WO2024021702A1 - 车辆动力系统的控制方法、装置以及车辆 - Google Patents

车辆动力系统的控制方法、装置以及车辆 Download PDF

Info

Publication number
WO2024021702A1
WO2024021702A1 PCT/CN2023/089888 CN2023089888W WO2024021702A1 WO 2024021702 A1 WO2024021702 A1 WO 2024021702A1 CN 2023089888 W CN2023089888 W CN 2023089888W WO 2024021702 A1 WO2024021702 A1 WO 2024021702A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
vehicle
wheel drive
information
acceleration intention
Prior art date
Application number
PCT/CN2023/089888
Other languages
English (en)
French (fr)
Inventor
霍云龙
于长虹
杨钫
刘建康
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024021702A1 publication Critical patent/WO2024021702A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy

Definitions

  • the present application relates to the field of vehicle driving technology, and specifically, to a control method and device for a vehicle power system and a vehicle.
  • This application requests the priority of the patent application submitted to the State Intellectual Property Office of China on July 27, 2022, with the application number 202210896313.4 and the invention title "Control method, device and vehicle for vehicle power system”.
  • Embodiments of the present application provide a vehicle power system control method, device, and vehicle to at least solve the technical problem of reduced driving range of pure electric vehicles due to the improvement of their power performance.
  • a method for controlling a vehicle power system including: obtaining historical startup information of the vehicle, wherein the historical startup information includes: used to represent the startup of the vehicle when the last manual selection was performed.
  • Mode information is used to represent the first number of times the two-wheel drive strong power mode is manually selected within the first preset time period, and is used to represent the second number of times the two-wheel drive normal mode is manually selected within the first preset time period.
  • a mode switching strategy is executed to control the vehicle's power system, wherein the mode switching strategy includes at least one of the following: maintaining the current driving mode, switching to four-wheel drive mode, switching to two-wheel drive strong power mode, switching to two-wheel drive normal mode, and switching to Two-wheel drive economic model.
  • controlling the vehicle to enter the initial mode includes: determining Determine whether the startup mode information generated when the vehicle performs the last manual selection is information about starting in the two-wheel drive strong power mode or information about starting in the two-wheel drive normal mode; if so, control the vehicle to enter the two-wheel drive strong power mode corresponding to the startup mode information. Power mode or two-wheel drive normal mode.
  • controlling the vehicle to enter the initial mode includes: determining whether the starting mode information generated when the vehicle performs the last manual selection is information about starting in the two-wheel drive strong power mode or in the two-wheel drive strong power mode. If not, determine whether the number value in the first number information is greater than or equal to the number value in the second number information; if so, control the vehicle to enter the two-wheel drive strong power mode.
  • obtaining the driver's acceleration intention information includes: collecting the accelerator pedal opening value and the accelerator pedal opening change rate; comparing the accelerator pedal opening value with the opening threshold A comparison is performed to obtain a first comparison result; the opening change rate of the accelerator pedal is compared with a change rate threshold to obtain a second comparison result; the acceleration intention information is determined by combining the first comparison result and the second comparison result.
  • a control instruction set is generated, including: when the vehicle is in a two-wheel drive strong power mode, determining whether the acceleration intention information indicates that the acceleration intention is weak; if so, generating a control instruction set.
  • the first target instruction in the instruction set wherein the first target instruction is used to control the vehicle's power system to execute a strategy for maintaining the current driving mode.
  • generating a control instruction set also includes: when the vehicle is in the two-wheel drive strong power mode, determining whether the acceleration intention information indicates that the acceleration intention is weak; if not, generating A second target command in the control command set, wherein the second target command is used to control the vehicle's power system to execute a strategy of switching to the four-wheel drive mode.
  • generating a control instruction set also includes: after the vehicle switches from the two-wheel drive strong power mode to the four-wheel drive mode, determining whether the driver's driving demand torque is greater than the first Torque threshold, where the first torque threshold is the torque provided by the power system when the vehicle is in four-wheel drive mode; if not, generate a third target command in the control command set, where the third target command is used to control the power of the vehicle
  • the system executes the strategy of switching to the two-wheel drive strong power mode.
  • generating a control instruction set also includes: when the vehicle is in the two-wheel drive strong power mode, determine whether the vehicle is in a high-speed or expressway area; if so, determine Whether the average speed of the vehicle within the second preset time period is greater than the preset speed; if so, generate a fourth target instruction in the control instruction set, where the fourth target instruction is used to control the vehicle's power system to switch to a two-wheel drive economical mode strategy.
  • a control device for a vehicle power system including: a first acquisition module, the first acquisition module is used to acquire historical startup information of the vehicle, wherein the historical startup information includes: It is used to represent the starting mode information generated when the vehicle performs the last manual selection, and is used to represent the two-wheel drive force Information on the first number of times the force mode is manually selected within the first preset time period, and information indicating the second number of times the two-wheel drive normal mode is manually selected within the first preset time period; the control module is used to In response to the historical startup information meeting the preset conditions, the vehicle is controlled to enter an initial mode, where the initial mode includes at least one of the following: a two-wheel drive strong power mode and a two-wheel drive normal mode; a second acquisition module, the second acquisition module is used to perform the operation on the vehicle In the initial mode, the driver's acceleration intention information is obtained, where the acceleration intention information includes at least one of the following: weak acceleration intention, medium acceleration intention, and strong acceleration intention
  • the control instruction set is used to control the vehicle's power system to execute a mode switching strategy.
  • the mode switching strategy includes at least one of the following: maintaining the current driving mode, switching to four-wheel drive mode, switching to two-wheel drive strong power mode, switch to two-wheel drive normal mode, and switch to two-wheel drive economy mode.
  • a vehicle including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the above method.
  • a computer storage medium includes a stored program, wherein when the program is running, the device where the computer storage medium is located is controlled to perform the above method.
  • a processor is also provided, the processor is used to run a program, and the processor is configured to run a computer program to perform the above method.
  • the vehicle is controlled to enter the initial mode, that is, the vehicle's startup mode, based on historical startup information.
  • the vehicle driving mode is controlled to perform real-time automatic switching based on the determined initial mode and the driver's acceleration intention information to meet driving needs.
  • it can also solve the technical problem of reduced driving range of pure electric vehicles due to the improvement of their power performance.
  • Figure 1 is a hardware structural block diagram of a vehicle electronic device according to a vehicle power system control method according to an optional embodiment of the present application;
  • Figure 2 is a flow chart of a control method of a vehicle power system according to an optional embodiment of the present application
  • Figure 3 is a structural block diagram of a four-driving power system according to one of the optional embodiments of the present application.
  • FIG. 4 is a structural block diagram of an optional vehicle power system control device according to an embodiment of the present application.
  • an embodiment of a control method for a vehicle power system is provided. It should be noted that the steps shown in the flow chart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and ,Although a logical sequence is shown in the flowcharts, in some cases, the steps shown or described may be performed in a sequence different from that herein.
  • the electronic device of the vehicle may include one or more processors 102 (the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU), programmable logic devices (FPGA), neural network processors (NPU), tensor processors (TPU), artificial intelligence (AI) type processors, etc. processing device) and a memory 104 for storing data.
  • processors 102 the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU), programmable logic devices (FPGA), neural network processors (NPU), tensor processors (TPU), artificial intelligence (AI) type processors, etc. processing device
  • the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU),
  • the above-mentioned electronic device of the automobile may also include a transmission device 106 for communication functions, an input and output device 108, and a display device 110.
  • a transmission device 106 for communication functions may also include a transmission device 106 for communication functions, an input and output device 108, and a display device 110.
  • the structure shown in FIG. 1 is only illustrative and does not limit the structure of the electronic device of the vehicle.
  • the electronic device of the vehicle may also include more or less components than the above structural description, or have a different configuration than the above structural description.
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the control method of the vehicle power system in the embodiment of the present application.
  • the processor 102 runs the computer program stored in the memory 104, Thereby executing various functional applications and data processing, that is, realizing the above-mentioned control method of the vehicle power system.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the above networks include but are not limited to the Internet, intra-enterprise Department network, local area network, mobile communication network and their combinations.
  • the transmission device 106 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device may be a Radio Frequency (RF) module, which is used to communicate with the Internet wirelessly.
  • RF Radio Frequency
  • Display device 110 may be, for example, a touch-screen liquid crystal display (LCD) and a touch display (also referred to as a "touch screen” or “touch display screen”).
  • the liquid crystal display may enable a user to interact with the user interface of the mobile terminal.
  • the above-mentioned mobile terminal has a graphical user interface (GUI), and the user can perform human-computer interaction with the GUI through finger contact and/or gestures on the touch-sensitive surface.
  • GUI graphical user interface
  • the executable instructions of the computer interactive function are configured/stored in a computer program product or readable storage medium executable by one or more processors.
  • FIG. 2 is a flow chart of a method for controlling a vehicle power system according to one embodiment of the present application.
  • the process includes the following steps : Step S1: Obtain historical startup information of the vehicle, where the historical startup information includes: used to represent the startup mode information generated when the vehicle performed the last manual selection, and used to represent the two-wheel drive strong power mode within the first preset time period Information on the first number of times manually selected, and information on the second number of times used to indicate that the two-wheel drive normal mode is manually selected within the first preset time period.
  • Step S2 In response to the historical startup information meeting the preset conditions, control the vehicle to enter an initial mode, where the initial mode includes at least one of the following: a two-wheel drive strong power mode and a two-wheel drive normal mode.
  • Step S3 When the vehicle is in the initial mode, obtain the driver's acceleration intention information, where the acceleration intention information includes at least one of the following: weak acceleration intention, medium acceleration intention, and strong acceleration intention.
  • Step S4 Based on the acceleration intention information and the initial mode of the vehicle, generate a control instruction set.
  • the control instruction set is used to control the vehicle's power system to execute a mode switching strategy, where the mode switching strategy includes at least one of the following: maintaining the current driving mode. , switch to four-wheel drive mode, switch to two-wheel drive strong power mode, switch to two-wheel drive normal mode, and switch to two-wheel drive economy mode.
  • the first preset time period is set according to the frequency of vehicle use.
  • the vehicle is controlled to enter the initial mode, that is, the vehicle's startup mode, based on the historical startup information, and the vehicle driving mode is controlled to perform real-time automatic switching based on the determined initial mode and the driver's acceleration intention information, which satisfies the driving requirements.
  • the vehicle driving mode is controlled to perform real-time automatic switching based on the determined initial mode and the driver's acceleration intention information, which satisfies the driving requirements.
  • energy consumption is reduced, thereby solving the technical problem of reduced driving range of pure electric vehicles due to the improvement of power performance.
  • step S2 in response to the historical startup information meeting the preset conditions, the vehicle is controlled to enter the initial mode, including: determining whether the startup mode information generated when the vehicle performed the last manual selection is to start in the two-wheel drive strong power mode. information or information about starting in two-wheel drive normal mode; if so, control the vehicle to enter the two-wheel drive strong power mode or two-wheel drive normal mode corresponding to the startup mode information.
  • the initial mode of the vehicle during automatic driving is determined based on the driver's last manually selected startup mode to adapt to the driver's driving habits and power requirements at startup.
  • step S2 in response to the historical startup information meeting the preset conditions, the vehicle is controlled to enter the initial mode, including: determining whether the startup mode information generated when the vehicle performed the last manual selection is information to start in the two-wheel drive strong power mode or to start in the two-wheel drive strong power mode. Information about starting the two-wheel drive normal mode; if not, determine whether the number value in the first number information is greater than or equal to the number value in the second number information; if so, control the vehicle to enter the two-wheel drive strong power mode.
  • the motor that executes the two-drive strong power mode and the motor that executes the two-drive normal mode are not the same motor. Power switching between the front and rear motors will cause power interruption. Therefore, the two-drive normal mode and the two-drive strong power mode are different. It cannot be switched between, the two-wheel drive normal mode can only be switched to the four-wheel drive mode, and the two-wheel drive strong power mode can be switched to the two-wheel drive economy mode or the four-wheel drive mode. In order to be able to switch between the two-wheel drive normal mode, the two-wheel drive strong power mode, the four-wheel drive mode and the two-wheel drive economical mode, the initial mode of automatic driving is set to the two-wheel drive normal mode and the two-wheel drive strong power mode.
  • the initial mode of the vehicle during automatic driving is determined based on the information on the number of times the driver manually selects the two-wheel drive strong power mode and the two-wheel drive normal mode within the first preset time period. After satisfying the driver's driving habits and starting Under the condition of power demand, the above four driving modes can be switched.
  • step S3 when the vehicle is in the initial mode, the driver's acceleration intention information is obtained, including: collecting the accelerator pedal opening value and the accelerator pedal opening change rate; The threshold is compared to obtain the first comparison result; the opening change rate of the accelerator pedal is compared with the change rate threshold to obtain the second comparison result; the acceleration intention information is determined by combining the first comparison result and the second comparison result.
  • the driver controls the driving speed of the vehicle by pressing the accelerator pedal, that is, controlling the power output of the engine.
  • the driver's acceleration intention is judged by the accelerator pedal opening value and the accelerator pedal opening change rate, and then the switching of the driving mode is controlled.
  • the comparison relationship between the accelerator pedal opening value, the accelerator pedal opening change rate and the acceleration intention information constitutes the driver intention fuzzy control model. Since the accelerator pedal is used to control the vehicle's driving speed during non-autonomous driving, the way to indicate acceleration intention by pressing the accelerator pedal is consistent with the driver's driving habits, making the output of the driver intention fuzzy control model more accurate. Among them, the opening threshold and the change rate threshold are set based on the four driving modes and the driver's driving habits.
  • the driver intention fuzzy control model is given as an example.
  • the input variables of the driver fuzzy control model mainly include the following indicators: the accelerator pedal opening L and the change rate K of the accelerator pedal opening.
  • the accelerator pedal opening L itself can be attributed to the range change in the [0, 1] interval, while the pedal change rate K
  • the maximum value appearing in the vehicle operating data is classified as 1, making it vary between [0,1].
  • the pedal displacement value L can be divided into three categories: L1, L2 and L3.
  • the value range of L1 is [0, 0.3), the value range of L2 is [0.3, 0.6), and the value range of L3 is [0.6, 1].
  • the pedal change rate K can be divided into three categories: K1, K2 and K3.
  • the value range of K1 is [0, 0.3), the value range of K2 is [0.3, 0.6), and the value range of K3 is [0.6, 1].
  • the driver intention fuzzy control model is drawn into a table, namely Table 1, and the driver's acceleration intention is determined according to Table 1.
  • step S4 based on the acceleration intention information and the initial mode of the vehicle, a control instruction set is generated, including: when the vehicle is in the two-wheel drive strong power mode, determine whether the acceleration intention information indicates that the acceleration intention is weak; if so, generate a control instruction set The first target instruction in the instruction set, wherein the first target instruction is used to control the vehicle's power system to execute a strategy for maintaining the current driving mode.
  • a weak acceleration intention indicates that the current driving speed of the vehicle basically meets the driver's required speed, so the current driving mode is sufficient.
  • a control instruction set is generated, which also includes: when the vehicle is in the two-wheel drive strong power mode, determine whether the acceleration intention information indicates that the acceleration intention is weak; if not, generate A second target command in the control command set, wherein the second target command is used to control the vehicle's power system to execute a strategy of switching to the four-wheel drive mode.
  • the vehicle is in the two-wheel drive strong power mode. If the current driving speed cannot meet the driver's demand speed, it means that the maximum power provided by the two-wheel drive mode cannot meet the driving needs, and it needs to be switched to the four-wheel drive mode.
  • a control instruction set is generated, which also includes: after the vehicle switches from the two-wheel drive strong power mode to the four-wheel drive mode, determine whether the driver's driving demand torque is greater than the first Torque threshold, where the first torque threshold is the torque provided by the power system when the vehicle is in four-wheel drive mode; if not, generate a third target command in the control command set, where the third target command is used to control the power of the vehicle
  • the system executes the strategy of switching to the two-wheel drive strong power mode.
  • the driver's driving demand torque is less than or equal to the torque threshold, indicating that the four-wheel drive mode provides The power exceeds the required power.
  • it needs to switch to two-wheel drive mode. Since the vehicle switches from the two-wheel drive strong power mode to the four-wheel drive mode, the return from the four-wheel drive mode to the two-wheel drive strong power mode is in line with the driver's driving habits.
  • a control instruction set is generated, which also includes: when the vehicle is in the two-wheel drive strong power mode, determine whether the vehicle is in a high-speed or expressway area; if so, determine Whether the average speed of the vehicle within the second preset time period is greater than the preset speed; if so, generate a fourth target instruction in the control instruction set, where the fourth target instruction is used to control the vehicle's power system to switch to a two-wheel drive economical mode strategy.
  • the two-wheel drive strong power mode can be switched to the two-wheel drive economic mode.
  • the two-wheel drive economic mode can only play a greater economic role when driving at high speeds, so it is necessary to determine whether the vehicle is in a highway or expressway area. , and whether the speed exceeds the preset speed.
  • a control instruction set is generated, which also includes: when the vehicle is in the two-wheel drive normal mode, determine whether the acceleration intention information indicates that the acceleration intention is weak; if so, generate a control instruction set The fifth target instruction in the instruction set, wherein the fifth target instruction is used to control the vehicle's power system to execute a strategy to maintain the current driving mode.
  • a control instruction set is generated, which also includes: when the vehicle is in the normal two-wheel drive mode, determine whether the acceleration intention information indicates that the acceleration intention is weak; if not, generate a control instruction set
  • the sixth target instruction in the instruction set is used to control the vehicle's power system to execute a strategy of switching to the four-wheel drive mode.
  • a control instruction set is generated, which also includes: after the vehicle switches from the two-wheel drive normal mode to the four-wheel drive mode, determine whether the driver's driving demand torque is greater than the second rotation speed. torque threshold, where the second torque threshold is the torque provided by the power system when the vehicle is in four-wheel drive mode; if not, generate the seventh target instruction in the control instruction set, where the seventh target instruction is used to control the vehicle's power system Implement the strategy of switching to two-wheel drive normal mode.
  • FIG. 3 is a structural block diagram of the four-driving force system.
  • the system includes a front drive system and a rear drive system.
  • the front drive system mainly includes a first Motor 1, differential 2 and clutch 3.
  • the rear drive system mainly includes the second motor 4 and differential 2.
  • the four-wheel drive system has four drive modes: two-wheel drive normal mode, two-wheel drive strong power mode, two-wheel drive economy mode and four-wheel drive mode.
  • the drive motor in the two-wheel drive normal mode is the first motor 1.
  • the driving motor of the two-wheel drive strong power mode and the two-wheel drive economical mode is the second motor 4, and the second motor 4 is connected to the transmission.
  • the transmission has three gears: first gear, second gear and neutral gear.
  • clutch 3 When the four-wheel drive system is in the normal two-wheel drive mode, clutch 3 is closed and the first motor 1 works alone. The transmission corresponding to the second motor 4 is in neutral gear.
  • the four-wheel drive mode has two gears, namely the four-wheel drive high speed when the transmission corresponding to the second motor 4 is in the first gear, and the four-wheel drive low speed when the transmission corresponding to the second motor 4 is in the second gear. gear.
  • Switching means that the two-wheel drive normal mode can only be switched to the four-wheel drive mode, and the two-wheel drive strong power mode can be switched to the two-wheel drive economy mode or the four-wheel drive mode.
  • the clutch changes from the connected state to the disconnected state. During this period, the first motor 1 should adjust the torque appropriately to avoid power interruption.
  • the transmission corresponding to the second motor 4 gradually downshifts until it enters neutral. During this period, the first motor 1 adjusts the torque appropriately to avoid power interruption.
  • the two-wheel drive strong power mode or the two-wheel drive normal mode is switched to the four-wheel drive mode.
  • the transmission corresponding to the second motor should be quickly shifted into first gear. gear.
  • the process of switching from the two-wheel drive normal mode to the four-wheel drive mode is as follows: when the vehicle is in the two-wheel drive normal mode, the acceleration intention information is acceleration intention, and the four-wheel drive system is controlled to enter the four-wheel drive mode, that is, the second motor The transmission corresponding to 4 is out of neutral and shifted into the second gear.
  • the second motor 4 is gradually connected to the power system and outputs power together with the first motor 1.
  • the acceleration intention information indicates that the acceleration intention is strong
  • the four-wheel drive system is controlled to enter the four-wheel drive mode, that is, the transmission corresponding to the second motor 4 leaves neutral and quickly shifts into the first gear.
  • the second motor 4 is gradually connected to the power system and outputs power together with the first motor 1.
  • Embodiments of the present application also provide a control device for a vehicle power system.
  • Figure 4 is a structural block diagram of a control device for a vehicle power system.
  • the device includes: a first acquisition module 51, a control module 52, The second acquisition module 53 and the generation module 54.
  • the first acquisition module 51 is used to obtain historical startup information of the vehicle, where the historical startup information includes: used to represent the startup mode information generated when the vehicle performed the last manual selection, and used to represent the two-wheel drive strong power mode in the first predetermined state. Assume information on the first number of times that the two-wheel drive normal mode is manually selected within the first preset time period, and information indicating the second number of times that the two-wheel drive normal mode is manually selected within the first preset time period.
  • the control module 52 is configured to control the vehicle to enter an initial mode in response to the historical startup information meeting the preset conditions, where the initial mode includes at least one of the following: a two-wheel drive strong power mode and a two-wheel drive normal mode.
  • the second acquisition module 53 is used when the vehicle is in the initial state In the case of mode, the driver's acceleration intention information is obtained, where the acceleration intention information includes at least one of the following: weak acceleration intention, medium acceleration intention, and strong acceleration intention.
  • the generation module 54 is used to generate a control instruction set based on the acceleration intention information and the initial mode in which the vehicle is located.
  • the control instruction set is used to control the vehicle's power system to execute a mode switching strategy, wherein the mode switching strategy includes at least one of the following: maintaining the current Drive mode, switch to four-wheel drive mode, switch to two-wheel drive strong power mode, switch to two-wheel drive normal mode, and switch to two-wheel drive economy mode.
  • Embodiments of the present application also provide a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in the above method embodiment when running.
  • the above-mentioned storage medium may be configured to store a computer program for performing the following steps: Step S1: Obtain historical startup information of the vehicle, where the historical startup information includes: used to indicate that the vehicle performed the last manual selection The startup mode information generated when the two-wheel drive strong power mode is manually selected within the first preset time period is used to indicate that the two-wheel drive normal mode is manually selected within the first preset time period. The second number information. Step S2: In response to the historical startup information meeting the preset conditions, control the vehicle to enter an initial mode, where the initial mode includes at least one of the following: a two-wheel drive strong power mode and a two-wheel drive normal mode.
  • Step S3 When the vehicle is in the initial mode, obtain the driver's acceleration intention information, where the acceleration intention information includes at least one of the following: weak acceleration intention, medium acceleration intention, and strong acceleration intention.
  • Step S4 Based on the acceleration intention information and the initial mode of the vehicle, generate a control instruction set.
  • the control instruction set is used to control the vehicle's power system to execute a mode switching strategy, where the mode switching strategy includes at least one of the following: maintaining the current driving mode. , switch to four-wheel drive mode, switch to two-wheel drive strong power mode, switch to two-wheel drive normal mode, and switch to two-wheel drive economy mode.
  • the first preset time period is set according to the frequency of vehicle use.
  • Embodiments of the present application also provide a processor, which is configured to run a computer program to perform the steps in the above method embodiments.
  • Step S1 Obtain historical startup information of the vehicle, where the historical startup information includes: used to represent the vehicle generated when performing the last manual selection.
  • Startup mode information is used to represent the first number of times the two-wheel drive strong power mode is manually selected within the first preset time period, and is used to represent the second time the two-wheel drive normal mode is manually selected within the first preset time period. Times information.
  • Step S2 In response to the historical startup information meeting the preset conditions, control the vehicle to enter an initial mode, where the initial mode includes at least one of the following: a two-wheel drive strong power mode and a two-wheel drive normal mode.
  • Step S3 When the vehicle is in the initial mode, obtain the driver's acceleration intention information, where the acceleration intention information includes at least one of the following: weak acceleration intention, medium acceleration intention, and strong acceleration intention.
  • Step S4 Based on the acceleration intention information and the initial mode of the vehicle, generate a control instruction set.
  • the control instruction set is used to control the vehicle's power system to execute a mode switching strategy, where the mode switching strategy includes at least one of the following: maintaining the current driving mode. , switch to four-wheel drive mode, switch to two-wheel drive strong power mode, switch to two-wheel drive normal mode, and switch to two-wheel drive economy mode.
  • the first preset time period is set according to the frequency of vehicle use.
  • Embodiments of the present application also provide a vehicle, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in the above method embodiment.
  • Step S1 Obtain historical startup information of the vehicle, where the historical startup information includes: used to represent the vehicle generated when performing the last manual selection.
  • Startup mode information is used to represent the first number of times the two-wheel drive strong power mode is manually selected within the first preset time period, and is used to represent the second time the two-wheel drive normal mode is manually selected within the first preset time period. times information.
  • Step S2 In response to the historical startup information meeting the preset conditions, control the vehicle to enter an initial mode, where the initial mode includes at least one of the following: a two-wheel drive strong power mode and a two-wheel drive normal mode.
  • Step S3 When the vehicle is in the initial mode, obtain the driver's acceleration intention information, where the acceleration intention information includes at least one of the following: weak acceleration intention, medium acceleration intention, and strong acceleration intention.
  • Step S4 Based on the acceleration intention information and the initial mode of the vehicle, generate a control instruction set.
  • the control instruction set is used to control the vehicle's power system to execute a mode switching strategy, where the mode switching strategy includes at least one of the following: maintaining the current driving mode. , switch to four-wheel drive mode, switch to two-wheel drive strong power mode, switch to two-wheel drive normal mode, and switch to two-wheel drive economy mode.
  • the first preset time period is set according to the frequency of vehicle use.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical functional division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the units or modules may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be used as a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the methods described in various embodiments of this application. step.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种车辆动力系统的控制方法,包括:获取车辆的历史启动信息;响应于历史启动信息满足预设条件,控制车辆进入初始模式;在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强;基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。由此可以解决由于纯电动汽车动力性能的提升导致其续驶里程降低的技术问题。还公开了一种车辆动力系统的控制装置以及车辆。

Description

车辆动力系统的控制方法、装置以及车辆 技术领域
本申请涉及车辆驱动技术领域,具体而言,涉及一种车辆动力系统的控制方法、装置以及车辆。本申请要求于2022年7月27日提交至中国国家知识产权局、申请号为202210896313.4、发明名称为“车辆动力系统的控制方法、装置以及车辆”的专利申请的优先权。
背景技术
随着纯电动汽车的发展,为了追求较好的动力性,很多车型均采用四驱方案,即前后各采用一套电驱动系统。
在纯电动汽车动力性能提升的同时,面临着高动力与低能耗之间的矛盾关系,当车辆匹配较大转矩和功率的动力系统时,动力性得到了增强,但是在消耗相同能量下的续驶里程可能会减少。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种车辆动力系统的控制方法、装置以及车辆,以至少解决由于纯电动汽车动力性能的提升导致其续驶里程降低的技术问题。
根据本申请实施例的一个方面,提供了一种车辆动力系统的控制方法,包括:获取车辆的历史启动信息,其中,历史启动信息包括:用于表示车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在第一预设时长内被手动选择的第二次数信息;响应于历史启动信息满足预设条件,控制车辆进入初始模式,其中,初始模式包括如下至少之一:两驱强动力模式和两驱正常模式;在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强;基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。
可选地,响应于历史启动信息满足预设条件,控制车辆进入初始模式,包括:判 断车辆在执行上一次手动选择时产生的启动模式信息是否为以两驱强动力模式启动的信息或者以两驱正常模式启动的信息;如果是,控制车辆进入启动模式信息所对应的两驱强动力模式或者两驱正常模式。
可选地,响应于历史启动信息满足预设条件,控制车辆进入初始模式,包括:判断车辆在执行上一次手动选择时产生的启动模式信息是否为以两驱强动力模式启动的信息或者以两驱正常模式启动的信息;如果否,判断第一次数信息中的次数值是否大于或等于第二次数信息中的次数值;如果是,控制车辆进入两驱强动力模式。
可选地,在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,包括:采集加速踏板的开度值以及加速踏板的开度变化率;将加速踏板的开度值与开度阈值进行比较,获得第一比较结果;将加速踏板的开度变化率与变化率阈值进行比较,获得第二比较结果;结合第一比较结果以及第二比较结果,确定加速意图信息。
可选地,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,包括:在车辆处于两驱强动力模式的情况下,判断加速意图信息是否为加速意图弱;如果是,生成控制指令集中的第一目标指令,其中,第一目标指令用于控制车辆的动力系统执行维持当前驱动模式的策略。
可选地,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆处于两驱强动力模式的情况下,判断加速意图信息是否为加速意图弱;如果否,生成控制指令集中的第二目标指令,其中,第二目标指令用于控制车辆的动力系统执行切换至四驱模式的策略。
可选地,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆由两驱强动力模式切换至四驱模式后,判断驾驶员驾驶需求转矩是否大于第一转矩阈值,其中,第一转矩阈值为车辆处于四驱模式下动力系统提供的转矩;如果否,生成控制指令集中的第三目标指令,其中,第三目标指令用于控制车辆的动力系统执行切换至两驱强动力模式的策略。
可选地,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆处于两驱强动力模式的情况下,判断车辆是否处于高速或快速路区域;如果是,判断车辆在第二预设时长内的平均速度是否大于预置速度;如果是,生成控制指令集中的第四目标指令,其中,第四目标指令用于控制车辆的动力系统执行切换至两驱经济模式的策略。
根据本申请实施例的另一方面,还提供了一种车辆动力系统的控制装置,包括:第一获取模块,第一获取模块用于获取车辆的历史启动信息,其中,历史启动信息包括:用于表示车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动 力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在第一预设时长内被手动选择的第二次数信息;控制模块,控制模块用于响应于历史启动信息满足预设条件,控制车辆进入初始模式,其中,初始模式包括如下至少之一:两驱强动力模式和两驱正常模式;第二获取模块,第二获取模块用于在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强;生成模块,生成模块用于基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。
根据本申请实施例的另一方面,还提供了一种车辆,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行上述的方法。
根据本申请实施例的另一方面,还提供了一种计算机存储介质,计算机存储介质包括存储的程序,其中,在程序运行时控制计算机存储介质所在设备执行上述的方法。
根据本申请实施例的另一方面,还提供了一种处理器,处理器用于运行程序,处理器被设置为运行计算机程序以执行上述的方法。
在本申请实施例中,根据历史启动信息控制车辆进入初始模式,即车辆的启动模式,根据所确定的初始模式以及驾驶员的加速意图信息控制车辆驱动模式进行实时的自动切换,在满足驾驶需求的基础上,减少能量的消耗,进而解决由于纯电动汽车动力性能的提升导致其续驶里程降低的技术问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请其中一可选实施例的车辆动力系统的控制方法的车辆电子装置的硬件结构框图;
图2是根据本申请其中一可选的实施例的车辆动力系统的控制方法的流程图;
图3是根据本申请其中一可选的实施例的四驱动力系统的结构框图;
图4是根据本申请实施例的一可选的车辆动力系统的控制装置的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请实施例,提供了一种车辆动力系统的控制方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
该方法实施例可以在车辆中包含存储器和处理器的电子装置或者类似的运算装置中执行。以运行在车辆的电子装置上为例,如图1所示,车辆的电子装置可以包括一个或多个处理器102(处理器可以包括但不限于中央处理器(CPU)、图形处理器(GPU)、数字信号处理(DSP)芯片、微处理器(MCU)、可编程逻辑器件(FPGA)、神经网络处理器(NPU)、张量处理器(TPU)、人工智能(AI)类型处理器等的处理装置)和用于存储数据的存储器104。可选地,上述汽车的电子装置还可以包括用于通信功能的传输设备106、输入输出设备108以及显示设备110。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述车辆的电子装置的结构造成限定。例如,车辆的电子装置还可包括比上述结构描述更多或者更少的组件,或者具有与上述结构描述不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的车辆动力系统的控制方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的车辆动力系统的控制方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内 部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
显示设备110可以例如触摸屏式的液晶显示器(LCD)和触摸显示器(也被称为“触摸屏”或“触摸显示屏”)。该液晶显示器可使得用户能够与移动终端的用户界面进行交互。在一些实施例中,上述移动终端具有图形用户界面(GUI),用户可以通过触摸触敏表面上的手指接触和/或手势来与GUI进行人机交互,此处的人机交互功能可选的包括如下交互:创建网页、绘图、文字处理、制作电子文档、游戏、视频会议、即时通信、收发电子邮件、通话界面、播放数字视频、播放数字音乐和/或网络浏览等、用于执行上述人机交互功能的可执行指令被配置/存储在一个或多个处理器可执行的计算机程序产品或可读存储介质中。
本实施例中提供了一种运行于上述车辆动力系统控制的方法,图2是根据本申请其中一实施例的车辆动力系统的控制方法的流程图,如图2所示,该流程包括如下步骤:步骤S1:获取车辆的历史启动信息,其中,历史启动信息包括:用于表示车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在第一预设时长内被手动选择的第二次数信息。步骤S2:响应于历史启动信息满足预设条件,控制车辆进入初始模式,其中,初始模式包括如下至少之一:两驱强动力模式和两驱正常模式。步骤S3:在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强。步骤S4:基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。其中,第一预设时长根据车辆使用的频次进行设置。
在本申请的实施例中,根据历史启动信息控制车辆进入初始模式,即车辆的启动模式,根据所确定的初始模式以及驾驶员的加速意图信息控制车辆驱动模式进行实时的自动切换,在满足驾驶需求的基础上,减少能量的消耗,进而解决由于纯电动汽车动力性能的提升导致其续驶里程降低技术问题。
在步骤S2中,响应于历史启动信息满足预设条件,控制车辆进入初始模式,包括:判断车辆在执行上一次手动选择时产生的启动模式信息是否为以两驱强动力模式启动 的信息或者以两驱正常模式启动的信息;如果是,控制车辆进入启动模式信息所对应的两驱强动力模式或者两驱正常模式。
在上述步骤中,根据驾驶员上次手动选择的启动模式来确定自动驾驶时车辆的初始模式,以适应驾驶员的驾驶习惯以及启动时的动力需求。
在步骤S2中,响应于历史启动信息满足预设条件,控制车辆进入初始模式,包括:判断车辆在执行上一次手动选择时产生的启动模式信息是否为以两驱强动力模式启动的信息或者以两驱正常模式启动的信息;如果否,判断第一次数信息中的次数值是否大于或等于第二次数信息中的次数值;如果是,控制车辆进入两驱强动力模式。
需要说明的是,执行两驱强动力模式的电机和执行两驱正常模式的电机不是同一个电机,前后电机之间进行动力切换会出现动力中断现象,故两驱正常模式和两驱强动力模式间不能切换,两驱正常模式只能切换至四驱模式,两驱强动力模式可以切换至两驱经济模式或四驱模式。为了能够实现两驱正常模式、两驱强动力模式、四驱模式以及两驱经济模式之间的切换,故将自动驾驶的初始模式设置为两驱正常模式和两驱强动力模式两种。
在上述步骤中,根据驾驶员在第一预设时长内手动选择的两驱强动力模式以及两驱正常模式的次数信息来确定自动驾驶时车辆的初始模式,在满足驾驶员的驾驶习惯以及启动的动力需求的情况下,能够实现上述四种驱动模式的切换。
在步骤S3中,在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,包括:采集加速踏板的开度值以及加速踏板的开度变化率;将加速踏板的开度值与开度阈值进行比较,获得第一比较结果;将加速踏板的开度变化率与变化率阈值进行比较,获得第二比较结果;结合第一比较结果以及第二比较结果,确定加速意图信息。
需要说明的是,在非自动驾驶过程中,驾驶员通过脚踩加速踏板来控制车辆的行驶速度,即控制发动机的动力输出。在自动驾驶过程中,通过加速踏板的开度值以及加速踏板的开度变化率,来判断驾驶员的加速意图,进而控制驱动模式的切换。
在上述步骤中,加速踏板的开度值、加速踏板的开度变化率以及加速意图信息三者之间的对照关系构成驾驶员意图模糊控制模型。由于加速踏板在非自动驾驶过程中用于控制车辆的行驶速度,通过踩加速踏板来表明加速意图的方式与驾驶员的驾驶习惯一致,使驾驶员意图模糊控制模型的输出更加精确。其中,开度阈值以及变化率阈值是结合四种驱动模式以及驾驶员的驾驶习惯来设定的。
具体地,对驾驶员意图模糊控制模型进行举例说明,驾驶员模糊控制模型的输入变量主要有以下指标:加速踏板开度L和加速踏板开度的变化率K。
通过大量的实车运行数据,将上述的输入变化量参数进行归一化处理,加速踏板开度L本身就可以归结为[0,1]区间的范围变化量,而踏板变化率K则将实车运行数据中出现的最大值归为1,使其在[0,1]间变化。
将踏板位移数值L可以分为三类:L1、L2以及L3,L1的取值范围为[0,0.3),L2的取值范围为[0.3,0.6),L3的取值范围为[0.6,1]。将踏板变化率K可以分为三类:K1,K2以及K3,K1的取值范围为[0,0.3),K2的取值范围为[0.3,0.6),K3的取值范围为[0.6,1]。
将驾驶员意图模糊控制模型绘制成一个表格,即表1,根据表1来确定驾驶员的加速意图。
表1
在步骤S4,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,包括:在车辆处于两驱强动力模式的情况下,判断加速意图信息是否为加速意图弱;如果是,生成控制指令集中的第一目标指令,其中,第一目标指令用于控制车辆的动力系统执行维持当前驱动模式的策略。
在上述步骤中,加速意图弱表明车辆的当前的行驶速度基本满足驾驶员需求速度,故维持当前的驱动模式即可。
在步骤S4,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆处于两驱强动力模式的情况下,判断加速意图信息是否为加速意图弱;如果否,生成控制指令集中的第二目标指令,其中,第二目标指令用于控制车辆的动力系统执行切换至四驱模式的策略。
在上述步骤中,车辆处于两驱强动力模式,若当前的行驶速度不能满足驾驶员需求速度,说明两驱模式所提供的最大动力已无法满足驾驶需求,需要切换至四驱模式。
在步骤S4,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆由两驱强动力模式切换至四驱模式后,判断驾驶员驾驶需求转矩是否大于第一转矩阈值,其中,第一转矩阈值为车辆处于四驱模式下动力系统提供的转矩;如果否,生成控制指令集中的第三目标指令,其中,第三目标指令用于控制车辆的动力系统执行切换至两驱强动力模式的策略。
在上述步骤中,驾驶员驾驶需求转矩小于或等于转矩阈值,说明四驱模式所提供 的动力超出了需求动力,为了降低能耗,需要切换至两驱模式。由于车辆由两驱强动力模式切换至四驱模式的,故从四驱模式恢复至两驱强动力模式,符合驾驶员的驾驶习惯。
在步骤S4,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆处于两驱强动力模式的情况下,判断车辆是否处于高速或快速路区域;如果是,判断车辆在第二预设时长内的平均速度是否大于预置速度;如果是,生成控制指令集中的第四目标指令,其中,第四目标指令用于控制车辆的动力系统执行切换至两驱经济模式的策略。
在上述步骤中,只有两驱强动力模式才能切换至两驱经济模式,同时两驱经济模式只有在高速行驶时,才能发挥较大的经济性作用,故需要判断车辆是否在高速或快速路区域,且速度是否超过预置速度。
在步骤S4,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆处于两驱正常模式的情况下,判断加速意图信息是否为加速意图弱;如果是,生成控制指令集中的第五目标指令,其中,第五目标指令用于控制车辆的动力系统执行维持当前驱动模式的策略。
在步骤S4,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆处于两驱正常模式的情况下,判断加速意图信息是否为加速意图弱;如果否,生成控制指令集中的第六目标指令,其中,第六目标指令用于控制车辆的动力系统执行切换至四驱模式的策略。
在步骤S4,基于加速意图信息以及车辆所处的初始模式,生成控制指令集,还包括:在车辆由两驱正常模式切换至四驱模式后,判断驾驶员驾驶需求转矩是否大于第二转矩阈值,其中,第二转矩阈值为车辆处于四驱模式下动力系统提供的转矩;如果否,生成控制指令集中的第七目标指令,其中,第七目标指令用于控制车辆的动力系统执行切换至两驱正常模式的策略。
本申请的实施例还提供了一种四驱动力系统,图3是四驱动力系统的结构框图,如图3所示,该系统包括前驱动系统和后驱动系统,前驱动系统主要包括第一电机1、差速器2以及离合器3,后驱动系统主要包括第二电机4以及差速器2。该四驱动力系统的驱动模式共有四种:两驱正常模式、两驱强动力模式、两驱经济模式以及四驱模式。其中,两驱正常模式的驱动电机为第一电机1。两驱强动力模式与两驱经济模式的驱动电机为第二电机4,第二电机4与变速器传动连接,该变速器有三个档位:一档、二档以及空挡。
当四驱动力系统处于两驱正常模式时,离合器3闭合,第一电机1单独工作,第 二电机4所对应的变速器处于空挡档位。
当四驱动力系统处于两驱强动力模式时,离合器3断开,第二电机4单独工作,第二电机4所对应的变速器处于一挡档位。
当四驱动力系统处于两驱强动力模式时,离合器3断开,第二电机4单独工作,第二电机4所对应的变速器处于二挡档位。
当四驱动力系统处于四驱模式时,离合器3闭合,第一电机1与第二电机4同时工作。四驱模式具有两个档位,即第二电机4所对应的变速器处于一挡档位时的四驱高速档位,以及第二电机4所对应的变速器处于二挡档位时的四驱低速档位。
第一电机1与第二电机4之间进行动力切换,会出现动力不连续的情况,故两驱强动力模式与两驱正常模式之间以及两驱经济模式与两驱正常模式之间不能进行切换,即两驱正常模式只能切换至四驱模式,两驱强动力模式可以切换至两驱经济模式或四驱模式。
需要注意的是,四驱模式切换至两驱强动力模式时,离合器由结合状态变为断开状态,在此期间,第一电机1应适当调整转矩,避免动力中断。四驱模式切换至两驱正常模式时,第二电机4所对应的变速器逐渐降挡,直至进入空挡,在此期间,第一电机1适当调整转矩,避免动力中断。
在上述实施例中,当加速意图信息为加速意图强时,由两驱强动力模式或者两驱正常模式切换至四驱模式,与此同时,第二电机所对应的变速器应迅速挂入一档档位。
具体地,由两驱正常模式切换至四驱模式的过程如下:在车辆处于两驱正常模式的情况下,加速意图信息为加速意图中,控制四驱动力系统进入四驱模式,即第二电机4所对应的变速器脱离空挡,并挂入二档档位,第二电机4逐步接入动力系统,与第一电机1共同输出动力。在车辆处于两驱正常模式的情况下,加速意图信息为加速意图强,控制四驱动力系统进入四驱模式,即第二电机4所对应的变速器脱离空挡,迅速挂入一档档位,第二电机4逐步接入动力系统,与第一电机1共同输出动力。
本申请的实施例还提供了一种车辆动力系统的控制装置,图4是车辆动力系统的控制装置的结构框图,如图11所示,该装置包括:第一获取模块51、控制模块52、第二获取模块53以及生成模块54。第一获取模块51用于获取车辆的历史启动信息,其中,历史启动信息包括:用于表示车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在第一预设时长内被手动选择的第二次数信息。控制模块52用于响应于历史启动信息满足预设条件,控制车辆进入初始模式,其中,初始模式包括如下至少之一:两驱强动力模式和两驱正常模式。第二获取模块53用于在车辆处于初始 模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强。生成模块54用于基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述方法实施例中的步骤。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:步骤S1:获取车辆的历史启动信息,其中,历史启动信息包括:用于表示车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在第一预设时长内被手动选择的第二次数信息。步骤S2:响应于历史启动信息满足预设条件,控制车辆进入初始模式,其中,初始模式包括如下至少之一:两驱强动力模式和两驱正常模式。步骤S3:在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强。步骤S4:基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。其中,第一预设时长根据车辆使用的频次进行设置。
本申请的实施例还提供了一种处理器,该处理器被设置为运行计算机程序以执行上述方法实施例中的步骤。
在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:步骤S1:获取车辆的历史启动信息,其中,历史启动信息包括:用于表示车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在第一预设时长内被手动选择的第二次数信息。步骤S2:响应于历史启动信息满足预设条件,控制车辆进入初始模式,其中,初始模式包括如下至少之一:两驱强动力模式和两驱正常模式。步骤S3:在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强。步骤S4:基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。其中,第一预设时长根据车辆使用的频次进行设置。
本申请的实施例还提供了一种车辆,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行上述方法实施例中的步骤。
在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:步骤S1:获取车辆的历史启动信息,其中,历史启动信息包括:用于表示车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在第一预设时长内被手动选择的第二次数信息。步骤S2:响应于历史启动信息满足预设条件,控制车辆进入初始模式,其中,初始模式包括如下至少之一:两驱强动力模式和两驱正常模式。步骤S3:在车辆处于初始模式的情况下,获取驾驶员的加速意图信息,其中,加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强。步骤S4:基于加速意图信息以及车辆所处的初始模式,生成控制指令集,控制指令集用于控制车辆的动力系统执行模式切换策略,其中,模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。其中,第一预设时长根据车辆使用的频次进行设置。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的 形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种车辆动力系统的控制方法,其特征在于,包括:
    获取车辆的历史启动信息,其中,所述历史启动信息包括:用于表示所述车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在所述第一预设时长内被手动选择的第二次数信息;
    响应于所述历史启动信息满足预设条件,控制车辆进入初始模式,其中,所述初始模式包括如下至少之一:两驱强动力模式和两驱正常模式;
    在所述车辆处于所述初始模式的情况下,获取驾驶员的加速意图信息,其中,所述加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强;
    基于所述加速意图信息以及所述车辆所处的所述初始模式,生成控制指令集,所述控制指令集用于控制所述车辆的动力系统执行模式切换策略,其中,所述模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。
  2. 根据权利要求1所述的方法,其特征在于,响应于所述历史启动信息满足预设条件,控制车辆进入初始模式,包括:
    判断所述车辆在执行上一次手动选择时产生的启动模式信息是否为以所述两驱强动力模式启动的信息或者以所述两驱正常模式启动的信息;
    如果是,控制所述车辆进入所述启动模式信息所对应的所述两驱强动力模式或者所述两驱正常模式。
  3. 根据权利要求1所述的方法,其特征在于,响应于所述历史启动信息满足预设条件,控制车辆进入初始模式,包括:
    判断所述车辆在执行上一次手动选择时产生的启动模式信息是否为以所述两驱强动力模式启动的信息或者以所述两驱正常模式启动的信息;
    如果否,判断所述第一次数信息中的次数值是否大于或等于所述第二次数信息中的次数值;
    如果是,控制所述车辆进入所述两驱强动力模式。
  4. 根据权利要求1所述的方法,其特征在于,在所述车辆处于所述初始模式的情况下,获取驾驶员的加速意图信息,包括:
    采集加速踏板的开度值以及所述加速踏板的开度变化率;
    将所述加速踏板的开度值与开度阈值进行比较,获得第一比较结果;
    将所述加速踏板的开度变化率与变化率阈值进行比较,获得第二比较结果;
    结合所述第一比较结果以及所述第二比较结果,确定所述加速意图信息。
  5. 根据权利要求1所述的方法,其特征在于,基于所述加速意图信息以及所述车辆所处的所述初始模式,生成控制指令集,包括:
    在所述车辆处于两驱强动力模式的情况下,判断所述加速意图信息是否为加速意图弱;
    如果是,生成所述控制指令集中的第一目标指令,其中,所述第一目标指令用于控制所述车辆的动力系统执行维持当前驱动模式的策略。
  6. 根据权利要求1所述的方法,其特征在于,基于所述加速意图信息以及所述车辆所处的所述初始模式,生成控制指令集,还包括:
    在所述车辆处于两驱强动力模式的情况下,判断所述加速意图信息是否为加速意图弱;
    如果否,生成所述控制指令集中的第二目标指令,其中,所述第二目标指令用于控制所述车辆的动力系统执行切换至四驱模式的策略。
  7. 根据权利要求1所述的方法,其特征在于,基于所述加速意图信息以及所述车辆所处的所述初始模式,生成控制指令集,还包括:
    在所述车辆由所述两驱强动力模式切换至所述四驱模式后,判断驾驶员驾驶需求转矩是否大于第一转矩阈值,其中,所述第一转矩阈值为所述车辆处于所述四驱模式下动力系统提供的转矩;
    如果否,生成所述控制指令集中的第三目标指令,其中,所述第三目标指令用于控制所述车辆的动力系统执行切换至两驱强动力模式的策略。
  8. 根据权利要求1所述的方法,其特征在于,基于所述加速意图信息以及所述车辆所处的所述初始模式,生成控制指令集,还包括:
    在所述车辆处于两驱强动力模式的情况下,判断所述车辆是否处于高速或快速路区域;
    如果是,判断所述车辆在第二预设时长内的平均速度是否大于预置速度;
    如果是,生成所述控制指令集中的第四目标指令,其中,所述第四目标指令用于控制所述车辆的动力系统执行切换至两驱经济模式的策略。
  9. 一种车辆动力系统的控制装置,其特征在于,包括:
    第一获取模块,所述第一获取模块用于获取车辆的历史启动信息,其中,所述历史启动信息包括:用于表示所述车辆在执行上一次手动选择时产生的启动模式信息,用于表示两驱强动力模式在第一预设时长内被手动选择的第一次数信息,以及用于表示两驱正常模式在所述第一预设时长内被手动选择的第二次数信息;
    控制模块,所述控制模块用于响应于所述历史启动信息满足预设条件,控制车辆进入初始模式,其中,所述初始模式包括如下至少之一:两驱强动力模式和两驱正常模式;
    第二获取模块,所述第二获取模块用于在所述车辆处于所述初始模式的情况下,获取驾驶员的加速意图信息,其中,所述加速意图信息包括如下至少之一:加速意图弱、加速意图中等和加速意图强;
    生成模块,所述生成模块用于基于所述加速意图信息以及所述车辆所处的所述初始模式,生成控制指令集,所述控制指令集用于控制所述车辆的动力系统执行模式切换策略,其中,所述模式切换策略包括如下至少之一:维持当前驱动模式、切换至四驱模式、切换至两驱强动力模式、切换至两驱正常模式和切换至两驱经济模式。
  10. 一种车辆,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1-8中任一项所述的方法。
PCT/CN2023/089888 2022-07-27 2023-04-21 车辆动力系统的控制方法、装置以及车辆 WO2024021702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210896313.4A CN115476698A (zh) 2022-07-27 2022-07-27 车辆动力系统的控制方法、装置以及车辆
CN202210896313.4 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024021702A1 true WO2024021702A1 (zh) 2024-02-01

Family

ID=84422914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089888 WO2024021702A1 (zh) 2022-07-27 2023-04-21 车辆动力系统的控制方法、装置以及车辆

Country Status (2)

Country Link
CN (1) CN115476698A (zh)
WO (1) WO2024021702A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115476698A (zh) * 2022-07-27 2022-12-16 中国第一汽车股份有限公司 车辆动力系统的控制方法、装置以及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114790A (ja) * 2006-11-07 2008-05-22 Toyota Motor Corp 車両用制御装置およびそれを備える車両
JP2021012035A (ja) * 2019-07-03 2021-02-04 三菱自動車工業株式会社 車載用情報表示装置及び車両
US20210146943A1 (en) * 2017-06-02 2021-05-20 Honda Motor Co., Ltd. Vehicle control system, vehicle control method, and vehicle control program
CN113071332A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 双电机电动汽车的扭矩控制方法、电动汽车及存储介质
CN113895244A (zh) * 2021-09-30 2022-01-07 岚图汽车科技有限公司 车辆控制方法、装置、电子设备及存储介质
CN114194194A (zh) * 2020-09-18 2022-03-18 罗伯特·博世有限公司 自动切换车辆驾驶模式的方法和装置
CN114212091A (zh) * 2021-12-30 2022-03-22 重庆长安新能源汽车科技有限公司 一种电动汽车动力传动装置控制方法、车辆及计算机可读存储介质
CN115476698A (zh) * 2022-07-27 2022-12-16 中国第一汽车股份有限公司 车辆动力系统的控制方法、装置以及车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114790A (ja) * 2006-11-07 2008-05-22 Toyota Motor Corp 車両用制御装置およびそれを備える車両
US20210146943A1 (en) * 2017-06-02 2021-05-20 Honda Motor Co., Ltd. Vehicle control system, vehicle control method, and vehicle control program
JP2021012035A (ja) * 2019-07-03 2021-02-04 三菱自動車工業株式会社 車載用情報表示装置及び車両
CN114194194A (zh) * 2020-09-18 2022-03-18 罗伯特·博世有限公司 自动切换车辆驾驶模式的方法和装置
CN113071332A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 双电机电动汽车的扭矩控制方法、电动汽车及存储介质
CN113895244A (zh) * 2021-09-30 2022-01-07 岚图汽车科技有限公司 车辆控制方法、装置、电子设备及存储介质
CN114212091A (zh) * 2021-12-30 2022-03-22 重庆长安新能源汽车科技有限公司 一种电动汽车动力传动装置控制方法、车辆及计算机可读存储介质
CN115476698A (zh) * 2022-07-27 2022-12-16 中国第一汽车股份有限公司 车辆动力系统的控制方法、装置以及车辆

Also Published As

Publication number Publication date
CN115476698A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024021702A1 (zh) 车辆动力系统的控制方法、装置以及车辆
WO2024017071A1 (zh) 混合动力车辆弹射起步的控制方法、控制装置、存储介质
CN109606350A (zh) 发动机启动控制方法、装置及系统
CN110103943B (zh) 一种混合动力汽车发动机熄火控制方法及系统
WO2023169314A1 (zh) 四驱混动车辆控制方法、装置、车辆及存储介质
CN113085830A (zh) 一种发动机起动控制方法、装置、电子设备以及存储介质
CN111824110A (zh) 一种发动机停机控制方法、装置、设备及存储介质
CN113147721B (zh) 控制发动机起动方法、装置、电子设备以及存储介质
CN112622866A (zh) 一种发动机转速调节方法、装置、车辆电控装置及介质
WO2024022103A1 (zh) 离合器控制方法、装置、电子设备及存储介质
WO2024094114A1 (zh) 车辆参数确定方法、扭矩分配方法、装置及车辆
CN111497678B (zh) 燃料电池发动机的发电控制方法、装置、处理器及车辆
CN115675119A (zh) 车辆扭矩的控制方法、装置、存储介质及电子装置
CN115158288A (zh) 四驱混合动力车辆的控制方法、装置、车辆及存储介质
CN114704624A (zh) 双离合变速器同轴降挡的控制方法、控制装置及电子装置
CN115179921A (zh) 一种车辆的控制方法、装置、电子设备和存储介质
CN115492929B (zh) 变速器速比的控制方法、控制装置、存储介质、车辆
CN115123191A (zh) 混动车辆的扭矩控制方法、整车控制器、混动车辆
CN114715134A (zh) 一种混合动力汽车的百公里加速控制方法、系统及车辆
CN114802194A (zh) 混合动力车辆串并联模式的控制方法及电子装置
CN114872685B (zh) 混合动力汽车控制方法、装置、混合动力汽车及存储介质
CN116476805A (zh) 混动车辆动力系统模式的控制方法、装置及具有其的车辆
CN115140011A (zh) 混合动力汽车低温下发动机转速的控制方法、控制装置
CN116729354B (zh) 车辆启动方法、装置、存储介质及电子设备
CN116373842A (zh) 一种扭矩控制方法、系统、设备及介质、一种车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844918

Country of ref document: EP

Kind code of ref document: A1