WO2023221877A1 - 一种天线结构和电子设备 - Google Patents

一种天线结构和电子设备 Download PDF

Info

Publication number
WO2023221877A1
WO2023221877A1 PCT/CN2023/093656 CN2023093656W WO2023221877A1 WO 2023221877 A1 WO2023221877 A1 WO 2023221877A1 CN 2023093656 W CN2023093656 W CN 2023093656W WO 2023221877 A1 WO2023221877 A1 WO 2023221877A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna structure
antenna
radiator
floor
magnetoelectric film
Prior art date
Application number
PCT/CN2023/093656
Other languages
English (en)
French (fr)
Inventor
马国忠
徐慧梁
李军
隆仲莹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023221877A1 publication Critical patent/WO2023221877A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present application relates to the field of wireless communications, and in particular, to an antenna structure and electronic equipment.
  • Magnetodielectric is generally a composite material (magneto-dielectric substrate, MD) formed by mixing ferromagnetic powder and a medium in the form of polymer powder. Therefore, magnetodielectrics can exhibit both dielectric and magnetic properties. Magnetodielectrics operate at higher frequencies and have lower losses than purely magnetic media.
  • Magnetodielectrics have been widely used in microwave devices, memory units and acoustic components.
  • the application in antennas is mainly in the low frequency band below 300MHz, which can be used to reduce the weight and size of the antenna.
  • the NFC frequency band 13.56MHz
  • magneto-dielectric materials can effectively enhance the magnetic field strength of the NFC antenna and exponentially reduce the area of the antenna coil.
  • high-frequency bands for example, in the GHz band
  • magneto-dielectric materials exhibit high-loss characteristics and can be used to absorb or suppress clutter.
  • Embodiments of the present application provide an antenna structure and an electronic device.
  • the antenna structure utilizes a magnetoelectric film provided on the floor to improve the performance of the antenna structure.
  • an antenna structure including: a floor; a radiator, the antenna is located on a first side of the floor; a magnetoelectric film is located on a first surface of the floor, and the first surface is the On the surface of the floor on the first side, the relative magnetic permeability of the magnetoelectric film is greater than 1; wherein the magnetoelectric film is located on at least one side of a first projection, and the first projection is the radiator along the first The projection of a direction on the plane where the first surface is located, and the first direction is a direction perpendicular to the first surface.
  • the bound magnetic field between the radiator and the floor can be weakened, reducing dielectric loss and conductor loss, thereby improving the radiation of the antenna structure. efficiency.
  • the bound magnetic field can be understood as the strong electromagnetic field formed between the radiator and the floor. This strong electromagnetic field will convert most of the input power into useless ohmic heat, and a small part of the input power will be radiated into space.
  • the direction of the magnetic field generated by the antenna structure includes a second direction, the second direction is perpendicular to the first direction; the magnetoelectric film is located where The first projection is along at least one side of the second direction.
  • the magnetic field of the antenna (current on the floor) is further weakened at the interface between the radiator and the magnetoelectric film. Dielectric loss and conductor loss are further reduced, thereby improving the efficiency of the antenna.
  • the relative magnetic permeability of the magnetoelectric film being greater than 1 includes: the relative magnetic permeability of the magnetoelectric film along the second direction and the third direction. Greater than 1, the third direction is the direction perpendicular to the second direction in the plane of the floor; the relative magnetic permeability of the magnetoelectric film along the first direction is equal to 1.
  • the relative magnetic permeability of the magnetoelectric film in the second direction and the third direction is greater than 1, which can weaken the bound magnetic field generated by the antenna and reduce dielectric loss and conductor loss, while its relative magnetic permeability in the first direction can be weakened. It is not magnetic (relative magnetic permeability is equal to 1) and will not affect the radiation performance of the antenna structure.
  • the ratio of the value of the relative dielectric constant of the magnetoelectric film to the value of the relative permeability of the magnetoelectric film is less than or equal to 1.25.
  • the value of the relative dielectric constant of the magnetoelectric film is the same as the value of the relative permeability of the magnetoelectric film.
  • the distance between the radiator and the floor is less than or equal to 1 mm.
  • the distance between the radiator and the floor becomes smaller, the clearance of the antenna structure becomes smaller, the binding magnetic field between the radiator and the floor becomes stronger, and the input power of the antenna structure is converted into more As thermal energy (ohmic heat), the radiation performance of the antenna structure becomes worse.
  • thermal energy heat
  • the radiation performance of the antenna structure becomes worse.
  • the thickness of the magnetoelectric film is less than or equal to 0.2 mm.
  • the thickness of the magnetoelectric film is greater than or equal to 10 ⁇ m.
  • the resonant frequency of the antenna structure decreases, indicating that the increase in the thickness of the magnetoelectric film can reduce the size of the radiator (the size of the antenna corresponding to the same resonant frequency is smaller small), helping to miniaturize the antenna structure.
  • the relative magnetic permeability of the magnetoelectric film is greater than or equal to 15 and less than or equal to 100.
  • the resonant frequency of the antenna structure decreases, indicating that the increase in the relative magnetic permeability of the magnetoelectric film can reduce the size of the radiator (the same resonance The size of the antenna corresponding to the frequency is smaller), which helps to miniaturize the antenna structure.
  • the product of the relative magnetic permeability of the magnetoelectric film and the thickness of the magnetoelectric film is greater than or equal to 1500 ⁇ m.
  • the benefits that the antenna structure obtains from the magnetoelectric film are related to the relative magnetic permeability of the magnetoelectric film and the thickness of the magnetoelectric film, and can be based on The layout within the electronic device adjusts the relative permeability of the magnetoelectric film and the thickness of the magnetoelectric film.
  • the antenna structure further includes a dielectric plate; the lower surface of the dielectric plate is in contact with the first surface of the floor, and the radiator is located on the dielectric plate. the upper surface of the board.
  • the direction of the magnetic field generated by the antenna structure includes a second direction, the second direction is perpendicular to the first direction; the dielectric plate is provided with a A notch extends in a third direction, and the third direction is a direction perpendicular to the second direction in the plane of the floor; an opening gap is provided at a position corresponding to the radiator and the notch.
  • the direction of the magnetic field generated by the antenna structure includes a second direction, the second direction is perpendicular to the first direction; the first gap is along the The second direction extends, and one end of the second slit is connected to the first slit at the first connection point; the edge of the radiator along the third direction faces The floor extends and is connected to the floor, and the third direction is a direction perpendicular to the second direction in the plane of the floor; a feed branch is provided in the first gap, and the feed The branches are used to feed electrical signals.
  • the radiator includes a first side and a second side that intersect at an angle, and a third slit; one end of the third slit is located on the first side, and the other end of the third slit is located on the second side.
  • the antenna structure further includes a short-circuit branch; one end of the short-circuit branch is electrically connected to the radiator, and the other end of the short-circuit branch is connected to the floor. Electrical connection.
  • the antenna structure further includes a metal wall; the metal wall is disposed on the first surface, and the metal wall is disposed in the circumferential direction of the antenna, so The antenna is installed in the space surrounded by the metal wall.
  • the technical solutions provided by the embodiments of the present application can be applied to patch antennas of different structures.
  • the direction of the magnetic field generated by the antenna structure includes a second direction, and the second direction is perpendicular to the first direction;
  • the antenna includes a radiator;
  • the radiator and the floor enclose a cavity opening along the second direction.
  • the technical solutions provided by the embodiments of the present application can be applied to waveguide antennas.
  • the antenna structure is used in an electronic device, the electronic device includes a conductive frame, the frame has a first position and a second position, and the first The frame between the position and the second position is a first frame; the radiator includes the first frame; the magnetoelectric film is opposite to the first frame and does not contact each other, and forms a gap.
  • the technical solutions provided by the embodiments of the present application can be applied to frame antennas of electronic devices.
  • the radiator is a sheet-shaped conductor; the magnetoelectric film is located outside the first projection of the radiator.
  • the technical solutions provided by the embodiments of the present application may not only be applied to the above-mentioned antenna structures, but may also be applied to other antenna structures.
  • a second aspect provides an electronic device, including the antenna structure according to any one of the first aspects.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an antenna provided by an embodiment of the present application.
  • Fig. 3 is a simulation result diagram of the radiation efficiency of the antenna shown in (b) in Fig. 2.
  • FIG. 4 is a schematic diagram of an antenna structure 100 provided by an embodiment of the present application.
  • FIG. 5 is a schematic plan view of an antenna structure 100 provided by an embodiment of the present application.
  • Figure 6 is a simulation result diagram of the S parameters and radiation efficiency of the antenna structure shown in Figure 4.
  • Figure 7 is a Smith chart of the antenna structure shown in Figure 4.
  • Figure 8 is a simulation result diagram of S parameters and system efficiency after a matching circuit is installed at the feed point of the antenna shown in Figure 4.
  • Figure 9 is a schematic diagram of the magnetic field distribution of the antenna structure shown in Figure 4.
  • Figure 10 is a simulation result diagram of the radiation efficiency of the antenna structure shown in Figure 4.
  • Figure 11 is the S parameters of the antenna structure shown in Figure 4.
  • Figure 12 is a Smith chart of the antenna structure shown in Figure 4.
  • Figure 13 is a simulation result diagram of the radiation efficiency of the antenna structure shown in Figure 4.
  • FIG. 14 is a schematic diagram of another antenna structure 200 provided by an embodiment of the present application.
  • FIG. 15 is a schematic plan view of another antenna structure 200 provided by an embodiment of the present application.
  • FIG. 16 is the S parameters of the antenna structure 200 shown in FIG. 14 .
  • FIG. 17 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure 200 shown in FIG. 14 .
  • Figure 18 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Figure 21 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • Coupling can be understood as direct coupling and/or indirect coupling, and "coupling connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the printed circuit board (PCB) copper foil or wires between different components in the circuit structure.
  • PCB printed circuit board
  • indirect coupling can be understood as two conductors being electrically connected through space/non-contact.
  • indirect coupling may also be called capacitive coupling, for example, signal transmission is achieved by forming an equivalent capacitance through coupling between a gap between two conductive members.
  • Connection/connection It can refer to a mechanical connection relationship or a physical connection relationship.
  • the connection between A and B or the connection between A and B can refer to the existence of fastening components (such as screws, bolts, rivets, etc.) between A and B. Or A and B are in contact with each other and A and B are difficult to separate.
  • connection The conduction or connection between two or more components through the above “electrical connection” or “indirect coupling” method for signal/energy transmission can be called connection.
  • Relative/relative setting The relative setting of A and B can refer to the opposite to (opposite to, or face to face) setting of A and B.
  • Resonance frequency is also called resonance frequency.
  • the resonant frequency can have a frequency range, that is, the frequency range in which resonance occurs.
  • the frequency corresponding to the strongest resonance point is the center frequency point frequency.
  • the return loss characteristics of the center frequency can be less than -20dB.
  • Resonance frequency band/communication frequency band/working frequency band No matter what type of antenna, it always works within a certain frequency range (frequency band width).
  • the working frequency band of an antenna that supports the B40 frequency band includes frequencies in the range of 2300MHz to 2400MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
  • the frequency range that meets the index requirements can be regarded as the working frequency band of the antenna.
  • Electrical length It can refer to the ratio of physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave.
  • the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the physical length of the radiator can be understood to be within the range of ⁇ 25% of the electrical length of the radiator.
  • the physical length of the radiator can be understood to be within the range of ⁇ 10% of the electrical length of the radiator.
  • Wavelength or working wavelength, which can be the wavelength corresponding to the center frequency of the resonant frequency or the center frequency of the working frequency band supported by the antenna.
  • the operating wavelength can be the wavelength calculated using the frequency of 1955MHz.
  • "working wavelength” can also refer to the wavelength corresponding to the resonant frequency or non-center frequency of the working frequency band.
  • the middle (position) of the conductor can be a conductor section including the midpoint on the conductor, or a conductor section of one-eighth wavelength including the midpoint of the conductor, where the wavelength can be corresponding to the working frequency band of the antenna.
  • the wavelength can be the wavelength corresponding to the center frequency of the working frequency band, or the wavelength corresponding to the resonance point.
  • the middle (location) of the conductor may be a portion of the conductor on the conductor that is less than a predetermined threshold (eg, 1 mm, 2 mm, or 2.5 mm) from the midpoint.
  • a predetermined threshold eg 1 mm, 0.5 m, or 0.1 mm
  • a deviation less than a predetermined threshold eg 1 mm, 0.5 m, or 0.1 mm
  • a predetermined angle eg ⁇ 5°, ⁇ 10°
  • Dielectric refers to a medium that can be electrically polarized. In a specific frequency band, the component vector value of the conduction current density generated by the time-varying electric field in a given direction is much smaller than the component vector value of the displacement current density in this direction.
  • a dielectric can be simply understood to be a medium with a relative dielectric constant greater than 1 and a medium with a relative magnetic permeability equal to 1.
  • Magnetic medium Due to the interaction between the magnetic field and things, the physical substance is in a special state, thus changing the distribution of the original magnetic field. Under the action of this magnetic field, its internal state changes, which in turn affects the existence or repair of the magnetic field.
  • the material is called a magnetic medium.
  • a magnetic medium can be simply understood as a medium with a relative magnetic permeability greater than 1 and a medium with a relative dielectric constant equal to 1.
  • Magnetodielectric A medium that has both dielectric and magnetic properties.
  • a magneto-dielectric medium can be simply understood to be a medium whose relative dielectric constant and relative magnetic permeability are both greater than 1.
  • magneto-dielectric media has the properties of magnetic media and also has the properties of dielectric media
  • the magnetic media in the embodiments of the present application can be implemented by magneto-dielectric media, and the relative medium of the magneto-dielectric media can be selected according to actual production or design requirements. Electrical constant and relative permeability values.
  • Magnetoelectric film a film made of magnetoelectric media, with a thickness less than or equal to 0.2mm.
  • Magnetoelectric films can be made by different methods, for example, ferromagnetic powder is mixed with a medium in the form of polymer powder to form a film. Alternatively, nanomagnetic powder with finer particles may be coated on the dielectric substrate to form a thin film. Alternatively, the magnetoelectric film can also be prepared in other ways, which is not limited in the embodiments of the present application.
  • the parallel plate resonance method post resonator method
  • the closed cavity resonance method or closed cavity resonance method
  • Measurements can be made using the closed cavity resonator method (or shielded cavity method) or other resonator techniques (dielectric resonator techniques).
  • the parallel plate resonance method places the sample to be measured in an open cavity formed by two parallel metal plates, and uses a vector network analyzer to interact with the input and output of the cavity.
  • the outlet port is electrically connected, and the frequency of the input signal at the input port is changed to cause the cavity to resonate at a certain frequency (minimum impedance), thereby determining the electrical parameters (relative dielectric constant or relative magnetic permeability) of the sample through calculation, parallel plate
  • the resonance method may be, for example, the Hakki Coleman method.
  • the closed cavity resonance method places the sample to be measured in a closed cavity (for example, a cylindrical cavity), changes the frequency of the input signal at the input port, and causes the cavity to resonate at a certain frequency (minimum impedance), thereby calculating Determine the electrical parameters (relative permittivity or relative permeability) of the sample.
  • Antenna system efficiency refers to the ratio of input power to output power at the port of the antenna.
  • Radiation efficiency is a measure of the radiation ability of an antenna. It refers to the ratio of the power radiated by the antenna to space (that is, the power of the electromagnetic wave part that is effectively converted) and the active power input to the antenna.
  • the active power input to the antenna the input power of the antenna - the loss power;
  • the loss power mainly includes the return loss power and the ohmic loss power of the metal and/or the dielectric loss power. Metal loss and dielectric loss are factors affecting radiation efficiency.
  • efficiency is generally expressed as a percentage, and there is a corresponding conversion relationship between it and dB. The closer the efficiency is to 0dB, the better the efficiency of the antenna is.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal is, the greater the signal radiated to space through the antenna is, and the greater the antenna's radiation efficiency is. The larger the reflected signal is, the smaller the signal radiated to space through the antenna is, and the smaller the antenna's radiation efficiency is.
  • Antenna return loss can be represented by the S11 parameter, which is one of the S parameters.
  • S11 represents the reflection coefficient, which can characterize the antenna's emission efficiency.
  • the S11 parameter is usually a negative number. The smaller the S11 parameter, the smaller the return loss of the antenna, and the smaller the energy reflected back by the antenna itself, which means that more energy actually enters the antenna, and the higher the system efficiency of the antenna is. S11 parameter The larger the value, the greater the antenna return loss and the lower the antenna system efficiency.
  • the S11 value of -6dB is generally used as a standard.
  • the S11 value of an antenna is less than -6dB, it can be considered that the antenna can work normally, or the antenna's radiation efficiency can be considered to be good.
  • Smith chart It is a calculation diagram with a family of equal circles of normalized input impedance (or admittance) plotted on the reflection system divergence plane. This diagram consists of a system of three circles and is used to solve graphical problems in transmission lines and some waveguides to avoid tedious calculations.
  • Ground, or floor can generally refer to at least part of any ground layer, or ground plate, or ground metal layer, etc. in an electronic device (such as a mobile phone), or any combination of any of the above ground layers, or ground plates, or ground components, etc. At least in part, “ground” can be used to ground components within electronic equipment. In one embodiment, "ground” may be the grounding layer of the circuit board of the electronic device, or it may be the grounding plate formed by the middle frame of the electronic device or the grounding metal layer formed by the metal film under the screen.
  • the circuit board may be a printed circuit board (PCB), such as an 8-, 10-, or 12- to 14-layer board with 8, 10, 12, 13, or 14 layers of conductive material, or by a circuit board such as Components separated and electrically insulated by dielectric or insulating layers such as fiberglass, polymer, etc.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through vias.
  • components such as a display, touch screen, input buttons, transmitter, processor, memory, battery, charging circuit, system on chip (SoC) structure, etc. may be mounted on or connected to the circuit board; Or electrically connected to trace and/or ground planes in the circuit board.
  • SoC system on chip
  • ground layers, or ground plates, or ground metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on insulating substrate, insulation Silver foil and tin-plated copper on the substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate and aluminum-plated substrate.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • the electronic device 10 may include: a cover (cover) 13, a display screen/module (display) 15, a printed circuit board (PCB) 17, a middle frame (middle frame) 19 and a rear panel.
  • Cover (rear cover)21 It should be understood that in some embodiments, the cover 13 can be a glass cover (cover glass), or can be replaced with a cover made of other materials, such as an ultra-thin glass material cover, PET (Polyethylene terephthalate, polytetraphenylene). Ethylene formate) material cover, etc.
  • the cover 13 can be placed close to the display module 15 and can be mainly used to protect the display module 15 and prevent dust.
  • the display module 15 may include a liquid crystal display panel (LCD), a light emitting diode (LED) display panel or an organic light-emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. , the embodiment of the present application does not limit this.
  • LCD liquid crystal display panel
  • LED light emitting diode
  • OLED organic light-emitting semiconductor
  • the middle frame 19 mainly plays a supporting role of the whole machine.
  • Figure 1 shows that the PCB 17 is disposed between the middle frame 19 and the back cover 21. It should be understood that in one embodiment, the PCB 17 can also be disposed between the middle frame 19 and the display module 15.
  • the printed circuit board PCB17 can use a flame-resistant material (FR-4) dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, etc.
  • FR-4 is the code for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • PCB17 carries electronic components, such as radio frequency chips, etc.
  • a metal layer may be provided on the printed circuit board PCB 17 .
  • This metal layer can be used for grounding the electronic components carried on the printed circuit board PCB17, and can also be used for grounding other components, such as bracket antennas, frame antennas, etc.
  • the metal layer can be called a floor, a ground plate, or a ground layer.
  • the metal layer may be formed by etching metal on the surface of any dielectric board in the PCB 17 .
  • the metal layer used for grounding may be disposed on a side of the printed circuit board PCB 17 close to the middle frame 19 .
  • the edge of the printed circuit board PCB 17 can be regarded as the edge of its ground plane.
  • the metal middle frame 19 can also be used for grounding the above components.
  • the electronic device 10 may also have other floors/ground plates/ground layers, as mentioned above, which will not be described again here.
  • the electronic device 10 may also include a battery (not shown in the figure).
  • the battery may be disposed between the middle frame 19 and the back cover 21 , or may be disposed between the middle frame 19 and the display module 15 , which is not limited in the embodiment of the present application.
  • the PCB 17 is divided into a main board and a sub-board.
  • the battery can be disposed between the main board and the sub-board.
  • the main board can be disposed between the middle frame 19 and the upper edge of the battery, and the sub-board can be disposed between the main board and the sub-board. Between the middle frame 19 and the lower edge of the battery.
  • the electronic device 10 may also include a frame 11, and the frame 11 may be formed of a conductive material such as metal.
  • the frame 11 may be disposed between the display module 15 and the back cover 21 and extend circumferentially around the periphery of the electronic device 10 .
  • the frame 11 may have four sides surrounding the display module 15 to help fix the display module 15 .
  • the frame 11 made of metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
  • the outer surface of the frame 11 can also be made of non-metal material, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for non-metal IDs.
  • the middle frame 19 may include a frame 11 , and the middle frame 19 including the frame 11 may act as an integral part to support electronic devices in the entire machine.
  • the cover 13 and the back cover 21 are respectively closed along the upper and lower edges of the frame to form a casing of the electronic device. Or housing.
  • the cover 13 , the back cover 21 , the frame 11 and/or the middle frame 19 can be collectively referred to as the casing or housing of the electronic device 10 .
  • casing or housing can be used to refer to part or all of any one of the cover 13 , the back cover 21 , the frame 11 or the middle frame 19 , or to refer to the cover 13 , the back cover 21 , or the frame 11 or any combination of part or all of box 19.
  • the frame 11 on the middle frame 19 can be at least partially used as an antenna radiator to receive/transmit frequency signals. There can be a gap between this part of the frame as the radiator and other parts of the middle frame 19, thereby ensuring that the antenna radiator has good performance. radiation environment.
  • the middle frame 19 may be provided with an aperture at this part of the frame serving as a radiator to facilitate radiation of the antenna.
  • the frame 11 may not be regarded as a part of the middle frame 19 .
  • the frame 11 can be connected to the middle frame 19 and formed integrally.
  • the frame 11 may include an inwardly extending protruding piece to be connected to the middle frame 19 , for example, through elastic pieces, screws, welding, etc.
  • the protruding parts of the frame 11 can also be used to receive feed signals, so that at least a part of the frame 11 acts as a radiator of the antenna to receive/transmit frequency signals.
  • the back cover 21 can be a back cover made of metal material; it can also be a back cover made of non-conductive materials, such as glass back cover, plastic back cover and other non-metal back covers; or it can also include both conductive materials and non-conductive materials. Material back cover.
  • the antenna of the electronic device 10 can also be disposed in the frame 11 .
  • the antenna radiator can be located in the electronic device 10 and arranged along the frame 11 .
  • the antenna radiator is arranged close to the frame 11 to minimize the volume occupied by the antenna radiator and to be closer to the outside of the electronic device 10 to achieve better signal transmission effects.
  • the arrangement of the antenna radiator close to the frame 11 means that the antenna radiator can be arranged close to the frame 11 or close to the frame 11 . For example, there can be a certain tiny gap between the antenna radiator and the frame 11 .
  • the antenna of the electronic device 10 may also be disposed in the housing, such as a bracket antenna, a millimeter wave antenna, etc. (not shown in FIG. 1 ).
  • the clearance of the antenna arranged in the housing can be obtained by the slits/openings on any one of the middle frame, and/or the frame, and/or the back cover, and/or the display screen, or it can be formed between any of them.
  • the non-conductive gap/aperture is obtained, and the clearance setting of the antenna can ensure the radiation performance of the antenna.
  • the clearance of the antenna may be a non-conductive area formed by any conductive component in the electronic device 10, and the antenna radiates signals to the external space through the non-conductive area.
  • the antenna 40 may be in the form of a flexible printed circuit (FPC)-based antenna, a laser-direct-structuring (LDS)-based antenna, or a microstrip antenna (microstrip disk antenna). , MDA) and other antenna forms.
  • the antenna may also adopt a transparent structure embedded inside the screen of the electronic device 10 , so that the antenna is a transparent antenna unit embedded inside the screen of the electronic device 10 .
  • FIG. 1 only schematically shows some components included in the electronic device 10 , and the actual shapes, actual sizes and actual structures of these components are not limited by FIG. 1 .
  • the side where the display screen of the electronic device is located can be considered to be the front, the side where the back cover is located is the back, and the side where the frame is located is the side.
  • the orientation of the electronic device has a top, a bottom, a left side, and a right side.
  • FIG. 2 is a schematic diagram of an antenna provided by an embodiment of the present application.
  • FIG. 2 it is a schematic structural diagram of a patch antenna including a dielectric plate and a radiator disposed on the surface of the dielectric plate.
  • the antenna can be disposed on the floor.
  • the magnetoelectric film can be disposed on the surface of the dielectric plate (between the dielectric plate and the radiator, or between the dielectric plate and the floor), as shown in (b) of Figure 2 .
  • the magnetoelectric film may also be disposed within the dielectric plate (for example, between multiple dielectric layers of the dielectric plate), as shown in (c) of FIG. 2 .
  • Fig. 3 is a simulation result diagram of the radiation efficiency of the antenna shown in (b) in Fig. 2.
  • the first group shows the simulation results of adding a magnetoelectric film to the antenna structure
  • the second group shows the simulation results as the loss of the magnetic medium in the magnetoelectric film increases.
  • the resonant frequency f of the patch antenna satisfies the following formula:
  • c is the speed of light
  • ⁇ r is the relative permittivity of the dielectric in the dielectric plate.
  • the resonant frequency f of the patch antenna satisfies the following formula:
  • c is the speed of light
  • ⁇ r is the relative permeability of the magneto-dielectric medium in the dielectric plate
  • ⁇ r is the relative dielectric constant of the magneto-dielectric medium in the dielectric plate
  • L is the length of the antenna in the third direction.
  • the radiation efficiency drops by about 2.2dB.
  • the radiation efficiency drops again by about 2.1dB.
  • the antenna (patch antenna) shown in (b) in Figure 2 is very sensitive to the magnetic loss of the magnetoelectric film. Only a magnetoelectric film loaded with ultra-low loss (for example, magnetic loss is less than or equal to 0.01) can In order to improve the performance of the antenna. A magnetoelectric film with normal loss (for example, magnetic loss greater than or equal to 0.05) cannot improve the efficiency of the antenna.
  • Embodiments of the present application provide an antenna structure and an electronic device.
  • the antenna structure utilizes a magnetoelectric film provided on the floor to improve the performance of the antenna structure.
  • FIG. 4 is a schematic diagram of an antenna structure 100 provided by an embodiment of the present application.
  • the antenna structure 100 may include a floor 110 , a radiator 121 and a magnetoelectric film 130 .
  • the radiator 121 is located on the first side of the floor 110 .
  • the magnetoelectric film 130 may be located on the first surface 111 of the floor 110 (the first surface 111 is the surface of the floor 110 on the first side), and the relative magnetic permeability of the magnetoelectric film 130 is greater than 1.
  • the magnetoelectric film 130 may be located on at least one side of the first projection.
  • the first projection is the projection of the radiator 121 along the first direction on the plane where the first surface 111 is located. As shown in (b) in FIG. 5 , the first orientation A direction perpendicular to the first surface 111, for example, the z direction.
  • the antenna structure 100 may also include a dielectric plate 122 .
  • the radiator 121 is located on the upper surface of the dielectric plate 122, and the lower surface of the dielectric plate 122 is in contact with the first surface 111, as shown in (a) of Figure 5 .
  • the radiator 1221 is combined with a sheet-shaped conductor, such as the radiator 1221 and the dielectric plate 122 to form the patch antenna 120 .
  • the bound magnetic field between the radiator 121 and the floor 110 can be weakened, reducing dielectric loss and conductor loss, thereby improving the radiation efficiency of the antenna structure.
  • the bound magnetic field can be understood as the strong electromagnetic field formed between the radiator 121 and the floor 110 . This strong electromagnetic field will convert most of the input power into useless ohmic heat, and a small part of the input power will be radiated into space.
  • the direction of the magnetic field generated by the antenna structure 100 includes a second direction, the second direction is perpendicular to the first direction (the second direction may be parallel to the plane where the floor 110 is located), and the magnetoelectric film 130 is located along the first projection edge. At least one side of the second direction (for example, x direction), as shown in (b) in FIG. 5 .
  • the direction of the magnetic field generated by the antenna structure 100 includes the second direction, which means that when the patch antenna 120 in the antenna structure 100 resonates, the intensity of the magnetic field generated in the second direction is much greater than the average intensity of the magnetic field in other directions.
  • the patch antenna 120 shown in (b) of FIG. 5 may include a notch extending in the third direction (for example, the y direction), so that when it resonates, it generates a magnetic field along the second direction, and the floor 110 The second direction in the plane is perpendicular to the third direction.
  • the radiator 121 may also include a feed point 123 , which may be disposed at a position corresponding to the radiator 121 inside the notch (opposite to the open end) for feeding the patch antenna 120 . Incoming power signal.
  • the antenna structure 100 may include multiple magnetic field directions.
  • the magnetic field direction is related to the structure of the antenna formed by the radiator 121.
  • the structure of the patch antenna 120 shown in (b) in FIG. 5 is taken as an example for illustration.
  • the magnetic field direction is Only the second direction is included, and this application does not limit the structure of the antenna formed by the radiator 121 .
  • the magnetic field of the antenna structure 100 (the current on the floor 110 ) is further weakened at the interface between the patch antenna 120 and the magnetoelectric film 130 .
  • the dielectric loss and conductor loss are further reduced, thereby improving the efficiency of the antenna structure 100.
  • the antenna structure may include two magnetoelectric films 130 , which may be located on both sides of the first projection, as shown in (b) of FIG. 5 , which may improve the efficiency of the antenna structure 100 .
  • the relative magnetic permeability of the magnetoelectric film 130 being greater than 1 can be understood to mean that the magnetoelectric film 130 has magnetism in the xy plane but does not have magnetism in the z direction.
  • the relative magnetic permeability of the magnetoelectric film 130 along the second direction and the third direction is greater than 1, and the relative magnetic permeability of the magnetoelectric film 130 along the first direction is equal to 1.
  • the relative magnetic permeability of the magnetoelectric film 130 in the second direction and the third direction is greater than 1, which can weaken the binding magnetic field between the radiator 121 and the floor 110 and reduce the dielectric loss and conductor loss, while it is in the first direction. It does not have magnetism upward (relative magnetic permeability is equal to 1) and will not affect the radiation performance of the antenna 120 .
  • the ratio of the value of the relative dielectric constant of the magnetoelectric film 130 to the value of the relative permeability of the magnetoelectric film 130 is less than or equal to 1.25. In one embodiment, the value of the relative permittivity of the magnetoelectric film 130 is the same as the value of the relative permeability of the magnetoelectric film 130 .
  • the distance between the radiator 121 and the floor 110 is less than or equal to 1 mm.
  • the distance between the radiator 121 and the floor 110 becomes smaller, the clearance of the antenna structure 100 becomes smaller, the binding magnetic field generated between the radiator 121 and the floor 110 becomes stronger, and the input power of the antenna structure 100 increases. Converted into thermal energy (ohmic heat), the radiation performance of the antenna structure deteriorates.
  • the magnetoelectric film along the magnetic field direction (second direction) of the antenna structure 100, the bound magnetic field between the radiator 121 and the floor 110 can be weakened, reducing the conversion into heat energy, and improving the radiation performance of the antenna structure.
  • the thickness of magnetoelectric film 130 is less than or equal to 0.2 mm. In one embodiment, the thickness of the magnetoelectric film 130 is greater than or equal to 10 ⁇ m.
  • the bound magnetic field between the radiator 121 and the floor 110 will weaken, which can further improve the radiation characteristics of the antenna structure 100, such as efficiency.
  • the relative magnetic permeability of the magnetoelectric film 130 is greater than or equal to 15 and less than or equal to 100.
  • the bound magnetic field between the radiator 121 and the floor 110 will weaken, which can further improve the radiation characteristics of the antenna structure 100, such as bandwidth and efficiency.
  • the product of the relative magnetic permeability ⁇ r of the magnetoelectric film 130 and the thickness h of the magnetoelectric film 130 is greater than or equal to 1500 ⁇ m, for example, ⁇ r ⁇ h ⁇ 1500 ⁇ m.
  • the benefits obtained by the antenna structure 100 from the magnetoelectric film are related to the relative magnetic permeability of the magnetoelectric film 130 and the thickness of the magnetoelectric film 130 , and can be determined according to the thickness of the magnetoelectric film 130 within the electronic device.
  • the layout of the magnetoelectric film 130 is adjusted by adjusting the relative magnetic permeability and the thickness of the magnetoelectric film 130 .
  • the shape of the magnetoelectric film 130 can be adjusted according to the layout within the electronic device, which is not limited in this application.
  • the magnetoelectric film is located outside the first projection of the radiator.
  • the distance between the magnetoelectric film 130 and the first projection of the radiator 121 on the floor 110 may be greater than or equal to 0mm.
  • the dielectric plate 122 of the patch antenna 120 is in contact with the edge of the magnetoelectric film 130, and no gap is formed between the dielectric plate 122 and the magnetoelectric film 130. No magnetoelectric film 130 is provided between the plate 122 and the floor 110 .
  • the dielectric plate 122 of the patch antenna 120 and the magnetoelectric film 130 do not contact each other, and a gap is formed.
  • the distance between the membrane 130 and the first projection of the radiator 121 on the floor 110 can be understood as the width of the gap.
  • portions of magnetoelectric film 130 may be disposed between dielectric plate 122 and floor 110 .
  • Figures 6 to 8 are simulation results of the antenna structure shown in Figure 4.
  • Figure 6 is a simulation result diagram of the S parameters and radiation efficiency of the antenna structure shown in Figure 4.
  • Figure 7 is a Smith chart of the antenna structure shown in Figure 4.
  • Figure 8 is a simulation result diagram of S parameters and system efficiency after a matching circuit is installed at the feed point of the antenna shown in Figure 4.
  • the size of the radiator 121 is 30mm ⁇ 22mm, and the thickness of the dielectric plate 122 is 0.65mm.
  • the magnetoelectric films on both sides of the first projection of the radiator 121 on the floor 110 are the same.
  • the dimensions of the magnetoelectric films are both 10 mm ⁇ 23 mm and the thickness is 30 ⁇ m.
  • the resonant frequency of the antenna structure dropped from 2459MHz to 2430MHz, with a frequency difference of 29MHz.
  • the decrease in the resonant frequency of the antenna structure shows that the magnetoelectric film can reduce the size of the radiator (the size of the radiator corresponding to the same resonant frequency is smaller), which helps to achieve miniaturization of the antenna structure.
  • the magnetic loss of the magnetoelectric film in the x and y directions is 0.15, and the radiation efficiency of the antenna structure still has an improvement of about 0.4dB.
  • the antenna structure can still have good radiation characteristics. Therefore, the antenna structure provided by the embodiments of the present application can improve radiation performance while being insensitive to the magnetic loss of the magnetoelectric film, making it easier to apply in engineering design.
  • Figure 9 is a schematic diagram of the magnetic field distribution of the antenna structure shown in Figure 4.
  • L is the length of the radiator 121 along the y direction, as shown in (b) of FIG. 5 .
  • the magnetic field direction of the antenna structure is the x direction
  • the electric field direction is the z direction. Since the magnetoelectric film is laid along the direction of the magnetic field, the magnetic field of the antenna structure (the current on the floor 110) is further weakened at the interface between the dielectric plate and the magnetoelectric film.
  • B magnetoelectric film B dielectric
  • H magnetoelectric film H dielectric / ⁇ r.
  • the magnetic field at the junction of the magnetoelectric film and the dielectric plate is significantly weakened, as shown in (b) in Figure 9. Since the magnetic field at this location is weakened, a weak current distribution can occur across the floor. In other words, the binding magnetic field between the radiator and the floor is weakened. The dielectric loss and conductor loss of the antenna structure are significantly reduced, thereby improving the efficiency of the antenna structure.
  • the antenna formed by the radiator (for example, the patch antenna 120 shown in FIG. 5) can be equivalent to an inductor, and the inductance value of its equivalent inductor can be estimated by the following formula:
  • ⁇ r is the relative magnetic permeability of the magnetoelectric film
  • I is the current on the floor
  • S is the cross-sectional area of the antenna along the y direction.
  • the current on the floor is reduced, resulting in a significant increase in the inductance value of the patch antenna's equivalent inductor.
  • the inductance value of the equivalent inductor increases, the energy stored in the patch antenna is weakened, and more energy is radiated outward, which can improve the efficiency bandwidth of the antenna structure.
  • the inductance value of the equivalent inductance of the patch antenna increases significantly, the energy stored in the patch antenna can be further weakened, and the efficiency bandwidth of the antenna structure can be expanded.
  • Figures 10 to 13 are simulation result diagrams of the antenna structure shown in Figure 4.
  • Fig. 10 is a simulation result diagram of the radiation efficiency of the antenna structure shown in Fig. 4.
  • Figure 11 is the S parameters of the antenna structure shown in Figure 4.
  • Figure 12 is a Smith chart of the antenna structure shown in Figure 4.
  • Figure 13 is a simulation result diagram of the radiation efficiency of the antenna structure shown in Figure 4.
  • the radiation efficiency of the antenna structure is improved.
  • the radiation efficiency increases by approximately 0.65dB and 1dB respectively.
  • the resonance point of the antenna structure decreases from 2429MHz (corresponding to the resonance point of 0.03mm) to 2402MHz (corresponding to the resonance point of 0.13mm) and 2384MHz (corresponding to the resonance point of 0.33mm), respectively, as shown in Figure 11.
  • the decrease in the resonant frequency of the antenna structure indicates that increasing the thickness of the magnetoelectric film can reduce the size of the antenna structure. degree (the size of the antenna structure corresponding to the same resonant frequency is smaller), which helps to achieve miniaturization of the antenna structure.
  • the radiation characteristic gain of the antenna structure is proportional to the relative magnetic permeability ⁇ r, thickness h and area s of the magnetoelectric film, that is,
  • FIG. 14 is a schematic diagram of another antenna structure 200 provided by an embodiment of the present application.
  • the antenna structure 200 may include a floor 210 , a patch antenna 220 and a magnetoelectric film 230 .
  • the patch antenna 220 is located on the first side of the floor 210.
  • the patch antenna 220 can be located on the first surface 211 of the floor 210 (the first surface 211 is the surface of the floor 210 on the first side), as shown in Figure 15 ( a) shown.
  • the magnetoelectric film 230 may be located on the first surface 211 of the floor 210, and the relative magnetic permeability of the magnetoelectric film 230 is greater than 1.
  • the magnetoelectric film 230 may be located on at least one side of the first projection, which is the projection of the radiator 211 of the patch antenna 220 on the plane of the floor 210 along the first direction, as shown in (b) of Figure 15,
  • the first orientation is perpendicular to the direction of the first surface 211, for example, the z direction.
  • the difference from the antenna structure 100 shown in FIG. 4 lies in the structure of the antenna formed by the radiator.
  • the patch antenna 220 shown in FIG. 14 may be a coupling feed-capacitance loaded loop antenna.
  • the patch antenna 220 may also include a dielectric plate 222, as shown in (c) of Figure 15 .
  • the radiator 221 includes a first slit 223 and a second slit 224.
  • the first slit 223 extends along a second direction.
  • the second direction is a direction perpendicular to the first direction in the plane where the floor 210 is located.
  • One end of the second slit 224 is in the first direction.
  • the connection point is connected with the first gap 223 to form a T-shaped gap, as shown in (b) in Figure 15 .
  • the second direction may be the direction of the magnetic field of the antenna structure 200, for example, the x direction.
  • a feed branch 225 is disposed in the first gap 223, and the feed branch 225 can be used to feed an electrical signal to cause the antenna structure 200 to resonate.
  • the edge of the radiator 221 along the third direction extends toward the floor 210 and is connected to the floor 210, as shown in (c) of Figure 15 .
  • the third direction is a direction perpendicular to the second direction in the plane where the floor 210 is located, for example, the y direction.
  • the direction of the magnetic field of the antenna structure 200 is the x direction (the second direction).
  • magnetoelectric films 230 are provided on both sides of the projection of the radiator 211 on the plane of the floor 210 along the first direction, which can reduce the bound magnetic field between the radiator 221 and the floor 220 and reduce dielectric loss and conductor loss. Raise antenna knot Structure efficiency of 200.
  • the antenna structure 200 may further include a feeding unit, and the feeding unit may be electrically connected to the feeding branch 225 at one end of the feeding branch 225 .
  • the feeding branch 225 may feed electrical signals to the antenna structure 200 through indirect coupling.
  • the feeding unit may be electrically connected to one end of the feeding branch 225 .
  • FIG. 16 is the S parameter of the antenna structure 200 shown in FIG. 14 .
  • FIG. 17 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna structure 200 shown in FIG. 14 .
  • the size of the radiator 221 is 16.5mm ⁇ 15mm, and the thickness of the dielectric plate 222 is 0.4mm.
  • the magnetoelectric films on both sides of the first projection of the radiator 221 on the floor 210 are the same, with a size of 17 mm ⁇ 15 mm and a thickness of 40 ⁇ m (one-tenth of the thickness of the patch antenna 220).
  • the resonant frequency of the antenna structure can be lowered from 5524MHz to 5273MHz, with a difference of 251MHz. It should be understood that the decrease in the resonant frequency of the antenna structure means that the magnetoelectric film can be used to reduce the size of the radiator (the size of the radiator corresponding to the same resonant frequency is smaller), which helps to achieve miniaturization of the antenna structure.
  • the resonance bandwidth of the antenna structure with a magnetoelectric film is still much larger than that of the antenna structure without a magnetoelectric film.
  • the efficiency of the antenna structure within the resonance bandwidth (system efficiency and radiation efficiency) has not decreased, while the efficiency bandwidth (system efficiency >-6dB is the limit) has been significantly improved.
  • the system efficiency of the antenna structure with a magnetoelectric film is improved by more than 2dB compared to the system efficiency of the antenna structure without a magnetoelectric film.
  • the average system efficiency of the antenna with added magnetoelectric film is higher than -3.3dB, which is an improvement of more than 1.3dB compared to the average system efficiency of the antenna without added magnetoelectric film.
  • the thickness of the antenna formed by the radiator is less than or equal to 0.4mm
  • high radiation efficiency can still be achieved and can be applied to low-clearance electronic equipment environment.
  • FIGS 18 to 21 are schematic diagrams of another antenna structure provided by embodiments of the present application.
  • the radiator 321 of the patch antenna 320 may include a first side 3211 and a second side 3212 that intersect at an angle (the first side 3211 and the second side 3212 are connected to each other), and a third gap 323 .
  • One end of the third slit 323 is located on the first side 3211, and the other end of the third slit 323 is located on the second side 3212.
  • the third slit 323 may be disposed at a diagonal position of the radiator 321.
  • the difference from the antenna structure 200 shown in FIG. 14 lies in the shape of the slot provided on the radiator.
  • the antenna structure may also include short-circuit stubs 311, as shown in Figure 18.
  • Short circuit stub 311 One end of the short-circuit branch 311 is electrically connected to the radiator 321, and the other end of the short-circuit branch 311 is electrically connected to the floor 310.
  • the short-circuit stub 311 can be used to adjust the radiation characteristics of the antenna structure.
  • the short-circuit branch 311 may be disposed on the side of the dielectric plate 322 for connecting the radiator 321 and the floor 210 .
  • the antenna structure may also include a shorting wall 340, as shown in Figure 19.
  • the short-circuit wall 340 may be disposed on the first surface of the floor 310.
  • the short-circuit wall may be disposed in the circumferential direction of the antenna 320 to surround the antenna 320 so that the antenna 320 is not interfered by electromagnetic waves in the environment to obtain better radiation characteristics.
  • the radiator 421 and the floor 410 may enclose a cavity that opens along the second direction.
  • the antenna formed by the radiator 421 may be a band tube antenna, and the direction of the magnetic field generated when the radiator 421 resonates includes the second direction.
  • the electronic device may include a conductive frame 11.
  • the frame 11 has a first position 101 and a second position 102.
  • the frame between the first position 101 and the second position 101 is the first frame 501.
  • the radiator of the antenna structure may include a first frame 501 .
  • the magnetoelectric film 530 is opposite to the first frame 501 and does not contact each other, and forms a gap.
  • the magnetoelectric film 530 can be disposed on the surface of the first area of the floor, and the first area can be on the floor corresponding to the first frame 501 Area.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection between devices or units may be in electrical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供了一种天线结构和电子设备,该天线结构利用地板上设置的磁电膜,可以提升天线结构的性能。天线结构包括:地板,天线和磁电膜。辐射体位于地板的第一侧,磁电膜位于地板的第一表面,所述第一表面为所述地板在第一侧的表面,磁电膜的相对磁导率大于1。其中,磁电膜位于第一投影的至少一侧,第一投影为辐射体沿第一方向在第一表面所在平面上的投影,第一方向为垂直于第一表面的方向。

Description

一种天线结构和电子设备
本申请要求于2022年5月20日提交中国专利局、申请号为202210558449.4、申请名称为“一种天线结构和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种天线结构和电子设备。
背景技术
磁电介质一般是用铁磁粉与高分子粉末形态的介质混合形成的复合材料(magneto-dielectric substrate,MD)。因此,磁电介质可以同时呈现电介质和磁介质特性。磁电介质的工作频率比纯粹的磁介质更高,损耗更低。
磁电介质已经被广泛用于微波器件、存储单元和声学原件等。在天线方面的应用主要是在300MHz以下的低频段,可用来减小天线的重量和尺度。例如,在NFC频段(13.56MHz),磁电介质可以有效的增强NFC天线的磁场强度,并使得天线线圈的面积成倍缩减。而在高频段(例如,在GHz频段),磁电介质呈现高损特性,可用来吸收或抑制杂波。
发明内容
本申请实施例提供了一种天线结构和电子设备,该天线结构利用地板上设置的磁电膜,可以提升天线结构的性能。
第一方面,提供了一种天线结构,包括:地板;辐射体,所述天线位于所述地板的第一侧;磁电膜,位于所述地板的第一表面,所述第一表面为所述地板在第一侧的表面,所述磁电膜的相对磁导率大于1;其中,所述磁电膜位于第一投影的至少一侧,所述第一投影为所述辐射体沿第一方向在所述第一表面所在平面上的投影,所述第一方向为垂直于所述第一表面的方向。
根据本申请实施例的技术方案,通过在辐射体的至少一侧的地板上设置磁电膜,可以减弱辐射体与地板间的束缚磁场,降低了介质损耗和导体损耗,从而提升天线结构的辐射效率。其中,束缚磁场可以理解为,辐射体与地板之间形成的强电磁场。该强电磁场会使大部分的输入功率转化为无用的欧姆热,小部分的输入功率辐射到空间。
结合第一方面,在第一方面的某些实现方式中,所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;所述磁电膜位于所述第一投影沿第二方向的至少一侧。
根据本申请实施例的技术方案,由于磁电膜设置在磁场方向上,在辐射体与磁电膜的交界处,天线的磁场(地板上的电流)被进一步减弱。进一步降低了介质损耗和导体损耗,从而提升天线的效率。
结合第一方面,在第一方面的某些实现方式中,所述磁电膜的相对磁导率大于1包括:所述磁电膜沿所述第二方向和第三方向的相对磁导率大于1,所述第三方向为所述地板所在平面内与所述第二方向垂直的方向;所述磁电膜沿所述第一方向的相对磁导率等于1。
根据本申请实施例的技术方案,磁电膜在第二方向和第三方向的相对磁导率大于1可以使天线产生的束缚磁场减弱,减少介质损耗和导体损耗,而其在第一方向上不具备磁性(相对磁导率等于1),不会影响天线结构的辐射性能。
结合第一方面,在第一方面的某些实现方式中,所述磁电膜的相对介电常数的值与所述磁电膜的相对磁导率的值的比值小于或等于1.25。
结合第一方面,在第一方面的某些实现方式中,所述磁电膜的相对介电常数的值与所述磁电膜的相对磁导率的值相同。
结合第一方面,在第一方面的某些实现方式中,所述辐射体与所述地板之间的距离小于或等于1mm。
根据本申请实施例的技术方案,随着辐射体与地板之间的距离越小,天线结构的净空变小,辐射体与地板之间的束缚磁场变强,天线结构的输入功率更多的转化为热能(欧姆热),天线结构的辐射性能变差。通过沿天线结构的磁场方向(第二方向)设置磁电膜,可以使辐射体与地板之间的束缚磁场减弱,减少转为热能,提升天线结构的辐射性能。
结合第一方面,在第一方面的某些实现方式中,所述磁电膜的厚度小于或等于0.2mm。
结合第一方面,在第一方面的某些实现方式中,所述磁电膜的厚度大于或等于10μm。
根据本申请实施例的技术方案,随着磁电膜的厚度的增加,天线结构的谐振频率的下降,表明磁电膜的厚度的增加可以缩减辐射体的尺度(相同谐振频率对应的天线尺寸更小),有助于实现天线结构的小型化。
结合第一方面,在第一方面的某些实现方式中,所述磁电膜的相对磁导率大于或等于15且小于或等于100。
根据本申请实施例的技术方案,随着磁电膜的相对磁导率的增加,天线结构的谐振频率的下降,表明磁电膜的相对磁导率的增加可以缩减辐射体的尺度(相同谐振频率对应的天线尺寸更小),有助于实现天线结构的小型化。
结合第一方面,在第一方面的某些实现方式中,所述磁电膜的相对磁导率与所述磁电膜的厚度的乘积大于或等于1500μm。
根据本申请实施例的技术方案,天线结构从磁电膜中得到的收益(例如,效率的提升,以及带宽的拓展)与磁电膜的相对磁导率和磁电膜的厚度相关,可以根据电子设备内的布局,调整磁电膜的相对磁导率与磁电膜的厚度。
结合第一方面,在第一方面的某些实现方式中,所述天线结构还包括介质板;所述介质板的下表面与所述地板的第一表面接触,所述辐射体位于所述介质板的上表面。
结合第一方面,在第一方面的某些实现方式中,所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;所述介质板设置有沿第三方向延伸的凹口,所述第三方向为所述地板所在平面内与所述第二方向垂直的方向;所述辐射体与所述凹口对应的位置设置有开口缝隙。
结合第一方面,在第一方面的某些实现方式中,所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;所述第一缝隙沿所述第二方向延伸,所述第二缝隙的一端在第一连接点处与所述第一缝隙连通;所述辐射体沿第三方向的边沿朝向 所述地板延伸,并与所述地板连接,所述第三方向为所述地板所在平面内与所述第二方向垂直的方向;所述第一缝隙内设置有馈电枝节,所述馈电枝节用于馈入电信号。
结合第一方面,在第一方面的某些实现方式中,所述辐射体包括呈角相交的第一边和第二边,以及第三缝隙;所述第三缝隙的一端位于所述第一边,所述第三缝隙的另一端位于所述第二边。
结合第一方面,在第一方面的某些实现方式中,所述天线结构还包括短路枝节;所述短路枝节的一端与所述辐射体电连接,所述短路枝节的另一端与所述地板电连接。
结合第一方面,在第一方面的某些实现方式中,所述天线结构还包括金属墙;所述金属墙设置于所述第一表面,所述金属墙设置于所述天线周向,所述天线设置于所述金属墙围成的空间内。
根据本申请实施例的技术方案,本申请实施例提供的技术方案可以应用于不同结构的贴片天线。
结合第一方面,在第一方面的某些实现方式中,所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;所述天线包括辐射体;所述辐射体与所述地板围成沿第二方向开口的腔体。
根据本申请实施例的技术方案,本申请实施例提供的技术方案可以应用于波导管天线。
结合第一方面,在第一方面的某些实现方式中,所述天线结构用于电子设备,所述电子设备包括导电边框,所述边框上具有第一位置和第二位置,所述第一位置和所述第二位置之间的边框为第一边框;所述辐射体包括所述第一边框;所述磁电膜与所述第一边框相对且互不接触,并形成缝隙。
根据本申请实施例的技术方案,本申请实施例提供的技术方案可以应用于电子设备的边框天线。
结合第一方面,在第一方面的某些实现方式中,所述辐射体为片状导电体;所述磁电膜位于所述辐射体的所述第一投影之外。
根据本申请实施例的技术方案,本申请实施例提供的技术方案可以不仅仅应用于上述的天线结构,也可以应用于其他天线结构。
第二方面,提供了一种电子设备,包括第一方面中任一项所述的天线结构。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图。
图2是本申请实施例提供的一种天线的示意图。
图3是图2中的(b)所示天线的辐射效率的仿真结果图。
图4是本申请实施例提供的一种天线结构100的示意图。
图5是本申请实施例提供的一种天线结构100的平面结构示意图。
图6是图4所示天线结构的S参数及辐射效率的仿真结果图。
图7是图4所示天线结构的史密斯圆图。
图8是图4所示天线的馈电点处设置匹配电路后的S参数及系统效率的仿真结果图。
图9是图4所示天线结构的磁场分布示意图。
图10是图4所示天线结构的辐射效率的仿真结果图。
图11是图4所示天线结构的S参数。
图12是图4所示天线结构的史密斯圆图。
图13是图4所示天线结构的辐射效率的仿真结果图。
图14是本申请实施例提供的另一种天线结构200的示意图。
图15是本申请实施例提供的另一种天线结构200的平面示意图。
图16是图14所示天线结构200的S参数。
图17是图14所示天线结构200的系统效率和辐射效率的仿真结果图。
图18是本申请实施例提供的另一种天线结构的示意图。
图19是本申请实施例提供的另一种天线结构的示意图。
图20是本申请实施例提供的另一种天线结构的示意图。
图21是本申请实施例提供的另一种天线结构的示意图。
具体实施方式
以下,对本申请实施例可能出现的术语进行解释。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
连接/相连:可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
接通:通过以上“电连接”或“间接耦合”的方式使得两个或两个以上的元器件之间导通或连通来进行信号/能量传输,都可称为接通。
相对/相对设置:A与B相对设置可以是指A与B面对面(opposite to,或是face to face)设置。
谐振/谐振频率:谐振频率又叫共振频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。共振最强点对应的频率就是中心频率点频率。中心频率的回波损耗特性可以小于-20dB。
谐振频段/通信频段/工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。
电长度:可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±25%的范围内。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±10%的范围内。
波长:或者工作波长,可以是谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
本申请实施例中提及的中间或中间位置等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。例如,导体的中间(位置)可以是指导体上包括中点的一段导体部分,可以是包括该导体中点的一段八分之一波长的导体部分,其中,波长可以是天线的工作频段对应的波长,可以是工作频段的中心频率对应的波长,或者,谐振点对应的波长。又例如,导体的中间(位置)可以是指导体上距离中点小于预定阈值(例如,1mm,2mm,或2.5mm)的一段导体部分。
本申请实施例中提及的共线、共轴、共面、对称(例如,轴对称、或中心对称等)、平行、垂直、相同(例如,长度相同、宽度相同等等)等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。共线的两个辐射枝节或者两个天线单元的边缘之间在线宽方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。共面的两个辐射枝节或者两个天线单元的边缘之间在垂直于其共面平面的方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。相互平行或垂直的两个天线单元之间可以存在预定角度(例如±5°,±10°)的偏差。
电介质:是指能够被电极化的介质。在特定的频带内,时变电场在其内给定方向产生的传导电流密度分矢量值远小于在此方向的位移电流密度的分矢量值。在本申请的实施例中,可以简单的理解电介质为,相对介电常数大于1的介质,且相对磁导率等于1的介质。
磁介质:由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布,在这种磁场作用下,其内部状态发生变化,并反过来影响磁场存在或缝补的物质,称为磁介质。在本申请的实施例中,可以简单的理解磁介质为,相对磁导率大于1的介质,且相对介电常数等于1的介质。
磁电介质:同时具有电介质属性和磁介质属性的介质。在本申请的实施例中,可以简单的理解磁电介质为,相对介电常数和相对磁导率均大于1的介质。
应理解,由于磁电介质具有磁介质的属性,也具有电介质的属性,因此,本申请实施例中的磁介质可以由磁电介质实现,并且可以根据实际的生产或设计需求,选择磁电介质的相对介电常数和相对磁导率数值。
磁电膜:由磁电介质制备的薄膜,其厚度小于或等于0.2mm。磁电膜可由不同的方法制成,例如,铁磁粉与高分子粉末形态的介质混合形成薄膜。或者,也可以是由颗粒更细的纳米磁粉涂覆在介质基底上形成薄膜。或者,也可以其他方式制备磁电膜,本申请实施例对此并不做限制。
对于上述电介质的相对介电常数以及磁介质的相对磁导率,以及磁电介质的相对介电常数或相对磁导率,可以通过平行板谐振法(post resonator method)以及闭腔谐振法(或闭式谐振腔法)(closed cavity resonator method,或,shielded cavity method)或其他谐振法(dielectric resonator techniques)进行测量。其中,平行板谐振法是通过将待测量样品放置于两个平行的金属板形成的开放式腔体中,使用矢量网络分析仪与该腔体的输入以及输 出端口电连接,改变输入端口输入信号的频率,使腔体在某一频率产生谐振(阻抗最小),从而通过计算确定该样品的电参数(相对介电常数或相对磁导率),平行板谐振法可以例如是HakkiColeman法。闭腔谐振法是通过将待测量样品放置于闭合式腔体(例如,圆柱形腔体),改变输入端口输入信号的频率,使腔体在某一频率产生谐振(阻抗最小),从而通过计算确定该样品的电参数(相对介电常数或相对磁导率)。
天线系统效率(total efficiency):指在天线的端口处输入功率与输出功率的比值。
天线辐射效率(radiation efficiency):辐射效率是衡量天线辐射能力的值。指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-损耗功率;损耗功率主要包括回波损耗功率和金属的欧姆损耗功率和/或介质损耗功率。金属损耗、介质损耗均是辐射效率的影响因素。
本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,效率越接近0dB,表征该天线的效率越优。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣。S11参数通常为负数,S11参数越小,表示天线回波损耗越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多,天线的系统效率越高;S11参数越大,表示天线回波损耗越大,天线的系统效率越低。
需要说明的是,工程上一般以S11值为-6dB作为标准,当天线的S11值小于-6dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
史密斯(Smith)圆图:是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。该图由三个圆系构成,用以在传输线和某些波导问题中利用图解法求解,以避免繁琐的运算。
地,或地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于电子设备内元器件的接地。一个实施例中,“地”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘 基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
下面将结合附图,对本申请实施例的技术方案进行描述。
如图1所示,电子设备10可以包括:盖板(cover)13、显示屏/模组(display)15、印刷电路板(printed circuit board,PCB)17、中框(middle frame)19和后盖(rear cover)21。应理解,在一些实施例中,盖板13可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如超薄玻璃材料盖板,PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。
其中,盖板13可以紧贴显示模组15设置,可主要用于对显示模组15起到保护、防尘作用。
在一个实施例中,显示模组15可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请实施例对此并不做限制。
中框19主要起整机的支撑作用。图1中示出PCB17设于中框19与后盖21之间,应可理解,在一个实施例中,PCB17也可设于中框19与显示模组15之间,本申请实施例对此并不做限制。其中,印刷电路板PCB17可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB17上承载电子元件,例如,射频芯片等。在一个实施例中,印刷电路板PCB17上可以设置一金属层。该金属层可用于印刷电路板PCB17上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB17中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在印刷电路板PCB17上靠近中框19的一侧。在一个实施例中,印刷电路板PCB17的边缘可以看作其接地层的边缘。可以在一个实施例中,金属中框19也可用于上述元件的接地。电子设备10还可以具有其他地板/接地板/接地层,如前所述,此处不再赘述。
其中,电子设备10还可以包括电池(图中未示出)。电池可以设置于设于中框19与后盖21之间,或者可设于中框19与显示模组15之间,本申请实施例对此并不做限制。在一些实施例中,PCB17分为主板和子板,电池可以设于所述主板和所述子板之间,其中,主板可以设置于中框19和电池的上边沿之间,子板可以设置于中框19和电池的下边沿之间。
电子设备10还可以包括边框11,边框11可以由金属等导电材料形成。边框11可以设于显示模组15和后盖21之间并绕电子设备10的外围周向延伸。边框11可以具有包围显示模组15的四个侧边,帮助固定显示模组15。在一种实现方式中,金属材料制成的边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框11的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框19可以包括边框11,包括边框11的中框19作为一体件,可以对整机中的电子器件起支撑作用。盖板13、后盖21分别沿边框的上下边沿盖合从而形成电子设备的外壳 或壳体(housing)。在一个实施例中,盖板13、后盖21、边框11和/或中框19,可以统称为电子设备10的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板13、后盖21、边框11或中框19中任一个的部分或全部,或者指代盖板13、后盖21、边框11或中框19中任意组合的部分或全部。
中框19上的边框11可以至少部分地作为天线辐射体以收/发射频信号,作为辐射体的这一部分边框,与中框19的其他部分之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境。在一个实施例中,中框19在作为辐射体的这一部分边框处可以设置孔径,以利于天线的辐射。
或者,可以不将边框11看做中框19的一部分。在一个实施例中,边框11可以和中框19连接并一体成型。在另一实施例中,边框11可以包括向内延伸的突出件,以与中框19相连,例如,通过弹片、螺丝、焊接等方式相连。边框11的突出件还可以用来接收馈电信号,使得边框11的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框30之间可以存在间隙42,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。
其中,后盖21可以是金属材料制成的后盖;也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖;还可以是同时包括导电材料和非导电材料制成的后盖。
电子设备10的天线还可以设置于边框11内。当电子设备10的边框11为非导电材料时,天线辐射体可以位于电子设备10内并延边框11设置。例如,天线辐射体贴靠边框11设置,以尽量减小天线辐射体占用的体积,并更加的靠近电子设备10的外部,实现更好的信号传输效果。需要说明的是,天线辐射体贴靠边框11设置是指天线辐射体可以紧贴边框11设置,也可以为靠近边框11设置,例如天线辐射体与边框11之间能够具有一定的微小缝隙。
电子设备10的天线还可以设置于外壳内,例如支架天线、毫米波天线等(图1中未示出)。设置于壳体内的天线的净空可以由中框、和/或边框、和/或后盖、和/或显示屏中任一个上的开缝/开孔来得到,或者由任几个之间形成的非导电缝隙/孔径来得到,天线的净空设置可以保证天线的辐射性能。应可理解,天线的净空可以是由电子设备10内的任意导电元器件来形成的非导电区域,天线通过该非导电区域向外部空间辐射信号。在一个实施例中,天线40的形式可以为基于柔性主板(flexible printed circuit,FPC)的天线形式,基于激光直接成型(laser-direct-structuring,LDS)的天线形式或者微带天线(microstrip disk antenna,MDA)等天线形式。在一个实施例中,天线也可采用嵌设于电子设备10的屏幕内部的透明结构,使得该天线为嵌设于电子设备10的屏幕内部的透明天线单元。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
应理解,在本申请的实施例中,可以认为电子设备的显示屏所在的面为正面,后盖所在的面为背面,边框所在的面为侧面。
应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。
图2是本申请实施例提供的一种天线的示意图。
如图2中的(a)所示,为一种包括介质板和设置在介质板表面的辐射体的贴片(patch)天线的结构示意图,天线可以设置于地板上。
为了缩减天线的尺寸,可以将磁电膜设置在介质板的表面(介质板与辐射体之间,或,介质板与地板之间),如图2中的(b)所示。或者,也可以将磁电膜设置在介质板内(例如,介质板的多个介质层之间),如图2中的(c)所示。
图3是图2中的(b)所示天线的辐射效率的仿真结果图。
如图3所示,两组不同情况下的仿真结果图。其中,在第一组中示出了天线结构增加磁电膜的仿真结果,在第二组中示出了随着磁电膜中磁介质的损耗的增加的仿真结果。
其中,用于对照的参考天线(与图2中的(b)所示的天线区别仅在于未设置磁电膜)中的介质板,选取εr=9.9。由于电磁波的波长在电介质中会缩短,根据电磁场的理论,贴片天线的谐振频率f满足以下公式:
其中,c为光速,εr为在介质板中电介质的相对介电常数。
而电磁波的波长在磁电介质中会缩短,根据电磁场的理论,贴片天线的谐振频率f满足以下公式:
其中,c为光速,μr为介质板中磁电介质的相对磁导率,εr为在介质板中磁电介质的相对介电常数。L为天线在第三方向上的长度。
根据上述公式,在第一组仿真结果中,为保证图2中的(b)所示的天线与参考天线的尺寸相同,选取磁电膜的εr=3.3,μr=3.1。
在第一组仿真结果中,当磁电膜的磁损耗等于0.01时,图2中的(b)所示的天线与参考天线的辐射效率接近。而随着磁损耗增加至0.05时,图2中的(b)所示的天线与参考天线的辐射效率差距增大,恶化约1.2dB。
在第二组仿真结果中,选取磁电膜的εr=13,μr=10。而当磁损耗从0.01升到0.05,辐射效率下降约2.2dB。当磁损耗增加至0.1时,辐射效率再次下降约2.1dB。
由上述可知,图2中的(b)所示的天线(贴片天线)对磁电膜的磁损耗非常敏感,只有加载超低耗(例如,磁损耗小于或等于0.01)的磁电膜,才能提升天线的性能。而正常损耗(例如,磁损耗大于或等于0.05)的磁电膜并不能提升天线的效率。
本申请实施例提供了一种天线结构和电子设备,该天线结构利用地板上设置的磁电膜,可以提升天线结构的性能。
图4是本申请实施例提供的一种天线结构100的示意图。
如图4所示,天线结构100可以包括地板110,辐射体121和磁电膜130。
其中,辐射体121位于地板110第一侧。磁电膜130可以位于地板110的第一表面111(第一表面111为地板110在第一侧的表面),磁电膜130的相对磁导率大于1。磁电膜130可以位于第一投影的至少一侧,第一投影为辐射体121沿第一方向在第一表面111所在平面上的投影,如图5中的(b)所示,第一方位垂直于第一表面111的方向,例如,z方向。
在一个实施例中,天线结构100还可以包括介质板122。辐射体121位于介质板122上表面,介质板122的下表面与第一表面111接触,如图5中的(a)所示。在一个实施 例中,辐射体1221位片状导电体,例如辐射体1221和介质板122可以形成贴片天线120。
应理解,通过在辐射体121至少一侧的地板110上设置磁电膜130,可以减弱辐射体121与地板110间的束缚磁场,降低了介质损耗和导体损耗,从而提升天线结构的辐射效率。其中,束缚磁场可以理解为,辐射体121与地板110之间形成的强电磁场。该强电磁场会使大部分的输入功率转化为无用的欧姆热,小部分的输入功率辐射到空间。
在一个实施例中,天线结构100产生的磁场的方向包括第二方向,第二方向为与第一方向垂直(第二方向可以与地板110所在平面平行),磁电膜130位于第一投影沿第二方向(例如,x方向)的至少一侧,如图5中的(b)所示。
应理解,天线结构100产生的磁场的方向包括第二方向可以理解为,天线结构100中贴片天线120谐振时,在第二方向产生的磁场的强度远大于其它方向的磁场的平均强度。例如,如图5中的(b)所示的贴片天线120,可以包括向第三方向(例如,y方向)延伸的凹口,以使其谐振时产生沿第二方向的磁场,地板110所在平面内第二方向与第三方向垂直。
在一个实施例中,辐射体121还可以包括馈电点123,馈电点123可以设置于凹口内侧(与开口端相反一侧)对应的辐射体121位置,用于为贴片天线120馈入电信号。
同时,天线结构100可以包括多个磁场的方向,磁场方向与辐射体121形成的天线的结构相关,图5中的(b)所示的贴片天线120的结构为例进行说明,其磁场方向仅包括第二方向,本申请对辐射体121形成的天线的结构并不做限制。
由于磁电膜设置在磁场方向上,在贴片天线120与磁电膜130的交界处,天线结构100的磁场(地板110上的电流)被进一步减弱。进一步降低了介质损耗和导体损耗,从而提升天线结构100的效率。
在一个实施例中,天线结构可以包括两个磁电膜130,可以分别位于第一投影的两侧,如图5中的(b)所示,可以提升天线结构100的效率。
在一个实施例中,磁电膜130的相对磁导率大于1可以理解为,磁电膜130在xy平面内具有磁性,在z方向不具有磁性。例如,磁电膜130沿第二方向和第三方向的相对磁导率大于1,磁电膜130沿第一方向的相对磁导率等于1。
应理解,磁电膜130在第二方向和第三方向的相对磁导率大于1可以使辐射体121与地板110之间的束缚磁场减弱,减少介质损耗和导体损耗,而其在第一方向上不具备磁性(相对磁导率等于1),不会影响天线120的辐射性能。
在一个实施例中,磁电膜130的相对介电常数的值与磁电膜130的相对磁导率的值的比值小于或等于1.25。在一个实施例中,磁电膜的130相对介电常数的值与磁电膜130的相对磁导率的值相同。
在一个实施例中,辐射体121与地板110之间的距离小于或等于1mm。
应理解,随着辐射体121与地板110之间的距离越小,天线结构100的净空变小,辐射体121与地板110之间产生的束缚磁场变强,天线结构100的输入功率更多的转化为热能(欧姆热),天线结构的辐射性能变差。通过沿天线结构100的磁场方向(第二方向)设置磁电膜,可以使辐射体121与地板110之间的束缚磁场减弱,减少转为热能,提升天线结构的辐射性能。
在一个实施例中,磁电膜130的厚度小于或等于0.2mm。在一个实施例中,磁电膜130的厚度大于或等于10μm。
应理解,磁电膜130的厚度增加时,辐射体121与地板110之间的束缚磁场会减弱,可以进一步提升天线结构100的辐射特性,例如,效率。
在一个实施例中,磁电膜130的相对磁导率大于或等于15且小于或等于100。
应理解,磁电膜130的相对磁导率增加时,辐射体121与地板110之间的束缚磁场会减弱,可以进一步提升天线结构100的辐射特性,例如,带宽和效率。
在一个实施例中,磁电膜130的相对磁导率μr与磁电膜130的厚度h的乘积大于或等于1500μm,例如,μr×h≥1500μm。
应理解,天线结构100从磁电膜中得到的收益(例如,效率的提升,以及带宽的拓展)与磁电膜130的相对磁导率和磁电膜130的厚度相关,可以根据电子设备内的布局,调整磁电膜130的相对磁导率与磁电膜130的厚度。
在一个实施例中,磁电膜130的形状可以根据电子设备内的布局进行调整,本申请对此并不做限制。
在一个实施例中,所述磁电膜位于所述辐射体的所述第一投影之外,例如磁电膜130与辐射体121在地板110上的第一投影之间的距离可以大于或等于0mm。例如,磁电膜130与第一投影之间的距离等于0mm时,贴片天线120的介质板122与磁电膜130的边缘接触,介质板122与磁电膜130之间不形成缝隙,介质板122和地板110之间不设置磁电膜130。或者,磁电膜130与辐射体121在地板110上的第一投影之间的距离大于0mm时,贴片天线120的介质板122与磁电膜130之间不接触,并形成缝隙,磁电膜130与辐射体121在地板110上的第一投影之间的距离可以理解为缝隙的宽度。
在一个实施例中,磁电膜130的部分可以设置在介质板122和地板110之间。
图6至图8是图4所示天线结构的仿真结果图。其中,图6是图4所示天线结构的S参数及辐射效率的仿真结果图。图7是图4所示天线结构的史密斯圆图。图8是图4所示天线的馈电点处设置匹配电路后的S参数及系统效率的仿真结果图。
应理解,为论述的简洁,本申请仅以以下参数进行仿真,在实际生产或设计中,可以根据需求进行调整。其中,辐射体121的尺寸为30mm×22mm,介质板122厚度为0.65mm。辐射体121在地板110上的第一投影两侧的磁电膜相同,磁电膜尺度均为10mm×23mm,厚度为30μm。磁电膜130的相对介电常数εr=10,电损耗为0.05,磁电膜130在x方向和y方向的相对磁导率μr=80,磁损耗为0.15,z方向的相对磁导率μr=1,磁损耗为0。
如图6所示,增加磁电膜后,天线结构的谐振频率从2459MHz下降到2430MHz,频率差为29MHz。天线结构的谐振频率的下降,表明磁电膜可以缩减辐射体的尺度(相同谐振频率对应的辐射体尺寸更小),有助于实现天线结构的小型化。同时,磁电膜在x方向和y方向的磁损耗为0.15,天线结构的辐射效率仍然具有约0.4dB的提升。
如图7所示,增加磁电膜后,图中曲线所围成的圈变小,表明其带宽提升。
如图8所示,在辐射体和馈电单元之间增加匹配电路后,天线结构的辐射性能提升,可以实现最大的系统效率带宽,以系统效率>-6dB为界限,系统效率带宽从150MHz扩展到202MHz,有52MHz的增加,等效于将未设置磁电膜的天线结构的系统效率带宽提升了35%。
并且,在上述的仿真结果中,均采用磁损耗较高(损耗值为0.15)的磁电膜,天线结构仍能具有良好的辐射特性。因此,本申请实施例提供的天线结构,可以在提升辐射性能的同时,对磁电膜的磁损耗不敏感,更便于在工程设计中的应用。
图9是图4所示天线结构的磁场分布示意图。
如图9中的(a)所示,为未设置磁电膜的磁场分布示意图。如图9中的(b)所示,为设置磁电膜的磁场分布示意图。
如图9中的(b)所示,将较于如图9中的(a)所示的磁场分布,天线结构在设置磁电膜与介质板交界处的磁场减弱,在该位置地板上的电流降低。
应理解,在如图4所示的天线结构中,其工作模式为TM01,电场和磁场分布如下公式所示:
Ez=E0·cos(πy/L);
Hx=H0·sin(πy/L);
其中,L为辐射体121沿y方向的长度,如图5中的(b)所示。
由上述公式可知,天线结构的磁场方向为x方向,电场方向为z方向。由于磁电膜沿磁场方向上铺设,在介质板与磁电膜的交界处,天线结构的磁场(地板110上的电流)被进一步减弱。
由于在交界处,磁感应强度B的法向分量具有连续性,磁电膜和介质板交界处的电场强度连续,即:B磁电膜=B电介质,H磁电膜=H电介质/μr。
因此,当铺设磁电膜时,磁电膜和介质板交界处的磁场被明显削弱,如图9中的(b)所示。由于该位置的磁场被削弱,可以使整个地板呈弱的电流分布。换句话说,辐射体与地板之间的束缚磁场被弱化。使得天线结构的介质损耗和导体损耗明显降低,从而提升天线结构的效率。
并且,辐射体形成的天线(例如,图5所示的贴片天线120)可以等效为电感,其等效的电感的电感值可用如下公式估算
其中,μr为磁电膜的相对磁导率,I为地板上的电流,S为天线沿y方向的横截面积。
当铺设磁电膜时,导致地板上的电流的减小,使得贴片天线等效的电感的电感值有明显增加。由于的等效的电感的电感值增加,导致贴片天线的储存的能量减弱,更多的能量向外辐射,可以提升天线结构的效率带宽。
并且,随着磁电膜的相对磁导率μr的增加,贴片天线等效的电感的电感值明显增加,贴片天线的储存的能量可以进一步减弱,天线结构的效率带宽可以拓展。
图10至图13是图4所示天线结构的仿真结果图。其中,图10是图4所示天线结构的辐射效率的仿真结果图。图11是图4所示天线结构的S参数。图12是图4所示天线结构的史密斯圆图。图13是图4所示天线结构的辐射效率的仿真结果图。
应理解,图10至图13所示的仿真结果中,与图6至图8所示的仿真结果图的区别仅在于调整图4中所示的天线结构100中磁电膜130的电参数。
如图10所示,当磁电膜的厚度增加(由0.03mm(30μm)增加至0.33mm(330μm)),天线结构的辐射效率得到提升。相较于磁电膜的厚度为0.03mm,磁电膜厚度增加至0.13mm和0.33mm时,其辐射效率分别增加了约0.65dB和1dB。
并且,随着磁电膜厚度的增加,天线结构的谐振点由2429MHz(0.03mm对应谐振点)分别下降到2402MHz(0.13mm对应谐振点)和2384MHz(0.33mm对应谐振点),如图11所示。天线结构的谐振频率的下降,表明磁电膜的厚度的增加可以缩减天线结构的尺 度(相同谐振频率对应的天线结构尺寸更小),有助于实现天线结构的小型化。
同时,如图12所示,随着磁电膜厚度的增加,图中曲线所围成的圈逐渐变小,表明其带宽提升(拓展)。
如图13所示,选取不同电参数的磁电膜。例如,当磁电膜的厚度增加到0.33mm,磁电膜的在x方向和y方向的相对磁导率可降低到15。此时,天线结构的辐射特性和磁电膜的厚度为0.03mm,磁电膜的在x方向和y方向的相对磁导率为μr=80的情况基本相同。也就是说可以利用低相对磁导率的厚度较高的磁电膜,来代替高相对磁导率的厚度较低的磁电膜,从而降低成本。
同时,如图13所示,在磁电膜的厚度为0.03mm(30μm),磁电膜的在x方向和y方向的相对磁导率为μr=80的情况下,增加磁电膜的尺寸,由10mm×23mm增大时,天线结构的辐射效率可以再次提升。因此,随着磁电膜的面积增加,天线结构的辐射性能也会增加。
由上述仿真结果可知,天线结构的辐射特性收益与磁电膜的相对磁导率μr,厚度h以及面积s呈正比,也即
天线结构辐射特性收益≈μr·h·s;
因此,在实际的生产或设置中,可以根据实际的天线结构的布局调整磁电膜的各项电参数,以满足需要。
图14是本申请实施例提供的另一种天线结构200的示意图。
如图14所示,天线结构200可以包括地板210,贴片天线220和磁电膜230。
其中,贴片天线220位于地板210第一侧,例如,贴片天线220可以位于地板210的第一表面211(第一表面211为地板210在第一侧的表面),如图15中的(a)所示。磁电膜230可以位于地板210的第一表面211,磁电膜230的相对磁导率大于1。磁电膜230可以位于第一投影的至少一侧,第一投影为贴片天线220的辐射体211沿第一方向在地板210所在平面上的投影,如图15中的(b)所示,第一方位垂直于第一表面211的方向,例如,z方向。
如图14所示,其与图4所示的天线结构100的区别在于辐射体形成的天线的结构不同。
在一个实施例中,图14所示的贴片天线220可以为耦合加载(coupling feed—capacitance loaded loop)天线。
其中,贴片天线220还可以包括介质板222,如图15中的(c)所示。辐射体221包括第一缝隙223和第二缝隙224,第一缝隙223沿第二方向延伸,第二方向为地板210所在平面内与第一方向垂直的方向,第二缝隙224的一端在第一连接点处与第一缝隙223连通,形成T型缝隙,如图15中的(b)所示。其中,第二方向可以为天线结构200的磁场的方向,例如,x方向。第一缝隙223内设置有馈电枝节225,馈电枝节225可以用于馈入电信号,以使天线结构200产生谐振。辐射体221沿第三方向的边沿朝向地板210延伸,并与地板210连接,如图15中的(c)所示。其中,第三方向为地板210所在平面内与第二方向垂直的方向,例如,y方向。
应理解,在耦合加载天线的结构下天线结构200的磁场的方向为x方向(第二方向)。沿第二方向,在辐射体211沿第一方向在地板210所在平面上的投影两侧设置磁电膜230,可以降低辐射体221与地板220之间的束缚磁场,减少介质损耗和导体损耗,提升天线结 构200的效率。
在一个实施例中,天线结构200还可以包括馈电单元,馈电单元可以在馈电枝节225的一端与馈电枝节225电连接。在一个实施例中,馈电枝节225可以通过间接耦合的方式为天线结构200馈入电信号。
在一个实施例中,馈电单元可以与馈电枝节225的一端电连接。
图16和图17是图14所示天线结构200的仿真结果。其中,图16是图14所示天线结构200的S参数。图17是图14所示天线结构200的系统效率和辐射效率的仿真结果图。
应理解,为论述的简洁,本申请仅以以下参数进行仿真,在实际生产或设计中,可以根据需求进行调整。其中,辐射体221的尺寸为16.5mm×15mm,介质板222厚度为0.4mm。辐射体221在地板210上的第一投影两侧的磁电膜相同,尺度为17mm×15mm,厚度为40μm(为贴片天线220的厚度的十分之一)。磁电膜230的相对介电常数εr=10,电损耗为0.05,磁电膜230在x方向和y方向的相对磁导率μr=80,磁损耗为0.15,z方向的相对磁导率μr=1,磁损耗为0。
在未设置匹配电路的情况下,由于增加磁电膜,天线结构的谐振频率由5524MHz可下移到5273MHz,差为251MHz。应理解,天线结构的谐振频率的下降,意味着磁电膜可以用来缩减辐射体尺度(相同谐振频率对应的辐射体尺寸更小),有助于实现天线结构的小型化。
为了把将在设置磁电膜的情况下,天线结构的谐振频率调整到Wifi 5G频段的频带中心,将介质板的相对介电常数由εr=2.5降为2.2,如图16所示。以S11<-6dB为界限,谐振带宽由从134MHz提升到269MHz,带宽拓宽一倍。
在设置匹配电路的情况下,增加磁电膜的天线结构的谐振带宽依然远大于未设置磁电膜的天线结构。
如图17所示,天线结构在谐振带宽内的效率(系统效率和辐射效率)没有下降,而效率带宽(系统效率>-6dB为界限)有明显提升。尤其是在频段的边沿处,增加磁电膜的天线结构的系统效率相较于未增加磁电膜的天线结构的系统效率有高于2dB的提高。
在Wifi5G频段的工作频带内,增加磁电膜的天线的平均系统效率高于-3.3dB,相较于未增加磁电膜的天线的平均系统效率有高于1.3dB的提升。
因此,在超低剖面(辐射体形成的天线的厚度(辐射体与地板之间的距离)小于或等于0.4mm)的条件下,仍可以取得高的辐射效率,可以应用于低净空的电子设备的环境中。
应理解,本申请实施例提供的技术方案可以不仅仅应用于上述的天线结构,也可以应用于其他天线结构,例如,下图18至20所示的天线结构,本申请对此仅作为示例性表述,并不做限制。
图18至图21是本申请实施例提供的另一种天线结构的示意图。
如图18所示,贴片天线320的辐射体321可以包括呈角相交的第一边3211和第二边3212(第一边3211和第二边3212相互连接),以及第三缝隙323。第三缝隙323的一端位于第一边3211,第三缝隙323的另一端位于第二边3212,例如,第三缝隙323可以设置于辐射体321的对角线位置。
如图18所示,其与图14所示的天线结构200的区别在于辐射体上设置的缝隙的形状不同。
在一个实施例中,天线结构还可以包括短路枝节311,如图18所示。短路枝节311 的一端与辐射体321电连接,短路枝节311的另一端与地板310电连接。短路枝节311可以用于调整天线结构的辐射特性。
在一个实施例中,短路枝节311可以设置于介质板322的侧边,用于连接辐射体321与地板210。
在一个实施例中,天线结构还可以包括短路墙340,如图19所示。短路墙340可以设置于地板310的第一表面,短路墙可以设置于天线320的周向,环绕天线320,使天线320不受环境中电磁波的干扰,以获得更好的辐射特性。
如图20所示,为又一种天线结构的示意图,辐射体421可以与地板410围成沿第二方向开口的腔体。在这种结构中,辐射体421形成的天线可以为波段管天线,辐射体421谐振时产生的磁场的方向包括第二方向。
如图21所示,为电子设备的边框天线的示意图。电子设备可以包括导电边框11,边框11上具有第一位置101和第二位置102,第一位置101和第二位置101之间的边框为第一边框501。天线结构的辐射体可以包括第一边框501。磁电膜530与第一边框501相对且互不接触,并形成缝隙,例如,磁电膜530可以设置于地板的第一区域的表面上,第一区域可以是地板上与第一边框501对应的区域。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的之间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种天线结构,其特征在于,包括:
    地板;
    辐射体,所述天线位于所述地板的第一侧;
    磁电膜,位于所述地板的第一表面,所述第一表面为所述地板在第一侧的表面,所述磁电膜的相对磁导率大于1;
    其中,所述磁电膜位于第一投影的至少一侧,所述第一投影为所述辐射体沿第一方向在所述第一表面所在平面上的投影,所述第一方向为垂直于所述第一表面的方向。
  2. 根据权利要求1所述的天线结构,其特征在于,
    所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;
    所述磁电膜位于所述第一投影沿第二方向的至少一侧。
  3. 根据权利要求2所述的天线结构,其特征在于,所述磁电膜的相对磁导率大于1包括:
    所述磁电膜沿所述第二方向和第三方向的相对磁导率大于1,所述第三方向为所述地板所在平面内与所述第二方向垂直的方向;
    所述磁电膜沿所述第一方向的相对磁导率等于1。
  4. 根据权利要求1至3中任一项所述的天线结构,其特征在于,所述磁电膜的相对介电常数的值与所述磁电膜的相对磁导率的值的比值小于或等于1.25。
  5. 根据权利要求1至4中任一项所述的天线结构,其特征在于,所述磁电膜的相对介电常数的值与所述磁电膜的相对磁导率的值相同。
  6. 根据权利要求1至5中任一项所述的天线结构,其特征在于,
    所述辐射体与所述地板之间的距离小于或等于1mm。
  7. 根据权利要求1至6中任一项所述的天线结构,其特征在于,所述磁电膜的厚度小于或等于0.2mm。
  8. 根据权利要求7所述的天线结构,其特征在于,所述磁电膜的厚度大于或等于10μm。
  9. 根据权利要求1至8中任一项所述的天线结构,其特征在于,所述磁电膜的相对磁导率大于或等于15且小于或等于100。
  10. 根据权利要求1至9中任一项所述的天线结构,其特征在于,所述磁电膜的相对磁导率与所述磁电膜的厚度的乘积大于或等于1500μm。
  11. 根据权利要求1至10中任一项所述的天线结构,其特征在于,所述天线结构还包括介质板;
    所述介质板的下表面与所述地板的第一表面接触,所述辐射体位于所述介质板的上表面。
  12. 根据权利要求11所述的天线结构,其特征在于,
    所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;
    所述介质板设置有沿第三方向延伸的凹口,所述第三方向为所述地板所在平面内与所述第二方向垂直的方向;
    所述辐射体与所述凹口对应的位置设置有开口缝隙。
  13. 根据权利要求11所述的天线结构,其特征在于,
    所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;
    所述辐射体包括第一缝隙和第二缝隙,
    所述第一缝隙沿所述第二方向延伸,所述第二缝隙的一端在第一连接点处与所述第一缝隙连通;
    所述辐射体沿第三方向的边沿朝向所述地板延伸,并与所述地板连接,所述第三方向为所述地板所在平面内与所述第二方向垂直的方向;
    所述第一缝隙内设置有馈电枝节,所述馈电枝节用于馈入电信号。
  14. 根据权利要求11所述的天线结构,其特征在于,
    所述辐射体包括呈角相交的第一边和第二边,以及第三缝隙;
    所述第三缝隙的一端位于所述第一边,所述第三缝隙的另一端位于所述第二边。
  15. 根据权利要求11至14中任一项所述的天线结构,其特征在于,所述天线结构还包括短路枝节;
    所述短路枝节的一端与所述辐射体电连接,所述短路枝节的另一端与所述地板电连接。
  16. 根据权利要求11至14中任一项所述的天线结构,其特征在于,所述天线结构还包括金属墙;
    所述金属墙设置于所述第一表面,所述金属墙设置于所述天线周向,所述天线设置于所述金属墙围成的空间内。
  17. 根据权利要求1至10中任一项所述的天线结构,其特征在于,
    所述天线结构产生的磁场的方向包括第二方向,所述第二方向与所述第一方向垂直;
    所述辐射体与所述地板围成沿第二方向开口的腔体。
  18. 根据权利要求1至10中任一项所述的天线结构,其特征在于,所述天线结构用于电子设备,
    所述电子设备包括导电边框,所述边框上具有第一位置和第二位置,所述第一位置和所述第二位置之间的边框为第一边框;
    所述辐射体包括所述第一边框;
    所述磁电膜与所述第一边框相对且互不接触,并形成缝隙。
  19. 根据权利要求1至11中任一项所述的天线结构,其特征在于,
    所述辐射体为片状导电体;
    所述磁电膜位于所述辐射体的所述第一投影之外。
  20. 一种电子设备,其特征在于,包括权利要求1至19中任一项所述的天线结构。
PCT/CN2023/093656 2022-05-20 2023-05-11 一种天线结构和电子设备 WO2023221877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210558449.4A CN117134111A (zh) 2022-05-20 2022-05-20 一种天线结构和电子设备
CN202210558449.4 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221877A1 true WO2023221877A1 (zh) 2023-11-23

Family

ID=88834576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093656 WO2023221877A1 (zh) 2022-05-20 2023-05-11 一种天线结构和电子设备

Country Status (2)

Country Link
CN (1) CN117134111A (zh)
WO (1) WO2023221877A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807744A (zh) * 2010-03-26 2010-08-18 西南交通大学 基于z型六角铁氧体的平面倒f型天线
GB2508428A (en) * 2012-12-03 2014-06-04 Eads Singapore Pte Ltd Small tapered slot antenna using a magneto-dielectric material
CN107634306A (zh) * 2017-08-17 2018-01-26 中国计量大学 一种磁性材料高隔离mimo手机天线
CN108134190A (zh) * 2017-12-04 2018-06-08 中国计量大学 基于磁性薄膜材料的多频段智能手机天线
US20200321512A1 (en) * 2016-05-31 2020-10-08 Northeastern University Nanoscale Radio Frequency Magnetoelectric Antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807744A (zh) * 2010-03-26 2010-08-18 西南交通大学 基于z型六角铁氧体的平面倒f型天线
GB2508428A (en) * 2012-12-03 2014-06-04 Eads Singapore Pte Ltd Small tapered slot antenna using a magneto-dielectric material
US20200321512A1 (en) * 2016-05-31 2020-10-08 Northeastern University Nanoscale Radio Frequency Magnetoelectric Antenna
CN107634306A (zh) * 2017-08-17 2018-01-26 中国计量大学 一种磁性材料高隔离mimo手机天线
CN108134190A (zh) * 2017-12-04 2018-06-08 中国计量大学 基于磁性薄膜材料的多频段智能手机天线

Also Published As

Publication number Publication date
CN117134111A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US8368595B2 (en) Metamaterial loaded antenna devices
Mitra et al. A miniaturized ring slot antenna design with enhanced radiation characteristics
JP5919921B2 (ja) アンテナ装置及び電子装置
WO2021238347A1 (zh) 天线和电子设备
Hou et al. A wideband differentially fed dual-polarized laminated resonator antenna
US8026855B2 (en) Radio apparatus and antenna thereof
JP5213039B2 (ja) 片面放射アンテナ
WO2023221877A1 (zh) 一种天线结构和电子设备
Al Smadi et al. Microstrip patch Antenna Array for Wireless Design Applications
WO2023155648A1 (zh) 一种天线结构和电子设备
WO2018153283A1 (zh) 终端天线及终端
WO2024046199A1 (zh) 一种电子设备
WO2024046200A1 (zh) 一种电子设备
WO2023246690A1 (zh) 一种电子设备
WO2023221876A1 (zh) 一种电子设备
WO2023246694A1 (zh) 一种电子设备
WO2023109556A1 (zh) 天线和电子设备
WO2024022281A1 (zh) 一种电子设备
WO2024114634A1 (zh) 一种天线结构和电子设备
WO2024022224A1 (zh) 一种天线、感知模块、传感器和电子设备
Loedhammacakra et al. A Quasi FSS Reflector with Dualband Cross Dipole for 5G Base Station Antenna Application
Moretti et al. Numerical investigation of vertical contactless transitions for multilayer RF circuits
WO2024055870A1 (zh) 一种天线结构和电子设备
WO2024022297A1 (zh) 一种电子设备
Salami et al. Evaluative Assessment of an X-band Microstrip Patch Antenna for Wireless Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806829

Country of ref document: EP

Kind code of ref document: A1