KR20050085238A - 고효율 마이크로스트립 급전 슬롯 패치 안테나 - Google Patents

고효율 마이크로스트립 급전 슬롯 패치 안테나 Download PDF

Info

Publication number
KR20050085238A
KR20050085238A KR1020057009840A KR20057009840A KR20050085238A KR 20050085238 A KR20050085238 A KR 20050085238A KR 1020057009840 A KR1020057009840 A KR 1020057009840A KR 20057009840 A KR20057009840 A KR 20057009840A KR 20050085238 A KR20050085238 A KR 20050085238A
Authority
KR
South Korea
Prior art keywords
dielectric
antenna
patch
slot
substrate
Prior art date
Application number
KR1020057009840A
Other languages
English (en)
Other versions
KR100678393B1 (ko
Inventor
디이 킬렌 윌리엄
티이 파이크 랜디
호세 델가고 헤리베리토
Original Assignee
해리스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 해리스 코포레이션 filed Critical 해리스 코포레이션
Publication of KR20050085238A publication Critical patent/KR20050085238A/ko
Application granted granted Critical
Publication of KR100678393B1 publication Critical patent/KR100678393B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

마이크로스트립 급전 슬롯 패치 안테나(200)는 적어도 하나의 커플링 슬롯(206) 및 적어도 하나의 제1 패치 복사체(209)를 가진 전기적으로 도체인 접지면(208)을 포함한다. 안테나 유전체 기판 물질(205)는 접지면(208)과 제1 패치 복사체(209) 사이에 위치하고, 안테나 유전체(210)의 적어도 일부는 자기 입자들(214)를 포함한다. 급전 유전체 기판(212)는 급전선(217)과 접지면(208) 사이에 위치한다. 자기 입자들은 또한 급전선(217) 유전체에 사용될 수 있다. 본 발명에 의한 패치 안테나는 높은 상대 유전율의 유전체 기판 부분을 사용하면서도 줄어든 크기를 가질 수 있으면서, 그러나, 급전선(217)을 슬롯(206)에 대해서처럼, 유전체 매질 경계면에서 임피던스 매칭을 가능하게 하는 자기 입자들을 포함하는 유전체의 사용으로 여전히 효율적이다.

Description

고효율 마이크로스트립 급전 슬롯 패치 안테나{HIGH EFFICIENCY SLOT FED MICROSTRIP PATCH ANTENNA}
본 발명의 장치는 일반적으로 마이크로스트립 패치 안테나에 관한 것이고 특히 마이크로스트립 급전 슬롯 패치 안테나에 관한 것이다.
RF 회로, 전송선 및 안테나 부품은 일반적으로 특별히 설계된 기판 위에 제조된다. 대개의 회로 기판은 일반적으로 유전 상수를 포함하는 기판의 물리적 성질이 일정하도록 만드는 캐스팅 또는 스프레이 코팅과 같은 과정에 의하여 일반적으로 형성된다.
RF 회로의 용도를 위해서는, 임피던스 특성에 대하여 주의하며 제어를 유지하는 것이 일반적으로 중요하다. 만일 회로의 다른 부분 간에 임피던스가 매칭되지 않는다면, 신호 반사와 비효율적인 전력 전송이 생길 수 있다. 이런 회로에서 전송선과 복사체의 전기적 길이는 결정적인 설계 인자가 될 수 있다.
회로 성능에 영향을 미치는 두 개의 결정적 인자는 유전체 기판 물질의 유전 상수(때때로 상대 유전율 ε r 로 불림)와 손실 탄젠트(때때로 소실 인자로 불림)이다. 상대 유전율은 기판 물질에서 신호의 속도를 결정하고, 따라서 기판 위에 배치된 전송선 및 다른 부품의 전기적 길이를 결정한다. 손실 탄젠트는 기판 물질을 가로지르는 신호에 발생하는 손실량을 결정한다. 유전 손실은 신호의 주파수가 증가할수록 증가한다. 따라서, 특히 수신기 앞단 및 저잡음 증폭 회로를 설계할 때, 주파수가 증가함에 따라 낮은 손실의 물질이 더욱 중요해진다.
RF 회로에서 사용되는 인쇄된 전송선, 수동 회로 및 복사 소자는 일반적으로 세 가지 방법의 하나로 형성된다. 마이크로스트립으로 알려진 하나의 형태는, 기판 위에 신호선을 위치시키고, 일반적으로 접지면으로 불리는 두번째 전도층을 장치한다. 내장 마이크로스트립으로 알려진 두번째 유형의 형태는 신호선이 유전체 기판 물질에 덮여 있는 것을 제외하고는 마이크로스트립과 유사하다. 스트립라인으로 알려진 세번째 형태에서는, 신호선이 두 개의 전도성(접지) 면 사이에 끼여 있다.
일반적으로, 스트립라인 또는 마이크로스트립과 같은 평행 판 전송선의 특성 임피던스는 대략 와 같고, 여기서 L i 는 단위 길이당 인덕턴스이고 C i 는 단위길이당 커퍼시턴스이다. L i C i 의 값은 일반적으로 물리적 기하 형태, 도선 구조의 간격, 그리고 전송선을 분리하는데 사용되는 유전체(들)의 유전율과 투자율에 의하여 결정된다.
일반적인 RF 설계에서, 유전체 물질은 하나의 상대 유전율 값과 1 근처의 하나의 상대 투자율 값을 가지게 선택된다. 유전체 물질이 선택되면, 도선 특성 임피던스 값은 일반적으로 도선의 기하학적인 형태들 제어함으로써 배타적으로 맞추어진다.
라디오 주파수(RF) 회로는 일반적으로 다수의 능동 및 수동 회로가 세라믹 기판과 같은 절연 기판의 표면에 함께 설치되고 연결되는 복합 회로에 의해 구현된다. 다양한 부품은 일반적으로, 관심 있는 주파수 범위에서 전송선(예를 들면 스트립라인 또는 마이크로스트립 또는 트윈라인)으로 일반적으로 작용하는, 구리, 금, 혹은 탄탈과 같은 금속 도체가 인쇄된 형태에 의해 서로 연결되어 있다.
전송선, 수동 RF 장치, 또는 복사 소자에 대해 선택된 유전체의 유전 상수는 그 구조에서 주어진 주파수에서 RF 에너지의 물리적 파장을 결정한다. 미세 전자 RF 회로를 설계할 때 부딪치는 하나의 문제는 기판 위에 구성될 다양한 수동 부품, 복사 소자, 및 전송선 모두에 타당하게 알맞은 유전체 기판 물질의 선택에 관한 것이다.
특히, 어떤 회로 부품의 기하학적 형태는 그런 부품에 요구되는 특이한 전기적 또는 임피던스 특성에 따라 물리적으로 커지거나 축소될 수 있다. 예를 들면, 많은 회로 소자 또는 동조 회로는 4분의1 파장의 길이를 가지는 것이 필요하다. 비슷하게, 예외적으로 높거나 낮은 특성 임피던스 값이 필요한 도선폭은, 많은 경우에, 실용적인 방법으로는 너무 좁거나 너무 넓을 수 있다. 마이크로스트립 또는 스트립라인의 물리적인 크기는 유전체의 상대 유전율에 역비례하는 관계이므로, 전송선 또는 복사 소자의 크기는 기판 물질의 선택에 크게 영향받을 수 있다.
그럼에도, 특정의 소자에 최적으로 선택된 기판 물질은 안테나 소자와 같은 다른 부품에 최적인 기판 물질과 일치하지 않을 수 있다. 또한, 회로 소자에 대한 어떤 설계 목표는 다른 목표와 일치하지 않을 수 있다. 예를 들면, 안테나 소자의 크기를 줄이는 것이 희망될 수 있다. 이는 50 내지 100처럼 높은 상대 유전율을 가지는 기판 물질을 선택함으로써 달성될 수 있다. 그러나, 높은 상대 유전율을 가지는 유전체의 사용은 일반적으로 안테나의 복사 효율의 심각한 감소를 유발한다.
안테나 소자는 때때로 마이크로스트립 안테나로 구성된다. 다른 형태의 안테나와 비교하여 일반적으로 더 작은 공간이 필요하고 일반적으로 더 단순하고 일반적으로 제조하는데 덜 비싸기 때문에 마이크로스트립 안테나는 유용한 안테나이다. 더하여, 중요한 것은, 마이크로스트립 안테나는 인쇄회로 기술에 매우 적합하다.
고효율의 마이크로스트립 안테나를 조립하는데 고려할 한 인자는 유전 손실을 포함하는 다수의 인자에 기인한 전력 손실을 최소화하는 것이다. 유전 손실은 일반적으로 구속 전하의 불완전 동작에 기인하고, 유전체가 시간에 따라 변하는 전기장에 위치할 때 존재한다. 유전 손실은 일반적으로 작동 주파수에 따라 증가한다.
특정한 마이크로스트립 안테나의 유전 손실의 양은 하나의 패치를 가진 패치 안테나에 대한 복사 패치와 접지면 사이의 유전체 공간의 유전 상수에 의하여 주로 결정된다. 자유 공간, 혹은 많은 용도에서 공기는 약 1의 상대 유전 상수를 가지고 있다.
1에 가까운 상대 유전 상수를 가진 유전체는 “좋은” 유전체로 여겨진다. 좋은 유전체는 관심 있는 작동 주파수에서 작은 유전 손실을 나타낸다. 주변 물질과 사실상 같은 상대 유전 상수를 가진는 유전체가 사용되었을 때, 유전 손실은 효과적으로 줄어든다. 그러므로, 마이크로스트립 안테나 시스템에서 높은 호율을 유지하는 하나의 방법은 복사 패치와 접지면 사이의 유전체 공간에서 작은 유전 상수를 가지는 물질을 사용하는 것을 포함한다.
더하여, 작은 상대 유전 상수를 가지는 물질의 사용은 결국 마이크로스트립 안테나의 도체 손실을 줄이고 더하여 복사 효율을 증가시키는 넓은 전송선의 사용을 허용한다. 그러나, 작은 유전 상수를 가지는 유전체의 사용은 몇몇 불이익이 있을 수 있다.
하나의 일반적인 불이익은 작은 유전 상수 유전체를 사용하여 접지면으로부터 간격을 두는 고속 소형 패치 안테나를 생산하는 것이 어렵다는 것이다. 작은 상대 유전 상수(1-4 정도)를 가지는 유전체가 패치와 접지면 사이에 배치되어 있을 때, 이에 기인한 패치의 크기는 커지게 되며, 때때로 몇몇 RF 통신 시스템과 같은 주어진 응용에서 사용을 배제할 정도로 커지게 된다.
마이크로스트립 안테나와 관련된 다른 문제는 패치가 접지면으로부터 더 멀리 간격을 둘수록 급전 효율이 자주 실질적으로 감소하는 것이다. 말하자면, 접지면으로부터 더 멀리 간격을 두는 것은 또한 불이익이고, 그래서 패치와 접지면 사이의 공간을 채우기 위하여 높은 유전 상수를 가지는 유전체를 사용하는 것이 일반적으로 허용된다. 불행히도, 효율은 다른 설계 변수를 직면하기 위하여 일반적으로 실질적으로 양보된다.
도 1은 종래 기술에서 슬롯 커플된 마이크로스트립 패치 안테나의 측면도;
도 2는 본 발명에 의하여, 안테나의 복사 효율을 향상시키기 위하여 자성 입자들을 포함하는 안테나 유전체 위에 형성된 마이크로스트립 급전 슬롯 패치 안테나의 측면도;
도 3은 물리적인 크기가 줄어들고 높은 복사 효율을 가진 안테나를 제조하기 위한 과정을 도해하는데 유용한 흐름도;
도 4는, 본 발명의 실시예에 따라 안테나가 급전선에서 슬롯으로의 그리고 슬롯에서 주변으로의 임피던스 매칭을 하는 경우에, 자성 물질을 포함하는 안테나 유전체 위에 형성된 마이크로스트립 급전 슬롯 안테나의 측면도; 및
도 5는, 본 발명의 실시예에 따라 안테나가 급전선에서 슬롯으로의 그리고 슬롯에서 슬롯의 패치 밑의 안테나 유전체와의 접촉면으로의 임피던스 매칭을 하는 경우에, 자성 물질을 포함하는 안테나 유전체 위에 형성된 마이크로스트립 급전 슬롯 안테나의 측면도이다.
마이크로스트립 급전 슬롯 패치 안테나는 하나의 전기적으로 도체인 접지면을 포함하고, 접지면은 적어도 하나의 커플링 슬롯과 적어도 하나의 제1 패치 복사체를 가지고 있다. 안테나 유전체 기판 물질은 접지면과 제1 패치 복사체 사이에 위치한다. 안테나 유전체의 적어도 일부는 자기 입자들을 포함한다. 급전 유전체 기판은 급전선과 접지면 사이에 위치한다.
마이크로파 회로 기판 물질을 위해 종래에 사용되던 유전체는 자성이 없었다. 마이크로파 회로의 자장 외부에서도, 유전체 특성때문에 사용되는 물질은 일반적으로 비자성체이고, 비자성체는 1의 상대 투자율(μr=1)을 가지는 것으로 정의된다.
공학적인 응용에서, 투자율은 절대값보다는 상대값으로 자주 표현된다. 만일 μ0가 자유 공간의 투자율(즉 1.257 × 10-6 H/m)로 표현되고 μ가 대상 물질의 투자율로 표현된다면, 상대 투자율 μr은 다음과 같이 주어진다: μr = μ / μ0 = μ (7.958 × 105).
자성체는 1보다 큰, 또는 1보다 작은 μr을 가진 물질이다. 자성체는 일반적으로 아래에 서술될 세 그룹으로 분류된다.
반자성체는 1보다 작은, 그러나 일반적으로 0.99900 내지 0.99999의 값을 가지는, 상대 투자율을 가진 물질들이다. 예를 들면, 비스무스, 납, 안티몬, 구리, 아연, 수은, 금, 및 은은 반자성체로 알려져있다. 따라서, 자기장에 노출되었을 때, 이 물질들은 진공에 비하여 자기 플럭스의 약한 감소를 만들어낸다.
상자성체는 1보다 크고 약 10보다 작은 상대 투자율을 가진 물질들이다. 상자성체는 알루미늄, 백금, 망간, 및 크롬과 같은 물질을 포함한다. 상자성체는 외부 자기장이 제거된 후 즉시 자성을 잃는다.
강자성체는 10보다 큰 상대 투자율을 가진 물질들이다. 강자성체는 다양한 아철산염, 철, 강철, 니켈, 코발트, 및 알니코와 페랄로이 같은 상업용 합금을 포함한다. 예를 들면, 아철산염은 세라믹 물질로 만들어지고 약 50 내지 200의 범위의 상대 투자율을 가진다.
여기서 사용되는, “자성 입자” 용어는 유전체와 섞였을 때 생성된 유전체가 1보다 큰 μr이 되는 입자를 말한다. 따라서, 상자성체와 강자성체는 이 정의에 포함되고, 반자성 입자는 일반적으로 포함되지 않는다.
유전체 기판에 자성 입자를 사용하여서, 본 발명에 의한 마이크로스트립 패치 안테나는 높은 상대 유전율의 기판 일부의 사용에 의하여 줄어든 크기가 될 수 있고, 그럼에도 또한 효율적이다. 종래의 유전체가 실어진 기판은 줄어든 크기의 패치 안테나들을 장치하였지만, 이 안테나들은 급전선에서 슬롯으로의 그리고 슬롯에서 자유공간으로의 임피던스 매칭의 피해로 효율이 부족하다. 안테나 및/또는 급전선 기판 같은 유전체 기판에 본 발명에 의하여 자성 물질을 더하면, 높은 유전율 기판의 사용에 관계된 일반적인 복사 효율 감소는 실질적으로 줄어들 수 있다.
슬롯과 패치 사이에 위치한 안테나 유전체의 일부는 자성 입자들을 포함할 수 있다. 이 지역에서 자성 입자들의 사용은 안테나의 작동 주파수에서 슬롯과 급전선 사이의 공간에서 급전선 유전체의 고유 임피던스를 실질적으로 매칭시키는 고유 임피던스를 제공할 수 있다. 여기서 사용되는, 유전체들을 “실질적으로 매칭시키는” 것은 안테나의 작동 주파수에서 두 개의 매질을 20% 내에서, 바람직하게는 10% 내에서, 더 바람직하게는 5% 내에서 임피던스를 매칭시키는 것을 말한다. 자성 입자들을 가지는 안테나 유전체의 부분은 적어도 2의 상대 투자율을 가질 수 있다.
슬롯과 급전선 사이에 위치하는 급전선의 부분도 또한 자성 입자들을 포함할 수 있다. 자성 입자들은 메타물질들을 포함할 수 있다.
급전선 유전체는 상기 슬롯에 급전선의 임피던스를 일치시키기 위하여 슬롯 가까이에 4분의1 파장 매칭부를 장치할 수 있다. 4분의1 파장 매칭부는 또한 자성 입자들을 포함할 수 있다.
유전체로 분리된 제1 패치 복사체와 제2 패치 복사체처럼, 둘 이상의 패치 복사체를 안테나는 가질 수 있다. 패치간 유전체는 메타물질들과 같은 자성 입자들을 포함할 수 있다.
작은 유전 상수를 가진 기판 물질은 대개 RF 인쇄 기판 회로 설계를 위해 선택될 수 있다. 예를 들면, RT/duroid ? 6002(유전 상수 2.94; 손실 탄젠트 .009) 및 RT/duroid ? 5880(유전 상수 2.2; 손실 탄젠트 .0007)과 같은 폴리테트라플루오르에틸렌(PTFE) 기반의 혼합물은 둘 모두 Rogers Microwave Products, Advanced Circuit Materials Division, 100 S. Roosevelt Ave, Chandler, AZ 85226, USA로부터 입수 가능하다. 두 물질들은 일반적인 기판 물질로 선택된다. 위의 물질들은 두께와 물리적 특성 면에서 기판 영역에서 일정하고, 상대적으로 작은 유전 상수를 작은 손실 탄젠트와 함께 가지는 유전체층을 제공한다. 이 물질들 모두의 상대 투자율은 거의 1이다.
회로층 사이의 유전체로서 폼이 때때로 쓰인다. 예를 들면, RH-4 구조의 폼은 적층 복사체를 가지는 마이크로스트립 안테나의 패치 복사체 사이의 간격을 띠우는 안테나 스페이서로 때때로 사용된다. 일반적인 유전체 기판에 있어서, 유용한 폼은 2에서 4의 상대 유전율과 거의 1의 상대 투자율과 같은 균일한 유전 특성을 가진다.
도 1에서, 종래 기술인 공기가 채워진 패치 안테나(101)의 측면도가 보인다. 그것의 단순한 형태에서, 마이크로스트립 패치 안테나는 유전체 공간에 의하여 접지면으로부터 분리된 복사 패치를 포함하고 있다. 이 경우, 도시된 유전체는 공기이다.
도 1에서, 패치 안테나(101)는 적합한 유전 그리고 강도 특성을 가진 유전체로 만들어진 얇은 기판층(107)을 포함한다. 전기적으로 전도성인 물질로 만들어진 복사 패치(109)는 기판층(107)의 바닥면에 위치하고 있다. 복사 패치(109)는 전기적으로 전도성인 물질로 완전히 입혀진 한쪽 또는 양쪽 면을 가지는 얇은 기판층(107)의 적절한 에칭에 의하여 일반적으로 만들어진다.
기판층(107)과 복사 패치(109)를 지지하는 것은 접지면(103)의 한 면에서 기판층(107)으로 실질적으로 수직으로 확장된 다수의 일체형 지지 기둥(105)을 가지고 전기적으로 전도성인 물체로 만들어진 접지면(103)이다. 접지면(103)은 그 속에 개구를 장치하는 커플링 슬롯부(112)를 포함한다. 공기는 기판층(107)과 패치 복사체(109) 밑의 공간(108)을 채운다.
급전 기판(110)은 접지면(103) 아래에 있다. 마이크로스트립 선(111)은 급전 기판(110)에 위치하고, 커플링 슬롯(112)을 주로 거쳐 복사 패치(109)로 그리고 복사 패치(109)로부터 전달되는 신호의 경로가 된다.
도 1에서 종래 기술의 패치 안테나(101)는 특정한 응용에는 만족스럽지만, 그러나 어떤 설계에 대하여 적용하는 것을 막는 크기를 요구할 수 있다. 안테나의 크기를 줄이려는 노력으로, 공기 유전체(108)는 실질적으로 더 높은 유전 상수를 가진 유전체에 의하여 대체될 수 있다. 그러나, 높은 유전 상수 물질의 사용은 일반적으로 안테나의 복사 효율을 감소시킨다. 이것은 이 교환을 균형잡기 위한 안테나 설계에서의 비효율성과 타협이 생기게 한다.
비교해서, 본 발명은 회로 설계자에게 더 좋은 수준의 유연성을 제공한다. 부분적으로만 선택적으로 제어되는 유전율과 투자율을 가지는 유전체층들, 또는 그것들의 일부를 사용하는 것이 허락되어서, 안테나는 효율, 기능성, 및 물리적 성질에 따라 최적화될 수 있다.
유전체 기판의 부분적으로 선택된 유전 그리고 자기 특성은 유전체 기판에, 바람직하게는 그것의 일부에, 메타물질을 포함하는 것에 의하여 실현될 수 있다. 메타물질은 분자 또는 나노미터 수준과 같이 매우 미세한 수준에서 둘 이상의 다른 물질의 혼합에 의하여 형성된 합성물이다.
본 발명에 의하여, 복사 안테나를 작은 유전 상수 안테나 기판에 위치시킴으로써만 가능한 높은 안테나 효율을 제공하면서 높은 유전 상수 안테나 기판을 사용하여 줄어든 크기를 가지는 안테나를 제공하는 것이 가능한 안테나 설계가 제공된다. 덧붙여, 본 발명은 슬롯에서 급전선으로의 임피던스 매칭을 제공할 수 있다. 그러므로, 본 발명은 종래 기술의 마이크로스트립 패치 안테나 설계에서 비효율성과 타협을 실질적으로 극복할 수 있다.
도 2에서, 본 발명의 실시예에 따른 마이크로스트립 급전 슬롯 패치 안테나(200)의 측면도가 보인다. 이 실시예는, 안테나(200)가 최적화된 안테나 기판 유전체(205)를 포함하고 있는 것을 제외하면, 도 1의 종래 기술의 안테나와 비슷한 부품을 가지고 있다.
안테나 기판(205)은 패치 복사체(209) 밑에 놓인 제1 안테나 유전체부(210)와 안테나 기판(205)의 나머지를 포함할 수 있는 제2 안테나 유전체부(211)를 포함한다. 안테나 기판(205)은 접지면(208) 위에 위치하고, 접지면은 적어도 하나의 커플링 슬롯(206)을 가지고 있다.
제1 안테나 유전체부(210)는 그속에 함유된 다수의 자기 입자들(214)을 포함한다. 도시되고 있지는 않지만, 안테나(200)는 패치 복사체(209) 위에 위치하는 최적의 유전체 덮개를 포함할 수 있다.
급전 유전체 기판(212)은 접지면(208) 아래에 위치한다. 마이크로스트립 급전선(217)은 슬롯(206)을 거쳐 패치 복사체(209)로 신호 에너지를 전달하거나 또는 패치 복사체(209)로부터 신호 에너지를 수신하기 위하여 장치된다. 마이크로스트립 선(217)은 적합한 콘넥터 및 인터페이스에 의해 다양한 출처로부터 구동될 수 있다.
급전 유전체 기판(212)은 자성 입자들을 내부에 가진 것으로 도시되지는 않지만, 자성 입자들은 포함될 수 있다. 예를 들면, 자성 입자들은 슬롯과 급전선 사이의 급전선 유전체에 이 공간에서 요구되는 고유 임피던스를 제공하기 위하여 위치할 수 있다. 급전 유전체 기판(212) 내의 자성 입자들은 슬롯에 가까운 4분의1 파장 매칭부에 슬롯에서 급전선으로의 임피던스 매칭을 위하여 제공하는데 사용될 수 있다.
특정한 응용에서는, 안테나 기판(205)은 제1 안테나 유전체부(210)만을 포함할 수 있다. 다른 응용에서는, 자성 입자들(214)는 제1 안테나 유전체부(210)의 일부, 예를 들면 표면 부분에만 포함될 수 있다.
자성 입자들(214)는 후술되듯이 안테나 기판(205)에 형성된 빈 공간에 삽입될 수 있는 메타물질일 수 있다. 제1 유전체부(210) 내에 자성 입자들을 포함할 수 있는 능력은 제1 안테나 유전체부(210)와 주위(예를 들면 공기) 사이에서, 그리고 제1 안테나 유전체부(210)와 슬롯(206)을 포함하는 공간 내의 유전체 매질들 사이에서 향상된 임피던스 매칭을 허락한다. 제1 안테나 유전체부(210)의 상대 투자율은 1.1, 2, 5, 10, 20, 또는 100처럼 일반적으로 1보다 크다. 여기서 사용되는, 의미있는 자기 투자율은 적어도 약 2의 상대 자기 투자율을 말한다.
안테나(200)는 하나의 패치 복사체(209)와 함께 보이지만, 본 발명은 각각의 패치가 패치간 유전체 기판 물질에 의하여 분리된, 상부 및 하부 패치 복사체를 가지는 마이크로스트립 패치 안테나와 같은, 적층 패치 복사체 구조에도 실용화될 수 있다. 이 두 패치 배열에서, 패치간 유전체 물질은 바람직하게는 자성 입자들을 포함하고 1보다 큰 상대 투자성을 제공한다.
도시되는 급전선은 마이크로스트립 급전선(217)이지만, 본 발명은 확실하게 마이크로스트립 급전에 제한되는 것은 아니다. 예를 들면, 급전선은 스트립라인 또는 다른 적합한 급전선 구조가 될 수 있다.
덧붙여, 접지면(208)은 하나의 슬롯(206)을 가진 것으로 도시되지만, 본 발명은 다중 슬롯 배열에도 호환 가능하다. 덧붙여, 슬롯은 사각형 또는 고리 모양과 같이, 마이크로스트립 급전선(217)과 패치 복사체(210) 사이의 적합한 커플링을 제공하는 어떤 모양도 일반적으로 될 수 있다.
제1 안테나 유전체부(210)는 슬롯을 통하여 복사되는 전자기장에 중요하게 영향을 미친다. 유전체 물질, 크기, 모양, 및 위치를 주의깊게 선택하는 것은 슬롯(206)과 패치(209) 사이의 커플링을 그들 사이의 거리에도 불구하고 향상시키게 할 수 있다. 패치(209)를 정확하게 실음으로써, 공명 주파수 및 작동 대역폭과 관계된 품질 인자를 포함하는 작동 특성은 주어진 설계 기준에 맞게 조절될 수 있다.
본 발명은 효율에서 큰 손실없이 결과적으로 패치(209)와 전체 안테나(200)의 물리적인 크기를 줄이는 것을 가능케 하는 더 높은 유전율의 안테나 기판의 사용을 가능케 한다. 예를 들면, 제1 안테나 기판부(210)를 포함하는 안테나 기판(205)의 상대 유전율은 2, 4, 6, 8, 10, 20, 30, 40, 50, 60 또는 더 높은 값, 또는 그 중간값을 가질 수 있다.
패치(209)와 같은 복사 소자 밑의 유전체부의 상대 유전율을 높임에 따라 생기는 종래 기술의 한 문제는 안테나(200)의 복사 효율이 결과적으로 감소할 수 있다는 것이다. 높은 유전 상수를 가지고 상대적으로 두꺼운 기판에 인쇄된 마이크로스트립 안테나는 나쁜 복사 효율을 가지는 경향이 있다. 상대 유전율이 더 높은 값을 가지는 유전체 기판에 있어서, 많은 양의 전자기장이 전도성 안테나 부품과 접지면 사이의 유전체에 집중된다. 그런 환경에서 나쁜 복사 효율은 때때로 공기/기판 접촉면을 따라 진행하는 표면파 모드의 일부에 책임이 있다.
부분적으로 선택 가능한 자기적 및 유전적 특성을 제공하는 메타물질 부분을 가지는 유전체 기판은 도 3에서 보이듯이 맞춤 제작되는 안테나 기판을 위하여 준비될 수 있다. 310 단계에서, 유전체 기판 물질이 준비된다. 320 단계에서, 상기 유전체 기판 물질의 적어도 일부가 안테나 및 연관된 회로의 크기를 줄이고 가능한 가장 좋은 효율을 얻기 위해, 후술될, 메타물질을 사용하여 변형될 수 있다. 변형은 유전체 물질 내에 공극을 만들고 그 공극의 일부 또는 실질적으로 전부에 자기 입자들을 채우는 것을 포함할 수 있다. 마지막으로, 안테나 부품들 및 패치 복사체와 같은 연관된 급전 회로와 연관된 전도선을 규정하기 위하여 금속층이 적용될 수 있다.
여기서 정의되는, “메타물질”은 옹스트롬이나 나노미터 수준과 같은 매우 미세한 수준에서 둘 이상의 다른 물질이 혼합되거나 배열되는 것으로부터 생기는 혼성물을 말한다. 메타물질은, 유효 전기 유전율 εeff(혹은 유전 상수) 및 유효 자기 투자율 μeff를 포함하는 유효 전자기 변수에 의하여 정의될 수 있는, 혼성물의 전자기적 특성의 변경을 허락한다.
310 및 320 단계에서 서술된 유전체 기판 물질을 준비하고 변형하는 과정은 자세하게 설명될 것이다. 그러나 여기서 설명된 방법은 단순한 예이며 본 발명은 여기에 제한되지 않는 것을 이해하여야 한다.
적절한 벌크 유전체 기판 물질은 듀폰 또는 페로와 같은 상업용 물질 제조업자로부터 얻을 수 있다. 흔히 Green Tape™이라고 불리는 처리되지 않은 물질은 벌크 유전체 테잎으로부터 6"×6" 조각들처럼 정해진 크기로 잘라질 수 있다. 예를 들면, DuPont Microcircuit Materials는 951 Low-Temperature Cofire Dielectric Tape과 같은 Green Tape 물질을 제공하고 Ferro Electronic Materials는 ULF28-30 Ultra Low Fire COG 유전체 형식을 제공한다. 이 기판 물질들은 한 번 소성되면 마이크로파 주파수에서 회로 작동에서 상대적으로 작은 손실 탄젠트와 함께 상대적으로 적당한 유전 상수들을 가지는 유전체층을 공급하는데 사용될 수 있다.
유전체 기판 물질 여러 장을 사용하여 마이크로파 회로를 만드는 과정에서, 바이어스, 공극, 홀, 또는 캐비티같은 형상이 테잎의 하나 이상의 층을 지나 뚫릴 수 있다. 공극은 역학적 수단(예를 들면 펀치) 또는 직접적인 에너지 수단(예를 들면 레이저 드릴, 포토리소그래피)을 사용하여 만들어질 수 있고, 공극은 또한 다른 적합한 방법을 사용하여 만들어질 수 있다. 공극은 기판 두께에서 다양한 부분을 통과하여 다달을 수 있는 것에 비해, 바이어스는 기판의 전체 두께를 뚫고 다달을 수 있다.
바이어스는 충진 물질의 적당한 위치에 스텐실 방법을 사용하여, 금속 또는 다른 유전체 또는 자기 물질, 또는 이들의 혼합물로 채워질 수 있다. 테잎의 각 층은 완벽한 다층 기판을 만드는 일반적인 과정에서 함께 쌓일 수 있다. 다른 방법으로는, 테잎의 각 층은 일반적으로 서브-스택이라 불리는 완벽하지 않은 다층 기판을 만들도록 함께 쌓일 수 있다.
공극으로 된 부분은 공극으로 남을 수도 있다. 선택된 물질로 채워졌다면, 선택된 물질은 바람직하게는 메타물질을 포함한다. 메타물질 합성물의 선택은 2보다 작은 값에서부터 약 2650까지 상대적으로 연속적인 범위에서 조율 가능한 유전 상수를 제공한다. 조율 가능한 자기 특성은 또한 특정한 메타물질들로부터 가능할 수 있다. 예를 들면, 알맞은 물질을 선택함으로써 상대 유효 자기 투자율은 대부분의 실용적인 RF 응용에서 약 4 내지 116까지의 범위를 일반적으로 가질 수 있다. 그러나, 상대 유효 자기 투자율은 2까지 낮춰지거나 수천에 다달을 수도 있다.
주어진 유전체 기판은 차분적으로 변형될 수 있다. “차분적으로 변형”된다는 것은 여기서 기판의 한 부분의 유전 및 자기 특성 중 적어도 하나가 다른 부분과 비교하여 다르게 되는 유전체 기판층에의 변형, 즉 도펀트를 포함한다는 것을 뜻한다. 차분적으로 변형된 기판은 바람직하게는 하나 이상의 메타물질을 함유하는 공간을 포함한다. 예를 들면, 특정한 유전체 기판 부분은 첫번째 유전 또는 자기 특성을 가지도록 변형되고, 다른 유전체 층은 첫번째 특성과 다른 유전 및/또는 자기 특성을 가지도록 차분적으로 변형되거나 변형되지 않은채 남아있도록, 변형은 선택적으로 변형될 수 있다. 차분적 변형은 다양한 방법으로 수행될 수 있다.
하나의 실시예에 따르면, 보충 유전체층이 유전체층에 더해질 수 있다. 기술 분야에서 다양한 스프레이 기술, 스핀-온 기술, 다양한 증착 기술, 또는 스퍼터링으로 알려진 기술들은 보충 유전체층을 적용하는데 사용될 수 있다. 보충 유전체층은 공극 또는 홀의 안쪽, 또는 전체 존재하는 유전체층 위쪽을 포함하는 제한된 지역에서 선택적으로 더해질 수 있다. 예를 들면, 보충 유전체층은 증가된 유효 유전 상수를 가지는 기판 부분을 제공하기 위하여 사용될 수 있다. 보충 층으로 더해진 유전체 물질은 다양한 중합체 물질을 포함할 수 있다.
차분 변형 단계는 유전체 층 또는 보충 유전체 층에 추가 물질을 부분적으로 추가하는 것을 더 포함할 수 있다. 물질의 추가는 주어진 설계 목표를 달성하기 위하여 유전체 층의 유효 유전 상수 또는 자기 특성을 더 제어하기 위하여 사용될 수 있다.
추가 물질은 다수의 금속 및/또는 세라믹 입자들을 포함할 수 있다. 금속 입자들은 바람직하게는 철, 텅스텐, 코발트, 바나듐, 망간, 특정 희토 금속들, 니켈, 또는 니오브 입자들을 포함한다. 입자는 바람직하게는, 일반적으로 1마이크론 이하의 물리적 크기인, 나노미터 크기 입자이고, 여기서는 나노입자라고 불린다.
나노입자와 같은 입자들은 바람직하게는 유기적 기능을 하는 복합 입자들일 수 있다. 예를 들면, 유기적 기능을 하는 복합 입자들은 전기 절연 코팅을 가진 금속 핵 또는 금속 코팅을 가진 전기 절연 핵을 가진 입자들을 포함할 수 있다.
여기서 서술된 다양한 응용을 위한 유전체 층의 자기 특성들을 제어한는데 일반적으로 알맞은 자기 메타물질 입자들은 아철산 유기세라믹((FexCyHz)-(Ca/Sr/Ba-Ceramic))을 포함한다. 이 입자들은 8-40 GHz의 주파수 범위의 다양한 응용에서 잘 작동한다. 다른 방법으로, 또는 추가하여, 니오브 유기세라믹((NbCyHz)-(Ca/Sr/Ba-Ceramic))은 12-40 GHz의 주파수 범위에서 사용 가능하다. 고주파수를 위해 설계된 물질들은 또한 저주파수 응용에서도 적용 가능하다. 이런 그리고 다른 형태의 합성 입자들은 상업용에서 얻을 수 있다.
일반적으로, 코팅된 입자들은 중합체 격자 또는 곁가지부를 묶는데 도움을 주므로 본 발명의 사용에서 바람직하다. 유전체의 자기 특성을 제어하는 것에 더하여, 추가된 입자들은 물질의 유효 유전 상수를 제어하는데 또한 사용될 수 있다. 약 1 내지 70%까지 합성 입자를 채움으로써, 기판 유전체 층 및/또는 보충 유전체 층의 유전 상수를 높이고 가능하게는 크게 낮추는 것이 가능하다. 예를 들면, 유기적 기능을 하는 나노입자들을 유전체 층에 추가하는 것은 변형된 유전체 층 부분들의 유전 상수를 높이는데 사용될 수 있다.
입자들은 폴리블렌딩, 혼합 및 진동에 의한 충전을 포함하는 다양한 기술에 적용될 수 있다. 예를 들면, 다양한 입자들을 약 70%까지의 비율로 채우는데 사용함으로써 유전 상수는 2 내지 높게는 10까지 증가할 수 있다. 이런 목적에 사용 가능한 산화금속은 산화알루미늄, 산화칼슘, 산화망간, 산화니켈, 산화지르코늄, 또는 산화니오브(II, IV, 또는 V)를 포함한다. 니오브산리튬(LiNbO3), 및 지르콘산칼슘과 지르콘산망간과 같은 지르콘산염 또한 사용될 수 있다.
선택된 유전체 특성은 10평방나노미터처럼 작은 지역에 국한될 수도 있고, 또는 전체 기판 표면을 포함하는 큰 지역을 덮을 수도 있다. 증착 과정 중 리소그래피 및 에칭과 같은 일반적인 기술은 국부 유전 및 자기 특성 조작에 사용될 수 있다.
다른 가능한 원하는 기판 특성들처럼, 유효 상대 유전 상수를 2 내지 약 2650까지 사실상 연속적인 범위를 가지도록, 물질들은 다른 물질들과 혼합되거나 또는 공극이 된 지역(일반적으로 공기를 유입)의 밀도를 변화시켜 준비될 수 있다. 예를 들면, 작은 유전 상수(<2 내지 약 4까지)를 가지는 물질들은 공극이 된 지역의 밀도를 변화시킨 실리카를 포함한다. 공극이 된 지역의 밀도를 변화시킨 알루미나는 약 4 내지 9의 상대 유전 상수를 제공한다. 실리카 또는 알루미나는 모두 큰 자기 투자성을 가지지 않는다. 그러나, 이 물질 또는 다른 물질들이 큰 자성을 가지게 되도록 20% 무게비까지 추가될 수 있다. 예를 들면, 자기 특성은 유기적 기능에 의하여 맞추어질 수 있다. 자성 물질들을 추가하는 것에 의한 유전 상수로의 영향은 일반적으로 유전 상수의 증가를 가져온다.
매질 유전 상수 물질들은 일반적으로 70 내지 500 +/- 10%까지의 범위에서 상대 유전 상수를 가진다. 앞에서 언급되었듯이 이 물질들은 원하는 유효 유전 상수값을 얻기 위하여 다른 물질들 또는 공극과 혼합될 수 있다. 이 물질들은 티탄산칼슘이 도핑된 아철산염을 포함한다. 도핑된 물질은 망간, 스트론튬, 및 니오브를 포함할 수 있다. 이 물질들은 45 내지 600의 범위의 상대 자기 투자율을 가진다.
높은 유전 상수 응용에서, 아철산염 또는 칼슘이 도핑된 니오브 또는 티탄지르콘산바륨이 사용될 수 있다. 이 물질들은 약 2200 내지 2650의 상대 유전 상수를 가지고 있다. 이 물질들의 도핑 퍼센트는 일반적으로 약 1 내지 10%이다. 다른 물질들에 대하여 언급되었듯이, 원하는 유효 유전 상수치를 얻기 위하여 이 물질들은 다른 물질들 또는 공극과 혼합될 수 있다.
이 물질들은 다양한 분자 변형 과정을 거쳐 일반적으로 변형될 수 있다. 변형 과정은 폴리테트라플루오르에틸렌(PTFE)과 같은 유기적 기능을 하는 물질들에 기초하여 탄소 및 플루오르같은 물질들을 채우는 것에 뒤따르는 공극 생성을 포함한다.
유기적 기능의 완성과는 다른 방법으로 또는 이에 더하여, 과정은 고체 자유형태 제작(SFF), 가시광, 자외선, X선, 전자빔 또는 이온빔 투사를 포함할 수 있다. 리소그래피는 또한 가시광, 자외선, X선, 전자빔 또는 이온빔 복사를 이용하여 수행될 수 있다.
기판층(서브-스택)의 다수의 영역이 서로 다른 유전 및/또는 자기 특성을 가지도록, 메타물질들을 포함하는 다른 물질들은 기판층(서브-스택)의 서로 다른 영역에 적용될 수 있다. 앞에서 언급된 것처럼, 국부적 또는 벌크 기판 부분 위에 원하는 유전 및/또는 자기 특성을 이루기 위한 하나 이상의 추가적인 과정과의 결합에 채워지는 물질들이 사용될 수 있다.
최상층 도체 인쇄는 일반적으로 변형된 기판 층, 서브-스택, 또는 전체 스택에 적용된다. 도체선은 박막 기술, 후막 기술, 전기도금 또는 다른 알맞은 기술을 사용하여 제공될 수 있다. 도체 패턴을 규정하는데 이용되는 과정은 기본 리소그래피와 스탠실을 포함하지만 이에 제한되지 않는다.
베이스판은 다수의 변형된 기판들을 맞추고 정렬시키기 위해 얻어진다. 다수의 기판 각각을 통과하는 정렬 구멍은 이 목적을 위하여 사용될 수 있다.
다수의 기판의 층들, 하나 이상의 서브-스택, 또는 층들과 서브-스택들의 조합은, 모든 방향에서 물질에 압력을 가하는 정방 압력, 또는 단지 한 방향에서 물질에 압력을 가하는 단축 압력 중 하나를 사용하여, 박판이 될 수 있다(예를 들면 역학적으로 압축될 수 있다). 박판 기판은 앞에서 언급되었듯이 더 진행하거나 또는 진행되어진 기판을 알맞은 온도(앞에서 언급된 물질들에게는 약 850℃ 내지 900℃)로 소성하기 위하여 오븐에 들어간다.
기판의 다수의 세라믹 테잎 층들 및 적층된 서브-스택들은 사용된 기판 물질들에게 알맞은 비율로 온도를 높이도록 제어되는 알맞은 노를 사용하여 소성된다. 온도 증가율, 최종 온도, 냉각 경로, 및 다른 필요한 요소들처럼 사용된 과정 조건은 기판 물질 및 그것에 채워지거나 그것 위에 부착된 물질들을 고려하여 선택된다. 이어지는 소성에서, 적층된 기판들은, 일반적으로, 음향학, 광학, 전자 스캔닝, 및 X선 현미경을 이용하여 흠집이 검사된다.
적층된 세라믹 기판들은 회로 기능 요건을 만족시킬 정도로 작은 띠모양을 가진 조각들로 선택적으로 절단될 수 있다. 이어지는 최종 검사에서, 띠모양의 기판 조각들은 유전, 자기 및/또는 전기 특성과 같은 다양한 특성이 특정 한계 내인지의 평가를 위한 시험 설비에 설치될 수 있다.
그러므로, 유전체 기판 물질들은 마이크로스트립 급전 슬롯 안테나와 같은 마이크로스트립 안테나를 포함하는 회로의 밀도 및 작동을 향상시키기 위한 국부적으로 동조 가능한 유전 및 자기 특성이 제공될 수 있다.
실시예
본 발명에 따라 자기 입자들을 포함하는 유전체를 이용하는 임피던스 매칭을 다루는 몇개의 특정한 예들이 여기에 제공된다. 급전체에서 슬롯으로의 임피던스 매칭은 슬롯에서 주변(예를 들면 공기)으로의 것과 함께 시범적으로 보일 것이다.
인 두 개의 손실 없는 유전체 매질 사이의 경계면에서 평면파의 수직 입사(θi0) 수학식은 슬롯의 유전체 매질과 인접한 유전체 매질인, 예를 들면, 주변 공기(예를 들면 공기가 위에 있는 슬롯 안테나) 또는 다른 유전체(예를 들면, 패치 안테나의 경우에 안테나 유전체) 사이의 임피던스 매칭을 위하여 이용된다. 주변과의 매칭은 주파수에 독립적이다. 많은 응용에서, 입사각이 0이라고 가정하는 것은 일반적으로 타당한 가정이다. 그러나, 입사각이 0보다 매우 클 때, 코사인 항이 위 식에서 사용되어야 한다.
고려되는 물질들은 모두 등방성이라고 가정된다. 이 변수들을 계산하기 위하여 컴퓨터 프로그램이 사용될 수 있다. 그러나, 마이크로파 회로를 위한 자기 물질은 본 발명 이전에는 사용되지 않았었기 때문에, 임피던스 매칭을 위해 필요한 물질 변수를 계산하는 소프트웨어는 현재까지는 존재하지 않는다.
제시된 계산은 관계된 물리 법칙을 설명하기 위하여 단순화되었다. 유한 요소 해석과 같은 보다 엄밀한 접근은 여기에 제시된 문제를 추가적인 정확성을 가지고 모델을 세우는데 사용될 수 있다.
예 1. 공기가 위에 있는 슬롯.
도 4에서, 슬롯 안테나(400)가 위에 공기(매질(1))를 가지고 있는 것이 도시된다. 안테나(400)는 전송선(405) 및 슬롯(415)을 포함하는 접지면(410)을 포함한다. εr = 7.8인 유전체(430)가 전송선(405)과 접지면(410) 사이에 위치하고 매질(4) 구간, 매질(3) 구간 및 매질(2) 구간을 포함한다. 구간(3)은 기준(432)으로 표시되는 길이(L)를 가지고 있다. 구간(425)은 본 분석에서 작은 관계만을 가지고 있다고 가정되고, 그리고 관심 있는 물리적 과정을 설명하기 위하여 원치 않는 추가적인 복잡성을 더하기 때문에 여기서는 무시된다.
매질(2)과 매질(3)의 자기 투자성 값()은 인접하는 매질의 임피던스 매칭에 기초하여 결정된다. 자세하게는, 는 매질(2)과 주변(매질(1))의 임피던스 매칭을 하여 결정되고, 는 매질(2)과 매질(4)의 임피던스 매칭을 하여 결정된다. 더하여, 매질(3)의 매칭부 길이는 매질(2)에서 매질(4)까지 매칭을 하는 선택된 작동 주파수에서 4분의1 파장의 길이를 가지도록 결정된다.
첫번째로, 매질(1)과 매질(2)이 다음 식을 사용하여 그들의 경계에서 반사 계수를 이론적으로 제거하기 위하여 임피던스 매칭이 된다:
다음의 결론을 얻는다:
그러므로, 슬롯을 주변(예를 들면 공기)와 매칭시키기 위해서는 μr2=7.8이다.
다음으로, 매질(4)이 매질(2)에 임피던스 매칭이 될 수 있다. 구간(3)에서 3 GHz로 가정되어진 선택된 작동 주파수에서 4분의1 파장의 전기적 길이를 가지는 매칭부의 길이(L)(432)를 이용하여 매질(2)과 매질(4)을 매칭하기 위하여 매질(3)이 이용된다. 그러므로 매칭부(432)는 4분의1 파장 전송수단으로 작용한다. 매질(4)과 매질(2)을 매칭하기 위하여, 4분의1 파장 구간(432)은 다음과 같은 고유 임피던스를 가지는 것이 필요하다:
구간(2)에서 고유 임피던스는:
이고, η0는 자유공간의 고유 임피던스로, 다음과 같이 주어진다:
그러므로 η2는 다음과 같이 되고,
구간(4)의 고유 임피던스는 다음과 같다:
수학식 7과 수학식 6을 수학식 3에 대입하면 다음과 같다:
그러므로 매질(3)의 상대 투자율은:
이다. 3GHz에서 매질(3)의 유도 파장은,
이고, 여기서 c는 광속이고, f는 작동 주파수이다.
이어서, 4분의1 파장 매칭부(432)의 길이(L)는 다음과 같이 주어진다:
예 2. 상대 투자율 1과 유전 상수 10을 가지는 유전체가 위에 있는 슬롯
도 5에서, 마이크로스트립 급전 슬롯 패치 안테나(500)의 측면도가 εr =10 및 μr =1을 가지는 안테나 유전체(510)가 형성되어 있으면서 도시된다. 안테나(500)는 패치(515) 및 접지면(520)을 포함한다. 접지면은 슬롯(525)을 포함하는 절개부를 포함한다. 급전선 유전체(530)는 접지면(520)과 급전선(540) 사이에 위치한다.
급전선 유전체(530)는 매질(4) 구간, 매질(3) 구간, 및 매질(2) 구간을 포함한다. 매질(3) 구간은 기준(532)으로 표시되는 길이(L)를 가지고 있다. 구간(535)은 본 분석에서 작은 관계만을 가지고 있다고 가정되고 그러므로 무시된다.
안테나 유전체의 상대 투자율이 1과 같고 유전 상수는 10이기 때문에, μr =10이고 εr =10인 안테나 유전체와 같이 같은 상대 투자율과 상대 유전율을 가진 때처럼 안테나 유전체는 공기에 정확히 매칭되지 않는다. 본 예에서는 시범되어 보이지는 않지만, 본 발명을 이용하여 그러한 매칭도 충족된다. 본 예에서는, 매질(1)과 매질(2) 사이와 함께 매질(2)과 매질(4) 사이의 최적의 임피던스 매칭을 위하여 매질(2)과 매질(3)의 투자율이 계산된다. 더하여 매질(3)에서 매칭부의 길이가 선택된 작동 주파수에서 4분의1 파장의 길이를 가지도록 결정될 것이다. 본 예에서, 알려지지 않은 값들은 다시 , 및 L이다. 첫번째로 다음 식을 이용하여
다음 결과를 얻는다:
매질(2)을 매질(4)와 매칭시키기 위하여, 4분의1 파장부(532)는 다음의 고유 임피던스가 요구된다:
매질(2)의 고유 임피던스는
이다. η0은 자유 공간의 고유 임피던스이고, 다음과 같이 주어진다
그러므로, η2는 다음과 같이 된다:
매질(4)의 고유 임피던스는 다음과 같다:
수학식 18과 수학식 17을 수학식 14에 대입하면 다음과 같다:
그러므로, 매질(3)의 상대 투자율은 다음과 같다:
3GHz에서 매질(3)의 유도 파장은 다음과 같이 주어지고
여기서 c는 광속이고 f는 작동 주파수이다. 이어서 길이(L)은 다음과 같이 주어진다.
임피던스 매칭을 위하여 원하여지는 상대 투자율은 1보다 작기 때문에, 이러한 매칭은 존재하는 물질들에서 충족되기는 어렵다. 그러므로, 본 예의 실용적인 충족은 실질적으로 1보다 작은 상대 투자율을 가지는 매질을 필요로 하는 이러한 또는 비슷한 응용에 특별히 적합한 새로운 물질의 개발을 필요로 한다.
예 3. 상대 투자율 10과 유전 상수 20을 가지는 유전체가 위에 있는 슬롯.
본 예는 안테나 유전체(510)의 εr이 20이라는 것을 제외하고는 도 5에서 보여진 구조를 가지고 있는 예 2와 유사하다. 안테나 유전체(510)의 상대 투자율이 10이고, 그리고 이는 유전율과 다르기 때문에, 안테나 유전체(510)는 또한 공기와 매칭이 되지 않는다. 본 예에서, 앞의 예에서처럼, 매질(1)과 매질(2) 사이와 함께 매질(2)과 매질(4) 사이의 최적의 임피던스 매칭을 위한 매질(2)과 매질(3)의 투자율이 계산된다. 덧붙여, 매질(3)에서 매칭부의 길이가 선택된 작동 주파수에서 4분의1 파장의 길이를 가지도록 결정된다. 앞에서처럼, , 및 L이 인접한 유전체 매질들이 임피던스 매칭이 되도록 결정될 것이다.
첫번째로 다음 식을 사용하여
다음 결과를 얻는다:
매질(2)을 매질(4)에 매칭시키기 위하여, 4분의1 파장부는 다음의 고유 임피던스가 요구된다:
매질(2)의 고유 임피던스는
이다. η0는 자유 공간의 고유 임피던스이며 다음과 같이 주어진다
그러므로 η2는 다음과 같다:
매질(4)의 고유 임피던스는 다음과 같다:
수학식 29와 수학식 28을 수학식 25에 대입하면 다음과 같다:
그러므로, 매질(3)의 상대 투자율은 다음과 같다:
3 GHz에서 매질(3)에서 유도 파장은 다음과 같이 주어진다:
여기서 c는 광속이고 f는 작동 주파수이다. 이어서, 길이(532)(L)는 다음과 같이 주어진다:
예 2와 3을 비교하면, 1보다 실질적으로 큰 상대 투자율을 가진 안테나 유전체(510)의 사용은 매질(2)과 매질(4) 사이에서처럼 매질(1)과 매질(2) 사이에서 임피던스 매칭을 원해진 정도로 촉진하는 것에도 불구하고 이 매질들을 매칭하기 위한 매질(2)과 매질(3)의 투자율은 모두 여기서 서술되었듯이 쉽게 현실화된다.
설명되어진 이후에, 본 발명은 이에 제한되지 않는다는 것이 명백할 것이다. 다양한 변형, 변화, 차이, 치환 및 균등은 청구항에 서술된 본 발명의 요지와 권리범위에서 벗어나지 않고 기술 분야에서 당업자에게 발생할 수 있다.

Claims (8)

  1. 적어도 슬롯을 가지는 전기적으로 전도성인 접지면;
    적어도 제1 패치 복사체;
    상기 접지면과 상기 제1 패치 복사체 사이에 위치하고, 적어도 일부는 자성 입자들을 포함하는 것을 특징으로 하는 안테나 유전체 기판 물질;
    상기 슬롯을 거쳐 상기 제1 패치 복사체로 또는 상기 제1 패치 복사체로부터의 신호 에너지를 제공하기 위한 급전선; 및
    상기 급전선과 상기 접지면 사이에 위치하는 급전 유전체 기판;을 포함하는 것을 특징으로 하는 마이크로스트립 급전 슬롯 패치 안테나.
  2. 제 1 항에 있어서, 상기 안테나 유전체의 상기 일부는 상기 슬롯과 상기 패치 사이에 위치하는 것을 특징으로 하는 안테나.
  3. 제 1 항에 있어서, 상기 자성 입자들은 메타물질들을 포함하는 것을 특징으로 하는 안테나.
  4. 제 1 항에 있어서, 상기 급전선 유전체의 적어도 일부는 자성 입자들을 포함하는 것을 특징으로 하는 안테나.
  5. 제 4 항에 있어서, 상기 급전선 유전체는 상기 급전선을 상기 슬롯에 매칭하기 위하여 상기 슬롯 가까이에 4분의1 파장 매칭부를 구비하는 것을 특징으로 하는 안테나.
  6. 제 1 항에 있어, 상기 적어도 하나의 제1 패치 복사체는 패치간 유전체에 의하여 분리된 제1 및 제2 복사체를 포함하는 것을 특징으로 하는 안테나.
  7. 제 6 항에 있어서, 상기 패치간 유전체는 자성 입자들을 포함하는 것을 특징으로 하는 안테나.
  8. 제 7 항에 있어서, 상기 자성 입자들은 메타물질들을 포함하는 것을 특징으로 하는 안테나.
KR1020057009840A 2002-12-03 2003-11-19 고효율 마이크로스트립 급전 슬롯 패치 안테나 KR100678393B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/308,500 US6842140B2 (en) 2002-12-03 2002-12-03 High efficiency slot fed microstrip patch antenna
US10/308,500 2002-12-03

Publications (2)

Publication Number Publication Date
KR20050085238A true KR20050085238A (ko) 2005-08-29
KR100678393B1 KR100678393B1 (ko) 2007-02-02

Family

ID=32392763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057009840A KR100678393B1 (ko) 2002-12-03 2003-11-19 고효율 마이크로스트립 급전 슬롯 패치 안테나

Country Status (10)

Country Link
US (1) US6842140B2 (ko)
EP (2) EP1876670B1 (ko)
JP (1) JP4303204B2 (ko)
KR (1) KR100678393B1 (ko)
CN (1) CN1720637B (ko)
AU (1) AU2003294413A1 (ko)
CA (1) CA2508368C (ko)
DE (2) DE60320450T2 (ko)
TW (1) TWI251370B (ko)
WO (1) WO2004051792A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146969B1 (ko) * 2007-02-07 2012-05-24 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 메타물질을 이용한 전송선 설계 방법
WO2022250428A1 (ko) * 2021-05-24 2022-12-01 삼성전자 주식회사 안테나 및 이를 포함하는 전자 장치
WO2023155648A1 (zh) * 2022-02-21 2023-08-24 华为技术有限公司 一种天线结构和电子设备

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485354B1 (ko) * 2002-11-29 2005-04-28 한국전자통신연구원 유전체 덮개를 이용한 마이크로스트립 패치 안테나 및이를 배열한 배열 안테나
US6982671B2 (en) * 2003-02-25 2006-01-03 Harris Corporation Slot fed microstrip antenna having enhanced slot electromagnetic coupling
DE10309075A1 (de) * 2003-03-03 2004-09-16 Robert Bosch Gmbh Planare Antennenanordnung
TW584978B (en) * 2003-07-10 2004-04-21 Quanta Comp Inc Grounding module of antenna in portable electronic device
US20050128147A1 (en) * 2003-12-15 2005-06-16 Zeewaves Systems, Inc. Antenna system
US7760141B2 (en) * 2004-09-02 2010-07-20 E.I. Du Pont De Nemours And Company Method for coupling a radio frequency electronic device to a passive element
WO2006047006A2 (en) * 2004-09-02 2006-05-04 E.I. Dupont De Nemours And Company Method for making a radio frequency coupling structure
US7616076B2 (en) * 2004-09-02 2009-11-10 E.I. Du Pont De Nemours And Company Radio frequency coupling structure for coupling a passive element to an electronic device and a system incorporating the same
US7629928B2 (en) * 2005-03-23 2009-12-08 Kyocera Wireless Corp. Patch antenna with electromagnetic shield counterpoise
CZ2005396A3 (cs) * 2005-06-17 2006-08-16 Ceské vysoké ucení technické v Praze Fakulta elektrotechnická Mikropásková flícková anténa a jednobodové napájení pro tento záric
US7623071B2 (en) * 2005-12-09 2009-11-24 University Of Central Florida Research Foundation, Inc. Sub-millimeter and infrared reflectarray
US7764232B2 (en) * 2006-04-27 2010-07-27 Rayspan Corporation Antennas, devices and systems based on metamaterial structures
WO2007148144A1 (en) * 2006-06-22 2007-12-27 Nokia Corporation Magnetic material in antenna ground
US7595765B1 (en) 2006-06-29 2009-09-29 Ball Aerospace & Technologies Corp. Embedded surface wave antenna with improved frequency bandwidth and radiation performance
WO2008024993A2 (en) * 2006-08-25 2008-02-28 Rayspan Corporation Antennas based on metamaterial structures
KR100853994B1 (ko) 2006-12-08 2008-08-25 주식회사 이엠따블유안테나 메타머티리얼 구조를 이용한 소형 안테나
KR100885815B1 (ko) * 2007-03-06 2009-02-26 (주)에이스안테나 이질의 유전체를 이용한 내장형 안테나 및 그를 이용한모듈
KR100836558B1 (ko) * 2007-03-06 2008-06-10 (주)에이스안테나 이질의 유전체를 이용한 다중대역 안테나.
CN101017930B (zh) * 2007-03-08 2011-03-16 西北工业大学 电调谐微带天线
WO2008115881A1 (en) * 2007-03-16 2008-09-25 Rayspan Corporation Metamaterial antenna arrays with radiation pattern shaping and beam switching
US20090034156A1 (en) * 2007-07-30 2009-02-05 Takuya Yamamoto Composite sheet
US8514146B2 (en) * 2007-10-11 2013-08-20 Tyco Electronics Services Gmbh Single-layer metallization and via-less metamaterial structures
WO2009064926A1 (en) * 2007-11-13 2009-05-22 Rayspan Corporation Metamaterial structures with multilayer metallization and via
US7911388B2 (en) * 2007-12-12 2011-03-22 Broadcom Corporation Method and system for configurable antenna in an integrated circuit package
US8518537B2 (en) * 2007-12-17 2013-08-27 Matsing Pte. Ltd. Artificial dielectric material and method of manufacturing the same
US7642975B2 (en) * 2008-03-12 2010-01-05 Sikorsky Aircraft Corporation Frame assembly for electrical bond
US8022861B2 (en) * 2008-04-04 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for mm-wave imager and radar
US7830301B2 (en) * 2008-04-04 2010-11-09 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for automotive radars
US7733265B2 (en) * 2008-04-04 2010-06-08 Toyota Motor Engineering & Manufacturing North America, Inc. Three dimensional integrated automotive radars and methods of manufacturing the same
US7773044B2 (en) 2008-04-25 2010-08-10 Nokia Corporation Method for enhancing an antenna performance, antenna, and apparatus
WO2009142756A2 (en) * 2008-05-22 2009-11-26 California Institute Of Technology On-chip highly-efficient antennas using strong resonant coupling
US8384596B2 (en) * 2008-06-19 2013-02-26 Broadcom Corporation Method and system for inter-chip communication via integrated circuit package antennas
US8736502B1 (en) 2008-08-08 2014-05-27 Ball Aerospace & Technologies Corp. Conformal wide band surface wave radiating element
US8547286B2 (en) * 2008-08-22 2013-10-01 Tyco Electronics Services Gmbh Metamaterial antennas for wideband operations
US8723722B2 (en) 2008-08-28 2014-05-13 Alliant Techsystems Inc. Composites for antennas and other applications
EP2207238B1 (en) 2009-01-08 2016-11-09 Oticon A/S Small size, low power device
US7990237B2 (en) * 2009-01-16 2011-08-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving performance of coplanar waveguide bends at mm-wave frequencies
US8878727B2 (en) * 2009-02-12 2014-11-04 Origin Gps Ltd. Antenna-module hybrid circuit
EP2406853B1 (en) * 2009-03-12 2017-09-27 Tyco Electronics Services GmbH Multiband composite right and left handed (crlh) slot antenna
US8259032B1 (en) * 2009-09-09 2012-09-04 Rockwell Collins, Inc. Metamaterial and finger slot for use in low profile planar radiating elements
KR101159948B1 (ko) 2010-02-10 2012-06-25 한양대학교 산학협력단 메타 물질 구조물을 이용한 중계기 안테나
US8618985B2 (en) * 2010-03-31 2013-12-31 Kookmin University Industry Academy Cooperation Foundation Patch antenna and rectenna using the same
US8681050B2 (en) 2010-04-02 2014-03-25 Tyco Electronics Services Gmbh Hollow cell CRLH antenna devices
US8786496B2 (en) 2010-07-28 2014-07-22 Toyota Motor Engineering & Manufacturing North America, Inc. Three-dimensional array antenna on a substrate with enhanced backlobe suppression for mm-wave automotive applications
WO2012071340A1 (en) * 2010-11-23 2012-05-31 Metamagnetics Inc. Antenna module having reduced size, high gain, and increased power efficiency
CN103765524B (zh) 2011-05-09 2016-08-17 变磁公司 磁性晶界工程化的铁氧体磁芯材料
CN102810736A (zh) * 2011-06-29 2012-12-05 深圳光启高等理工研究院 天线及无线通讯装置
CN103094657A (zh) * 2011-10-31 2013-05-08 深圳光启高等理工研究院 一种介质基板及具有该介质基板的天线
US10431899B2 (en) * 2014-02-19 2019-10-01 Kymeta Corporation Dynamic polarization and coupling control from a steerable, multi-layered cylindrically fed holographic antenna
EP3108538B1 (en) * 2014-02-19 2020-12-23 Kymeta Corporation Dynamic polarization and coupling control for a steerable cylindrically fed holographic antenna
US20150325348A1 (en) * 2014-05-09 2015-11-12 Matsing Inc. Magneto-Dielectric Material With Low Dielectric Losses
US9502780B2 (en) 2015-01-15 2016-11-22 Northrop Grumman Systems Corporation Antenna array using sandwiched radiating elements above a ground plane and fed by a stripline
JP6672639B2 (ja) * 2015-08-26 2020-03-25 カシオ計算機株式会社 誘電体アンテナ
US10418716B2 (en) 2015-08-27 2019-09-17 Commscope Technologies Llc Lensed antennas for use in cellular and other communications systems
US10651546B2 (en) 2016-01-19 2020-05-12 Commscope Technologies Llc Multi-beam antennas having lenses formed of a lightweight dielectric material
US11431100B2 (en) * 2016-03-25 2022-08-30 Commscope Technologies Llc Antennas having lenses formed of lightweight dielectric materials and related dielectric materials
CN108701894B (zh) 2016-03-25 2021-05-18 康普技术有限责任公司 具有由轻质介电材料形成的透镜和相关介电材料的天线
US10326205B2 (en) * 2016-09-01 2019-06-18 Wafer Llc Multi-layered software defined antenna and method of manufacture
US20180166763A1 (en) 2016-11-14 2018-06-14 Skyworks Solutions, Inc. Integrated microstrip and substrate integrated waveguide circulators/isolators formed with co-fired magnetic-dielectric composites
JP7061810B2 (ja) * 2016-12-07 2022-05-02 ウェハー エルエルシー 低損失電送機構及びそれを使用するアンテナ
DE102017102587A1 (de) 2017-02-09 2018-08-09 Krohne Messtechnik Gmbh Füllstandsschalter und Verfahren zur Bestimmung eines Grenzstandes eines Mediums in einem Behälter
US10305179B2 (en) * 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Antenna structure with doped antenna body
EP3453682B1 (en) 2017-09-08 2023-04-19 Skyworks Solutions, Inc. Low temperature co-fireable dielectric materials
CN111095674B (zh) 2017-09-15 2022-02-18 康普技术有限责任公司 制备复合介电材料的方法
CN108365328B (zh) * 2017-12-26 2020-02-14 合肥工业大学 一种基于石墨烯的微波柔性滤波天线
WO2019162856A1 (en) * 2018-02-21 2019-08-29 Mohammad Hossein Mazaheri Kalahrudi Wideband substrate integrated waveguide slot antenna
KR102467935B1 (ko) * 2018-04-18 2022-11-17 삼성전자 주식회사 유전체를 포함하는 안테나 모듈 및 이를 포함하는 전자 장치
US11603333B2 (en) 2018-04-23 2023-03-14 Skyworks Solutions, Inc. Modified barium tungstate for co-firing
US11565976B2 (en) 2018-06-18 2023-01-31 Skyworks Solutions, Inc. Modified scheelite material for co-firing
JP6590132B1 (ja) * 2018-07-20 2019-10-16 株式会社村田製作所 アンテナ装置、アンテナモジュール、およびそれに用いられる回路基板
US11011847B2 (en) * 2019-05-10 2021-05-18 Plume Design, Inc. Multi-antenna structure with two radiating antennas with one antenna fed from the other antenna
CN113994542A (zh) * 2019-05-24 2022-01-28 康普技术有限责任公司 其中具有支持大扫描角辐射的贴片型天线阵列的无线通信系统
KR102268383B1 (ko) * 2019-08-02 2021-06-23 삼성전기주식회사 칩 안테나
TWI733609B (zh) * 2020-10-21 2021-07-11 川升股份有限公司 低傳輸損耗天線結構

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571722A (en) 1967-09-08 1971-03-23 Texas Instruments Inc Strip line compensated balun and circuits formed therewith
US3678418A (en) 1971-07-28 1972-07-18 Rca Corp Printed circuit balun
US4525720A (en) 1982-10-15 1985-06-25 The United States Of America As Represented By The Secretary Of The Navy Integrated spiral antenna and printed circuit balun
US4495505A (en) 1983-05-10 1985-01-22 The United States Of America As Represented By The Secretary Of The Air Force Printed circuit balun with a dipole antenna
DK525485A (da) * 1984-11-15 1986-05-16 Toyota Motor Co Ltd Autoantenneanlaeg
US4800344A (en) 1985-03-21 1989-01-24 And Yet, Inc. Balun
US5039552A (en) 1986-05-08 1991-08-13 The Boeing Company Method of making thick film gold conductor
US4825220A (en) 1986-11-26 1989-04-25 General Electric Company Microstrip fed printed dipole with an integral balun
GB2210510A (en) 1987-09-25 1989-06-07 Philips Electronic Associated Microwave balun
US4924236A (en) 1987-11-03 1990-05-08 Raytheon Company Patch radiator element with microstrip balian circuit providing double-tuned impedance matching
US4916410A (en) 1989-05-01 1990-04-10 E-Systems, Inc. Hybrid-balun for splitting/combining RF power
US5039891A (en) * 1989-12-20 1991-08-13 Hughes Aircraft Company Planar broadband FET balun
US5148130A (en) 1990-06-07 1992-09-15 Dietrich James L Wideband microstrip UHF balun
CA2061254C (en) * 1991-03-06 2001-07-03 Jean Francois Zurcher Planar antennas
US5678219A (en) 1991-03-29 1997-10-14 E-Systems, Inc. Integrated electronic warfare antenna receiver
US5379006A (en) 1993-06-11 1995-01-03 The United States Of America As Represented By The Secretary Of The Army Wideband (DC to GHz) balun
US5455545A (en) 1993-12-07 1995-10-03 Philips Electronics North America Corporation Compact low-loss microwave balun
US5515059A (en) * 1994-01-31 1996-05-07 Northeastern University Antenna array having two dimensional beam steering
US5523728A (en) 1994-08-17 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Microstrip DC-to-GHZ field stacking balun
US5661493A (en) * 1994-12-02 1997-08-26 Spar Aerospace Limited Layered dual frequency antenna array
ATE201940T1 (de) * 1996-07-04 2001-06-15 Skygate Internat Technology Nv Planare gruppenantenne für zwei frequenzen
US6184845B1 (en) 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
JPH118111A (ja) 1997-06-17 1999-01-12 Tdk Corp バルントランス用コア材料、バルントランス用コアおよびバルントランス
US6052039A (en) 1997-07-18 2000-04-18 National Science Council Lumped constant compensated high/low pass balanced-to-unbalanced transition
US6121936A (en) * 1998-10-13 2000-09-19 Mcdonnell Douglas Corporation Conformable, integrated antenna structure providing multiple radiating apertures
CA2257526A1 (en) 1999-01-12 2000-07-12 Aldo Petosa Dielectric loaded microstrip patch antenna
US6133806A (en) 1999-03-25 2000-10-17 Industrial Technology Research Institute Miniaturized balun transformer
US6307509B1 (en) 1999-05-17 2001-10-23 Trimble Navigation Limited Patch antenna with custom dielectric
WO2001001453A2 (en) 1999-06-29 2001-01-04 Sun Microsystems, Inc. Method and apparatus for adjusting electrical characteristics of signal traces in layered circuit boards
US6137376A (en) 1999-07-14 2000-10-24 International Business Machines Corporation Printed BALUN circuits
KR100533097B1 (ko) * 2000-04-27 2005-12-02 티디케이가부시기가이샤 복합자성재료와 이것을 이용한 자성성형재료, 압분 자성분말성형재료, 자성도료, 복합 유전체재료와 이것을이용한 성형재료, 압분성형 분말재료, 도료, 프리프레그및 기판, 전자부품
US6282845B1 (en) * 2000-08-22 2001-09-04 M. Gene Hines Gutter anti-clogging liner
US6720074B2 (en) * 2000-10-26 2004-04-13 Inframat Corporation Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
US6529088B2 (en) * 2000-12-26 2003-03-04 Vistar Telecommunications Inc. Closed loop antenna tuning system
EP1231637A3 (en) 2001-02-08 2004-08-25 Hitachi, Ltd. High dielectric constant composite material and multilayer wiring board using the same
US6597318B1 (en) * 2002-06-27 2003-07-22 Harris Corporation Loop antenna and feed coupler for reduced interaction with tuning adjustments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146969B1 (ko) * 2007-02-07 2012-05-24 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 메타물질을 이용한 전송선 설계 방법
WO2022250428A1 (ko) * 2021-05-24 2022-12-01 삼성전자 주식회사 안테나 및 이를 포함하는 전자 장치
WO2023155648A1 (zh) * 2022-02-21 2023-08-24 华为技术有限公司 一种天线结构和电子设备

Also Published As

Publication number Publication date
EP1876670B1 (en) 2009-09-30
CN1720637B (zh) 2010-12-08
KR100678393B1 (ko) 2007-02-02
AU2003294413A8 (en) 2004-06-23
DE60329542D1 (de) 2009-11-12
CN1720637A (zh) 2006-01-11
DE60320450T2 (de) 2009-05-07
US6842140B2 (en) 2005-01-11
TWI251370B (en) 2006-03-11
EP1570543A2 (en) 2005-09-07
WO2004051792A3 (en) 2004-10-14
DE60320450D1 (de) 2008-05-29
AU2003294413A1 (en) 2004-06-23
EP1876670A1 (en) 2008-01-09
CA2508368A1 (en) 2004-06-17
EP1570543B1 (en) 2008-04-16
CA2508368C (en) 2010-02-09
WO2004051792A2 (en) 2004-06-17
US20040104847A1 (en) 2004-06-03
JP2006508611A (ja) 2006-03-09
EP1570543A4 (en) 2005-11-30
TW200414602A (en) 2004-08-01
JP4303204B2 (ja) 2009-07-29

Similar Documents

Publication Publication Date Title
KR100678393B1 (ko) 고효율 마이크로스트립 급전 슬롯 패치 안테나
JP4051079B2 (ja) 改良されたスタブを有する高効率スロット給電マイクロストリップアンテナ
JP4087426B2 (ja) メタ材料を含む誘電体基板を有するマイクロストリップアンテナの配置
US6995711B2 (en) High efficiency crossed slot microstrip antenna
JP4142507B2 (ja) 複合材料の誘電性基板を用いたダイポールアンテナ
US6731248B2 (en) High efficiency printed circuit array of log-periodic dipole arrays
US6982671B2 (en) Slot fed microstrip antenna having enhanced slot electromagnetic coupling
US20040001029A1 (en) Efficient loop antenna of reduced diameter
JP2008029025A (ja) 高効率共振線
JP2008029024A (ja) 高効率シングルポート共振線路

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130110

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140109

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150109

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170123

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200114

Year of fee payment: 14