WO2024022064A1 - 一种化学强化玻璃及包含化学强化玻璃的玻璃器件 - Google Patents

一种化学强化玻璃及包含化学强化玻璃的玻璃器件 Download PDF

Info

Publication number
WO2024022064A1
WO2024022064A1 PCT/CN2023/105864 CN2023105864W WO2024022064A1 WO 2024022064 A1 WO2024022064 A1 WO 2024022064A1 CN 2023105864 W CN2023105864 W CN 2023105864W WO 2024022064 A1 WO2024022064 A1 WO 2024022064A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemically strengthened
strengthened glass
glass
mol
equal
Prior art date
Application number
PCT/CN2023/105864
Other languages
English (en)
French (fr)
Inventor
覃文城
袁小彬
华文琼
黄昊
朱广祥
陈杰杰
黄义宏
Original Assignee
重庆鑫景特种玻璃有限公司
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆鑫景特种玻璃有限公司, 华为技术有限公司 filed Critical 重庆鑫景特种玻璃有限公司
Publication of WO2024022064A1 publication Critical patent/WO2024022064A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Definitions

  • the present application relates to the field of glass technology, and in particular to a chemically strengthened glass and a glass device containing chemically strengthened glass.
  • lithium aluminum silicon chemically strengthened glass has been widely used in display protective covers and mobile phone back covers of mobile phones.
  • mobile phone manufacturers have increasingly higher requirements for the drop resistance of cover glass.
  • the drop resistance of existing lithium aluminosilicate glass products is still insufficient.
  • some products use a large amount of ion exchange to achieve an increase in drop resistance. That is, by increasing the amount of ion exchange, sufficient stress levels are obtained to increase the drop resistance.
  • the large amount of ion exchange can easily cause excessive volume changes in the surface layer of the substrate glass after strengthening, resulting in large dispersion in the drop resistance height distribution of samples in the same batch, resulting in the appearance of samples with low drop resistance height in the same batch of samples. The probability will increase, causing the drop resistance of mass-produced chemically strengthened glass to be extremely unstable.
  • the large amount of ion exchange also means that in the process of preparing chemically strengthened glass, the glass releases a large amount of lithium ions into the salt bath, which will shorten the service life of the salt bath, thereby causing the production of lithium aluminum silicon chemically strengthened glass. Costs, especially reinforcement costs, increase.
  • the first aspect of this application provides a chemically strengthened glass that meets the following conditions: the tensile stress linear density CT_LD of the chemically strengthened glass is greater than or equal to 40000MPa/mm, and the ratio of CT_LD/S is greater than or equal to 7.5 and less than or equal to 20;
  • the chemically strengthened glass includes a compressive stress layer located on the surface of the chemically strengthened glass and a tensile stress layer located inside the chemically strengthened glass.
  • the sodium element content along the thickness direction of the chemically strengthened glass is tested by an X-ray energy spectrum analyzer.
  • the surface CS of the chemically strengthened glass is greater than or equal to 900MPa and less than or equal to 1600MPa, optionally greater than or equal to 1000MPa and less than or equal to 1600MPa.
  • the compressive stress layer depth DOL_0 of the chemically strengthened glass is 0.15t ⁇ 0.22t, and t is the thickness of the chemically strengthened glass.
  • the chemically strengthened glass has a Young's modulus greater than or equal to 85 GPa, optionally greater than Or equal to 90GPa.
  • the tensile stress linear density CT_LD of chemically strengthened glass is greater than or equal to 42000MPa/mm and less than or equal to 70000MPa/mm, optionally greater than or equal to 43000MPa/mm and less than or equal to 70000MPa/mm.
  • the composition of the chemically strengthened glass tensile stress layer includes: SiO 2 60.00 ⁇ 75.00 mol%, Al 2 O 3 8.00 ⁇ 18.00 mol%, Li 2 O 7.00 ⁇ 12.00 mol%, Y 2 O 3 0.00 to 10.00 mol%, Na 2 O 2.00 to 8.00 mol%, MgO 0.00 to 8.00 mol%.
  • the composition of the chemically strengthened glass tensile stress layer also includes: B 2 O 3 0.00 to 5.00 mol%, optionally B 2 O 3 0.00 to 3.00 mol%, expressed in molar percentage of oxide.
  • the composition of the chemically strengthened glass tensile stress layer includes: SiO 2 60.00 ⁇ 75.00 mol%, Al 2 O 3 8.00 ⁇ 12.00 mol%, Li 2 O 7.00 ⁇ 12.00 mol%, Y 2 O 3 1.00 to 3.00 mol%, Na 2 O 2.00 to 8.00 mol%, MgO 0.00 to 8.00 mol%, La 2 O 3 0.10 to 3.00 mol%.
  • the composition of the chemically strengthened glass tensile stress layer satisfies: La 2 O 3 /Y 2 O 3 is 0.2 to 1.0; and/or
  • the composition of the chemically strengthened glass tensile stress layer also includes: SrO 0.00 ⁇ 3.00 mol%, SrO/(MgO+SrO) ⁇ 0.35; and/or K 2 O 0.00 ⁇ 3.00mol%.
  • the composition of the chemically strengthened glass tensile stress layer includes: SiO 2 60.00 ⁇ 75.00 mol%, Al 2 O 3 8.00 ⁇ 12.00 mol%, Li 2 O 7.00 ⁇ 12.00 mol%, Y 2 O 3 1.00 to 3.00 mol%, Na 2 O 2.00 to 8.00 mol%, MgO 1.00 to 8.00 mol%, La 2 O 3 0.20 to 1.50 mol.
  • the composition of the chemically strengthened glass tensile stress layer satisfies: SiO 2 64.00-70.00 mol% and/or Li 2 O 8.00-12.00 mol% and/or Na 2 O 4.00 to 6.00 mol% and/or MgO 2.00 to 7.50 mol% and/or La 2 O 3 0.20 to 1.50 mol%.
  • the composition of the substrate glass includes: SiO 2 60.00-75.00 mol%, Al 2 O 3 8.00-12.00 mol%, Li 2 O 7.00-12.00 mol% , Y 2 O 3 1.00 to 3.00 mol%, Na 2 O 2.00 to 8.00 mol%, MgO 1.00 to 8.00 mol%, La 2 O 3 0.20 to 3.00 mol%, La 2 O 3 /Y 2 O 3 is 0.2 to 1.0 .
  • the composition of the substrate glass includes: SiO 2 64.00-70.00 mol%, Al 2 O 3 8.00-12.00 mol%, Li 2 O 8.00-12.00 mol% , Y 2 O 3 1.00 to 3.00 mol%, Na 2 O 4.00 to 6.00 mol%, MgO 2.00 to 7.50 mol%, La 2 O 3 0.20 to 1.50 mol%.
  • 0.7mm thick chemically strengthened glass is tested for drop resistance using 120-grit sandpaper, and the average sandpaper drop resistance height is greater than or equal to 1.60m, optionally greater than or equal to 1.70m.
  • the 0.7mm thick chemically strengthened glass is tested for drop resistance using 120-grit sandpaper, and the B10 value of the drop height of the sandpaper is greater than or equal to 1.1m, and can be selected from 1.1 to 2.0m.
  • the B10 value of the 0.7mm thick chemically strengthened glass's sandpaper drop resistance does not decrease by more than 25% compared to the average sandpaper drop height, and the sandpaper mesh used in the test is 120 mesh.
  • a second aspect of the present application provides a glass device made from the chemically strengthened glass in any of the above embodiments.
  • a third aspect of the present application provides an electronic device including the chemically strengthened glass in any of the above embodiments.
  • the electronic device includes a mobile phone, a tablet, a smart wearable, a monitor or a television.
  • smart wearables include smart bracelets, smart watches and smart glasses, etc.
  • displays include high-definition displays, vehicle-mounted displays, aerospace displays, etc.
  • This application provides a chemically strengthened glass with improved drop resistance.
  • the lithium ion content released into the salt bath is less than that of the existing lithium aluminosilicate glass, which is beneficial to increasing the service life of the salt bath. , reduce the cost of reinforcement.
  • the reduction in ion exchange volume is conducive to reducing the discreteness of the drop resistance height distribution of batch samples, ensuring that mass-produced chemically strengthened glass has relatively stable drop resistance performance.
  • Figure 1 is a schematic diagram of the chemically strengthened glass in Example 3 being tested by a Bruker EDS-X-ray energy spectrometer;
  • Figure 2 is a signal intensity distribution curve corresponding to the sodium content of the chemically strengthened glass in Example 3;
  • Figure 3 is a smooth curve obtained by fitting the signal intensity distribution curve in Figure 2;
  • Figure 4 is a schematic diagram of the temperature distribution of the long quartz tank during the crystallization upper limit temperature test
  • Figure 5 is a schematic diagram of the sample in the long quartz tank after the crystallization upper limit temperature test.
  • Chemically strengthened glass It is strengthened glass treated by high-temperature ion exchange process.
  • alkali metal ions with large ionic radius replace alkali metal ions with small ionic radius in the glass, resulting in a volume difference of exchange ions, which generates compressive stress from high to low on the surface of the base glass from surface to inside, hindering And delay the expansion of glass microcracks to achieve the purpose of improving the mechanical strength of glass.
  • Base glass It is a glass base material that has not been strengthened.
  • Compressive stress layer depth also called compressive stress layer depth, refers to the distance from any surface of the glass to the position near the surface where the compressive stress is zero. Measured by Japan Orihara stress meter SLP-2000.
  • CT_LD Tensile stress linear density. The ratio of the definite integral of the tensile stress curve of chemically strengthened glass to the thickness of chemically strengthened glass is recorded as the tensile stress linear density.
  • the base glass is placed in a salt bath for ion exchange to form a strengthening layer (i.e., compressive stress layer/compressive stress layer). During the ion exchange process, a stress layer is formed inside the glass.
  • the tensile stress layer has the same properties as chemically strengthened glass.
  • the upper surface of the glass is at a certain distance from the upper boundary and the lower surface of the chemically strengthened glass is at a certain distance from the lower boundary.
  • the tensile stress layer will be perpendicular to the upper boundary and the lower boundary at the same time and the upper and lower ends will be in the tensile stress layer.
  • the magnitude of the tensile stress at a certain point on the line segment respectively falling on the upper boundary and the lower boundary is the Y-axis, and the distance between the corresponding point and the upper boundary is the X-axis.
  • the curve drawn is recorded as the tensile stress curve.
  • the ratio of the definite integral of the tensile stress curve to the thickness of the chemically strengthened glass is recorded as the tensile stress linear density. That is, the ratio of the sum of the tensile stress of chemically strengthened glass measured by the SLP-2000 stress meter to the thickness of chemically strengthened glass.
  • CT_LD max The maximum tensile stress linear density (CT_LD) value that can be obtained when the base material glass is chemically strengthened by ion exchange under specific salt bath conditions, which is the maximum tensile stress linear density that the base material glass can obtain under the salt bath conditions. Value CT_LD max . This data can characterize the strengthenability/ion exchangeability of the base glass.
  • CT_LD tensile stress linear density
  • the inventor of the present application has discovered through research that when the existing lithium aluminum silicon chemically strengthened glass is chemically strengthened, it often requires the exchange of a large amount of sodium ions and lithium ions.
  • a large amount of sodium ions By introducing a large amount of sodium ions into the base glass, it can Reaching high stress levels, or introducing large amounts of sodium ions into the glass due to over-strengthening.
  • the large exchange volume of sodium ions and lithium ions can easily cause excessive volume changes on the surface of the glass.
  • the volume change inside the glass is small, it can easily cause the micro-cracks that originally existed on the glass surface to expand, causing chemical strengthening in mass production.
  • the dispersion of the drop resistance height distribution of glass increases, which increases the probability of samples with low drop resistance in the same batch.
  • the present application provides a chemically strengthened glass, as well as glass devices and electronic devices containing the chemically strengthened glass.
  • the ion exchange stress effect refers to the stress effect produced by exchanging a certain number of ions during the chemical strengthening process of the base glass.
  • Different glass structures have different ion exchange stress effects.
  • the higher the ion exchange stress effect the less ion exchange is required to achieve high levels of stress.
  • the first aspect of this application provides a chemically strengthened glass that meets the following conditions: the tensile stress linear density CT_LD of the chemically strengthened glass is greater than or equal to 40000MPa/mm, and the optional tensile stress linear density CT_LD is greater than or equal to 42000MPa/mm and less than Or equal to 70000MPa/mm, further optional tensile stress linear density CT_LD is greater than or equal to 43000MPa/mm and less than or equal to 70000MPa/mm; the value of CT_LD/S is greater than or equal to 7.5 and less than or equal to 20; the chemically strengthened glass includes The compressive stress layer on the surface of the chemically strengthened glass and the tensile stress layer located inside the chemically strengthened glass are tested by an X-ray energy spectrum analyzer for the signal intensity distribution curve corresponding to the sodium content along the thickness direction of the chemically strengthened glass, Fit the signal intensity distribution curve into a smooth curve.
  • tensile stress linear density CT_LD can be 40000MPa/mm, 42000MPa/mm, 43000MPa/ mm, 45000MPa/mm, 50000MPa/mm, 55000MPa/mm, 60000MPa/mm, 65000MPa/mm, 70000MPa/mm or a value within the range of any two of the above values as endpoints
  • the ratio of CT_LD/S can be 7.5 , 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or a value within the range of any two of the above values as endpoints
  • the chemically strengthened glass obtained has excellent anti-drop performance.
  • S can range from 3000 to 6500.
  • the surface CS of the chemically strengthened glass is greater than or equal to 900MPa and less than or equal to 1600MPa, optionally greater than or equal to 1000MPa and less than or equal to 1600MPa.
  • the surface CS of chemically strengthened glass can be 900MPa, 950MPa, 1000MPa, 1050MPa, 1100MPa, 1150MPa, 1200MPa, 1250MPa, 1300MPa, 1350MPa, 1400MPa, 1450MPa, 1500MPa, 1550MPa, 1600MPa or any two of the above values as endpoints. Values within the numerical range indicate that the chemically strengthened glass provided by this application has excellent scratch resistance, deformation resistance, etc.
  • This application meets specific stress characteristic requirements by controlling chemically strengthened glass, that is, controlling the stress characteristics to meet: tensile stress linear density CT_LD is greater than or equal to 40000MPa/mm, CT_LD/S is greater than or equal to 7.5 and less than or equal to 20, which can ensure chemical strengthening. While the glass has excellent drop resistance, it reduces the strengthening cost and improves the discreteness of the drop resistance height distribution of the same batch of chemically strengthened glass.
  • the compressive stress layer depth DOL_0 of the chemically strengthened glass is 0.15t ⁇ 0.22t, and t is the thickness of the chemically strengthened glass.
  • the compressive stress layer depth DOL_0 can be 0.15t, 0.16t, 0.17t, 0.18t, 0.19t, 0.20t, 0.21t, 0.22t, or a value within the range of any two values in between.
  • the thickness change of the glass before and after chemical strengthening is very small and almost negligible.
  • the depth of compressive stress layer DOL_0 is obtained by testing with SLP-2000 stress meter. When the compressive stress layer depth DOL_0 is within the above range, the compressive stress layer is deep enough.
  • the thickness t of the base glass can be selected according to the required thickness of the chemically strengthened glass, which is not limited in this application.
  • the thickness of the substrate glass may be 0.4 to 2.0 mm.
  • the chemically strengthened glass has a Young's modulus greater than or equal to 85 GPa, optionally greater than or equal to 90 GPa.
  • the Young's modulus of chemically strengthened glass can be 85GPa, 86GPa, 87GPa, 88GPa, 89GPa, 90GPa, 95GPa, 100GPa or a value within the range of any two of the above values as endpoints. It shows that the chemically strengthened glass provided by this application has a higher Young's modulus.
  • the composition of the chemically strengthened glass tensile stress layer includes: SiO 2 60.00 ⁇ 75.00 mol%, Al 2 O 3 8.00 ⁇ 18.00 mol%, Li 2 O 7.00 ⁇ 12.00 mol%, Y 2 O 3 0.00 to 10.00 mol%, Na 2 O 2.00 to 8.00 mol%, MgO 0.00 to 8.00 mol%.
  • ions with a large radius in the salt bath exchange with ions with a small radius in the glass, thereby forming a compressive stress layer on the surface of the glass and a tensile stress layer inside the glass.
  • the occurrence of ion exchange will lead to changes in the composition of the compressive stress layer, because the depth of ion exchange is usually less than or equal to the compressive stress layer Thickness, so the composition of the tensile stress layer inside the glass will not change, that is, the composition of the tensile stress layer is the same as the composition of the base glass before strengthening.
  • the content of SiO2 may be 60.00mol%, 61.00mol%, 62.00mol%, 63.00mol%, 64.00mol%, 65.00mol%, 66.00mol%, 67.00mol%, 68.00mol% , 69.00mol%, 70.00mol%, 71.00mol%, 72.00mol%, 73.00mol%, 74.00mol%, 75.00mol% or a value within the range of any two of the above values as endpoints; it should be understood that, In embodiments, any of the above ranges may be combined with any other range.
  • the content of Al 2 O 3 may be 8.00 mol%, 9.00 mol%, 10.00 mol%, 11.00 mol%, 12.00 mol%, 13.00 mol%, 14.00 mol%, 15.00 mol%, 16.00 mol %, 17.00 mol %, 18.00 mol %, or a value within a range consisting of any two of the above values as endpoints; it should be understood that in embodiments, any of the above ranges can be combined with any other range.
  • the content of Li 2 O may be 7.00 mol%, 7.50 mol%, 8.00 mol%, 8.50 mol%, 9.00 mol%, 9.50 mol%, 10.00 mol%, 10.50 mol%, 11.00 mol %, 11.50 mol%, 12.00 mol%, or a value within the range of any two of the above values as endpoints; it should be understood that in embodiments, any of the above ranges can be combined with any other range.
  • the content of Y2O3 may be 0.00mol%, 1.00mol%, 2.00mol%, 3.00mol%, 4.00mol%, 5.00mol%, 6.00mol%, 7.00mol%, 8.00 mol %, 9.00 mol %, 10.00 mol %, or a value within a range consisting of any two of the above values as endpoints; it should be understood that in embodiments, any of the above ranges can be combined with any other range.
  • the content of Na 2 O may be 2.00 mol%, 3.00 mol%, 4.00 mol%, 5.00 mol%, 6.00 mol%, 7.00 mol%, 8.00 mol%, or any two of the above values Numerical values are within numerical ranges constituted by the endpoints; it is understood that, in embodiments, any of the above ranges may be combined with any other range.
  • the content of MgO can be 0.00mol%, 1.00mol%, 2.00mol%, 3.00mol%, 4.00mol%, 5.00mol%, 6.00mol%, 7.00mol%, 7.50mol%, 8.00 mol% or a value within the range of any two of the above values as endpoints; it should be understood that in embodiments, any of the above ranges can be combined with any other range.
  • the composition of the chemically strengthened glass tensile stress layer also includes: B 2 O 3 0.00 to 5.00 mol%, optionally B 2 O 3 0.00 to 3.00 mol%, expressed in molar percentage of oxide.
  • B 2 O 3 is beneficial to lowering the melting temperature of glass and increasing the exchange rate of sodium ions and lithium ions during the chemical strengthening process.
  • too high a content will affect the intrinsic structure of chemically strengthened glass. Therefore, it is necessary to control B 2 O 3
  • the content is within the above range.
  • the content of B 2 O 3 is 0.00mol%, 0.50mol%, 1.00mol%, 1.50mol%, 2.00mol%, 2.50mol%, 3.00mol% or any two of the above values. A value within the range of values formed by the endpoints.
  • the base glass corresponding to chemically strengthened glass can be produced by, but is not limited to, the following preparation methods: overflow method, float method, and calendering method.
  • the float process has the advantages of large output, large sheet size, and low cost compared to other methods.
  • the inventor of the present application found that the existing lithium aluminum silicon chemically strengthened glass that can achieve high stress levels and high mechanical properties is generally not suitable for mass production using the float process, because the aluminum content in the base glass is too high, which will cause The increase in the melting temperature of glass shortens the material properties, which in turn leads to an increase in the viscosity drop of the glass liquid between 800°C and 1200°C.
  • the reduction of Al 2 O 3 content is not conducive to increasing the stress effect produced by unit ion exchange, and the reduction of Li 2 O content is not conducive to increasing the exchange volume of sodium ions-lithium ions, which is not conducive to improving deep compressive stress and Yang modulus. It is precisely due to the limitations of the float process that the contents of Al 2 O 3 and Li 2 O in the base glass suitable for float mass production are limited, resulting in a tensile stress that can be obtained by chemical strengthening of the existing float mass production base glass.
  • the maximum linear density CT_LD max and the maximum surface compressive stress CS max are lower than those of existing substrate glasses that can produce chemically strengthened glass with high stress levels and high mechanical properties.
  • the mechanical strength of the existing chemically strengthened glass made from the base glass produced by the float process is relatively low, which in turn results in the products made from the chemically strengthened glass (such as mobile phone covers, aviation glass, automobile glass, etc.) ) has relatively low mechanical strength and cannot meet actual needs.
  • this application optimizes the formula so that the base material glass corresponding to the chemically strengthened glass that can meet the performance requirements of this application can also be mass-produced using the float process.
  • the composition of the chemically strengthened glass tensile stress layer includes: SiO 2 60.00 ⁇ 75.00 mol%, Al 2 O 3 8.00 ⁇ 12.00 mol%, Li 2 O 7.00 ⁇ 12.00 mol%, Y 2 O 3 1.00 to 3.00 mol%, Na 2 O 2.00 to 8.00 mol%, MgO 0.00 to 8.00 mol%, La 2 O 3 0.10 to 3.00 mol%.
  • the content of SiO2 can be 60.00mol%, 61.00mol%, 62.00mol%, 63.00mol%, 64.00mol%, 65.00mol%, 66.00mol%, 67.00mol%, 68.00mol%, 69.00mol%, 70.00mol %, 71.00mol%, 72.00mol%, 73.00mol%, 74.00mol%, 75.00mol% or a value within the range of any two of the above values as endpoints;
  • the content of Al 2 O 3 can be 8.00mol%, Li 2
  • the content of O can be 7.00mol%, 7.50mol%, 8.00mol%, 8.50mol%, 9.00mol%, 9.50mol%, 10.00mol%, 10.50mol%, 11.00mol%, 11.50mol%, 12.00mol% or other Any two numerical values above are values within the numerical range formed by the endpoints;
  • the content of Y 2 O 3 can be 1.00 mol%, 1.25 mol%, 1.50 mol%, 1.75 mol%, 2.00
  • SiO 2 and Al 2 O 3 are the main components that constitute the glass network structure, and their addition is beneficial to improving the intrinsic strength of the glass.
  • SiO 2 can also improve the acid resistance of glass and reduce glass scratches;
  • Al 2 O 3 can also improve the stress effect caused by ion exchange.
  • too much Al 2 O 3 will increase the difficulty of melting and increase the upper limit temperature of crystallization. Too much SiO 2 will also increase the difficulty of melting.
  • Y 2 O 3 can cause changes in the glass network structure inside the glass, and the Si-OY bonds formed by it cause the isolation in the glass to change. Reconnecting the island-like network structure can improve the glass structure and increase the stability of the glass network, which in turn will increase the unit stress generated by sodium-lithium exchange and increase the stress effect caused by ion exchange. And because Y has a relatively large relative atomic mass and a relatively large radius, it has a high field strength in the glass network, which will have an aggregation effect on the internal free alkali metals and alkaline earth metals, and will tend to tighten the network structure, thereby making the glass The overall structure is compactly arranged and has a high degree of densification, which can increase the atomic packing density of the glass.
  • Y 2 O 3 can also reduce the structural relaxation of the glass after annealing, while also increasing the Vickers hardness of the glass and improving its scratch resistance.
  • too much Y 2 O 3 will lead to an increase in the upper limit of glass crystallization. It will also cause the structure of the glass to be too dense, affecting the progress of ion exchange, affecting the ion exchange rate and ion exchange depth.
  • Alkali metals are the main components involved in ion exchange. Na ions are the key exchange ions that form high compressive stress on the surface, and Li ions are the key exchange ions that form deep compressive stress.
  • alkali metal oxides are in a free state inside the glass, their excess oxygen ions will break off the bridge oxygen, destroy the network structure of the glass, and reduce the intrinsic strength of the glass.
  • Li 2 O is the main component of lithium aluminum silicon crystallization, excessive Li 2 O will increase the upper limit of glass crystallization and cause production difficulties.
  • Magnesium oxide (MgO) exists as a network intermediate, which can reduce the high-temperature viscosity of glass and can also increase the Young's modulus of glass. Due to the small radius of magnesium ions, their filling density in the glass network structure is high, which plays a greater role in increasing Young's modulus. Also due to the small radius of magnesium ions, they are among the alkaline earth metal oxides and have the least hindrance to ion exchange. Yes, but excess magnesium oxide (MgO) will still hinder ion exchange.
  • La 2 O 3 can reduce the crystallization tendency of the lithium aluminosilicate glass formula containing only Y 2 O 3 to obtain a lower crystallization upper limit temperature, and La 2 O 3 can make the glass dense and intrinsic. The characteristic strength further increases, but when there is too much La 2 O 3 , it will affect the stress effect generated by the unit exchange amount.
  • the crystallization temperature of the base glass corresponding to the chemically strengthened glass of the present application is less than or equal to 1200°C and the glass liquid has a suitable viscosity during the preparation process, so that the float process can be used for preparation.
  • the base material glass has a high ion exchange stress effect. In the process of preparing chemically strengthened glass, a high stress effect can be achieved at a low sodium-lithium exchange amount, and the chemically strengthened glass produced has excellent mechanical strength.
  • the base material glass has a high ion exchange stress effect
  • the lithium ion content released by the glass into the salt bath is less than that of the existing lithium aluminosilicate glass, which is conducive to improving the use of the salt bath. life.
  • the reduction in ion exchange volume is conducive to reducing the discreteness of the drop resistance height distribution of batch samples and ensuring the stable strength performance of mass-produced chemically strengthened glass.
  • the above-mentioned chemical strengthening treatment process is also a process in which the base glass undergoes ion exchange in a salt bath. It can be understood that the base material glass corresponding to the chemically strengthened glass of the present application can also be prepared by other preparation methods known in the art.
  • the composition in the chemically strengthened glass tensile stress layer satisfies the La 2 O 3 /Y 2 O 3 ratio of 0.2 to 1.0, expressed as the mole percentage of the oxide.
  • Y 2 O 3 is conducive to improving the stress effect produced by the base glass during ion exchange.
  • the addition of La 2 O 3 can reduce the crystallization tendency of the lithium aluminosilicate glass formula containing only Y 2 O 3 , so as to A lower crystallization upper limit temperature is obtained, and La 2 O 3 can further increase the density and intrinsic strength of the glass.
  • La 2 O 3 can further increase the density and intrinsic strength of the glass.
  • it will affect the stress effect generated by the unit exchange amount.
  • La 2 O 3 /Y 2 O 3 can be 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 or a value within the range of any two of the above values as endpoints, It can reduce the upper crystallization temperature of the base material glass while ensuring that the Young's modulus and stress effect of the base material glass meet the requirements, which is conducive to float mass production and is conducive to obtaining a base with a higher Young's modulus. material glass.
  • the composition in the chemically strengthened glass tensile stress layer satisfies: Al 2 O 3 + Li 2 O ⁇ 22.00 mol%, optionally, Al 2 O 3 + Li 2 O ⁇ 20.00mol%.
  • Al 2 O 3 and Li 2 O are the main components of precipitated spodumene crystals.
  • the crystallization phenomenon that occurs in the glass can avoid affecting the mechanical strength of chemically strengthened glass, and at the same time, it can ensure that the glass liquid has longer material properties, so that it can be better suitable for the float process.
  • the composition in the chemically strengthened glass tensile stress layer satisfies: La 2 O 3 /Y 2 O 3 is 0.2 to 1.0, Al 2 O 3 +Li 2 O ⁇ 22.00mol%, optionally, Al 2 O 3 +Li 2 O ⁇ 20.00mol%. It is further ensured that the substrate glass corresponding to the chemically strengthened glass can be prepared through the float process, and the obtained substrate glass has good mechanical strength, and the chemically strengthened glass with good drop resistance can be produced from the substrate glass.
  • the composition of the chemically strengthened glass tensile stress layer also includes: SrO 0 to 3.00 mol%.
  • SrO is conducive to reducing the crystallization speed during crystallization and further avoiding the occurrence of crystallization.
  • the content of SrO can be 0.00mol%, 0.50mol%, 1.00mol% , 1.50%, 2.00mol%, 2.50mol%, 3.00mol% or a value within the range of any two of the above values as endpoints, which is helpful to further avoid the occurrence of crystallization.
  • the contents of MgO and SrO in the chemically strengthened glass tensile stress layer satisfy SrO/(MgO+SrO) ⁇ 0.35, optionally 0.05 ⁇ SrO/(MgO +SrO) ⁇ 0.35.
  • the value of SrO/(MgO+SrO) can be 0.05, 0.09, 0.12, 0.15, 0.18, 0.20, 0.22, 0.25, 0.28, 0.30, 0.35 Or a value within a numerical range formed by taking any two of the above values as endpoints, which is beneficial to ensuring the ion exchange speed during the chemical strengthening process of the base glass and avoiding too long strengthening time.
  • the composition of the chemically strengthened glass tensile stress layer also includes: K 2 O 0.00 to 3.00 mol%, optionally, K 2 O 1.00 to 3.00 mol%, More optionally, K 2 O 1.00 ⁇ 2.00 mol%.
  • K 2 O is beneficial to reducing the upper limit temperature of crystallization, but too high a content will affect the ion exchange stress effect.
  • the content of K 2 O can be 0.00 mol%, 0.50 .00mol%, 1.00mol%, 1.50mol%, 2.00mol%, 2.50mol%, 3.00mol% or a value within the numerical range consisting of any two of the above values as endpoints, which is beneficial to reducing the upper limit temperature of crystallization while ensuring The ion exchange stress effect meets the requirements.
  • the composition of the chemically strengthened glass tensile stress layer also includes: SrO 0.00-3.00 mol%, K 2 O 0.00-3.00 mol%.
  • the composition of the chemically strengthened glass tensile stress layer satisfies: SiO 2 64.00-70.00 mol% and/or Li 2 O 8.00-12.00 mol% and/or Na 2 O 4.00 ⁇ 6.00mol% and/or MgO 2.00-7.50 mol% and/or La 2 O 3 0.20-1.50 mol%. That is, the composition of the chemically strengthened glass tensile stress layer satisfies SiO 2 64.00-70.00 mol%, Li 2 O 8.00-12.00 mol%, Na 2 O 4.00-6.00 mol%, MgO 2.00-7.50 mol%, La 2 O 3 At least one of 0.20 to 1.50 mol%.
  • it can not only better meet the requirements of float mass production, effectively avoid the occurrence of crystallization, improve the service life of the salt bath, but also help obtain chemically strengthened glass with higher mechanical strength.
  • the composition of the chemically strengthened glass tensile stress layer includes: SiO 2 60.00 ⁇ 75.00 mol%, Al 2 O 3 8.00 ⁇ 12.00 mol%, Li 2 O 7.00 ⁇ 12.00mol%, Y 2 O 3 1.00 ⁇ 3.00mol%, Na 2 O 2.00 ⁇ 8.00mol%, MgO 1.00 ⁇ 8.00mol%, La 2 O 3 0.20 ⁇ 3.00mol%, La 2 O 3 /Y 2 O 3 is 0.2 ⁇ 1.0.
  • the composition of the chemically strengthened glass tensile stress layer includes: SiO 2 64.00-70.00 mol%, Al 2 O 3 8.00-12.00 mol%, Li 2 O 8.00- 12.00 mol%, Y 2 O 3 1.00 to 3.00 mol%, Na 2 O 4.00 to 6.00 mol%, MgO 2.00 to 7.50 mol%, La 2 O 3 0.20 to 1.50 mol%.
  • 0.7mm thick chemically strengthened glass is tested for drop resistance using 120-grit sandpaper, and the average sandpaper drop resistance height is greater than or equal to 1.60m, optionally greater than or equal to 1.70m.
  • the average sandpaper drop resistance can be 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 or a value within the range of any two of the above values as endpoints, indicating that the application provides Chemically strengthened glass has excellent drop resistance.
  • the 0.7mm thick chemically strengthened glass is tested for drop resistance using 120-grit sandpaper, and the B10 value of the drop height of the sandpaper is greater than or equal to 1.1m, and can be selected from 1.1 to 2.0m.
  • the B10 value of the sandpaper drop height resistance can be 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 or a value within the range of any two of the above values as endpoints, indicating that the application
  • the chemically strengthened glass offered has excellent drop resistance properties.
  • the B10 value of the 0.7mm thick chemically strengthened glass's sandpaper drop resistance does not decrease by more than 25% compared to the average sandpaper drop height, and the sandpaper mesh used in the test is 120 mesh.
  • B10 refers to the chemically strengthened glass of the same batch falling at this height. It is expected that 10% of the chemically strengthened glass will malfunction or fail. It can be used to evaluate the discreteness of the drop resistance height distribution of chemically strengthened glass.
  • the B10 value of the 0.7mm thick chemically strengthened glass's resistance to sandpaper drop height compared to the average sandpaper drop height H0 can be 0%, 1%, 2%, 3%, 4%, 5%, 6%.
  • a second aspect of the present application provides a glass device made from the chemically strengthened glass in any of the above embodiments.
  • glass devices may include but are not limited to mobile phone display protective covers, mobile phone battery back covers, notebook screen protective covers, car central control glass covers, etc.
  • the chemically strengthened glass provided by this application has good drop resistance performance, so the glass device provided by this application also has good drop resistance performance.
  • a third aspect of the present application provides an electronic device including the chemically strengthened glass in any of the above embodiments.
  • electronic devices include mobile phones, tablet computers, or other electronic terminals, and other electronic terminals may include but are not limited to Smart wearables (such as electronic watches, smart bracelets, smart watches, smart glasses, etc.), displays (such as high-definition displays, vehicle-mounted displays, aerospace displays, etc.), TVs, etc.
  • the electronic device may include a housing including a front surface, a rear surface, and a side surface, and an electronic component located partially within the housing, the electronic component including a display device located at or adjacent to the front surface of the housing.
  • the chemically strengthened glass provided in this application can be applied to the front surface or/and rear surface or/and side surface of the housing; optionally, the electronic device can also include a covering product covering the front surface of the housing or located on the display device , the chemically strengthened glass provided by this application can be applied to covering products.
  • the tensile stress linear density CT_LD is the ratio of the sum of the tensile stresses of chemically strengthened glass measured by the SLP-2000 stress meter to the thickness of the glass.
  • Example 3 will be used for description below, and the calculations for other examples will be carried out in the same way.
  • Example 3 Scan the cross section of the chemically strengthened glass in Example 3 with a Bruker EDS-X-ray energy spectrometer, the magnification is 250 times, the ray intensity HV is 10.0 KeV, and the scanning range is 300 ⁇ m.
  • the starting test position is more than ten microns away from the surface of chemically strengthened glass.
  • the direction shown by the arrow in Figure 1 is the test scanning direction, and the starting scanning position
  • the distance to the chemically strengthened glass surface is 14.4 ⁇ m. In this way, in the 0 ⁇ 300 ⁇ m test chart, the intensity will form a trend from low to high, and then slowly decrease.
  • the signal intensity distribution curve corresponding to the sodium content is obtained as shown in Figure 2.
  • the smooth curve shown in Figure 3 is obtained by fitting the allometric function in professional data drawing software (such as SciDAVis, etc.). It can be seen from Figure 3 that as the depth increases, the signal intensity corresponding to the sodium element content gradually decreases, and the rate of decline gradually slows down, and finally approaches the signal intensity corresponding to the sodium element content in the tensile stress layer.
  • Test conditions for surface CS and potassium-sodium ion exchange depth Test using Japan Orihara's stress meter FSM-6000, the light source wavelength is 596nm. Before starting the test, fill in the thickness, refractive index, and photoelastic coefficient of the sample to be tested into the parameter table, and then conduct the test to obtain the stress parameter values of the sample to be tested.
  • Test conditions for DOL_0 and CT_LD Use Japan Orihara's stress meter SLP-2000 for testing, and the light source wavelength is 518nm. Before starting the test, fill in the thickness, refractive index, and photoelastic coefficient of the sample to be tested into the parameter table, adjust the exposure time to 5000usec, and then conduct the test to obtain the stress parameter values of the sample to be tested.
  • the refractive index and photoelastic coefficient of glass with different compositions are different.
  • the refractive index is tested by an Abbe refractometer, and the photoelastic coefficient is tested by a UNIPT ABR-10A dual-frequency laser stress meter.
  • the refractive fluid used in SLP-2000 The refractive index of FSM-6000 is 1.51, and the refractive index of the refractive fluid used in FSM-6000 is 1.72.
  • the substrate glass (25mm ⁇ 85mm ⁇ 2.5mm) prepared in each example was placed on the test instrument (manufacturer: Kegonas Instrument Trading Co., Ltd., model MK7), and then vibrated with the tip, and placed on the upper end
  • the receiver obtains the ultrasonic vibration propagation results, and then obtains the Young's modulus through the instrument.
  • the Young's modulus of the base glass corresponding to formulas 1 to 9 in Table 1 is 84GPa, 88GPa, 89GPa, 91GPa, 90GPa, 89GPa, 89GPa, 90GPa, and 89GPa.
  • the base glass is strengthened, its Young's modulus will change.
  • the Young's modulus of the chemically strengthened glass obtained is greater than or equal to 85GPa.
  • t hours is the processing time when the maximum tensile stress linear density CT_LD max is obtained.
  • the processing time can be obtained based on the above-mentioned test of the maximum tensile stress linear density CT_LD max .
  • M Na is the relative atomic mass of sodium 23
  • M Li is the relative atomic mass of lithium 7
  • n is the number of moles of sodium ions or lithium ions exchanged.
  • Set the temperature range of the gradient furnace model JKZC-XJY01 such as the temperature range from 1050°C to 1225°C, and take at least 6 temperature points from high to low in each temperature range.
  • the glass samples at different positions in the long quartz tank If the glass sample appears devitrified or fogged, it is judged that the glass sample there has crystallized. If the glass sample is completely transparent, it is judged that the glass sample there has not crystallized. Referring to Figure 5, in the long quartz tank in Figure 5, the upper area is a completely transparent sample, the lower area is a devitrified sample, and there is a partially hazy sample between the completely transparent sample and the devitrified sample. When observing, you can use tools such as magnifying glasses, microscopes, etc.
  • the upper limit temperature range of crystallization is between the temperature point corresponding to the completely transparent sample and the temperature point corresponding to the adjacent devitrification or fogging sample. The average of the two temperature points is taken as the upper limit crystallization temperature.
  • Average sandpaper drop resistance the sum of the sandpaper drop resistance measured on multiple glass samples divided by the number of samples tested, used to characterize the glass's resistance to contact surface cracking.
  • the average sandpaper drop resistance height is:
  • n is the number of glass samples tested in each batch
  • hi is the sandpaper drop resistance height tested by a single sample.
  • test method for the sample's resistance to sandpaper falling height is:
  • Step 1 Paste the glass sample to be tested with a length, width and thickness of 158.8mm ⁇ 72.8mm ⁇ 0.7mm on the front of the 200g model machine;
  • Step 2 Place the model machine on the Green Figure LT-SKDL-CD type drop machine, make the glass sample face the sandpaper, and impact it at a certain drop height. Impact the 120-grit sandpaper directly below the model machine to simulate a normal mobile phone drop. attitude.
  • the drop height of the model machine increases in a certain pattern. For example, if the drop height starts from 0.4m, the sample is subjected to a drop impact. If it is not broken, the height is increased by 0.1m each time and dropped again until the glass sample is broken.
  • Step 3 Record the last drop height when the glass sample is broken as the sandpaper drop resistance height. For example, if the drop height when broken is 0.5m, then the sandpaper drop resistance height of the sample is 0.4m.
  • B10 of sandpaper drop resistance This is a statistical value calculated by the Weibull distribution. It is a statistical analysis of the sandpaper drop height data obtained from multiple sample tests. The calculation takes into account the sandpaper drop height distribution of the sample. of discreteness.
  • the specific meaning of B10 in this application refers to the sandpaper drop resistance height corresponding to a chemically strengthened glass sample with a failure rate of 10%, which can be used to evaluate the drop resistance of a certain type of chemically strengthened glass.
  • the sandpaper drop resistance height measured by taking m pieces of chemically strengthened glass is recorded as N1 ⁇ Nm in sequence. Then set the parameter K value of the PERCENTILE function to 0.1. The result obtained by calculating the N1 ⁇ Nm data through this function is recorded as the B10 value of the anti-sandpaper drop height.
  • the glass sample bricks were then subjected to multi-line cutting, numerical control lathe processing (CNC), thinning, and polishing to obtain base material glass with a thickness of 0.7 mm.
  • CNC numerical control lathe processing
  • the substrate glass is first treated in a 100wt% NaNO 3 salt bath at 420°C for 3 hours, and then treated in a 100wt% KNO 3 salt bath at 420°C for 1 hour to obtain chemically strengthened glass.
  • the thickness t of the chemically strengthened glass is 0.7mm.
  • Example 1 The rest is the same as Example 1 except that Formula 1 is replaced with Formula 2 to Formula 9 in Table 1 in sequence.
  • Example 1 Except for adjusting the strengthening process and formula according to Table 2, the rest is the same as Example 1.
  • each substance in Table 1 is molar percentage, that is, mol%; "/" means that the corresponding substance does not exist or that the component was not actively or intentionally added to the glass composition during the initial batching process, but This component may be present as an impurity.
  • 420°C*100wt% NaNO 3 *3h 420°C*100wt% KNO 3 *1h in Table 2 means that the substrate glass is first treated in a 100wt% NaNO 3 salt bath at 420°C for 3h. Then, it was treated in a 100wt% KNO 3 salt bath at 420° C. for 1 hour to obtain chemically strengthened glass.
  • Other examples and comparative examples can be understood by analogy.
  • the chemically strengthened glass of the present application has a higher average sandpaper drop resistance and a higher resistance to falling.
  • the B10 value of the sandpaper drop height, and the lower drop Y, thus the chemically strengthened glass provided by the present application has excellent drop resistance performance and small dispersion of drop resistance height distribution.
  • Comparative Examples 5 and 6 Comparative Examples 5 and 6 have been over-strengthened. Although they have a higher average anti-sandpaper drop height, the decrease Y is significantly higher than this.
  • the application examples show that the drop resistance height distribution of samples from the same batch is highly discrete, which further indicates that the drop resistance performance of mass-produced chemically strengthened glass is extremely unstable.
  • the surface CS and compressive stress layer depth DOL_0 of the embodiment are equivalent to or better than those of the comparative example, indicating that the chemically strengthened glass of the present application can achieve the mechanical strength or the mechanical strength of the prior art. The mechanical strength is further increased. More importantly, the drop resistance height distribution of the chemically strengthened glass in the embodiment is less discrete, which can ensure that mass-produced chemically strengthened glass has relatively stable and excellent drop resistance performance.
  • the upper limit crystallization temperature of the substrate glass corresponding to the chemically strengthened glass in Examples 3 to 6, Example 8 and Example 9 is less than 1200°C, and can be mass-produced using the float process.
  • the chemically strengthened glass produced has excellent Anti-drop performance, while the amount of lithium ions released in the salt bath is low, which is beneficial to extending the service life of the salt bath, thereby reducing the production cost of mass production.
  • the upper limit crystallization temperature of the substrate glass corresponding to the chemically strengthened glass of Comparative Examples 1 to 3 and Comparative Example 6 is also less than 1200°C, its decrease rate Y is higher than that of the Example. That is to say, although these Comparative Examples can also be used
  • the float process is used for mass production, but the drop resistance performance and discreteness of the drop resistance height distribution of the chemically strengthened glass obtained in this application are significantly better than those of these comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

一种化学强化玻璃及包含化学强化玻璃的玻璃器件,所述化学强化玻璃满足如下条件:化学强化玻璃的张应力线密度CT_LD大于或等于40000MPa/mm,CT_LD/S的比值大于或等于7.5且小于或等于20,从而得到的化学强化玻璃具有优异的抗跌落性能,而且该化学强化玻璃的制备过程中,玻璃向盐浴中释放的锂离子含量较现有锂铝硅玻璃少,不仅有利于提高盐浴的使用寿命,还能保证量产的化学强化玻璃具有较稳定的抗跌落性能。

Description

一种化学强化玻璃及包含化学强化玻璃的玻璃器件
本申请要求于2022年7月26日提交中国国家知识产权局、申请号为202210895438.5、发明名称为“一种化学强化玻璃及包含化学强化玻璃的玻璃器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及玻璃技术领域,特别是涉及一种化学强化玻璃及包含化学强化玻璃的玻璃器件。
背景技术
近些年来,锂铝硅化学强化玻璃已经广泛用于手机的显示保护盖和手机后盖。随着智能手机的更新迭代,手机厂商对于盖板玻璃的抗跌落性能要求也越来越高,现有的锂铝硅玻璃产品的抗跌落性能还存在不足。面对市场对于抗跌落性能的高要求,有些产品通过进行大量的离子交换,来实现对抗跌落高度的提升,即通过增大离子交换量获得足够的应力水平,以提高抗跌落的高度。但离子交换量大,一方面容易使基材玻璃表层在强化后形成过量的体积变化,造成同批次样品抗跌落高度分布的离散性大,使同批次样品中出现具有低抗跌落高度的概率会增加,进而造成量产的化学强化玻璃所具有的抗跌落性能极不稳定。同时,离子交换量大,也意味着在制备化学强化玻璃的过程中,玻璃向盐浴中释放的锂离子量多,会导致盐浴的使用寿命缩短,进而造成锂铝硅化学强化玻璃的制造成本,尤其是强化成本增加。
因此,开发出一种能够降低制造成本,具有改善的抗跌落性能的化学强化玻璃,并保证量产的化学强化玻璃具有较稳定的抗跌落性能,将会极大地提高产品的竞争力。
发明内容
本申请的目的在于提供了一种具有改善的抗跌落性能的化学强化玻璃,并保证了量产的化学强化玻璃具有较稳定的抗跌落性能。具体技术方案如下:
本申请的第一方面提供了一种化学强化玻璃,其满足如下条件:化学强化玻璃的张应力线密度CT_LD大于或等于40000MPa/mm,CT_LD/S的比值大于或等于7.5且小于或等于20;所述化学强化玻璃包括位于所述化学强化玻璃表面的压缩应力层和位于所述化学强化玻璃内部的张应力层,通过X射线能谱分析仪测试所述化学强化玻璃沿厚度方向的钠元素含量对应的信号强度分布曲线,将所述信号强度分布曲线拟合成平滑曲线,x=x1、x=x2、y=y0与所述平滑曲线所围成的图形的面积为S,x1为所述化学强化玻璃表面对应的测试深度值,x2为压缩应力为零处对应的测试深度值,y0为所述张应力层中钠元素含量在平滑曲线中所对应的强度值
在本申请的一些实施方案中,化学强化玻璃的表面CS大于或等于900MPa且小于或等于1600MPa,可选大于或等于1000MPa且小于或等于1600MPa。
在本申请的一些实施方案中,化学强化玻璃的压缩应力层深度DOL_0为0.15t~0.22t,t为化学强化玻璃的厚度。
在本申请的一些实施方案中,化学强化玻璃的杨氏模量大于或等于85GPa,可选大于 或等于90GPa。
在本申请的一些实施方案中,化学强化玻璃的张应力线密度CT_LD大于或等于42000MPa/mm且小于或等于70000MPa/mm,可选大于或等于43000MPa/mm且小于或等于70000MPa/mm。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~18.00mol%、Li2O 7.00~12.00mol%、Y2O3 0.00~10.00mol%、Na2O 2.00~8.00mol%、MgO 0.00~8.00mol%。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成还包含:B2O3 0.00~5.00mol%,可选B2O3 0.00~3.00mol%。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~12.00mol%、Li2O 7.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 2.00~8.00mol%、MgO 0.00~8.00mol%、La2O3 0.10~3.00mol%。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层中的组成满足:La2O3/Y2O3为0.2~1.0;和/或
Al2O3+Li2O≤22.00mol%,可选地,Al2O3+Li2O≤20.00mol%。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成还包含:SrO 0.00~3.00mol%,SrO/(MgO+SrO)≤0.35;和/或K2O 0.00~3.00mol%。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,0.05≤SrO/(MgO+SrO)≤0.35。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~12.00mol%、Li2O 7.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 2.00~8.00mol%、MgO 1.00~8.00mol%、La2O3 0.20~1.50mol。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成满足:SiO2 64.00~70.00mol%和/或Li2O 8.00~12.00mol%和/或Na2O 4.00~6.00mol%和/或MgO 2.00~7.50mol%和/或La2O3 0.20~1.50mol%。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,基材玻璃的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~12.00mol%、Li2O 7.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 2.00~8.00mol%、MgO 1.00~8.00mol%、La2O3 0.20~3.00mol%,La2O3/Y2O3为0.2~1.0。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,基材玻璃的组成包含:SiO2 64.00~70.00mol%、Al2O3 8.00~12.00mol%、Li2O 8.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 4.00~6.00mol%、MgO 2.00~7.50mol%、La2O3 0.20~1.50mol%。
在本申请的一些实施方案中,0.7mm厚的化学强化玻璃,采用120目砂纸进行抗跌落测试,平均抗砂纸跌落高度大于或等于1.60m,可选大于或等于1.70m。
在本申请的一些实施方案中,0.7mm厚的所述化学强化玻璃,采用120目砂纸进行抗跌落测试,抗砂纸跌落高度的B10值大于或等于1.1m,可选为1.1~2.0m。
在本申请的一些实施方案中,0.7mm厚的化学强化玻璃抗砂纸跌落高度的B10值相比于平均抗砂纸跌落高度的降幅不超过25%,测试采用的砂纸目数为120目。
本申请的第二方面提供了一种玻璃器件,玻璃器件由上述任一实施方案中的化学强化玻璃制得。
本申请的第三方面提供了一种电子设备,其包括上述任一实施方案中的化学强化玻璃。
在本申请的一些实施方案中,电子设备包括手机、平板电脑、智能穿戴、显示器或电视。其中,智能穿戴包括智能手环、智能手表和智能眼镜等,显示器包括高清显示器、车载显示器、航载显示器等。
上述技术方案中的任一个技术方案具有如下有益效果:
本申请提供一种具有改善的抗跌落性能的化学强化玻璃,该化学强化玻璃在制备时,向盐浴中释放的锂离子含量较现有锂铝硅玻璃少,有利于提高盐浴的使用寿命,降低强化成本。而且离子交换量的降低,有利于减少批次样品抗跌落高度分布的离散性,保证了量产的化学强化玻璃具有较稳定的抗跌落性能。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的实施例。
图1为实施例3中化学强化玻璃通过布鲁克EDS-X射线能谱分析仪测试的示意图;
图2为实施例3中化学强化玻璃的钠元素含量对应的信号强度分布曲线;
图3为图2中信号强度分布曲线经拟合得到的平滑曲线;
图4为析晶上限温度测试中长条石英槽的温度分布示意图;
图5为析晶上限温度测试后长条石英槽中样品示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本申请保护的范围。
术语解释
化学强化玻璃:是经过高温离子交换工艺处理后的强化玻璃。在高温盐浴中离子半径大的碱金属离子取代玻璃中的离子半径小的碱金属离子从而产生交换离子体积差,在基材玻璃的表层由表到里产生从高到低的压应力,阻碍和延缓玻璃微裂纹的扩展,达到提高玻璃机械强度的目的。
基材玻璃:是未被强化处理的玻璃基体材料。
表面CS:表面压应力/表面压缩应力,玻璃经过化学强化后,表面半径较小的碱金属离子被替换为半径较大的碱金属离子,由于半径较大的碱金属离子的挤塞效应,玻璃表面因此产生压应力。由日本折原(Orihara)的应力仪FSM-6000测得。
DOL_0:压缩应力层深度,也称压应力层深度,指玻璃任一表面到靠近该表面的压应力为零的位置的距离。由日本折原(Orihara)的应力仪SLP-2000测得。
CT_LD:张应力线密度,将化学强化玻璃张应力曲线的定积分与化学强化玻璃厚度的比值记为张应力线密度。基材玻璃被置于盐浴中进行离子交换形成强化层(即,压缩应力层/压应力层),离子交换过程中,玻璃内部形成一张应力层,所述张应力层具有与化学强化玻璃的上表面相距一定间隔的上边界和一与化学强化玻璃的下表面相距一定间隔的下边界,将以所述张应力层内的同时垂直于所述上边界和所述下边界且上、下端点分别落在所述上边界和所述下边界上的线段上的某一点处的张应力大小为Y轴、相应点距离所述上边界的距离为X轴所绘制的曲线记为张应力曲线,将所述张应力曲线的定积分与化学强化玻璃厚度的比值记为张应力线密度。也即是由SLP-2000应力仪所测化学强化玻璃的张应力之和与化学强化玻璃厚度的比值。
CT_LDmax:基材玻璃在特定盐浴条件下进行离子交换化学强化,能够获得的最大张应力线密度(CT_LD)值,即为基材玻璃在该盐浴条件下能够获得的张应力线密度最大值CT_LDmax。这一数据可以表征出基材玻璃的可强化性能/可离子交换性能。
在化学强化过程中,随着强化时间的增加,基材玻璃所获得的张应力线密度(CT_LD)值会呈现先增加后降低的趋势,通过持续监控强化过程中玻璃内部张应力线密度的变化情况,即可确定在特定盐浴条件下,其能够强化获得的张应力线密度最大值CT_LDmax
本申请发明人经过研究发现,现有的锂铝硅化学强化玻璃在进行化学强化处理时,往往需要进行大量的钠离子和锂离子的交换,通过向基材玻璃中引入大量的钠离子,才能达到高的应力水平,或者会因为过度强化,向玻璃中引入大量的钠离子。而钠离子和锂离子的交换量大,容易使玻璃表层形成过量的体积变化,而在玻璃内部体积变化较小的情况下,容易导致玻璃表面原本存在的微裂纹扩大,造成量产的化学强化玻璃的抗跌落高度分布的离散性大,使同批次样品中出现具有低抗跌落高度的概率增加,进而导致量产的化学强化玻璃所具有的抗跌落性能极不稳定,影响最终产品的使用体验感。同时,通过大量的钠锂交换来达到高的应力水平,还会造成析出到盐浴中的锂离子量偏多,导致盐浴寿命降低,使得量产的生产成本提高。
基于上述问题,本申请提供了一种化学强化玻璃,以及包含该化学强化玻璃的玻璃器件和电子设备。在本申请中,离子交换应力效应是指基材玻璃在化学强化处理过程中,进行离子交换时,交换一定数量离子所产生的应力效果,不同玻璃结构不同,离子交换应力效应也不同。通常来说,离子交换应力效应越高,获得高水平应力时,所需要的离子交换量就越少。
本申请的第一方面提供了一种化学强化玻璃,其满足如下条件:化学强化玻璃的张应力线密度CT_LD大于或等于40000MPa/mm,可选张应力线密度CT_LD大于或等于42000MPa/mm且小于或等于70000MPa/mm,进一步可选张应力线密度CT_LD大于或等于43000MPa/mm且小于或等于70000MPa/mm;CT_LD/S的值大于或等于7.5且小于或等于20;所述化学强化玻璃包括位于所述化学强化玻璃表面的压缩应力层和位于所述化学强化玻璃内部的张应力层,通过X射线能谱分析仪测试所述化学强化玻璃沿厚度方向的钠元素含量对应的信号强度分布曲线,将所述信号强度分布曲线拟合成平滑曲线,x=x1、x=x2、y=y0与所述平滑曲线所围成的图形的面积为S,x1为所述化学强化玻璃表面对应的测试深 度值,x2为压缩应力为零处对应的测试深度值,y0为所述张应力层中钠元素含量在平滑曲线中所对应的强度值。
本申请通过控制化学强化玻璃满足特定的应力特征要求,即张应力线密度CT_LD和CT_LD/S的值在上述范围内,例如,张应力线密度CT_LD可以为40000MPa/mm、42000MPa/mm、43000MPa/mm、45000MPa/mm、50000MPa/mm、55000MPa/mm、60000MPa/mm、65000MPa/mm、70000MPa/mm或以上述任意两个数值为端点构成的数值范围内的数值,CT_LD/S的比值可以为7.5、8、9、10、11、12、13、14、15、16、17、18、19、20或以上述任意两个数值为端点构成的数值范围内的数值,得到的化学强化玻璃具有优异的抗跌落性能。其中,S的范围可以为3000~6500。
在本申请的一些实施方案中,化学强化玻璃的表面CS大于或等于900MPa且小于或等于1600MPa,可选大于或等于1000MPa且小于或等于1600MPa。例如,化学强化玻璃的表面CS可以为900MPa、950MPa、1000MPa、1050MPa、1100MPa、1150MPa、1200MPa、1250MPa、1300MPa、1350MPa、1400MPa、1450MPa、1500MPa、1550MPa、1600MPa或以上述任意两个数值为端点构成的数值范围内的数值,表明本申请提供的化学强化玻璃具有优异的抗划伤性能、抗变形能力等。
本申请通过控制化学强化玻璃满足特定的应力特征要求,即控制应力特征满足:张应力线密度CT_LD大于或等于40000MPa/mm,CT_LD/S大于或等于7.5且小于或等于20,可以在确保化学强化玻璃具有优异的抗跌落性能的同时,降低强化成本,改善同批次化学强化玻璃的抗跌落高度分布的离散性。
在本申请的一些实施方案中,化学强化玻璃的压缩应力层深度DOL_0为0.15t~0.22t,t为化学强化玻璃的厚度。例如,压缩应力层深度DOL_0可以为0.15t、0.16t、0.17t、0.18t、0.19t、0.20t、0.21t、0.22t或为其间任意两个数值组成的范围内的数值。化学强化前后,玻璃的厚度变化非常小,几乎可以忽略不计。压缩应力层深度DOL_0采用SLP-2000应力仪测试获得。压缩应力层深度DOL_0在上述范围内时,压缩应力层足够深,当玻璃与尖锐物体接触,该压缩应力层能够更好地阻碍产生的裂纹进入张应力层,从而有利于提高抗跌落性能。其中,基材玻璃的厚度t可以根据所需的化学强化玻璃的厚度进行选择,本申请对此不做限定。示例性地,基材玻璃的厚度可以为0.4~2.0mm。
在本申请的一些实施方案中,化学强化玻璃的杨氏模量大于或等于85GPa,可选大于或等于90GPa。例如,化学强化玻璃的杨氏模量可以为85GPa、86GPa、87GPa、88GPa、89GPa、90GPa、95GPa、100GPa或以上述任意两个数值为端点构成的数值范围内的数值。表明本申请提供的化学强化玻璃具有较高的杨氏模量。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~18.00mol%、Li2O 7.00~12.00mol%、Y2O3 0.00~10.00mol%、Na2O 2.00~8.00mol%、MgO 0.00~8.00mol%。
在化学强化时,盐浴中半径大的离子与玻璃中半径小的离子进行交换,进而在玻璃表面形成压缩应力层,并在玻璃内部形成张应力层。相较于强化前的基材玻璃而言,离子交换的发生会导致压缩应力层的组成发生变化,由于离子交换深度通常小于等于压缩应力层 厚度,故玻璃内部张应力层的组成不会发生变化,即张应力层的组成与强化前的基材玻璃组成相同。
在本申请的一些实施方案中,SiO2的含量可以为60.00mol%、61.00mol%、62.00mol%、63.00mol%、64.00mol%、65.00mol%、66.00mol%、67.00mol%、68.00mol%、69.00mol%、70.00mol%、71.00mol%、72.00mol%、73.00mol%、74.00mol%、75.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;应理解的是,在实施方案中,任意上述范围可以与任意其他范围相结合。
在本申请的一些实施方案中,Al2O3的含量可以为8.00mol%、9.00mol%、10.00mol%、11.00mol%、12.00mol%、13.00mol%、14.00mol%、15.00mol%、16.00mol%、17.00mol%、18.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;应理解的是,在实施方案中,任意上述范围可以与任意其他范围相结合。
在本申请的一些实施方案中,Li2O的含量可以为7.00mol%、7.50mol%、8.00mol%、8.50mol%、9.00mol%、9.50mol%、10.00mol%、10.50mol%、11.00mol%、11.50mol%、12.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;应理解的是,在实施方案中,任意上述范围可以与任意其他范围相结合。
在本申请的一些实施方案中,Y2O3的含量可以为0.00mol%、1.00mol%、2.00mol%、3.00mol%、4.00mol%、5.00mol%、6.00mol%、7.00mol%、8.00mol%、9.00mol%、10.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;应理解的是,在实施方案中,任意上述范围可以与任意其他范围相结合。
在本申请的一些实施方案中,Na2O的含量可以为2.00mol%、3.00mol%、4.00mol%、5.00mol%、6.00mol%、7.00mol%、8.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;应理解的是,在实施方案中,任意上述范围可以与任意其他范围相结合。
在本申请的一些实施方案中,MgO的含量可以为0.00mol%、1.00mol%、2.00mol%、3.00mol%、4.00mol%、5.00mol%、6.00mol%、7.00mol%、7.50mol%、8.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;应理解的是,在实施方案中,任意上述范围可以与任意其他范围相结合。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成还包含:B2O3 0.00~5.00mol%,可选B2O3 0.00~3.00mol%。B2O3的加入有利于降低玻璃的熔融温度、提高化学强化处理过程中钠离子和锂离子的交换速度,但含量过高会影响化学强化玻璃的本征结构,因此,控制B2O3的含量在上述范围内,例如,B2O3的含量为0.00mol%、0.50mol%、1.00mol%、1.50mol%、2.00mol%、2.50mol%、3.00mol%或以上述任意两个数值为端点构成的数值范围内的数值。
目前生产化学强化玻璃所对应的基材玻璃,可以采用但不限于以下制备方法:溢流法、浮法、压延法。其中,浮法工艺相对于其它方法具有产量大、成片尺寸大、成本低等优点。但是本申请发明人研究发现,现有的能实现高应力水平和高机械性能的锂铝硅化学强化玻璃普遍不适合采用浮法工艺量产,因为其基材玻璃中铝含量太高,会导致玻璃熔化温度升高,使料性变短,进而导致玻璃液在800℃~1200℃之间粘度下降幅度增大。同时铝和锂为 析出锂辉石晶体的主要成分之一,铝和/或锂含量太高会提高玻璃的析晶上限温度,玻璃易在浮法制备过程中,产生析晶缺陷,甚至失透,因而无法采用浮法工艺进行量产。因此,一般浮法量产的基材玻璃,以氧化物的摩尔百分比表示,其中Al2O3和Li2O的含量均不超过12mol%。但是Al2O3含量的降低是不利于提高单位离子交换产生的应力效应的,Li2O含量的降低是不利于提高钠离子-锂离子的交换量的,进而不利于提高深层压应力和杨氏模量。正是由于浮法工艺的限制,适合浮法量产的基材玻璃中Al2O3和Li2O的含量有限,导致现有浮法量产的基材玻璃经化学强化能够获得的张应力线密度最大值CT_LDmax、表面压应力最大值CSmax,相较于现有能制备出具有高应力水平和高机械性能化学强化玻璃的基材玻璃更低。也即,现有采用浮法工艺生产的基材玻璃制得的化学强化玻璃的机械强度相对较低,进而导致由该化学强化玻璃制得的产品(例如手机盖板、航空玻璃、汽车玻璃等)的机械强度相对较低,无法满足实际需求。
基于上述问题,本申请通过优化配方,使得能够满足本申请性能要求的化学强化玻璃所对应的基材玻璃也可以采用浮法工艺进行量产。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~12.00mol%、Li2O 7.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 2.00~8.00mol%、MgO 0.00~8.00mol%、La2O3 0.10~3.00mol%。例如,SiO2的含量可以为60.00mol%、61.00mol%、62.00mol%、63.00mol%、64.00mol%、65.00mol%、66.00mol%、67.00mol%、68.00mol%、69.00mol%、70.00mol%、71.00mol%、72.00mol%、73.00mol%、74.00mol%、75.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;Al2O3的含量可以为8.00mol%、8.50mol%、9.00mol%、9.50mol%、10.00mol%、10.50mol%、11.00mol%、11.50mol%、12.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;Li2O的含量可以为7.00mol%、7.50mol%、8.00mol%、8.50mol%、9.00mol%、9.50mol%、10.00mol%、10.50mol%、11.00mol%、11.50mol%、12.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;Y2O3的含量可以为1.00mol%、1.25mol%、1.50mol%、1.75mol%、2.00mol%、2.25mol%、2.50mol%、2.75mol%、3.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;Na2O的含量可以为2.00mol%、3.00mol%、4.00mol%、5.00mol%、6.00mol%、7.00mol%、8.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;MgO的含量可以为0.00mol%、1.00mol%、2.00mol%、3.00mol%、4.00mol%、5.00mol%、6.00mol%、7.00mol%、8.00mol%或以上述任意两个数值为端点构成的数值范围内的数值;La2O3的含量可以为0.10mol%、0.20mol%、0.50mol%、0.75mol%、1.00mol%、1.25mol%、1.50mol%、1.75mol%、2.00mol%、2.25mol%、2.50mol%、2.75mol%、3.00mol%或以上述任意两个数值为端点构成的数值范围内的数值。
SiO2和Al2O3是构成玻璃网络结构的主要成分,两者的加入有利于提高玻璃的本征强度。SiO2还能够提高玻璃的耐酸性,减少玻璃划伤;Al2O3还可以提高离子交换产生的应力效应。但过多的Al2O3会提高熔化难度,同时提高析晶上限温度,过多的SiO2也会提高熔化难度。
Y2O3在玻璃内部能够促使玻璃网络结构发生变化,其所形成的Si-O-Y键使玻璃中孤 立岛状网络结构重新连接,可改善玻璃结构,使玻璃网络稳定性增加,进而会提升钠-锂交换产生的单位应力,提高离子交换所带来的应力效应。并且由于Y的相对原子质量较大,半径也比较大,其在玻璃网络中存在高场强,会对内部的游离碱金属、碱土金属存在聚集作用,对网络结构存在收紧趋势,进而使玻璃整体结构排列紧凑,致密化程度高,能够提升玻璃的原子堆积密度。因此,Y2O3的存在还能够降低玻璃退火后的结构松弛程度,同时还能够提高玻璃的维氏硬度,提高抗划伤能力。但Y2O3过多,会导致玻璃析晶上限的提高,还会因造成玻璃的结构过于致密,影响离子交换的进行,会影响离子交换速率和离子交换深度。
碱金属是参与离子交换的主要成分,Na离子是形成表面高压缩应力的关键交换离子,Li离子是形成深层压缩应力的关键交换离子。但由于碱金属氧化物在玻璃内部为游离状态,其多余的氧离子会断开桥氧,破坏玻璃的网络结构,降低玻璃本征强度。并且由于Li2O是锂铝硅析晶的主要成分,其过多会提高玻璃的析晶上限,造成生产困难。而Na2O的增加虽然可提高CS,降低锂铝硅玻璃的析晶倾向,降低析晶上限温度,但是过多则会阻碍钠-锂交换,从而降低深层应力,影响玻璃的抗跌落性能。K2O的增加,可以降低析晶上限温度,但过量K离子会阻碍离子交换速率,尤其是钾-钠离子交换。因此,方案中各碱金属氧化物的含量均需要严格控制。
氧化镁(MgO)作为网络中间体存在,其具有降低玻璃高温粘度的作用,还可以增加玻璃杨氏模量。由于镁离子的半径小,其在玻璃网络结构中填充密度大,对于提升杨氏模量的作用较大,也是由于镁离子的半径小,其属于碱土金属氧化物中对离子交换的阻碍作用最小的,但是过量的氧化镁(MgO)还是会阻碍离子交换的进行。
La2O3的加入,可以使得仅含有Y2O3的锂铝硅玻璃配方的析晶倾向降低,以获得更低的析晶上限温度,并且La2O3可以使得玻璃内致密性和本征强度进一步增加,但La2O3过多时,会影响单位交换量产生的应力效应。
通过优化配方,使得制备本申请化学强化玻璃对应的基材玻璃的析晶温度小于或等于1200℃且在制备过程中玻璃液具有合适的粘度,从而可以采用浮法工艺进行制备。而且该基材玻璃具有较高的离子交换应力效应,在制备化学强化玻璃的过程中,在较低钠锂交换量的情况下,就能够达到高的应力效应,制得的化学强化玻璃具有优异的机械强度。同时,由于该基材玻璃具有高的离子交换应力效应,在采用盐浴进行化学强化时,玻璃向盐浴中释放的锂离子含量较现有锂铝硅玻璃少,有利于提高盐浴的使用寿命。而且离子交换量的降低,有利于减少批次样品抗跌落高度分布的离散性,确保量产的化学强化玻璃强度性能稳定。上述化学强化处理过程也即基材玻璃在盐浴中进行离子交换的过程。可以理解的是,本申请化学强化玻璃对应的基材玻璃也可以采用本领域已知的上述其它制备方法。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层中的组成满足La2O3/Y2O3为0.2~1.0。Y2O3有利于提高基材玻璃在进行离子交换时,所产生的应力效应,La2O3的加入,可以使得仅含有Y2O3的锂铝硅玻璃配方的析晶倾向降低,以获得更低的析晶上限温度,并且La2O3可以使得玻璃内致密性和本征强度进一步增加,但La2O3过多时,会影响单位交换量产生的应力效应。通过控制La2O3/Y2O3的比值在上述范 围内,例如,La2O3/Y2O3可以为0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0或以上述任意两个数值为端点构成的数值范围内的数值,能够在降低基材玻璃的析晶上限温度的同时,保证基材玻璃的杨氏模量和应力效应满足要求,从而有利于进行浮法量产且有利于获得具有较高杨氏模量的基材玻璃。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层中的组成满足:Al2O3+Li2O≤22.00mol%,可选地,Al2O3+Li2O≤20.00mol%。Al2O3和Li2O为析出锂辉石晶体的主要成分,通过调控Al2O3和Li2O的含量在上述范围内,例如,Al2O3+Li2O可以为16.00mol%、17.00mol%、18.00mol%、19.00mol%、20.00mol%、21.00mol%、22.00mol%或以上述任意两个数值为端点构成的数值范围内的数值,能够有效改善基材玻璃在制备过程中出现的析晶现象,避免影响化学强化玻璃的机械强度,同时还能保证玻璃液具有较长的料性,从而能够更好地适用于浮法工艺。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层中的组成满足:La2O3/Y2O3为0.2~1.0,Al2O3+Li2O≤22.00mol%,可选地,Al2O3+Li2O≤20.00mol%。进一步确保,能够通过浮法工艺制备化学强化玻璃对应的基材玻璃,且得到的基材玻璃具有良好的机械强度,且由该基材玻璃可制得具有良好的抗跌落性能的化学强化玻璃。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成还包含:SrO 0~3.00mol%。SrO的加入有利于降低析晶时的析晶速度,进一步避免析晶现象的发生,通过调控SrO的含量在上述范围内,例如,SrO的含量可以为0.00mol%、0.50mol%、1.00mol%、1.50%、2.00mol%、2.50mol%、3.00mol%或以上述任意两个数值为端点构成的数值范围内的数值,有利于进一步避免析晶现象的发生。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层中,MgO和SrO的含量满足SrO/(MgO+SrO)≤0.35,可选为0.05≤SrO/(MgO+SrO)≤0.35。通过调控SrO/(MgO+SrO)的值在上述范围内,例如,SrO/(MgO+SrO)的值可以为0.05、0.09、0.12、0.15、0.18、0.20、0.22、0.25、0.28、0.30、0.35或以上述任意两个数值为端点构成的数值范围内的数值,有利于保证基材玻璃进行化学强化处理过程中的离子交换速度,避免强化时间过长。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成还包含:K2O 0.00~3.00mol%,可选地,K2O 1.00~3.00mol%,更可选地,K2O 1.00~2.00mol%。K2O的加入有利于降低析晶上限温度,但含量过高会影响离子交换应力效应,通过调控K2O的含量在上述范围内,例如,K2O的含量可以为0.00mol%、0.50.00mol%、1.00mol%、1.50mol%、2.00mol%、2.50mol%、3.00mol%或以上述任意两个数值为端点构成的数值范围内的数值,有利于降低析晶上限温度,同时保证离子交换应力效应满足要求。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成还包含:SrO 0.00~3.00mol%,K2O 0.00~3.00mol%。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成满足:SiO2 64.00~70.00mol%和/或Li2O 8.00~12.00mol%和/或Na2O 4.00~6.00mol% 和/或MgO 2.00~7.50mol%和/或La2O3 0.20~1.50mol%。也即,所述化学强化玻璃张应力层的组成满足SiO2 64.00~70.00mol%、Li2O 8.00~12.00mol%、Na2O 4.00~6.00mol%、MgO 2.00~7.50mol%、La2O3 0.20~1.50mol%中的至少一者。通过进一步优化玻璃配方,不仅能够更好地满足浮法量产的要求,有效避免析晶现象的发生、提高盐浴的使用寿命,同时有利于获得具有更高机械强度的化学强化玻璃。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~12.00mol%、Li2O 7.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 2.00~8.00mol%、MgO 1.00~8.00mol%、La2O3 0.20~3.00mol%,La2O3/Y2O3为0.2~1.0。
在本申请的一些实施方案中,以氧化物的摩尔百分比表示,化学强化玻璃张应力层的组成包含:SiO2 64.00~70.00mol%、Al2O3 8.00~12.00mol%、Li2O 8.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 4.00~6.00mol%、MgO 2.00~7.50mol%、La2O3 0.20~1.50mol%。
在本申请的一些实施方案中,0.7mm厚的化学强化玻璃,采用120目砂纸进行抗跌落测试,平均抗砂纸跌落高度大于或等于1.60m,可选大于或等于1.70m。例如,平均抗砂纸跌落高度可以为1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5或以上述任意两个数值为端点构成的数值范围内的数值,表明本申请提供的化学强化玻璃具有优异的抗跌落性能。
在本申请的一些实施方案中,0.7mm厚的所述化学强化玻璃,采用120目砂纸进行抗跌落测试,抗砂纸跌落高度的B10值大于或等于1.1m,可选为1.1~2.0m。例如,抗砂纸跌落高度的B10值可以为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0或以上述任意两个数值为端点构成的数值范围内的数值,表明本申请提供的化学强化玻璃具有优异的抗跌落性能。
在本申请的一些实施方案中,0.7mm厚的化学强化玻璃抗砂纸跌落高度的B10值相比于平均抗砂纸跌落高度的降幅不超过25%,测试采用的砂纸目数为120目。其中,B10是指同批次化学强化玻璃在该高度下跌落,预期将会有10%的化学强化玻璃将会发生故障或者失效,可以用于评价化学强化玻璃的抗跌落高度分布的离散性。例如,0.7mm厚的化学强化玻璃抗砂纸跌落高度的B10值相比于平均抗砂纸跌落高度H0的降幅Y可以为0%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%或以上述任意两个数值为端点构成的数值范围内的数值,从而说明本申请提供的化学强化玻璃的抗跌落高度分布的离散性小,保证了量产的化学强化玻璃具有较稳定的抗跌落性能。其中,Y=(H0-B10)/H0×100%。
本申请的第二方面提供了一种玻璃器件,玻璃器件由上述任一实施方案中的化学强化玻璃制得。例如,玻璃器件可以包括但不限于手机显示保护盖板、手机电池后盖板,笔记本屏幕保护盖板、汽车中控玻璃盖板等。本申请提供的化学强化玻璃具有良好的抗跌落性能,从而本申请提供的玻璃器件也具有良好的抗跌落性能。
本申请的第三方面提供了一种电子设备,其包括上述任一实施方案中的化学强化玻璃。例如,电子设备包括手机、平板电脑、或其他电子终端,其他电子终端可以包括但不限于 智能穿戴(例如电子手表、智能手环、智能手表、智能眼镜等)、显示器(例如高清显示器、车载显示器、航载显示器等)、电视等。示例性地,电子设备可以包括外壳以及部分位于所述外壳内的电子组件,外壳包括前表面、后表面和侧表面,电子组件包括显示器件,该显示器件位于外壳的前表面处或者毗邻前表面,本申请提供的化学强化玻璃可以应用于外壳的前表面或/和后表面或/和侧表面;可选地,电子设备还可以包括覆盖于外壳的前表面处或位于显示器件上的覆盖制品,本申请提供的化学强化玻璃可以应用于覆盖制品。
测试方法:
1.张应力线密度CT_LD的测试
由SLP-2000应力仪测试的应力参数计算所得,张应力线密度CT_LD是由SLP-2000应力仪所测化学强化玻璃的张应力之和与玻璃厚度的比值。
2.S的计算
以下以实施例3进行说明,其余实施例同理计算。
通过布鲁克EDS-X射线能谱分析仪扫描实施例3中化学强化玻璃的断面,放大倍数为250倍,射线强度HV为10.0KeV,扫描范围300μm。如图1所示,为了减少偏差和准确测试到化学强化玻璃的表面位置,开始测试位置为距离化学强化玻璃表面十几微米处,图1中箭头所示方向为测试扫描方向,起始扫描位置到化学强化玻璃表面的距离为14.4μm。这样在0~300μm测试图中就会形成强度从低到高,然后再缓慢下降的趋势。在处理数据时候,排除前面从低到高的无效数据,得到如图2所示的钠元素含量对应的信号强度分布曲线。然后通过专业数据绘图软件(如SciDAVis等)中的allometric函数拟合得到如图3所示的平滑曲线。从图3中可以看出,随着深度增加,钠元素含量对应的信号强度逐渐下降,下降速度逐渐变慢,最后趋于张应力层中的钠元素含量对应的信号强度,该含量在图3中对应的信号强度为y0在图3中y0=94.8;另外,图3中x1~x2为压缩应力层对应的厚度范围,x1为化学强化玻璃表面对应的测试深度,x2为压缩应力为零处对应的测试深度值,在图3中x1=14.4,x2=149.4。图3中x=x1、x=x2、y=y0与平滑曲线所围成的图形的面积为S,该图形面积可以通过专业数据绘图软件(如SciDAVis等)计算得到。
3.应力参数的测试
表面CS、钾-钠离子交换深度的测试条件:使用日本折原的应力仪FSM-6000进行测试,光源波长为596nm。开始测试之前,先将待测样品的厚度、折射率、光弹性系数填入参数表中,再进行测试,以获得待测样品的应力参数数值。
DOL_0、CT_LD的测试条件:使用日本折原的应力仪SLP-2000进行测试,光源波长为518nm。开始测试之前,先将待测样品的厚度、折射率、光弹性系数填入参数表中,调整曝光时间为5000usec,再进行测试,以获得待测样品的应力参数数值。
其中不同成分的玻璃,其折射率和光弹性系数是不一样的,本发明中折射率通过阿贝折射仪进行测试,光弹性系数通过UNIPT ABR-10A双频激光应力仪测试。
使用应力仪测试化学强化玻璃样品的应力参数时,需要先在相应应力仪上滴上其专用折射液,然后将化学强化玻璃制品擦拭干净,置于测试通路上,并按上述测试条件进行仪器设置,再进行测试,以获得化学强化玻璃的应力参数数值。其中,SLP-2000用的折射液 的折射率是1.51,FSM-6000采用的折射液的折射率为1.72。
4.杨氏模量的测试
将各实施例制得的基材玻璃(25mm×85mm×2.5mm)置于测试仪器(厂商:凯戈纳斯仪器商贸有限公司,型号MK7)上,然后用尖端部进行震动,通过放置在上端的接收器获得超声波振传播结果,然后通过仪器获得杨氏模量。表1配方1~配方9对应的基材玻璃的杨氏模量依次为84GPa、88GPa、89GPa、91GPa、90GPa、89GPa、89GPa、90GPa、89GPa,基材玻璃经强化后,其杨氏模量会进一步增大,从而得到的化学强化玻璃的杨氏模量均大于或等于85GPa。
5.盐浴中释放的锂离子量的测试
用岛津精密天平测试基材玻璃(长宽厚为50mm×50mm×0.7mm)的质量,记为m1,天平的精度为万分之一克,天平型号为AUW120D。
在450℃的100wt%NaNO3盐浴中进行离子交换t小时后取出基材玻璃,用去离子水清洗干净并擦干后,再测试其质量为m2。其中,t小时为获得张应力线密度最大值CT_LDmax时的处理时间,该处理时间可以根据上述张应力线密度最大值CT_LDmax的测试得到。
离子交换前后的基材玻璃的质量增量△w即为钠离子交换锂离子所带来的质量增量,△w=m2-m1,单位为mg。另外,钠离子和锂离子为等摩尔交换,因此△w=MNa×n-MLi×n,从而n=△w/(MNa-MLi),盐浴中释放的锂离子量=MLi×n。其中,MNa为钠的相对原子质量23,MLi为锂的相对原子质量7,n为钠离子或锂离子交换的摩尔数。经过计算可知,获得张应力线密度最大值CT_LDmax时,0.7mm厚基材玻璃向盐浴中释放的锂离子量=MLi×△w/(MNa-MLi)。
6.析晶上限温度的测试
将基材玻璃敲碎至2mm~5mm尺寸的小块,然后放入长条石英槽中并铺满。
将型号为JKZC-XJY01的梯度炉设定温度区间,如1050℃~1225℃的温度区间,每段温度区间由高到低取至少6个温度点。
待梯度炉达到预设温度区间后,将放有样品的长条石英槽放入梯度炉中,使6个温度点分别对应到长条石英槽中6处位置的玻璃样品,参考图4。将长条石英槽置于梯度炉内恒温保温60~70min后,将长条石英槽取出。
观察长条石英槽中不同位置的玻璃样品情况,如果玻璃样品出现失透、发雾,则判定该处玻璃样品析晶,如果玻璃样品完全透明,则判定该处玻璃样品未析晶。参考图5,图5的长条石英槽中,靠上区域为完全透明样品,靠下区域为失透样品,完全透明样品和失透样品之间存在部分发雾样品。观察时,可借助工具,比如放大镜、显微镜等。
析晶上限温度的确定:析晶上限温度范围在完全透明样品对应的温度点与相邻的失透或发雾样品对应温度点之间,取两温度点的平均值作为析晶上限温度。
如果在梯度炉设定的温度区间内,长条石英槽内的玻璃样品全部析晶,则重新设定梯度炉温度区间的温度,进行玻璃样品析晶上限温度的测定。如果在梯度炉设定的温度区间内,长条石英槽内的玻璃样品全部不析晶,则重新设定梯度炉温度区间的温度,进行玻璃样品析晶上限温度的测定。
7.抗跌落高度测试和B10的计算
平均抗砂纸跌落高度:多片玻璃样品所测得的抗砂纸跌落高度之和除以所测样品数量所得的值,用于表征玻璃抗接触面开裂性能。
每批次取至少10片样品进行测试,平均抗砂纸跌落高度:
其中,n为每批次测试的玻璃样品数量,hi为单一样品测试的抗砂纸跌落高度。
其中,样品抗砂纸跌落高度的测试方法为:
步骤1:将长宽厚为158.8mm×72.8mm×0.7mm的待测试玻璃样品贴于200g的模型机正面;
步骤2:将该模型机置于绿图LT-SKDL-CD型跌落机上,使玻璃样品面向砂纸,并以一定跌落高度冲击下落,冲击位于该模型机正下方的120目砂纸,模拟正常手机跌落姿态。
若玻璃样品未出现破碎,模型机的跌落高度以一定规律提升。比如跌落高度从0.4m开始,对样品进行一次跌落冲击,如未破碎,每次提高0.1m高度再次跌落,直至玻璃样品破碎。
步骤3:将玻璃样品破碎时的上一次跌落高度记为抗砂纸跌落高度,比如破碎时的跌落高度为0.5m,则样品的抗砂纸跌落高度为0.4m。
抗砂纸跌落高度的B10:这是韦伯分布(Weibull distribution)计算出来的统计值,是针对多片样品测试所得的抗砂纸跌落高度数据进行的统计学分析,计算时考虑了样品抗砂纸跌落高度分布的离散性。本申请B10具体含义是指失效比例为10%的化学强化玻璃样品所对应的抗砂纸跌落高度,可以用于评价某款化学强化玻璃抗跌落能力。
抗砂纸跌落高度的B10的计算:
取m片化学强化玻璃测得的抗砂纸跌落高度,依次记为N1~Nm。然后设定PERCENTILE函数的参数K值为0.1,通过该函数计算N1~Nm数据所得的结果记为抗砂纸跌落高度的B10值。
实施例1
按照表1中的配方1设计转换成玻璃生产原料配方进行配料,总质量1600g,并加入0.4wt%(以配方1玻璃生产原料总质量为基准)的澄清剂氯化钠,将其放入铂金坩埚中,在高温熔炼炉加热至1650℃熔化10h,然后倒入成型磨具中冷却成型,冷却至800℃后,放入退火炉中,于560℃进行退火2000min,然后用300min降温至500℃,保温300min,然后按照此降温方式依次降温至400℃、300℃、200℃,实现梯度缓慢降温,然后随炉冷却至室温,得到玻璃样品砖。
然后对玻璃样品砖进行多线切割、数控车床加工(CNC)、减薄、抛光,得到基材玻璃,基材玻璃的厚度为0.7mm。
再将基材玻璃先在420℃的100wt%NaNO3盐浴中处理3h,然后再在420℃的100wt%KNO3盐浴中处理1h,即可得到化学强化玻璃,化学强化玻璃的厚度t为0.7mm。
实施例2~实施例9
除了将配方1依次替换为表1中的配方2~配方9以外,其余与实施例1相同。
对比例1~对比例6
除了按照表2调整强化工艺和配方以外,其余与实施例1相同。
各实施例和对比例的参数详见表2、性能测试结果详见表3。
表1
注:表1中各物质的含量为摩尔百分比含量,即mol%;“/”表示不存在对应的物质或未在初始的配料过程中主动或故意地将该组分加入玻璃组合物中,但该组分可能作为杂质存在。
表2

注:表2中的“/”表示不存在对应的参数。以实施例1为例,表2中“420℃*100wt%NaNO3*3h420℃*100wt%KNO3*1h”是指将基材玻璃先在420℃的100wt%NaNO3盐浴中处理3h,然后再在420℃的100wt%KNO3盐浴中处理1h得到化学强化玻璃,其它实施例和对比例依次类推理解。
表3

参考表3,从实施例1~实施例9、对比例1~对比例4可以看出,本申请的化学强化玻璃相比于对比例,具有更高的平均抗砂纸跌落高度、更高的抗砂纸跌落高度的B10值,以及更低的降幅Y,从而本申请提供的化学强化玻璃具有优异的抗跌落性能,且抗跌落高度分布的离散性小。从实施例1~实施例9、对比例5和对比例6可以看出,对比例5和对比例6经过过度强化处理,虽然具有较高的平均抗砂纸跌落高度,但降幅Y显著高于本申请实施例,说明其同批次样品抗跌落高度分布的离散性大,进而表明量产的化学强化玻璃所具有的抗跌落性能极不稳定。此外,从表3中还可以看出,实施例的表面CS和压缩应力层深度DOL_0与对比例相当,或优于对比例,说明本申请的化学强化玻璃能够达到现有技术中的机械强度或机械强度进一步增加,更为重要的是,实施例中化学强化玻璃的抗跌落高度分布的离散性小,能够保证量产的化学强化玻璃具有较稳定且优异的抗跌落性能。
实施例3~实施例6、实施例8和实施例9的化学强化玻璃对应的基材玻璃的析晶上限温度小于1200℃,能够采用浮法工艺量产,制得的化学强化玻璃具有优异的抗跌落性能,同时盐浴中释放的锂离子量较低,有利于提高盐浴的使用寿命,进而降低量产的生产成本。虽然对比例1~对比例3、对比例6的化学强化玻璃对应的基材玻璃的析晶上限温度也小于1200℃,但其降幅Y高于实施例,也即,这些对比例虽然也可以采用浮法工艺量产,但本申请得到的化学强化玻璃的抗跌落性能和抗跌落高度分布的离散性明显优于这些对比例。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (18)

  1. 一种化学强化玻璃,其中,所述化学强化玻璃满足如下条件:
    所述化学强化玻璃的张应力线密度CT_LD大于或等于40000MPa/mm,CT_LD/S的比值大于或等于7.5且小于或等于20;
    所述化学强化玻璃包括位于所述化学强化玻璃表面的压缩应力层和位于所述化学强化玻璃内部的张应力层,通过X射线能谱分析仪测试所述化学强化玻璃沿厚度方向的钠元素含量对应的信号强度分布曲线,将所述信号强度分布曲线拟合成平滑曲线,x=x1、x=x2、y=y0与所述平滑曲线所围成的图形的面积为S,x1为所述化学强化玻璃表面对应的测试深度值,x2为压缩应力为零处对应的测试深度值,y0为所述张应力层中钠元素含量在平滑曲线中所对应的强度值。
  2. 根据权利要求1所述的化学强化玻璃,其中,所述化学强化玻璃的表面CS大于或等于900MPa且小于或等于1600MPa,可选大于或等于1000MPa且小于或等于1600MPa。
  3. 根据权利要求1或2所述的化学强化玻璃,其中,所述化学强化玻璃的压缩应力层深度DOL_0为0.15t~0.22t,t为所述化学强化玻璃的厚度。
  4. 根据权利要求1-3中任一项所述的化学强化玻璃,其中,所述化学强化玻璃的杨氏模量大于或等于85GPa,可选大于或等于90GPa。
  5. 根据权利要求1-4中任一项所述的化学强化玻璃,其中,所述化学强化玻璃的张应力线密度CT_LD大于或等于42000MPa/mm且小于或等于70000MPa/mm,可选大于或等于43000MPa/mm且小于或等于70000MPa/mm。
  6. 根据权利要求1-5中任一项所述的化学强化玻璃,其中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~18.00mol%、Li2O 7.00~12.00mol%、Y2O3 0.00~10.00mol%、Na2O 2.00~8.00mol%、MgO 0.00~8.00mol%。
  7. 根据权利要求6所述的化学强化玻璃,其中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成还包含:B2O3 0.00~5.00mol%,可选B2O3 0.00~3.00mol%。
  8. 根据权利要求1-6中任一项所述的化学强化玻璃,其中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~12.00mol%、Li2O 7.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 2.00~8.00mol%、MgO 0.00~8.00mol%、La2O3 0.10~3.00mol%。
  9. 根据权利要求8所述的化学强化玻璃,其中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层中的组成满足:La2O3/Y2O3为0.2~1.0;和/或
    Al2O3+Li2O≤22.00mol%,可选地,Al2O3+Li2O≤20.00mol%。
  10. 根据权利要求8或9所述的化学强化玻璃,其中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成还包含:SrO 0.00~3.00mol%,SrO/(MgO+SrO)≤0.35;和/或K2O 0.00~3.00mol%。
  11. 根据权利要求1-8中任一项所述的化学强化玻璃,其中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成包含:SiO2 60.00~75.00mol%、Al2O3 8.00~12.00mol%、Li2O 7.00~12.00mol%、Y2O3 1.00~3.00mol%、Na2O 2.00~8.00mol%、MgO  1.00~8.00mol%、La2O3 0.20~1.5mol%。
  12. 根据权利要求8或9所述的化学强化玻璃,其中,以氧化物的摩尔百分比表示,所述化学强化玻璃张应力层的组成满足:SiO2 64.00~70.00mol%和/或Li2O 8.00~12.00mol%和/或Na2O 4.00~6.00mol%和/或MgO 2.00~7.50mol%和/或La2O3 0.20~1.50mol%。
  13. 根据权利要求1-12中任一项所述的化学强化玻璃,其中,0.7mm厚的所述化学强化玻璃,采用120目砂纸进行抗跌落测试,平均抗砂纸跌落高度大于或等于1.60m,可选大于或等于1.70m。
  14. 根据权利要求1-13中任一项所述的化学强化玻璃,其中,0.7mm厚的所述化学强化玻璃,采用120目砂纸进行抗跌落测试,抗砂纸跌落高度的B10值大于或等于1.1m。
  15. 根据权利要求1-14中任一项所述的化学强化玻璃,其中,0.7mm厚的所述化学强化玻璃抗砂纸跌落高度的B10值相比于平均抗砂纸跌落高度的降幅不超过25%,测试采用的砂纸目数为120目。
  16. 一种玻璃器件,其中,所述玻璃器件由权利要求1-15中任一项所述的化学强化玻璃制得。
  17. 一种电子设备,其包括权利要求1-15中任一项所述的化学强化玻璃。
  18. 根据权利要求17所述的电子设备,其中,所述电子设备包括手机、平板电脑、智能穿戴、显示器或电视。
PCT/CN2023/105864 2022-07-26 2023-07-05 一种化学强化玻璃及包含化学强化玻璃的玻璃器件 WO2024022064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210895438.5 2022-07-26
CN202210895438.5A CN117486488A (zh) 2022-07-26 2022-07-26 一种化学强化玻璃及包含化学强化玻璃的玻璃器件

Publications (1)

Publication Number Publication Date
WO2024022064A1 true WO2024022064A1 (zh) 2024-02-01

Family

ID=89671371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105864 WO2024022064A1 (zh) 2022-07-26 2023-07-05 一种化学强化玻璃及包含化学强化玻璃的玻璃器件

Country Status (2)

Country Link
CN (1) CN117486488A (zh)
WO (1) WO2024022064A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461795A (zh) * 2017-04-06 2019-11-15 Agc株式会社 化学强化玻璃
CN111670172A (zh) * 2018-02-05 2020-09-15 Agc株式会社 化学强化用玻璃
CN112142342A (zh) * 2019-06-28 2020-12-29 华为技术有限公司 化学强化玻璃及其制备方法和终端
WO2021167656A2 (en) * 2019-11-27 2021-08-26 Corning Incorporated Y2o3-containing glass compositions, substrates, and articles
CN114096489A (zh) * 2019-07-17 2022-02-25 Agc株式会社 玻璃、化学强化玻璃和保护玻璃
CN116081945A (zh) * 2021-11-08 2023-05-09 重庆鑫景特种玻璃有限公司 素玻璃、化学强化玻璃、3d热弯玻璃及热弯强化玻璃
CN116081960A (zh) * 2021-11-08 2023-05-09 重庆鑫景特种玻璃有限公司 一种化学强化玻璃和玻璃器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461795A (zh) * 2017-04-06 2019-11-15 Agc株式会社 化学强化玻璃
CN111670172A (zh) * 2018-02-05 2020-09-15 Agc株式会社 化学强化用玻璃
CN112142342A (zh) * 2019-06-28 2020-12-29 华为技术有限公司 化学强化玻璃及其制备方法和终端
CN114096489A (zh) * 2019-07-17 2022-02-25 Agc株式会社 玻璃、化学强化玻璃和保护玻璃
WO2021167656A2 (en) * 2019-11-27 2021-08-26 Corning Incorporated Y2o3-containing glass compositions, substrates, and articles
CN116081945A (zh) * 2021-11-08 2023-05-09 重庆鑫景特种玻璃有限公司 素玻璃、化学强化玻璃、3d热弯玻璃及热弯强化玻璃
CN116081960A (zh) * 2021-11-08 2023-05-09 重庆鑫景特种玻璃有限公司 一种化学强化玻璃和玻璃器件

Also Published As

Publication number Publication date
CN117486488A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
KR102371999B1 (ko) 무알칼리 유리
CN113302167B (zh) 化学强化玻璃及其制造方法
JP5467490B2 (ja) 強化ガラス基板の製造方法及び強化ガラス基板
JP5429684B2 (ja) 強化ガラス基板及びその製造方法
JP5743125B2 (ja) 強化ガラス及び強化ガラス基板
JP6032468B2 (ja) 強化ガラス基板の製造方法
JP2012214356A (ja) カバーガラス及びその製造方法
WO2021010376A1 (ja) ガラス、化学強化ガラスおよびカバーガラス
JP2014205604A (ja) 強化ガラス基板及びその製造方法
JP5930377B2 (ja) 強化ガラス
JP2012087040A (ja) 強化ガラス及びその製造方法
JP2011093728A (ja) 強化板ガラス及びその製造方法
KR102644011B1 (ko) 화학 강화용 유리
KR20200003274A (ko) 무알칼리 유리 및 이것을 사용한 무알칼리 유리판
JP7396413B2 (ja) ガラス
CN109071317A (zh) 无碱玻璃
JP2016188148A (ja) 無アルカリガラスおよびその製造方法
JPWO2017170053A1 (ja) 化学強化ガラス
WO2023082936A1 (zh) 一种结晶玻璃、强化结晶玻璃及其制备方法
WO2024022064A1 (zh) 一种化学强化玻璃及包含化学强化玻璃的玻璃器件
WO2024022061A1 (zh) 一种基材玻璃及由基材玻璃制得的化学强化玻璃
JP2014019627A (ja) 強化ガラス及び表示デバイス
CN117865466A (zh) 高杨氏模量的锂铝硅基材玻璃及其化学强化玻璃
JP2017114685A (ja) 無アルカリガラス
JP2016108190A (ja) 強化ガラス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845277

Country of ref document: EP

Kind code of ref document: A1