WO2023155648A1 - 一种天线结构和电子设备 - Google Patents

一种天线结构和电子设备 Download PDF

Info

Publication number
WO2023155648A1
WO2023155648A1 PCT/CN2023/072298 CN2023072298W WO2023155648A1 WO 2023155648 A1 WO2023155648 A1 WO 2023155648A1 CN 2023072298 W CN2023072298 W CN 2023072298W WO 2023155648 A1 WO2023155648 A1 WO 2023155648A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
radiator
antenna structure
dielectric layer
dielectric
Prior art date
Application number
PCT/CN2023/072298
Other languages
English (en)
French (fr)
Inventor
侯猛
王汉阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023155648A1 publication Critical patent/WO2023155648A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present application relates to the field of wireless communication, and in particular to an antenna structure and electronic equipment.
  • Embodiments of the present application provide an antenna structure and an electronic device. Dielectrics with different electromagnetic parameters are arranged in different regions of the dielectric layer in the antenna structure, so as to realize miniaturization of the antenna structure.
  • an antenna structure including: a radiator, including a ground point; a floor, the radiator is grounded at the ground point through the floor; a conductive frame, the frame has a first position and The second position, wherein, the frame between the first position and the second position serves as at least a part of the radiator; and a dielectric layer, located between the radiator and the floor; wherein, the The dielectric layer includes a first medium and a second medium, wherein, at the ground point, the dielectric layer between the radiator and the floor includes the first medium; the relative magnetic properties of the first medium The conductivity is greater than 1, and the relative permittivity of the second medium is greater than 1.
  • its grounding point is generally a point with a large current, corresponding to a zero point of an electric field or a point of a strong magnetic field.
  • the dielectric layer at the ground point is provided with a first medium with a relative permeability greater than 1, so that the magnetic field can be loaded in the magnetic field strength region, and the electric field can be loaded with the second medium with a relative permittivity greater than 1, so that it can be The same magnetic and electric fields are generated at a smaller size to achieve miniaturization of the antenna structure.
  • the radiator further includes a feed point; the frame further has a third position, and the third position is set between the first position and the Between the second positions; the radiator is separated from other parts of the frame by a gap at the second position; the grounding point is set at the first position, and the feeding point is set at the second position between a position and said third position; between said first position and said third position; Between the radiator and the floor, the medium layer is a first medium layer, and the first medium layer includes the first medium; between the second position and the third position, The medium layer between the radiator and the floor is a second medium layer, and the second medium layer includes the second medium.
  • the magnetic field strength region (the region where the magnetic field is greater than the electric field) generated by the antenna structure is close to the first position
  • the electric field strength region (the region where the electric field is greater than the magnetic field) generated by the antenna structure is close to second position.
  • the distance L1 between the center between the first position and the second position and the third position is the same as the distance L1 between the first position and the second position
  • the distance L between the second positions satisfies: L1 ⁇ L ⁇ 25%.
  • the electric field may be equal to the magnetic field. It should be understood that in practical applications, the third position may also be close to the first position or the second position as required, and is not necessarily set at a place where the electric field is equal to the magnetic field. It should be understood that as the third position approaches the central position between the first position and the second position, the electric field and the magnetic field generated by the antenna structure can be loaded with greater force, further realizing the miniaturization of the antenna structure.
  • the radiator further includes a feed point; the frame further has a third position and a fourth position, and the third position is set between the first position and the fourth position. Between the second positions, the fourth position is set between the second position and the third position; the grounding point and the feeding point are set between the third position and the Between the fourth position; the radiator is separated from other parts of the frame by gaps at the first position and the second position; between the third position and the fourth position , the medium layer between the radiator and the floor is a first medium layer, and the first medium layer includes the first medium; between the first position and the third position and the Between the second position and the fourth position, the medium layer between the radiator and the floor is a second medium layer, and the second medium layer includes the second medium.
  • the antenna structure when the antenna structure includes a T-shaped antenna, the antenna structure produces two electric field strength regions (regions where the electric field is greater than the magnetic field) respectively close to the first position and the second position, and the magnetic field strength regions produced by the antenna structure (The area where the magnetic field is greater than the electric field) is located between two areas of electric field strength.
  • the radiator further includes a feed point; the ground point includes a first ground point and a second ground point, and the first ground point is set at the first ground point. a position, the second grounding point is set at the second position; the frame also has a third position and a fourth position, and the third position is set between the first position and the second position , the fourth position is set between the second position and the third position; the feed point is set between the first position and the third position; between the first position and the third position between the first position and the third position.
  • the dielectric layer between the radiator and the floor is a first dielectric layer, and the first dielectric layer includes the first dielectric layer.
  • a medium; between the third position and the fourth position, the medium layer between the radiator and the floor is a second medium layer, and the second medium layer includes the second medium .
  • the antenna structure when the antenna structure includes a slot antenna, the antenna structure generates two strong magnetic field regions (regions where the magnetic field is greater than the electric field) respectively close to the first position and the second position, and the electric field strength region generated by the antenna structure ( The region where the electric field is greater than the magnetic field) lies between two regions of strong magnetic field.
  • the distance L1 between the third position and the fourth position is the same as the distance L between the first position and the second position Satisfy, (50%-10%) ⁇ L ⁇ L1 ⁇ (50%+10%) ⁇ L.
  • the distance between the first position and the second position The distance L2 between the center and the third position satisfies, (25%-5%) ⁇ L ⁇ L2 ⁇ (25%+5%) ⁇ L; and/or, between the first position and the second position
  • the distance L3 between the center and the fourth position satisfies (25%-5%) ⁇ L ⁇ L3 ⁇ (25%+5%) ⁇ L.
  • the electric field may be equal to the magnetic field. It should be understood that in practical applications, the third position and the fourth position may also be close to the first position or the second position as required, and are not necessarily set at a place where the electric field is equal to the magnetic field. It should be understood that as the third position 203 approaches the first position 201 at a distance of L, and the fourth position 204 approaches the second position 202 at a distance of L, the electric field and magnetic field generated by the antenna structure can obtain greater loading, further Miniaturization of the antenna structure is realized.
  • the distance between the first position and the third position is the same as the distance between the second position and the fourth position.
  • the more symmetrical the antenna structure the better its radiation characteristics.
  • the relative permeability of the first medium is between 2 and 5; and/or, the relative permittivity of the second medium is between Between 2 and 5.
  • the electrical loss caused by the second medium and the magnetic loss of the first medium will increase synchronously, Affects the radiation performance of the antenna structure. Therefore, it is necessary to control the relative permittivity of the second medium and the relative permeability of the first medium within an appropriate range.
  • the length of the first medium layer is greater than the length of the second medium layer; when the value of the relative permeability of the first medium is smaller than the value of the relative permittivity of the second medium, in the In the extending direction of the frame, the length of the first dielectric layer is smaller than the length of the second dielectric layer.
  • the value of the relative permeability of the first medium is different from the value of the relative permittivity of the second medium
  • the value of the relative permeability of the first medium is different from that of the second medium.
  • Higher values of the relative permittivity correspond to larger lengths of regions.
  • the relative permittivity of the medium in the first medium layer is greater than 1; the relative permeability of the medium in the second medium layer is equal to 1.
  • the relative magnetic permeability of the medium in the second medium layer is greater than 1.
  • an antenna structure including: a dielectric layer; a radiator, the radiator is disposed on the surface of the dielectric layer; wherein the radiator includes at least two first regions and at least one second region , any two adjacent first regions are separated by one second region; the radiator includes a feed point, and the feed point is set in the first region;
  • the dielectric layer at the at least one first region includes a first medium;
  • the dielectric layer at least one of the second regions in the second region includes a second medium, the relative permittivity of the first medium is greater than 1 and the relative magnetic The permeability is equal to 1, and the relative magnetic permeability of the second medium is greater than 1.
  • each of the dielectric layers at the second region includes the second, and each of the dielectric layers at the first region includes the first one.
  • the radiator is a sheet or linear radiator
  • the antenna structure further includes a floor
  • the dielectric layer is arranged between the radiator and the radiator. between the floors.
  • the area of the dielectric layer corresponding to the second area includes the distribution of electric field zero points of the antenna structure between the radiator and the floor area.
  • the relative permeability of the second medium is between 2 and 5; and/or, the relative permittivity of the first medium is between Between 2 and 5.
  • the antenna structure includes a plurality of radiators, and the plurality of radiators are distributed in an array.
  • the area of the second region when the value of the relative permeability of the second medium is greater than the value of the relative permittivity of the first medium, the area of the second region greater than the area of the first region; when the value of the relative permeability of the second medium is less than the value of the relative permittivity of the first medium, the area of the second region is smaller than that of the first region area.
  • an electronic device including the antenna structure according to any one of the second aspect.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an equivalent magnetic current distribution of a patch antenna provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a patch antenna provided by an embodiment of the present application.
  • FIG. 4 is a schematic perspective view of the antenna structure 100 provided by the embodiment of the present application.
  • Fig. 5 is a top view of the antenna structure provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a radiator of the antenna structure 100 provided by the embodiment of the present application.
  • Fig. 7 is the antenna structure of the control group provided by the embodiment of the present application.
  • Fig. 8 is the S-parameter simulation result of the antenna structure shown in Fig. 5 and Fig. 7 .
  • FIG. 9 is a simulation result of the radiation efficiency of the antenna structure shown in FIG. 5 and FIG. 7 .
  • Fig. 10 is a schematic diagram of an antenna structure working in TM10 mode.
  • Fig. 11 is a schematic diagram of an antenna structure working in TM11 mode.
  • Fig. 12 is a schematic diagram of an antenna structure working in TM12 mode.
  • Fig. 13 is a schematic diagram of an antenna structure working in TM02 mode.
  • Fig. 14 is a schematic diagram of an antenna structure working in TM20 mode.
  • Fig. 15 is a schematic diagram of an antenna structure working in TM21 mode.
  • Fig. 16 is a schematic diagram of an antenna structure working in TM22 mode.
  • Fig. 17 is a schematic structural diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an antenna structure 200 provided by an embodiment of the present application.
  • Fig. 19 is the S-parameter simulation result of the antenna structure shown in Fig. 18 .
  • FIG. 20 is a schematic structural diagram of another antenna structure 200 provided by an embodiment of the present application.
  • Fig. 21 is the S-parameter simulation result of the antenna structure shown in Fig. 20 .
  • FIG. 22 is a schematic structural diagram of another antenna structure 200 provided by an embodiment of the present application.
  • Fig. 23 is the S-parameter simulation result of the antenna structure shown in Fig. 22 .
  • Coupling It can be understood as direct coupling and/or indirect coupling, and "coupling connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the connection between different components in the circuit structure through printed circuit board (PCB) copper foil or conductors.
  • PCB printed circuit board
  • indirect coupling can be understood as the electrical conduction of two conductors through a spaced/non-contact method.
  • the indirect coupling may also be called capacitive coupling, for example, the equivalent capacitance is formed through the coupling between the gaps between two conductive elements to realize signal transmission.
  • Connection/connection it can refer to a mechanical connection or a physical connection, for example, the connection between A and B or the connection between A and B can mean that there are fastening components (such as screws, bolts, rivets, etc.) between A and B, Or A and B are in contact with each other and A and B are difficult to be separated.
  • fastening components such as screws, bolts, rivets, etc.
  • Relative/relative setting The relative setting of A and B can refer to the setting of A and B face to face (opposite to, or face to face).
  • Lumped capacitance refers to capacitive components, such as capacitive elements; distributed capacitance (or distributed capacitance) refers to the equivalent capacitance formed by two conductive parts separated by a certain gap.
  • Resonance frequency is also called resonance frequency.
  • the resonant frequency may refer to the frequency at which the imaginary part of the input impedance of the antenna is zero.
  • the resonance frequency may have a frequency range, ie, a frequency range in which resonance occurs.
  • the frequency corresponding to the strongest resonance point is the center frequency point frequency.
  • the return loss characteristic of the center frequency can be less than -20dB.
  • Resonant frequency band/communication frequency band/working frequency band No matter what type of antenna, it always works within a certain frequency range (frequency band width).
  • the working frequency band of the antenna supporting the B40 frequency band includes frequencies in the range of 2300 MHz to 2400 MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
  • the frequency range that meets the requirements of the index can be regarded as the working frequency band of the antenna.
  • Electrical length It can refer to the ratio of the physical length (ie mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave, and the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the physical length of the radiator may be understood as ⁇ 25% of the electrical length of the radiator.
  • the physical length of the radiator may be understood as ⁇ 10% of the electrical length of the radiator.
  • Wavelength or working wavelength, which can be the wavelength corresponding to the central frequency of the resonance frequency or the central frequency of the working frequency band supported by the antenna.
  • the working wavelength can be the wavelength calculated by using the frequency of 1955MHz.
  • the "operating wavelength” may also refer to the resonant frequency or the wavelength corresponding to the non-central frequency of the operating frequency band.
  • the middle (position) of the conductor may refer to a section of conductor including the midpoint on the conductor, and may be a section of one-eighth wavelength of the conductor including the midpoint of the conductor, wherein the wavelength may be corresponding to the working frequency band of the antenna.
  • the wavelength may be the wavelength corresponding to the center frequency of the working frequency band, or the wavelength corresponding to the resonance point.
  • the middle (position) of the conductor may refer to a portion of the conductor that is less than a predetermined threshold (for example, 1mm, 2mm, or 2.5mm) from the midpoint on the conductor.
  • Definitions such as collinear, coaxial, coplanar, symmetrical (for example, axisymmetric, or centrosymmetric, etc.), parallel, perpendicular, and identical (for example, the same length, same width, etc.) mentioned in the embodiments of the present application are for the current technological level, rather than an absolutely strict definition in the mathematical sense. There may be a deviation smaller than a predetermined threshold (for example, 1 mm, 0.5 m, or 0.1 mm) in the line width direction between two collinear radiation stubs or edges of two antenna elements.
  • a predetermined threshold for example, 1 mm, 0.5 m, or 0.1 mm
  • a deviation smaller than a predetermined threshold for example, 1mm, 0.5m, or 0.1mm
  • a predetermined angle eg, ⁇ 5°, ⁇ 10°
  • Dielectric Refers to a medium that can be electrically polarized. In a specific frequency band, the conduction current density sub-vector value in a given direction of the time-varying electric field is much smaller than the displacement current density sub-vector value in this direction. In the embodiments of the present application, it can be simply understood that a dielectric is a medium with a relative permittivity greater than 1 and a relative permeability equal to 1.
  • Magnetic medium Due to the interaction between the magnetic field and things, the physical substance is in a special state, thereby changing the distribution of the original magnetic field. Under the action of this magnetic field, its internal state changes, which in turn affects the existence or repair of the magnetic field The substance becomes a magnetic medium.
  • the magnetic medium can be simply understood as a medium with a relative permeability greater than 1 and a relative permittivity equal to 1.
  • Magnetodielectric A medium that has both dielectric and magnetic properties. In the embodiments of the present application, it can be simply understood that a magnetodielectric medium is a medium with a relative permittivity and a relative permeability greater than 1.
  • the magnetodielectric medium has both the properties of a part of the magnetic medium and the properties of a part of the dielectric
  • the magnetic medium in the embodiment of the present application can be realized by a magnetodielectric medium, and the magnetic medium can be selected according to actual production or design requirements. Relative permittivity and relative permeability values.
  • the parallel plate resonance method post resonator method
  • the closed cavity resonance method or closed cavity resonance method
  • Type resonator method closed cavity resonator method, or, shielded cavity method
  • other resonance method dielectric resonator techniques
  • the parallel plate resonance method is to place the sample to be measured in an open cavity formed by two parallel metal plates, use a vector network analyzer to electrically connect the input and output ports of the cavity, and change the input signal of the input port
  • the frequency makes the cavity resonate (minimum impedance) at a certain frequency, so as to determine the electrical parameters (relative permittivity or relative permeability) of the sample by calculation.
  • the parallel plate resonance method can be, for example, the Hakki Coleman method.
  • the closed-cavity resonance method is to place the sample to be measured in a closed cavity (for example, a cylindrical cavity), change the frequency of the input signal at the input port, and make the cavity resonate at a certain frequency (minimum impedance), thereby calculating
  • the electrical parameters (relative permittivity or relative permeability) of the sample are determined.
  • Antenna system efficiency refers to the ratio of input power to output power at the port of the antenna.
  • Antenna radiation efficiency refers to the ratio of the power radiated from the antenna to space (that is, the power that effectively converts the electromagnetic wave part) to the active power input to the antenna.
  • active power input to the antenna input power of the antenna ⁇ loss power;
  • the loss power mainly includes return loss power and metal ohmic loss power and/or dielectric loss power.
  • Radiation efficiency is a value to measure the radiation capability of an antenna, and metal loss and dielectric loss are both influencing factors of radiation efficiency.
  • the efficiency is generally represented by a percentage, and there is a corresponding conversion relationship between it and dB, and the closer the efficiency is to 0 dB, the better the efficiency of the antenna is.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal, the larger the signal radiated to the space through the antenna, and the greater the radiation efficiency of the antenna. The larger the reflected signal, the smaller the signal radiated to the space through the antenna, and the smaller the radiation efficiency of the antenna.
  • the return loss of the antenna can be expressed by the S11 parameter, and the S11 is one of the S parameters.
  • S11 represents the reflection coefficient, which can characterize the quality of the antenna's emission efficiency.
  • the S11 parameter is usually a negative number. The smaller the S11 parameter, the smaller the return loss of the antenna, and the smaller the energy reflected back by the antenna itself, that is, the more energy actually enters the antenna. The higher the system efficiency of the antenna is; the larger the S11 parameter is, the greater the return loss of the antenna is, and the lower the system efficiency of the antenna is.
  • the S11 value of -6dB is generally used as a standard.
  • the S11 value of the antenna is less than -6dB, it can be considered that the antenna can work normally, or it can be considered that the transmission efficiency of the antenna is relatively good.
  • the polarization direction of the antenna at a given point in space, the electric field strength E (vector) is a one-variable function of time t, and as time goes by, the vector endpoints periodically draw a trajectory in space. If the trajectory is vertical to the ground, it is called vertical polarization, and if it is horizontal to the ground, it is called horizontal polarization.
  • Ground, or floor can generally refer to at least a part of any ground layer, or ground plate, or ground metal layer, etc. in an electronic device (such as a mobile phone), or any combination of any of the above ground layers, or ground plates, or ground components, etc.
  • ground can be used to ground components within electronic equipment.
  • the "ground” may be the ground layer of the circuit board of the electronic device, or the ground plane formed by the middle frame of the electronic device or the ground metal layer formed by the metal film under the screen.
  • the circuit board may be a printed circuit board (PCB), such as an 8-layer, 10-layer or 12-14 layer board with 8, 10, 12, 13 or 14 layers of conductive material, or a printed circuit board such as A dielectric or insulating layer, such as fiberglass, polymer, etc., that separates and electrically insulates components.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through via holes.
  • components such as displays, touch screens, input buttons, transmitters, processors, memory, batteries, charging circuits, system on chip (SoC) structures, etc. may be mounted on or connected to a circuit board; or electrically connected to trace and/or ground planes in the circuit board.
  • the radio frequency source is set on the wiring layer.
  • the conductive material can be any one of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on insulating substrate, silver foil and tin-plated copper on insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheets and aluminum-coated substrates.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • the electronic device 10 may include: a cover plate (cover) 13, a display screen/module (display) 15, a printed circuit board (printed circuit board, PCB) 17, a middle frame (middle frame) 19 and a rear cover (rear cover)21.
  • the cover plate 13 can be a glass cover plate (cover glass), and can also be replaced by a cover plate of other materials, such as an ultra-thin glass material cover plate, PET (Polyethylene terephthalate, polyterephthalate Ethylene formate) material cover plate, etc.
  • the cover plate 13 can be arranged close to the display module 15 , and can be mainly used for protecting and dustproofing the display module 15 .
  • the display module 15 may include a liquid crystal display panel (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display panel or an organic light emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. , which is not limited in this embodiment of the present application.
  • a liquid crystal display panel liquid crystal display, LCD
  • a light emitting diode light emitting diode, LED
  • organic light emitting semiconductor organic light-emitting diode, OLED
  • the middle frame 19 mainly plays a supporting role of the whole machine. It is shown in Fig. 1 that the PCB 17 is arranged between the middle frame 19 and the rear cover 21. It should be understood that in one embodiment, the PCB 17 can also be arranged between the middle frame 19 and the display module 15. There is no limit.
  • the printed circuit board PCB 17 may use a flame-resistant material (FR-4) dielectric board, or a Rogers (Rogers) dielectric board, or a mixed media board of Rogers and FR-4, and so on.
  • FR-4 is a code name for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • the PCB 17 carries electronic components, for example, radio frequency chips and the like.
  • a metal layer may be disposed on the printed circuit board PCB17.
  • the metal layer is available
  • the grounding of electronic components carried on the printed circuit board PCB 17 can also be used for grounding of other components, such as bracket antennas, frame antennas, etc.
  • the metal layer can be called a floor, or a ground plane, or a ground layer.
  • the metal layer can be formed by etching metal on the surface of any dielectric board in the PCB 17 .
  • the metal layer for grounding can be disposed on the side of the printed circuit board PCB17 close to the middle frame 19 .
  • the edges of the printed circuit board PCB 17 can be considered as the edges of its ground plane.
  • the metal middle frame 19 may also be used for grounding the above components.
  • the electronic device 10 may also have other ground/ground planes/ground layers, as mentioned above, which will not be repeated here.
  • the electronic device 10 may also include a battery (not shown in the figure).
  • the battery can be disposed between the middle frame 19 and the rear cover 21 , or between the middle frame 19 and the display module 15 , which is not limited in this embodiment of the present application.
  • the PCB 17 is divided into a main board and a sub-board, and the battery can be arranged between the main board and the sub-board, wherein the main board can be arranged between the middle frame 19 and the upper edge of the battery, and the sub-board can be arranged on the Between the middle frame 19 and the lower edge of the battery.
  • the electronic device 10 may further include a frame 11, and the frame 11 may be formed of a conductive material such as metal.
  • the frame 11 can be disposed between the display module 15 and the back cover 21 and extend around the periphery of the electronic device 10 .
  • the frame 11 can have four sides surrounding the display module 15 to help fix the display module 15 .
  • the frame 11 made of metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
  • the outer surface of the frame 11 may also be made of non-metallic material, such as a plastic frame, to form the appearance of a non-metallic frame, which is suitable for a non-metallic ID.
  • the middle frame 19 may include a frame 11, and the middle frame 19 including the frame 11 as an integral part may support the electronic devices in the whole machine.
  • the cover plate 13 and the rear cover 21 are respectively covered along the upper and lower edges of the frame to form a housing or housing of the electronic device.
  • the cover plate 13 , the rear cover 21 , the frame 11 and/or the middle frame 19 may be collectively referred to as a housing or a shell of the electronic device 10 .
  • “outer shell or shell” can be used to refer to any part or all of the cover plate 13, the rear cover 21, the frame 11 or the middle frame 19, or to refer to the cover plate 13, the rear cover 21, the frame 11 Or part or all of any combination in the middle frame 19.
  • the frame 11 on the middle frame 19 can be at least partly used as an antenna radiator to receive/transmit radio frequency signals. There can be a gap between this part of the frame as the radiator and other parts of the middle frame 19, so as to ensure that the antenna radiator has good performance. radiation environment.
  • the middle frame 19 may be provided with an aperture at this part of the frame as the radiator, so as to facilitate the radiation of the antenna.
  • the frame 11 may not be regarded as a part of the middle frame 19 .
  • the frame 11 can be connected with the middle frame 19 and integrally formed.
  • the frame 11 may include a protruding piece extending inward to connect with the middle frame 19 , for example, by means of spring clips, screws, welding, and the like.
  • the protruding part of the frame 11 can also be used to receive a feed signal, so that at least a part of the frame 11 acts as a radiator of the antenna to receive/transmit radio frequency signals.
  • the back cover 21 can be a back cover made of a metal material; it can also be a back cover made of a non-conductive material, such as a non-metal back cover such as a glass back cover or a plastic back cover; material made of the back cover.
  • the antenna of the electronic device 10 can also be arranged inside the frame 11 .
  • the antenna radiator can be located in the electronic device 10 and arranged along the frame 11 .
  • the antenna radiator is arranged close to the frame 11 to minimize the volume occupied by the antenna radiator and to be closer to the outside of the electronic device 10 to achieve better signal transmission effect.
  • the arrangement of the antenna radiator close to the frame 11 means that the antenna radiator can be tightly
  • the frame 11 is disposed close to, and may also be disposed close to the frame 11 , for example, there may be a certain tiny gap between the antenna radiator and the frame 11 .
  • the antenna of the electronic device 10 may also be disposed in the casing, such as a bracket antenna, a millimeter wave antenna, etc. (not shown in FIG. 1 ).
  • the clearance of the antenna provided in the casing can be obtained by the middle frame, and/or the frame, and/or the back cover, and/or the slit/opening on any one of the display screen, or formed between any several
  • the non-conductive slit/aperture is obtained, and the clearance setting of the antenna can ensure the radiation performance of the antenna.
  • the clearance of the antenna may be a non-conductive area formed by any conductive components in the electronic device 10, and the antenna radiates signals to the external space through the non-conductive area.
  • the form of the antenna 40 can be an antenna form based on a flexible printed circuit (FPC), an antenna form based on laser-direct-structuring (LDS) or a microstrip antenna (microstrip disk antenna). , MDA) and other antenna forms.
  • the antenna may also adopt a transparent structure embedded in the screen of the electronic device 10 , so that the antenna is a transparent antenna unit embedded in the screen of the electronic device 10 .
  • FIG. 1 only schematically shows some components included in the electronic device 10 , and the actual shape, actual size and actual configuration of these components are not limited by FIG. 1 .
  • the surface of the electronic device where the display screen is located is the front side
  • the side where the rear cover is located is the back side
  • the side where the frame is located is the side surface
  • Fig. 2 is a schematic diagram of an equivalent magnetic current distribution of a patch antenna provided by the present application, and the antenna mode to be involved in the present application is introduced from Fig. 2 .
  • FIG. 2 it is a schematic diagram of the equivalent magnetic current distribution under several different transverse magnetic modes (TM mode) of the patch antenna, and the patch antenna can be predicted according to the schematic diagram of the equivalent magnetic current distribution TM mode/TM mode can be understood as the radiation generated by the patch antenna has an electric field component but no magnetic field component in the direction of propagation.
  • TM mode transverse magnetic modes
  • the equivalent magnetic current distribution has the following rules:
  • the equivalent magnetic current has m zero points along the x-axis direction (because the distribution of the equivalent magnetic current is similar to a sinusoidal distribution, the equivalent magnetic current on both sides of the zero point is reversed, so the equivalent magnetic current The reverse point of is the zero point), and there are n zero points along the y-axis direction.
  • FIG. 2 it is a schematic diagram of the equivalent magnetic current distribution in the TM01 mode of the patch antenna.
  • the patch antenna has a null point in the y-axis direction, therefore, the electrical length of the patch antenna in the y-axis direction is ⁇ /2.
  • (b) of FIG. 2 it is a schematic diagram of the equivalent magnetic current distribution in the TM10 mode of the patch antenna.
  • the patch antenna has a null point in the x-axis direction, therefore, the electrical length of the patch antenna in the x-axis direction is ⁇ /2.
  • (c) of FIG. 2 it is a schematic diagram of the equivalent magnetic current distribution in the TM11 mode of the patch antenna.
  • the patch antenna has a null point in the x-axis direction and the y-axis direction respectively, therefore, the electrical length of the patch antenna in the x-axis direction and the y-axis direction is ⁇ /2.
  • FIG. 2 it is a schematic diagram of the equivalent magnetic current distribution in the TM02 mode of the patch antenna.
  • the patch antenna has two null points in the y-axis direction, therefore, the electrical length of the patch antenna in the y-axis direction is ⁇ .
  • the second generation (2G) mobile communication system mainly supported the call function, and electronic equipment was only a tool for people to send and receive text messages and voice communication.
  • the wireless Internet access function uses the voice channel for data transmission.
  • 5G mobile communication system the current Under the current state, the communication frequency bands of electronic equipment will coexist in the 3G, 4G, and 5G frequency bands for a long time, and the number of antennas is increasing.
  • Fig. 3 is a schematic structural diagram of a patch antenna provided by an embodiment of the present application.
  • the antenna structure shown in FIG. 3 includes a floor, a dielectric board and a radiator, wherein the dielectric board is arranged between the radiator and the floor, and the feeding unit can be arranged on the floor and electrically connected to the radiator through a feeding point.
  • the radiator When the feed unit feeds an electrical signal, the radiator generates radiation.
  • the width of the radiator of the patch antenna is about 0.5 working wavelength.
  • the resonant frequency f of the patch antenna satisfies the following formula:
  • c is the speed of light
  • ⁇ r is the relative permittivity of the dielectric in the dielectric plate.
  • the resonant frequency of the patch antenna will move to a lower frequency, which is equivalent to the smaller size of the radiator of the patch antenna at the same operating frequency.
  • the bandwidth of the patch antenna will narrow, and there are problems such as being unable to meet the needs of broadband communication.
  • the electrical loss caused by the dielectric will increase synchronously, and the magnitude of the electrical loss is proportional to the relative permittivity, which will lead to a decrease in the efficiency of the patch antenna.
  • Embodiments of the present application provide an antenna structure and an electronic device, in which dielectrics or magnetic media are provided in different regions of a dielectric layer in the antenna structure, so as to realize miniaturization of the antenna structure.
  • FIG. 4 and FIG. 5 are structural schematic diagrams of an antenna structure 100 provided by an embodiment of the present application.
  • FIG. 4 is a schematic perspective view of the antenna structure 100 .
  • Fig. 5 is a top view of the antenna structure.
  • the antenna structure 100 may include a radiator 110 and a dielectric layer 120 , and the radiator 110 is disposed on the surface of the dielectric layer 120 to form a patch antenna.
  • the radiator 110 includes two first regions 111 and one second region 112 , and the second region 112 is located between the two first regions 111 .
  • the radiator 110 includes a feed point 114 .
  • the feed point 114 is disposed in one of the two first regions 111 .
  • the feed point 114 is used to feed electrical signals into the antenna structure 100 so that the antenna structure 100 generates radiation.
  • the dielectric layer at at least one of the two first regions 111 includes a first dielectric.
  • the first medium is a dielectric.
  • the dielectric layer at the second region 112 includes a second dielectric.
  • the second medium is a magnetic medium.
  • dielectric layer at the first region/dielectric layer corresponding to the first region and “dielectric layer at the second region/dielectric layer corresponding to the second region” should be understood as the medium corresponding to the region of the radiator layer area.
  • the dielectric layer area corresponding to the first area/second area of the radiator or, for example, the dielectric layer area supporting the first area/second area of the radiator; or, for example, the first area/second area of the radiator
  • setting dielectric or magnetic medium on the dielectric layer 120 corresponding to different regions of the radiator 110 can load the electric field or magnetic field in the corresponding region, thereby reducing the size of the antenna structure 100 .
  • the effect of electric field or magnetic field can be understood as that the antenna structure 100 can generate the same magnetic field and electric field in a smaller size by setting a dielectric medium and a magnetic medium.
  • the antenna structure 100 further includes a floor, and the dielectric layer 120 is disposed between the radiator 110 and the floor. In other words, the dielectric layer 120 is filled between the floor and the radiator 110 .
  • the dielectric layer at each first region 111 includes a dielectric.
  • the dielectric layer at each first region 111 does not include a magnetic medium, but only includes a dielectric. In one embodiment, the dielectric layer at the second region 112 does not include dielectric, but only includes magnetic media.
  • the second medium may be a magnetoelectric medium. It should be understood that in this embodiment of the present application, the second medium is a magnetic medium as an example for description. Wherein, the magnetic medium loads the magnetic field at the second region 112 . Since the magnetodielectric medium has the characteristics of a magnetic medium, in practical applications, the second medium may be a magnetodielectric medium. In one embodiment, the dielectric layer at the second region 112 may be filled with a magnetodielectric.
  • the first medium may be a magnetoelectric medium.
  • the first medium is a dielectric as an example for description.
  • the dielectric loads the electric field at the first region 111 . Since the magnetodielectric medium has the characteristics of a dielectric medium, in practical applications, the first medium may be a magnetodielectric medium.
  • the dielectric layer at the first region 111 may be filled with a magnetodielectric.
  • the dielectric layer at the first region 111 includes a first medium
  • the dielectric layer at the second region 112 includes a second medium
  • the relative permittivity of the first medium is greater than 1
  • the relative permeability of the second medium rate greater than 1.
  • the dielectric layer in the first region includes a dielectric (the first medium is a dielectric)
  • the relative permittivity of the first medium is greater than 1, and the relative permeability is equal to 1.
  • the dielectric layer in the first region includes a magnetodielectric medium (the first medium is a magnetodielectric medium)
  • the relative permittivity of the first medium is greater than 1, and the relative permeability is greater than 1.
  • the relative permittivity of the second medium is equal to 1, and the relative permeability is greater than 1.
  • the dielectric layer in the second region includes a magnetodielectric medium (the second medium is a magnetodielectric medium)
  • the relative permittivity of the second medium is greater than 1, and the relative permeability is greater than 1.
  • the magnetic field generated by the antenna structure 100 is greater than or equal to the electric field.
  • the electric field generated by the antenna structure 100 is greater than or equal to the magnetic field. It should be understood that a dielectric and a magnetic medium are respectively provided in each electric field strength region (the region where the electric field is greater than the magnetic field) and each magnetic field strength region (the region where the magnetic field is greater than the electric field) of the antenna structure 100, so that the electric field or magnetic field in the corresponding region can be maximized. loading effect.
  • the antenna structure 100 can generate the same magnetic field and electric field in the smallest size by arranging a dielectric medium in each electric field strength region and arranging a magnetic medium in each magnetic field strength region.
  • the resonant frequency of the antenna structure of the same size is the lowest by arranging the dielectric and magnetic media in different regions, which is also equivalent to the smallest size of the antenna structure at the same resonant frequency.
  • the area of the dielectric layer corresponding to the second area 112 includes the distribution area of the electric field zero point between the radiator 110 and the floor of the antenna structure 100.
  • the area of the dielectric layer corresponding to the second area 112 may include an antenna structure. 100 creates at least one electric field null point between the radiator 110 and the floor. It should be understood that the zero point of the electric field may correspond to a large current point or a strong magnetic field point generated by the antenna structure 100, and then the dielectric layer area corresponding to the second region 112 also includes a large current point or a strong current point generated by the antenna structure 100 between the radiator 110 and the floor. The area where the magnetic field is strong.
  • the radiator 110 can be a regular or irregular square, rectangle, triangle, circle or other polygons, wherein "irregular" means that the radiator 110 can be a square, rectangle, triangle, or circle as a whole. or other polygons, while partially including protrusions and/or recesses.
  • the embodiment of the present application only takes the radiator 110 as a square as an example for illustration, and the embodiment of the present application does not limit the shape of the radiator.
  • the value of the relative permeability of the magnetic medium is the same as the value of the relative permittivity of the dielectric medium.
  • the antenna structure 100 can work in the TM 01 mode, the generated electric field (E z ) is along the z direction, and the magnetic field (H x ) is along the x direction, then the ratio of the electric field to the magnetic field satisfies the following formula 1:
  • ⁇ 0 is the wave impedance in vacuum
  • ⁇ r is the wave impedance in the dielectric
  • ⁇ r is the relative permittivity of the dielectric in the dielectric layer 120
  • b is the side length of the radiator 110.
  • the second region 112 when the second region is the region of b/4 ⁇ y ⁇ 3b/4, the second region 112 includes the region where the magnetic field strength region of the antenna structure 100 is distributed on the radiator 110 .
  • the first region 111 when the first region 111 is the region of y ⁇ b/4 and y>3b/4, the first region 111 includes the region where the electric field strength region of the antenna structure 100 is distributed on the radiator 110 .
  • the virtual axis of the second area 112 may be the central axis of the second area 112 .
  • the two first regions 111 are symmetrical along the imaginary axis of the second region 112 .
  • the distribution of the field (electric field or magnetic field) generated by the antenna structure 100 is symmetrically distributed along the dielectric layer region corresponding to the virtual axis of the second region 112 .
  • the zero point of the electric field generated by the antenna structure 100 can be located on the dielectric layer area corresponding to the virtual axis of the second region 112, and correspondingly, the strong magnetic field point or the large current point can also be located on the virtual axis corresponding to the second region 112. on the medium layer area.
  • the width of the second region 112 is 1/2 of the width of the radiator, and the electric field intensity region is divided into two first regions 111 by the second region 112, and the width of each first region 111 is 1/2 of the width of the radiator. a quarter of the width, as shown in Figure 6.
  • the relative permeability of the second medium is between 2 and 5.
  • the second medium may be a magnetic medium.
  • the relative permittivity of the first medium is between 2 and 5.
  • the first medium may be a dielectric.
  • the range of conductivity or relative permittivity of a dielectric is not limited. It should be understood that since the magnetodielectric medium has both the characteristics of a magnetic medium and a dielectric medium, for the case where the dielectric layer includes a magnetodielectric medium, it can also be applied according to the range of the relative permeability of the magnetic medium or the range of the relative permittivity of the dielectric.
  • the numerical value of the relative permeability of the magnetic medium is the same as the numerical value of the relative permittivity of the dielectric as an example. In practical applications, the numerical value of the relative magnetic permeability of the magnetic medium is the same as that of the dielectric The value of the dielectric constant can be different, and can be adjusted according to actual production or design needs.
  • the width of the second region 112 is 1/2 of the width of the radiator, and the sum of the widths of the two first regions 111 is the radiation One-half of the body width, the sum of the widths of the two first regions 111 of the radiator 110 is equal to the width of the second region. It should be understood that the width of the second region 112 or the sum of the widths of the two first regions 111 may exist in engineering applications, and some errors (for example, 10%), within the error range, should be counted as the width of the second region 112. The width or the sum of the widths of the two first regions 111 is the same.
  • the area occupied by the first region 111 may be equal to the area occupied by the second region.
  • the width of the corresponding region where the value of the relative permeability of the magnetic medium is higher than the value of the relative permittivity of the dielectric is wider. big.
  • the relative permeability of the magnetic medium is greater than the relative permittivity of the dielectric
  • the width of the second region 112 is greater than the sum of the widths of the two first regions 111 .
  • the area of the second region is greater than the area of the first region; the relative permeability of the second medium
  • the area of the second region is smaller than the area of the first region.
  • the value of the relative permeability of the magnetic medium is different from the value of the relative permittivity of the dielectric, the value of the relative permeability of the magnetic medium is compared with the value of the relative permittivity of the dielectric. Higher ones correspond to larger areas.
  • the magnetic or dielectric medium may be an isotropic material.
  • the isotropic material can be understood as the relative magnetic permeability of the magnetic medium is the same in all directions or the relative permittivity of the dielectric medium is the same in all directions.
  • the magnetic or dielectric medium may be an anisotropic material.
  • the anisotropic material can be understood as the relative permeability of the magnetic medium is different in each direction or the relative permittivity of the dielectric is different in each direction.
  • the relative permeability of the magnetic medium may represent the relative permeability of the magnetic medium in the direction of the magnetic field generated by the antenna structure 100
  • the "relative permittivity of the dielectric” may represent the relative permeability of the dielectric in the antenna structure 100. The relative permittivity in the direction of the electric field generated by 100.
  • the electric field generated by the antenna structure is along the z direction, and the electric field is affected by the relative permittivity of the dielectric in the z direction, so as to realize dielectric loading.
  • the magnetic field generated by the antenna structure is along the x direction, and the magnetic field is affected by the relative permeability of the magnetic medium in the x direction, so as to realize the loading of the magnetic medium.
  • magnetoelectric media a similar understanding should be made, so I won't repeat them here.
  • FIG. 7 to FIG. 9 are the antennas of the control group and the simulation results provided by the embodiment of the present application.
  • FIG. 7 is the antenna structure of the control group provided in the embodiment of the present application.
  • Fig. 8 is the S-parameter simulation result of the antenna structure shown in Fig. 5 and Fig. 7 .
  • FIG. 9 is a simulation result of the radiation efficiency of the antenna structure shown in FIG. 5 and FIG. 7 .
  • the difference between the antenna structure and the antenna structure shown in Figure 5 is that the dielectric layer is not provided with a magnetic medium, and the dielectric layer is filled with a dielectric, and, in order to ensure that the resonant frequencies of the antenna structures of the two structures are approximately the same, Fig.
  • the side length of the radiator of the antenna structure shown in FIG. 7 is different from the side length of the radiator of the antenna structure shown in FIG. 5 .
  • the relative permittivity of the dielectric layer and the dielectric layer at the first region in the antenna structure shown in Figure 5 is 4, and the dielectric at the second region in the antenna structure shown in Figure 5
  • the relative permeability of the magnetic medium of the layer is 4.
  • the resonance point of the antenna structure shown in FIG. 5 is 1.97 GHz
  • the resonance point of the antenna structure shown in FIG. 7 is 1.98 GHz.
  • the antenna structure shown in Figure 5 resonates at the same resonant frequency as the antenna structure shown in Figure 7, but the size of the radiator in the antenna structure shown in Figure 5 is 24mm ⁇ 24mm, and the radiator in the antenna structure shown in Figure 7 The size is 36mm ⁇ 36mm.
  • the structure size of the antenna is effectively reduced by 55.6%.
  • the bandwidth of the antenna structure shown in FIG. 5 is equivalent to that of the antenna structure shown in FIG. 7 , and there is no loss of bandwidth due to reducing the size of the antenna structure.
  • the radiation efficiency of the antenna structure shown in FIG. 5 is similar to that of the antenna structure shown in FIG. 7 resonating at the resonance point, and the antenna structure shown in FIG. 5 is only reduced by 0.3 dB.
  • 10 to 16 are schematic diagrams of another antenna structure provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of an antenna structure working in TM 10 mode.
  • Fig. 11 is a schematic diagram of an antenna structure working in TM 11 mode.
  • Fig. 12 is a schematic diagram of an antenna structure working in TM 12 mode.
  • Fig. 13 is a schematic diagram of an antenna structure working in TM 02 mode.
  • Fig. 14 is a schematic diagram of an antenna structure working in TM 20 mode.
  • Fig. 15 is a schematic diagram of an antenna structure working in TM 21 mode.
  • Fig. 16 is a schematic diagram of an antenna structure working in TM 22 mode.
  • the antenna structure may include at least two first regions and at least one second region, and any two adjacent first regions are separated by one second region.
  • the dielectric layer at at least one first region includes a dielectric
  • the dielectric layer at at least one second region includes a magnetic medium.
  • the dielectric layer region corresponding to the second region includes a region where electric field zero points of the antenna structure are distributed on the radiator.
  • the electric field zero point generated by the antenna structure shown in Figure 10 to Figure 16 is located on the dielectric layer area corresponding to the dotted line shown in the figure, and the electric field zero point can correspond to a large current point or a strong magnetic field point, then the current generated by the antenna structure is large.
  • the dots or magnetic field strength points are also located on the area of the dielectric layer corresponding to the dotted lines shown in the figure.
  • the magnetic field generated by the antenna structure is greater than or equal to the electric field.
  • the electric field generated by the antenna structure is greater than or equal to the magnetic field.
  • Dielectric and magnetic media are respectively set in the electric field strength region (the region where the electric field is greater than the magnetic field) and the magnetic field strength region (the region where the magnetic field is greater than the electric field) of the antenna structure, so that the electric field or magnetic field in the corresponding region can be loaded to reduce the size of the antenna structure .
  • the dielectric layer at each second region includes magnetic media.
  • the dielectric layer at each first region includes a dielectric. It should be understood that a dielectric and a magnetic medium are respectively provided in each electric field strength region (the region where the electric field is greater than the magnetic field) and each magnetic field strength region (the region where the magnetic field is greater than the electric field) of the antenna structure, so that the electric field or magnetic field in the corresponding region can be maximized. Loading action to obtain the same magnetic and electric fields at the smallest antenna structure size.
  • Fig. 17 is a schematic structural diagram of an antenna array provided by an embodiment of the present application.
  • the antenna structure includes only one radiator as an example for description.
  • the antenna structure may include multiple radiators to form an array antenna, which can be applied to input multiple output (multi -input multi-output, MIMO) system to increase the data transmission rate of electronic devices.
  • MIMO multi -input multi-output
  • the radiator works in TM11 mode as an example. It should be understood that any one or more radiators in the antenna array can work in the same or different TM modes.
  • the antenna structure may include two radiators, and the two radiators may be distributed in a 1 ⁇ 2 array.
  • the antenna structure may include 4 radiators, and the 4 radiators may be distributed in a 1 ⁇ 4 or 2 ⁇ 2 array.
  • the antenna structure may include 16 radiators, and the 16 radiators may be distributed in a 4 ⁇ 4 array.
  • the antenna array shown in FIG. 17 is only used as an example. In actual applications, the number and arrangement of radiators can be adjusted according to design requirements, which is not limited in this embodiment of the present application.
  • the antenna structure is a patch antenna as an example.
  • the technical solutions provided by the embodiments of the present application may not only be applied to patch antennas, but may also be applied to the following wire antennas, which will be described in the following representative embodiments.
  • FIG. 18 is a schematic structural diagram of an antenna structure 200 provided by an embodiment of the present application.
  • the antenna structure 200 includes a radiator 210 , a floor 220 , a conductive frame 11 and a dielectric layer 230 .
  • the radiator 210 includes a grounding point 211, and the radiator 210 is electrically connected to the floor 220 at the grounding point 211 to realize grounding.
  • the frame 11 has a first position 201 and a second position 202 .
  • the frame 11 between the first position 201 and the second position 202 serves as at least a part of the radiator 210 .
  • the dielectric layer 230 is located between the radiator 210 and the floor 220 , or it can be understood that a medium is filled between the radiator 210 and the floor 220 to form the dielectric layer 230 .
  • the medium layer 230 includes a first medium and a second medium.
  • the relative magnetic permeability of the first medium is greater than 1, and the relative permittivity of the second medium is greater than 1.
  • the first medium is a magnetic medium.
  • the second medium is a dielectric.
  • the frame 11 between the first position 201 and the second position 202 as at least a part of the radiator 210 can be understood as the frame 11 between the first position 201 and the second position 202 as the main radiator of the radiator 210
  • the radiator 210 of the antenna structure 200 may also include a branch electrically connected to the frame 11 , or a parasitic branch separated from the frame 11 .
  • disposing dielectric or magnetic media at different positions of the radiator 210 can load the electric field or magnetic field in the corresponding area, thereby reducing the size of the antenna structure 200 .
  • the ground point is generally a point with a large current, corresponding to a zero point of the electric field or a strong point of the magnetic field.
  • the magnetic medium is provided at the ground point of the radiator 210 so that the magnetic field can be loaded in the strong magnetic field area, and the same magnetic field can be generated in a smaller size, so as to realize the miniaturization of the antenna structure 200 .
  • the electric field can be loaded, and the same electric field can be generated in a smaller size, so as to realize the miniaturization of the antenna structure 200 .
  • the radiator 210 further includes a feed point 212 .
  • the frame 11 also has a third position 203 disposed between the first position 201 and the second position 202 .
  • the radiator 210 is separated from other parts of the frame 11 by a gap at the second position 202 .
  • the ground point 211 is set at the first position 201, and the feed point 212 is set between the first position 201 and the third position 203.
  • the antenna structure 200 includes an inverted-F antenna (inverted-F antenna, IFA).
  • the strong magnetic field region (the region where the magnetic field is greater than the electric field) produced by the antenna structure is close to the first position 201
  • the strong electric field region (the region where the electric field is greater than the magnetic field) generated by the antenna structure is close to the second position 201.
  • the dielectric layer 230 between the radiator 210 and the floor 220 is a first dielectric layer
  • the first dielectric layer includes the first dielectric.
  • the first medium is a magnetic medium.
  • the dielectric layer 230 between the radiator 210 and the floor 220 is a second dielectric layer
  • the second dielectric layer includes the second dielectric.
  • the second medium is a dielectric.
  • the dielectric layer 230 between the radiator 210 and the floor 220 does not include the second medium, and between the second position 202 and the third Between the position 203, the dielectric layer 230 (second dielectric layer) between the radiator 210 and the floor 220 does not include the first dielectric.
  • the dielectric layer 230 (first dielectric layer) between the radiator 210 and the floor 220 only includes the first medium, and between the second position 202 and the third Between the position 203, the dielectric layer 230 (second dielectric layer) between the radiator 210 and the floor 220 only includes the second dielectric.
  • the first medium may be a magnetoelectric medium. It should be understood that, in this embodiment of the present application, description is made by taking the first medium as a magnetic medium as an example. Wherein, the magnetic medium loads the magnetic field between the first position 201 and the third position 203 . Since the magnetodielectric medium has the characteristics of a magnetic medium, in practical applications, the first medium may be a magnetodielectric medium. In one embodiment, the first dielectric layer may be filled with a magnetodielectric.
  • the second medium may be a magnetoelectric medium.
  • the The second medium is a dielectric as an example for description. Wherein, the dielectric loads the electric field between the second position 202 and the third position 203 . Since the magnetodielectric medium has the characteristics of a dielectric medium, in practical applications, the second medium may be a magnetodielectric medium. In one embodiment, the second dielectric layer may be filled with a magnetodielectric.
  • the relative magnetic permeability of the first medium is greater than 1, and the relative permittivity of the second medium is greater than 1.
  • the first medium layer includes a magnetic medium (the first medium is a magnetic medium)
  • the relative permittivity of the first medium is equal to 1
  • the relative permeability is greater than 1.
  • the first medium layer includes a magnetodielectric medium (the first medium is a magnetodielectric medium)
  • the relative permittivity of the first medium is greater than 1
  • the relative permeability is greater than 1.
  • the second medium layer includes a dielectric
  • the relative permittivity of the second medium is greater than 1, and the relative permeability is equal to 1.
  • the second medium layer includes a magnetodielectric medium (the second medium is a magnetodielectric medium)
  • the relative permittivity of the second medium is greater than 1, and the relative permeability is greater than 1.
  • the opposite of the first medium (for example, a magnetic medium) Permeability is between 2 and 5.
  • the relative permittivity of the second medium eg, dielectric
  • the electrical loss and magnetic loss brought about by the medium will increase synchronously, affecting the radiation performance of the antenna structure. Therefore, it is necessary to control the relative permittivity and relative permeability of the medium within an appropriate range.
  • the numerical value of the relative permeability of the magnetic medium is the same as the numerical value of the relative permittivity of the dielectric.
  • the value of the dielectric constant can be different, and can be adjusted according to actual production or design needs.
  • the length of the first medium layer is equal to the length of the second medium layer in the extending direction of the frame. It should be understood that the length of the first dielectric layer or the length of the second dielectric layer may exist in engineering applications, and some errors (for example, 10%), within the error range, should be calculated as the length of the first dielectric layer and the second The dielectric layers are the same length.
  • the length of the first dielectric layer is greater than the length of the second dielectric layer.
  • the length of the first medium layer is shorter than the length of the second medium layer in the extending direction of the frame.
  • the third location 203 is set near the center location between the first location 201 and the second location 202 .
  • the area of strong magnetic field is close to the first position 201
  • the area of strong electric field is close to the second position.
  • the third position 203 is set at the central position between the first position 201 and the second position 202, according to the above formula 1, it can be known that the electric field and the magnetic field can be approximately equal, and the first dielectric layer and the second dielectric layer on both sides of the position The layer can maximize the loading of the electric and magnetic fields generated by the antenna structure.
  • the third position 203 may be adjusted to deviate from the center position between the first position 201 and the second position 202 .
  • the distance L1 between the center between the first position 201 and the second position 202 and the third position 203, and the distance L between the first position 201 and the second position 202 satisfy: L1 ⁇ L ⁇ 25 %.
  • the distance between positions described in the embodiment of the present application may be understood as a distance along the frame 11 rather than a straight-line distance between two positions.
  • the distance L between the first position 201 and the second position 202 can be understood as the distance from the first position 201 to the second position 202 along the border, rather than the straight-line distance between the first position 201 and the second position 202 , can also be understood correspondingly in the following embodiments.
  • the electric field and magnetic field generated by the antenna structure can be loaded more heavily, further realizing the miniaturization of the antenna structure.
  • Fig. 19 is the S-parameter simulation result of the antenna structure shown in Fig. 18 .
  • the resonance point generated by the antenna structure is about 0.82 GHz.
  • the magnetic medium continues to increase, the frequency of the resonance point generated by the antenna structure gradually moves to high frequency, but the frequency of the resonance point is still lower than the frequency of the resonance point generated by the antenna structure without a magnetic medium.
  • the antenna structure 200 is taken as an IFA for illustration.
  • the antenna structure 200 may also be a T-shaped antenna, as shown in FIG. 20 .
  • FIG. 20 is a schematic structural diagram of another antenna structure 200 provided by an embodiment of the present application.
  • the antenna structure 200 includes a radiator 210 , a floor 220 , a conductive frame 11 and a dielectric layer 230 .
  • the radiator 210 includes a grounding point 211, and the radiator 210 is electrically connected to the floor 220 at the grounding point 211 to realize grounding.
  • the frame 11 has a first position 201 and a second position 202 .
  • the frame 11 between the first position 201 and the second position 202 serves as at least a part of the radiator 210 .
  • the dielectric layer 230 is located between the radiator 210 and the floor 220 , or it can be understood that a medium is filled between the radiator 210 and the floor 220 to form the dielectric layer 230 .
  • the dielectric layer 230 includes a first dielectric and a second dielectric, wherein, at the ground point 211 , the dielectric layer 230 between the radiator 210 and the floor 220 includes the first dielectric.
  • the first medium is a magnetic medium.
  • the second medium is a dielectric.
  • the frame 11 between the first position 201 and the second position 202 as at least a part of the radiator 210 can be understood as the frame 11 between the first position 201 and the second position 202 as the main radiator of the radiator 210
  • the radiator 210 of the antenna structure 200 may also include a branch electrically connected to the frame 11 , or a parasitic branch separated from the frame 11 .
  • the radiator 210 further includes a feeding point 212 .
  • the bezel 11 also has a third position 203 and a fourth position 204 .
  • the third position 203 is set between the first position 201 and the second position 202
  • the fourth position 204 is set between the second position 202 and the third position 203 .
  • the radiator 210 is separated from other parts of the frame 11 by gaps at the first position 201 and the second position 202 .
  • the ground point 211 is arranged between the third location 203 and the fourth location 204
  • the feed point 212 is arranged between the third location 203 and the fourth location 204.
  • the antenna structure 200 includes a T-antenna/T-shaped antenna.
  • the antenna structure when the antenna structure includes a T antenna, the antenna structure generates two electric field strength regions (regions where the electric field is greater than the magnetic field) respectively close to the first position 201 and the second position 202, and the magnetic field strength region (magnetic field) generated by the antenna structure The region greater than the electric field) is located between two electric field strength regions.
  • the dielectric layer 230 between the radiator 210 and the floor 220 is a first dielectric layer, and the first dielectric layer includes the first dielectric.
  • the dielectric layer 230 between the radiator 210 and the floor 220 is a second dielectric layer, and the second dielectric layer includes a second dielectric layer .
  • the dielectric layer 230 (first dielectric layer) between the radiator 210 and the floor 220 does not include the second medium, and between the first position 201 and the third between the positions 203 and between the second position 202 and the fourth position 204 , the dielectric layer 230 (second dielectric layer) between the radiator 210 and the floor 220 does not include the first dielectric.
  • the dielectric layer 230 (first dielectric layer) between the radiator 210 and the floor 220 only includes the first medium, and between the first position 201 and the second Between the third position 203 and between the second position 202 and the fourth position 204 , the dielectric layer 230 (second dielectric layer) between the radiator 210 and the floor 220 only includes the second dielectric.
  • the first medium may be a magnetoelectric medium. It should be understood that, in this embodiment of the present application, description is made by taking the first medium as a magnetic medium as an example. Wherein, the magnetic medium loads the magnetic field between the third position 203 and the fourth position 204 . Since the magnetodielectric medium has the characteristics of a magnetic medium, in practical applications, the first medium may be a magnetodielectric medium. In one embodiment, the first dielectric layer may be filled with a magnetodielectric.
  • the second medium may be a magnetoelectric medium.
  • the second medium is a dielectric as an example for description.
  • the dielectric loads the electric field between the first position 201 and the third position 203 and between the second position 202 and the fourth position 204 .
  • the magnetodielectric medium has the characteristics of a dielectric medium, in practical applications, the second medium may be a magnetodielectric medium.
  • the second dielectric layer may be filled with a magnetodielectric.
  • the relative magnetic permeability of the first medium is greater than 1, and the relative permittivity of the second medium is greater than 1.
  • the first medium layer includes a magnetic medium (the first medium is a magnetic medium)
  • the relative permittivity of the first medium is equal to 1
  • the relative permeability is greater than 1.
  • the first medium layer includes a magnetodielectric medium (the first medium is a magnetodielectric medium)
  • the relative permittivity of the first medium is greater than 1
  • the relative permeability is greater than 1.
  • the second medium layer includes a dielectric
  • the relative permittivity of the second medium is greater than 1, and the relative permeability is equal to 1.
  • the second medium layer includes a magnetodielectric medium (the second medium is a magnetodielectric medium)
  • the relative permittivity of the second medium is greater than 1, and the relative permeability is greater than 1.
  • the third position 203 is set near the distance L from the first position 201
  • the fourth position 204 is set near the distance L from the second position 202
  • L is the distance between the first position 201 and the second position 202. distance between.
  • the two electric field strength regions are close to the first position 201 and the second position 202 respectively
  • the magnetic field strength region is located between the two electric field strength regions.
  • the first dielectric layer and the second dielectric layer on both sides of the four positions 204 can maximize the loading of the electric field and magnetic field generated by the antenna structure.
  • the third position 203 and the fourth position 204 may be adjusted due to the internal layout of the electronic device.
  • the distance L1 between the third location 203 and the fourth location 204, and the distance L between the first location 201 and the second location 202 satisfy: (50%-10%) ⁇ L ⁇ L1 ⁇ (50%+10%) ⁇ L.
  • the distance L2 between the center between the first position 201 and the second position 202 and the third position 203 satisfies, (25%-5%) ⁇ L ⁇ L2 ⁇ (25%+5%) ⁇ L .
  • the distance between the center between the first location 201 and the second location 202 and the fourth location 204 L3 satisfies, (25%-5%) ⁇ L ⁇ L3 ⁇ (25%+5%) ⁇ L.
  • the electric field and magnetic field generated by the antenna structure can obtain greater loading, further Miniaturization of the antenna structure is realized.
  • the distance L4 between the first location 201 and the third location 203 is the same as the distance L5 between the second location 202 and the fourth location 204 . It should be understood that in practical engineering applications, the distance L4 between the first position 201 and the third position 203 and the distance L5 between the second position 202 and the fourth position 204 may be adaptively adjusted. Therefore, when 90% ⁇ L4 ⁇ L5 ⁇ 110% ⁇ L4, it can be defined that the distance L4 between the first location 201 and the third location 203 is the same as the distance L5 between the second location 202 and the fourth location 204 . In this case, as the antenna structure 200 is more symmetrical, its radiation characteristics are better.
  • Fig. 21 is the S-parameter simulation result of the antenna structure shown in Fig. 20 .
  • the S parameter simulation results of the antenna structure shown in FIG. 20, with the distance L 76mm between the first position 201 and the second position 202, the distance between the first position 201 and the third position 203 is the same as the second position The distance between 202 and the fourth position 204 is the same as an example for simulation. Different simulation results are obtained as the distance L1 between the third location 203 and the fourth location 204 varies.
  • the resonance points generated by the antenna structure are about 1.24GHz and 1.28GHz.
  • L1 is between 30mm and 45mm, the frequency of the resonance point generated by the antenna structure is much lower than that of the antenna structure without a magnetic medium.
  • the antenna structure 200 is an IFA and T antenna for illustration.
  • the antenna structure 200 may also be a slot antenna, as shown in FIG. 22 .
  • FIG. 22 is a schematic structural diagram of another antenna structure 200 provided by an embodiment of the present application.
  • the antenna structure 200 includes a radiator 210 , a floor 220 , a conductive frame 11 and a dielectric layer 230 .
  • the radiator 210 includes a ground point, and the radiator 210 is electrically connected to the floor 220 at the ground point to realize grounding.
  • the frame 11 has a first position 201 and a second position 202 .
  • the frame 11 between the first position 201 and the second position 202 serves as at least a part of the radiator 210 .
  • the dielectric layer 230 is located between the radiator 210 and the floor 220 , or it can be understood that a medium is filled between the radiator 210 and the floor 220 to form the dielectric layer 230 .
  • the dielectric layer 230 includes a first dielectric and a second dielectric, wherein, at the ground point 211 , the dielectric layer 230 between the radiator 210 and the floor 220 includes the first dielectric.
  • the first medium is a magnetic medium.
  • the second medium is a dielectric.
  • the frame 11 between the first position 201 and the second position 202 as at least a part of the radiator 210 can be understood as the frame 11 between the first position 201 and the second position 202 as the main radiator of the radiator 210
  • the radiator 210 of the antenna structure 200 may also include a branch electrically connected to the frame 11 , or a parasitic branch separated from the frame 11 .
  • the radiator 210 further includes a feed point 212
  • the ground point of the radiator 210 includes a first ground point 213 and a second ground point 214 .
  • the bezel 11 also has a third position 203 and a fourth position 204 .
  • the third position 203 is set between the first position 201 and the second position 202
  • the fourth position 204 is set between the second position 202 and the third position 203
  • the first ground point 213 is set at the first position 201
  • the second ground point 214 is set at the second position 202
  • a feed point 212 is provided between the first location 201 and the third location 203, in which case the antenna structure 200 comprises a slot/slot antenna.
  • the antenna structure when the antenna structure includes a slot antenna, the antenna structure generates two strong magnetic field regions (regions where the magnetic field is greater than the electric field) close to the first position 201 and the second position 202 respectively, and the electric field strength region (electric field) generated by the antenna structure The region greater than the magnetic field) is located between two magnetic field strength regions.
  • the dielectric layer 230 between the radiator 210 and the floor 220 is a second dielectric layer, and the second dielectric layer includes the second dielectric.
  • the dielectric layer 230 between the radiator 210 and the floor 220 is a first dielectric layer, and the first dielectric layer includes a first dielectric layer .
  • the antenna structure may include a closed slot antenna, as shown in FIG. 22 , the radiator has no gap between the first position 201 and the second position 202 .
  • the antenna structure may include an open slot antenna, and the radiator is provided with at least one slot between the first position 201 and the second position 202 , which is not limited in this embodiment of the present application.
  • the dielectric layer 230 (second dielectric layer) between the radiator 210 and the floor 220 does not include the first medium, and between the first position 201 and the third Between the positions 203 and between the second position 202 and the fourth position 204 (the first dielectric layer), the dielectric layer 230 between the radiator 210 and the floor 220 does not include the second dielectric.
  • the dielectric layer 230 (second dielectric layer) between the radiator 210 and the floor 220 only includes the second medium, and between the first position 201 and the third Between the positions 203 and between the second position 202 and the fourth position 204 , the dielectric layer 230 (first dielectric layer) between the radiator 210 and the floor 220 only includes the first dielectric.
  • the first medium may be a magnetoelectric medium. It should be understood that, in this embodiment of the present application, description is made by taking the first medium as a magnetic medium as an example. Wherein, the magnetic medium loads the magnetic field between the first position 201 and the third position 203 and between the second position 202 and the fourth position 204 . Since the magnetodielectric medium has the characteristics of a magnetic medium, in practical applications, the first medium may be a magnetodielectric medium. In one embodiment, the first dielectric layer may be filled with a magnetodielectric.
  • the second medium may be a magnetoelectric medium.
  • the second medium is a dielectric as an example for description.
  • the dielectric loads the electric field between the third position 203 and the fourth position 204 .
  • the magnetodielectric medium has the characteristics of a dielectric medium, in practical applications, the second medium may be a magnetodielectric medium.
  • the second dielectric layer may be filled with a magnetodielectric.
  • the relative magnetic permeability of the first medium is greater than 1, and the relative permittivity of the second medium is greater than 1.
  • the first medium layer includes a magnetic medium (the first medium is a magnetic medium)
  • the relative permittivity of the first medium is equal to 1
  • the relative permeability is greater than 1.
  • the first medium layer includes a magnetodielectric medium (the first medium is a magnetodielectric medium)
  • the relative permittivity of the first medium is greater than 1
  • the relative permeability is greater than 1.
  • the second medium layer includes a dielectric
  • the relative permittivity of the second medium is greater than 1, and the relative permeability is equal to 1.
  • the second medium layer includes a magnetodielectric medium (the second medium is a magnetodielectric medium)
  • the relative permittivity of the second medium is greater than 1, and the relative permeability is greater than 1.
  • the third position 203 is set near the distance L from the first position 201
  • the fourth position 204 is set near the distance L from the second position 202
  • L is the distance between the first position 201 and the second position 202. distance between.
  • the two magnetic field strength regions are close to the first position 201 and the second position 202 respectively
  • the electric field strength region is located between the two magnetic field strength regions.
  • the first dielectric layer and the second dielectric layer on both sides of the four positions 204 can maximize the loading of the electric field and magnetic field generated by the antenna structure.
  • the third position 203 and the fourth position 204 may be adjusted due to the internal layout of the electronic device.
  • the distance L1 between the third location 203 and the fourth location 204, and the distance L between the first location 201 and the second location 202 satisfy: (50%-10%) ⁇ L ⁇ L1 ⁇ (50%+10%) ⁇ L.
  • the distance L2 between the center between the first position 201 and the second position 202 and the third position 203 satisfies, (25%-5%) ⁇ L ⁇ L2 ⁇ (25%+5%) ⁇ L .
  • the distance L3 between the center between the first position 201 and the second position 202 and the fourth position 204 satisfies, (25%-5%) ⁇ L ⁇ L3 ⁇ (25%+5%) ⁇ L .
  • the distance L4 between the first location 201 and the third location 203 is the same as the distance L5 between the second location 202 and the fourth location 204 . It should be understood that in practical engineering applications, the distance L4 between the first position 201 and the third position 203 and the distance L5 between the second position 202 and the fourth position 204 may be adaptively adjusted. Therefore, when 90% ⁇ L4 ⁇ L5 ⁇ 110% ⁇ L4, it can be defined that the distance L4 between the first location 201 and the third location 203 is the same as the distance L5 between the second location 202 and the fourth location 204 . In this case, as the antenna structure 200 is more symmetrical, its radiation characteristics are better.
  • Fig. 23 is the S-parameter simulation result of the antenna structure shown in Fig. 22 .
  • the antenna structure can generate 3 resonances simultaneously.
  • L1 is between 26 mm and 50 mm
  • L1 42 mm
  • the lowest frequency of the resonance point generated by the antenna structure is 1.21 GHz.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection between devices or units may be in electrical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供了一种天线结构和电子设备,在天线结构中的介质层的不同区域分别设置不同的介质,实现天线结构的小型化。电子设备包括:辐射体,地板,导电边框和介质层。边框上具有第一位置和第二位置,其中,第一位置和第二位置之间的边框作为辐射体的至少一部分。辐射体包括接地点,辐射体在接地点处通过地板接地。介质层,位于辐射体与地板之间。介质层包括第一介质和第二介质,其中,在接地点处,辐射体与地板之间的介质层包括第一介质;第一介质的相对磁导率大于1,第二介质的相对介电常数大于1。

Description

一种天线结构和电子设备
本申请要求于2022年2月21日提交中国专利局、申请号为202210155629.8、申请名称为“一种天线结构和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种天线结构和电子设备。
背景技术
电子设备特别是手机产品,随着曲面屏柔性屏等关键技术的快速发展,工业设计(industrial design,ID)的轻薄化、极致屏占比已成为一种趋势,这种设计大大压缩了天线空间;同时,电子设备的一些功能如拍摄需求越来越高,导致摄像头数量和体积逐渐增加,加大了整机天线设计的复杂度。当前状态下,电子设备的通信频段在很长时间内还将出现第三代移动通信技术(3th generation wireless systems,3G)、第四代移动通信技术(4th generation wireless systems,4G)、第五代移动通信技术(5th generation wireless systems,5G)频段共存的局面,天线数量越来越多。基于这些变化,在电子设备上实现小型化的天线成为当务之急。
发明内容
本申请实施例提供了一种天线结构和电子设备,在天线结构中的介质层的不同区域分别设置电磁参数不同的介质,实现天线结构的小型化。
第一方面,提供了一种天线结构,包括:辐射体,包括接地点;地板,所述辐射体在所述接地点处通过所述地板接地;导电边框,所述边框上具有第一位置和第二位置,其中,所述第一位置和所述第二位置之间的边框作为所述辐射体的至少一部分;以及介质层,位于所述辐射体与所述地板之间;其中,所述介质层包括第一介质和第二介质,其中,在所述接地点处,所述辐射体与所述地板之间的所述介质层包括所述第一介质;所述第一介质的相对磁导率大于1,所述第二介质的相对介电常数大于1。
根据本申请实施例的技术方案,对于电子设备中的边框天线来说,其接地点一般为电流大点,对应于电场零点或磁场强点。在接地点处的介质层设置相对磁导率大于1的第一介质,可以使磁场在磁场强区获得加载,电场在相对介电常数大于1的第二介质设置的区域进行获得加载,从而可以在更小的尺寸下产生相同的磁场和电场,以实现天线结构的小型化。
结合第一方面,在第一方面的某些实现方式中,所述辐射体还包括馈电点;所述边框还具有第三位置,所述第三位置设置于所述第一位置和所述第二位置之间;所述辐射体在所述第二位置处与所述边框的其他部分通过缝隙间隔;所述接地点设置于所述第一位置,所述馈电点设置于所述第一位置和所述第三位置之间;在所述第一位置和所述第三位置之 间,所述辐射体与所述地板间的所述介质层为第一介质层,所述第一介质层包括所述第一介质;在所述第二位置和所述第三位置之间,所述辐射体与所述地板间的所述介质层为第二介质层,所述第二介质层包括所述第二介质。
根据本申请实施例的技术方案,当天线结构包括IFA时,天线结构产生的磁场强区(磁场大于电场的区域)靠近第一位置,天线结构产生的电场强区(电场大于磁场的区域)靠近第二位置。
结合第一方面,在第一方面的某些实现方式中,所述第一位置和所述第二位置之间的中心与所述第三位置的距离L1,与所述第一位置和所述第二位置之间的距离L满足:L1≤L×25%。
结合第一方面,在第一方面的某些实现方式中,L1≤L×12.5%,或L1≤L×7%。
根据本申请实施例的技术方案,在第三位置处,电场可以等于磁场。应理解,在实际的应用中,第三位置也可以根据需要靠近第一位置或第二位置,并不一定设置在电场等于磁场处。应理解,随着第三位置向第一位置和第二位置之间的中心位置靠近,天线结构产生的电场以及磁场可以获得更大的加载,进一步实现天线结构的小型化。
结合第一方面,在第一方面的某些实现方式中,辐射体还包括馈电点;所述边框还具有第三位置和第四位置,所述第三位置设置于所述第一位置和所述第二位置之间,所述第四位置设置于所述第二位置和所述第三位置之间;所述接地点和所述馈电点均设置于所述第三位置和所述第四位置之间;所述辐射体在所述第一位置处和所述第二位置处分别与所述边框的其他部分通过缝隙间隔;在所述第三位置和所述第四位置之间,所述辐射体与所述地板间的所述介质层为第一介质层,所述第一介质层包括所述第一介质;在所述第一位置和所述第三位置之间以及所述第二位置和第四位置之间,所述辐射体与所述地板间的所述介质层为第二介质层,所述第二介质层包括所述第二介质。
根据本申请实施例的技术方案,当天线结构包括T型天线时,天线结构产生两个电场强区(电场大于磁场的区域)分别靠近第一位置和第二位置,天线结构产生的磁场强区(磁场大于电场的区域)位于两个电场强区之间。
结合第一方面,在第一方面的某些实现方式中,辐射体还包括馈电点;所述接地点包括第一接地点和第二接地点,所述第一接地点设置于所述第一位置,所述第二接地点设置于所述第二位置;所述边框还具有第三位置和第四位置,所述第三位置设置于所述第一位置和所述第二位置之间,所述第四位置设置于所述第二位置和所述第三位置之间;所述馈电点设置于所述第一位置和所述第三位置之间;在所述第一位置和所述第三位置之间以及所述第二位置和第四位置之间,所述辐射体与所述地板间的所述介质层为第一介质层,所述第一介质层包括所述第一介质;在所述第三位置和所述第四位置之间,所述辐射体与所述地板间的所述介质层为第二介质层,所述第二介质层包括所述第二介质。
根据本申请实施例的技术方案,当天线结构包括缝隙天线时,天线结构产生两个磁场强区(磁场大于电场的区域)分别靠近第一位置和第二位置,天线结构产生的电场强区(电场大于磁场的区域)位于两个磁场强区之间。
结合第一方面,在第一方面的某些实现方式中,所述第三位置和所述第四位置之间的距离L1,与所述第一位置和所述第二位置之间的距离L满足,(50%-10%)×L≤L1≤(50%+10%)×L。
结合第一方面,在第一方面的某些实现方式中,所述第一位置和所述第二位置之间的 中心与所述第三位置的距离L2满足,(25%-5%)×L≤L2≤(25%+5%)×L;和/或,所述第一位置和所述第二位置之间的中心与所述第四位置的距离L3满足,(25%-5%)×L≤L3≤(25%+5%)×L。
根据本申请实施例的技术方案,在第三位置和第四位置处,电场可以等于磁场。应理解,在实际的应用中,第三位置和第四位置也可以根据需要靠近第一位置或第二位置,并不一定设置在电场等于磁场处。应理解,随着第三位置203向第一位置201距离为L处,以及第四位置204向第二位置202距离为L处靠近,天线结构产生的电场以及磁场可以获得更大的加载,进一步实现天线结构的小型化。
结合第一方面,在第一方面的某些实现方式中,所述第一位置和所述第三位置之间的距离与所述第二位置和所述第四位置之间的距离相同。
根据本申请实施例的技术方案,天线结构越对称,其辐射特性越好。
结合第一方面,在第一方面的某些实现方式中,所述第一介质的相对磁导率介于2至5之间;和/或,所述第二介质的相对介电常数介于2至5之间。
根据本申请实施例的技术方案,随着第二介质的相对介电常数和第一介质的相对磁导率的增加,第二介质带来的电损耗和第一介质的磁损耗会同步增加,影响天线结构的辐射性能。因此,需要控制第二介质的相对介电常数和第一介质的相对磁导率在适当的范围内。
结合第一方面,在第一方面的某些实现方式中,所述第一介质的相对磁导率的数值大于所述第二介质的相对介电常数的数值时,在所述边框的延伸方向上,所述第一介质层的长度大于所述第二介质层的长度;所述第一介质的相对磁导率的数值小于所述第二介质的相对介电常数的数值时,在所述边框的延伸方向上,所述第一介质层的长度小于所述第二介质层的长度。
根据本申请实施例的技术方案,当第一介质的相对磁导率的数值与第二介质的相对介电常数的数值不相同时,第一介质的相对磁导率的数值与第二介质的相对介电常数的数值较高的对应的区域的长度更大。
结合第一方面,在第一方面的某些实现方式中,所述第一介质层中介质的相对介电常数大于1;所述第二介质层中介质的相对磁导率等于1。
结合第一方面,在第一方面的某些实现方式中,所述第二介质层中介质的相对磁导率大于1。
第二方面,提供了一种天线结构,包括:介质层;辐射体,所述辐射体设置于所述介质层表面;其中,所述辐射体包括至少两个第一区域和至少一个第二区域,任意两个相邻的所述第一区域由一个所述第二区域间隔;所述辐射体包括馈电点,所述馈电点设置于所述第一区域;所述第一区域中的至少一个第一区域处的介质层包括第一介质;所述第二区域中的至少一个第二区域处的介质层包括第二介质,所述第一介质的相对介电常数大于1且相对磁导率等于1,所述第二介质的相对磁导率大于1。
结合第二方面,在第二方面的某些实现方式中,每一个所述第二区域处的介质层均包括所述第二,每一个所述第一区域处的介质层均包括所述第一。
结合第二方面,在第二方面的某些实现方式中,所述辐射体为片状或线状辐射体,所述天线结构还包括地板,所述介质层设置于所述辐射体与所述地板之间。
结合第二方面,在第二方面的某些实现方式中,所述第二区域对应的所述介质层的区域包括所述天线结构在所述辐射体与所述地板之间的电场零点的分布区域。
结合第二方面,在第二方面的某些实现方式中,所述第二介质的相对磁导率介于2至5之间;和/或,所述第一介质的相对介电常数介于2至5之间。
结合第二方面,在第二方面的某些实现方式中,所述天线结构包括多个所述辐射体,多个所述辐射体呈阵列分布。
结合第二方面,在第二方面的某些实现方式中,所述第二介质的相对磁导率的数值大于所述第一介质的相对介电常数的数值时,所述第二区域的面积大于所述第一区域的面积;所述第二介质的相对磁导率的数值小于所述第一介质的相对介电常数的数值时,所述第二区域的面积小于所述第一区域的面积。
第三方面,提供了一种电子设备,包括第二方面中任一项所述的天线结构。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图。
图2是本申请实施例提供的一种贴片天线的等效磁流分布示意图。
图3是本申请实施例提供的一种贴片(patch)天线的结构示意图。
图4是本申请实施例提供的天线结构100的立体结构示意图。
图5是本申请实施例提供的天线结构的俯视图。
图6是本申请实施例提供的天线结构100的辐射体的示意图。
图7本申请实施例提供的对照组的天线结构。
图8是图5和图7所示天线结构的S参数仿真结果。
图9是图5和图7所示天线结构的辐射效率的仿真结果。
图10是工作在TM10模式的天线结构的示意图。
图11是工作在TM11模式的天线结构的示意图。
图12是工作在TM12模式的天线结构的示意图。
图13是工作在TM02模式的天线结构的示意图。
图14是工作在TM20模式的天线结构的示意图。
图15是工作在TM21模式的天线结构的示意图。
图16是工作在TM22模式的天线结构的示意图。
图17是本申请实施例提供的一种天线阵列的结构示意图。
图18是本申请实施例提供的一种天线结构200的结构示意图。
图19是图18所示天线结构的S参数仿真结果。
图20是本申请实施例提供的另一种天线结构200的结构示意图。
图21是图20所示天线结构的S参数仿真结果。
图22是本申请实施例提供的又一种天线结构200的结构示意图。
图23是图22所示天线结构的S参数仿真结果。
具体实施方式
以下,对本申请实施例可能出现的术语进行解释。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导 线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
连接/相连:可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
接通:通过以上“电连接”或“间接耦合”的方式使得两个或两个以上的元器件之间导通或连通来进行信号/能量传输,都可称为接通。
相对/相对设置:A与B相对设置可以是指A与B面对面(opposite to,或是face to face)设置。
电容:可理解为集总电容和/或分布电容。集总电容指的是呈容性的元器件,例如电容元件;分布电容(或分布式电容)指的是两个导电件间隔一定间隙而形成的等效电容。
谐振/谐振频率:谐振频率又叫共振频率。谐振频率可以指天线输入阻抗虚部为零处的频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。共振最强点对应的频率就是中心频率点频率。中心频率的回波损耗特性可以小于-20dB。
谐振频段/通信频段/工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。
电长度:可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±25%。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±10%。
波长:或者工作波长,可以是谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
本申请实施例中提及的中间或中间位置等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。例如,导体的中间(位置)可以是指导体上包括中点的一段导体部分,可以是包括该导体中点的一段八分之一波长的导体部分,其中,波长可以是天线的工作频段对应的波长,可以是工作频段的中心频率对应的波长,或者,谐振点对应的波长。又例如,导体的中间(位置)可以是指导体上距离中点小于预定阈值(例如,1mm,2mm,或2.5mm)的一段导体部分。
本申请实施例中提及的共线、共轴、共面、对称(例如,轴对称、或中心对称等)、平行、垂直、相同(例如,长度相同、宽度相同等等)等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。共线的两个辐射枝节或者两个天线单元的边缘之间在线宽方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。 共面的两个辐射枝节或者两个天线单元的边缘之间在垂直于其共面平面的方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。相互平行或垂直的两个天线单元之间可以存在预定角度(例如±5°,±10°)的偏差。
电介质:是指能够被电极化的介质。在特定的频带内,时变电场在其内给定方向产生的传导电流密度分矢量值远小于在此方向的位移电流密度的分矢量值。在本申请的实施例中,可以简单的理解电介质为,相对介电常数大于1的介质,且相对磁导率等于1的介质。
磁介质:由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布,在这种磁场作用下,其内部状态发生变化,并反过来影响磁场存在或缝补的物质,成为磁介质。在本申请的实施例中,可以简单的理解磁介质为,相对磁导率大于1的介质,且相对介电常数等于1的介质。
磁电介质:同时具有电介质属性和磁介质属性的介质。在本申请的实施例中,可以简单的理解磁电介质为,相对介电常数和相对磁导率均大于1的介质。
应理解,由于磁电介质具有部分磁介质的属性,也具有部分电介质的属性,因此,本申请实施例中的磁介质可以由磁电介质实现,并且可以根据实际的生产或设计需求,选择磁电介质的相对介电常数和相对磁导率数值。
对于上述电介质的相对介电常数以及磁介质的相对磁导率,以及磁电介质的相对介电常数或相对磁导率,可以通过平行板谐振法(post resonator method)以及闭腔谐振法(或闭式谐振腔法)(closed cavity resonator method,或,shielded cavity method)或其他谐振法(dielectric resonator techniques)进行测量。其中,平行板谐振法是通过将待测量样品放置于两个平行的金属板形成的开放式腔体中,使用矢量网络分析仪与该腔体的输入以及输出端口电连接,改变输入端口输入信号的频率,使腔体在某一频率产生谐振(阻抗最小),从而通过计算确定该样品的电参数(相对介电常数或相对磁导率),平行板谐振法可以例如是HakkiColeman法。闭腔谐振法是通过将待测量样品放置于闭合式腔体(例如,圆柱形腔体),改变输入端口输入信号的频率,使腔体在某一频率产生谐振(阻抗最小),从而通过计算确定该样品的电参数(相对介电常数或相对磁导率)。
天线系统效率(total efficiency):指在天线的端口处输入功率与输出功率的比值。
天线辐射效率(radiation efficiency):指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-损耗功率;损耗功率主要包括回波损耗功率和金属的欧姆损耗功率和/或介质损耗功率。辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗均是辐射效率的影响因素。
本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,效率越接近0dB,表征该天线的效率越优。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣。S11参数通常为负数,S11参数越小,表示天线回波损耗越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多, 天线的系统效率越高;S11参数越大,表示天线回波损耗越大,天线的系统效率越低。
需要说明的是,工程上一般以S11值为-6dB作为标准,当天线的S11值小于-6dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
天线的极化方向:在空间给定点上,电场强度E(矢量)是时间t的一元函数,随着时间的推移,矢量端点在空间周期性地描绘出轨迹。该轨迹直线垂直地面,称垂直极化,如果水平于地面,称水平极化。
地,或地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于电子设备内元器件的接地。一个实施例中,“地”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
下面将结合附图,对本申请实施例的技术方案进行描述。
如图1所示,电子设备10可以包括:盖板(cover)13、显示屏/模组(display)15、印刷电路板(printed circuit board,PCB)17、中框(middle frame)19和后盖(rear cover)21。应理解,在一些实施例中,盖板13可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如超薄玻璃材料盖板,PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。
其中,盖板13可以紧贴显示模组15设置,可主要用于对显示模组15起到保护、防尘作用。
在一个实施例中,显示模组15可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请实施例对此并不做限制。
中框19主要起整机的支撑作用。图1中示出PCB17设于中框19与后盖21之间,应可理解,在一个实施例中,PCB17也可设于中框19与显示模组15之间,本申请实施例对此并不做限制。其中,印刷电路板PCB17可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB17上承载电子元件,例如,射频芯片等。在一个实施例中,印刷电路板PCB17上可以设置一金属层。该金属层可用 于印刷电路板PCB17上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB17中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在印刷电路板PCB17上靠近中框19的一侧。在一个实施例中,印刷电路板PCB17的边缘可以看作其接地层的边缘。可以在一个实施例中,金属中框19也可用于上述元件的接地。电子设备10还可以具有其他地板/接地板/接地层,如前所述,此处不再赘述。
其中,电子设备10还可以包括电池(图中未示出)。电池可以设置于设于中框19与后盖21之间,或者可设于中框19与显示模组15之间,本申请实施例对此并不做限制。在一些实施例中,PCB17分为主板和子板,电池可以设于所述主板和所述子板之间,其中,主板可以设置于中框19和电池的上边沿之间,子板可以设置于中框19和电池的下边沿之间。
电子设备10还可以包括边框11,边框11可以由金属等导电材料形成。边框11可以设于显示模组15和后盖21之间并绕电子设备10的外围周向延伸。边框11可以具有包围显示模组15的四个侧边,帮助固定显示模组15。在一种实现方式中,金属材料制成的边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框11的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框19可以包括边框11,包括边框11的中框19作为一体件,可以对整机中的电子器件起支撑作用。盖板13、后盖21分别沿边框的上下边沿盖合从而形成电子设备的外壳或壳体(housing)。在一个实施例中,盖板13、后盖21、边框11和/或中框19,可以统称为电子设备10的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板13、后盖21、边框11或中框19中任一个的部分或全部,或者指代盖板13、后盖21、边框11或中框19中任意组合的部分或全部。
中框19上的边框11可以至少部分地作为天线辐射体以收/发射频信号,作为辐射体的这一部分边框,与中框19的其他部分之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境。在一个实施例中,中框19在作为辐射体的这一部分边框处可以设置孔径,以利于天线的辐射。
或者,可以不将边框11看做中框19的一部分。在一个实施例中,边框11可以和中框19连接并一体成型。在另一实施例中,边框11可以包括向内延伸的突出件,以与中框19相连,例如,通过弹片、螺丝、焊接等方式相连。边框11的突出件还可以用来接收馈电信号,使得边框11的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框30之间可以存在间隙42,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。
其中,后盖21可以是金属材料制成的后盖;也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖;还可以是同时包括导电材料和非导电材料制成的后盖。
电子设备10的天线还可以设置于边框11内。当电子设备10的边框11为非导电材料时,天线辐射体可以位于电子设备10内并延边框11设置。例如,天线辐射体贴靠边框11设置,以尽量减小天线辐射体占用的体积,并更加的靠近电子设备10的外部,实现更好的信号传输效果。需要说明的是,天线辐射体贴靠边框11设置是指天线辐射体可以紧 贴边框11设置,也可以为靠近边框11设置,例如天线辐射体与边框11之间能够具有一定的微小缝隙。
电子设备10的天线还可以设置于外壳内,例如支架天线、毫米波天线等(图1中未示出)。设置于壳体内的天线的净空可以由中框、和/或边框、和/或后盖、和/或显示屏中任一个上的开缝/开孔来得到,或者由任几个之间形成的非导电缝隙/孔径来得到,天线的净空设置可以保证天线的辐射性能。应可理解,天线的净空可以是由电子设备10内的任意导电元器件来形成的非导电区域,天线通过该非导电区域向外部空间辐射信号。在一个实施例中,天线40的形式可以为基于柔性主板(flexible printed circuit,FPC)的天线形式,基于激光直接成型(laser-direct-structuring,LDS)的天线形式或者微带天线(microstrip disk antenna,MDA)等天线形式。在一个实施例中,天线也可采用嵌设于电子设备10的屏幕内部的透明结构,使得该天线为嵌设于电子设备10的屏幕内部的透明天线单元。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
应理解,在本申请的实施例中,可以认为电子设备的显示屏所在的面为正面,后盖所在的面为背面,边框所在的面为侧面。
应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。
图2是本申请提供的一种贴片天线的等效磁流分布示意图,由图2来介绍本申请将涉及的天线模式。
如图2所示,为贴片(patch)天线的几种不同的横磁模(transverse magnetic mode,TM mode)下的等效磁流分布示意图,可以根据等效磁流分布示意图预计贴片天线的方向图以及极化方式,TM模/TM模式可以理解为贴片天线产生的辐射在传播方向上有电场分量而无磁场分量。
对于不同的TM模式来说,其等效磁流分布具有以下规律:
(1)TMmn模式下,等效磁流沿x轴方向具有m个零点(由于等效磁流的分布类似于正弦分布,在零点两侧的等效磁流反向,因此,等效磁流的反向点为零点),沿y轴方向具有n个零点。
(2)沿同一方向的相邻零点之间的距离为λ/2,当该方向仅存在一个零点时,该方向上的贴片的长度为λ/2,其中,λ为贴片天线的工作波长。
例如,如图2中的(a)所示,为贴片天线的TM01模式下的等效磁流分布示意图。贴片天线在y轴方向具有一个零点,因此,贴片天线在y轴方向的电长度为λ/2。如图2中的(b)所示,为贴片天线的TM10模式下的等效磁流分布示意图。贴片天线在x轴方向具有一个零点,因此,贴片天线在x轴方向的电长度为λ/2。如图2中的(c)所示,为贴片天线的TM11模式下的等效磁流分布示意图。贴片天线在x轴方向和y轴方向分别具有一个零点,因此,贴片天线在x轴方向和y轴方向的电长度为λ/2。如图2中的(d)所示,为贴片天线的TM02模式下的等效磁流分布示意图。贴片天线在y轴方向具有两个零点,因此,贴片天线在y轴方向的电长度为λ。
随着无线通信技术的快速发展,过去第二代(second generation,2G)移动通信系统主要支持通话功能,电子设备只是人们用来收发简讯以及语音沟通的工具,无线上网功能由于数据传输利用语音信道来传送,速度极为缓慢。随着5G移动通信系统的发展,当前 状态下,电子设备的通信频段在很长时间内还将出现3G、4G、5G频段共存的局面,天线数量越来越多,而由于电子设备的空间有限,对天线小型化设计有着严格的要求。
图3是本申请实施例提供的一种贴片(patch)天线的结构示意图。
图3所示的天线结构包括地板、介质板和辐射体,其中,介质板设置于辐射体与地板之间,馈电单元可以设置在地板上,并通过馈电点与辐射体电连接。当馈电单元馈入电信号时,辐射体产生辐射。在这种结构中,贴片天线的辐射体的宽度约为0.5个工作波长。
最常见的缩小贴片天线的辐射体的尺寸的技术为电介质加载。因为电磁波的波长在介质中会缩短,根据电磁场的理论,贴片天线的谐振频率f满足以下公式:
其中,c为光速,εr为在介质板中电介质的相对介电常数。
根据上述公式,如果介质板中电介质的相对介电常数变大,则贴片天线的谐振频率会向低频移动,等同于在相同的工作频率下,贴片天线的辐射体的尺寸变小。
但是随着电介质的相对介电常数的增加,贴片天线的带宽会变窄,存在无法满足宽带通信需求等问题。同时,随着电介质的相对介电常数的增加,电介质带来的电损耗会同步增加,电损耗的大小与相对介电常数成正比,会导致贴片天线的效率降低。
本申请实施例提供了一种天线结构和电子设备,在天线结构中的介质层的不同区域分别设置电介质或磁介质,实现天线结构的小型化。
图4和图5是本申请实施例提供的一种天线结构100的结构示意图。其中,图4是天线结构100的立体结构示意图。图5是天线结构的俯视图。
如图4所示,天线结构100可以包括辐射体110和介质层120,辐射体110设置于介质层120表面以形成贴片天线。
如图5所示,辐射体110包括两个第一区域111和一个第二区域112,第二区域112位于两个第一区域111之间。
辐射体110包括馈电点114,馈电点114设置于两个第一区域111中的一个,馈电点114用于为天线结构100馈入电信号,以使天线结构100产生辐射。两个第一区域111中的至少一个第一区域处的介质层包括第一介质。在一个实施例中,第一介质是电介质。第二区域112处的介质层包括第二介质。在一个实施例中,第二介质是磁介质。
其中,“第一区域处的介质层/第一区域对应的介质层”和“第二区域处的介质层/第二区域对应的介质层”,应理解为,辐射体的区域所对应的介质层区域。例如,与辐射体的第一区域/第二区域对应设置的介质层区域;或例如,承托辐射体的第一区域/第二区域的介质层区域;或例如,辐射体的第一区域/第二区域所覆盖的介质层区域。
根据本申请实施例提供的技术方案,在辐射体110的不同区域对应的介质层120的设置电介质或磁介质,可以使对应区域的电场或磁场获得加载,从而减少天线结构100的尺寸。其中,电场或磁场获得作用可以理解为天线结构100通过设置电介质和磁介质可以在更小的尺寸下产生相同的磁场和电场。在一个实施例中,也可以理解为通过在不同区域设置电介质和磁介质,使相同尺寸的天线结构的谐振频率更低,也等同于相同谐振频率时天线结构的尺寸更小。
在一个实施例中,天线结构100还包括地板,介质层120设置于辐射体110与地板之间。换句话说,地板和辐射体110之间填充有介质层120。
在一个实施例中,每一个第一区域111处的介质层均包括电介质。
在一个实施例中,每一个第一区域111处的介质层不包括磁介质,仅包括电介质。在一个实施例中,第二区域112处介质层不包括电介质,仅包括磁介质。
在本申请的实施例中,第二介质可以是磁电介质。应理解,在本申请实施例中,以第二介质为磁介质为例进行说明。其中,磁介质在第二区域112处对磁场进行加载。由于磁电介质具有磁介质的特性,因此,在实际的应用中,第二介质可以是磁电介质。在一个实施例中,第二区域112处的介质层可以由磁电介质进行填充。
在本申请的实施例中,第一介质可以是磁电介质。应理解,在本申请的实施例中,以第一介质为电介质为例进行说明。其中,电介质在第一区域111处对电场进行加载。由于磁电介质具有电介质的特性,因此,在实际的应用中,第一介质可以是磁电介质。在一个实施例中,第一区域111处的介质层可以由磁电介质进行填充。
在一个实施例中,第一区域111处的介质层包括第一介质,第二区域112处的介质层包括第二介质,第一介质的相对介电常数大于1,第二介质的相对磁导率大于1。当第一区域的介质层中包括电介质时(第一介质为电介质),则第一介质的相对介电常数大于1,且相对磁导率等于1。当第一区域的介质层中包括磁电介质时(第一介质为磁电介质),则第一介质的相对介电常数大于1,且相对磁导率大于1。当第二区域的介质层中包括磁介质时(第二介质为磁介质),则第二介质的相对介电常数等于1,且相对磁导率大于1。当第二区域的介质层中包括磁电介质时(第二介质为磁电介质),则第二介质的相对介电常数大于1,且相对磁导率大于1。
在一个实施例中,在第二区域112对应的介质层区域,天线结构100产生的磁场大于或等于电场。在第一区域111对应的介质层区域,天线结构100产生的电场大于或等于磁场。应理解,在天线结构100的每一个电场强区(电场大于磁场的区域)与每一个磁场强区(磁场大于电场的区域)分别设置电介质和磁介质,可以使对应区域的电场或磁场获得最大的加载作用。天线结构100通过在每一个电场强区设置电介质以每一个及磁场强区设置磁介质可以在最小的尺寸下产生相同的磁场和电场。在一个实施例中,也可以理解为通过在不同区域设置电介质和磁介质使相同尺寸的天线结构的谐振频率最低,也等同于相同谐振频率时天线结构的尺寸最小。
在一个实施例中,第二区域112对应的介质层区域包括天线结构100在辐射体110与地板之间的电场零点的分布区域例如,第二区域112对应的介质层的区域中可以包括天线结构100在辐射体110与地板之间产生的至少一个电场零点。应理解,电场零点可以对应于天线结构100产生的电流大点或磁场强点,则第二区域112对应的介质层区域也包括天线结构100在辐射体110与地板之间产生的电流大点或磁场强点所在区域。
在一个实施例中,辐射体110可以为规则或不规则的正方形,矩形,三角形,圆形或其他多边形,其中,“不规则”表示辐射体110可以是整体呈正方形,矩形,三角形,圆形或其他多边形,而局部包括突出部和/或凹进部。为论述的简洁,本申请实施例仅以辐射体110为正方形为例进行说明,本申请实施例对辐射体的形状并不做限制。
在图6所示的天线结构100中,以磁介质的相对磁导率的数值与电介质的相对介电常数的数值相同为例进行说明。
馈电点114馈入电信号时,天线结构100可以工作在TM01模式下,产生的电场(Ez)沿z方向,磁场(Hx)沿x方向,则电场与磁场的比值满足以下公式1:
其中,η0为真空中的波阻抗,ηr为电介质中的波阻抗,εr为在介质层120中电介质的相对介电常数,b为辐射体110的边长。
当y=b/4或y=3b/4时,cotπy/b=1,电场与磁场相等。
当y<b/4或y>3b/4,|cotπy/b|>1,电场大于磁场。
当b/4<y<3b/4,|cotπy/b|>1,磁场大于电场。
在TM01模式下,根据上述公式,天线结构100产生的电场和磁场以y=b/4和y=3b/4为分界线,在b/4<y<3b/4的区域,为磁场强区(磁场大于电场的区域),在y<b/4和y>3b/4的区域,为电场强区(电场大于磁场的区域)。
在一个实施例中,当第二区域为b/4<y<3b/4的区域,第二区域112包括天线结构100的磁场强区在辐射体110上分布的区域。当第一区域111为y<b/4和y>3b/4的区域,第一区域111包括天线结构100的电场强区在辐射体110上分布的区域。第二区域112的虚拟轴线可以是第二区域112的中轴线。
在一个实施例中,两个第一区域111沿第二区域112的虚拟轴线对称。
在一个实施例中,天线结构100产生的场(电场或磁场)分布沿着第二区域112的虚拟轴线对应的介质层区域呈对称分布。
在一个实施例中,天线结构100产生的电场零点可以位于第二区域112的虚拟轴线对应的介质层区域上,对应的,磁场强点或电流大点也可以位于第二区域112的虚拟轴线对应的介质层区域上。
在一个实施例中,第二区域112的宽度为辐射体宽度的二分之一,电场强区由第二区域112分为两个第一区域111,每个第一区域111的宽度为辐射体宽度的四分之一,如图6所示。
在一个实施例中,第二介质的相对磁导率介于2至5之间。其中,第二介质可以是磁介质。在一个实施例中,第一介质的相对介电常数介于2至5之间。其中,第一介质可以是电介质。随着电介质的相对介电常数和磁介质的相对磁导率的增加,电介质带来的电损耗和磁介质的磁损耗会同步增加,影响天线结构的辐射性能。因此,需要控制电介质的相对介电常数和磁介质的相对磁导率在适当的范围内。应理解,在工程应用中,磁介质的相对磁导率或电介质的相对介电常数可以能存在部分误差(例如,10%),在误差范围内,均应算作满足该磁介质的相对磁导率或电介质的相对介电常数的范围。应理解,由于磁电介质同时具有磁介质和电介质的特性,对于介质层中包括磁电介质的情况,也可以按照磁介质的相对磁导率的范围或电介质的相对介电常数的范围应用。
在上述实施例中,以磁介质的相对磁导率的数值与电介质的相对介电常数的数值相同为例进行说明,在实际的应用中,磁介质的相对磁导率的数值与电介质的相对介电常数的数值可以不同,可以根据实际的生产或设计需要进行调整。
当磁介质的相对磁导率的数值与电介质的相对介电常数的数值相同时,第二区域112的宽度为辐射体宽度的二分之一,两个第一区域111的宽度之和为辐射体宽度的二分之一,辐射体110的两个第一区域111的宽度之和与第二区域的宽度相同。应理解,在工程应用中第二区域112的宽度或两个第一区域111的宽度之和可能存在,部分误差(例如,10%),在误差范围内,均应算作第二区域112的宽度或两个第一区域111的宽度之和相同。
或者,对于不规则的辐射体,当磁介质的相对磁导率的数值与电介质的相对介电常数的数值相同时,第一区域111所占的面积可以等于第二区域所占的面积。
当磁介质的相对磁导率的数值与电介质的相对介电常数的数值不相同时,磁介质的相对磁导率的数值与电介质的相对介电常数的数值较高的对应的区域的宽度更大。例如,磁介质的相对磁导率的数值大于电介质的相对介电常数的数值,第二区域112的宽度大于两个第一区域111的宽度之和。在一个实施例中,第二介质的相对磁导率的数值大于第一介质的相对介电常数的数值时,第二区域的面积大于第一区域的面积;第二介质的相对磁导率的数值小于第一介质的相对介电常数的数值时,第二区域的面积小于第一区域的面积。利用磁介质加载的磁场的能量,去补充电介质加载的电场的能量,以使天线结构100产生的场的能量与磁介质的相对磁导率的数值与电介质的相对介电常数的数值相同时保持一致。
或者,对于不规则的辐射体,当磁介质的相对磁导率的数值与电介质的相对介电常数的数值不同时,磁介质的相对磁导率的数值与电介质的相对介电常数的数值较高的对应的区域的面积更大。
在一个实施例中,磁介质或电介质可以是各向同性材料。其中,各向同性材料可以理解为在各个方向上磁介质的相对磁导率相同或在各个方向上电介质的相对介电常数相同。
在一个实施例中,磁介质或电介质可以是各向异性材料。其中,各向异性材料可以理解为在各个方向上磁介质的相对磁导率不同或在各个方向上电介质的相对介电常数不同。本申请实施例中,“磁介质的相对磁导率”可以表示该磁介质在天线结构100产生的磁场方向上的相对磁导率,而“电介质的相对介电常数”可以表示电介质在天线结构100产生的电场方向上的相对介电常数。例如,在上述实施例中,天线结构产生的电场沿z方向,电场受电介质在z方向的相对介电常数的影响,以实现电介质加载。天线结构产生的磁场沿x方向,磁场受磁介质在x方向的相对磁导率的影响,以实现磁介质加载。对于磁电介质,应做相似的理解,此处不再赘述。
图7至图9是本申请实施例提供的对照组天线及仿真结果。其中,图7是本申请实施例提供的对照组的天线结构。图8是图5和图7所示天线结构的S参数仿真结果。图9是图5和图7所示天线结构的辐射效率的仿真结果。
如图7所示,天线结构与图5所示的天线结构的区别仅在于介质层未设置磁介质,由电介质填充介质层,以及,为保证两种结构的天线结构的谐振频率大致相同,图7所示的天线结构的辐射体的边长与图5所示的天线结构的辐射体的边长不同。
在图7所示的天线结构中介质层与图5所示的天线结构中第一区域处介质层的电介质的相对介电常数均为4,图5所示的天线结构中第二区域处介质层的磁介质的相对磁导率为4。
如图8所示,图5所示的天线结构的谐振点为1.97GHz,图7所示的天线结构的谐振点为1.98GHz。
图5所示的天线结构与图7所示的天线结构谐振在相同的谐振频率,但是图5所示的天线结构中辐射体的尺寸为24mm×24mm,图7所示的天线结构中辐射体的尺寸为36mm×36mm。通过在辐射体不同区域处的介质层设置电介质和磁介质,有效缩减天线结构尺寸55.6%。并且,以S11<-6dB为标准,图5所示的天线结构与图7所示的天线结构的带宽相当,没有因为缩减天线结构尺寸而损失带宽。
如图9所示,图5所示的天线结构与图7所示的天线结构谐振在谐振点处的辐射效率类似,图5所示的天线结构仅降低0.3dB。
图10至图16是本申请实施例提供的另一种天线结构的示意图。
其中,图10至图16所示的天线结构与图5所示的天线结构的区别在于天线结构的工作模式不同,在不同工作模式的天线结构的辐射体上的第一区域和第二区域的布局不同。图10是工作在TM10模式的天线结构的示意图。图11是工作在TM11模式的天线结构的示意图。图12是工作在TM12模式的天线结构的示意图。图13是工作在TM02模式的天线结构的示意图。图14是工作在TM20模式的天线结构的示意图。图15是工作在TM21模式的天线结构的示意图。图16是工作在TM22模式的天线结构的示意图。
如图10至图16所示,天线结构可以包括至少两个第一区域和至少一个第二区域,任意两个相邻的第一区域由一个第二区域间隔。至少一个第一区域处的介质层包括电介质,至少一个第二区域处的介质层包括磁介质。
在一个实施例中,第二区域对应的介质层区域包括天线结构的电场零点在辐射体上分布的区域。例如,图10至图16所示的天线结构产生的电场零点位于图中所示的虚线对应的介质层区域上,电场零点可以对应于电流大点或磁场强点,则天线结构产生的电流大点或磁场强点也位于图中所示的虚线对应的介质层区域上。
应理解,在第二区域,天线结构产生的磁场大于或等于电场。在第一区域,天线结构产生的电场大于或等于磁场。在天线结构的电场强区(电场大于磁场的区域)与磁场强区(磁场大于电场的区域)分别设置电介质和磁介质,可以使对应区域的电场或磁场获得加载作用,以缩减天线结构的尺寸。
在一个实施例中,每一个第二区域处的介质层均包括磁介质。每一个第一区域处的介质层均包括电介质。应理解,在天线结构的每一个电场强区(电场大于磁场的区域)与每一个磁场强区(磁场大于电场的区域)分别设置电介质和磁介质,可以使对应区域的电场或磁场获得最大的加载作用,从而在最小的天线结构的尺寸下获得相同的磁场和电场。
图17是本申请实施例提供的一种天线阵列的结构示意图。
应理解,在上述实施例中,均以天线结构仅包括一个辐射体为例进行说明,在实际的应用中,天线结构可以包括多个辐射体,形成阵列天线,可以应用于输入多输出(multi-input multi-output,MIMO)系统,以提升电子设备的数据传输速率。在图17所示的实施例中,仅以辐射体工作在TM11模式为例,应可理解,天线阵列中的任一个或多个辐射体都可以工作于相同或不同的TM模式。
如图17中的(a)所示,天线结构可以包括2个辐射体,2个辐射体可以呈1×2的阵列分布。如图17中的(b)或(c)所示,天线结构可以包括4个辐射体,4个辐射体可以呈1×4或2×2的阵列分布。如图17中的(d)所示,天线结构可以包括16个辐射体,16个辐射体可以呈4×4的阵列分布。对于图17所示的天线阵列来说,仅作为举例使用,在实际的应用中,可以根据设计需要调整辐射体的数量以及排布方式,本申请实施例对此并不做限制。
应理解,在上述实施例中,以天线结构为贴片天线进行举例。对于本申请实施例提供的技术方案可以不仅仅应用于贴片天线,也可应用于下述的线天线,以下列具有代表性的实施例进行说明。
图18是本申请实施例提供的一种天线结构200的结构示意图。
如图18所示,天线结构200包括辐射体210,地板220,导电边框11和介质层230。
其中,辐射体210包括接地点211,辐射体210在接地点211处与地板220电连接实现接地。边框11上具有第一位置201和第二位置202。第一位置201和第二位置202之间的边框11作为辐射体210的至少一部分。介质层230位于辐射体210与地板220之间,或者,可以理解为辐射体210与地板220之间填充介质以形成介质层230。介质层230包括第一介质和第二介质。所述第一介质的相对磁导率大于1,所述第二介质的相对介电常数大于1。在一个实施例中,第一介质为磁介质。在一个实施例中,第二介质为电介质。其中,在接地点211处,辐射体210与地板220之间的介质层230包括第一介质。
应理解,第一位置201和第二位置202之间的边框11作为辐射体210的至少一部分可以理解为第一位置201和第二位置202之间的边框11作为辐射体210的主辐射体,天线结构200的辐射体210还可以包括与边框11电连接的枝节,或与边框11间隔的寄生枝节。
根据本申请实施例提供的技术方案,在辐射体210的不同位置处设置电介质或磁介质,可以使对应区域的电场或磁场获得加载,从而减小天线结构200的尺寸。对于电子设备中的边框天线来说,其接地点一般为电流大点,对应于电场零点或磁场强点。在辐射体210的接地点处设置磁介质,可以使磁场在磁场强区获得加载,可以在更小的尺寸下产生相同的磁场,以实现天线结构200的小型化。在辐射体210的其他设置电介质的区域,可以使电场获得加载,可以在更小的尺寸下产生相同的电场,以实现天线结构200的小型化。
在一个实施例中,辐射体210还包括馈电点212。边框11还具有第三位置203,第三位置203设置于第一位置201和第二位置202之间。辐射体210在第二位置202处与边框11的其他部分通过缝隙间隔。接地点211设置于第一位置201,馈电点212设置于第一位置201和第三位置203之间,在这种情况下,天线结构200包括倒F天线(inverted-F antenna,IFA)。
在一个实施例中,当天线结构包括IFA时,天线结构产生的磁场强区(磁场大于电场的区域)靠近第一位置201,天线结构产生的电场强区(电场大于磁场的区域)靠近第二位置202。在一个实施例中,在第一位置201和第三位置203之间,辐射体210与地板220间的介质层230为第一介质层,第一介质层包括第一介质。在一个实施例中,第一介质为磁介质。在第二位置202和第三位置203之间,辐射体210与地板220间的介质层230为第二介质层,第二介质层包括第二介质。在一个实施例中,第二介质为电介质。
在一个实施例中,在第一位置201和第三位置203之间(第一介质层),辐射体210与地板220间的介质层230不包括第二介质,在第二位置202和第三位置203之间,辐射体210与地板220间的介质层230(第二介质层)不包括第一介质。
在一个实施例中,在第一位置201和第三位置203之间,辐射体210与地板220间的介质层230(第一介质层)仅包括第一介质,在第二位置202和第三位置203之间,辐射体210与地板220间的介质层230(第二介质层)仅包括第二介质。
在本申请的实施例中,第一介质可以是磁电介质。应理解,在本申请实施例中,以第一介质为磁介质为例进行说明。其中,磁介质在第一位置201和第三位置203之间对磁场进行加载。由于磁电介质具有磁介质的特性,因此,在实际的应用中,第一介质可以是磁电介质。在一个实施例中,第一介质层可以由磁电介质进行填充。
在本申请的实施例中,第二介质可以是磁电介质。应理解,在本申请的实施例中,以 第二介质为电介质为例进行说明。其中,电介质在第二位置202和第三位置203之间对电场进行加载。由于磁电介质具有电介质的特性,因此,在实际的应用中,第二介质可以是磁电介质。在一个实施例中,第二介质层可以由磁电介质进行填充。
在一个实施例中,第一介质的相对磁导率大于1,第二介质的相对介电常数大于1。当第一介质层包括磁介质时(第一介质为磁介质),则第一介质的相对介电常数等于1,且相对磁导率大于1。当第一介质层包括磁电介质时(第一介质为磁电介质),则第一介质的相对介电常数大于1,且相对磁导率大于1。当第二介质层包括电介质时(第二介质为电介质),则第二介质的相对介电常数大于1,且相对磁导率等于1。当第二介质层包括磁电介质时(第二介质为磁电介质),则第二介质的相对介电常数大于1,且相对磁导率大于1。
以图18所示的天线结构和接下来以边框作为辐射体的天线结构(图20和图22所示天线结构)为例,在一个实施例中,第一介质(例如,磁介质)的相对磁导率介于2至5之间。在一个实施例中,第二介质(例如,电介质)的相对介电常数介于2至5之间。随着第二介质的相对介电常数和第一介质的相对磁导率的增加,介质带来的电损耗和磁损耗会同步增加,影响天线结构的辐射性能。因此,需要控制介质的相对介电常数和相对磁导率在适当的范围内。应理解,在工程应用中,第一介质的相对磁导率或第二介质的相对介电常数可以能存在部分误差(例如,10%),在误差范围内,均应算作满足该相对磁导率或相对介电常数的范围。
在下述实施例中,以磁介质的相对磁导率的数值与电介质的相对介电常数的数值相同为例进行说明,在实际的应用中,磁介质的相对磁导率的数值与电介质的相对介电常数的数值可以不同,可以根据实际的生产或设计需要进行调整。
当第一介质的相对磁导率的数值与第二介质的相对介电常数的数值相同时,在边框的延伸方向上,第一介质层的长度等于第二介质层的长度。应理解,在工程应用中第一介质层的长度或第二介质层的长度可能存在,部分误差(例如,10%),在误差范围内,均应算作第一介质层的长度与第二介质层的长度相同。
当第一介质的相对磁导率的数值与第二介质的相对介电常数的数值不相同时,第一介质的相对磁导率的数值大于第二介质的相对介电常数的数值时,在边框的延伸方向上,第一介质层的长度大于第二介质层的长度。第一介质的相对磁导率的数值小于第二介质的相对介电常数的数值时,在边框的延伸方向上,第一介质层的长度小于第二介质层的长度。利用磁介质加载的磁场的能量,去补充电介质加载的电场的能量,以使天线结构200产生的场的能量与磁介质的相对磁导率的数值与电介质的相对介电常数的数值相同时保持一致。
在一个实施例中,第三位置203设置在第一位置201和第二位置202之间的中心位置的附近。在IFA结构中,磁场强区靠近第一位置201,电场强区靠近第二位置。当第三位置203设置于第一位置201和第二位置202之间的中心位置时,根据上述公式1可知,电场与磁场可以大致相等,在该位置两侧的第一介质层和第二介质层可以使天线结构产生的电场以及磁场获得最大的加载。但是在实际的工程应用中,由于电子设备的内部布局,第三位置203可能会发生调整,使其偏离第一位置201和第二位置202之间的中心位置。
在一个实施例中,第一位置201和第二位置202之间的中心与第三位置203的距离L1,与第一位置201和第二位置202之间的距离L满足:L1≤L×25%。
应理解,由于电子设备的边框包括弯折区域,因此,在本申请实施例中所述的位置之间的距离,可以理解为沿边框11的距离,而不是两个位置之间的直线距离。例如,第一位置201和第二位置202之间的距离L,可以理解为第一位置201沿边框到达第二位置202的距离,而不是第一位置201和第二位置202之间的直线距离,在下述实施例中也可以相应理解。
在一个实施例中,L1≤L×12.5%,或L1≤L×7%。
应理解,随着第三位置203向第一位置201和第二位置202之间的中心位置靠近,天线结构产生的电场以及磁场可以获得更大的加载,进一步实现天线结构的小型化。
图19是图18所示天线结构的S参数仿真结果。
应理解,图19所示的天线结构的S参数仿真结果,以L=58mm为例进行仿真。随着第一位置201和第三位置203之间的距离L2变化获得不同的仿真结果。
如图19所示,当介质层不包括磁介质(L2=0mm)时,天线结构产生的谐振点约在0.82GHz。在L2介于10mm至40mm之间,随着磁介质的增加,当L2=28mm时,天线结构产生的谐振点的频率最低,天线结构的介质层的电介质和磁介质的分布最佳。随着磁介质的继续增加,天线结构产生的谐振点的频率逐渐向高频移动,但谐振点的频率仍然低于未设置磁介质的天线结构产生的谐振点的频率。
在图18所示的天线结构中,以天线结构200为IFA举例进行说明,天线结构200也可以是T型天线,如图20所示。
图20是本申请实施例提供的另一种天线结构200的结构示意图。
如图20所示,天线结构200包括辐射体210,地板220,导电边框11和介质层230。
其中,辐射体210包括接地点211,辐射体210在接地点211处与地板220电连接实现接地。边框11上具有第一位置201和第二位置202。第一位置201和第二位置202之间的边框11作为辐射体210的至少一部分。介质层230位于辐射体210与地板220之间,或者,可以理解为辐射体210与地板220之间填充介质以形成介质层230。介质层230包括第一介质和第二介质,其中,在接地点211处,辐射体210与地板220之间的介质层230包括第一介质。在一个实施例中,第一介质为磁介质。在一个实施例中,第二介质为电介质。
应理解,第一位置201和第二位置202之间的边框11作为辐射体210的至少一部分可以理解为第一位置201和第二位置202之间的边框11作为辐射体210的主辐射体,天线结构200的辐射体210还可以包括与边框11电连接的枝节,或与边框11间隔的寄生枝节。
如图20所示,辐射体210还包括馈电点212。边框11还具有第三位置203和第四位置204。第三位置203设置于第一位置201和第二位置202之间,第四位置204设置于第二位置202和第三位置203之间。辐射体210在第一位置201和第二位置202处与边框11的其他部分通过缝隙间隔。接地点211设置于第三位置203和第四位置204之间,馈电点212设置于第三位置203和第四位置204之间,在这种情况下,天线结构200包括T天线/T型天线。
在一个实施例中,当天线结构包括T天线时,天线结构产生两个电场强区(电场大于磁场的区域)分别靠近第一位置201和第二位置202,天线结构产生的磁场强区(磁场大于电场的区域)位于两个电场强区之间。在一个实施例中,在第三位置203和第四位置 204之间,辐射体210与地板220间的介质层230为第一介质层,第一介质层包括第一介质。在第一位置201和第三位置203之间以及第二位置202和第四位置204之间,辐射体210与地板220间的介质层230为第二介质层,第二介质层包括第二介质。
在一个实施例中,在第三位置203和第四位置204之间,辐射体210与地板220间的介质层230(第一介质层)不包括第二介质,在第一位置201和第三位置203之间以及第二位置202和第四位置204之间,辐射体210与地板220间的介质层230(第二介质层)不包括第一介质。
在一个实施例中,,在第三位置203和第四位置204之间,辐射体210与地板220间的介质层230(第一介质层)仅包括第一介质,在第一位置201和第三位置203之间以及第二位置202和第四位置204之间,辐射体210与地板220间的介质层230(第二介质层)仅包括第二介质。
在本申请的实施例中,第一介质可以是磁电介质。应理解,在本申请实施例中,以第一介质为磁介质为例进行说明。其中,磁介质在第三位置203和第四位置204之间对磁场进行加载。由于磁电介质具有磁介质的特性,因此,在实际的应用中,第一介质可以是磁电介质。在一个实施例中,第一介质层可以由磁电介质进行填充。
在本申请的实施例中,第二介质可以是磁电介质。应理解,在本申请的实施例中,以第二介质为电介质为例进行说明。其中,电介质在第一位置201和第三位置203之间以及第二位置202和第四位置204之间对电场进行加载。由于磁电介质具有电介质的特性,因此,在实际的应用中,第二介质可以是磁电介质。在一个实施例中,第二介质层可以由磁电介质进行填充。
在一个实施例中,第一介质的相对磁导率大于1,第二介质的相对介电常数大于1。当第一介质层包括磁介质时(第一介质为磁介质),则第一介质的相对介电常数等于1,且相对磁导率大于1。当第一介质层包括磁电介质时(第一介质为磁电介质),则第一介质的相对介电常数大于1,且相对磁导率大于1。当第二介质层包括电介质时(第二介质为电介质),则第二介质的相对介电常数大于1,且相对磁导率等于1。当第二介质层包括磁电介质时(第二介质为磁电介质),则第二介质的相对介电常数大于1,且相对磁导率大于1。
在一个实施例中,第三位置203设置在与第一位置201距离为L附近,第四位置204设置在与第二位置202距离为L附近,L为第一位置201和第二位置202之间的距离。在T天线结构中,两个电场强区分别靠近第一位置201和第二位置202,磁场强区位于两个电场强区之间。当第三位置203和第四位置204分别设置于距离第一位置201和第二位置202约1/4L处时,根据上述公式1可知,电场与磁场可以大致相等,在第三位置203和第四位置204两侧的第一介质层和第二介质层可以使天线结构产生的电场以及磁场获得最大的加载。但是在实际的工程应用中,由于电子设备的内部布局,第三位置203和第四位置204可能会发生调整。
在一个实施例中,第三位置203和第四位置204之间的距离L1,与第一位置201和第二位置202之间的距离L满足:(50%-10%)×L≤L1≤(50%+10%)×L。
在一个实施例中,第一位置201和第二位置202之间的中心与第三位置203的距离L2满足,(25%-5%)×L≤L2≤(25%+5%)×L。
在一个实施例中,第一位置201和第二位置202之间的中心与第四位置204的距离 L3满足,(25%-5%)×L≤L3≤(25%+5%)×L。
应理解,随着第三位置203向第一位置201距离为L处,以及第四位置204向第二位置202距离为L处靠近,天线结构产生的电场以及磁场可以获得更大的加载,进一步实现天线结构的小型化。
在一个实施例中,第一位置201和第三位置203之间的距离L4与第二位置202和第四位置204之间的距离L5相同。应理解,在工程的实际应用中,第一位置201和第三位置203之间的距离L4与第二位置202和第四位置204之间的距离L5可能会出现适应性的调整,因此,当90%×L4≤L5≤110%×L4时,可以定义为第一位置201和第三位置203之间的距离L4与第二位置202和第四位置204之间的距离L5相同。在这种情况,随着天线结构200越对称,其辐射特性越好。
图21是图20所示天线结构的S参数仿真结果。
应理解,图20所示的天线结构的S参数仿真结果,以第一位置201和第二位置202之间的距离L=76mm,第一位置201和第三位置203之间距离与第二位置202和第四位置204之间的距离相同为例进行仿真。随着第三位置203和第四位置204之间的距离L1变化获得不同的仿真结果。
如图21所示,当介质层不包括磁介质(L1=0mm)时,天线结构产生的谐振点约在1.24GHz和1.28GHz。在L1介于30mm至45mm之间,天线结构产生的谐振点的频率远低于未设置磁介质的天线结构产生的谐振点的频率。当L1=36mm时,天线结构产生的谐振点的频率最低,天线结构的介质层的电介质和磁介质的分布最佳。
在图18和图20所示的天线结构中,以天线结构200为IFA和T天线举例进行说明,天线结构200也可以是缝隙天线,如图22所示。
图22是本申请实施例提供的又一种天线结构200的结构示意图。
如图22所示,天线结构200包括辐射体210,地板220,导电边框11和介质层230。
其中,辐射体210包括接地点,辐射体210在接地点处与地板220电连接实现接地。边框11上具有第一位置201和第二位置202。第一位置201和第二位置202之间的边框11作为辐射体210的至少一部分。介质层230位于辐射体210与地板220之间,或者,可以理解为辐射体210与地板220之间填充介质以形成介质层230。介质层230包括第一介质和第二介质,其中,在接地点211处,辐射体210与地板220之间的介质层230包括第一介质。在一个实施例中,第一介质是磁介质。在一个实施例中,第二介质是电介质。
应理解,第一位置201和第二位置202之间的边框11作为辐射体210的至少一部分可以理解为第一位置201和第二位置202之间的边框11作为辐射体210的主辐射体,天线结构200的辐射体210还可以包括与边框11电连接的枝节,或与边框11间隔的寄生枝节。如图22所示,辐射体210还包括馈电点212,辐射体210接地点包括第一接地点213和第二接地点214。边框11还具有第三位置203和第四位置204。第三位置203设置于第一位置201和第二位置202之间,第四位置204设置于第二位置202和第三位置203之间。第一接地点213设置于第一位置201,第二接地点214设置于第二位置202。馈电点212设置于第一位置201和第三位置203之间,在这种情况下,天线结构200包括缝隙天线/槽天线。
在一个实施例中,当天线结构包括缝隙天线时,天线结构产生两个磁场强区(磁场大于电场的区域)分别靠近第一位置201和第二位置202,天线结构产生的电场强区(电场 大于磁场的区域)位于两个磁场强区之间。在一个实施例中,在第三位置203和第四位置204之间,辐射体210与地板220间的介质层230为第二介质层,第二介质层包括第二介质。在第一位置201和第三位置203之间以及第二位置202和第四位置204之间,辐射体210与地板220间的介质层230为第一介质层,第一介质层包括第一介质。
在一个实施例中,天线结构可以包括闭合的缝隙天线,如图22所示,辐射体在第一位置201和第二位置202之间未设置缝隙。或者,天线结构可以包括开口的缝隙天线,辐射体在第一位置201和第二位置202之间设置至少一个缝隙,本申请实施例对此并不做限制。
在一个实施例中,在第三位置203和第四位置204之间,辐射体210与地板220间的介质层230(第二介质层)不包括第一介质,在第一位置201和第三位置203之间以及第二位置202和第四位置204之间(第一介质层),辐射体210与地板220间的介质层230不包括第二介质。
在一个实施例中,在第三位置203和第四位置204之间,辐射体210与地板220间的介质层230(第二介质层)仅包括第二介质,在第一位置201和第三位置203之间以及第二位置202和第四位置204之间,辐射体210与地板220间的介质层230(第一介质层)仅包括第一介质。
在本申请的实施例中,第一介质可以是磁电介质。应理解,在本申请实施例中,以第一介质为磁介质为例进行说明。其中,磁介质在第一位置201和第三位置203之间以及第二位置202和第四位置204之间对磁场进行加载。由于磁电介质具有磁介质的特性,因此,在实际的应用中,第一介质可以是磁电介质。在一个实施例中,第一介质层可以由磁电介质进行填充。
在本申请的实施例中,第二介质可以是磁电介质。应理解,在本申请的实施例中,以第二介质为电介质为例进行说明。其中,电介质在第三位置203和第四位置204之间对电场进行加载。由于磁电介质具有电介质的特性,因此,在实际的应用中,第二介质可以是磁电介质。在一个实施例中,第二介质层可以由磁电介质进行填充。
在一个实施例中,第一介质的相对磁导率大于1,第二介质的相对介电常数大于1。当第一介质层包括磁介质时(第一介质为磁介质),则第一介质的相对介电常数等于1,且相对磁导率大于1。当第一介质层包括磁电介质时(第一介质为磁电介质),则第一介质的相对介电常数大于1,且相对磁导率大于1。当第二介质层包括电介质时(第二介质为电介质),则第二介质的相对介电常数大于1,且相对磁导率等于1。当第二介质层包括磁电介质时(第二介质为磁电介质),则第二介质的相对介电常数大于1,且相对磁导率大于1。
在一个实施例中,第三位置203设置在与第一位置201距离为L附近,第四位置204设置在与第二位置202距离为L附近,L为第一位置201和第二位置202之间的距离。在缝隙天线结构中,两个磁场强区分别靠近第一位置201和第二位置202,电场强区位于两个磁场强区之间。当第三位置203和第四位置204分别设置于距离第一位置201和第二位置202约1/4L处时,根据上述公式1可知,电场与磁场可以大致相等,在第三位置203和第四位置204两侧的第一介质层和第二介质层可以使天线结构产生的电场以及磁场获得最大的加载。但是在实际的工程应用中,由于电子设备的内部布局,第三位置203和第四位置204可能会发生调整。
在一个实施例中,第三位置203和第四位置204之间的距离L1,与第一位置201和第二位置202之间的距离L满足:(50%-10%)×L≤L1≤(50%+10%)×L。
在一个实施例中,第一位置201和第二位置202之间的中心与第三位置203的距离L2满足,(25%-5%)×L≤L2≤(25%+5%)×L。
在一个实施例中,第一位置201和第二位置202之间的中心与第四位置204的距离L3满足,(25%-5%)×L≤L3≤(25%+5%)×L。
在一个实施例中,第一位置201和第三位置203之间的距离L4与第二位置202和第四位置204之间的距离L5相同。应理解,在工程的实际应用中,第一位置201和第三位置203之间的距离L4与第二位置202和第四位置204之间的距离L5可能会出现适应性的调整,因此,当90%×L4≤L5≤110%×L4时,可以定义为第一位置201和第三位置203之间的距离L4与第二位置202和第四位置204之间的距离L5相同。在这种情况,随着天线结构200越对称,其辐射特性越好。
图23是图22所示天线结构的S参数仿真结果。
应理解,图22所示的天线结构的S参数仿真结果,以第一位置201和第三位置203之间的距离L=76mm(缝隙长度为74mm),第一位置201和第三位置203之间距离与第二位置202和第四位置204之间的距离相同为例进行仿真为例进行仿真。随着第三位置203和第四位置204之间的距离L1变化获得不同的仿真结果。
如图21所示,天线结构可以同时产生3个谐振。在L1介于26mm至50mm之间,当L1=42mm时,天线结构产生的谐振点的频率最低为1.21GHz。当L1=42mm时,天线结构的介质层的电介质和磁介质的分布最佳。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的之间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种电子设备,其特征在于,包括:
    辐射体,包括接地点;
    地板,所述辐射体在所述接地点处通过所述地板接地;
    导电边框,所述边框上具有第一位置和第二位置,其中,所述第一位置和所述第二位置之间的边框作为所述辐射体的至少一部分;以及
    介质层,位于所述辐射体与所述地板之间;
    其中,所述介质层包括第一介质和第二介质,其中,在所述接地点处,所述辐射体与所述地板之间的所述介质层包括所述第一介质;
    所述第一介质的相对磁导率大于1,所述第二介质的相对介电常数大于1。
  2. 根据权利要求1所述的电子设备,其特征在于,
    所述辐射体还包括馈电点;
    所述边框还具有第三位置,所述第三位置设置于所述第一位置和所述第二位置之间;
    所述辐射体在所述第二位置处与所述边框的其他部分通过缝隙间隔;
    所述接地点设置于所述第一位置,所述馈电点设置于所述第一位置和所述第三位置之间;
    在所述第一位置和所述第三位置之间,所述辐射体与所述地板间的所述介质层为第一介质层,所述第一介质层包括所述第一介质;
    在所述第二位置和所述第三位置之间,所述辐射体与所述地板间的所述介质层为第二介质层,所述第二介质层包括所述第二介质。
  3. 根据权利要求2所述的电子设备,其特征在于,
    所述第一位置和所述第二位置之间的中心与所述第三位置的距离L1,与所述第一位置和所述第二位置之间的距离L满足:L1≤L×25%。
  4. 根据权利要求2或3所述的电子设备,其特征在于,L1≤L×12.5%,或L1≤L×7%。
  5. 根据权利要求1所述的电子设备,其特征在于,
    辐射体还包括馈电点;
    所述边框还具有第三位置和第四位置,所述第三位置设置于所述第一位置和所述第二位置之间,所述第四位置设置于所述第二位置和所述第三位置之间;
    所述接地点和所述馈电点均设置于所述第三位置和所述第四位置之间;
    所述辐射体在所述第一位置处和所述第二位置处分别与所述边框的其他部分通过缝隙间隔;
    在所述第一位置和所述第三位置之间以及所述第二位置和第四位置之间,所述辐射体与所述地板间的所述介质层为第一介质层,所述第一介质层包括所述第一介质;
    在所述第三位置和所述第四位置之间,所述辐射体与所述地板间的所述介质层为第二介质层,所述第二介质层包括所述第二介质。
  6. 根据权利要求1所述的电子设备,其特征在于,
    辐射体还包括馈电点;
    所述接地点包括第一接地点和第二接地点,所述第一接地点设置于所述第一位置,所 述第二接地点设置于所述第二位置;
    所述边框还具有第三位置和第四位置,所述第三位置设置于所述第一位置和所述第二位置之间,所述第四位置设置于所述第二位置和所述第三位置之间;
    所述馈电点设置于所述第一位置和所述第三位置之间;
    在所述第三位置和所述第四位置之间,所述辐射体与所述地板间的所述介质层为第一介质层,所述第一介质层包括所述第一介质;
    在所述第一位置和所述第三位置之间以及所述第二位置和第四位置之间,所述辐射体与所述地板间的所述介质层为第二介质层,所述第二介质层包括所述第二介质。
  7. 根据权利要求5或6所述的电子设备,其特征在于,
    所述第三位置和所述第四位置之间的距离L1,与所述第一位置和所述第二位置之间的距离L满足,(50%-10%)×L≤L1≤(50%+10%)×L。
  8. 根据权利要求5至7中任一项所述的电子设备,其特征在于,
    所述第一位置和所述第二位置之间的中心与所述第三位置的距离L2满足,(25%-5%)×L≤L2≤(25%+5%)×L;和/或,
    所述第一位置和所述第二位置之间的中心与所述第四位置的距离L3满足,(25%-5%)×L≤L3≤(25%+5%)×L。
  9. 根据权利要求5至8中任一项所述的电子设备,其特征在于,所述第一位置和所述第三位置之间的距离与所述第二位置和所述第四位置之间的距离相同。
  10. 根据权利要求1至9中任一项所述的电子设备,其特征在于,
    所述第一介质的相对磁导率介于2至5之间;和/或,
    所述第二介质的相对介电常数介于2至5之间。
  11. 根据权利要求2至10中任一项所述的电子设备,其特征在于,所述第一介质的相对磁导率的数值大于所述第二介质的相对介电常数的数值时,在所述边框的延伸方向上,所述第一介质层的长度大于所述第二介质层的长度;所述第一介质的相对磁导率的数值小于所述第二介质的相对介电常数的数值时,在所述边框的延伸方向上,所述第一介质层的长度小于所述第二介质层的长度。
  12. 根据权利要求2至11中任一项所述的电子设备,其特征在于,
    所述第一介质层中介质的相对介电常数大于1;所述第二介质层中介质的相对磁导率等于1。
  13. 一种天线结构,其特征在于,包括:
    介质层;
    辐射体,所述辐射体设置于所述介质层表面;
    其中,所述辐射体包括至少两个第一区域和至少一个第二区域,任意两个相邻的所述第一区域由一个所述第二区域间隔;
    所述辐射体包括馈电点,所述馈电点设置于所述第一区域;
    所述第一区域中的至少一个第一区域处的介质层包括第一介质;
    所述第二区域中的至少一个第二区域处的介质层包括第二介质,
    所述第一介质的相对介电常数大于1且相对磁导率等于1,所述第二介质的相对磁导率大于1。
  14. 根据权利要求13所述的天线结构,其特征在于,每一个所述第二区域处的介质 层均包括所述第二介质,每一个所述第一区域处的介质层均包括所述第一介质。
  15. 根据权利要求13或14所述的天线结构,其特征在于,所述辐射体为片状或线状辐射体,所述天线结构还包括地板,所述介质层设置于所述辐射体与所述地板之间。
  16. 根据权利要求15所述的天线结构,其特征在于,所述第二区域对应的所述介质层的区域包括所述天线结构在所述辐射体与所述地板之间的电场零点的分布区域。
  17. 根据权利要求13至16中任一项所述的天线结构,其特征在于,
    所述第二介质的相对磁导率介于2至5之间;和/或,
    所述第一介质的相对介电常数介于2至5之间。
  18. 根据权利要求13至17中任一项所述的天线结构,其特征在于,所述天线结构包括多个所述辐射体,多个所述辐射体呈阵列分布。
  19. 根据权利要求13至18中任一项所述的天线结构,其特征在于,所述第二介质的相对磁导率的数值大于所述第一介质的相对介电常数的数值时,所述第二区域的面积大于所述第一区域的面积;
    所述第二介质的相对磁导率的数值小于所述第一介质的相对介电常数的数值时,所述第二区域的面积小于所述第一区域的面积。
  20. 一种电子设备,其特征在于,包括如权利要求13至19中任一项所述的天线结构。
PCT/CN2023/072298 2022-02-21 2023-01-16 一种天线结构和电子设备 WO2023155648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210155629.8 2022-02-21
CN202210155629.8A CN116666955A (zh) 2022-02-21 2022-02-21 一种天线结构和电子设备

Publications (1)

Publication Number Publication Date
WO2023155648A1 true WO2023155648A1 (zh) 2023-08-24

Family

ID=87577506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072298 WO2023155648A1 (zh) 2022-02-21 2023-01-16 一种天线结构和电子设备

Country Status (2)

Country Link
CN (1) CN116666955A (zh)
WO (1) WO2023155648A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050085238A (ko) * 2002-12-03 2005-08-29 해리스 코포레이션 고효율 마이크로스트립 급전 슬롯 패치 안테나
CN101019142A (zh) * 2004-06-18 2007-08-15 英飞凌科技股份公司 收发器
GB0800952D0 (en) * 2008-01-21 2008-02-27 Zarlink Semiconductor Ltd Radio frequency antenna
CN101800107A (zh) * 2010-03-26 2010-08-11 西南交通大学 各向异性z型六角铁氧体及使用该铁氧体的天线
CN101807744A (zh) * 2010-03-26 2010-08-18 西南交通大学 基于z型六角铁氧体的平面倒f型天线
CN102113174A (zh) * 2008-07-18 2011-06-29 株式会社Emw 采用电介质和磁性物质的垂直周期结构的复合结构体的天线
CN202871983U (zh) * 2012-09-06 2013-04-10 深圳天珑无线科技有限公司 一种移动终端内置天线装置及其移动终端
CN112864615A (zh) * 2021-02-25 2021-05-28 北京京东方技术开发有限公司 一种天线和无线电设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050085238A (ko) * 2002-12-03 2005-08-29 해리스 코포레이션 고효율 마이크로스트립 급전 슬롯 패치 안테나
CN101019142A (zh) * 2004-06-18 2007-08-15 英飞凌科技股份公司 收发器
GB0800952D0 (en) * 2008-01-21 2008-02-27 Zarlink Semiconductor Ltd Radio frequency antenna
CN102113174A (zh) * 2008-07-18 2011-06-29 株式会社Emw 采用电介质和磁性物质的垂直周期结构的复合结构体的天线
CN101800107A (zh) * 2010-03-26 2010-08-11 西南交通大学 各向异性z型六角铁氧体及使用该铁氧体的天线
CN101807744A (zh) * 2010-03-26 2010-08-18 西南交通大学 基于z型六角铁氧体的平面倒f型天线
CN202871983U (zh) * 2012-09-06 2013-04-10 深圳天珑无线科技有限公司 一种移动终端内置天线装置及其移动终端
CN112864615A (zh) * 2021-02-25 2021-05-28 北京京东方技术开发有限公司 一种天线和无线电设备

Also Published As

Publication number Publication date
CN116666955A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
EP4047746A1 (en) Antenna module and electronic device
CN110556621B (zh) 天线架构及通信装置
WO2023103945A1 (zh) 一种天线结构和电子设备
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
US11855334B2 (en) Antenna module and electronic device using the same
WO2023155648A1 (zh) 一种天线结构和电子设备
EP4345885A1 (en) Antenna structure, antenna module, chip, and electronic device
CN114389005A (zh) 一种电子设备
CN113690585A (zh) 天线装置、壳体及电子设备
WO2023221877A1 (zh) 一种天线结构和电子设备
WO2023246690A1 (zh) 一种电子设备
WO2023246694A1 (zh) 一种电子设备
WO2023082999A1 (zh) 天线及电子设备
WO2024046200A1 (zh) 一种电子设备
WO2024120287A1 (zh) 一种天线结构和电子设备
WO2024125394A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
EP4391230A1 (en) Electronic device
WO2023221876A1 (zh) 一种电子设备
EP4391226A1 (en) Electronic device
WO2024022281A1 (zh) 一种电子设备
CN117650360A (zh) 一种天线结构和电子设备
WO2023116780A1 (zh) 一种电子设备
WO2024001837A1 (zh) 电子设备
TWI734061B (zh) 多天線系統及其電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755652

Country of ref document: EP

Kind code of ref document: A1