WO2024022224A1 - 一种天线、感知模块、传感器和电子设备 - Google Patents

一种天线、感知模块、传感器和电子设备 Download PDF

Info

Publication number
WO2024022224A1
WO2024022224A1 PCT/CN2023/108479 CN2023108479W WO2024022224A1 WO 2024022224 A1 WO2024022224 A1 WO 2024022224A1 CN 2023108479 W CN2023108479 W CN 2023108479W WO 2024022224 A1 WO2024022224 A1 WO 2024022224A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
parasitic
sub
parasitic patch
conductive pillar
Prior art date
Application number
PCT/CN2023/108479
Other languages
English (en)
French (fr)
Inventor
姚羽
吴有全
朱乃达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024022224A1 publication Critical patent/WO2024022224A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular, to an antenna, a sensing module, a sensor and an electronic equipment.
  • Millimeter wave technology can provide huge communication capacity due to its large bandwidth, and has many applications in 5G communications. In addition, millimeter wave technology also has huge applications in the field of detection due to its high directional characteristics and non-diffraction characteristics.
  • a transmitting antenna (TX) is used to emit coded electromagnetic waves, which are radiated to objects through space. Due to the electromagnetic characteristics of the object itself, The scattered waves will be transmitted to the receiving antenna (RX) position, and the target can be detected through signal processing.
  • the structure of radar products is usually relatively large, and there is a large floor near the antenna. Due to the principle of electromagnetic fields, there will be a large number of surface waves (also called surface currents) propagating along the floor, thus affecting the radiation performance of the antenna and changing the pattern. Deterioration will have an impact on the detection amplitude and accuracy.
  • suppressing surface waves is of great significance for optimizing the antenna pattern and improving the antenna's radiation performance.
  • This application provides an antenna, sensing module, sensor and electronic device to suppress surface waves generated by the floor of the antenna, thereby optimizing the antenna pattern and improving the radiation performance of the antenna.
  • the present application provides an antenna, which includes a floor, a main radiator, a first parasitic structure, a second parasitic structure, a feed structure and a feed line.
  • the above-mentioned feed structure is coupled to the main radiator, and the feed structure is coupled to the feed line, so that the main radiator and the feed line achieve signal connection.
  • the end of the feed line extends in the first direction toward the feed structure, or in other words, the portion of the feed line extending in the first direction is coupled with the feed structure.
  • the above-mentioned first direction is the polarization direction of the antenna.
  • the above-mentioned first parasitic structure, main radiator and second parasitic structure are arranged in sequence in the first direction.
  • the first parasitic structure and the second parasitic structure are located on both sides of the main radiator along the planned direction.
  • the projections of the first parasitic structure, the main radiator and the second parasitic structure in the second direction are all located in the plane of the floor, and the second direction is perpendicular to the plane of the floor. That is to say, the first parasitic structure, the main radiator and the second parasitic structure are located on a different plane from the floor.
  • the above-mentioned first parasitic structure includes a first parasitic patch and a first conductive pillar. Both ends of the first conductive pillar are electrically connected to the first parasitic patch and the floor respectively. That is to say, the first parasitic patch passes through the first parasitic patch.
  • a conductive pillar is electrically connected to the floor;
  • the second parasitic structure includes a second parasitic patch and a second conductive pillar, and both ends of the second conductive pillar are electrically connected to the second parasitic patch and the floor respectively, that is to say, the second parasitic
  • the patch is electrically connected to the floor through the second conductive pillar.
  • the above-mentioned first parasitic patch includes a first sub-parasitic patch and a second sub-parasitic patch
  • the first conductive pillar includes a first sub-conductive pillar and a second sub-conductive pillar.
  • the two ends of the first sub-conductive pillar are electrically connected to the first sub-parasitic patch and the floor respectively
  • the two ends of the second sub-conductive pillar are electrically connected to the second sub-parasitic patch and the floor respectively.
  • the first sub-parasitic patch and the second sub-parasitic patch are arranged along a third direction, and the third direction is perpendicular to the first direction.
  • the first sub-parasitic patch and the second sub-parasitic patch can form a dipole parasitic structure, so that the currents along the third direction generated by the first parasitic structure can cancel each other out, which is beneficial to maintaining the polarization of the antenna.
  • the direction remains unchanged, which is beneficial to keeping the antenna radiating in the normal direction.
  • the first parasitic structure and the second parasitic structure can also be caused to generate normal radiation, thereby improving the antenna gain.
  • the above-mentioned first sub-conductive pillar is electrically connected to the edge of the first sub-parasitic patch facing the second sub-parasitic patch, and the second sub-conductive pillar and the second sub-parasitic patch face towards the third sub-parasitic patch.
  • An edge of one side of the sub-parasitic patch is electrically connected.
  • the above-mentioned first sub-conductive pillar is electrically connected to the edge of the side of the first sub-parasitic patch facing away from the second sub-parasitic patch, and the second sub-conducting pillar is away from the second sub-parasitic patch.
  • An edge of one side of the first sub-parasitic patch is electrically connected.
  • the first conductive pillar is located at the center of the first parasitic patch along a third direction, and the third direction is perpendicular to the first direction.
  • the first parasitic structure does not include gaps, which is beneficial to reducing the size of the first parasitic structure.
  • this embodiment only includes one first conductive pillar, which is beneficial to reducing the size of the first parasitic structure and reducing the difficulty of preparation.
  • the above-mentioned first conductive pillar includes a third sub-conductive pillar and a fourth sub-conductive pillar, and the first parasitic patch is electrically connected to the third sub-conductive pillar and the fourth sub-conductive pillar respectively.
  • the above-mentioned third sub-conductive pillar and the fourth sub-conductive pillar are respectively located at the edges of both sides of the first parasitic patch along the third direction, and the third direction is perpendicular to the first direction.
  • This embodiment can also make the first parasitic structure a symmetrical structure. So that the currents of the first parasitic structure along the third direction can cancel each other.
  • the first parasitic structure does not include gaps, which is beneficial to reducing the size of the first parasitic structure.
  • the above-mentioned antenna may further include a metal enclosure, which includes at least a first metal wall and a second metal wall.
  • the first metal wall is located on a side of the first parasitic structure facing away from the main radiator, and the second metal wall is located on a side of the second parasitic structure facing away from the main radiator.
  • the first metal wall and the second metal wall can also inhibit the propagation of surface waves to a certain extent to further optimize the antenna pattern.
  • the antenna in order to form the first metal wall and the second metal wall, may include a plurality of metal via holes, and the plurality of metal via holes are arranged in an array, thereby forming the first metal wall and the second metal via hole. metal wall. thereby suppressing surface waves.
  • the metal vias in this solution are specifically formed on multi-layer circuit boards.
  • the resonant frequency F0 of the first parasitic structure and the center frequency F of the main radiator operating frequency band can be made to satisfy: 1/2F ⁇ F0 ⁇ F.
  • the distance M between the center of the above-mentioned first parasitic structure and the center of the main radiator along the first direction, and the wavelength ⁇ 0 of the free space corresponding to the center frequency of the operation of the main radiator satisfies: M ⁇ 1 /4 ⁇ 0.
  • the second parasitic structure may also adopt the structure of the first parasitic structure in any of the above technical solutions, which will not be described again here.
  • the first parasitic structure and the second parasitic structure can be symmetrically arranged on both sides of the radiation body. This improves the symmetry of the antenna and the uniformity of the antenna's radiation signal.
  • the antenna in the above embodiment may be a millimeter wave antenna, so that the directional characteristics and non-diffraction characteristics of the millimeter wave antenna can be better utilized.
  • the working frequency band of the above-mentioned antenna specifically includes at least part of the frequency band from 20 GHz to 70 GHz. Furthermore, the working frequency band of the antenna may be at least part of the frequency band from 24 GHz to 60 GHz.
  • the working frequency band of the antenna of the technical solution of this application can be specifically 23GHz to 25GHz, or the working frequency band of the antenna can also be 60GHz to 64GHz, etc.
  • this application also provides a sensing module.
  • the sensing module includes a plurality of antennas of the first aspect, and also includes a radio frequency chip and an algorithm processing unit.
  • the antenna is electrically connected to the radio frequency chip, and the radio frequency chip is electrically connected to the algorithm processing unit. connect.
  • the radiation performance of the antenna in this solution is better, and the size of the antenna can be made smaller, so the performance of the sensing module can be better and the size can also be smaller.
  • the sensing module can calculate the target position and information related to the target position, such as the target's movement speed, movement direction and distance.
  • this application also provides a sensor, which sensor includes the antenna in any of the technical solutions of the first aspect or the sensing module of the second aspect.
  • the radiation performance of the antenna in this solution is better, and the size of the antenna can be made smaller, so the performance of the sensor is better and the size can also be smaller.
  • the present application also provides an electronic device, which includes the antenna in any of the technical solutions of the first aspect, the sensing module of the second aspect, or the sensor of the third aspect.
  • This solution is beneficial to improving the signal radiation performance of electronic equipment, the reliability of target detection, and reducing the size of electronic equipment.
  • Figure 1 is a schematic structural diagram of a sensing module in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an antenna in an embodiment of the present application.
  • Figures 3(a) to 3(e) are schematic diagrams of the arrangement structure of the antennas in the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an antenna
  • Figure 5 is a schematic cross-sectional structural diagram at A-A in Figure 4.
  • Figure 6 is a schematic cross-sectional structural diagram at B-B in Figure 2;
  • Figure 7 is the radiation pattern along the polarization direction of the antenna shown in Figure 4.
  • Figure 8 is the radiation pattern along the polarization direction of the antenna shown in Figure 2;
  • Figure 9 is a schematic structural diagram of a dielectric plate installed on the side where the main radiator of the antenna is located;
  • Figure 10 is a radiation pattern along the polarization direction of the antenna shown in Figure 4 after a dielectric plate is installed;
  • Figure 11 is the radiation pattern along the polarization direction of the antenna shown in Figure 2 after installing a dielectric plate;
  • Figure 12 is the floor current distribution diagram of the antenna shown in Figure 4.
  • Figure 13 is the floor current distribution diagram of the antenna shown in Figure 2;
  • Figure 14 is a structural schematic diagram of a parasitic structure in an embodiment of the present application.
  • Figure 15 is a schematic top view of the parasitic structure in the embodiment of the present application.
  • Figure 16 is a schematic cross-sectional structural diagram at C-C in Figure 14;
  • Figure 17 is a current distribution diagram of the main radiator of the antenna shown in Figure 4.
  • Figure 18 is a current distribution diagram of the main radiator and parasitic structure of the antenna shown in Figure 2;
  • Figure 19 is another structural schematic diagram of an antenna in an embodiment of the present application.
  • Figure 20 is another top structural schematic diagram of the parasitic structure in the embodiment of the present application.
  • Figure 21 is a schematic cross-sectional structural diagram at D-D in Figure 19;
  • Figure 22 is the current distribution diagram of the antenna in Figure 19;
  • Figure 23 is a radiation pattern along the polarization direction of the antenna shown in Figure 19;
  • Figure 24 is another structural schematic diagram of an antenna in an embodiment of the present application.
  • Figure 25 is a schematic cross-sectional structural diagram taken at E-E in Figure 24;
  • Figure 26 is the current distribution diagram of the antenna in Figure 24;
  • Figure 27 is a radiation pattern along the polarization direction of the antenna shown in Figure 24;
  • Figure 28 is another structural schematic diagram of an antenna in an embodiment of the present application.
  • Figure 29 is a schematic structural diagram of a top view of the parasitic structure in the embodiment of the present application.
  • Figure 30 is a schematic cross-sectional structural diagram at F-F in Figure 28;
  • Figure 31 is the current distribution diagram of the antenna in Figure 28;
  • Figure 32 is a radiation pattern along the polarization direction of the antenna shown in Figure 28;
  • Figure 33 is a schematic structural diagram of a top view of the antenna in the embodiment of the present application.
  • Figure 34 is another top structural schematic diagram of the antenna in the embodiment of the present application.
  • Figure 35 is a schematic lateral cross-sectional structural diagram of the antenna in the embodiment of the present application.
  • Figure 36 is another top structural schematic diagram of the antenna in the embodiment of the present application.
  • Figure 37 is another top structural schematic diagram of the antenna in the embodiment of the present application.
  • Figure 38 is another top structural schematic diagram of the antenna in the embodiment of the present application.
  • Figure 39 is another top structural schematic diagram of the antenna in the embodiment of the present application.
  • Figure 40 is the radiation pattern of the antenna in the embodiment of the present application at a frequency of 18GHz;
  • Figure 41 is the radiation pattern of the antenna in the embodiment of the present application at a frequency of 20GHz;
  • Figure 42 is the radiation pattern of the antenna in the embodiment of the present application at a frequency of 24GHz;
  • Figure 43 is a Smith chart of return loss for the antenna shown in Figure 4.
  • Figure 44 is a Smith chart of return loss for the antenna shown in Figure 2;
  • Figure 45 is another top structural schematic diagram of an antenna in an embodiment of the present application.
  • the antenna provided by the embodiment of the present application is suitable for electronic devices using one or more of the following communication technologies: Bluetooth (blue-tooth, BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity ( wireless fidelity (WiFi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) Communication technology, 5G communication technology and other future communication technologies, etc.
  • Bluetooth blue-tooth, BT
  • GPS global positioning system
  • WiFi wireless fidelity
  • GSM global system for mobile communications
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • the electronic devices in the embodiments of the present application may be mobile phones, tablet computers, laptops, smart home products, smart bracelets, smart watches, smart helmets, smart glasses, smart navigation devices for vehicles, and smart sensing devices for security (such as smart sensing devices). cameras), drones. Unmanned transport vehicles, robots or medical sensing products, etc.
  • the electronic device may also be a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, an electronic device in a 5G network or a future evolved public land mobile network (PLMN) ), the embodiments of the present application are not limited to this.
  • PLMN public land mobile network
  • any of the above electronic devices may include the antenna in the embodiment of the present application to implement the communication or detection function of the electronic device.
  • the antenna in the electronic device can be directly installed on the electronic device and electrically connected to the processor in the electronic device to implement the communication function and/or detection function of the electronic device.
  • the antenna can also be integrated into the sensor or sensing module, and then the sensor or sensing module is installed on the electronic device, and the processor of the electronic device is electrically connected to the sensor or sensing module to realize the communication function and/or the electronic device. or detection function.
  • the above-mentioned processor may specifically refer to a chip, as long as it can process data and implement at least part of the functions of the electronic device, and this application does not limit this.
  • FIG. 1 is a schematic structural diagram of a sensing module in an embodiment of the present application. Please refer to Figure 1.
  • the sensing module includes multiple antennas 1 arranged in an array, a radio frequency chip 2 and an algorithm processing unit 3.
  • Each antenna 1 includes a radio frequency interface for connecting with the radio frequency chip 2 .
  • the plurality of antennas 1 include a transmitting antenna and a receiving antenna. In specific embodiments, the physical structures of the transmitting antenna and the receiving antenna may be the same.
  • the radio frequency interface of the antenna 1 is connected to the transmitting interface of the radio frequency chip 2, the antenna 1 is the transmitting antenna; when the radio frequency interface is connected to the receiving interface of the radio frequency chip 2, the antenna 1 is the receiving antenna.
  • the above-mentioned antenna 1 is connected to the radio frequency chip 2 through the above-mentioned radio frequency interface, and the above-mentioned radio frequency chip 2 is connected to the algorithm processing unit 3.
  • the radio frequency chip 2 is used to convert the digital signal output by the algorithm processing unit 3 into a radio frequency signal, and send the radio frequency signal to the transmitting antenna, and receive the electromagnetic wave signal captured by the receiving antenna, and convert the electromagnetic wave signal into a radio frequency signal. , and then send the radio frequency signal to the algorithm processing unit 3.
  • the algorithm processing unit 3 is used to send out the required digital signal, receive the radio frequency signal reflected by the target (obtained by processing the electromagnetic wave signal received by the receiving antenna through the radio frequency chip), and calculate the position, speed, distance and other information of the target.
  • the algorithm processing unit 3 determines the required digital signal and transfers the digital signal to the radio frequency chip 2.
  • the radio frequency chip 2 converts the digital signal into a radio frequency signal and sends the radio frequency signal to the transmitter.
  • the transmitting antenna radiates the above-mentioned radio frequency signal in the form of an electromagnetic wave signal.
  • the electromagnetic wave signal is scattered by the target to form an echo electromagnetic wave signal; the echo electromagnetic wave signal is received by the receiving antenna and converted into a radio frequency signal through the radio frequency chip 2 before transmission.
  • the algorithm processing unit 3 calculates the above-mentioned radio frequency signal to obtain the position, speed, distance and other information of the target.
  • antenna 1 As the core of the sensing module, antenna 1 carries the important task of receiving and transmitting electromagnetic wave signals. Therefore, improving the pattern of antenna 1 and improving the radiation performance can improve the sensing accuracy and speed of the sensing module.
  • the senor in the embodiment of the present application may include the above-mentioned antenna 1 or a sensing module, and may be mainly used to detect the position, speed, distance and other information of the target.
  • the sensor may be a sensing sensor, such as a radar.
  • Main radiator It is the device in the antenna used to receive/transmit electromagnetic wave radiation. Specifically, the main radiator converts the guided wave energy from the transmitter into radio waves, or converts the radio waves into guided wave energy, and is used to radiate and receive radio waves.
  • the modulated high-frequency current energy (or guided wave energy) generated by the transmitter is transmitted to the main radiator for transmission (corresponding to the main radiator of the transmitting antenna), and is converted into a certain polarized electromagnetic wave through the main radiator. energy and radiates it in the desired direction.
  • the main radiator for receiving (corresponding to the main radiator of the receiving antenna) converts a certain polarized electromagnetic wave energy from a specific direction in space into modulated high-frequency current energy and delivers it to the receiver input end.
  • the main radiator may be a conductor with a specific shape and size, such as a line or a sheet, and the application does not limit the specific shape.
  • the main radiator is specifically a sheet radiator, and the sheet radiator can be an ordinary patch (Patch) or a meta-surface patch (Meta Patch).
  • the sheet-shaped radiator can be realized by a conductive sheet/metal sheet, such as a copper sheet, etc.
  • the sheet radiator can be implemented by a conductive coating, such as a silver paste antenna, etc.
  • the shape of the sheet radiator includes circular, rectangular, annular, etc., and this application does not limit the specific shape.
  • the "floor” may include any one or more of the following: the ground layer of the circuit board of the electronic device, the ground plate formed by the middle frame of the electronic device, the ground metal layer formed by the metal film under the screen, and the conductive ground of the battery. layer, and conductive parts or metal parts that are electrically connected to the above-mentioned ground layer/ground plate/metal layer.
  • the circuit board may be a printed circuit board (PCB), such as an 8-, 10-, or 12- to 14-layer board with 8, 10, 12, 13, or 14 layers of conductive material, or by a circuit board such as Components separated and electrically insulated by dielectric or insulating layers such as fiberglass, polymer, etc.
  • PCB printed circuit board
  • ground layers, or ground plates, or ground metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on an insulating substrate, silver foil and tin-plated copper on an insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheet and aluminized substrate.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • Feed point The coupling point between the main radiator and the transmission line is usually called the feed point.
  • the main radiator is coupled to the feed structure through a feed point.
  • the feed point in the embodiment of the present application cannot be understood in a narrow sense as a point, but can also be a region.
  • the feed structure is directly coupled to the main radiator through the feed point, that is, when there is an electrical connection, the feed point can be a certain point or area on the radiator; the feed structure is indirectly coupled to the main radiator through the feed point. , that is, when there is a gap, the feed point can be a point or area where there is a gap with the feed structure.
  • Feeder line also called transmission line, refers to the connection line between the antenna's transceiver and the main radiator.
  • Transmission lines can directly transmit current waves or electromagnetic waves depending on the frequency and form. Transmission lines include wire transmission lines, coaxial transmission lines, waveguides, or microstrip lines, etc. Depending on the implementation form, the transmission line may include a bracket antenna body, a glass antenna body, etc. Depending on the carrier, the transmission line can be implemented by LCP (Liquid Crystal Polymer, liquid crystal polymer material), FPC (Flexible Printed Circuit, flexible printed circuit board), or PCB (Printed Circuit Board, printed circuit board), etc.
  • LCP Liquid Crystal Polymer, liquid crystal polymer material
  • FPC Flexible Printed Circuit
  • PCB Printed Circuit Board, printed circuit board
  • Antenna pattern also called radiation pattern. It refers to the graph in which the relative field strength (normalized mode value) of the antenna radiation field changes with the direction at a certain distance from the antenna. It is usually represented by two mutually perpendicular plane patterns in the maximum radiation direction of the antenna. Antenna patterns usually have multiple radiation beams. The radiation beam with the greatest radiation intensity is called the main lobe, and the remaining radiation beams are called side lobes or side lobes. Among the side lobes, the side lobes in the opposite direction to the main lobe are also called back lobes.
  • Antenna gain used to characterize the degree to which the antenna radiates the input power in a concentrated manner. Generally, the narrower the main lobe of the antenna pattern and the smaller the side lobe, the higher the antenna gain.
  • Resonant frequency also called resonant frequency.
  • the resonant frequency can have a frequency range, that is, the frequency range in which resonance occurs.
  • the resonant frequency may be a frequency range in which the return loss characteristic is less than -6dB.
  • the frequency corresponding to the strongest point of resonance is the center frequency - point frequency.
  • the return loss characteristics of the center frequency can be less than -20dB.
  • Resonant frequency band The range of resonant frequency is the resonant frequency band.
  • the return loss characteristics of any frequency point in the resonant frequency band can be less than -6dB or -5dB.
  • the working frequency band of an antenna that supports the B40 frequency band includes frequencies in the range of 2300MHz to 2400MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
  • the frequency range that meets the index requirements can be regarded as the working frequency band of the antenna.
  • the width of the operating frequency band is called the operating bandwidth.
  • the operating bandwidth of an omnidirectional antenna may reach 3-5% of the center frequency.
  • the operating bandwidth of a directional antenna may be 5-10% of the center frequency.
  • Bandwidth can be thought of as a range of frequencies on either side of a center frequency (e.g., the resonant frequency of a dipole) in which the antenna characteristics are within acceptable values for the center frequency.
  • the resonant frequency band and the operating frequency band may be the same or different, or their frequency ranges may partially overlap.
  • the resonant frequency band of the antenna may cover multiple operating frequency bands of the antenna.
  • Wavelength or working wavelength, which can be the wavelength corresponding to the center frequency of the resonant frequency or the wavelength corresponding to the center frequency of the working frequency band supported by the antenna.
  • the working wavelength can be the wavelength calculated using the frequency of 1955MHz.
  • "working wavelength” can also refer to the wavelength corresponding to the resonant frequency or non-center frequency of the working frequency band.
  • Return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal is, the greater the signal radiated to space through the antenna is, and the greater the antenna's radiation efficiency is. The larger the reflected signal is, the smaller the signal radiated to space through the antenna is, and the smaller the antenna's radiation efficiency is.
  • Electrical length can refer to the physical length (i.e. mechanical length or geometric length) multiplied by the transmission time of an electrical or electromagnetic signal in the medium required for this signal to travel the same distance in free space as the physical length of the medium. Expressed as a ratio of time, the electrical length can satisfy the following formula:
  • L is the physical length
  • a is the transmission time of electrical or electromagnetic signals in the medium
  • b is the medium transmission time in free space.
  • the electrical length can also refer to the ratio of the physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave.
  • the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the physical length of the radiator can be understood as being within ⁇ 20% of the electrical length of the radiator, for example, within ⁇ 10%, or within ⁇ 5%.
  • the wavelength in a certain wavelength mode (such as a half-wavelength mode, etc.) of the antenna may refer to the wavelength of the signal radiated by the antenna.
  • Coupling can be understood as direct coupling and/or indirect coupling, and "coupling connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the printed circuit board (PCB) copper foil or wires between different components in the circuit structure.
  • PCB printed circuit board
  • indirect coupling can be understood as two conductors being electrically connected through space/non-contact.
  • indirect coupling may also be called capacitive coupling, for example, signal transmission is achieved by forming an equivalent capacitance through coupling between a gap between two conductive members.
  • coplanar, symmetrical (for example, axial symmetry, or central symmetry, etc.), parallel, perpendicular, identical (for example, same length, same width, etc.) mentioned in the embodiments of this application are all based on the current technology. level, rather than an absolutely strict definition in a mathematical sense.
  • the predetermined threshold may be less than or equal to a threshold of 1 mm, for example, the predetermined threshold may be 0.5 mm, or may be 0.1 mm.
  • the predetermined angle may be an angle within a range of ⁇ 10°, for example, the predetermined angle deviation is ⁇ 5°.
  • the limitations on the set position of a certain structure can be understood as being within a certain area, rather than limiting specific points or edges.
  • the above-mentioned center can refer to the central area of a certain structure.
  • the center of the structure along the set direction can be understood as the ⁇ 10% area of the center of the structure along the set direction.
  • the center of the structure along the set direction is ⁇ 10% of the center of the structure along the set direction. 5% or ⁇ 2%, not the absolute center.
  • the edge of a structure can also refer to the edge area of the structure. For example, if the structure has a side, then the 10% range close to the side, such as the 5% range, or the 2% range, can be understood as the above-mentioned edge area. .
  • FIG 2 is a schematic structural diagram of an antenna in an embodiment of the present application.
  • the antenna 1 in the embodiment of the present application includes a floor 11, a main radiator 12, a first parasitic structure 13 and a second parasitic structure 14.
  • the main radiator 12 , the first parasitic structure 13 and the second parasitic structure 14 are arranged on the same side of the floor 11 .
  • the above-mentioned antenna 1 may also include a feed structure 15 and a feed line 16.
  • the feed structure 15 is coupled to the main radiator 12, and the feed line 16 is coupled to the feed structure 15.
  • the feed line 16 extends along the first direction A toward one end of the feed structure 15 .
  • a set length portion of the feed line 16 toward one end of the feed structure 15 extends along the first direction A.
  • the above-mentioned feed structure 15 may be specifically coupled with the feed point of the main radiator 12 .
  • the above-mentioned first parasitic structure 13, main radiator 12 and second parasitic structure 14 are arranged in sequence in the first direction A. That is to say, along the first direction A, the above-mentioned main radiator 12 is located between the first parasitic structure 13 and the second parasitic structure 14. Between the parasitic structures 14 , the first parasitic structure 13 and the second parasitic structure 14 are located on both sides of the main radiator 12 .
  • the main radiator 12, the first parasitic structure 13 and the second parasitic structure 14 are located on a different plane from the above-mentioned floor 11.
  • the projections of the main radiator 12 , the first parasitic structure 13 and the second parasitic structure 14 along the second direction B are all located in the plane of the floor 11 , and the second direction B is perpendicular to the plane of the floor 11 . flat.
  • the main radiator 12, the first parasitic structure 13 and the second parasitic structure 14 may be coplanar.
  • the above-mentioned first direction A may specifically be the polarization direction A of the main radiator 12 .
  • the sides of the main radiator 12 on both sides of the first direction A may be radiation edges 121.
  • the radiation edges 121 in the embodiment shown in FIG. 2 are perpendicular to the polarization direction A.
  • the direction A shown in FIG. 2 is the above-mentioned first direction A, and is also the polarization direction A of the main radiator 12 .
  • This solution can reduce the surface waves generated by the floor 11 of the antenna 1 by arranging the first parasitic structure 13 and the second parasitic structure 14 in the polarization direction A of the main radiator 12, thereby optimizing the pattern of the antenna 1 and improving the antenna 1 radiation performance.
  • the above-mentioned first parasitic structure 13 includes a first parasitic patch 131 and a first conductive pillar 132 . Both ends of the first conductive pillar 132 are electrically connected to the first parasitic patch 131 and the floor 11 respectively. That is, the first conductive pillar 132 is connected between the first parasitic patch 131 and the floor 11 , so that the first parasitic patch 131 and the floor 11 are electrically connected.
  • the second parasitic structure 14 includes a second parasitic patch 141 and a second conductive pillar 142. Both ends of the second conductive pillar 142 are electrically connected to the second parasitic patch 141 and the floor 11 respectively.
  • the second conductive pillar 142 is connected between the second parasitic patch 141 and the floor 11 , so that the second parasitic patch 141 and the floor 11 are electrically connected.
  • the first conductive pillar 132 and the second conductive pillar 142 may be implemented by metal vias.
  • the main radiator 12 may also have a patch structure.
  • the main radiator 12 and the first parasitic structure 13 and the second parasitic structure 14 can be simultaneously fabricated on the same dielectric plate, which is beneficial to simplifying the preparation process of the antenna 1 .
  • the structure of the first parasitic structure 13 and the second parasitic structure 14 in this application is relatively simple and takes up less space, which is beneficial to reducing the size of the antenna 1 and reducing the preparation cost of the antenna 1 .
  • the present application does not limit the manner in which the main radiator 12 feeds energy from the feed structure 15 .
  • the main radiator 12 uses the slot 17 for feeding.
  • the slot 17 is considered to be the feed structure 15 of the antenna 1 .
  • the length direction of the slot 17 can be perpendicular to the first direction A of the main radiator 12 , and the feed line 16 extends along the first direction A and is coupled with the slot 17 .
  • the slot 17 is coupled to the main radiator 12 .
  • a feeding needle can also be used for feeding. In this case, the feeding needle is the feeding structure 15 of the antenna 1 .
  • the feeding pin can be avoided from the center of the main radiator 12 , and the portion of the feeding line 16 coupled with the feeding pin extends along the first direction A.
  • the distance between the first parasitic patch 131 and the second parasitic patch 141 and the floor 11 and the distance between the main radiator 12 and the floor 11 may be the same or different. , this application is not limited.
  • the first parasitic patch 131 and the second parasitic patch 141 and the main radiator 12 may or may not be parallel, and this application does not limit it.
  • the drawings in the embodiment of the present application illustrate the technical solution by assuming that the first parasitic patch 131 and the second parasitic patch 141 are located on the same plane as the main radiator 12 , but do not limit the technical solution.
  • the antenna in the above embodiment may be a millimeter wave antenna, so that the directional characteristics and non-diffraction characteristics of the millimeter wave antenna can be better utilized.
  • the working frequency band of the above-mentioned antenna specifically includes at least part of the frequency band from 20 GHz to 70 GHz.
  • the working frequency band of the antenna may be at least part of the frequency band from 24 GHz to 60 GHz.
  • the working frequency band of the antenna may be specifically 23 GHz to 25 GHz, or the working frequency band of the antenna may be 60 GHz to 64 GHz, etc.
  • the technical solutions in the embodiments of the present application may also be applied to antennas with at least part of the operating frequency band below 20 GHz and antennas with at least part of the operating frequency band higher than 70 GHz.
  • the operating frequency of the antenna may include 15GHz, 18GHz, 20GHz, 22GHz, 22GHz, 26GHz, 28GHz, 30GHz, 35GHz, 38GHz, 40GHz, 42GHz, 45GHz, 46GHz, 49GHz, 50GHz, 52GHz, 55GHz, 58GHz, 62GHz, 65GHz, 68GHz, 72GHz, 75GHz, 78GHz or 80GHz, etc., we will not list them one by one here.
  • Figures 3(a) to 3(e) are schematic diagrams of the arrangement structure of antennas in embodiments of the present application.
  • the antennas can be arranged in a variety of ways.
  • the above-mentioned antennas 1 can be arranged along the first direction A, so that each antenna 1 still includes the first parasitic structure 13 and the second parasitic structure 14, and a simple arrangement.
  • the above-mentioned antennas 1 are also arranged along the first direction A, so that adjacent antennas 1 can share a parasitic structure.
  • the parasitic structure between two adjacent antennas 1 is equivalent to a first parasitic structure for the main radiator on one side, and is equivalent to a second parasitic structure for the main radiator 12 on the other side.
  • This embodiment is beneficial to reducing the size of the antenna 1, achieving miniaturization of products using the antenna 1, and also reducing costs.
  • the above-mentioned antennas 1 may also be arranged along a third direction C, which is perpendicular to the first direction A.
  • the above-mentioned antennas 1 may also be arranged along a direction that is at an acute angle with the first direction A.
  • the above-mentioned antennas 1 can also be arranged in a matrix. In this case, two adjacent antennas along the first direction A can also share the same parasitic structure to reduce Small antenna size.
  • Figure 4 is a schematic structural diagram of an antenna. Compared with the antenna 1 shown in Figure 2, the only difference between the antenna 1 shown in Figure 4 and the antenna 1 shown in Figure 4 is that the antenna 1 shown in Figure 4 does not include the first parasitic structure 13 and the second parasitic structure. 14.
  • Figure 5 is a schematic cross-sectional structural diagram at A-A in Figure 4.
  • Figure 6 is a schematic cross-sectional structural diagram at B-B in Figure 2.
  • the arrows in Figures 5 and 6 represent electromagnetic waves.
  • the solid arrows represent the working signals radiated by the antenna 1.
  • radiated electromagnetic waves, and the dotted arrows represent surface waves. As shown in FIG.
  • the main radiator 12 of the antenna 1 radiates electromagnetic waves in the normal direction, and propagates a large number of surface waves (essentially electromagnetic waves transmitted on the surface) along the surface of the floor 11 .
  • surface waves essentially electromagnetic waves transmitted on the surface
  • the antenna 1 radiates electromagnetic waves in the normal direction through the first parasitic structure 13 and the second parasitic structure 14, which also improves the antenna gain.
  • Figure 7 shows the radiation pattern of the antenna shown in Figure 4 along the polarization direction A. It can be seen that due to the influence of the surface wave of the floor 11, the radiation pattern of the antenna shown in Figure 4 along the polarization direction A has relatively obvious jitter. The jitter The amplitude is larger.
  • Figure 8 is a radiation pattern along the polarization direction A of the antenna shown in Figure 2.
  • Figure 9 is a schematic structural diagram of a dielectric plate 4 installed on the side of the antenna where the main radiator 12 is located.
  • the inventor placed a side of the antenna 1 with the main radiator 12 on it.
  • a dielectric plate 4 is provided, that is, the dielectric plate 4 is located on the side of the main radiator 12 facing away from the floor 11 .
  • the dielectric plate 4 can simulate a radome or other structure located near the antenna 1 .
  • the dielectric constant of the dielectric plate 4 is 3, and the electrical length in the thickness direction is half a wavelength of the dielectric plate 4. It is worth mentioning that the electrical length in the thickness direction of the dielectric plate 4 is approximately half a wavelength of the dielectric plate 4, and a certain degree is allowed.
  • FIG. 10 is the radiation pattern along the polarization direction A of the antenna 1 shown in Figure 4 after the dielectric plate 4 is installed. Comparing Figure 10 with Figure 7, it is found that the radiation direction of the antenna 1 shown in Figure 4 along the polarization direction A The picture shows more obvious jitter, and the jitter amplitude is larger. In addition, in application, if the antenna 1 forms an array, the above radiation pattern will be further deteriorated and unnecessary radiation will be generated.
  • Figure 11 is the radiation pattern along the polarization direction A of the antenna 1 shown in Figure 2 after the dielectric plate 4 is installed. Comparing Figure 11 with Figure 10, it is found that after adding the dielectric plate 4, the antenna 1 in the embodiment of the present application becomes Compared with antenna 1 shown in Figure 4, the jitter of the radiation pattern along the polarization direction A is also significantly slower, and the jitter amplitude is also greatly reduced.
  • FIG. 12 is a current distribution diagram of the floor 11 of the antenna 1 shown in FIG. 4
  • FIG. 13 is a current distribution diagram of the floor 11 of the antenna 1 shown in FIG. 2 . Comparing Figure 13 with Figure 12 , it can be seen that the current on the surface of the floor 11 of the antenna 1 in the embodiment of the present application (for example, the antenna 1 shown in Figure 2 ) is significantly smaller than the current on the surface of the floor 11 of the antenna 1 shown in Figure 4 . It can also be explained that the surface wave suppression effect of the graphic wires in the embodiments of the present application is obvious.
  • first parasitic structure 13 and second parasitic structure 14 can be implemented in a variety of ways. The following mainly takes the first parasitic structure 13 as an example for explanation, and the second parasitic structure 14 can also adopt any of the following embodiments. form of the first parasitic structure 13 .
  • the first parasitic structure 13 and the second parasitic structure 14 of the same antenna 1 can be symmetrically arranged on both sides of the main radiator 12, so that the radiation signal of the antenna 1 is relatively uniform and symmetrical.
  • the above-mentioned first parasitic structure 13 and second parasitic structure 14 may also be different, or may not be symmetrically arranged on both sides of the main radiator 12 .
  • FIG. 14 is a schematic structural diagram of the first parasitic structure in the embodiment of the present application.
  • the first parasitic patch 131 includes a first sub-parasitic patch 1311 and a second sub-parasitic patch 1312, and the first sub-parasitic patch 1311 and the second sub-parasitic patch 1311 There is a certain gap between the parasitic patches 1312 .
  • the above-mentioned first conductive pillar 132 includes a first sub-conductive pillar 1321 and a second sub-conductive pillar 1322.
  • the first sub-parasitic patch 1311 is electrically connected to the first sub-conductive pillar 1321.
  • both ends of the first sub-conductive pillar 1321 are electrically connected to the first sub-parasitic patch 1311 and the floor 11 respectively.
  • the piece 1311 is electrically connected to the floor 11 through the first sub-conductive pillar 1321;
  • the second sub-parasitic patch 1312 is electrically connected to the second sub-conductive pillar 1322. That is to say, both ends of the second sub-conductive pillar 1322 are respectively connected to the second sub-parasitic patch 1312.
  • the parasitic patch 1312 is electrically connected to the floor 11
  • the second sub-parasitic patch 1312 is electrically connected to the floor 11 through the second sub-conductive pillar 1322 .
  • the first sub-parasitic patch 1311 and the second sub-parasitic patch 1312 can form a dipole parasitic structure, so that the currents along the third direction C generated by the first parasitic structure 13 can cancel each other, which is beneficial to Keeping the polarization direction A of antenna 1 unchanged is beneficial to keeping antenna 1 radiating in the normal direction.
  • the first parasitic structure 13 and the second parasitic structure 14 can also be caused to generate normal radiation, thereby improving the antenna gain.
  • the above-mentioned first sub-parasitic patch 1311 and the second sub-parasitic patch 1312 can be arranged along the third direction C.
  • the above-mentioned third direction C is specifically perpendicular to the first direction A of the main radiator 12.
  • the first sub-parasitic patch 1311 and the second sub-parasitic patch 1312 can also be arranged symmetrically about the symmetry axis 133, and the first sub-conductive pillar 1321 and the second sub-conductive pillar 1322 can also be symmetrically arranged about the symmetry axis 133.
  • the axis 133 is parallel to the polarization direction A of the main radiator 12 . This solution is beneficial to promote the mutual cancellation of currents in the first sub-parasitic patch 1311 and the second sub-parasitic patch 1312 along the third direction C, so that the radiation pattern of the antenna 1 is better.
  • the shape of the first sub-parasitic patch 1311 and the second sub-parasitic patch 1312 is not specifically limited, but the shape and size of the first sub-parasitic patch 1311 and the second sub-parasitic patch 1312 can be made the same, thereby facilitating preparation.
  • the above-mentioned first sub-parasitic patch 1311 and second sub-parasitic patch 1312 are also helpful for controlling, simulating and analyzing the current distribution of the first sub-parasitic patch 1311 and the second sub-parasitic patch 1312 during operation.
  • the shape of the first parasitic patch 131 can be a rectangle, and one edge of the first parasitic patch 131 is parallel to the first direction A of the main radiator 12 . It is worth noting that the shape of the first parasitic patch 131 is a rectangle.
  • the first parasitic patch 131 is generally rectangular in shape. In actual products, the edges of the first parasitic patch 131 may have protrusions or grooves. But the overall edge is straight.
  • Figure 15 is a schematic top view of the first parasitic structure in the embodiment of the present application. Please refer to Figures 14 and 15.
  • the first sub-conductive pillar 1321 and the first sub-parasitic patch 1311 face one side of the second sub-parasitic patch 1312.
  • the second sub-conductive pillar 1322 is electrically connected to the edge of the side of the second sub-parasitic patch 1312 facing the first sub-parasitic patch 1311 .
  • This solution can make the electrical length of the first parasitic structure 13 longer, thereby reducing waste, making full use of the first parasitic structure 13 to suppress surface waves, which is beneficial to reducing the size of the first parasitic structure 13 and thus reducing the overall Antenna 1 dimensions.
  • first sub-conductive pillar 1321 is connected to the center of the first sub-parasitic patch 1311 along the polarization direction A
  • second sub-conductive pillar 1322 is connected to the center of the second sub-parasitic patch 1312 along the polarization direction A.
  • the “edge” mentioned in the embodiments of this application refers to the edge area, for example, refers to the 10% range close to the side, which can be understood as the above-mentioned edge area. Therefore, the first sub-conductive pillar 1321 and the first sub-parasitic patch 1311 are reliably connected. For example, both ends of the first sub-conductive pillar 1321 along the third direction C may have first sub-parasitic patches 1311 of a certain size.
  • the size of the first sub-parasitic patch 1311 on the side of the first sub-conductive pillar 1321 facing the second sub-parasitic patch 1312 is much smaller than the size of the side of the first sub-conductive pillar 1321 facing away from the second sub-parasitic patch 1312.
  • the size of the second sub-parasitic patch 1312 on the side of the second sub-conductive pillar 1322 facing the first sub-parasitic patch 1311 can be much smaller than that of the second sub-conductive pillar 1322 facing away from the first sub-parasitic patch 1311.
  • the dimensions of the second sub-parasitic patch 1312 on one side is within 10% of the size of the second sub-parasitic patch 1312.
  • the electrical length of the first parasitic structure 13 is half of the wavelength corresponding to the resonant frequency of the first parasitic structure 13 .
  • the first parasitic structure 13 in this solution has a better effect of suppressing surface waves and is more conducive to ensuring the radiation performance of the antenna 1 .
  • the above “half” limitation is based on the current level of technology, rather than an absolutely strict definition in a mathematical sense. There may be certain deviations from the actual limitations of the above dimensions.
  • the physical length corresponding to the electrical length of the first parasitic structure 13 can be made half the wavelength corresponding to the above resonant frequency. Within ⁇ 10%.
  • the physical length corresponding to the above electrical length refers to the corresponding physical length in the calculation formula when calculating the electrical length.
  • Figure 16 is a schematic cross-sectional structural diagram at C-C in Figure 14. Please refer to Figure 16.
  • the physical length corresponding to the electrical length of the first parasitic structure is a+b+c+d.
  • Figure 17 is a current distribution diagram of the main radiator 12 of the antenna 1 shown in Figure 4. It can be seen that the current of the main radiator 12 flows along the polarization direction A.
  • Figure 18 is a current distribution diagram of the main radiator 12, the first parasitic structure 13 and the second parasitic structure 14 of the antenna 1 shown in Figure 2.
  • the current of the main radiator 12 still flows along the polarization direction A, and the first parasitic structure
  • the currents of the structure 13 and the second parasitic structure 14 flow along the third direction C, and the current of the first sub-parasitic patch 1311 and the current of the second sub-parasitic patch 1312 flow in opposite directions and have close current values, so that the current of the first sub-parasitic patch 1311 and the current of the second sub-parasitic patch 1312 flow in opposite directions and have close current values.
  • the current of the parasitic patch 1311 and the current of the second sub-parasitic patch 1312 cancel each other, so that the polarization direction A of the antenna 1 remains unchanged and still radiates in the normal direction.
  • Figure 19 is another schematic structural diagram of the antenna in the embodiment of the present application.
  • Figure 20 is another schematic structural diagram of the first parasitic structure in the embodiment of the present application.
  • the above-mentioned first sub-conductive pillar 1321 is electrically connected to the edge of the side of the first sub-parasitic patch 1311 facing away from the second sub-parasitic patch 1312, and the second sub-conducting pillar 1322 and the second sub-parasitic patch 1312 face away from the first sub-parasitic patch 1312.
  • the edge of one side of the sub-parasitic patch 1311 is electrically connected.
  • the “edge” in this embodiment is the same as above, and also refers to the edge area, and will not be explained in detail here.
  • This embodiment can also make the electrical length of the first parasitic structure 13 longer, thereby reducing waste, making full use of the first parasitic structure 13 to achieve the effect of suppressing surface waves, which is beneficial to reducing the size of the first parasitic structure 13, thereby reducing Small size of the entire antenna 1.
  • the first sub-conductive pillar 1321 is connected to the center of the first sub-parasitic patch 1311 along the polarization direction A
  • the second sub-conductive pillar 1322 is connected to the center of the second sub-parasitic patch 1312 along the polarization direction A.
  • Figure 21 is a schematic cross-sectional structural diagram at D-D in Figure 19. Please refer to Figure 21.
  • the electrical length of the first parasitic structure 13 is e+f+g+h.
  • Figure 22 is a current distribution diagram of the antenna in Figure 19. It is similar to the embodiment shown in Figure 18. Please refer to Figure 22.
  • the current of the main radiator 12 still flows along the first direction A
  • the current of the first parasitic structure 13 flows along the first direction A.
  • Three directions C flow, and the current of the first sub-parasitic patch 1311 and the current of the second sub-parasitic patch 1312 have opposite flow directions and the current values are close, so that the current of the first sub-parasitic patch 1311 and the second sub-parasitic patch 1312
  • the currents in the piece 1312 cancel each other out, so that the first direction A of the antenna 1 remains unchanged and still radiates towards the normal direction.
  • Figure 23 is a radiation pattern along the polarization direction A of the antenna shown in Figure 19. It can be seen from Figure 23 that Figure 23 is compared with Figure 7. The radiation pattern of the antenna in the embodiment shown in Figure 19 along the polarization direction A The jitter has also been significantly slowed down, and the jitter amplitude has also been significantly reduced. In other words, the embodiment shown in Figure 19 also has a good effect on suppressing antenna surface waves.
  • Figure 24 is another schematic structural diagram of the antenna in the embodiment of the present application.
  • Figure 25 is a schematic cross-sectional structural diagram at E-E in Figure 24.
  • the above-mentioned first parasitic The patch 131 is electrically connected to the first conductive pillar 132 , and an end of the first conductive pillar 132 away from the first parasitic patch 131 is electrically connected to the floor 11 .
  • the above-mentioned first conductive pillar 132 is located at the center of the first parasitic patch 131 along the third direction C, so that the first parasitic structure 13 has a symmetrical structure. So that the currents in the first parasitic structure 13 along the third direction C can cancel each other.
  • the first parasitic structure 13 does not include gaps, which is beneficial to reducing the size of the first parasitic structure 13 .
  • this embodiment only includes one first conductive pillar 132, which is beneficial to reducing the size of the first parasitic structure 13 and reducing the difficulty of preparation.
  • the electrical length of the first parasitic structure is 2i+j+k.
  • the first conductive pillar 132 is connected to the structure of the first parasitic patch 131 on both sides of the first conductive pillar 132 at the same time, and the first conductive pillar 132 is actually used twice.
  • Figure 26 is a current distribution diagram of the antenna in Figure 24. It is similar to the embodiment shown in Figure 18. Please refer to Figure 26.
  • the current of the main radiator 12 still flows along the polarization direction A
  • the current of the first parasitic structure 13 flows along the polarization direction A.
  • Three directions C flow, and the first parasitic patch 131 is in the area at both ends of the first conductive pillar 132.
  • the current flows in opposite directions and the current values are close, so that the two parts of the current cancel each other out, so that the polarization direction A of the antenna 1 remains unchanged. , and still radiates towards the normal direction.
  • Figure 27 is a radiation pattern along the polarization direction A of the antenna shown in Figure 24. It can be seen from Figure 27 that compared with Figure 7, the radiation pattern of the antenna in the embodiment shown in Figure 24 along the polarization direction A jitters. It is significantly slowed down and the jitter amplitude is also greatly reduced. In other words, the embodiment shown in Figure 24 also has a good effect on suppressing antenna surface waves.
  • FIG. 28 is another schematic structural diagram of the antenna in the embodiment of the present application
  • FIG. 29 is a schematic structural diagram of a top view of the first parasitic structure in the embodiment of the present application.
  • the first conductive pillar 132 includes a third sub-conductive pillar 1323 and a fourth sub-conductive pillar 1324 .
  • the above-mentioned first parasitic patch 131 is electrically connected to the third sub-conductive pillar 1323 and the fourth sub-conductive pillar 1324 respectively.
  • the ends of the third sub-conductive pillar 1323 and the fourth sub-conductive pillar 1324 that are away from the first parasitic patch 131 are respectively connected to the floor. 11 Electrical connections.
  • the first parasitic patch 131 is electrically connected to two first conductive pillars 132 .
  • the above-mentioned third sub-conductive pillars 1323 and fourth sub-conductive pillars 1324 are respectively located at the edges of both sides of the first parasitic patch 131 along the third direction C.
  • the “edge” in this embodiment is the same as above, and also refers to the edge area, and will not be explained in detail here.
  • This embodiment can also make the first parasitic structure 13 a symmetrical structure. So that the currents in the first parasitic structure 13 along the third direction C can cancel each other. In this solution, the first parasitic structure 13 does not include gaps, which is beneficial to reducing the size of the first parasitic structure 13 .
  • Figure 30 is a schematic cross-sectional structural diagram taken at F-F in Figure 28. Please refer to Figure 30.
  • the electrical length of the first parasitic structure 13 is l+m+n.
  • Figure 31 is a current distribution diagram of the antenna in Figure 28. It is similar to the embodiment shown in Figure 22. Please refer to Figure 31.
  • the current of the main radiator 12 still flows along the polarization direction A
  • the current of the first parasitic structure 13 flows along the polarization direction A.
  • Three directions C flow, and the current flow direction in the area of the first parasitic patch 131 at both ends of the first conductive pillar 132 is opposite and the current value is close, so that the two parts of the current cancel each other out, so that the polarization direction A of the antenna 1 remains unchanged. and still radiates towards the normal direction.
  • Figure 32 is a radiation pattern along the polarization direction A of the antenna shown in Figure 28. It can be seen from Figure 32 that compared with Figure 7, the radiation pattern of the antenna 1 in the embodiment shown in Figure 32 along the polarization direction A jitters It is also significantly slowed down and the jitter amplitude is also greatly reduced. In other words, the embodiment shown in Figure 26 also has a good effect on suppressing antenna surface waves.
  • Figure 33 is a schematic top view of the structure of the antenna in the embodiment of the present application. Please refer to Figure 33.
  • the first parasitic structure 13 can be provided only on one side of the main radiator 12 along the polarization direction A. , so that the first parasitic structure 13 can suppress surface waves in this direction. According to the actual application scenario of the antenna 1, this technical solution can be adopted, which can simplify the structure of the antenna 1, reduce the size of the antenna 1, and reduce the cost of the antenna 1.
  • Figure 34 is a schematic structural diagram of another top view of the antenna in the embodiment of the present application. Please combine Figure 2 and Figure 34.
  • the first parasitic structure 13 and the second parasitic structure 14 are provided respectively on both sides of the main radiator 12 along the polarization direction A. Then the surface waves can be suppressed at both ends of the polarization direction A of the main radiator 12 , thereby improving and optimizing the pattern of the antenna 1 .
  • Figure 35 is a schematic lateral cross-sectional structural diagram of the antenna in the embodiment of the present application.
  • Figure 36 is another top structural schematic diagram of the antenna in the embodiment of the present application. Please continue to combine Figure 28, Figure 35 and Figure 36.
  • the antenna 1 may also include a metal enclosure 18, which includes at least a first metal wall 181.
  • the first metal wall 181 is located on a side of the first parasitic structure 13 away from the main radiator 12 .
  • the first metal wall 181 can be made perpendicular to the polarization direction A of the main radiator 12 .
  • the above-mentioned first metal wall 181 can also inhibit the propagation of surface waves to a certain extent to further optimize the pattern of the antenna 1 .
  • the antenna 1 is provided with the first parasitic structure 13 only on one side of the main radiator 12, the first parasitic structure 13 can be provided only on the side away from the main radiator 12.
  • a first metal wall 181; or, another embodiment is shown in Figure 37, which is another top structural schematic diagram of an antenna in an embodiment of the present application.
  • the metal wall 18 can include a first metal wall 181 and a second metal wall 182.
  • the wall 182 is provided on the side of the second parasitic structure 14 facing away from the main radiator 12 . That is to say, the side of the parasitic structure away from the main radiator 12 is provided with a metal wall.
  • the above-mentioned antenna can be formed on a multi-layer circuit board, and the antenna can include multiple metal vias.
  • the metal via holes are formed on the multi-layer circuit board, and may specifically extend along the second direction B.
  • a plurality of metal via holes are arranged to form the first metal wall and the second metal wall.
  • the plurality of metal vias mentioned above can be arranged sequentially along a set direction to form a wall.
  • the spacing between the above-mentioned metal via holes can be set smaller, so that the effect of suppressing surface waves is better.
  • Figure 38 is another top view structural diagram of the antenna in the embodiment of the present application. Please refer to Figure 38.
  • the above-mentioned metal wall 18 can also include a third metal wall 183.
  • the antenna 1 is only on the main radiator 12
  • the third metal wall 183 is located on the side of the main radiator 12 away from the first parasitic structure 13 . That is to say, the third metal wall 183 is located on the main radiator 12 The side without parasitic structures along the first direction A.
  • Figure 39 is another top view structural diagram of the antenna in the embodiment of the present application. Please combine Figure 39 and Figure 2.
  • the metal fence 18 can be a fence located around the main radiator 12 of the antenna 1.
  • the above-mentioned metal fence 18 can be formed on the circuit board, which is conducive to simplifying the preparation process of the metal fence 18, and the metal fence 18 has a better effect of suppressing surface waves.
  • the above-mentioned antenna can be formed on a multi-layer circuit board.
  • the radiation body, the first parasitic structure and the second parasitic structure of the above-mentioned antenna all refer to the metal structures on the multi-layer circuit board.
  • the above-mentioned metal wall may be formed along a plurality of metal vias perpendicular to the floor, and the metal vias may be electrically connected to the floor. Specifically, the spacing between the above-mentioned metal via holes can be set smaller, so that the effect of suppressing surface waves is better.
  • the resonant frequency F0 of the above-mentioned first parasitic structure 13 and the center frequency F of the working frequency band of the main radiator 12 satisfy: 1/2F ⁇ F0 ⁇ F.
  • the above-mentioned F0 can be 2/3F, 3/4F, 3/5F or 5/6F, etc. This application does not specifically limit this. This solution can make the parasitic structure have better surface wave suppression effect and ensure the radiation performance of the antenna.
  • the center frequency of the working frequency band of the main radiator 12 of the antenna 1 in the embodiment of the present application is 24 GHz
  • the resonant frequency of the first parasitic structure 13 is about 18 GHz.
  • the distance between the main radiator and the floor 11 is 0.94 mm
  • the electrical length of the first parasitic structure 13 is 1 mm.
  • Figure 40 shows the radiation pattern of the antenna in the embodiment of the present application at a frequency of 18 GHz. It can be seen that obvious lobes are generated.
  • the radiation pattern of the antenna shown in Figure 8 is the radiation pattern of the antenna at a frequency of 24GHz. It can be seen that when the resonant frequency of the parasitic structure is smaller than the center frequency F of the main radiator 12 operating frequency band, the surface wave effect is better.
  • the resonant frequency is 20 GHz.
  • Figure 41 is the radiation pattern of the antenna in the embodiment of the present application at a frequency of 20 GHz. It can be seen that obvious lobes are generated. That is to say, the larger the electrical length of the first parasitic structure 13 is, the smaller its own resonant frequency is. When the center frequency of the main radiator 12 of the antenna is the same as the resonant frequency of the first parasitic structure 13, the radiation performance is poor.
  • the resonant frequency of the first parasitic structure 13 when the resonant frequency of the first parasitic structure 13 is higher than the main radiator 12 of the antenna 1 , specifically, the resonant frequency of the first parasitic structure 13 is higher than 24 GHz.
  • Figure 42 shows the radiation pattern of the antenna in the embodiment of the present application at a frequency of 24 GHz. It can be seen that the jitter of the radiation pattern cannot be reduced at this time, which means that it has no effect on suppressing surface waves.
  • Figure 43 is the Smith chart of the return loss of the antenna shown in Figure 4.
  • Figure 44 is the Smith chart of the return loss of the antenna shown in Figure 2. Please refer to Figure 43 and Figure 44. Both have a resonant junction. Therefore, The technical solution of this application can ensure the radiation performance of the antenna.
  • the distance M between the center of the first parasitic structure 13 and the center of the main radiator 12 along the first direction A of the main radiator 12 can be equal to the center frequency of the operation of the main radiator 12
  • the corresponding wavelength ⁇ 0 of free space satisfies: M ⁇ 1/4 ⁇ 0.
  • the above distance M can be 1/5 ⁇ 0, 1/6 ⁇ 0, 1/7 ⁇ 0 or 1/10 ⁇ 0, etc., which is not limited in this application.
  • the distance between the first parasitic structure 13 and the main radiator 12 is relatively close; on the one hand, it is beneficial to reduce the size of the antenna; on the other hand, the effect of the parasitic structure on suppressing surface waves is more obvious.
  • the center of the first parasitic structure 13 mentioned above refers to the center of the first parasitic structure 13 along the first direction A. Specifically, it may refer to the area ⁇ 10% of the center of the first parasitic structure 13 along the first direction A. , for example, the area ⁇ 2% of the center of the first parasitic structure 13 along the first direction A; the center of the main radiator 12 refers to the center of the main radiator 12 along the first direction A, specifically it may refer to the center of the main radiator 12 along the first direction A.
  • the area of ⁇ 10% of the center of one direction A for example, the area of ⁇ 2% of the center of the main radiator 12 along the first direction A.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种天线、感知模块、传感器和电子设备。该天线包括地板、主辐射体、第一寄生结构、第二寄生结构、馈电结构和馈电线。馈电线朝向馈电结构的端部沿第一方向延伸,该第一方向为天线的极化方向。第一寄生结构、主辐射体与第二寄生结构在第一方向上依次排列,且在第二方向上的投影均位于地板的平面内,上述第二方向垂直于地板的平面。上述第一寄生结构包括第一寄生贴片和第一导电柱,第一导电柱的两端分别与第一寄生贴片和地板电连接;第二寄生结构包括第二寄生贴片和第二导电柱,第二导电柱的两端分别与第二寄生贴片和地板电连接。该方案可以抑制天线的地板产生的表面波,提升天线的辐射性能,且有利于减小天线的体积。

Description

一种天线、感知模块、传感器和电子设备
相关申请的交叉引用
本申请要求在2022年07月29日提交中国专利局、申请号为202210912111.4、申请名称为“一种天线、感知模块、传感器和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种天线、感知模块、传感器和电子设备。
背景技术
毫米波技术由于其较大的带宽可以提供巨大的通信容量,在5G通信中已经有众多的应用。此外,毫米波技术由于其较高的定向特性和无绕射特性,在探测领域也具有巨大的应用。无论是普通的传统雷达还是多入多出(multiple input multiple output,MIMO)雷达,都是利用发射天线(TX)发射携带有编码的电磁波,通过空间辐射至物体,由于其物体自身的电磁特性,会有散射波传递至接收天线(RX)位置,经由信号处理即可以对目标进行探测。雷达产品的结构通常比较大,天线附近存在较大的地板,由于电磁场原理,会存在大量的表面波(也可以称为表面电流)沿着地板进行传播,从而影响天线的辐射性能,使方向图恶化,对于探测的幅度和精度就会产生影响。
因此,抑制表面波对于优化天线的方向图,提升天线的辐射性能具有重要的意义。
发明内容
本申请提供了一种天线、感知模块、传感器和电子设备,以抑制天线的地板产生的表面波,进而可以优化天线的方向图,提升天线的辐射性能。
第一方面,本申请提供了一种天线,该天线包括地板、主辐射体、第一寄生结构、第二寄生结构、馈电结构和馈电线。上述馈电结构与主辐射体耦合,且馈电结构与馈电线耦合,从而使得主辐射体与馈电线实现信号连接。上述馈电线朝向馈电结构的端部沿第一方向延伸,或者说,上述馈电线沿第一方向延伸的部分与馈电结构耦合。则上述第一方向为天线的极化方向。上述第一寄生结构、主辐射体与第二寄生结构在第一方向上依次排列,也就是说,第一寄生结构和第二寄生结构位于主辐射体沿计划方向的两侧。上述第一寄生结构、主辐射体与第二寄生结构在第二方向上的投影均位于地板的平面内,上述第二方向垂直于地板的平面。也就是说,上述第一寄生结构、主辐射体与第二寄生结构位于与地板不同的平面。本申请通过在主辐射体的极化方向设置第一寄生结构和第二寄生结构,可以减少天线的地板产生的表面波,进而可以优化天线的方向图,提升天线的辐射性能。具体的,上述第一寄生结构包括第一寄生贴片和第一导电柱,第一导电柱的两端分别与第一寄生贴片和地板电连接,也就是说,第一寄生贴片通过第一导电柱与地板电连接;第二寄生结构包括第二寄生贴片和第二导电柱,第二导电柱的两端分别与第二寄生贴片和地板电连接,也就是说,第二寄生贴片通过第二导电柱与地板电连接。该技术方案中的第一寄生结构和第二寄生结构的结构较为简单,有利于减小天线的体积。
一种可能的技术方案中,上述第一寄生贴片包括第一子寄生贴片和第二子寄生贴片,第一导电柱包括第一子导电柱和第二子导电柱。第一子导电柱的两端分别与第一子寄生贴片和地板电连接,第二子导电柱的两端分别与第二子寄生贴片和地板电连接。第一子寄生贴片与第二子寄生贴片沿第三方向排列,上述第三方向垂直于第一方向。该技术方案中,第一子寄生贴片和第二子寄生贴片可以形成偶极子寄生结构,从而第一寄生结构产生的沿第三方向的电流可以相互抵消,有利于保持天线的极化方向不变,有利于保持天线沿法向进行辐射。此外,也可以使第一寄生结构和第二寄生结构产生法向的辐射,从而提升天线增益。
一种具体的技术方案中,上述第一子导电柱与第一子寄生贴片朝向第二子寄生贴片的一侧的边缘电连接,第二子导电柱与第二子寄生贴片朝向第一子寄生贴片的一侧的边缘电连接。该方案可以使第一寄生结构的电长度较长,从而减少浪费,充分利用第一寄生结构来实现抑制表面波的作用,有利于减小第一寄生结构的尺寸,进而减小整个天线的尺寸。
另一种具体的技术方案中,上述第一子导电柱与第一子寄生贴片背离第二子寄生贴片的一侧的边缘电连接,第二子导电柱与第二子寄生贴片背离第一子寄生贴片的一侧的边缘电连接。同样,该方案可以使第一寄生结构的电长度较长,从而减少浪费,充分利用第一寄生结构来实现抑制表面波的作用,有利于减小第一寄生结构的尺寸,进而减小整个天线的尺寸。
一种技术方案中,第一导电柱位于第一寄生贴片沿第三方向的中心,第三方向垂直于第一方向。该方案中,第一寄生结构不包括缝隙,有利于减小第一寄生结构的尺寸。此外,该实施例中只包括了一个第一导电柱,有利于减小第一寄生结构的尺寸,降低制备难度。
再一种技术方案中,上述第一导电柱包括第三子导电柱和第四子导电柱,第一寄生贴片与第三子导电柱和第四子导电柱分别电连接。上述第三子导电柱和第四子导电柱分别位于第一寄生贴片沿第三方向的两侧的边缘,第三方向垂直于第一方向。该实施例同样可以使得第一寄生结构为对称结构。以便于第一寄生结构沿第三方向的电流可以相互抵消。该方案中,第一寄生结构不包括缝隙,有利于减小第一寄生结构的尺寸。
上述天线还可以包括金属围墙,该金属围墙至少包括第一金属壁和第二金属壁。第一金属壁位于第一寄生结构背离主辐射体的一侧,第二金属壁位于第二寄生结构背离主辐射体的一侧。该方案中,第一金属壁和第二金属壁也可以在一定程度上抑制表面波的传播,以进一步的优化天线的方向图。
一种具体的技术方案中,为了形成上述第一金属壁和第二金属壁,上述天线可以包括多个金属过孔,上述多个金属过孔排列设置,从而形成上述第一金属壁和第二金属壁。从而抑制表面波。该方案中的金属过孔具体形成于多层电路板。
为了提升第一寄生结构的表面波抑制效果,可以使上述第一寄生结构的谐振频率F0与主辐射体工作频段的中心频率F满足:1/2F≤F0<F。
具体设置上述第一寄生结构时,上述第一寄生结构的中心与主辐射体的中心沿第一方向的距离M,与主辐射体工作的中心频率对应的自由空间的波长λ0满足:M≤1/4λ0。该方案可以减小天线的尺寸,且提升第一寄生结构表面波抑制效果。
具体的实施例中,上述第二寄生结构也可以采用上述任一技术方案中的第一寄生结构的结构,此处不进行赘述。例如,可以使上述第一寄生结构和第二寄生结构对称设置于辐射主体的两侧。从而提升天线的对称性,提升天线辐射信号的均匀性。
具体的技术方案中,上述实施例中的天线可以为毫米波天线,从而可以较好的发挥毫米波天线的定向特性和无绕射特性。
上述天线的工作频段具体包括20GHz~70GHz中的至少部分频段。进一步的,天线的工作频段可以为24GHz~60GHz中的至少部分频段。例如,本申请技术方案天线的工作频段具体可以为23GHz~25GHz,或者,天线的工作频段还可以为60GHz~64GHz等。
第二方面,本申请还提供了一种感知模块,该感知模块包括多个上述第一方面的天线,还包括射频芯片和算法处理单元,天线与射频芯片电连接,射频芯片与算法处理单元电连接。该方案中的天线的辐射性能较好,且天线的尺寸可以制备的较小,则感知模块的性能较好,且体积也可以较小。
通过算法处理单元、射频芯片以及天线的配合,可以使得感知模块计算得到目标的位置,以及与目标的位置相关的信息,例如目标的运动速度、运动方向以及距离等信息。
第三方面,本申请还提供了一种传感器,该传感器包括上述第一方面任一技术方案中的天线或者上述第二方面的感知模块。该方案中的天线的辐射性能较好,且天线的尺寸可以制备的较小,则传感器的性能较好,且体积也可以较小。
第四方面,本申请还提供了一种电子设备,该电子设备包括上述第一方面任一技术方案中的天线、上述第二方面的感知模块或者上述第三方面的传感器。该方案有利于提升电子设备的信号辐射性能,目标检测的可靠性,减小电子设备的体积。
附图说明
图1为本申请实施例中感知模块的一种结构示意图;
图2为本申请实施例中天线的一种结构示意图;
[根据细则26改正 25.09.2023]
图3(a)~图3(e)为本申请实施例中天线的排布结构示意图;
图4为一种天线的结构示意图;
图5为图4中A-A处的剖面结构示意图;
图6为图2中B-B处的剖面结构示意图;
图7为图4所示天线沿极化方向的辐射方向图;
图8为图2所示天线沿极化方向的辐射方向图;
图9为在天线的主辐射体所在的一侧设置介质板的结构示意图;
图10为图4所示的天线在设置介质板后沿极化方向的辐射方向图;
图11为图2所示的天线在设置介质板后沿极化方向的辐射方向图;
图12为图4所示天线的地板电流分布图;
图13为图2所示天线的地板电流分布图;
图14为本申请实施例中寄生结构的一种结构示意图;
图15为本申请实施例中寄生结构的俯视结构示意图;
图16为图14中C-C处的剖视结构示意图;
图17为图4所示天线的主辐射体的电流分布图;
图18为图2所示天线的主辐射体和寄生结构的电流分布图;
图19为本申请实施例中天线的另一种结构示意图;
图20为本申请实施例中寄生结构的另一种俯视结构示意图;
图21为图19中D-D处的剖视结构示意图;
图22为图19中天线的电流分布图;
图23为图19所示的天线沿极化方向的辐射方向图;
图24为本申请实施例中天线的另一种结构示意图;
图25为图24中E-E处的剖视结构示意图;
图26为图24中天线的电流分布图;
图27为图24所示的天线沿极化方向的辐射方向图;
图28为本申请实施例中天线的另一种结构示意图;
图29为本申请实施例中寄生结构的一种俯视结构示意图;
图30为图28中F-F处的剖视结构示意图;
图31为图28中天线的电流分布图;
图32为图28所示的天线沿极化方向的辐射方向图;
图33为本申请实施例中天线的一种俯视结构示意图;
图34为本申请实施例中天线的另一种俯视结构示意图;
图35为本申请实施例中天线的侧向剖面结构示意图;
图36为本申请实施例中天线的另一种俯视结构示意图;
图37为本申请实施例中天线的另一种俯视结构示意图;
图38为本申请实施例中天线的另一种俯视结构示意图;
图39为本申请实施例中天线的另一种俯视结构示意图;
图40为本申请实施例中天线在18GHz频率时的辐射方向图;
图41为本申请实施例中天线在20GHz频率时的辐射方向图;
图42为本申请实施例中天线在24GHz频率时的辐射方向图;
图43为图4所示天线的回波损耗史密斯圆图;
图44为图2所示天线的回波损耗史密斯圆图;
图45为本申请实施例中天线的另一种俯视结构示意图。
附图标记:1-天线;                                      11-地板;12-主辐射体;                                 121-辐射边;13-第一寄生结构;                             131-第一寄生贴片;1311-第一子寄生贴片;                         1312-第二子寄生贴片;132-第一导电柱;                              1321-第一子导电柱;1322-第二子导电柱;                            1323-第三子导电柱;1324-第四子导电柱;                            133-对称轴;14-第二寄生结构;                              141-第二寄生贴片;142-第二导电柱;                               15-馈电结构;16-馈电线;                                    17-缝隙;18-金属围墙;                                  181-第一金属壁;182-第二金属壁;                               183-第三金属壁;2-射频芯片;                                   3-算法处理单元;4-介质板;                                     A-第一方向;B-第二方向;                                   C-第三方向。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“具体的实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了方便理解本申请实施例提供的天线,下面首先介绍一下其应用场景。本申请实施例提供的天线适用于采用以下一种或多种通信技术的电子设备:蓝牙(blue-tooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术以及未来其他通信技术等。本申请实施例中的电子设备可以是手机、平板电脑、笔记本电脑、智能家居产品、智能手环、智能手表、智能头盔、智能眼镜、车辆的智能导航装置、安防的智能感知装置(如智能感知摄像头)、无人机。无人运输车、机器人或者医疗感知产品等。电子设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备,5G网络中的电子设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的电子设备等,本申请实施例对此并不限定。
上述任意一种电子设备都可以包括本申请实施例中的天线,以实现电子设备的通信或者探测功能。具体的实施例中,上述电子设备中的天线可以直接安装于电子设备,并与电子设备中的处理器进行电连接,以实现电子设备的通信功能和/或探测功能。或者,还可以使天线集成于传感器或者感知模块,再将上述传感器或者感知模块安装于电子设备,并使电子设备的处理器与传感器或者感知模块进行电连接,以实现电子设备的通信功能和/或探测功能。上述处理器具体可以指芯片,只要能够对数据进行处理并实现电子设备的至少部分功能即可,本申请对此不做限制。
可以理解的,上述天线还可以应用于感知模块或者传感器,从而用于监测目标的位置,以及与目标的位置相关的参数,例如,目标的速度和运动方向等。图1为本申请实施例中感知模块的一种结构示意图,请参考图1,感知模块包括阵列排布的多个天线1,还包括射频芯片2和算法处理单元3。每个天线1包括射频接口,用于与射频芯片2连接。上述多个天线1中包括发射天线和接收天线,具体的实施例中,上述发射天线与接收天线的物理结构可以相同,只是,天线1的射频接口连接到射频芯片2的发射接口时,该天线1即为发射天线;射频接口连接到射频芯片2的接收接口时,该天线1即为接收天线。上述天线1通过上述射频接口与射频芯片2连接,上述射频芯片2与算法处理单元3连接。具体的,射频芯片2用于将算法处理单元3输出的数字信号转为射频信号,并将射频信号发送至发射天线,并且接收由接收天线捕获到的电磁波信号,并将电磁波信号转为射频信号,再将射频信号发送至算法处理单元3。算法处理单元3用于发出需求的数字信号,并接收目标反射的射频信号(通过射频芯片对接收天线接收到的电磁波信号处理后得到的),并计算得到目标的位置、速度、距离等信息。
下面列举感知模块一种具体的工作过程:算法处理单元3确定需求的数字信号,并将该数字信号传递至射频芯片2,射频芯片2将数字信号转为射频信号,并将射频信号发送至发射天线,发射天线将上述射频信号以电磁波信号的形式辐射出来,电磁波信号经过目标的散射形成回波的电磁波信号;回波的电磁波信号由接收天线接收,并通过射频芯片2转换成射频信号后传输至算法处理单元3,算法处理单元3对上述射频信号进行计算,得到目标的位置、速度、距离等信息。
天线1作为感知模块的核心,承载接收与发射电磁波信号的重任,因此,天线1的方向图的改善以及辐射性能的提升,都可以提升感知模块的感知精度和速度。
此外,本申请实施例中的传感器可以包括上述天线1或者感知模块,主要可以用于检测目标的位置、速度、距离等信息。该传感器具体可以为感知传感器,例如雷达。
为了便于理解本申请实施例,下面对于本申请实施例中出现的术语进行简单的介绍。
主辐射体:是天线中用于接收/发送电磁波辐射的装置。具体的,主辐射体将来自发射机的导波能量较变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波。发射机所产生的已调制的高频电流能量(或导波能量)传输到发射用的主辐射体(对应发射天线的主辐射体),通过主辐射体将其转换为某种极化的电磁波能量,并向所需方向辐射出去。接收用的主辐射体(对应接收天线的主辐射体)将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,输送到接收机输入端。
主辐射体可以是具有特定形状和尺寸的导体,例如线状或片状等,本申请不限定具体的形状。在本申请实施例中,主辐射体具体为片状辐射体,该片状辐射体可以为普通贴片(Patch)或者超表面贴片(Meta Patch)。具体的,该片状辐射体可以由导电片/金属片实现,例如铜片等。在一个实施例中,片状辐射体可以由导电涂层实现,例如银浆天线等。片状辐射体的形状包括圆形、矩形、环形等,本申请不限定具体的形状。
地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地板”可用于电子设备内元器件的接地。一个实施例中,“地板”可以包括以下任一个或多个:电子设备的电路板的接地层、电子设备中框形成的接地板、屏幕下方的金属薄膜形成的接地金属层、电池的导电接地层,和与上述接地层/接地板/金属层有电连接的导电件或金属件。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
馈电点:主辐射体上与传输线的耦合处通常称为馈电点。对于本申请技术方案,主辐射体通过馈电点与馈电结构耦合,本申请实施例中的馈电点不能狭义的理解为一个点,还可以是区域。例如,馈电结构通过馈电点与主辐射体直接耦合,即有电连接时,馈电点可以是辐射体上的某个点或区域;馈电结构通过馈电点与主辐射体间接耦合,即有间隙时,馈电点可以是与馈电结构存在间隙的点或区域。
馈电线:又叫传输线,指天线的收发机与主辐射体之间的连接线。传输线可随频率和形式不同,直接传输电流波或电磁波。传输线包括导线传输线、同轴线传输线、波导、或微带线等。传输线根据实现形式不同可以包括支架天线体、或玻璃天线体等。传输线根据载体不同可以由LCP(Liquid Crystal Polymer,液晶聚合物材料)、FPC(Flexible Printed Circuit,柔性印刷电路板)、或PCB(Printed Circuit Board,印刷电路板)等来实现。
天线方向图:也称辐射方向图。是指在离天线一定距离处,天线辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。天线方向图通常都有多个辐射波束。其中辐射强度最大的辐射波束称为主瓣,其余的辐射波束称为副瓣或旁瓣。在副瓣中,与主瓣相反方向上的副瓣也叫后瓣。
天线增益:用于表征天线把输入功率集中辐射的程度。通常,天线方向图的主瓣越窄,副瓣越小,天线增益越高。
谐振频率:又叫共振频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。谐振频率可以是回波损耗特性小于-6dB的频率范围。共振最强点对应的频率就是中心频率-点频率。中心频率的回波损耗特性可以小于-20dB。
谐振频段:谐振频率的范围是谐振频段,谐振频段内任一频点的回波损耗特性可以小于-6dB或-5dB。
工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。工作频段的宽度称为工作带宽。全向天线的工作带宽可能达到中心频率的3-5%。定向天线的工作带宽可能达到中心频率的5-10%。带宽可以认为是中心频率(例如,偶极子的谐振频率)两侧的一段频率范围,其中天线特性在中心频率的可接受值范围内。
谐振频段和工作频段可以相同或不同,或者其频率范围可以部分重叠。在一个实施例中,天线的谐振频段可以覆盖该天线的多个工作频段。
波长:或者工作波长,可以是谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率对应的波长。例如,假设天线的上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
电长度:电长度可以是指物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的中传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±20%之内,例如,±10%之内,或±5%之内。
本申请的实施例中,天线的某种波长模式(如二分之一波长模式等)中的波长可以是指该天线辐射的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:波长=光速/频率,其中频率为辐射信号的频率。辐射信号在介质中的波长可以如下计算:波长=(光速/√ε)/频率,其中,ε为该介质的相对介电常数,频率为辐射信号的频率。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
本申请实施例中提及的共面、对称(例如,轴对称、或中心对称等)、平行、垂直、相同(例如,长度相同、宽度相同等等)等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。共面的两个辐射枝节或者两个天线单元的边缘之间在垂直于其共面平面的方向上可以存在小于预定阈值的偏差。相互平行或垂直的两个天线单元之间可以存在预定角度的偏差。在一个实施例中,预定阈值可以小于或等于1mm的阈值,例如预定阈值可以是0.5mm,或者可以是0.1mm。在一个实施例中,预定角度可以是±10°范围内的角度,例如预定角度偏差为±5°。
本申请实施例中提及的中心和边缘等某结构的设定位置的限定,均可以理解为一定的区域内,而非限定的具体的点或者边。例如,上述中心可以指某结构的中心区域,例如,该结构沿设定方向的中心,可以理解为该结构沿设定方向中心的±10%的区域,例如该结构沿设定方向中心的±5%或者±2%,而非绝对中心。某结构的边缘也可以指该结构的边缘区域,例如,该结构具有侧边,则靠近侧边的10%范围内,例如5%范围内,或者2%范围内,都可以理解为上述边缘区域。
图2为本申请实施例中天线的一种结构示意图,如图2所示,本申请实施例中的天线1包括地板11、主辐射体12、第一寄生结构13和第二寄生结构14。其中,主辐射体12、第一寄生结构13和第二寄生结构14设置于地板11的同一侧。上述天线1还可以包括馈电结构15和馈电线16,上述馈电结构15与主辐射体12耦合,馈电线16与馈电结构15耦合。上述馈电线16朝向馈电结构15的一端沿第一方向A延伸,此处可以认为馈电线16朝向馈电结构15的一端的设定长度部分沿第一方向A延伸。上述馈电结构15具体可以与主辐射体12的馈电点耦合。上述第一寄生结构13、主辐射体12与第二寄生结构14在第一方向A上依次排列,也就是说,沿第一方向A,上述主辐射体12位于第一寄生结构13和第二寄生结构14之间,第一寄生结构13和第二寄生结构14位于主辐射体12的两侧。主辐射体12、第一寄生结构13和第二寄生结构14位于与上述地板11不同的平面。在一个实施例中,上述主辐射体12、第一寄生结构13和第二寄生结构14沿第二方向B的投影均位于上述地板11所在的平面内,上述第二方向B垂直于地板11的平面。在一个实施例中,主辐射体12、第一寄生结构13和第二寄生结构14可以是共面的。
上述第一方向A具体可以为主辐射体12的极化方向A。上述主辐射体12在第一方向A两侧的边可以为辐射边121,图2所示实施例中的辐射边121与极化方向A垂直。如图2中所示的方向A即为上述第一方向A,也为主辐射体12的极化方向A。该方案通过在主辐射体12的极化方向A设置第一寄生结构13和第二寄生结构14,可以减少天线1的地板11产生的表面波,进而可以优化天线1的方向图,提升天线1的辐射性能。
请继续参考图2,上述第一寄生结构13包括第一寄生贴片131和第一导电柱132,该第一导电柱132的两端分别与第一寄生贴片131和地板11电连接。也就是上述第一导电柱132连接于第一寄生贴片131与地板11之间,使得第一寄生贴片131与地板11实现电连接。第二寄生结构14包括第二寄生贴片141和第二导电柱142,第二导电柱142的两端分别与第二寄生贴片141和地板11电连接。也就是上述第二导电柱142连接于第二寄生贴片141与地板11之间,使得第二寄生贴片141与地板11实现电连接。在一个实施例中,上述第一导电柱132和第二导电柱142可以由金属过孔实现。本申请实施例中,主辐射体12也可以为贴片结构。主辐射体12和第一寄生结构13以及第二寄生结构14可以同步制作于同一介质板,有利于简化天线1的制备工艺。此外,本申请中的第一寄生结构13和第二寄生结构14的结构较为简单,占用空间较少,有利于减小天线1的尺寸,降低天线1的制备成本。
在具体的实施例中,本申请不限定主辐射体12从馈电结构15馈入能量的方式。例如图2所示的实施例中,主辐射体12利用缝隙17进行馈电。此时,认为缝隙17即为天线1的馈电结构15,可以使缝隙17长度方向垂直于主辐射体12的第一方向A,馈电线16沿第一方向A延伸且与缝隙17耦合。缝隙17与主辐射体12耦合。或者,还可以采用馈电针进行馈电,此时,馈电针即为天线1的馈电结构15。可以使馈电针与主辐射体12的中心相避开,且馈电线16与馈电针耦合的部分沿第一方向A延伸。
值得说明的是,本申请实施例中,第一寄生贴片131和第二寄生贴片141与地板11之间的距离,和主辐射体12与地板11之间的距离可以相同,也可以不同,本申请不做限制。另外,上述第一寄生贴片131和第二寄生贴片141与主辐射体12可以平行也可以不平行,本申请也不做限制。本申请实施例中的附图以第一寄生贴片131和第二寄生贴片141与主辐射体12位于同一平面来说明技术方案,但并不对技术方案形成限制。
上述实施例中的天线可以为毫米波天线,从而可以较好的发挥毫米波天线的定向特性和无绕射特性。
此外,上述天线的工作频段具体包括20GHz~70GHz中的至少部分频段。进一步的,天线的工作频段可以为24GHz~60GHz中的至少部分频段。例如,本申请实施例的,天线的工作频段具体可以为23GHz~25GHz,或者,天线的工作频段还可以为60GHz~64GHz等。当然,其它实施例中,工作频段的至少部分包括低于20GHz的天线以及工作频段的至少部分高于70GHz的天线也可以应用本申请实施例中的技术方案。例如,天线的工作频率可以包括15GHz、18GHz、20GHz、22GHz、22GHz、26GHz、28GHz、30GHz、35GHz、38GHz、40GHz、42GHz、45GHz、46GHz、49GHz、50GHz、52GHz、55GHz、58GHz、62GHz、65GHz、68GHz、72GHz、75GHz、78GHz或者80GHz等,此处不做一一列举。
[根据细则26改正 25.09.2023]
图3(a)~图3(e)为本申请实施例中天线的排布结构示意图,如图3(a)~图3(e)所示,天线可以具有多种排布方式。如图3(a)所示,一种实施例中,上述天线1可以沿第一方向A排布,可以使每个天线1仍包括第一寄生结构13和第二寄生结构14,进行简单的排布。如图3(b)所示,另一种实施例中,上述天线1也是沿第一方向A排布,可以使相邻的天线1共用一个寄生结构。相邻的两个天线1之间的寄生结构对于一侧的主辐射体相当于第一寄生结构,而相对于另一侧的主辐射体12相当于第二寄生结构。该实施例有利于减小天线1的体积,实现应用该天线1的产品的小型化,此外还可以降低成本。如图3(c)所示,另一种实施例中,上述天线1还可以沿第三方向C排布,该第三方向C垂直于第一方向A。如图3(d)所示,再一种实施例中,上述天线1还可以沿与第一方向A呈锐角的方向排列。如图3(e)所示,再一种实施例中,上述天线1还可以呈矩阵排布,此时,沿第一方向A相邻的两个天线也可以共用同一个寄生结构,以减小天线的体积。
图4为一种天线的结构示意图,图4所示的天线1与图2所示的天线1相比,差别仅在于图4所示的天线1不包括第一寄生结构13和第二寄生结构14。图5为图4中A-A处的剖面结构示意图,图6为图2中B-B处的剖面结构示意图,图5和图6中的箭头表示电磁波,其中,实线箭头表示天线1辐射出来的工作用的辐射电磁波,虚线箭头表示表面波。如图5所示,天线1的主辐射体12沿法向方向辐射电磁波,且沿地板11的表面传播大量的表面波(本质为在表面传输的电磁波)。但是,本申请技术方案中,请参考图6,电磁波遇到第一寄生结构13和第二寄生结构14时,分别沿第一寄生结构13和第二寄生结构14传输,并从第一寄生结构13和第二寄生结构14的表面向法向辐射,成为工作用的辐射电磁波。仅有少量的电磁波通过地板11的表面进行传输。可见,本申请技术方案中,明显的减少了地板11的表面波。此外,天线1通过第一寄生结构13和第二寄生结构14向法向辐射电磁波,还提升了天线增益。
为了分析本申请实施例中天线抑制表面波的效果,发明人对图2所示的天线1和图4所示的天线1做了对比分析。图7为图4所示天线沿极化方向A的辐射方向图,可见,由于地板11的表面波的影响,图4所示天线沿极化方向A的辐射方向图出现较为明显的抖动,抖动幅度较大。图8为图2所示天线沿极化方向A的辐射方向图,可见,由于增加了第一寄生结构13和第二寄生结构14,本申请实施例中的天线沿极化方向A的辐射方向图抖动有所减缓,抖动幅度降低。
图9为在天线的主辐射体12所在的一侧设置介质板4的结构示意图,如图9所示,为了模拟在使用状态的天线1,发明人在天线1具有主辐射体12的一侧设置了介质板4,也就是该介质板4位于主辐射体12背离地板11的一侧。该介质板4可以模拟天线罩或者其它位于天线1附近的结构。该介质板4的介电常数为3,厚度方向的电长度为介质板4的半波长,值得说明的是,介质板4厚度方向的电长度大致为介质板4的半波长,允许存在一定的误差,例如制备工艺造成的误差等。该介质板4与天线1的主辐射体12的间隙为天线1的中心频率的介质半波长,此处也允许存在一定的误差。图10为图4所示的天线1在设置介质板4后沿极化方向A的辐射方向图,将图10与图7对比发现,图4所示的天线1沿极化方向A的辐射方向图出现更加明显的抖动,抖动幅度更大。除此以外,在应用时,如果天线1组成阵列,那么上述辐射方向图将更加恶化,产生不必要的辐射。图11为图2所示的天线1在设置介质板4后沿极化方向A的辐射方向图,将图11与图10对比发现,增加介质板4后,本申请实施例中的天线1相比图4所示的天线1,沿极化方向A的辐射方向图抖动也明显减缓,抖动幅度也大幅降低。
图12为图4所示天线1的地板11电流分布图,图13为图2所示天线1的地板11电流分布图。将图13与图12对比,可见本申请实施例中的天线1(例如,图2所示的天线1)的地板11表面的电流,明显小于图4所示的天线1的地板11表面的电流。也可以说明本申请实施例中的图电线的表面波抑制效果明显。
上述第一寄生结构13和第二寄生结构14可以具有多种实现方式,下面主要以第一寄生结构13为例来进行说明,而第二寄生结构14也可以采用下述实施例中任一种第一寄生结构13的形式。具体的实施例中,可以使同一个天线1的第一寄生结构13和第二寄生结构14对称设置于主辐射体12的两侧,从而使得天线1的辐射信号较为均匀和对称。当然,在一些可能的实施例中,上述第一寄生结构13和第二寄生结构14也可能不同,或者并非对称设置于主辐射体12的两侧。
例如,图14为本申请实施例中第一寄生结构的一种结构示意图。请结合图2和图14,一种实施例中,上述第一寄生贴片131包括第一子寄生贴片1311和第二子寄生贴片1312,且第一子寄生贴片1311与第二子寄生贴片1312之间具有一定的缝隙。上述第一导电柱132包括第一子导电柱1321和第二子导电柱1322。第一子寄生贴片1311与第一子导电柱1321电连接,也就是说,第一子导电柱1321的两端分别与第一子寄生贴片1311和地板11电连接,第一子寄生贴片1311通过第一子导电柱1321与地板11电连接;第二子寄生贴片1312与第二子导电柱1322电连接,也就是说,第二子导电柱1322的两端分别与第二子寄生贴片1312和地板11电连接,第二子寄生贴片1312通过第二子导电柱1322与地板11电连接。本申请实施例中,第一子寄生贴片1311和第二子寄生贴片1312可以形成偶极子寄生结构,从而第一寄生结构13产生的沿第三方向C的电流可以相互抵消,有利于保持天线1的极化方向A不变,有利于保持天线1沿法向进行辐射。此外,也可以使第一寄生结构13和第二寄生结构14产生法向的辐射,从而提升天线增益。
请继续参考图2和图14,上述第一子寄生贴片1311和第二子寄生贴片1312可以沿第三方向C排列,上述第三方向C具体垂直于主辐射体12的第一方向A。此外,还可以使第一子寄生贴片1311与第二子寄生贴片1312关于对称轴133对称设置,第一子导电柱1321与第二子导电柱1322也关于对称轴133对称设置,上述对称轴133平行于主辐射体12的极化方向A。该方案有利于促进第一子寄生贴片1311和第二子寄生贴片1312沿第三方向C的电流相互抵消,使得天线1的辐射方向图更好。
上述第一子寄生贴片1311和第二子寄生贴片1312的形状不做具体限制,但是可以使第一子寄生贴片1311和第二子寄生贴片1312的形状和尺寸相同,从而便于制备上述第一子寄生贴片1311和第二子寄生贴片1312,还有利于控制、模拟和分析第一子寄生贴片1311和第二子寄生贴片1312在工作时的电流分布。
具体的实施例中,可以使第一寄生贴片131的形状为矩形,且第一寄生贴片131的一个边缘平行于主辐射体12的第一方向A。值得说明的是,上述第一寄生贴片131的形状为矩形指的第一寄生贴片131大致形状为矩形,实际产品中,上述第一寄生贴片131的边缘可以具有凸起或者凹槽,但是总体为直线型边缘。
图15为本申请实施例中第一寄生结构的俯视结构示意图,请结合图14和图15,上述第一子导电柱1321与第一子寄生贴片1311朝向第二子寄生贴片1312的一侧的边缘电连接,第二子导电柱1322与第二子寄生贴片1312朝向第一子寄生贴片1311的一侧的边缘电连接。该方案可以使第一寄生结构13的电长度较长,从而减少浪费,充分利用第一寄生结构13来实现抑制表面波的作用,有利于减小第一寄生结构13的尺寸,进而减小整个天线1的尺寸。此外,上述第一子导电柱1321与第一子寄生贴片1311沿极化方向A的中心连接,第二子导电柱1322与第二子寄生贴片1312沿极化方向A的中心连接。
值得说明的是,本申请实施例中提到的“边缘”指的边缘区域,例如,指的是靠近侧边的10%的范围内,都可以理解为上述边缘区域。以使得第一子导电柱1321与第一子寄生贴片1311可靠的连接。例如,可以使第一子导电柱1321沿第三方向C的两端均具有一定尺寸的第一子寄生贴片1311。但是,第一子导电柱1321朝向第二子寄生贴片1312的一侧的第一子寄生贴片1311的尺寸,远小于第一子导电柱1321背离第二子寄生贴片1312的一侧的第一子寄生贴片1311的尺寸。具体的,第一子导电柱1321朝向第二子寄生贴片1312的一侧的第一子寄生贴片1311的尺寸为第一子寄生贴片1311的尺寸的10%以内。同样的,可以使第二子导电柱1322朝向第一子寄生贴片1311的一侧的第二子寄生贴片1312的尺寸,远小于第二子导电柱1322背离第一子寄生贴片1311的一侧的第二子寄生贴片1312的尺寸。具体的,第二子导电柱1322朝向第一子寄生贴片1311的一侧的第二子寄生贴片1312的尺寸为第二子寄生贴片1312的尺寸的10%以内。
此外,具体的实施例中,上述第一寄生结构13的电长度为第一寄生结构13的谐振频率对应的波长的一半。该方案中的第一寄生结构13抑制表面波的效果更好,更有利于保证天线1的辐射性能。
值得说明的是,上述“一半”的限定,是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。实际上述尺寸的限定可以存在一定的偏差。此外,为了保证第一寄生结构13的电长度为第一寄生结构13的谐振频率对应的波长的一半,可以使第一寄生结构13的电长度对应的物理长度为上述谐振频率对应的波长的一半的±10%之内。上述电长度对应的物理长度指的是计算电长度时,计算公式中对应的物理长度。
图16为图14中C-C处的剖视结构示意图,请参考图16,该实施例中第一寄生结构的电长度对应的物理长度为a+b+c+d。
图17为图4所示天线1的主辐射体12的电流分布图,可见主辐射体12的电流沿极化方向A流动。图18为图2所示天线1的主辐射体12、第一寄生结构13和第二寄生结构14的电流分布图,可见,主辐射体12的电流仍然沿极化方向A流动,第一寄生结构13和第二寄生结构14的电流沿第三方向C流动,且第一子寄生贴片1311的电流与第二子寄生贴片1312的电流的流动方向相反且电流值接近,使得第一子寄生贴片1311的电流与第二子寄生贴片1312的电流相互抵消,使天线1的极化方向A保持不变,且仍然朝向法向辐射。
图19为本申请实施例中天线的另一种结构示意图,图20为本申请实施例中第一寄生结构的另一种俯视结构示意图,如图19和图20所示,另一种实施例中,上述第一子导电柱1321与第一子寄生贴片1311背离第二子寄生贴片1312的一侧的边缘电连接,第二子导电柱1322与第二子寄生贴片1312背离第一子寄生贴片1311的一侧的边缘电连接。本实施例中的“边缘”与上文相同,也是指边缘区域,此处不进行详细解释。该实施例同样可以使第一寄生结构13的电长度较长,从而减少浪费,充分利用第一寄生结构13来实现抑制表面波的作用,有利于减小第一寄生结构13的尺寸,进而减小整个天线1的尺寸。此外,上述第一子导电柱1321与第一子寄生贴片1311沿极化方向A的中心连接,第二子导电柱1322与第二子寄生贴片1312沿极化方向A的中心连接。
图21为图19中D-D处的剖视结构示意图,请参考图21,该实施例中第一寄生结构13的电长度为e+f+g+h。
图22为图19中天线的电流分布图,与图18所示的实施例类似,请参考图22,主辐射体12的电流仍然沿第一方向A流动,第一寄生结构13的电流沿第三方向C流动,且第一子寄生贴片1311的电流与第二子寄生贴片1312的电流的流动方向相反且电流值接近,使得第一子寄生贴片1311的电流与第二子寄生贴片1312的电流相互抵消,使天线1的第一方向A保持不变,且仍然朝向法向辐射。
图23为图19所示的天线沿极化方向A的辐射方向图,从图23可见,图23与图7相比,图19所示实施例中的天线沿极化方向A的辐射方向图抖动也明显减缓,抖动幅度也大幅降低。也就是说,图19所示实施例对于抑制天线表面波也具有较好的效果。
图24为本申请实施例中天线的另一种结构示意图,图25为图24中E-E处的剖视结构示意图,如图24和图25所示,另一种实施例中,上述第一寄生贴片131与第一导电柱132电连接,且第一导电柱132背离第一寄生贴片131的一端与地板11电连接。上述第一导电柱132位于第一寄生贴片131沿第三方向C的中心,使得第一寄生结构13为对称结构。以便于第一寄生结构13沿第三方向C的电流可以相互抵消。该方案中,第一寄生结构13不包括缝隙,有利于减小第一寄生结构13的尺寸。此外,该实施例中只包括了一个第一导电柱132,有利于减小第一寄生结构13的尺寸,降低制备难度。
请参考图25,该实施例中第一寄生结构的电长度为2i+j+k。此时可以理解为第一导电柱132同时与第一寄生贴片131位于第一导电柱132两侧的结构连接,第一导电柱132实际使用了两次。
图26为图24中天线的电流分布图,与图18所示的实施例类似,请参考图26,主辐射体12的电流仍然沿极化方向A流动,第一寄生结构13的电流沿第三方向C流动,且第一寄生贴片131在第一导电柱132两端的区域,电流的流动方向相反且电流值接近,使得两部分电流相互抵消,使天线1的极化方向A保持不变,且仍然朝向法向辐射。
图27为图24所示的天线沿极化方向A的辐射方向图,从图27可见,与图7相比,图24所示实施例中的天线沿极化方向A的辐射方向图抖动也明显减缓,抖动幅度也大幅降低。也就是说,图24所示实施例对于抑制天线表面波也具有较好的效果。
图28为本申请实施例中天线的另一种结构示意图,图29为本申请实施例中第一寄生结构的一种俯视结构示意图。如图28和图29所示,另一种实施例中,上述第一导电柱132包括第三子导电柱1323和第四子导电柱1324。上述第一寄生贴片131与第三子导电柱1323和第四子导电柱1324分别电连接,第三子导电柱1323和第四子导电柱1324背离第一寄生贴片131的一端分别与地板11电连接。也就是说,第一寄生贴片131电连接有两个第一导电柱132。上述第三子导电柱1323和第四子导电柱1324分别位于第一寄生贴片131沿第三方向C的两侧的边缘。本实施例中的“边缘”与上文相同,也是指边缘区域,此处不进行详细解释。该实施例同样可以使得第一寄生结构13为对称结构。以便于第一寄生结构13沿第三方向C的电流可以相互抵消。该方案中,第一寄生结构13不包括缝隙,有利于减小第一寄生结构13的尺寸。
图30为图28中F-F处的剖视结构示意图,请参考图30,该实施例中第一寄生结构13的电长度为l+m+n。
图31为图28中天线的电流分布图,与图22所示的实施例类似,请参考图31,主辐射体12的电流仍然沿极化方向A流动,第一寄生结构13的电流沿第三方向C流动,且第一寄生贴片131在第一导电柱132两端的区域电流的流动方向相反且电流值接近,使得两部分电流相互抵消,使天线1的极化方向A保持不变,且仍然朝向法向辐射。
图32为图28所示的天线沿极化方向A的辐射方向图,从图32可见,与图7相比,图32所示实施例中的天线1沿极化方向A的辐射方向图抖动也明显减缓,抖动幅度也大幅降低。也就是说,图26所示实施例对于抑制天线表面波也具有较好的效果。
图33为本申请实施例中天线的一种俯视结构示意图,请参考图33,一种具体的实施例中,可以仅在主辐射体12沿极化方向A的一侧设置第一寄生结构13,从而第一寄生结构13可以抑制该方向的表面波。根据天线1的实际应用场景,可以采用该技术方案,则可以简化天线1的结构,减小天线1的尺寸,降低天线1的成本。
图34为本申请实施例中天线的另一种俯视结构示意图,请结合图2和图34,另一种实施例中,还可以在主辐射体12沿极化方向A的两侧分别设置有第一寄生结构13和第二寄生结构14。则可以在主辐射体12的极化方向A的两端抑制表面波,从而提升优化天线1的方向图。
图35为本申请实施例中天线的侧向剖面结构示意图,图36为本申请实施例中天线的另一种俯视结构示意图,请继续结合图28、图35和图36,本申请实施例中,天线1还可以包括金属围墙18,该金属围墙18至少包括一个第一金属壁181。该第一金属壁181位于第一寄生结构13背离主辐射体12的一侧。具体的,可以使第一金属壁181与主辐射体12的极化方向A垂直。上述第一金属壁181也可以在一定程度上抑制表面波的传播,以进一步的优化天线1的方向图。
具体的实施例中,请继续参考图35,当天线1仅在主辐射体12的一侧设置第一寄生结构13时,可以仅在该第一寄生结构13背离主辐射体12的一侧设置一个第一金属壁181;或者,另一种实施例如图37所示,图37为本申请实施例中天线的另一种俯视结构示意图。当天线1的主辐射体12的两侧分别设置有第一寄生结构13和第二寄生结构14时,则可以使金属围墙18包括第一金属壁181和第二金属壁182,上述第二金属壁182设置于第二寄生结构14背离主辐射体12所在的一侧。也就是说,寄生结构背离主辐射体12的一侧均设置有金属壁。
在具体制备本申请实施例中的天线时,可以在多层电路板上形成上述天线,可以使得天线包括多个金属过孔。上述金属过孔形成与上述多层电路板,具体可以沿第二方向B延伸。多个金属过孔排列形成上述第一金属壁和第二金属壁。上述多个金属过孔可以沿设定方向依次排开,从而形成壁面。上述金属过孔之间的间距可以设置的较小,从而抑制表面波的效果较好。
图38为本申请实施例中天线的另一种俯视结构示意图,请参考图38,具体的实施例中,上述金属围墙18还可以包括第三金属壁183,当天线1仅在主辐射体12沿极化方向A的一侧具有第一寄生结构13时,该第三金属壁183位于主辐射体12背离第一寄生结构13一侧,也就是说,第三金属壁183位于主辐射体12沿第一方向A无寄生结构的一侧。
图39为本申请实施例中天线的另一种俯视结构示意图,请结合图39和图2,再一种实施例中,可以使金属围墙18为位于天线1的主辐射体12四周的围墙。具体的,可以在电路板上形成上述金属围墙18,从而有利于简化金属围墙18的制备工艺,且金属围墙18抑制表面波的效果较好。
在具体制备本申请实施例中的天线时,可以在多层电路板上形成上述天线,上述天线的辐射主体、第一寄生结构和第二寄生结构都是指多层电路板上的金属结构。上述金属墙可以为沿垂直于地板的多个金属过孔排列形成,该金属过孔可以与地板电连接。具体的,上述金属过孔之间的间距可以设置的较小,从而抑制表面波的效果较好。
具体的实施例中,上述第一寄生结构13的谐振频率F0与主辐射体12工作频段的中心频率F满足:1/2F≤F0<F。例如,上述F0可以为2/3F、3/4F、3/5F或者5/6F等,本申请对此不做具体限制。该方案可以使寄生结构具有较好的表面波抑制效果,保证天线的辐射性能。
一种实施例中,本申请实施例中天线1的主辐射体12的工作频段的中心频率为24GHz,第一寄生结构13的谐振频率为18GHz左右。此时,主辐射体与地板11之间的间距为0.94mm,第一寄生结构13的电长度为1mm。图40为本申请实施例中天线在18GHz频率时的辐射方向图,可见,产生了明显的裂瓣。而图8示出的天线的辐射方向图,为天线在24GHz频率时的辐射方向图,可见,当寄生结构的谐振频率小于主辐射体12工作频段的中心频率F时,一直表面波效果较好,且可以保证天线的辐射性能。相类似的,另一种实施例中,当寄生结构的电长度调整为0.8mm,谐振频率为20GHz。图41为本申请实施例中天线在20GHz频率时的辐射方向图,可见,产生了明显的裂瓣。也就是说,第一寄生结构13的电长度越大,自身的谐振频率越小。而当天线的主辐射体12的中心频率与第一寄生结构13的谐振频率相同时,辐射性能较差。
此外,再一种实施例中,当第一寄生结构13的谐振频率高于天线1的主辐射体12时,具体的,第一寄生结构13的谐振频率高于24GHz。图42为本申请实施例中天线在24GHz频率时的辐射方向图,可见,此时也不能较小辐射方向图的抖动,也就是说对于表面波的抑制没有效果。
图43为图4所示天线的回波损耗史密斯圆图,图44为图2所示天线的回波损耗史密斯圆图,请参考图43和图44,两者均具有一个谐振结,因此,本申请技术方案可以保证天线的辐射性能。
在具体设置上述第一寄生结构13时,可以使第一寄生结构13的中心与主辐射体12的中心沿主辐射体12的第一方向A的距离M,与主辐射体12工作的中心频率对应的自由空间的波长λ0满足:M≤1/4λ0。例如,上述距离M可以为1/5λ0、1/6λ0、1/7λ0或者1/10λ0等等,本申请不做限制。该方案中,第一寄生结构13与主辐射体12之间的距离较近;一方面有利于减小天线的尺寸;另一方面,寄生结构抑制表面波的效果更加明显。如图45所示,上述第一寄生结构13的中心指的是第一寄生结构13沿第一方向A的中心,具体可以指第一寄生结构13沿第一方向A的中心±10%的区域,例如第一寄生结构13沿第一方向A的中心±2%的区域;主辐射体12的中心指的是主辐射体12沿第一方向A的中心,具体可以指主辐射体12沿第一方向A的中心±10%的区域,例如主辐射体12沿第一方向A的中心±2%的区域。
本申请实施例中提及的中心等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种天线,其特征在于,包括地板、主辐射体、第一寄生结构和第二寄生结构,所述天线还包括馈电结构和馈电线,所述馈电结构与所述主辐射体耦合,所述馈电线与所述馈电结构耦合,所述馈电线朝向所述馈电结构的端部沿第一方向延伸;所述第一寄生结构、所述主辐射体与所述第二寄生结构在第一方向上依次排列,且其在第二方向上的投影均位于所述地板的平面内,所述第二方向垂直于所述地板的平面,所述第一寄生结构包括第一寄生贴片和第一导电柱,所述第一导电柱的两端分别与所述第一寄生贴片和所述地板电连接;所述第二寄生结构包括第二寄生贴片和第二导电柱,所述第二导电柱的两端分别与所述第二寄生贴片和所述地板电连接。
  2. 如权利要求1所述的天线,其特征在于,所述第一寄生贴片包括第一子寄生贴片和第二子寄生贴片,所述第一导电柱包括第一子导电柱和第二子导电柱,所述第一子导电柱的两端分别与所述第一子寄生贴片和所述地板电连接,所述第二子导电柱的两端分别与所述第二子寄生贴片和所述地板电连接,所述第一子寄生贴片与所述第二子寄生贴片沿第三方向排列,所述第三方向垂直于所述第一方向。
  3. 如权利要求2所述的天线,其特征在于,所述第一子导电柱与所述第一子寄生贴片朝向所述第二子寄生贴片的一侧的边缘电连接,所述第二子导电柱与所述第二子寄生贴片朝向所述第一子寄生贴片的一侧的边缘电连接。
  4. 如权利要求2所述的天线,其特征在于,所述第一子导电柱与所述第一子寄生贴片背离所述第二子寄生贴片的一侧的边缘电连接,所述第二子导电柱与所述第二子寄生贴片背离所述第一子寄生贴片的一侧的边缘电连接。
  5. 如权利要求1所述的天线,其特征在于,所述第一导电柱位于所述第一寄生贴片沿第三方向的中心,所述第三方向垂直于所述第一方向。
  6. 如权利要求1所述的天线,其特征在于,所述第一导电柱包括第三子导电柱和第四子导电柱,所述第一寄生贴片与所述第三子导电柱和所述第四子导电柱分别电连接,所述第三子导电柱和所述第四子导电柱分别位于所述第一寄生贴片沿第三方向的两侧的边缘,所述第三方向垂直于所述第一方向。
  7. 如权利要求1~6任一项所述的天线,其特征在于,还包括金属围墙,所述金属围墙至少包括第一金属壁和第二金属壁,所述第一金属壁位于所述第一寄生结构背离所述主辐射体的一侧,所述第二金属壁位于所述第二寄生结构背离所述主辐射体的一侧。
  8. 如权利要求7所述的天线,其特征在于,所述天线包括多个金属过孔,所述多个金属过孔排列形成所述第一金属壁和所述第二金属壁。
  9. 如权利要求1~8任一项所述的天线,其特征在于,所述第一寄生结构的谐振频率F0与所述主辐射体工作频段的中心频率F满足:1/2F≤F0<F。
  10. 如权利要求1~9任一项所述的天线,其特征在于,所述第一寄生结构的中心与所述主辐射体的中心沿所述第一方向的距离M,与所述主辐射体工作的中心频率对应的自由空间的波长λ0满足:M≤1/4λ0。
  11. 如权利要求1~10任一项所述的天线,其特征在于,所述第一方向为所述天线的极化方向。
  12. 如权利要求1~11任一项所述的天线,其特征在于,所述第一寄生结构和所述第二寄生结构对称设置于所述辐射主体的两侧。
  13. 如权利要求1~12任一项所述的天线,其特征在于,所述天线为毫米波天线。
  14. 如权利要求1~13任一项所述的天线,其特征在于,所述天线的工作频段包括20GHz~70GHz中的至少部分频段。
  15. 一种感知模块,其特征在于,多个如权利要求1~14任一项所述的天线,还包括射频芯片和算法处理单元,所述天线与所述射频芯片电连接,所述射频芯片与所述算法处理单元电连接。
  16. 如权利要求15所述的感知模块,其特征在于,所述感知模块用于感知目标的位置。
  17. 一种传感器,其特征在于,包括如权利要求1~14任一项所述的天线或者如权利要求15或16所述的感知模块。
  18. 一种电子设备,其特征在于,包括如权利要求1~14任一项所述的天线,或者如权利要求15或16所述的感知模块,或者如权利要求17所述的传感器。
PCT/CN2023/108479 2022-07-29 2023-07-20 一种天线、感知模块、传感器和电子设备 WO2024022224A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210912111.4 2022-07-29
CN202210912111.4A CN117525832A (zh) 2022-07-29 2022-07-29 一种天线、感知模块、传感器和电子设备

Publications (1)

Publication Number Publication Date
WO2024022224A1 true WO2024022224A1 (zh) 2024-02-01

Family

ID=89705406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108479 WO2024022224A1 (zh) 2022-07-29 2023-07-20 一种天线、感知模块、传感器和电子设备

Country Status (2)

Country Link
CN (1) CN117525832A (zh)
WO (1) WO2024022224A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169503A1 (en) * 2011-12-30 2013-07-04 Mohammad Fakharzadeh Jahromi Parasitic patch antenna
CN207690998U (zh) * 2018-01-19 2018-08-03 中国人民解放军陆军工程大学 一种具有宽带高增益的微带贴片天线
CN208014900U (zh) * 2018-03-07 2018-10-26 华南理工大学 一种高隔离宽带mimo天线
CN113629398A (zh) * 2021-10-12 2021-11-09 深圳大学 一种具有一致辐射方向图且增益提高的宽带耦合贴片天线
CN113644425A (zh) * 2021-07-12 2021-11-12 南京鲲瑜信息科技有限公司 一种用于近距离车载雷达的宽带宽波束天线
CN113659344A (zh) * 2021-07-13 2021-11-16 荣耀终端有限公司 一种基于寄生耦合的贴片天线和电子设备
CN215600567U (zh) * 2021-06-11 2022-01-21 中国人民解放军战略支援部队航天工程大学 一种加载寄生结构的宽带贴片天线
KR102354525B1 (ko) * 2020-08-18 2022-01-24 중앙대학교 산학협력단 고이득 세그멘티드 패치 안테나 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169503A1 (en) * 2011-12-30 2013-07-04 Mohammad Fakharzadeh Jahromi Parasitic patch antenna
CN207690998U (zh) * 2018-01-19 2018-08-03 中国人民解放军陆军工程大学 一种具有宽带高增益的微带贴片天线
CN208014900U (zh) * 2018-03-07 2018-10-26 华南理工大学 一种高隔离宽带mimo天线
KR102354525B1 (ko) * 2020-08-18 2022-01-24 중앙대학교 산학협력단 고이득 세그멘티드 패치 안테나 및 그 제조방법
CN215600567U (zh) * 2021-06-11 2022-01-21 中国人民解放军战略支援部队航天工程大学 一种加载寄生结构的宽带贴片天线
CN113644425A (zh) * 2021-07-12 2021-11-12 南京鲲瑜信息科技有限公司 一种用于近距离车载雷达的宽带宽波束天线
CN113659344A (zh) * 2021-07-13 2021-11-16 荣耀终端有限公司 一种基于寄生耦合的贴片天线和电子设备
CN113629398A (zh) * 2021-10-12 2021-11-09 深圳大学 一种具有一致辐射方向图且增益提高的宽带耦合贴片天线

Also Published As

Publication number Publication date
CN117525832A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN110137675B (zh) 一种天线单元及终端设备
EP4047746A1 (en) Antenna module and electronic device
US9871297B2 (en) Patch antenna element
WO2021104191A1 (zh) 天线单元及电子设备
CN111276792B (zh) 电子设备
US10770798B2 (en) Flex cable fed antenna system
US11201394B2 (en) Antenna device and electronic device
WO2021083214A1 (zh) 天线单元及电子设备
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
CN112290193A (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2023103945A1 (zh) 一种天线结构和电子设备
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
CN112151944A (zh) 天线模组、电子设备及电子设备的天线频段调节方法
CN112290206B (zh) 一种硅基宽带宽角扫描天线单元
US11056781B2 (en) Antenna and mobile terminal
WO2024022224A1 (zh) 一种天线、感知模块、传感器和电子设备
WO2023016184A1 (zh) 天线装置、壳体及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
US11909133B2 (en) Dielectrically loaded printed dipole antenna
WO2021083220A1 (zh) 天线单元及电子设备
WO2024114283A1 (zh) 一种天线结构和电子设备
EP4235964A2 (en) Antenna for sending and/or receiving electromagnetic signals
WO2024104285A1 (zh) 一种天线组件、交互平板及电子设备
CN113437486B (zh) 毫米波天线以及无线设备
WO2023226919A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845434

Country of ref document: EP

Kind code of ref document: A1