WO2024022181A1 - 一种表面连接粘结剂的负极材料及其制备方法和应用 - Google Patents

一种表面连接粘结剂的负极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024022181A1
WO2024022181A1 PCT/CN2023/108044 CN2023108044W WO2024022181A1 WO 2024022181 A1 WO2024022181 A1 WO 2024022181A1 CN 2023108044 W CN2023108044 W CN 2023108044W WO 2024022181 A1 WO2024022181 A1 WO 2024022181A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
negative electrode
electrode material
acrylate
optionally
Prior art date
Application number
PCT/CN2023/108044
Other languages
English (en)
French (fr)
Inventor
岳敏
杜宁
王露琪
邓清夫
Original Assignee
碳一新能源集团有限责任公司
浙江锂宸新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210907866.5A external-priority patent/CN115799488A/zh
Priority claimed from CN202210910405.3A external-priority patent/CN115799508B/zh
Priority claimed from CN202210907896.6A external-priority patent/CN115799506B/zh
Priority claimed from CN202210907908.5A external-priority patent/CN115799507B/zh
Application filed by 碳一新能源集团有限责任公司, 浙江锂宸新材料科技有限公司 filed Critical 碳一新能源集团有限责任公司
Priority to EP23789480.3A priority Critical patent/EP4343892A1/en
Priority to KR1020237037402A priority patent/KR20240017341A/ko
Publication of WO2024022181A1 publication Critical patent/WO2024022181A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of lithium-ion batteries and relates to a negative electrode material and its preparation method and application.
  • a negative electrode material with a surface-connected binder and its preparation method and application belongs to the technical field of lithium-ion batteries and relates to a negative electrode material with a surface-connected binder and its preparation method and application.
  • Lithium-ion batteries have been widely used in 3C (electronic and digital), energy storage and power fields due to their advantages of high energy density, small size, and environmental friendliness. It is crucial for the industry to improve the comprehensive performance of lithium-ion batteries, including energy density and cycle life.
  • 3C electronic and digital
  • anode materials including natural graphite and other anode materials still have some natural problems and defects, such as poor adhesion between active materials, between active materials and current collectors, irreversible expansion of materials caused by cycle aging, and Problems such as side reactions of the electrolyte and aging of the SEI film will lead to problems such as active powder fragmentation, which will affect the capacity and cycle stability of the battery, and even further cause potential safety hazards for the battery.
  • CN113270586A discloses the preparation and application of a silicon-based negative electrode material modified by in-situ polymerization and coating.
  • the surface of the silicon-based material is covered with a composite coating layer of inorganics and polymers.
  • the silicon-based negative electrode material is passed through deep coagulation.
  • the molten solvent causes the polymer monomer to polymerize in situ on the surface of the silicon-based material to obtain a composite coating layer in which inorganic substances are evenly distributed in the polymer; the inorganic substance is a lithium salt, and the thickness of the composite coating layer is 5-15nm.
  • the composite coating layer constructs an organic-inorganic composite coating layer on the surface of the material through in-situ polymerization of polymerized monomers doped with inorganic substances.
  • the modified silicon-based negative electrode material improves the first Coulombic efficiency of the negative electrode material, but the cycle stability of the battery needs to be further improved.
  • CN110783559A discloses a modified negative electrode material and its preparation method and use.
  • the modified negative electrode material includes a negative electrode material containing Si/SiO x and a polymer coating layer covering its surface.
  • the polymer coating layer contains polymer colloidal particles and network polymers, but the first Coulombic efficiency of the battery can only reach 75-77%, and the cycle stability needs to be further improved.
  • the purpose of this application is to provide a negative electrode material and its preparation method and application, especially to provide a negative electrode material with a surface-connected binder and its preparation method and application.
  • embodiments of the present application provide a negative electrode material with a surface-connected binder.
  • the negative electrode material with a surface-connected binder includes a negative electrode material and a surface-connected binder thereof.
  • the binder includes a first The polymer and the second polymer, the polymerized monomer of the first polymer includes any one or at least two of acrylate monomers, acrylamide monomers, acrylonitrile monomers or styrene monomers.
  • the second polymer is formed from any one of isocyanate monomer and hydroxyl-terminated nitrile rubber, hydroxyl-terminated ethylene oxide polymer, polyol polymer or hydroxyl-terminated acrylate polymer
  • the negative electrode material includes any one of silicon carbon negative electrode material, silicon oxygen negative electrode material, artificial graphite negative electrode material or natural graphite negative electrode material.
  • the first polymer has a particle structure
  • the second polymer has a non-particle structure
  • the first polymer and the second polymer form a polymer network on the surface of the negative electrode material.
  • the first polymer is an acrylate particle structure component, which is a dot-like structure on the surface of the active material
  • the second polymer is a non-particle structure. Synergistically, they jointly form a polymer coating structure on the surface of the active material, which can improve the expansion and aging problem of the negative electrode material during the cycle. At the same time, it can improve the adhesion between the negative electrode active materials and between the negative electrode active materials and the current collector. Thereby improving the overall performance of the material.
  • the acrylate monomer is selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, n-amyl acrylate, isopentyl acrylate, n-hexyl acrylate, and isooctyl acrylate.
  • the acrylamide monomer is selected from any one or at least two of acrylamide, methacrylamide, N-hydroxymethylacrylamide or N,N-dimethylacrylamide. combination.
  • the isocyanate monomer is selected from the group consisting of toluene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, dimethylbiphenyl diisocyanate, hexamethylene diisocyanate, and hexamethylene diisocyanate.
  • Methyl diisocyanate biuret hexamethylene diisocyanate trimer, 2,2,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, hydrogenated Xylylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, methylcyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, 1,4-benzene Any one or a combination of at least two of diisocyanate, 1,3-phenylene diisocyanate or norbornane diisocyanate.
  • the silicon-carbon negative electrode material is selected from silicon-carbon composite materials based on silicon-based materials, and the silicon-oxygen negative electrode material is a silicon-based oxide negative electrode material SiO x , where x is 0-2, But does not include 0.
  • the silicon-based material is nano-silicon, micro-silicon, porous silicon, amorphous silicon, silicon oxide, etc.
  • the silicon-carbon negative electrode material is selected from silicon-based/graphite composite negative electrode materials.
  • the silicon-carbon negative electrode material is selected from the group consisting of Si-C composite materials and natural graphite or artificial graphite.
  • the binder further includes cellulose, the cellulose is mixed with the first polymer, and the cellulose, as a blended material of the first polymer, is mixed with the first polymer and wound around the Together, the dispersion stability of the emulsion during the preparation of the first polymer and the dispersion stability and binding force when subsequently mixed with active substances can be improved.
  • the cellulose is selected from cellulose acetate, methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, nitrocellulose, carboxymethylcellulose, carboxyethylcellulose Any one or a combination of at least two of cellulose, carboxypropyl cellulose, carboxyisopropyl cellulose, sodium cellulose, sodium nitrocellulose or sodium carboxyalkyl cellulose.
  • the raw materials for preparing the second polymer further include a cross-linking agent and/or a catalyst.
  • the cross-linking agent is selected from the group consisting of glycol cross-linking agents, trihydric alcohol cross-linking agents, diamine cross-linking agents, alcoholamine cross-linking agents, and alicyclic alcohol cross-linking agents. Any one or a combination of at least two of the following agents, aromatic alcohol cross-linking agents, glyceryl allyl ether, glycidyl allyl ether or dicumyl peroxide.
  • the cross-linking agent is selected from the group consisting of 1,4-butanediol, ethylene glycol, propylene glycol, and diethyl glycol.
  • the catalyst is selected from any one or a combination of at least two of tertiary amine catalysts or organometallic compounds.
  • the catalyst is selected from any one or at least two of N,N-dimethylcyclohexylamine, dibutyltin dilaurate, bismuth 2-ethylhexanoate or bismuth neodecanoate. combination.
  • the ethylene oxide polymer containing terminal hydroxyl groups is a liquid ethylene oxide polymer containing terminal hydroxyl groups
  • the polyol polymer is a liquid polyol polymer
  • the terminal hydroxyl group-containing ethylene oxide polymer is a liquid polyol polymer.
  • Hydroxyacrylate polymer is a liquid hydroxyl-terminated acrylate polymer.
  • the number average molecular weight of the hydroxyl-terminated ethylene oxide polymer is 100-10000, such as 100, 150, 200, 300, 500, 700, 800, 900, 1000, 2000, 4000, 5000, 7000, 9000 or 10000 etc.
  • the number average molecular weight of the polyol polymer is 100-10000, such as 100, 150, 200, 300, 500, 700, 800, 900, 1000, 2000, 4000, 5000, 7000, 9000 or 10000 etc.
  • the polyol polymer is selected from any one or a combination of at least two of polyester polyols, polyether polyols or polycarbonate polyols.
  • the number average molecular weight of the hydroxyl-terminated acrylate polymer is 100-10000, such as 100, 150, 200, 300, 500, 700, 800, 900, 1000, 2000, 4000, 5000, 7000, 9000 or 10000 etc.
  • the polymerized monomers of the hydroxyl-terminated acrylate polymer include styrene, acrylic acid, butyl acrylate, butyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate. Any one of propyl ester or hydroxypropyl acrylate or a combination of at least two.
  • the glass transition temperature Tg of the first polymer ranges from -50 to 200°C, such as -50°C, -20°C, -10°C, 0°C, 5°C, 10°C, 20°C °C, 50°C, 70°C, 90°C, 100°C, 130°C, 150°C, 180°C or 200°C.
  • Tg is measured according to differential scanning calorimetry DSC.
  • the particle size of the first polymer is 200 nm-10 ⁇ m, such as 200 nm, 400 nm, 500 nm, 800 nm, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 8 ⁇ m or 10 ⁇ m.
  • the first polymer is polymerized by emulsion polymerization, microemulsion polymerization, suspension polymerization or micro-suspension polymerization;
  • the second polymer is obtained by in-situ polymerization on the surface of the negative electrode material connected to the first polymer.
  • in-situ polymerization is performed on the surface of the negative electrode material connected to the first polymer, so that the isocyanate monomer and hydroxyl-terminated nitrile rubber, hydroxyl-terminated ethylene oxide polymer, and polyol polymer are Or any one of the hydroxyl-terminated acrylate polymers is polymerized to obtain a second polymer.
  • the second polymer component is a polymer with better elasticity, which enhances the adhesive elasticity.
  • the first polymer is acrylate particles.
  • the structural component forms a point-like structure on the surface of the active material, and the second polymer has a non-particle structure.
  • the two work synergistically to form a polymer coating structure on the surface of the active material which can further alleviate the volume expansion problem of the negative electrode material during circulation and further enhance the bonding between the negative electrode active materials and between the negative electrode active materials and the current collector. properties, thereby improving the first Coulombic efficiency and cycle stability of lithium-ion batteries.
  • embodiments of the present application provide a method for preparing a negative electrode material with a surface-connected binder as described above.
  • the preparation method includes the following steps:
  • step (2) Mix any one of hydroxyl-terminated nitrile rubber, hydroxyl-terminated ethylene oxide polymer, polyol polymer or hydroxyl-terminated acrylate polymer, isocyanate monomer, cross-linking agent and catalyst, Then, it is mixed with the solvent-free mixture obtained in step (1), and an in-situ polymerization reaction occurs to obtain the negative electrode material with a surface-connected binder.
  • the first polymer is connected to the surface of the negative electrode material by wet mixing.
  • the first polymer is an acrylate particle structure component, forming a point-like structure on the surface of the active material, and then passes through the in-situ Polymerization is a second polymer obtained by polymerizing an isocyanate monomer and any one of hydroxyl-terminated nitrile rubber, hydroxyl-terminated ethylene oxide polymer, polyol polymer or hydroxyl-terminated acrylate polymer.
  • the second polymer On the surface of the negative electrode material, the second polymer has a non-particle structure, and the second polymer component is a polymer with good elasticity, which enhances the adhesive elasticity.
  • the wet mixing process can make the polymer component and the negative electrode active material component Mix evenly to ensure the uniformity of the two.
  • the nitrile rubber adhesive is synthesized in situ directly on the surface of the active material (silicon carbon negative electrode material), and the hydrogen bonds and van der Waals forces between the active material and the surface functional groups increase the bonding effect between the adhesive and the active material;
  • the functional groups contained in the in-situ polymerized ethylene oxide polymer can interact with the active groups on the surface of the silicon-oxygen anode material to form chemical bonds, thereby enhancing the direct chemical interaction between the polymer structure and the silicon-oxygen anode structure; original
  • the in-situ polymerized polyurethane binder reacts and cross-links with the first polymer, and the hydrogen bonds and van der Waals forces between the surface functional groups of the artificial graphite negative active material increase the bonding effect between the binder and the artificial graphite negative active material, thus enhancing the The chemical force between the polymer structure and the artificial graphite anode structure;
  • the in-situ polymerized acrylate polymer component can have good compatibility with the particle polyacryl
  • the first and second polymers work together to form a polymer coating structure on the surface of the active material. After the binder is completely synthesized, it will appear in a spherical or fiber-like state on the surface of the active material, which is more conducive to improving the bonding force. .
  • the preparation method of the first polymer in step (1) includes the following steps:
  • the polymerized monomer of the first polymer includes any one or a combination of at least two of acrylate monomers, acrylamide monomers, acrylonitrile monomers or styrene monomers.
  • the dispersant and The total proportion of emulsifier is 0.1%-20.0% (such as 0.1%, 0.5%, 1.0%, 3.0%, 5.0%, 8.0%, 10.0%, 13.0%, 15.0%, 18.0% or 20.0%), first The proportion of polymerized monomers in the polymer is 60.0%-99.8% (For example, 60.0%, 63.0%, 65.0%, 68.0%, 70.0%, 73.0%, 75.0%, 78.0%, 80.0%, 83.0%, 85.0%, 88.0%, 90.0%, 92.0%, 95.0%, 98.0% or 99.8%), the proportion of initiator is 0.1%-20.0% (such as 0.1%, 0.5%, 1.0%, 3.0%, 5.0%, 8.0%, 10.0%, 13.0%, 15.0%,
  • the negative electrode material is an artificial graphite negative electrode material or a natural graphite negative electrode material, based on the total weight of the emulsifier, dispersant, polymerized monomer and initiator of the first polymer being 100%, the dispersant and The total proportion of emulsifier is 0.1%-10.0% (for example, 0.1%, 0.5%, 1.0%, 3.0%, 5.0%, 8.0% or 10.0%), and the proportion of polymerized monomers of the first polymer is 80.0% -99.8% (such as 80.0%, 83.0%, 85.0%, 88.0%, 90.0%, 92.0%, 95.0%, 98.0% or 99.8%), the proportion of initiator is 0.1%-10.0% (such as 0.1%, 0.5 %, 1.0%, 3.0%, 5.0%, 8.0% or 10.0%).
  • the total weight percentage of the emulsifier, dispersant, polymerized monomer of the first polymer and initiator in the first polymer emulsion is 2%-30%, such as 2%, 5%, 8%, 10%, 13%, 15%, 18%, 20%, 25%, 28% or 30%.
  • the acrylate monomer is selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, n-amyl acrylate, isopentyl acrylate, n-hexyl acrylate, and isooctyl acrylate.
  • the acrylamide monomer is selected from acrylamide, methacrylamide, N- Any one or a combination of at least two of hydroxymethylacrylamide or N,N-dimethylacrylamide.
  • the emulsifier is one or a combination of at least two of sodium lauryl sulfate, sodium dodecyl benzene sulfonate or sodium dodecyl sulfonate.
  • the dispersant is one or a combination of at least two of polyvinyl alcohol, polyvinylpyrrolidone, tetradecane, hexadecane or octadecane.
  • the initiator is independently an organic peroxide initiator, an organic azo initiator, an inorganic peroxide initiator or a redox initiator.
  • the organic peroxide initiator is benzoyl peroxide or dicumyl peroxide.
  • the organic azo initiator is azobisisobutyronitrile or azobisisoheptanitrile.
  • the inorganic peroxide initiator is ammonium persulfate, sodium persulfate or potassium persulfate.
  • the redox initiator is ammonium persulfate and sodium sulfite, or ammonium persulfate and sodium bisulfite.
  • the temperature of the first polymerization reaction is 35-98°C.
  • the first polymerization reaction time is 3-15h, such as 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h, 12h or 15h.
  • the proportion of the first binder is 0.5-10.0% (for example, 0.5%, 1.0%, 2.0%, 3.0%, 5.0%, 7.0%, 9.0% or 10.0%), the negative electrode material accounts for 90.0-99.5% (such as 90.0%, 92.0%, 94.0%, 95.0%, 97.0%, 99.0% or 99.5%) .
  • the mixed slurry in step (1) further includes a conductive additive.
  • the conductive additive includes one or a combination of at least two of conductive graphite, acetylene black, carbon nanotubes or conductive carbon black.
  • the proportion of the conductive additive in the mixed slurry in step (1) is 0-5%, for example, 0.5%, based on the total weight of the first binder and the negative electrode material being 100%. 1.0%, 1.5%, 2.0%, 3.0%, 4.0% or 5.0%.
  • the wet mixing process in step (1) includes a resonant acoustic mixing process, a high shear process and a grinding process.
  • the wet mixing operation in step (1) includes using a ball mill, an electromagnetic ball mill, a disc mill, a pin grinder, a high-energy impact grinder, a fluid energy impact grinder, and a counter-jet grinder.
  • a ball mill an electromagnetic ball mill, a disc mill, a pin grinder, a high-energy impact grinder, a fluid energy impact grinder, and a counter-jet grinder.
  • the method for removing the solvent in the mixed slurry in step (1) is any one or a combination of at least two of vacuum drying, centrifugation, freeze drying, and spray drying.
  • the negative electrode material is any one of silicon-oxygen negative electrode material, artificial graphite negative electrode material or natural graphite negative electrode material, cellulose is also added to the first polymerization reaction system.
  • the cellulose is selected from cellulose acetate, methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, nitrocellulose, carboxymethylcellulose, carboxyethylcellulose base cellulose, Any one or a combination of at least two of carboxypropyl cellulose, carboxyisopropyl cellulose, cellulose sodium, nitrocellulose sodium or carboxyalkyl cellulose sodium.
  • the amount of cellulose is 0.1%-5.0% of the total weight of polymerized monomers of the first polymer, for example, 0.1%, 0.3%, 0.5%, 0.8%, 1.0%, 2.0 %, 3.0%, 4.0% or 5.0%.
  • the isocyanate monomer described in step (2) and any one of hydroxyl-terminated nitrile rubber, ethylene oxide polymer containing hydroxyl group, polyol polymer or hydroxyl-terminated acrylate polymer The total weight of species is 0.1-10.0% by weight of the solvent-free mixture, such as 0.1%, 0.5%, 1.0%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0%, 7.0%, 8.0%, 9.0% or 10.0%.
  • the isocyanate monomer in step (2) and any one of hydroxyl-terminated nitrile rubber, hydroxyl-terminated ethylene oxide polymer, polyol polymer or hydroxyl-terminated acrylate polymer The weight ratio is 1:2-5:1, such as 1:2, 1:1, 1.5:1, 1.8:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5 :1 or 5:1.
  • the amount of cross-linking agent in step (2) is isocyanate monomer and hydroxyl-terminated nitrile rubber, hydroxyl-terminated ethylene oxide polymer, polyol polymer or hydroxyl-terminated acrylate polymer. 0.1%-10.0% of the total weight of any one of the substances, such as 0.1%, 0.5%, 1.0%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0%, 7.0%, 8.0%, 9.0% or 10.0%.
  • the amount of the catalyst described in step (2) is isocyanate monomer and hydroxyl-terminated nitrile rubber, hydroxyl-terminated ethylene oxide polymer, polyol polymer or hydroxyl-terminated acrylate polymer. 0.1%-5.0% of the total weight of any one, such as 0.1%, 0.5%, 1.0%, 2.0%, 3.0%, 4.0% or 5.0%.
  • the isocyanate monomer in step (2) is selected from the group consisting of toluene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, dimethylbiphenyl diisocyanate, and hexamethylene diisocyanate.
  • the cross-linking agent in step (2) is selected from diol cross-linking agents, trihydric alcohol cross-linking agents, diamine cross-linking agents, alcoholamine cross-linking agents, alicyclic cross-linking agents, etc. Any one or a combination of at least two of alcohol cross-linking agents, aromatic alcohol cross-linking agents, glyceryl allyl ether, glycidyl allyl ether or dicumyl peroxide.
  • the cross-linking agent in step (2) is selected from the group consisting of 1,4-butanediol, ethylene glycol, propylene glycol, diethylene glycol, neopentyl glycol, glycerol, and trimethylol.
  • the hydroxyl-terminated ethylene oxide polymer in step (2) is a liquid hydroxyl-terminated ethylene oxide polymer
  • the polyol polymer is a liquid polyol polymer
  • the hydroxyl-terminated acrylate polymer is a liquid hydroxyl-terminated acrylate polymer.
  • the number average molecular weight of the hydroxyl-terminated ethylene oxide polymer is 100-10000.
  • the polyol polymer has a number average molecular weight of 100-10,000.
  • the polyol polymer is selected from any one or a combination of at least two of polyester polyols, polyether polyols or polycarbonate polyols.
  • the number average molecular weight of the hydroxyl-terminated acrylate polymer is 100-10,000.
  • the polymerized monomers of the hydroxyl-terminated acrylate polymer include styrene, acrylic acid, butyl acrylate, butyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate. Any one of propyl ester or hydroxypropyl acrylate or a combination of at least two.
  • the catalyst in step (2) is selected from any one or a combination of at least two of tertiary amine catalysts or organometallic compounds.
  • the catalyst in step (2) is selected from any one of N,N-dimethylcyclohexylamine, dibutyltin dilaurate, bismuth 2-ethylhexanoate or bismuth neodecanoate, or A combination of at least two.
  • the temperature of the in-situ polymerization reaction in step (2) is 25-100°C, such as 25°C, 30°C, 33°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C °C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95°C or 100°C.
  • the in-situ polymerization reaction time in step (2) is 5-50h, such as 5h, 10h, 15h, 20h, 24h, 28h, 30h, 36h, 39h, 40h, 42h, 45h, 48h or 50h.
  • embodiments of the present application provide a negative electrode sheet, which includes a negative electrode material with a surface-connected adhesive as described above.
  • embodiments of the present application provide an electrochemical energy storage device, which includes a negative electrode material whose surface is connected to a binder as described above.
  • the electrochemical energy storage device is selected from one of a lithium-ion battery, a sodium-ion battery, a supercapacitor, a fuel cell, or a solar cell.
  • the binder including the first polymer and the second polymer By connecting the binder including the first polymer and the second polymer on the surface of the negative electrode material, the expansion and aging problem of the negative electrode material during the cycle is improved, and at the same time, the relationship between the negative electrode active material and the negative electrode active material and the current collector can be improved.
  • the adhesion between them improves the overall performance of the material, making the lithium-ion battery containing it have high first Coulombic efficiency and cycle stability.
  • Examples 1-11, Comparative Examples 1-4, Application Examples 1-11 and Application Comparative Examples 1-4 provide a silicon carbon negative electrode material with a surface-connected binder and a negative electrode sheet prepared therefrom.
  • a silicon carbon negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • a silicon carbon negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • a silicon carbon negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • a silicon carbon negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • Add the first polymerization monomer including 100g of methyl acrylate, 10g of acrylamide monomer, 10g of acrylonitrile, add 0.5g of initiator azobisisobutyronitrile AIBN, continue to stir, continue to pass in nitrogen, and heat the solution to 95 °C, the first polymerization reaction is carried out for 3 hours to obtain a polymerization product.
  • the polymerization product is decompressed with a vacuum pump until the degree of vacuum is less than 0.1MPa, and the remaining unreacted monomer components are removed to obtain the first polymer.
  • a silicon carbon negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • a silicon carbon negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • Example 1 The only difference from Example 1 is that the first polymerization monomer in step (1) only includes 109 g of methyl acrylate and 11 g of acrylamide monomer.
  • Example 1 The only difference from Example 1 is that the first polymerization monomer in step (1) only includes 109 g of methyl acrylate and 11 g of acrylonitrile.
  • Example 1 The only difference from Example 1 is that the first polymerization monomer in step (1) only includes 120 g of methyl acrylate.
  • Example 1 The only difference from Example 1 is that the first polymerization monomer in step (1) only includes 120 g of acrylamide monomer.
  • Example 1 The only difference from Example 1 is that the first polymerization monomer in step (1) only includes 120 g of acrylonitrile.
  • Example 1 The only difference from Example 1 is that the first polymerization monomer in step (1) was replaced with 100 g of styrene, 10 g of acrylamide monomer, and 10 g of acrylonitrile.
  • step (3) the hydroxyl-terminated nitrile rubber is replaced with a hydroxyl-terminated ethylene oxide polymer (Tantai Chemical, TT300).
  • Example 1 The only difference from Example 1 is that the in-situ polymerization in step (3) is not performed, and the solvent-free mixture obtained in step (2) is directly used as a silicon-carbon negative electrode material with a surface-connected binder.
  • This comparative example provides a modified silicon carbon negative electrode material, and its preparation method is as follows:
  • the silicon carbon negative electrode material prepared above is prepared into a negative electrode sheet, specifically: the silicon carbon negative electrode material obtained in Examples 1-11 and Comparative Examples 1-4 is mixed with conductive agent carbon black (Surper P) and PAA binder Mix the materials according to the mass ratio of 85:5:10 to obtain a slurry, and then apply it to the copper foil to form a negative electrode sheet.
  • conductive agent carbon black Surper P
  • the silicon-carbon negative electrode material with surface-connected binder of the present application can make the first Coulombic efficiency of the battery using it reach more than 90%, and the capacity retention rate after 1000 cycles reaches more than 80%, which has good performance. first coulombic efficiency and cycle stability.
  • the first polymer is obtained by polymerizing styrene, acrylamide monomer and acrylonitrile.
  • the styrene component is less sticky than the acrylate monomer.
  • the junction and the binding force with the surface of the active material are weak, resulting in a decrease in the first Coulombic efficiency of the battery, and at the same time, the cycle stability is greatly reduced.
  • Comparative Example 3 the in-situ polymerization of step (3) was not performed, so that the obtained silicon-carbon negative electrode material with a surface-connected binder only included the first polymer as the binder.
  • the surface-connected adhesive obtained in Comparative Example 4 The binder in the silicon-carbon negative electrode material only includes the second polymer, which makes it impossible to form a good polymer coating network structure, causing the first Coulombic efficiency of the batteries in Comparative Examples 3 and 4 to decrease, and at the same time, the cycle stability Greatly reduced.
  • Examples 12-26, Comparative Examples 5-7, Application Examples 12-26 and Application Comparative Examples 5-7 provide a silicone negative electrode material with a surface-connected adhesive and a negative electrode sheet prepared therefrom.
  • a silicon-oxygen negative electrode material with a surface-connected adhesive is provided, and its preparation method includes the following steps:
  • the polymerization product is The vacuum pump reduces the pressure until the vacuum degree is less than 0.1 MPa, and removes the remaining unreacted monomer components to obtain the first polymer.
  • a silicon-oxygen negative electrode material with a surface-connected adhesive is provided, and its preparation method includes the following steps:
  • a silicon-oxygen negative electrode material with a surface-connected adhesive is provided, and its preparation method includes the following steps:
  • a silicon-oxygen negative electrode material with a surface-connected adhesive is provided, and its preparation method includes the following steps:
  • Add the first polymerized monomer including 100g of methyl acrylate, 10g of acrylamide monomer, 10g of acrylonitrile, 10g of styrene, add 0.5g of initiator AIBN, continue to stir, continue to pass in nitrogen, and heat the solution to 95°C.
  • the first polymerization was carried out for 3 hours to obtain a polymerization product.
  • the polymerization product was decompressed using a vacuum pump until the degree of vacuum was less than 0.1 MPa, and residual unreacted monomer components were removed to obtain the first polymer.
  • a silicon-oxygen negative electrode material with a surface-connected adhesive is provided, and its preparation method includes Includes the following steps:
  • a silicon-oxygen negative electrode material with a surface-connected adhesive is provided, and its preparation method includes the following steps:
  • the first polymerized monomer including 80g of methyl acrylate, 10g of acrylamide monomer, 5g of acrylonitrile, 10g of styrene, and add 0.5g of initiator AIBN.
  • step (1) is as follows:
  • Example 18 The only difference from Example 18 is that cellulose acetate was replaced by 5 g of carboxymethyl cellulose.
  • Example 12 The only difference from Example 12 is that the first polymerized monomer in step (1) only includes 110 g of methyl acrylate and 10 g of acrylamide monomer.
  • Example 12 The only difference from Example 12 is that the first polymerized monomer in step (1) only includes 110 g of methyl acrylate and 10 g of acrylonitrile.
  • Example 12 The only difference from Example 12 is that the first polymerized monomer in step (1) only includes 110 g of methyl acrylate and 10 g of styrene.
  • Example 12 The only difference from Example 12 is that the first polymerized monomer in step (1) only includes 120 g of methyl acrylate.
  • Example 12 The only difference from Example 12 is that the first polymerized monomer in step (1) only includes 120 g of acrylamide monomer.
  • Example 12 The only difference from Example 12 is that the first polymerized monomer in step (1) only includes 120 g of styrene.
  • Example 12 The only difference from Example 12 is that the first polymerized monomer in step (1) only includes 120 g of acrylonitrile.
  • Example 12 The only difference from Example 12 is that the hydroxyl-terminated ethylene oxide polymer in step (3) is replaced by a hydroxyl-terminated acrylate polymer (Soken Soken Chemical Co., Ltd., UT-1001).
  • Example 12 The only difference from Example 12 is that the in-situ polymerization in step (3) is not performed, and the solvent-free mixture obtained in step (2) is directly used as a silicon-oxygen negative electrode material with a surface-connected binder.
  • This comparative example provides a modified silicon-oxygen negative electrode material, and its preparation method is as follows:
  • the silicon-oxygen negative electrode material prepared above is prepared into a negative electrode sheet. Specifically, the silicon-oxygen negative electrode material obtained in Examples 12-26 and Comparative Examples 5-7 is mixed with conductive agent carbon black (Surper P) and PAA binder. Mix the materials according to the mass ratio of 85:5:10 to obtain a slurry, and then apply it to the copper foil to form a negative electrode sheet.
  • conductive agent carbon black Surper P
  • the silicon-oxygen negative electrode material with surface-connected binder of the present application can make the first Coulombic efficiency of the battery using it reach more than 87%, and the capacity retention rate after 1000 cycles reaches more than 80%, which has good performance.
  • step (3) the in-situ polymerization of step (3) was not performed, so that in the obtained silicon-oxygen negative electrode material with a surface-connected binder, the binder only included the first polymer and could not form a good polymer coating network.
  • the structure reduces the first Coulombic efficiency of the battery and reduces the cycle stability.
  • the binder In the silicon-oxygen negative electrode material with a surface-connected binder obtained in Comparative Example 7, the binder only includes the second polymer and cannot form a good polymer coating network structure, which reduces the first Coulombic efficiency of the battery and the cycle stability. reduce.
  • Examples 27-41, Comparative Examples 8-11, Application Examples 27-41 and Application Comparative Examples 8-11 provide an artificial graphite negative electrode material with a surface-connected binder and a negative electrode sheet prepared therefrom.
  • an artificial graphite negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 90.0g of methyl acrylate, 20.0g of acrylamide monomer, 10.0g of acrylonitrile, add 0.5g of initiator azobis
  • an artificial graphite negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 50.0g of methyl acrylate, 10.0g of acrylamide monomer, 20.0g of acrylonitrile
  • an artificial graphite negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 50.0g of methyl acrylate, 15.0g of acrylamide monomer, 15.0g of acrylonitrile
  • an artificial graphite negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 100.0g of methyl acrylate, 1
  • an artificial graphite negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 100.0g of methyl acrylate, 10.0g of acrylamide monomer, 10.0g of acrylonitrile,
  • an artificial graphite negative electrode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 80.0g of methyl acrylate, 10.0g of acrylamide monomer, 5.0g of acrylonitrile
  • step (1) is as follows:
  • the first polymerization monomer including 90.0g of methyl acrylate, 20.0g of acrylamide monomer, 1
  • Example 33 The only difference from Example 33 is that cellulose acetate was replaced by 6.0 g of carboxymethyl cellulose.
  • Example 27 The only difference from Example 27 is that the first polymerization monomer in step (1) only includes 99.0 g of methyl acrylate and 21.0 g of acrylamide monomer.
  • Example 27 The only difference from Example 27 is that the first polymerization monomer in step (1) only includes Methyl acrylate 108.0g, acrylonitrile 12.0g.
  • Example 28 The only difference from Example 28 is that the first polymerization monomer in step (1) only includes 75.0 g of methyl acrylate and 15.0 g of styrene.
  • Example 27 The only difference from Example 27 is that the first polymerization monomer in step (1) only includes 120.0 g of methyl acrylate.
  • Example 27 The only difference from Example 27 is that the first polymerization monomer in step (1) only includes 120.0 g of acrylamide monomer.
  • Example 28 The only difference from Example 28 is that the first polymerization monomer in step (1) only includes 90.0 g of styrene.
  • Example 27 The only difference from Example 27 is that the first polymerization monomer in step (1) only includes 120.0 g of acrylonitrile.
  • step (3) the polyol polymer is replaced by a hydroxyl-terminated acrylate polymer (Soken Soken Chemical Co., Ltd., UT-1001).
  • step (3) the polyol polymer is replaced by an ethylene oxide polymer containing terminal hydroxyl groups (Tantai Chemical, TT310).
  • Example 27 The only difference from Example 27 is that the in-situ polymerization in step (3) is not performed, and the solvent-free mixture obtained in step (2) is directly used as an artificial graphite negative electrode material with a surface-connected binder.
  • This comparative example provides a modified artificial graphite negative electrode material, and its preparation method is as follows:
  • the above-prepared artificial graphite negative electrode material is prepared into a pole piece, specifically: the artificial graphite negative electrode material obtained in Examples 27-41 and Comparative Examples 8-11 is mixed with conductive agent carbon black (Surper P) and PAA binder Mix according to the mass ratio of 96.5:1.5:2.0 to obtain a slurry, which is then coated on copper foil to form a negative electrode sheet.
  • the artificial graphite negative electrode material with surface-connected binder of the present application can make the first Coulombic efficiency of the battery using it reach more than 94%, and the capacity retention rate after 1000 cycles reaches more than 86%, which has good performance. battery efficiency and cycle stability.
  • Comparative Example 8 the polyol polymer in the second binder was replaced by a hydroxyl-terminated acrylate polymer.
  • the hydroxyl-terminated acrylate has a weaker surface interaction force with artificial graphite, resulting in the battery being the first Coulombic efficiency is reduced, while cycle stability is reduced.
  • Comparative Example 10 the in-situ polymerization of step (3) was not performed, so that the obtained artificial graphite negative electrode material with a surface-connected binder only included the first binder.
  • the surface-connected binder obtained in Comparative Example 11 The binder in the bonded artificial graphite negative electrode material only includes the second binder, which results in the inability to form a good polymer coating network structure, resulting in a reduction in the first Coulombic efficiency of the batteries in Comparative Examples 10 and 11, and at the same time, a reduction in cycle stability. .
  • Examples 42-56, Comparative Examples 12-15, Application Examples 42-56 and Application Comparative Examples 12-15 provide a natural graphite negative electrode material with a surface-connected binder and a negative electrode sheet prepared therefrom.
  • a natural graphite anode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 90.0g of methyl acrylate, 20.0g of acrylamide monomer, 10.0g of acrylonitrile, add 0.5g of initiator azo
  • a natural graphite anode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 50.0g of methyl acrylate, 10.0g of acrylamide monomer, 20.0g of acrylonit
  • a natural graphite anode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 50.0g of methyl acrylate, 15.0g of acrylamide monomer, 15.0g of acrylonitrile
  • a natural graphite anode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 100.0g of methyl acrylate, 1
  • a natural graphite anode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 100.0g of methyl acrylate, 10.0g of acrylamide monomer, 10.0g of acrylonitrile,
  • a natural graphite anode material with a surface-connected binder is provided, and its preparation method includes the following steps:
  • the first polymerization monomer including 80.0g of methyl acrylate, 10.0g of acrylamide monomer, 5.0g of acrylonit
  • step (1) is as follows:
  • Example 48 The only difference from Example 48 is that the amount of hydroxypropylcellulose is 6 g.
  • Example 42 The only difference from Example 42 is that the first polymerization monomer in step (1) only includes 99 g of methyl acrylate and 21 g of acrylamide monomer.
  • Example 42 The only difference from Example 42 is that the first polymerization monomer in step (1) only includes 108 g of methyl acrylate and 12 g of acrylonitrile.
  • Example 43 The only difference from Example 43 is that the first polymerization monomer in step (1) only includes 75 g of methyl acrylate and 15 g of styrene.
  • Example 42 The only difference from Example 42 is that the first polymerization monomer in step (1) only includes 120 g of methyl acrylate.
  • Example 42 The only difference from Example 42 is that the first polymerization monomer in step (1) only includes 120 g of acrylamide monomer.
  • Example 43 The only difference from Example 43 is that the first polymerization monomer in step (1) only includes 90 g of styrene.
  • Example 42 The only difference from Example 42 is that the first polymerization monomer in step (1) only includes 120 g of acrylonitrile.
  • step (3) the hydroxyl-terminated acrylate polymer is replaced by polyester polyol (Pastor, polyester polyol).
  • step (3) the hydroxyl-terminated acrylate polymer is replaced by an ethylene oxide polymer containing hydroxyl-terminal groups (Tantai Chemical, TT310).
  • Example 42 The only difference from Example 42 is that the in-situ polymerization in step (3) is not performed, and the solvent-free mixture obtained in step (2) is directly used as a natural graphite negative electrode material with a surface-connected binder.
  • This comparative example provides a modified natural graphite anode material, and its preparation method is as follows:
  • the natural graphite negative electrode material prepared above is prepared into a negative electrode sheet, specifically: the natural graphite negative electrode material obtained in Examples 42-56 and Comparative Examples 12-15 and the conductive agent carbon black (Surper P) PAA binder are prepared according to the following steps: The mixture was mixed at a mass ratio of 96.5:1.5:2.0 to obtain a slurry, which was then applied to copper foil to form a negative electrode sheet.
  • the natural graphite negative electrode material prepared above is prepared into a negative electrode sheet, specifically: the natural graphite negative electrode material obtained in Examples 42-56 and Comparative Examples 12-15 and the conductive agent carbon black (Surper P) PAA binder are prepared according to the following steps: The mixture was mixed at a mass ratio of 96.5:1.5:2.0 to obtain a slurry, which was then applied to copper foil to form a negative electrode sheet.
  • Comparative Example 12 the hydroxyl-terminated acrylate polymer in the second binder was replaced with polyester polyol. Compared with the hydroxyl-terminated acrylate polymer, the polyester polyol has a weaker interaction force with the natural graphite surface, resulting in battery failure. The first Coulombic efficiency is reduced, and the cycle stability is reduced.
  • Comparative Example 13 the hydroxyl-terminated acrylate polymer in the second binder is replaced by a ring containing hydroxyl-terminated Oxyethane polymers and hydroxyl-terminated ethylene oxide polymers have weaker surface interactions with natural graphite than hydroxyl-terminated acrylate polymers, resulting in a decrease in the first Coulombic efficiency of the battery and a decrease in cycle stability.
  • Comparative Example 14 the in-situ polymerization of step (3) was not performed, so that the binder in the natural graphite anode material with a surface-connected binder only included the first binder.
  • the surface-connected binder obtained in Comparative Example 15 The binder in the bonded natural graphite negative electrode material only includes the second binder, which cannot form a good polymer coating network structure, causing the first Coulombic efficiency of the batteries in Comparative Examples 14 and 15 to decrease, and the cycle stability to decrease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种表面连接粘结剂的负极材料及制备方法和应用,表面连接粘结剂的负极材料包括负极材料和其表面连接的粘结剂,粘结剂包括第一聚合物和第二聚合物,第一聚合物的聚合单体包括丙烯酸酯类单体、丙烯酰胺类单体、丙烯腈单体或苯乙烯单体中的任意一种或至少两种的组合,第二聚合物为双组分的聚合物,负极材料包括硅碳负极材料、硅氧负极材料、人造石墨负极材料或天然石墨负极材料中的任意一种。通过在负极材料表面连接第一聚合物和第二聚合物,使得能够改善负极材料在循环过程中的膨胀老化问题,同时可以提高负极活性物质之间、负极活性物质与集流体之间的粘结性,从而提升材料的综合性能,使得包含其的锂离子电池具有高的首次库伦效率和循环稳定性。

Description

一种表面连接粘结剂的负极材料及其制备方法和应用 技术领域
本申请属于锂离子电池技术领域,涉及一种负极材料及其制备方法和应用,尤其涉及一种表面连接粘结剂的负极材料及其制备方法和应用。
背景技术
锂离子电池由于具有能量密度高、体积小、环境友好等优势,已被广泛用于3C(电子数码)、储能和动力等领域。行业内提升锂离子电池的综合性能包括能量密度和循环寿命等至关重要。目前成熟应用的负极材料包括天然石墨等负极材料仍旧存在一些天然的问题和缺陷,比如活性物质之间,活性物质与集流体之间粘结力较差,循环老化引起的材料不可逆膨胀问题,与电解液的副反应和SEI膜老化等等问题,随之带来活性粉末碎裂等问题,从而影响电池的容量和循环稳定性,甚至进一步造成电池的安全隐患。
CN113270586A公开了一种原位聚合包覆改性的硅基负极材料的制备及其应用,硅基材料表面包覆有无机物与聚合物的复合包覆层,所述硅基负极材料通过深共熔溶剂作用,使聚合物的单体在硅基材料表面原位聚合反应得到无机物均匀分布在聚合物中的复合包覆层;所述无机物为锂盐,所述复合包覆层厚度为5-15nm。复合包覆层通过掺杂有无机物的聚合单体原位聚合的方式,在材料表面构筑有机无机复合包覆层。该改性的硅基负极材料提高了负极材料的首次库伦效率,但是其电池的循环稳定性还有待进一步提高。
CN110783559A公开了一种改性负极材料及其制备方法和用途,,所述改性负极材料中包含含Si/SiOx的负极材料及包覆在其表面的聚合物包覆层,所述聚 合物包覆层中包含聚合物胶体颗粒及网状高分子聚合物,但是其电池的首次库伦效率仅能达到75-77%,循环稳定性也有待进一步提高。
因此,在本领域中,期望开发一种能够改善负极材料在循环过程中的膨胀老化问题,同时可以提高活性物质之间、活性物质与集流体之间的粘结性,从而提升综合性能的材料。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对相关技术的不足,本申请的目的在于提供一种负极材料及其制备方法和应用,特别是提供一种表面连接粘结剂的负极材料及其制备方法和应用。
为达此目的,本申请采用以下技术方案:
第一方面,本申请实施例提供一种表面连接粘结剂的负极材料,所述表面连接粘结剂的负极材料包括负极材料和其表面连接的粘结剂,所述粘结剂包括第一聚合物和第二聚合物,所述第一聚合物的聚合单体包括丙烯酸酯类单体、丙烯酰胺类单体、丙烯腈单体或苯乙烯单体中的任意一种或至少两种的组合,所述第二聚合物为由异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种形成的双组分聚合物,所述负极材料包括硅碳负极材料、硅氧负极材料、人造石墨负极材料或天然石墨负极材料中的任意一种。
在本申请实施例中,所述第一聚合物为粒子结构,所述第二聚合物为非粒子结构,所述第一聚合物和第二聚合物在所述负极材料表面形成聚合物网络。
通过在负极材料表面连接第一聚合物和第二聚合物,第一聚合物为丙烯酸酯类粒子结构组分,在活性物质表面为点状结构,第二聚合物为非粒子型结构,二者协同作用,共同在活性物质表面形成聚合物包覆结构,能够改善负极材料在循环过程中的膨胀老化问题,同时可以提高负极活性物质之间、负极活性物质与集流体之间的粘结性,从而提升材料的综合性能。
在一个实施例中,所述丙烯酸酯类单体选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸正己酯、丙烯酸异辛酯、丙烯酸羟丙酯、丙烯酸-2-羟基乙酯、丙烯酸月桂酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸异辛酯、甲基丙烯酸羟丙酯、甲基丙烯酸-2-羟基乙酯、丙烯酸钠、丙烯酸锂、丙烯酸、甲基丙烯酸锂、甲基丙烯酸、衣康酸锂、衣康酸、衣康酸锂单丁酯或衣康酸单丁酯中的任意一种或至少两种的组合。
在一个实施例中,所述丙烯酰胺类单体选自丙烯酰胺、甲基丙烯酰胺、N-羟甲基丙烯酰胺或N,N-二甲基丙烯酰胺中的任意一种或至少两种的组合。
在一个实施例中,所述异氰酸酯类单体选自甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯、二甲基联苯二异氰酸酯、六亚甲基二异氰酸酯、六亚甲基二异氰酸酯缩二脲、六亚甲基二异氰酸酯三聚体、2,2,4-三甲基己二异氰酸酯、苯二甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、氢化苯二亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、甲基环己烷二异氰酸酯、1,4-环己烷二异氰酸酯、1,4-苯二异氰酸酯、1,3-苯二异氰酸酯或降冰片烷二异氰酸酯中的任意一种或至少两种的组合。
在本申请实施例中,所述硅碳负极材料选自以硅基材料为基础的硅碳复合材料,所述硅氧负极材料为硅基氧化物负极材料SiOx,其中x为0-2,但不包括0。
在一个实施例中,所述硅基材料为纳米硅、微米硅、多孔硅、非晶硅或氧化亚硅等。
在一个实施例中,所述硅碳负极材料选自硅基/石墨复合负极材料。
在一个实施例中,所述硅碳负极材料选自Si-C复合材料与天然石墨或人造石墨复合制备的材料。
在本申请实施例中,所述粘结剂还包括纤维素,所述纤维素与第一聚合物混合,纤维素作为第一聚合物的一种共混材料,与第一聚合物混合缠绕在一起,可以提高第一聚合物制备过程中乳液分散稳定性以及后续与活性物质混合时的分散稳定性和结合力。
在一个实施例中,所述纤维素选自乙酸纤维素、甲基纤维素、乙基纤维素、羟丙基纤维素、羟乙基纤维素、硝酸纤维素、羧甲基纤维素、羧乙基纤维素、羧丙基纤维素、羧异丙基纤维素、纤维素钠、硝酸纤维素钠或羧烷基纤维素钠中的任意一种或至少两种的组合。
在一个实施例中,所述第二聚合物的制备原料还包括交联剂和/或催化剂。
在一个实施例中,所述交联剂选自二元醇类交联剂、三元醇类交联剂、二元胺类交联剂、醇胺类交联剂、脂环醇类交联剂、芳醇类交联剂、甘油烯丙基醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合。
在一个实施例中,所述交联剂选自1,4-丁二醇、乙二醇、丙二醇、一缩二乙 二醇、新戊二醇、丙三醇、三羟甲基丙烷、3,3-二氯-4,4-二氨基二苯基甲烷、3,5-二甲硫基甲苯二胺、3,5-二乙基甲苯二胺、2,4-二氨基-3,5-二甲硫基氯苯、异佛尔酮二胺、乙醇胺、二乙醇胺、三乙醇胺、N,N-双(2-羟丙基)苯胺、1,4-环己二醇、氢化双酚A、二亚甲基苯基二醇、对苯二酚双-β-羟乙基醚、间苯二酚羟基醚、甘油烯丙基醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合。
在一个实施例中,所述催化剂选自叔胺催化剂或有机金属化合物中的任意一种或至少两种的组合。
在一个实施例中,所述催化剂选自N,N-二甲基环己胺、二月桂酸二丁基锡、2-乙基己酸铋或新癸酸铋中的任意一种或至少两种的组合。
在本申请实施例中,所述含端羟基的环氧乙烷聚合物为液态的含端羟基的环氧乙烷聚合物,所述多元醇聚合物为液态的多元醇聚合物,所述端羟基丙烯酸酯聚合物为液态的端羟基丙烯酸酯聚合物。
在一个实施例中,所述含端羟基的环氧乙烷聚合物的数均分子量为100-10000,例如100、150、200、300、500、700、800、900、1000、2000、4000、5000、7000、9000或10000等。
在一个实施例中,所述多元醇聚合物的数均分子量为100-10000,例如100、150、200、300、500、700、800、900、1000、2000、4000、5000、7000、9000或10000等。
在一个实施例中,所述多元醇聚合物选自聚酯多元醇、聚醚多元醇或聚碳酸酯多元醇中的任意一种或至少两种的组合。
在一个实施例中,所述端羟基丙烯酸酯聚合物的数均分子量为100-10000,例如100、150、200、300、500、700、800、900、1000、2000、4000、5000、7000、9000或10000等。
在一个实施例中,所述端羟基丙烯酸酯聚合物的聚合单体包括苯乙烯、丙烯酸、丙烯酸丁酯、甲基丙烯酸丁酯、甲基丙烯酸羟乙酯、丙烯酸羟乙酯、甲基丙烯酸羟丙酯或丙烯酸羟丙酯中的任意一种或至少两种的组合。
在本申请实施例中,所述第一聚合物的玻璃化转变温度Tg范围为-50~200℃,例如-50℃、-20℃、-10℃、0℃、5℃、10℃、20℃、50℃、70℃、90℃、100℃、130℃、150℃、180℃或200℃。Tg是根据差示扫描量热法DSC测试得到。
在一个实施例中,所述第一聚合物的粒径为200nm-10μm,例如200nm、400nm、500nm、800nm、1μm、3μm、5μm、8μm或10μm。
在一个实施例中,所述第一聚合物通过乳液聚合、微乳液聚合、悬浮聚合或微悬浮聚合方法聚合得到;
在一个实施例中,所述第二聚合物通过在连接有所述第一聚合物的负极材料表面进行原位聚合得到。
在本申请实施例中通过在连接有第一聚合物的负极材料表面进行原位聚合,使得异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种聚合,得到第二聚合物,第二聚合物组分为弹性较好的聚合物,增强了粘结性弹性,第一聚合物为丙烯酸酯类粒子结构组分,在活性物质表面形成点状结构,第二聚合物为非粒子型结构, 二者协同作用,共同在活性物质表面形成聚合物包覆结构,可以进一步缓解负极材料在循环过程中的体积膨胀问题,进一步增强负极活性物质之间、负极活性物质与集流体之间的粘结性,进而提高锂离子电池的首次库伦效率和循环稳定性。
第二方面,本申请实施例提供了如上所述的表面连接粘结剂的负极材料的制备方法,所述制备方法包括以下步骤:
(1)将第一聚合物与负极材料加入溶剂中进行湿法混合,得到混合浆料,而后去除混合浆料中的溶剂,得到无溶剂混合物;
(2)将端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种、异氰酸酯类单体、交联剂和催化剂混合,而后与步骤(1)得到的无溶剂混合物混合,发生原位聚合反应,得到所述表面连接粘结剂的负极材料。
在本申请实施例中,通过湿法混合的方式将第一聚合物连接至负极材料表面,第一聚合物为丙烯酸酯类粒子结构组分,在活性物质表面形成点状结构,而后通过原位聚合将异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种进行聚合得到的第二聚合物连接在负极材料表面,第二聚合物为非粒子型结构,第二聚合物组分为弹性较好的聚合物,增强了粘结性弹性,湿法混合过程可以使高分子组分和负极活性物质成分混合均匀,可以保证二者的混合均匀性。
丁腈橡胶类粘接剂直接在活性物质(硅碳负极材料)表面原位合成,与活性物质表面官能团间的氢键和范德华力等增加了粘结剂与活性物质的粘接效果; 原位聚合的环氧乙烷类聚合物所含官能团可以和硅氧负极材料表面的活性基团产生相互作用,产生化学键合,从而增强聚合物结构和硅氧负极结构直接的化学作用力;原位聚合的聚氨酯粘结剂与第一聚合物反应交联,与人造石墨负极活性物质表面官能团间的氢键和范德华力等增加了粘结剂与人造石墨负极活性物质的粘结效果,从而增强聚合物结构和人造石墨负极结构之间的化学作用力;原位聚合的丙烯酸酯聚合物组分可以和第一聚合物的粒子型聚丙烯酸酯组分相容性良好,形成较好的聚合物网络实现对天然石墨表面的网络包覆和连接结构,解决了天然石墨表面缺陷较多的问题,并且第二聚合物直接在天然石墨活性物质表面原位合成,与活性物质表面官能团间的氢键和范德华力等增加了粘结剂与天然石墨活性物质的粘接效果。
第一、二聚合物协同作用,共同在活性物质表面形成聚合物包覆结构,粘结剂合成完全后在活性物质的表面呈现或球状或纤维丝状的状态,更有益于粘结力的提升。
在本申请实施例中,步骤(1)所述第一聚合物的制备方法包括以下步骤:
在含有乳化剂和/或分散剂的水溶液中加入第一聚合物的聚合单体和引发剂,进行第一聚合反应,得到第一聚合物乳液,去除溶剂水后得到第一聚合物,所述第一聚合物的聚合单体包括丙烯酸酯类单体、丙烯酰胺类单体、丙烯腈单体或苯乙烯单体中的任意一种或至少两种的组合。
当所述负极材料为硅碳负极材料或硅氧负极材料时,以所述乳化剂、分散剂、第一聚合物的聚合单体和引发剂的总重量为100%计,所述分散剂和乳化剂的总占比为0.1%-20.0%(例如0.1%、0.5%、1.0%、3.0%、5.0%、8.0%、10.0%、13.0%、15.0%、18.0%或20.0%),第一聚合物的聚合单体的占比为60.0%-99.8% (例如60.0%、63.0%、65.0%、68.0%、70.0%、73.0%、75.0%、78.0%、80.0%、83.0%、85.0%、88.0%、90.0%、92.0%、95.0%、98.0%或99.8%),引发剂的占比为0.1%-20.0%(例如0.1%、0.5%、1.0%、3.0%、5.0%、8.0%、10.0%、13.0%、15.0%、18.0%或20.0%)。
当所述负极材料为人造石墨负极材料或天然石墨负极材料时,以所述乳化剂、分散剂、第一聚合物的聚合单体和引发剂的总重量为100%计,所述分散剂和乳化剂的总占比为0.1%-10.0%(例如0.1%、0.5%、1.0%、3.0%、5.0%、8.0%或10.0%),第一聚合物的聚合单体的占比为80.0%-99.8%(例如80.0%、83.0%、85.0%、88.0%、90.0%、92.0%、95.0%、98.0%或99.8%),引发剂的占比为0.1%-10.0%(例如0.1%、0.5%、1.0%、3.0%、5.0%、8.0%或10.0%)。
在一个实施例中,所述乳化剂、分散剂、第一聚合物的聚合单体和引发剂在第一聚合物乳液中的总重量百分比为2%-30%,例如2%、5%、8%、10%、13%、15%、18%、20%、25%、28%或30%。
在一个实施例中,所述丙烯酸酯类单体选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸正己酯、丙烯酸异辛酯、丙烯酸羟丙酯、丙烯酸-2-羟基乙酯、丙烯酸月桂酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸异辛酯、甲基丙烯酸羟丙酯、甲基丙烯酸-2-羟基乙酯、丙烯酸钠、丙烯酸锂、丙烯酸、甲基丙烯酸锂、甲基丙烯酸、衣康酸锂、衣康酸、衣康酸锂单丁酯或衣康酸单丁酯中的任意一种或至少两种的组合。
在一个实施例中,所述丙烯酰胺类单体选自丙烯酰胺、甲基丙烯酰胺、N- 羟甲基丙烯酰胺或N,N-二甲基丙烯酰胺中的任意一种或至少两种的组合。
在一个实施例中,所述乳化剂为十二烷基硫酸钠、十二烷基苯磺酸钠或十二烷基磺酸钠中的一种或至少两种的组合。
在一个实施例中,所述分散剂为聚乙烯醇、聚乙烯基吡咯烷酮、十四烷、十六烷或十八烷中的一种或至少两种的组合。
在一个实施例中,所述引发剂独立地为有机过氧化物引发剂、有机偶氮类引发剂、无机过氧化物引发剂或氧化还原引发剂。
在一个实施例中,所述有机过氧化物引发剂为过氧化苯甲酰或过氧化二异丙苯。
在一个实施例中,所述有机偶氮类引发剂为偶氮二异丁腈或偶氮二异庚腈。
在一个实施例中,所述无机过氧化物引发剂为过硫酸铵、过硫酸钠或过硫酸钾。
在一个实施例中,所述氧化还原引发剂为过硫酸铵与亚硫酸钠,或过硫酸铵与亚硫酸氢钠。
在一个实施例中,所述第一聚合反应的温度为35-98℃。例如35℃、40℃、50℃、55℃、60℃、65℃、68℃、70℃、75℃、80℃、85℃、90℃、95℃或98℃。
在一个实施例中,所述第一聚合反应的时间为3-15h,例如3h、4h、5h、6h、7h、8h、9h、10h、12h或15h。
在本申请实施例中,步骤(1)所述混合浆料中以第一粘结剂和负极材料的总重量为100%计,所述第一粘结剂的占比为0.5-10.0%(例如0.5%、1.0%、2.0%、 3.0%、5.0%、7.0%、9.0%或10.0%),所述负极材料占比为90.0-99.5%(例如90.0%、92.0%、94.0%、95.0%、97.0%、99.0%或99.5%)。
在一个实施例中,步骤(1)所述混合浆料中还包括导电添加剂。
在一个实施例中,所述导电添加剂包括导电石墨、乙炔黑、碳纳米管或导电炭黑中的一种或至少两种的组合。
在一个实施例中,步骤(1)所述混合浆料中以第一粘结剂和负极材料的总重量为100%计,所述导电添加剂的占比为0-5%,例如0.5%、1.0%、1.5%、2.0%、3.0%、4.0%或5.0%。
在一个实施例中,步骤(1)所述湿法混合过程包括共振声混合过程、高剪切过程和研磨过程。
在一个实施例中,步骤(1)所述湿法混合操作包括使用球磨机、电磁球磨机、盘磨机、销棒式研磨机、高能冲击研磨机、流体能冲击研磨机、对喷式研磨机、流化床喷射研磨机、锤式研磨机或冲击研磨机中的一种或至少两种的组合。
在一个实施例中,步骤(1)所述去除混合浆料中的溶剂的方法为真空干燥、离心、冷冻干燥、喷雾干燥中的任意一种或至少两种的组合。
在本申请实施例中,当所述负极材料为硅氧负极材料、人造石墨负极材料或天然石墨负极材料中的任意一种时,所述第一聚合反应的体系中还加入纤维素。
在一个实施例中,所述纤维素选自乙酸纤维素、甲基纤维素、乙基纤维素、羟丙基纤维素、羟乙基纤维素、硝酸纤维素、羧甲基纤维素、羧乙基纤维素、 羧丙基纤维素、羧异丙基纤维素、纤维素钠、硝酸纤维素钠或羧烷基纤维素钠中的任意一种或至少两种的组合。
在一个实施例中,所述纤维素的用量为所述第一聚合物的聚合单体总重量的0.1%-5.0%,例如,0.1%、0.3%、0.5%、0.8%、1.0%、2.0%、3.0%、4.0%或5.0%。
在本申请实施例中,步骤(2)所述异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的总重量为所述无溶剂混合物重量的0.1-10.0%,例如0.1%、0.5%、1.0%、2.0%、3.0%、4.0%、5.0%、6.0%、7.0%、8.0%、9.0%或10.0%。
在一个实施例中,步骤(2)所述异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的重量比为1:2-5:1,例如1:2、1:1、1.5:1、1.8:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1或5:1。
在一个实施例中,步骤(2)所述交联剂的用量为异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的总重量的0.1%-10.0%,例如0.1%、0.5%、1.0%、2.0%、3.0%、4.0%、5.0%、6.0%、7.0%、8.0%、9.0%或10.0%。
在一个实施例中,步骤(2)所述催化剂的用量为异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的总重量的0.1%-5.0%,例如0.1%、0.5%、1.0%、2.0%、3.0%、4.0%或5.0%。
在一个实施例中,步骤(2)所述异氰酸酯类单体选自甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯、二甲基联苯二异氰酸酯、六亚甲基二异氰酸酯、六亚甲基二异氰酸酯缩二脲、六亚甲基二异氰酸酯三聚体、2,2,4-三甲基己二异氰酸酯、苯二甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、氢化苯二亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、甲基环己烷二异氰酸酯、1,4-环己烷二异氰酸酯、1,4-苯二异氰酸酯、1,3-苯二异氰酸酯或降冰片烷二异氰酸酯中的任意一种或至少两种的组合。
在一个实施例中,步骤(2)所述交联剂选自二元醇类交联剂、三元醇类交联剂、二元胺类交联剂、醇胺类交联剂、脂环醇类交联剂、芳醇类交联剂、甘油烯丙基醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合。
在一个实施例中,步骤(2)所述交联剂选自1,4-丁二醇、乙二醇、丙二醇、一缩二乙二醇、新戊二醇、丙三醇、三羟甲基丙烷、3,3-二氯-4,4-二氨基二苯基甲烷、3,5-二甲硫基甲苯二胺、3,5-二乙基甲苯二胺、2,4-二氨基-3,5-二甲硫基氯苯、异佛尔酮二胺、乙醇胺、二乙醇胺、三乙醇胺、N,N-双(2-羟丙基)苯胺、1,4-环己二醇、氢化双酚A、二亚甲基苯基二醇、对苯二酚双-β-羟乙基醚、间苯二酚羟基醚、甘油烯丙基醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合。
在一个实施例中,步骤(2)所述含端羟基的环氧乙烷聚合物为液态的含端羟基的环氧乙烷聚合物,所述多元醇聚合物为液态的多元醇聚合物,所述端羟基丙烯酸酯聚合物为液态的端羟基丙烯酸酯聚合物。
在一个实施例中,所述含端羟基的环氧乙烷聚合物的数均分子量为 100-10000。
在一个实施例中,所述多元醇聚合物的数均分子量为100-10000。
在一个实施例中,所述多元醇聚合物选自聚酯多元醇、聚醚多元醇或聚碳酸酯多元醇中的任意一种或至少两种的组合。
在一个实施例中,所述端羟基丙烯酸酯聚合物的数均分子量为100-10000。
在一个实施例中,所述端羟基丙烯酸酯聚合物的聚合单体包括苯乙烯、丙烯酸、丙烯酸丁酯、甲基丙烯酸丁酯、甲基丙烯酸羟乙酯、丙烯酸羟乙酯、甲基丙烯酸羟丙酯或丙烯酸羟丙酯中的任意一种或至少两种的组合。
在一个实施例中,步骤(2)所述催化剂选自叔胺催化剂或有机金属化合物中的任意一种或至少两种的组合。
在一个实施例中,步骤(2)所述催化剂选自N,N-二甲基环己胺、二月桂酸二丁基锡、2-乙基己酸铋或新癸酸铋中的任意一种或至少两种的组合。
在一个实施例中,步骤(2)所述原位聚合反应的温度为25-100℃,例如25℃、30℃、33℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃或100℃。
在一个实施例中,步骤(2)所述原位聚合反应的时间为5-50h,例如5h、10h、15h、20h、24h、28h、30h、36h、39h、40h、42h、45h、48h或50h。
第三方面,本申请实施例提供一种负极片,所述负极片包括如上所述的表面连接粘结剂的负极材料。
第四方面,本申请实施例提供一种电化学储能装置,所述电化学储能装置包括如上所述的表面连接粘结剂的负极材料。
在一个实施例中,所述电化学储能装置选自锂离子电池、钠离子电池、超级电容器、燃料电池或太阳能电池中的一种。
相对于相关技术,本申请具有以下有益效果:
通过在负极材料表面连接包括第一聚合物和第二聚合物的粘结剂,改善了负极材料在循环过程中的膨胀老化问题,同时可以提高负极活性物质之间、负极活性物质与集流体之间的粘结性,从而提升材料的综合性能,使得包含其的锂离子电池具有高的首次库伦效率和循环稳定性。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1-11、对比例1-4、应用实施例1-11和应用对比例1-4提供了一种表面连接粘结剂的硅碳负极材料及由其制备成的负极片。
实施例1
在本实施例中,提供一种表面连接粘结剂的硅碳负极材料,其制备方法包括以下步骤:
(1)将分散有5g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯100g,丙烯酰胺单体10g,丙烯腈10g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应 5小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅碳负极材料(SiC,容量1350mAh/g)98重量份,第一聚合物2重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转30s,2000转10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的3g六亚甲基二异氰酸酯和4g端羟基丁腈橡胶(靖江市通高化工有限公司,TL55)一起加入至混料罐中,并加入0.5g交联剂1,4-丁二醇,0.05g催化剂N,N-二甲基环己胺,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅碳负极材料。
实施例2
在本实施例中,提供一种表面连接粘结剂的硅碳负极材料,其制备方法包括以下步骤:
(1)将分散有5g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯60g,丙烯酰胺单体10g,丙烯腈20g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应5小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa, 脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅碳负极材料(SiC,容量1350mAh/g)90重量份,第一聚合物10重量份,加入计量的去离子水配置成固含量为45%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5g甲苯二异氰酸酯和4g端羟基丁腈橡胶(靖江市通高化工有限公司,TL55)一起加入至混料罐中,并加入0.5g交联剂1,4-丁二醇,0.02g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置12h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅碳负极材料。
实施例3
在本实施例中,提供一种表面连接粘结剂的硅碳负极材料,其制备方法包括以下步骤:
(1)将分散有8g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯50g,丙烯酰胺单体20g,丙烯腈10g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至80℃,进行第一聚合反应10小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅碳材料(SiC,容量1350mAh/g)99重量份,第一聚合物0.5重 量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5g四甲基苯二亚甲基二异氰酸酯和4.5g端羟基丁腈橡胶(靖江市通高化工有限公司,TL55)一起加入至混料罐中,并加入0.6g交联剂异佛尔酮二胺,0.02g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取5重量份该混合物与步骤(2)得到的无溶剂混合物95重量份,在消泡机中2000rpm混料10min。然后常温放置24h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅碳负极材料。
实施例4
在本实施例中,提供一种表面连接粘结剂的硅碳负极材料,其制备方法包括以下步骤:
(1)将分散好有2g聚乙烯醇PVA和3g十二烷基苯磺酸钠的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯100g,丙烯酰胺单体10g,丙烯腈10g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至95℃,进行第一聚合反应3小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅碳材料(SiC,容量1350mAh/g)90重量份,第一聚合物8重量 份,导电炭黑2重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的7.5g 4,4'-二环己基甲烷二异氰酸酯和6g端羟基丁腈橡胶(靖江市通高化工有限公司,TL55)一起加入至混料罐中,并加入2g交联剂丙三醇,0.03g催化剂新癸酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取0.5重量份该混合物与步骤(2)得到的无溶剂混合物99.5重量份,在消泡机中2000rpm混料10min。然后常温放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅碳负极材料。
实施例5
在本实施例中,提供一种表面连接粘结剂的硅碳负极材料,其制备方法包括以下步骤:
(1)将分散有2g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯100g,丙烯酰胺单体20g,丙烯腈10g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至50℃,进行第一聚合反应15小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅碳材料(SiC,容量1350mAh/g)99重量份,第一聚合物0.5重量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为45%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均 匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5g异佛尔酮二异氰酸酯和5.5g端羟基丁腈橡胶(靖江市通高化工有限公司,TL55)一起加入至混料罐中,并加入0.5g交联剂二亚甲基苯基二醇,0.01g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取10重量份该混合物与步骤(2)得到的无溶剂混合物90重量份,在消泡机中2000rpm混料10min。然后40℃放置30h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅碳负极材料。
实施例6
在本实施例中,提供一种表面连接粘结剂的硅碳负极材料,其制备方法包括以下步骤:
(1)将分散有5g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯80g,丙烯酰胺单体20g,丙烯腈5g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应8小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅碳材料(SiC,容量1350mAh/g)93重量份,第一聚合物2重量份,导电炭黑5重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.5g 1,5-萘二异氰酸酯和6.5g端羟基丁腈橡胶(靖江市通高化工有限公司,TL55)一起加入至混料罐中,并加入0.6g交联剂3,5-二乙基甲苯二胺,0.01g催化剂二月桂酸二丁锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取10重量份该混合物与步骤(2)得到的无溶剂混合物90重量份,在消泡机中2000rpm混料10min。然后100℃放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅碳负极材料。
实施例7
与实施例1不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯109g,丙烯酰胺单体11g。
实施例8
与实施例1不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯109g,丙烯腈11g。
实施例9
与实施例1不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯120g。
实施例10
与实施例1不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酰胺单体120g。
实施例11
与实施例1不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯腈120g。
对比例1
与实施例1不同之处仅在于,步骤(1)中第一聚合反应单体替换为苯乙烯100g,丙烯酰胺单体10g,丙烯腈10g。
对比例2
与实施例1不同之处仅在于,步骤(3)中端羟基丁腈橡胶替换为含端羟基的环氧乙烷聚合物(天太化学,TT300)。
对比例3
与实施例1不同之处仅在于,不进行步骤(3)的原位聚合,而将步骤(2)得到的无溶剂混合物直接作为表面连接粘结剂的硅碳负极材料。
对比例4
本对比例提供一种改性硅碳负极材料,其制备方法如下:
将除水后的3g六亚甲基二异氰酸酯和4g端羟基丁腈橡胶(靖江市通高化工有限公司,TL55)一起加入至混料罐中,并加入0.5g交联剂1,4-丁二醇,0.05g催化剂N,N-二甲基环己胺,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与99重量份硅碳材料,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述改性硅碳负极材料。
应用实施例1-11以及对比应用例1-4
上述的所制备的硅碳负极材料制备成负极片,具体地为:将实施例1-11以及对比例1-4得到的硅碳负极材料与导电剂炭黑(Surper P)以及PAA粘结剂按照质量比85:5:10进行混料,得到浆料,然后涂布到铜箔形成负极片。
将制备得到的负极片与锂金属极片组装成锂离子扣式电池,将LiPF6按1摩尔/升的浓度溶解在EC/DEC/EMC=2:3:1的电解液中,扣电组装完成后,按如下步骤进行首次库伦效率和循环等测试:静置2h;恒流放电:0.1C至0.005V;0.08C至0.001V;0.05C至0.001V;0.02C至0.001V;静置10min;恒流充电:0.1C至1.5V。
首次库伦效率和循环测试结果如表1所示。
表1


从表1的结果可以看出,本申请的表面连接粘结剂的硅碳负极材料能够使得利用其的电池的首次库伦效率达到90%以上,循环1000圈容量保持率达到80%以上,具有良好的首次库伦效率和循环稳定性。
对比例1中由于第一聚合物是由苯乙烯、丙烯酰胺单体和丙烯腈聚合得到的,然而用于硅碳材料改性后,因苯乙烯组分与丙烯酸酯类单体相比,粘结性以及与活性物质表面的结合力较弱,导致其电池的首次库伦效率有所降低,同时循环稳定性大大降低,
对比例2中由于第二聚合物中端羟基丁腈橡胶替换为含端羟基的环氧乙烷聚合物,因环氧结构弹性差于橡胶结构,不能有效缓解循环过程中引起的体积膨胀,导致其电池首次库伦效率有所降低,同时循环稳定性大大降低。
对比例3中并未进行步骤(3)的原位聚合,使得得到的表面连接粘结剂的硅碳负极材料中粘结剂只包括第一聚合物,对比例4中得到的表面连接粘结剂的硅碳负极材料中粘结剂只包括第二聚合物,均使得并不能形成良好的聚合物包覆网络结构,使得对比例3和4的电池首次库伦效率降低,同时循环稳定性 大大降低。
实施例12-26、对比例5-7、应用实施例12-26和应用对比例5-7提供了一种表面连接粘结剂的硅氧负极材料及由其制备成的负极片。
实施例12
在本实施例中,提供一种表面连接粘结剂的硅氧负极材料,其制备方法包括以下步骤:
(1)将分散有5g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯100g,丙烯酰胺单体10g,丙烯腈10g,加入引发剂AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应5小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅氧负极材料(SiO,容量为1600mAh/g)98重量份,第一聚合物2重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转30s,2000转10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5g六亚甲基二异氰酸酯和4g含端羟基的环氧乙烷聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.3g交联剂1,4-丁二醇,0.01g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固 化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅氧负极材料。
实施例13
在本实施例中,提供一种表面连接粘结剂的硅氧负极材料,其制备方法包括以下步骤:
(1)将分散有5g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯50g,丙烯酰胺单体10g,丙烯腈20g,苯乙烯10g,加入引发剂AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至80℃,进行第一聚合反应8小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅氧负极材料(SiO,容量1600mAh/g)90重量份,第一聚合物10重量份,加入计量的去离子水配置成固含量为45%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5g甲苯二异氰酸酯和4g含端羟基的环氧乙烷聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.3g交联剂1,4-丁二醇,0.02g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置12h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅氧负极材料。
实施例14
在本实施例中,提供一种表面连接粘结剂的硅氧负极材料,其制备方法包括以下步骤:
(1)将分散有8g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯50g,丙烯酰胺单体20g,丙烯腈10g,苯乙烯5g,加入引发剂AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至80℃,进行第一聚合反应10小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅氧负极材料(SiO,容量1600mAh/g)99重量份,第一聚合物0.5重量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5g四甲基苯二亚甲基二异氰酸酯和4.5g含端羟基的环氧乙烷聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.6g交联剂1,4-丁二醇,0.02g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取5重量份该混合物与步骤(2)得到的无溶剂混合物95重量份,在消泡机中2000rpm混料10min。然后常温放置24h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅氧负极材料。
实施例15
在本实施例中,提供一种表面连接粘结剂的硅氧负极材料,其制备方法包括以下步骤:
(1)将分散好有2g聚乙烯醇PVA和3g十二烷基苯磺酸钠的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯100g,丙烯酰胺单体10g,丙烯腈10g,苯乙烯10g,加入引发剂AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至95℃,进行第一聚合反应3小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅氧负极材料(SiO,容量1600mAh/g)90重量份,第一聚合物8重量份,导电炭黑2重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.5g4,4'-二环己基甲烷二异氰酸酯和4.5g含端羟基的环氧乙烷聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.2g交联剂1,4-丁二醇,0.01g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取0.5重量份该混合物与步骤(2)得到的无溶剂混合物99.5重量份,在消泡机中2000rpm混料10min。然后常温放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅氧负极材料。
实施例16
在本实施例中,提供一种表面连接粘结剂的硅氧负极材料,其制备方法包 括以下步骤:
(1)将分散有2g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯100g,丙烯酰胺单体10g,丙烯腈10g,苯乙烯10g,加入引发剂AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至50℃,进行第一聚合反应15小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅氧负极材料(SiO,容量1600mAh/g)99重量份,第一聚合物0.5重量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为45%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的4.5g异佛尔酮二异氰酸酯和5g含端羟基的环氧乙烷聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.8g交联剂1,4-丁二醇,0.02g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取10重量份该混合物与步骤(2)得到的无溶剂混合物90重量份,在消泡机中2000rpm混料10min。然后40℃放置30h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅氧负极材料。
实施例17
在本实施例中,提供一种表面连接粘结剂的硅氧负极材料,其制备方法包括以下步骤:
(1)将分散有5g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在 转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯80g,丙烯酰胺单体10g,丙烯腈5g,苯乙烯10g,加入引发剂AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应8小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物。
(2)取硅氧负极材料(SiO,容量1600mAh/g)93重量份,第一聚合物2重量份,导电炭黑5重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.5g 1,5-萘二异氰酸酯和3.5g含端羟基的环氧乙烷聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.4g交联剂1,4-丁二醇,0.01g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取10重量份该混合物与步骤(2)得到的无溶剂混合物90重量份,在消泡机中2000rpm混料10min。然后100℃放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的硅氧负极材料。
实施例18
与实施例1不同之处仅在于,其中步骤(1)为如下:
(1)将分散有5g聚乙烯醇PVA的水溶液800g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合单体,包括丙烯酸甲酯100g,丙烯酰胺单体10g,丙烯腈10g,加入乙酸纤维素0.5g,加入引发剂AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第 一聚合反应5小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一聚合物
实施例19
与实施例18的区别仅在于,将乙酸纤维素替换为羧甲基纤维素5g。
实施例20
与实施例12不同之处仅在于,其中步骤(1)中第一聚合单体仅包括丙烯酸甲酯110g,丙烯酰胺单体10g。
实施例21
与实施例12不同之处仅在于,其中步骤(1)中第一聚合单体仅包括丙烯酸甲酯110g,丙烯腈10g。
实施例22
与实施例12不同之处仅在于,其中步骤(1)中第一聚合单体仅包括丙烯酸甲酯110g,苯乙烯10g。
实施例23
与实施例12不同之处仅在于,其中步骤(1)中第一聚合单体仅包括丙烯酸甲酯120g。
实施例24
与实施例12不同之处仅在于,其中步骤(1)中第一聚合单体仅包括丙烯酰胺单体120g。
实施例25
与实施例12不同之处仅在于,其中步骤(1)中第一聚合单体仅包括苯乙烯120g。
实施例26
与实施例12不同之处仅在于,其中步骤(1)中第一聚合单体仅包括丙烯腈120g。
对比例5
与实施例12不同之处仅在于,步骤(3)中含端羟基的环氧乙烷聚合物替换为端羟基丙烯酸酯聚合物(Soken综研化学株式会社,UT-1001)。
对比例6
与实施例12不同之处仅在于,不进行步骤(3)的原位聚合,而将步骤(2)得到的无溶剂混合物直接作为表面连接粘结剂的硅氧负极材料。
对比例7
本对比例提供一种改性硅氧负极材料,其制备方法如下:
将除水后的5g六亚甲基二异氰酸酯和4g含端羟基的环氧乙烷聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.3g交联剂1,4-丁二醇,0.01g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与99重量份硅氧负极材料,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述改性硅氧负极材料。
应用实施例12-26以及对比应用例5-7
上述的所制备的硅氧负极材料制备成负极片,具体地为:将实施例12-26以及对比例5-7得到的硅氧负极材料与导电剂炭黑(Surper P)以及PAA粘结剂按照质量比85:5:10进行混料,得到浆料,然后涂布到铜箔形成负极片。
将制备得到的负极极片与锂金属极片组装成锂离子扣式电池,将LiPF6按1摩尔/升的浓度溶解在EC/DEC/EMC=2:3:1的电解液中,扣电组装完成后,按如下步骤进行首次库伦效率和循环等测试:静置2h;恒流放电:0.1C至0.005V;0.08C至0.001V;0.05C至0.001V;0.02C至0.001V;静置10min;恒流充电:0.1C至1.5V。
首次库伦效率和循环测试结果如表2所示。
表2


从表2的结果可以看出,本申请的表面连接粘结剂的硅氧负极材料能够使得利用其的电池的首次库伦效率达到87%以上,循环1000圈容量保持率达到80%以上,具有良好的电池首次库伦效率和循环稳定性。
对比例5中由于第二聚合物中含端羟基的环氧乙烷聚合物替换为端羟基丙烯酸酯聚合物,丙烯酸酯类与环氧乙烷相比,与硅氧材料表面官能团作用力较弱,导致其电池首次库伦效率和循环稳定性降低。
对比例6中并未进行步骤(3)的原位聚合,使得得到的表面连接粘结剂的硅氧负极材料中粘结剂只包括第一聚合物,并不能形成良好的聚合物包覆网络结构,使得电池首次库伦效率降低,同时循环稳定性降低。
对比例7中得到的表面连接粘结剂的硅氧负极材料中粘结剂只包括第二聚合物,并不能形成良好的聚合物包覆网络结构,使得电池首次库伦效率降低,同时循环稳定性降低。
实施例27-41、对比例8-11、应用实施例27-41和应用对比例8-11提供了一种表面连接粘结剂的人造石墨负极材料及由其制备成的负极片。
实施例27
在本实施例中,提供一种表面连接粘结剂的人造石墨负极材料,其制备方法包括以下步骤:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯90.0g,丙烯酰胺单体20.0g,丙烯腈10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至80℃,进行第一聚合反应8小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取人造石墨负极材料(浙江碳一,ZS1)98重量份,第一粘结剂2重 量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转30s,2000转10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.00g六亚甲基二异氰酸酯和4.00g多元醇聚合物(蓝星东大,聚醚多元醇,DL.)一起加入至混料罐中,并加入0.30g交联剂1,4-丁二醇,0.01g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的人造石墨负极材料。
实施例28
在本实施例中,提供一种表面连接粘结剂的人造石墨负极材料,其制备方法包括以下步骤:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯50.0g,丙烯酰胺单体10.0g,丙烯腈20.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至85℃,进行第一聚合反应10小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取人造石墨负极材料(浙江碳一,ZS1)92重量份,第一粘结剂8重量份,加入计量的去离子水配置成固含量为45%的分散浆料,进行混料,采用 分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.00g甲苯二异氰酸酯和4.00g多元醇聚合物(蓝星东大,聚醚多元醇,DL.)一起加入至混料罐中,并加入0.30g交联剂1,4-环己二醇,0.02g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置15h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的人造石墨负极材料。
实施例29
在本实施例中,提供一种表面连接粘结剂的人造石墨负极材料,其制备方法包括以下步骤:
(1)将分散有8.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯50.0g,丙烯酰胺单体15.0g,丙烯腈15.0g,苯乙烯5.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至80℃,进行第一聚合反应10小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取人造石墨负极材料(浙江碳一,ZS1)99重量份,第一粘结剂0.5重量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散 均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.00g四甲基苯二亚甲基二异氰酸酯和4.50g多元醇聚合物(帕斯托,聚酯多元醇)一起加入至混料罐中,并加入0.60g交联剂丙二醇,0.02g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取5重量份该混合物与步骤(2)得到的无溶剂混合物95重量份,在消泡机中2000rpm混料10min。然后常温放置24h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的人造石墨负极材料。
实施例30
在本实施例中,提供一种表面连接粘结剂的人造石墨负极材料,其制备方法包括以下步骤:
(1)将分散好有2.0g聚乙烯醇PVA和3.0g十二烷基苯磺酸钠的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯100.0g,丙烯酰胺单体10.0g,丙烯腈10.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至95℃,进行第一聚合反应3小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取人造石墨负极材料(浙江碳一,ZS1)92重量份,第一粘结剂6重量份,导电炭黑2重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均 匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.50g4,4'-二环己基甲烷二异氰酸酯和4.50g多元醇聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.20g交联剂二乙醇胺,0.01g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取0.5重量份该混合物与步骤(2)得到的无溶剂混合物99.5重量份,在消泡机中2000rpm混料10min。然后常温放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的人造石墨负极材料。
实施例31
在本实施例中,提供一种表面连接粘结剂的人造石墨负极材料,其制备方法包括以下步骤:
(1)将分散有2.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯100.0g,丙烯酰胺单体10.0g,丙烯腈10.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至50℃,进行第一聚合反应15小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取人造石墨负极材料(浙江碳一,ZS1)98.0重量份,第一粘结剂1.5重量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为45%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的4.50g异佛尔酮二异氰酸酯和5.00g多元醇聚合物(帕斯 托,聚酯多元醇)一起加入至混料罐中,并加入0.80g交联剂3,5-二乙基甲苯二胺,0.02g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取10重量份该混合物与步骤(2)得到的无溶剂混合物90重量份,在消泡机中2000rpm混料10min。然后40℃放置30h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的人造石墨负极材料。
实施例32
在本实施例中,提供一种表面连接粘结剂的人造石墨负极材料,其制备方法包括以下步骤:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯80.0g,丙烯酰胺单体10.0g,丙烯腈5.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应8小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取人造石墨负极材料(浙江碳一,ZS1)93重量份,第一粘结剂3重量份,导电炭黑4重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.50g 1,5-萘二异氰酸酯和3.50g多元醇聚合物(帕斯托,聚酯多元醇)一起加入至混料罐中,并加入0.40g交联剂乙二醇,0.01g催化剂 2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取8重量份该混合物与步骤(2)得到的无溶剂混合物92重量份,在消泡机中2000rpm混料10min。然后100℃放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的人造石墨负极材料。
实施例33
与实施例27不同之处仅在于,其中步骤(1)为如下:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯90.0g,丙烯酰胺单体20.0g,丙烯腈10.0g,加入乙酸纤维素0.5g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至80℃,进行第一聚合反应8小时,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂,其他步骤与实施例27相同。
实施例34
与实施例33的区别仅在于,将乙酸纤维素替换为羧甲基纤维素6.0g。
实施例35
与实施例27不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯99.0g,丙烯酰胺单体21.0g。
实施例36
与实施例27不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括 丙烯酸甲酯108.0g,丙烯腈12.0g。
实施例37
与实施例28不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯75.0g,苯乙烯15.0g。
实施例38
与实施例27不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯120.0g。
实施例39
与实施例27不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酰胺单体120.0g。
实施例40
与实施例28不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括苯乙烯90.0g。
实施例41
与实施例27不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯腈120.0g。
对比例8
与实施例27不同之处仅在于,步骤(3)中多元醇聚合物替换为端羟基丙烯酸酯聚合物(Soken综研化学株式会社,UT-1001)。
对比例9
与实施例27不同之处仅在于,步骤(3)中多元醇聚合物替换为含端羟基的环氧乙烷聚合物(天太化学,TT310)。
对比例10
与实施例27不同之处仅在于,不进行步骤(3)的原位聚合,而将步骤(2)得到的无溶剂混合物直接作为表面连接粘结剂的人造石墨负极材料。
对比例11
本对比例提供一种改性人造石墨负极材料,其制备方法如下:
将除水后的5.00g六亚甲基二异氰酸酯和4.00g多元醇聚合物(蓝星东大,聚醚多元醇,DL.)一起加入至混料罐中,并加入0.30g交联剂1,4-丁二醇,0.01g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与99重量份人造石墨负极材料,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述改性人造石墨负极材料。
应用实施例27-41以及对比应用例8-11
上述的所制备的人造石墨负极材料制备成极片,具体地为:将实施例27-41以及对比例8-11得到的人造石墨负极材料与导电剂炭黑(Surper P)以及PAA粘结剂按照质量比96.5:1.5:2.0进行混料,得到浆料,然后涂布到铜箔形成负极片。将制备得到的负极极片与锂金属极片组装成锂离子扣式电池,将LiPF6按1摩尔/升的浓度溶解在碳酸乙烯酯/碳酸二乙酯/碳酸甲乙酯=2:3:1的电解液中,扣电组装完成后,按如下步骤进行容量首次库伦效率和循环等测试:静置2h;恒 流放电:0.10C至0.005V;0.08C至0.001V;0.05C至0.001V;0.02C至0.001V;静置10min;恒流充电:0.10C至1.5000V。
容量首次库伦效率和循环测试结果如表3所示。
表3


从表3的结果可以看出,本申请的表面连接粘结剂的人造石墨负极材料能够使得利用其的电池的首次库伦效率达到94%以上,循环1000圈容量保持率达到86%以上,具有良好的电池效率和循环稳定性。
对比例8中由于第二粘结剂中多元醇聚合物替换为端羟基丙烯酸酯聚合物,端羟基丙烯酸酯类与多元醇聚合物相比,与人造石墨表面作用力较弱,导致其电池首次库伦效率有所降低,同时循环稳定性降低。
对比例9中由于第二粘结剂中多元醇聚合物替换为含端羟基的环氧乙烷聚合物,端羟基环氧乙烷聚合物与多元醇聚合物相比,与人造石墨表面作用力较 弱,导致其电池首次库伦效率有所降低,同时循环稳定性降低。
对比例10中并未进行步骤(3)的原位聚合,使得得到的表面连接粘结剂的人造石墨负极材料中粘结剂只包括第一粘结剂,对比例11中得到的表面连接粘结剂的人造石墨负极材料中粘结剂只包括第二粘结剂,均造成不能形成良好的聚合物包覆网络结构,使得对比例10和11的电池首次库伦效率降低,同时循环稳定性降低。
实施例42-56、对比例12-15、应用实施例42-56和应用对比例12-15提供了一种表面连接粘结剂的天然石墨负极材料及由其制备成的负极片。
实施例42
在本实施例中,提供一种表面连接粘结剂的天然石墨负极材料,其制备方法包括以下步骤:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯90.0g,丙烯酰胺单体20.0g,丙烯腈10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应10h,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取天然石墨负极材料(浙江碳一,CONE-P)97重量份,第一粘结剂3重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转30s,2000转10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.00g六亚甲基二异氰酸酯和4.00g端羟基丙烯酸酯聚合物(Soken综研化学株式会社,UT-1001)一起加入至混料罐中,并加入0.30g交联剂1,4-丁二醇,0.01g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的天然石墨负极材料。
实施例43
在本实施例中,提供一种表面连接粘结剂的天然石墨负极材料,其制备方法包括以下步骤:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯50.0g,丙烯酰胺单体10.0g,丙烯腈20.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至90℃,进行第一聚合反应8h,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取天然石墨负极材料(浙江碳一,CONE-P)92重量份,第一粘结剂8重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.00g甲苯二异氰酸酯和4.00g端羟基丙烯酸酯聚合物 (Soken综研化学株式会社,UT-1001)一起加入至混料罐中,并加入0.30g交联剂丙二醇,0.02g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与步骤(2)得到的无溶剂混合物99重量份,在消泡机中2000rpm混料10min。然后常温放置15h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的天然石墨负极材料。
实施例44
在本实施例中,提供一种表面连接粘结剂的天然石墨负极材料,其制备方法包括以下步骤:
(1)将分散有8.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯50.0g,丙烯酰胺单体15.0g,丙烯腈15.0g,苯乙烯5.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至80℃,进行第一聚合反应10h,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取天然石墨负极材料(浙江碳一,CONE-P)99重量份,第一粘结剂0.5重量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.00g四甲基苯二亚甲基二异氰酸酯和4.50g端羟基丙烯 酸酯聚合物(Soken综研化学株式会社,UT-1001)一起加入至混料罐中,并加入0.60g交联剂3,5-二乙基甲苯二胺,0.02g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取5重量份该混合物与步骤(2)得到的无溶剂混合物95重量份,在消泡机中2000rpm混料10min。然后常温放置24h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的天然石墨负极材料。
实施例45
在本实施例中,提供一种表面连接粘结剂的天然石墨负极材料,其制备方法包括以下步骤:
(1)将分散好有2.0g聚乙烯醇PVA和3.0g十二烷基苯磺酸钠的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯100.0g,丙烯酰胺单体10.0g,丙烯腈10.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至95℃,进行第一聚合反应3h,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取天然石墨负极材料(浙江碳一,CONE-P)92重量份,第一粘结剂6重量份,导电炭黑2重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.50g4,4'-二环己基甲烷二异氰酸酯和4.50g端羟基丙烯酸 酯聚合物(天太化学,TT310)一起加入至混料罐中,并加入0.20g交联剂1,4-环己二醇,0.01g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取0.5重量份该混合物与步骤(2)得到的无溶剂混合物99.5重量份,在消泡机中2000rpm混料10min。然后常温放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的天然石墨负极材料。
实施例46
在本实施例中,提供一种表面连接粘结剂的天然石墨负极材料,其制备方法包括以下步骤:
(1)将分散有2.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯100.0g,丙烯酰胺单体10.0g,丙烯腈10.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至50℃,进行第一聚合反应15h,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取天然石墨负极材料(浙江碳一,CONE-P)98重量份,第一粘结剂1.5重量份,导电炭黑0.5重量份,加入计量的去离子水配置成固含量为45%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的4.50g异佛尔酮二异氰酸酯和5.00g端羟基丙烯酸酯聚合 物(Soken综研化学株式会社,UT-1001)一起加入至混料罐中,并加入0.80g交联剂N,N-双(2-羟丙基)苯胺,0.02g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取10重量份该混合物与步骤(2)得到的无溶剂混合物90重量份,在消泡机中2000rpm混料10min。然后40℃放置30h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的天然石墨负极材料。
实施例47
在本实施例中,提供一种表面连接粘结剂的天然石墨负极材料,其制备方法包括以下步骤:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯80.0g,丙烯酰胺单体10.0g,丙烯腈5.0g,苯乙烯10.0g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应8h,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。
(2)取天然石墨负极材料(浙江碳一,CONE-P)93重量份,第一粘结剂3重量份,导电炭黑4重量份,加入计量的去离子水配置成固含量为40%的分散浆料,进行混料,采用分散机800转混合30s,2000转混合10min,使浆料分散均匀。将分散好的浆料通过室温真空干燥去除溶剂水分,得到无溶剂混合物。
(3)将除水后的5.50g 1,5-萘二异氰酸酯和3.50g端羟基丙烯酸酯聚合物(Soken综研化学株式会社,UT-1001)一起加至混料罐中,并加入0.40g交联 剂三乙醇胺,0.01g催化剂2-乙基己酸铋,在消泡机中2000rpm的状态下,混料10min,得到混合物。取8重量份该混合物与步骤(2)得到的无溶剂混合物92重量份,在消泡机中2000rpm混料10min。然后100℃放置5h反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述表面连接粘结剂的天然石墨负极材料。
实施例48
与实施例42不同之处仅在于,其中步骤(1)为如下:
(1)将分散有5.0g聚乙烯醇PVA的水溶液800.0g置于2000L反应釜中,在转速为250rpm的搅拌状态下,通入纯度≥99.9%的氮气,加入第一聚合反应单体,包括丙烯酸甲酯90.0g,丙烯酰胺单体20.0g,丙烯腈10.0g,加入羟丙基纤维素0.5g,加入引发剂偶氮二异丁腈AIBN 0.5g,持续搅拌,持续通入氮气,将溶液升温至75℃,进行第一聚合反应10h,得到聚合产物,将聚合产物用真空泵减压至真空度低于0.1MPa,脱除残留的未反应的单体组分,得到所述第一粘结剂。其他步骤与实施例42相同。
实施例49
与实施例48的区别仅在于,其中羟丙基纤维素的用量为6g。
实施例50
与实施例42不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯99g,丙烯酰胺单体21g。
实施例51
与实施例42不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯108g,丙烯腈12g。
实施例52
与实施例43不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯75g,苯乙烯15g。
实施例53
与实施例42不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酸甲酯120g。
实施例54
与实施例42不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯酰胺单体120g。
实施例55
与实施例43不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括苯乙烯90g。
实施例56
与实施例42不同之处仅在于,其中步骤(1)中第一聚合反应单体仅包括丙烯腈120g。
对比例12
与实施例42不同之处仅在于,步骤(3)中端羟基丙烯酸酯聚合物替换为聚酯多元醇(帕斯托,聚酯多元醇)。
对比例13
与实施例42不同之处仅在于,步骤(3)中端羟基丙烯酸酯聚合物替换为含端羟基的环氧乙烷聚合物(天太化学,TT310)。
对比例14
与实施例42不同之处仅在于,不进行步骤(3)的原位聚合,而将步骤(2)得到的无溶剂混合物直接作为表面连接粘结剂的天然石墨负极材料。
对比例15
本对比例提供一种改性天然石墨负极材料,其制备方法如下:
将除水后的5.00g六亚甲基二异氰酸酯和4.00g端羟基丙烯酸酯聚合物(Soken综研化学株式会社,UT-1001)一起加入至混料罐中,并加入0.30g交联剂1,4-丁二醇,0.01g催化剂二月桂酸二丁基锡,在消泡机中2000rpm的状态下,混料10min,得到混合物。取1重量份该混合物与99重量份天然石墨负极材料,在消泡机中2000rpm混料10min。然后常温放置12h进行原位聚合反应至粘结剂固化,而后将所得产物通过研钵研磨成细粉状,即得到所述改性天然石墨负极材料。
应用实施例42-56以及对比应用例12-15
上述的所制备的天然石墨负极材料制备成负极片,具体地为:将实施例42-56以及对比例12-15得到的天然石墨负极材料与导电剂炭黑(Surper P)PAA粘结剂按照质量比96.5:1.5:2.0进行混料,得到浆料,然后涂布到铜箔形成负极片。
将制备得到的负极极片与锂金属极片组装成锂离子扣式电池,将LiPF6按1摩尔/升的浓度溶解在碳酸乙烯酯/碳酸二乙酯/碳酸甲乙酯=2:3:1的电解液中,扣电组装完成后,按如下步骤进行容量首次库伦效率和循环等测试:静置2h;恒流放电:0.10C至0.005V;0.08C至0.001V;0.05C至0.001V;0.02C至0.001V;静置10min;恒流充电:0.10C至1.500V。
容量首次库伦效率和循环测试结果如表4所示。
表4


从表4的结果可以看出,本申请的表面连接粘结剂的天然石墨负极材料能够使得利用其的电池的首次库伦效率达到94%以上,循环1000圈容量保持率达到86%以上,具有良好的电池效率和循环稳定性。
对比例12中由于第二粘结剂中端羟基丙烯酸酯聚合物替换为聚酯多元醇,聚酯多元醇与端羟基丙烯酸酯聚合物相比,与天然石墨表面作用力较弱,导致其电池首次库伦效率有所降低,同时循环稳定性降低。
对比例13中由于第二粘结剂中端羟基丙烯酸酯聚合物替换为含端羟基的环 氧乙烷聚合物,端羟基的环氧乙烷聚合物与端羟基丙烯酸酯聚合物相比,与天然石墨表面作用力较弱,导致其电池首次库伦效率有所降低,同时循环稳定性降低。
对比例14中并未进行步骤(3)的原位聚合,使得得到的表面连接粘结剂的天然石墨负极材料中粘结剂只包括第一粘结剂,对比例15中得到的表面连接粘结剂的天然石墨负极材料中粘结剂只包括第二粘结剂,均不能形成良好的聚合物包覆网络结构,使得对比例14和15的电池首次库伦效率降低,同时循环稳定性降低。
申请人声明,本申请通过上述实施例来说明本申请的表面连接粘结剂的天然石墨负极材料及其制备方法和应用,但本申请并不局限于上述实施例,即不意味着本申请必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (13)

  1. 一种表面连接粘结剂的负极材料,所述表面连接粘结剂的负极材料包括负极材料和其表面连接的粘结剂,所述粘结剂包括第一聚合物和第二聚合物,所述第一聚合物的聚合单体包括丙烯酸酯类单体、丙烯酰胺类单体、丙烯腈单体或苯乙烯单体中的任意一种或至少两种的组合,所述第二聚合物为由异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种形成的双组分聚合物,所述负极材料包括硅碳负极材料、硅氧负极材料、人造石墨负极材料或天然石墨负极材料中的任意一种。
  2. 根据权利要求1所述的表面连接粘结剂的负极材料,其中,所述第一聚合物为粒子结构,所述第二聚合物为非粒子结构,所述第一聚合物和第二聚合物在所述负极材料表面形成聚合物网络;
    可选地,所述丙烯酸酯类单体选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸正己酯、丙烯酸异辛酯、丙烯酸羟丙酯、丙烯酸-2-羟基乙酯、丙烯酸月桂酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸异辛酯、甲基丙烯酸羟丙酯、甲基丙烯酸-2-羟基乙酯、丙烯酸钠、丙烯酸锂、丙烯酸、甲基丙烯酸锂、甲基丙烯酸、衣康酸锂、衣康酸、衣康酸锂单丁酯或衣康酸单丁酯中的任意一种或至少两种的组合;
    可选地,所述丙烯酰胺类单体选自丙烯酰胺、甲基丙烯酰胺、N-羟甲基丙烯酰胺或N,N-二甲基丙烯酰胺中的任意一种或至少两种的组合;
    可选地,所述异氰酸酯类单体选自甲苯二异氰酸酯、二苯基甲烷二异氰酸 酯、1,5-萘二异氰酸酯、二甲基联苯二异氰酸酯、六亚甲基二异氰酸酯、六亚甲基二异氰酸酯缩二脲、六亚甲基二异氰酸酯三聚体、2,2,4-三甲基己二异氰酸酯、苯二甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、氢化苯二亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、甲基环己烷二异氰酸酯、1,4-环己烷二异氰酸酯、1,4-苯二异氰酸酯、1,3-苯二异氰酸酯或降冰片烷二异氰酸酯中的任意一种或至少两种的组合。
  3. 根据权利要求1或2所述的表面连接粘结剂的负极材料,其中,所述硅碳负极材料选自以硅基材料为基础的硅碳复合材料;所述硅氧负极材料为硅基氧化物负极材料SiOx,其中x为0-2,但不包括0;
    可选地,所述硅基材料为纳米硅、微米硅、多孔硅、非晶硅或氧化亚硅;
    可选地,所述硅碳负极材料选自硅基/石墨复合负极材料;
    可选地,所述硅碳负极材料选自Si-C复合材料与天然石墨或人造石墨复合制备的材料。
  4. 根据权利要求1-3任一项所述的表面连接粘结剂的负极材料,其中,所述粘结剂还包括纤维素,所述纤维素与第一聚合物混合;
    可选地,所述纤维素选自乙酸纤维素、甲基纤维素、乙基纤维素、羟丙基纤维素、羟乙基纤维素、硝酸纤维素、羧甲基纤维素、羧乙基纤维素、羧丙基纤维素、羧异丙基纤维素、纤维素钠、硝酸纤维素钠或羧烷基纤维素钠中的任意一种或至少两种的组合;
    可选地,所述第二聚合物的制备原料还包括交联剂和/或催化剂;
    可选地,所述交联剂选自二元醇类交联剂、三元醇类交联剂、二元胺类交 联剂、醇胺类交联剂、脂环醇类交联剂、芳醇类交联剂、甘油烯丙基醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合;
    可选地,所述交联剂选自1,4-丁二醇、乙二醇、丙二醇、一缩二乙二醇、新戊二醇、丙三醇、三羟甲基丙烷、3,3-二氯-4,4-二氨基二苯基甲烷、3,5-二甲硫基甲苯二胺、3,5-二乙基甲苯二胺、2,4-二氨基-3,5-二甲硫基氯苯、异佛尔酮二胺、乙醇胺、二乙醇胺、三乙醇胺、N,N-双(2-羟丙基)苯胺、1,4-环己二醇、氢化双酚A、二亚甲基苯基二醇、对苯二酚双-β-羟乙基醚、间苯二酚羟基醚、甘油烯丙基醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合;
    可选地,所述催化剂选自叔胺催化剂或有机金属化合物中的任意一种或至少两种的组合;
    可选地,所述催化剂选自N,N-二甲基环己胺、二月桂酸二丁基锡、2-乙基己酸铋或新癸酸铋中的任意一种或至少两种的组合。
  5. 根据权利要求1-4任一项所述的表面连接粘结剂的负极材料,其中,所述含端羟基的环氧乙烷聚合物为液态的含端羟基的环氧乙烷聚合物,所述多元醇聚合物为液态的多元醇聚合物,所述端羟基丙烯酸酯聚合物为液态的端羟基丙烯酸酯聚合物;
    可选地,所述含端羟基的环氧乙烷聚合物的数均分子量为100-10000;
    可选地,所述多元醇聚合物的数均分子量为100-10000;
    可选地,所述多元醇聚合物选自聚酯多元醇、聚醚多元醇或聚碳酸酯多元醇中的任意一种或至少两种的组合;
    可选地,所述端羟基丙烯酸酯聚合物的数均分子量为100-10000;
    可选地,所述端羟基丙烯酸酯聚合物的聚合单体包括苯乙烯、丙烯酸、丙烯酸丁酯、甲基丙烯酸丁酯、甲基丙烯酸羟乙酯、丙烯酸羟乙酯、甲基丙烯酸羟丙酯或丙烯酸羟丙酯中的任意一种或至少两种的组合。
  6. 根据权利要求1-5任一项所述的表面连接粘结剂的负极材料,其中,所述第一聚合物的玻璃化转变温度Tg范围为-50~200℃;
    可选地,所述第一聚合物的粒径为200nm-10μm;
    可选地,所述第一聚合物通过乳液聚合、微乳液聚合、悬浮聚合或微悬浮聚合方法聚合得到;
    可选地,所述第二聚合物通过在连接有所述第一聚合物的负极材料表面进行原位聚合得到。
  7. 根据权利要求1-6中任一项所述的表面连接粘结剂的负极材料的制备方法,所述制备方法包括以下步骤:
    (1)将第一聚合物与负极材料加入溶剂中进行湿法混合,得到混合浆料,而后去除混合浆料中的溶剂,得到无溶剂混合物;
    (2)将端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种、异氰酸酯类单体、交联剂和催化剂混合,而后与步骤(1)得到的无溶剂混合物混合,发生原位聚合反应,得到所述表面连接粘结剂的负极材料。
  8. 根据权利要求7所述的制备方法,其中,步骤(1)所述第一聚合物的 制备方法包括以下步骤:
    在含有乳化剂和/或分散剂的水溶液中加入第一聚合物的聚合单体和引发剂,进行第一聚合反应,得到第一聚合物乳液,去除溶剂水后得到第一聚合物,所述第一聚合物的聚合单体包括丙烯酸酯类单体、丙烯酰胺类单体、丙烯腈单体或苯乙烯单体中的任意一种或至少两种的组合;
    当所述负极材料为硅碳负极材料或硅氧负极材料时,以所述乳化剂、分散剂、第一聚合物的聚合单体和引发剂的总重量为100%计,所述分散剂和乳化剂的总占比为0.1%-20.0%,第一聚合物的聚合单体的占比为60.0%-99.8%,引发剂的占比为0.1%-20.0%;
    当所述负极材料为人造石墨负极材料或天然石墨负极材料时,以所述乳化剂、分散剂、第一聚合物的聚合单体和引发剂的总重量为100%计,所述分散剂和乳化剂的总占比为0.1%-10.0%,第一聚合物的聚合单体的占比为80.0%-99.8%,引发剂的占比为0.1%-10.0%;
    可选地,所述乳化剂、分散剂、第一聚合物的聚合单体和引发剂在第一聚合物乳液中的总重量百分比为2%-30%;
    可选地,所述丙烯酸酯类单体选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸正己酯、丙烯酸异辛酯、丙烯酸羟丙酯、丙烯酸-2-羟基乙酯、丙烯酸月桂酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸异辛酯、甲基丙烯酸羟丙酯、甲基丙烯酸-2-羟基乙酯、丙烯酸钠、丙烯酸锂、丙烯酸、甲基丙烯酸锂、甲基丙烯酸、衣康酸锂、衣康 酸、衣康酸锂单丁酯或衣康酸单丁酯中的任意一种或至少两种的组合;
    可选地,所述丙烯酰胺类单体选自丙烯酰胺、甲基丙烯酰胺、N-羟甲基丙烯酰胺或N,N-二甲基丙烯酰胺中的任意一种或至少两种的组合;
    可选地,所述乳化剂为十二烷基硫酸钠、十二烷基苯磺酸钠或十二烷基磺酸钠中的一种或至少两种的组合;
    可选地,所述分散剂为聚乙烯醇、聚乙烯基吡咯烷酮、十四烷、十六烷或十八烷中的一种或至少两种的组合;
    可选地,所述引发剂独立地为有机过氧化物引发剂、有机偶氮类引发剂、无机过氧化物引发剂或氧化还原引发剂;
    可选地,所述有机过氧化物引发剂为过氧化苯甲酰或过氧化二异丙苯;
    可选地,所述有机偶氮类引发剂为偶氮二异丁腈或偶氮二异庚腈;
    可选地,所述无机过氧化物引发剂为过硫酸铵、过硫酸钠或过硫酸钾;
    可选地,所述氧化还原引发剂为过硫酸铵与亚硫酸钠,或过硫酸铵与亚硫酸氢钠;
    可选地,所述第一聚合反应的温度为35-98℃;
    可选地,所述第一聚合反应的时间为3-15h。
  9. 根据权利要求7或8所述的制备方法,其中,步骤(1)所述混合浆料中以第一粘结剂和负极材料的总重量为100%计,所述第一粘结剂的占比为0.5-10.0%,所述负极材料占比为90.0-99.5%;
    可选地,步骤(1)所述混合浆料中还包括导电添加剂;
    可选地,所述导电添加剂包括导电石墨、乙炔黑、碳纳米管或导电炭黑中的一种或至少两种的组合;
    可选地,步骤(1)所述混合浆料中以第一粘结剂和负极材料的总重量为100%计,所述导电添加剂的占比为0-5%;
    可选地,步骤(1)所述湿法混合过程包括共振声混合过程、高剪切过程和研磨过程;
    可选地,步骤(1)所述湿法混合操作包括使用球磨机、电磁球磨机、盘磨机、销棒式研磨机、高能冲击研磨机、流体能冲击研磨机、对喷式研磨机、流化床喷射研磨机、锤式研磨机或冲击研磨机中的一种或至少两种的组合;
    可选地,步骤(1)所述去除混合浆料中的溶剂的方法为真空干燥、离心、冷冻干燥、喷雾干燥中的任意一种或至少两种的组合。
  10. 根据权利要求7-9任一项所述的制备方法,其中,当所述负极材料为硅氧负极材料、人造石墨负极材料或天然石墨负极材料中的任意一种时,所述第一聚合反应的体系中还加入纤维素;
    可选地,所述纤维素选自乙酸纤维素、甲基纤维素、乙基纤维素、羟丙基纤维素、羟乙基纤维素、硝酸纤维素、羧甲基纤维素、羧乙基纤维素、羧丙基纤维素、羧异丙基纤维素、纤维素钠、硝酸纤维素钠或羧烷基纤维素钠中的任意一种或至少两种的组合;
    可选地,所述纤维素的用量为所述第一聚合物的聚合单体总重量的0.1%-5.0%。
  11. 根据权利要求7-10任一项所述的制备方法,其中,步骤(2)所述异氰 酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的总重量为所述无溶剂混合物重量的0.1-10.0%;
    可选地,步骤(2)所述异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的重量比为1:2-5:1;
    可选地,步骤(2)所述交联剂的用量为异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的总重量的0.1%-10.0%;
    可选地,步骤(2)所述催化剂的用量为异氰酸酯类单体和端羟基丁腈橡胶、含端羟基的环氧乙烷聚合物、多元醇聚合物或端羟基丙烯酸酯聚合物中的任意一种的总重量的0.1%-5.0%;
    可选地,步骤(2)所述异氰酸酯类单体选自甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯、二甲基联苯二异氰酸酯、六亚甲基二异氰酸酯、六亚甲基二异氰酸酯缩二脲、六亚甲基二异氰酸酯三聚体、2,2,4-三甲基己二异氰酸酯、苯二甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、氢化苯二亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、甲基环己烷二异氰酸酯、1,4-环己烷二异氰酸酯、1,4-苯二异氰酸酯、1,3-苯二异氰酸酯或降冰片烷二异氰酸酯中的任意一种或至少两种的组合;
    可选地,步骤(2)所述交联剂选自二元醇类交联剂、三元醇类交联剂、二元胺类交联剂、醇胺类交联剂、脂环醇类交联剂、芳醇类交联剂、甘油烯丙基 醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合;
    可选地,步骤(2)所述交联剂选自1,4-丁二醇、乙二醇、丙二醇、一缩二乙二醇、新戊二醇、丙三醇、三羟甲基丙烷、3,3-二氯-4,4-二氨基二苯基甲烷、3,5-二甲硫基甲苯二胺、3,5-二乙基甲苯二胺、2,4-二氨基-3,5-二甲硫基氯苯、异佛尔酮二胺、乙醇胺、二乙醇胺、三乙醇胺、N,N-双(2-羟丙基)苯胺、1,4-环己二醇、氢化双酚A、二亚甲基苯基二醇、对苯二酚双-β-羟乙基醚、间苯二酚羟基醚、甘油烯丙基醚、缩水甘油烯丙基醚或过氧化二异丙苯中的任意一种或至少两种的组合;
    可选地,步骤(2)所述含端羟基的环氧乙烷聚合物为液态的含端羟基的环氧乙烷聚合物,所述多元醇聚合物为液态的多元醇聚合物,所述端羟基丙烯酸酯聚合物为液态的端羟基丙烯酸酯聚合物;
    可选地,所述含端羟基的环氧乙烷聚合物的数均分子量为100-10000;
    可选地,所述多元醇聚合物的数均分子量为100-10000;
    可选地,所述多元醇聚合物选自聚酯多元醇、聚醚多元醇或聚碳酸酯多元醇中的任意一种或至少两种的组合;
    可选地,所述端羟基丙烯酸酯聚合物的数均分子量为100-10000;
    可选地,所述端羟基丙烯酸酯聚合物的聚合单体包括苯乙烯、丙烯酸、丙烯酸丁酯、甲基丙烯酸丁酯、甲基丙烯酸羟乙酯、丙烯酸羟乙酯、甲基丙烯酸羟丙酯或丙烯酸羟丙酯中的任意一种或至少两种的组合;
    可选地,步骤(2)所述催化剂选自叔胺催化剂或有机金属化合物中的任意一种或至少两种的组合;
    可选地,步骤(2)所述催化剂选自N,N-二甲基环己胺、二月桂酸二丁基锡、2-乙基己酸铋或新癸酸铋中的任意一种或至少两种的组合;
    可选地,步骤(2)所述原位聚合反应的温度为25-100℃;
    可选地,步骤(2)所述原位聚合反应的时间为5-50h。
  12. 一种负极片,所述负极片包括如权利要求1-6中任一项所述的表面连接粘结剂的负极材料。
  13. 一种电化学储能装置,所述电化学储能装置包括如权利要求1-6中任一项所述的表面连接粘结剂的负极材料;
    可选地,所述电化学储能装置选自锂离子电池、钠离子电池、超级电容器、燃料电池或太阳能电池中的一种。
PCT/CN2023/108044 2022-07-29 2023-07-19 一种表面连接粘结剂的负极材料及其制备方法和应用 WO2024022181A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23789480.3A EP4343892A1 (en) 2022-07-29 2023-07-19 Negative electrode material with surface connected with binder, and preparation method therefor and use thereof
KR1020237037402A KR20240017341A (ko) 2022-07-29 2023-07-19 표면에 접착제가 연결된 음극소재, 이의 제조방법 및 응용

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210910405.3 2022-07-29
CN202210907866.5A CN115799488A (zh) 2022-07-29 2022-07-29 一种表面连接粘结剂的硅氧负极材料及其制备方法和应用
CN202210907908.5 2022-07-29
CN202210907866.5 2022-07-29
CN202210907896.6 2022-07-29
CN202210910405.3A CN115799508B (zh) 2022-07-29 2022-07-29 一种表面连接粘结剂的硅碳负极材料及其制备方法和应用
CN202210907896.6A CN115799506B (zh) 2022-07-29 2022-07-29 一种表面连接粘结剂的人造石墨负极材料及其制备方法和应用
CN202210907908.5A CN115799507B (zh) 2022-07-29 2022-07-29 一种表面连接粘结剂的天然石墨负极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024022181A1 true WO2024022181A1 (zh) 2024-02-01

Family

ID=89705382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108044 WO2024022181A1 (zh) 2022-07-29 2023-07-19 一种表面连接粘结剂的负极材料及其制备方法和应用

Country Status (3)

Country Link
EP (1) EP4343892A1 (zh)
KR (1) KR20240017341A (zh)
WO (1) WO2024022181A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117801735A (zh) * 2024-03-01 2024-04-02 广州昊毅新材料科技股份有限公司 一种低温压敏型锂电池负极粘接材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140239239A1 (en) * 2013-02-26 2014-08-28 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
CN110364734A (zh) * 2019-06-06 2019-10-22 华南理工大学 高性能水性复配锂离子电池负极粘结剂及制备方法与应用
CN110783559A (zh) 2019-11-08 2020-02-11 东莞塔菲尔新能源科技有限公司 一种改性负极材料及其制备方法和用途
CN113270586A (zh) 2021-07-19 2021-08-17 北京壹金新能源科技有限公司 原位聚合包覆改性硅基负极材料的制备及其应用
WO2022118725A1 (ja) * 2020-12-02 2022-06-09 株式会社村田製作所 二次電池
CN115799508A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的硅碳负极材料及其制备方法和应用
CN115799488A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的硅氧负极材料及其制备方法和应用
CN115799507A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的天然石墨负极材料及其制备方法和应用
CN115799506A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的人造石墨负极材料及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140239239A1 (en) * 2013-02-26 2014-08-28 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
CN110364734A (zh) * 2019-06-06 2019-10-22 华南理工大学 高性能水性复配锂离子电池负极粘结剂及制备方法与应用
CN110783559A (zh) 2019-11-08 2020-02-11 东莞塔菲尔新能源科技有限公司 一种改性负极材料及其制备方法和用途
WO2022118725A1 (ja) * 2020-12-02 2022-06-09 株式会社村田製作所 二次電池
CN113270586A (zh) 2021-07-19 2021-08-17 北京壹金新能源科技有限公司 原位聚合包覆改性硅基负极材料的制备及其应用
CN115799508A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的硅碳负极材料及其制备方法和应用
CN115799488A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的硅氧负极材料及其制备方法和应用
CN115799507A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的天然石墨负极材料及其制备方法和应用
CN115799506A (zh) * 2022-07-29 2023-03-14 浙江碳一新能源有限责任公司 一种表面连接粘结剂的人造石墨负极材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117801735A (zh) * 2024-03-01 2024-04-02 广州昊毅新材料科技股份有限公司 一种低温压敏型锂电池负极粘接材料及其制备方法
CN117801735B (zh) * 2024-03-01 2024-05-24 广州昊毅新材料科技股份有限公司 一种低温压敏型锂电池负极粘接材料及其制备方法

Also Published As

Publication number Publication date
EP4343892A1 (en) 2024-03-27
KR20240017341A (ko) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2021078107A1 (zh) 一种核壳结构的凝胶聚合物电解质及其制备方法和应用
CN110061238B (zh) 水溶性自愈合粘结剂及其制备方法和锂离子电池
CN115799488A (zh) 一种表面连接粘结剂的硅氧负极材料及其制备方法和应用
WO2018161822A1 (zh) 一种锂离子电池用水性粘结剂及其制备方法和锂离子电池极片
CN115799507B (zh) 一种表面连接粘结剂的天然石墨负极材料及其制备方法和应用
WO2019242318A1 (zh) 一种水性粘结剂及其制备方法和用途
EP3496184B1 (en) Multi-core/single-shell structure gel polymer-coated diaphragm, and manufacturing method and use thereof
WO2018000578A1 (zh) 多元功能化改性聚乙烯醇基锂离子电池水性粘结剂及在电化学储能器件中的应用
WO2024022181A1 (zh) 一种表面连接粘结剂的负极材料及其制备方法和应用
US10431819B2 (en) Anode slurry and method for preparing the same
CN110690451A (zh) 一种锂离子电池用导电水性粘合剂及其制备方法和应用
CN112072074A (zh) 预锂化负极片及其制备方法和应用
CN108306021A (zh) 一种基于硅的锂离子电池负极
CN110993947A (zh) 一种改性正极材料及锂离子电池
CN107069016B (zh) 一种硅碳负极材料及其制备方法
CN115799508B (zh) 一种表面连接粘结剂的硅碳负极材料及其制备方法和应用
CN112133916A (zh) 一种锂离子电池硅基负极材料粘结剂及其制备方法和应用
CN114388795B (zh) 锂离子电池硅碳负极粘结剂及其制备方法
CN115799506B (zh) 一种表面连接粘结剂的人造石墨负极材料及其制备方法和应用
CN109411758B (zh) 一种锂离子电池负极用水系导电粘合剂的制备方法
CN112397718B (zh) 一种自愈合锂离子电池硅基负极材料及其制备方法
CN112736223A (zh) 一种低膨胀负极极片的制备方法
CN112909324A (zh) 一种无机/有机复合固态电解质及其制备方法和应用
CN115536810B (zh) 一种光固化水性聚氨酯乳液、锂离子电池负极材料及其制备方法和应用
CN115732694A (zh) 一种负极活性材料及应用其的负极片、锂离子电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023789480

Country of ref document: EP

Effective date: 20231024