也可以相应理解。第一波长可以理解为第一频段的中心频率对应的波长(例如,真空波长),或者,也可以理解为天线110在第一频段内的谐振点对应的波长(例如,真空波长)。
应理解,在本申请实施例提供的技术方案中,利用第一边框105和第二边框106分别作为天线110的主辐射体(包括馈电点)和寄生枝节,产生两个正交的极化分量。同时,利用第一边框105和第二边框106的相对位置,使第一边框105和第二边框106产生的辐射具有约90°(90°±30°)的相位差, 从而使天线110呈圆极化特性。
第一边框105的电长度D1和第二边框106的电长度D2满足:D2×80%≤D1≤D2×120%。当第一边框105和第二边框106的电长度大致相等时,第一边框105和第二边框106产生的谐振频段均包括第一频段。因此,在第一频段,可以使第一边框105和第二边框106产生的辐射具有约90°的相位差,从而使天线110呈圆极化特性。在一个实施例中,约90°的相位差可以理解为范围在90°±30°以内的相位差,例如,相位差为90°±10°。
应理解,第一边框105的电长度D1和第二边框106的电长度D2可以通过电子元件调整。例如,当电子设备内的布局空间较为紧张时,可以缩减第一边框105或第二边框106的物理长度,通过设置与第一边框105或第二边框106电连接的电子元件(例如,电容或电感),使第一边框105的电长度D1和第二边框106的电长度D2满足上述条件。
同时,第一边框105的电长度D1和第二边框106的电长度D2满足:D2×80%≤D1≤D2×120%,可以理解为,如若为第一边框105和第二边框106馈入同一射频信号时,其所产生的谐振中心频率之间将满足:f2×80%≤f1≤f2×120%,其中,f1为第一边框105产生的谐振中心频率,f2为第二边框106产生的谐振中心频率。
在一个实施例中,第一边框105的电长度D1和第二边框106的电长度D2满足:D2×90%≤D1≤D2×110%。随着第一边框105的电长度D1和第二边框106的电长度D2逐渐靠近,天线110的圆极化特性逐渐优化。
在一个实施例中,地板120的长度L1和宽度L2的比值小于或等于3。
在一个实施例中,边框11包括呈角相交的第一边131和第二边132,第一边131的长度大于第二边132的长度,第一边131与地板120的长边对应设置,第二边132与地板120的短边对应。第一边框105可以位于第一边131,第二边框106可以位于第二边132。
应理解,第一边131与第二边可以具有重叠区域,其中,重叠区域可以理解为第一边131和第二边132的相交区域。在一个实施例中,第一边131的长度可以理解为其在X方向上延伸的长度,或电子设备的长度;第二边132的长度可以理解为其在Y方向上延伸的长度,或电子设备的宽度。当电子设备为可折叠的设备时,可以理解为在电子设备展开状态下的长度和宽度。当边框的第一边131和第二边132的交界处为弧形时,弧形的边框可以理解为第一边131和第二边132的重叠区域/相交区域。
在一个实施例中,第一边框105在第一位置101接地,第二边框106在第三位置103接地。边框11在第二位置102设置第一缝隙107,在第四位置104设置第二缝隙108。
应理解,在本申请实施例中,在接地位置(例如,上述的第一位置101以及第三位置103),第一边框105以及第二边框106与边框的其他部分连续,实际也可以与其他边框之间设有缝隙。对于非导电边框,导电贴片可以仅包括图4所示的用于作为辐射体和寄生辐射体的部分,也可以连续或者非连续的设于其他导电贴片附近。
在一个实施例中,第一边框105包括馈电点141,馈电点141用于馈入电信号。馈电点141可以设置于靠近第一位置101(接地点)(例如,馈电点141设置于第一边框105的中心和第一位置101之间),以形成倒置的F型天线(inverted F antenna,IFA)。或者,馈电点141可以设置于靠近第二位置102(第一缝隙)(例如,馈电点141设置于第一边框105的中心和第二位置102之间),并且串联小于1pF的电容,以形成左手天线(composite right and left hand,CRLH)。
应理解,为了论述简洁,本申请仅以第一边框105形成IFA为例进行说明。在实际的应用中,第一边框105可以形成其他天线结构,例如,T型天线(第一位置101和第二位置102均设置缝隙),缝隙天线(第一位置101和第二位置102均接地)或其他结构天线。
同时,第一边框105形成的天线结构可以和第二边框106形成的天线结构可以相同,或者不同。例如,第一边框105可以形成IFA,第二边框106可以形成缝隙天线,本申请对此并不做限制。
当第一边框馈入电信号时,其产生的能流(坡印亭矢量)具有沿y轴方向的分量(电流方向与能流方向垂直,为x方向),以该能流分布理解为天线产生的纵向模式,如图5中的(a)所示。当第二边框馈入电信号时,其产生的能流具有沿x轴方向的分量(电流方向与能流方向垂直,为y方向),以该能流分布理解为天线产生的横向模式,如图5中的(b)所示。当第一边框或第二边框设置于第一边和第二边的相交区域(例如,第一边和第二边的重叠区域)时,其产生的能流(坡印亭矢量)同时 具有沿x轴方向和y轴方向的分量,天线可以同时产生横向模式和纵向模式,例如,当第一边框设置于相交区域(第一边框在第一边上的部分多于在第二边上的部分),其产生的能流(坡印亭矢量)如图5中的(c)所述,当第一边框设置于相交区域(第一边框在第二边上的部分多于在第一边上的部分),其产生的能流(坡印亭矢量)如图5中的(d)所示。
应理解,为了论述的简洁,本申请仅以第一边和第二边的交界处呈直角为例进行说明,第一边和第二边的相交区域可以理解为距离相交处在第一阈值(例如,5mm)以内的区域。并且,在实际的应用中第一边和第二边的交界处可以为弧形,因此,第一边和第二边的相交区域可以理解为第一边和第二边的重叠区域,本申请实施例对此并不做限制。
当第一边框馈入电信号时,第一边框可以作为主辐射体,天线可以产生纵向模式,地板上的电流方向为第一方向。第二边框可以作为寄生枝节,由地板间接耦合到能量,可以产生横向模式,地板上的电流方向为第一方向,第一方向与第二方向垂直。因此,天线可以同时产生纵向模式和横向模式,具有沿x轴方向和y轴方向的分量。在一个周期的0时刻,地板上的电流分布如图6中的(a)所示,呈逆时针分布。在一个周期的四分之一(T/4,T为一个电流周期的时间)时刻内,地板上的电流分布如图6中的(b)所示,呈顺时针分布。在这种情况下,天线呈左旋圆极化,其产生的方向图如图7所示,主要辐射方向为z轴方向,指向电子设备的屏幕一侧。在一个周期的四分之一(T/4,T为一个电流周期的时间)时刻内,地板上的电流分布呈逆时针分布,天线呈右旋圆极化。
在一个实施例中,如图8所示,保持开设缝隙的位置(例如,在第二位置开设的第一缝隙)不变,可以通过调整辐射体的接地位置(例如,第一位置)和开设缝隙的位置(例如,在第二位置开设的第一缝隙)之间的相对位置关系控制辐射体在地板上产生的电流的方向。
例如,当接地位置(第一位置)和第一缝隙(第二位置)之间的位置如图8中的(a)所示(接地位置位于第一缝隙下方(x轴正向))时,在0时刻,其产生的电流沿x轴的正向方向。当调整接地位置(第一位置)和第一缝隙(第二位置)之间的位置如图8中的(b)所示(接地位置位于第一缝隙上方(x轴负向))时,在0时刻,其产生的电流沿x轴的负向方向。在同一时刻,第一边框产生的电流的方向通过控制接地位置(第一位置)和第一缝隙(第二位置)之间的相对位置,可以调整第一边框在地板上产生的电流的方向。
在一个实施例中,如图9所示,保持接地位置(例如,第一位置)不变,可以通过调整辐射体的开设缝隙的位置(例如,在第二位置开设的第一缝隙)之间的相对位置关系控制辐射体在地板上产生的电流的方向。
例如,当馈电位置和第一缝隙(第二位置)之间的位置如图9中的(a)所示(第一缝隙位于接地位置下方(x轴正向))时,在0时刻,其产生的电流沿x轴的负向方向。当调整馈电位置和第一缝隙(第二位置)之间的位置如图9中的(b)所示(第一缝隙位于接地位置上方(x轴负向))时,在0时刻,其产生的电流沿x轴的正向方向。在同一时刻,第一边框产生的电流的方向通过控制馈电位置和第一缝隙(第二位置)之间的相对位置,可以调整第一边框在地板上产生的电流的方向。
因此,通过上述关系,可以通过控制接地位置和开设缝隙的位置之间的相对位置,调整第一边框在地板上产生的电流的方向,从而控制天线产生的圆极化的旋向。
通过控制接地位置和开设缝隙的位置之间的相对位置,在一个周期的0时刻,地板上的电流分布如图10中的(a)所示,呈顺时针分布。在一个周期的四分之一(T/4,T为一个电流周期的时间)时刻,地板上的电流分布如图10中的(b)所示,呈逆时针分布。在这种情况下,天线呈右旋圆极化,其产生的方向图如图11所示,主要辐射方向为z轴方向,指向电子设备的屏幕一侧。
在一个实施例中,第一缝隙107可以设置于第一边131靠近第二边132的位置,例如,可以设置于第一边131的第一端与第一边131的中点之间,第一边131的第一端为第一边131靠近第二边132的一端。
在一个实施例中,第一缝隙107和第一边131的中点之间的距离L3大于或等于5mm且小于或等于45mm,第一缝隙107在该位置,天线110可以具有更好的圆极化特性。应理解,第一缝隙107和第一边131的中点之间的距离L3可以理解为形成第一缝隙107的边框边缘与第一边131的中点之间的距离,例如靠近第一边131的中点的缝隙边缘与中点的距离为L3。
应理解,第一缝隙107和第一边131的中点之间的距离L3可以理解为第一缝隙107的中点和第一 边131的中点之间的距离。在下文中与第一缝隙107或第二缝隙108之间的距离也可以相应理解。
图12是图4所示电子设备中天线110的轴比方向图。
如图12中的(a)所示,为L3=45mm时的轴比方向图。如图12中的(b)所示,为L3=5mm时的轴比方向图。如图12中的(c)所示,为L3介于5mm至45mm之间时的轴比方向图。
如上图所示,天线产生的轴比方向图在z方向(电子设备的屏幕方向)出现轴比凹坑,在该区域可以满足圆极化的轴比要求(例如,轴比<10dB),天线呈现圆极化特性。
图13至图15是图4所示电子设备中天线110的方向图。其中,图13是图4所示电子设备中天线110产生的增益方向图。图14是本申请实施例提供的极化正交的示意图。图15是图4所示电子设备中天线110产生的左旋圆极化的增益方向图。
如图13所示,天线的最大辐射方向为z方向,其最大增益值为3dBi。
应理解,如图14所示,在三维空间中任何一个点P,以原点O为圆心,原点O到P点的距离为半径做圆。theta极化是沿P点所处圆的经线的切线方向的极化。phi极化是沿P点所处圆的纬线的切线方向的极化。abs极化就是theta极化和的phi极化合成,abs是总极化,theta极化和phi极化是它的两个极化分量。
天线的增益方向图可以理解为由左旋圆极化的增益方向图和右旋圆极化的增益方向图合成所得。
如图15所示,在天线产生的左旋圆极化的增益方向图中,其最大辐射方向为z方向,其最大增益值为2.6dBic。
图16是本申请实施例提供的另一种电子设备100的结构示意图。
如图16所示,电子设备100中天线110与图4所示的天线110的区别仅在于天线10中馈电点141,第三位置103和第四位置104的位置不同。
其中,在图4所示的天线110中,馈电点141设置在位于第一边131的第一边框105上,由第一边框105作为主辐射体,由位于第二边132的第二边框106作为寄生枝节。在图16所示的天线110中,馈电点141设置在位于第二边132的第二边框106,由第二边框106作为主辐射体,由位于第一边131的第一边框105作为寄生枝节。天线110的工作频段可以包括第一频段,天线100在第一频段的圆极化轴比小于或等于10dB。在一个实施例中,主辐射体(例如,第一边框105)用于产生第一频段的第一谐振。在一个实施例中,寄生枝节(例如,第二边框106)主要用于使天线100在第一频段的圆极化轴比小于或等于10dB,若将寄生枝节移除或短路,主辐射体仍可以产生上述第一频段的第一谐振,但是天线100在第一频段的圆极化轴比将大于10dB。
由于调整的天线110中的主辐射体和寄生枝节的相对位置,因此,为了保证天线110的极化方式呈左旋圆极化,可以调整第三位置103(接地位置)和第四位置104(第二缝隙)的相对位置,以使天线110的极化方式呈左旋圆极化。
在一个实施例中,寄生枝节的接地位置(第一位置101)和第一缝隙(第二位置102)之间的位置关系可以根据电子设备内的空间布局进行调整,例如,接地位置可以位于第一缝隙的上方(x轴负向),本申请对此并不做限制。寄生枝节的接地位置以及开设缝隙的相对位置并不对天线的圆极化中的旋向产生影响。应理解,天线的圆极化的旋向可以根据在一个周期的四分之一时刻内,地板上的电流分布确定。
在一个实施例中,边框11包括与第一边131呈角相交的第三边133。第一缝隙107位于第一边131的中点与第一边131的第一端之间,第一边131的第一端为第一边131靠近第二边132的一端,第一缝隙107与第一边131的中点之间的距离L3小于或等于20mm。或者,第一缝隙107位于第一边131的中点与第一边131的第二端之间,第一边131的第二端为第一边131靠近第三边133的一端,第一缝隙107与第一边131的中点之间的距离L3小于或等于10mm。应理解,第一缝隙107在该位置,天线110可以具有更好的圆极化特性。
图17是图16所示电子设备中天线110的轴比方向图。
如图17中的(a)所示,为第一缝隙107位于第一边131的中点与第一边131的第一端之间,L3=20mm时的轴比方向图。如图17中的(b)所示,为第一缝隙107位于第一边131的中点与第一边131的第二端之间,L3=10mm时的轴比方向图。如图17中的(c)所示,为第一缝隙介于上述两个位置之间圆极化性能最优(例如,第一缝隙位于第一边131的中点)时的轴比方向图。
如上图所示,天线产生的轴比方向图在z方向(电子设备的屏幕方向)出现轴比凹坑,在该区域可以满足圆极化的轴比要求(例如,轴比<10dB),天线呈现圆极化特性。
图18和图19是图16所示电子设备中天线110的方向图。其中,图18是图16所示电子设备中天线110产生的增益方向图。图19是图16所示电子设备中天线110产生的增益方向图中的左旋圆极化的增益方向图。
如图18所示,天线的最大辐射方向为z方向,其最大增益值为3.4dBi。
如图19所示,在天线产生的左旋圆极化的增益方向图中,其最大辐射方向为z方向,其最大增益值为2.8dBic。
图20是本申请实施例提供的另一种电子设备100的结构示意图。
如图20所示,电子设备100中天线110与图4所示的天线110的区别仅在于第一边框105和第二边框106的位置不同。第一边框105和第二边框106可以均位于第一边131,第一位置103可以位于第一边131和第二边132的相交区域,使第一边框105馈入电信号时,可以同时产生横向模式和纵向模式。利用第一边框105产生的横向模式(在地板上产生沿第一方向的电流)和第二边框106产生的纵向模式(在地板上产生沿第二方向的电流,第一方向和第二方向垂直),从而使天线110的极化方式为圆极化。
在一个实施例中,第二缝隙108可以位于第一边131的中点与第二位置102之间。
在一个实施例中,第二缝隙108与第一边131的中点之间的距离小于或等于35mm。应理解,第二缝隙108在该位置,天线110可以具有更好的圆极化特性。
天线110的工作频段可以包括第一频段,天线100在第一频段的圆极化轴比小于或等于10dB。在一个实施例中,主辐射体(例如,第一边框105)用于产生第一频段的第一谐振。在一个实施例中,寄生枝节(例如,第二边框106)主要用于使天线100在第一频段的圆极化轴比小于或等于10dB,若将寄生枝节移除或短路,主辐射体仍可以产生上述第一频段的第一谐振,但是天线100在第一频段的圆极化轴比将大于10dB。
应理解,当第一频段为低频时,第一边框105和第二边框106之间的距离L满足:0.5λ≤L≤1.5λ,λ为所述第一频段对应的第一波长,第二位置102和第四位置104之间的边框11可能不存在,第一缝隙107和第二缝隙108可以为同一个缝隙。
图21是图20所示电子设备中天线110的轴比方向图。
如图21中的(a)所示,为L3=0mm时的轴比方向图。如图21中的(b)所示,为L3=35mm时的轴比方向图。如图21中的(c)所示,为L3介于5mm至45mm之间圆极化性能最优(例如,L3=17.5mm)时的轴比方向图。
如上图所示,天线产生的轴比方向图在z方向(电子设备的屏幕方向)出现轴比凹坑,在该区域可以满足圆极化的轴比要求(例如,轴比<10dB),天线呈现圆极化特性。
图22和图23是图20所示电子设备中天线110的方向图。其中,图22是图20所示电子设备中天线110产生的增益方向图。图23是图20所示电子设备中天线110产生的左旋圆极化的增益方向图。
如图22所示,天线的最大辐射方向为z方向,其最大增益值为3.6dBi。
如图23所示,在天线产生的左旋圆极化的增益方向图中,其最大辐射方向为z方向,其最大增益值为2.7dBic。
图24是本申请实施例提供的另一种电子设备100的结构示意图。
如图24所示,电子设备100中天线110与图20所示的天线110的区别仅在于天线10中馈电点141的位置不同。
其中,在图20所示的天线110中,馈电点141设置在位于第一边框105上,由第一边框105作为主辐射体,由第二边框106作为寄生枝节。在图24所示的天线110中,馈电点141设置在位于第二边框106,由第二边框106作为主辐射体,由第一边框105作为寄生枝节。
在一个实施例中,第二缝隙108可以位于第一边131的中点与第二位置102之间。
在一个实施例中,第二缝隙108与第一边131的中点之间的距离小于或等于35mm。
图25至图27是图24所示电子设备中天线110的方向图。其中,图25是图24所示电子设备中天线110的轴比方向图。图26是图24所示电子设备中天线110产生的增益方向图。图27是图24所示 电子设备中天线110产生的增益方向图中的左旋圆极化的增益方向图。
如图25所示,天线产生的轴比方向图在z方向(电子设备的屏幕方向)出现轴比凹坑,在该区域可以满足圆极化的轴比要求(例如,轴比<10dB),天线呈现圆极化特性。
如图26所示,天线的最大辐射方向为z方向,其最大增益值为3.5dBi。
如图27所示,在天线产生的左旋圆极化的增益方向图中,其最大辐射方向为z方向,其最大增益值为3.5dBic。
图28是本申请实施例提供的又一种电子设备100的结构示意图。
如图28所示,电子设备100可以包括导电边框11,天线110和地板120。
其中,边框11具有第一位置101和第二位置102,以及第三位置103和第四位置104,以及第五位置201和第六位置202。第一位置101和第二位置102之间的边框为第一边框105,第三位置103和第四位置104之间的边框为第二边框106,第五位置201和第六位置202之间的边框为第三边框109。
边框11包括分别与第二边132呈角相交的第一边131和第四边134,第一边131的长度和第四边134的长度大于第二边132的长度。第一边131和第四边134分别与地板120的两条长边对应设置,第二边132与地板120的短边对应。
天线110可以包括第一边框105,第二边框106和第三边框109。第一边框105可以位于第一边131,第二边框106可以位于第二边132,第三边框109可以位于第四边134。
第一边框105在第一位置101接地,在第二位置102设置第一缝隙107。第二边框106在第三位置103接地,在第四位置104设置第二缝隙108。第三边框109在第五位置201接地,在第六位置202设置第三缝隙203。
第一边框105包括第一馈电点141,第一馈电点141用于馈入电信号。第三边框109包括第二馈电点142,第二馈电点142用于馈入电信号。
应理解,图28所示的天线110与图4所示的天线110的区别仅在于增加了第三边框109,由设置在边框的相对(不相邻)的两条边上的第一边框105和第三边框109作为天线110的主辐射体。
图4所示的电子设备中天线的结构示意图如图29中的(a)所示,天线包括第一边框105和第二边框106,其极化形式为左旋圆极化。当第一边框105沿地板120对称后,天线的极化方向由左旋圆极化变为右旋圆极化,如图29中的(b)所示。通过调整第一边框中接地位置和缝隙位置之间的相对位置,可以将天线的极化方式由右旋圆极化变为左旋圆极化,如图29中的(c)所示。
因此,在图28所示的电子设备中,第一边框105和第三边框109作为天线110的主辐射体,可以复用第二边框106作为寄生枝节,形成左旋圆极化的天线单元。例如,第一天线单元可以包括第一边框105和第二边框106,第一边框可以作为主辐射体,第一天线单元可以产生纵向模式,第二边框可以作为寄生枝节,由地板间接耦合到能量,第一天线单元可以产生横向模式,从而使第一天线单元呈圆极化特性。第二天线单元可以包括第三边框109和第二边框106,也可以呈圆极化特性。通过调整第一边框105和第三边框109中接地位置和缝隙位置之间的相对位置,可以使第一天线单元和第二天线单元的旋向相同,例如,其极化方式均为左旋圆极化。
天线110包括呈左旋圆极化的第一天线单元和第二天线单元,天线110的极化特性相较于图4所示的天线110可以得到优化。
在一个实施例中,第一边框105的电长度D1和第三边框109的电长度D3满足:D3×80%≤D1≤D3×120%。当第一边框105和第三边框109的电长度大致相等时,第一边框105和第三边框109产生的谐振频段均包括第一频段,从而使天线110的圆极化特性在第一频段得到优化。
在一个实施例中,天线100在第一频段的圆极化轴比小于或等于10dB。主辐射体用于产生第一频段的第一谐振(例如,第一边框105用于产生第一频段的第一谐振,第三边框109用于产生第一频段的第二谐振)。在一个实施例中,寄生枝节(例如,第二边框106)主要用于使天线100在第一频段的圆极化轴比小于或等于10dB,若将寄生枝节移除或短路,主辐射体(例如,第一边框105和/或第三边框109)仍可以产生上述第一频段的第一谐振,但是天线100在第一频段的圆极化轴比将大于10dB。
在一个实施例中,第一边框105的电长度D1和第三边框109的电长度D3满足:D3×90%≤D1≤D3×110%。
在一个实施例中,第一缝隙107可以设置于第一边131靠近第二边132的位置,例如,可以设置 于第一边131的第一端与第一边131的中点之间,第一边131的第一端为第一边131靠近第二边132的一端。
在一个实施例中,第一缝隙107和第一边131的中点之间的距离L3大于或等于5mm且小于或等于45mm。
在一个实施例中,第三缝隙203可以设置于第四边134靠近第二边132的位置,例如,可以设置于第四边134的第一端与第四边134的中点之间,第四边134的第一端为第四边134靠近第二边132的一端。
在一个实施例中,第三缝隙203和第四边134的中点之间的距离L4大于或等于5mm且小于或等于45mm。
图30至图32是图28所示电子设备中天线110的方向图。其中,图30是图28所示电子设备中天线110的轴比方向图。图31是图28所示电子设备中天线110产生的左旋圆极化的增益方向图。图32是图28所示电子设备中天线110产生的左旋圆极化的增益的平面(yoz平面)方向图。
如图30所示,天线产生的轴比方向图在z方向(电子设备的屏幕方向)出现轴比凹坑,在该区域可以满足圆极化的轴比要求(例如,轴比<10dB),天线呈现圆极化特性。
如图31所示,在天线产生的左旋圆极化的增益方向图中,其最大辐射方向为z方向,其最大增益值为4.3dBic。
如图32所示,为Phi(与x轴所呈角度)=0°及90°时对应的yoz平面的左旋圆极化的增益方向图。由于在图28所示的天线中,采用多个天线单元的阵列结构,其圆极化特性较好,在不同平面内的方向图一致性较好。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的之间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种电子设备,其特征在于,包括:
    导电边框,所述边框包括第一边框和第二边框;
    天线,所述第一边框和所述第二边框作为所述天线的主辐射体和寄生枝节;
    地板,所述第一边框和所述第二边框通过所述地板接地;
    其中,所述地板的长度和宽度的比值大于或等于1.5;
    所述天线的工作频段包括第一频段,所述主辐射体和所述寄生枝节用于使所述天线在所述第一频段的圆极化轴比小于或等于10dB;
    所述第一边框和所述第二边框之间的距离L满足:0.5λ≤L≤1.5λ,λ为所述第一频段对应的第一波长;
    所述第一边框的电长度D1和所述第二边框的电长度D2满足:D2×80%≤D1≤D2×120%。
  2. 根据权利要求1所述的电子设备,其特征在于,
    所述边框包括呈角相交的第一边和第二边,所述第一边的长度大于所述第二边的长度;
    所述第一边具有第一位置和第二位置,所述第二边具有第三位置和第四位置,所述第一位置和所述第二位置之间的边框为第一边框,所述第三位置和所述第四位置之间的边框为第二边框;
    所述第一边框在所述第一位置接地;
    所述第二边框在所述第三位置接地;
    所述边框在所述第二位置设置第一缝隙,在所述第四位置设置第二缝隙。
  3. 根据权利要求2所述的电子设备,其特征在于,
    所述第一边框包括第一馈电点;
    所述第一缝隙位于所述第一边的中点与所述第一边的第一端之间,所述第一边的第一端为所述第一边靠近所述第二边的一端。
  4. 根据权利要求3所述的电子设备,其特征在于,
    所述第一缝隙与所述第一边的中点之间的距离大于或等于5mm且小于或等于45mm。
  5. 根据权利要求2至4中任一项所述的电子设备,其特征在于,
    所述边框包括与所述第二边呈角相交的第三边,所述第三边上具有第五位置和第六位置,所述第五位置和所述第六位置之间的边框为第三边框;
    所述第三边框作为所述天线的辐射体;
    所述第三边框在所述第五位置接地,所述边框在所述第六位置设置第三缝隙。
  6. 根据权利要求5所述的电子设备,其特征在于,
    所述第三边框包括第二馈电点;
    所述第三缝隙位于所述第三边的中点与所述第三边的第一端之间,所述第三边的第一端为所述第三边靠近所述第二边的一端。
  7. 根据权利要求6所述的电子设备,其特征在于,
    所述第三缝隙与所述第三边的中点之间的距离大于或等于5mm且小于或等于45mm。
  8. 根据权利要求2所述的电子设备,其特征在于,
    所述第二边框包括第一馈电点;
    所述边框包括与所述第一边呈角相交的第四边;
    所述第一缝隙位于所述第一边的中点与所述第一边的第一端之间,所述第一边的第一端为所述第一边靠近所述第二边的一端,所述第一缝隙与所述第一边的中点之间的距离小于或等于20mm,或者,
    所述第一缝隙位于所述第一边的中点与所述第一边的第二端之间,所述第一边的第二端为所述第一边靠近所述第四边的一端,所述第一缝隙与所述第一边的中点之间的距离小于或等于10mm。
  9. 根据权利要求1所述的电子设备,其特征在于,
    所述边框包括呈角相交的第一边和第二边,所述第一边的长度大于所述第二边的长度;
    所述第一边和所述第二边的相交区域包括第一位置,所述相交区域包括部分所述第一边和部分所 述第二边;
    所述第一边具有第二位置,第三位置和第四位置,所述第三位置位于所述第二位置和所述第四位置之间,所述第一位置和所述第二位置之间的边框为第一边框,所述第三位置和所述第四位置之间的边框为第二边框;
    所述第一边框在所述第一位置接地;
    所述第二边框在所述第三位置接地;
    所述边框在所述第二位置设置第一缝隙,在所述第四位置设置第二缝隙。
  10. 根据权利要求9所述的电子设备,其特征在于,
    所述第一边框包括第一馈电点;
    所述第二缝隙位于所述第一边的中点与所述第二位置之间。
  11. 根据权利要求10所述的电子设备,其特征在于,
    所述第二缝隙与所述第一边的中点之间的距离小于或等于35mm。
  12. 根据权利要求1至11中任一项所述的电子设备,其特征在于,
    所述第一边框用于在所述地板上产生沿第一方向的电流;
    所述第二边框用于在所述地板上产生沿第二方向的电流;
    所述第一方向和所述第二方向垂直。
  13. 根据权利要求1至12中任一项所述的电子设备,其特征在于,所述地板的长度和宽度的比值小于或等于3。
  14. 根据权利要求1至13中任一项所述的电子设备,其特征在于,所述天线的极化方式为左旋圆极化。
  15. 根据权利要求1至14中任一项所述的电子设备,其特征在于,所述第一边框的电长度D1和所述第二边框的电长度D2满足:D2×90%≤D1≤D2×110%。
  16. 根据权利要求1至15中任一项所述的电子设备,其特征在于,所述第一边框和所述第二边框在所述第一频段产生的辐射具有90°±30°的相位差。
  17. 根据权利要求1至15中任一项所述的电子设备,其特征在于,所述第一边框和所述第二边框在所述第一频段产生的辐射具有90°±10°的相位差。
PCT/CN2023/108854 2022-07-26 2023-07-24 一种电子设备 WO2024022281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210885621.7A CN117525829A (zh) 2022-07-26 2022-07-26 一种电子设备
CN202210885621.7 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024022281A1 true WO2024022281A1 (zh) 2024-02-01

Family

ID=89705435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108854 WO2024022281A1 (zh) 2022-07-26 2023-07-24 一种电子设备

Country Status (2)

Country Link
CN (1) CN117525829A (zh)
WO (1) WO2024022281A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056533A1 (en) * 2013-03-11 2016-02-25 Suunto Oy Coupled Antenna Structure and Methods
CN111478055A (zh) * 2020-05-28 2020-07-31 广东小天才科技有限公司 单频圆极化定位天线和可穿戴设备
CN112448162A (zh) * 2020-11-02 2021-03-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN212783791U (zh) * 2020-08-18 2021-03-23 安徽华米信息科技有限公司 圆极化天线结构及智能穿戴设备
CN113764864A (zh) * 2020-06-01 2021-12-07 千寻位置网络有限公司 包含天线装置的电子设备
CN113809525A (zh) * 2021-09-29 2021-12-17 维沃移动通信有限公司 电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056533A1 (en) * 2013-03-11 2016-02-25 Suunto Oy Coupled Antenna Structure and Methods
CN111478055A (zh) * 2020-05-28 2020-07-31 广东小天才科技有限公司 单频圆极化定位天线和可穿戴设备
CN113764864A (zh) * 2020-06-01 2021-12-07 千寻位置网络有限公司 包含天线装置的电子设备
CN212783791U (zh) * 2020-08-18 2021-03-23 安徽华米信息科技有限公司 圆极化天线结构及智能穿戴设备
CN112448162A (zh) * 2020-11-02 2021-03-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN113809525A (zh) * 2021-09-29 2021-12-17 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN117525829A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2021082988A1 (zh) 天线模组及电子设备
JP5919921B2 (ja) アンテナ装置及び電子装置
CN113013596B (zh) 天线装置、壳体及电子设备
WO2022083276A1 (zh) 天线阵列组件及电子设备
WO2019194805A1 (en) Patch antennas with excitation radiator feeds
TWI673910B (zh) 天線架構及通訊裝置
WO2023103945A1 (zh) 一种天线结构和电子设备
WO2024022281A1 (zh) 一种电子设备
CN113659309A (zh) 天线装置和电子设备
CN114389005B (zh) 一种电子设备
WO2024022297A1 (zh) 一种电子设备
WO2023221876A1 (zh) 一种电子设备
CN209496992U (zh) 终端
CN108400436B (zh) 天线模块
WO2018153283A1 (zh) 终端天线及终端
WO2023246690A1 (zh) 一种电子设备
CN116053760A (zh) 一种电子设备
WO2024082994A1 (zh) 天线、天线阵列和电子设备
WO2024046200A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
WO2023221877A1 (zh) 一种天线结构和电子设备
CN218498380U (zh) 缝隙天线和电子设备
WO2023155648A1 (zh) 一种天线结构和电子设备
WO2022143881A1 (zh) 天线及电子设备
WO2023174274A1 (zh) 一种可穿戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845491

Country of ref document: EP

Kind code of ref document: A1