WO2024021322A1 - 一种微针与排线倒焊连接结构及其制备工艺 - Google Patents

一种微针与排线倒焊连接结构及其制备工艺 Download PDF

Info

Publication number
WO2024021322A1
WO2024021322A1 PCT/CN2022/126569 CN2022126569W WO2024021322A1 WO 2024021322 A1 WO2024021322 A1 WO 2024021322A1 CN 2022126569 W CN2022126569 W CN 2022126569W WO 2024021322 A1 WO2024021322 A1 WO 2024021322A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
reverse
soldering
microneedles
cable
Prior art date
Application number
PCT/CN2022/126569
Other languages
English (en)
French (fr)
Inventor
黄立
黄晟
蔡光艳
高健飞
王春水
汪超
Original Assignee
武汉衷华脑机融合科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉衷华脑机融合科技发展有限公司 filed Critical 武汉衷华脑机融合科技发展有限公司
Publication of WO2024021322A1 publication Critical patent/WO2024021322A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00095Interconnects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/006Microdevices formed as a single homogeneous piece, i.e. wherein the mechanical function is obtained by the use of the device, e.g. cutters
    • B81B1/008Microtips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0006Interconnects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0249Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections for simultaneous welding or soldering of a plurality of wires to contact elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/07Interconnects

Definitions

  • the invention relates to the technical field of microneedles, and specifically relates to a reverse welding connection structure between microneedles and a flat cable and a preparation process thereof.
  • Neural interfaces also commonly known as neural implants or neural "bonds," can establish connections between nerve cells and external devices.
  • BCI brain-computer interface
  • Microneedle is an important component in the neural interface. It is known that traditional microneedle is integrated by TSV process.
  • Patent Document 1 (CN114343655A) discloses a microneedle that can form an area array with multiple contacts. It also discloses a method for preparing the above-mentioned microneedles. The preparation process requires the TSV process to form through holes at both ends of the tail of the microneedle body, and then the microneedle signal is led out through a wire bonding process.
  • the present invention provides a reverse welding connection structure between microneedles and flat cables and a preparation process thereof.
  • the microneedles and flat cables are welded together using a reverse welding connection, which is different from the traditional TSV process for preparing microneedles.
  • the process steps are significantly simplified and precise signal transmission can be achieved.
  • the present invention provides the following technical solutions:
  • a preparation process for a reverse soldering connection structure between microneedles and flat cables including the following steps:
  • the process is a MEMS process.
  • step S1 the microneedles are single needles or multiple needles;
  • step S1 the plurality of needles is 8 needles or 32 needles;
  • step S1 the microneedles are array microneedles
  • step S1 the array microneedles are 8 ⁇ 8 pins or 32 ⁇ 32 pins;
  • the insulating layer is polyimide
  • step S1 or S2 the metal includes indium, copper, nickel or gold;
  • the flat wires are single row wires or multi-row wires, and each row wire is Both are equipped with reverse welding metal layers;
  • step S3 the pressing is at normal temperature
  • the reverse welding connection structure is through upper and lower metal reverse welding or through metal side
  • the wall connection is realized by reverse soldering.
  • the present invention also provides a microneedle and flat cable reverse soldering connection structure, which is prepared using the above-mentioned preparation process.
  • the invention provides a reverse soldering connection structure between microneedles and a flat cable and a preparation process thereof.
  • the reverse soldering metal layer of the microneedle is prepared, the reverse soldering metal layer of the flat cable is prepared, and the reverse soldering metal layer of the microneedle is connected to the flat cable.
  • the flip-soldering metal layer is aligned and pressed to form a flip-soldering contact to realize the flip-soldering connection between the microneedle and the cable.
  • the process steps are significantly simplified and the signal can be accurately achieved. transmission.
  • the welding stability of microneedles and cables connected by reverse soldering through the process of the present invention is higher than that of microneedles and cables connected together by the traditional TSV process, with longer service life and significantly lower failure rate;
  • the resistance of the ohmic resistance generated by the electrical contact of the contacts is significantly reduced, which significantly improves the stability and accuracy of signal transmission.
  • Figure 1 is a schematic process flow diagram of the microneedle reverse soldering contact metal of the present invention
  • Figure 2 is a schematic top view of the microneedle reverse soldering contact array of the present invention.
  • Figure 3 is a schematic process flow diagram of the present invention's reverse soldering of cables to contact metal
  • Figure 4 is a schematic top view of the wire flip soldering contact array of the present invention.
  • Figure 5 is a schematic diagram of the metal up and down reverse welding connection between the microneedle array and the wiring array of the present invention
  • Figure 6 is a schematic diagram of the reverse soldering connection between the microneedle array and the metal side wall of the wiring array according to the present invention.
  • Figure 7 is a schematic diagram of single-pin welding of the present invention.
  • Figure 8 is a schematic diagram of 8-pin welding according to the present invention.
  • Figure 9 is an enlarged schematic diagram of the cable arrangement of the present invention.
  • Figure 10 is a schematic diagram of 8 ⁇ 8 pin welding according to the present invention.
  • Figure 11 is a schematic diagram of 32-pin welding according to the present invention.
  • Figure 12 is a schematic diagram of 32 ⁇ 32 pin welding according to the present invention.
  • the embodiments of the present invention involve directional indications (such as up, down, left, right, front, back%), then the directional indications are only used to explain the position of a certain posture (as shown in the drawings). The relative positional relationship, movement conditions, etc. between the components under the display). If the specific posture changes, the directional indication will also change accordingly.
  • the present invention provides a microneedle and flat cable reverse soldering connection structure and its preparation process, which has the following advantages:
  • the present invention uses MEMS technology to produce microneedles and cables. Especially when the microneedles are array microneedles, hundreds or even thousands of signal lines of the readout circuit can be led out through metal reverse soldering, which solves the problem. Problems caused by multiple signals. At the same time, the connection process used in the present invention effectively reduces process steps compared to the traditional process, improves production efficiency, and reduces production costs.
  • the present invention reduces the ohmic resistance of electrical contact by preparing a back-soldering metal layer, especially a metal indium layer, on the microneedle and the flat cable respectively, and connecting the two modules of the microneedle and the flat cable by pressing at room temperature. value, which stabilizes the stability of welding and improves the accuracy of signal output.
  • the cable can be inserted into the microneedle array by rotating, and the metal on the cable can be connected to the microneedle array.
  • the metal on the microneedle array is aligned and pressed frequently to form a reverse soldering contact; through the above operations, since the fixed length of the microneedle array reverse soldering contact metal segment intersects with the reverse soldering end of the cable, the alignment accuracy of the reverse soldering can be greatly improved, solving the problem Solve the problem of reverse soldering alignment between two modules;
  • the cables and microneedles of the present invention can not only be connected by reverse welding of upper and lower metals, but can also be connected by reverse welding of metal side walls. Since the contact area during the upper and lower metal reverse soldering connection process will be affected by the metal wiring, using metal side wall reverse soldering connection can further increase the reverse soldering contact area on the one hand, and further improve the stability of the reverse soldering on the other hand.
  • the reverse soldering metal layer of the microneedle is prepared, the reverse soldering metal layer of the cable is prepared, and the reverse soldered metal layer of the microneedle and the flip soldered metal layer of the cable are prepared.
  • the method of aligning and pressing to form reverse soldering contact realizes the reverse soldering connection between microneedles and cables.
  • the process steps are significantly simplified and accurate signal transmission can be achieved.
  • the welding stability of microneedles and cables connected by reverse soldering through the process of the present invention is higher than that of microneedles and cables connected together by the traditional TSV process, with longer service life and significantly lower failure rate;
  • the resistance of the ohmic resistance generated by the electrical contact of the contacts is significantly reduced, which significantly improves the stability and accuracy of signal transmission.
  • the process of realizing reverse soldering connection between microneedles and flat cables includes the following steps:
  • Step S1 Prepare the microneedle 1 to be welded, make a microneedle insulating layer 2 on the microneedle 1, the material of the microneedle insulating layer 2 is preferably polyimide, and etch the microneedle insulating layer at a designated position to form an etching Hole 3, electroplating metal 4 in the etching hole 3, the electroplated metal 4 includes indium, copper, nickel or gold, the electroplated metal 4 is preferably indium, release the microneedle insulation layer 2, exposing the reverse soldering contact of the microneedle 1 Metal 5a. Wherein, the aforementioned designated position is above the corresponding microneedle signal output on the microneedle insulation layer 2 .
  • Step S2 Prepare the silicon wafer 6, make a wiring wiring layer 7 on the silicon wafer 6, and make a wiring insulation layer 8 on the wiring wiring layer 7.
  • the material of the wiring insulation layer 8 is preferably polyimide.
  • the cable insulation layer 8 is etched at a designated position to form an etching hole 3.
  • Metal 4 is electroplated in the etching hole 3.
  • the electroplated metal 4 is preferably indium.
  • the silicon in the corresponding reverse soldering area on the back of the silicon chip 6 is etched to release the cable insulation.
  • Layer 8 exposes the flip solder contact metal 5b of the ribbon cable. Among them, the aforementioned designated position is above the corresponding signal input 8 on the cable insulation layer.
  • Step S3 Finally, align the reverse soldering metal 5a of the microneedle and the reverse soldering contact metal 5b of the flat cable up and down, and form a reverse soldering contact by pressing at room temperature.
  • the process of realizing reverse soldering connection between microneedles and flat cables includes the following steps:
  • Step S1 Prepare the microneedle 1 to be welded, make a microneedle insulation layer 2 on the microneedle 1, the material of the microneedle insulation layer 2 is preferably polyimide, and output the microneedle signal on the microneedle insulation layer 2
  • the microneedle insulation layer is etched above to form an etching hole 3.
  • Metal 4 is electroplated in the etching hole 3.
  • the electroplated metal 4 is preferably indium.
  • the microneedle insulation layer 2 is released to expose the reverse soldering contact metal 5a of the microneedle 1. .
  • Step S2 Prepare the silicon wafer 6, make a wiring wiring layer 7 on the silicon wafer 6, and make a wiring insulation layer 8 on the wiring wiring layer 7.
  • the material of the wiring insulation layer 8 is preferably polyimide.
  • the cable insulation layer 8 is etched above the signal input layer 8 to form an etching hole 3.
  • Metal 4 is electroplated in the etching hole 3.
  • the electroplated metal 4 is preferably indium.
  • the corresponding reverse soldering on the back side of the silicon wafer 6 is etched. The silicon in the area is released to release the cable insulation layer 8 so that the reverse soldering contact metal 5b of the cable is exposed.
  • Step S3 Finally, connect the reverse soldering metal 5a of the microneedle and the side walls of the reverse soldering contact metal 5b of the cable to each other, and form a reverse soldering contact by pressing at room temperature.
  • the reverse soldering area can be increased, further improving the stability of microneedle and cable welding.
  • the microneedle is a single needle or multiple needles, and each needle body is provided with a reverse soldering metal layer.
  • Microneedle reverse soldering contact 14 prepare the reverse soldering metal layer of the cable, align the microneedle reverse soldering contact 14 of the single-needle microneedle 13 with the reverse soldering metal layer of the cable, or flip the microneedle of the single-needle microneedle 13
  • the soldering contact 14 is connected to the side wall of the reverse soldering metal layer of the flat cable, and the reverse soldering connection between the single-needle microneedle and the flat cable is realized by pressing to form the reverse soldering contact.
  • specific implementation steps please refer to the foregoing implementation modes.
  • the microneedle reverse soldering contacts 17 of the eight microneedles 16 are prepared, the reverse soldering metal layer of the cable is prepared, and the microneedle reverse soldering of the eight microneedles 16 is prepared.
  • the soldering contacts 17 are aligned with the flip-soldering metal layer of the flat cable, or the micro-needle flip-soldering contacts 17 of the eight micro-needles 16 are connected to the side walls of the flip-soldering metal layer of the flat cable, and pressed to form the flip-soldering contacts to achieve 8
  • the microneedle 16 is connected to the flat cable 11 by reverse soldering.
  • FIG. 9 is an enlarged schematic diagram of the cable array corresponding to the 8 ⁇ 8 pin cable 19 and the 32 ⁇ 32 pin cable 21, and when the microneedles used are array microneedles and the cables are array cables,
  • the array cable used in the present invention can be inserted into the microneedle array in a rotating manner, and then the array cable and the microneedle array are connected by reverse soldering, thereby realizing the microneedle array and the array cable.
  • Modular rapid welding of wires compared with the traditional method of extracting microneedle signals through the wire bonding process after the microneedle array is prepared by the TVS process, the efficiency of the entire process has been significantly improved.
  • the 8 ⁇ 8 array microneedle reverse soldering contacts 24 of the 8 ⁇ 8 pin array microneedle 23 are prepared, and the reverse soldering metal of the 8 ⁇ 8 pin cable 22 is prepared.
  • the 8-array microneedle back-soldering contact 24 is connected to the side walls of the back-soldering metal layer of the 8 ⁇ 8-pin cable 22, and the reverse-soldering contact is formed by pressing, thereby realizing the connection between the 8x8-pin array microneedle and the 8x8-pin cable 22.
  • Flip solder connection 25 For specific implementation steps, reference may be made to the foregoing implementation modes.
  • the microneedle reverse soldering contacts 27 of 32 microneedles 26 are prepared, the reverse soldering metal layer of the wiring is prepared, and the microneedle reverse soldering of the 32 microneedles 26 is prepared.
  • the soldering contacts 27 are aligned with the flip-soldering metal layer of the flat cable, or the micro-needle flip-soldering contacts 27 of the 32 micro-needles 26 are connected to the side walls of the flip-soldering metal layer of the flat cable, and pressed to form the flip-soldering contact to achieve 32
  • the microneedle 26 is connected to the flat cable 11 by reverse soldering.
  • the reverse soldering contact 31 of the 32 ⁇ 32 array microneedle 30 is prepared, and the reverse soldering metal of the 32 ⁇ 32 pin cable 29 is prepared. layer, align the 32 ⁇ 32 array microneedle flip-soldering contacts 31 of the 32 ⁇ 32 pin array microneedle 30 with the flip-soldering metal layer of the 32 ⁇ 32 pin array microneedle, or align the 32 ⁇ 32 pin array microneedle 32
  • the array microneedle back-soldering contact 31 is connected to the side wall of the back-soldering metal layer of the 32 ⁇ 32 pin cable, and the reverse soldering contact is formed by pressing, thereby realizing the connection between the 32x32-pin array microneedle 30 and the 32x32-pin cable 29. Flip solder connections.
  • a microneedle and a cable connected by reverse soldering are provided, which are prepared using any one of the above embodiments.
  • the welding stability between the microneedles and the cable is higher than that of the microneedles and the cable connected together prepared by the traditional TSV process, so the service life is longer and the failure rate is significantly reduced; and, further, By electroplating indium metal contacts, the resistance of the ohmic resistance generated by the electrical contact of the contacts is significantly reduced, which significantly improves the stability and accuracy of signal transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Leads Or Probes (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

一种微针与排线倒焊连接结构及其制备工艺。该工艺制备微针(1)的倒焊金属层(5a)、排线的倒焊金属层(5b),将微针的倒焊金属层(5a)与排线的倒焊金属层(5b)对齐,通过按压形成倒焊接触的方式实现了微针与排线的倒焊连接结构。与传统的TSV工艺制备微针阵列相比,明显简化了工艺步骤,且能够实现信号的精准传输,连接结构的触点的电学接触产生的欧姆电阻的阻值明显降低,提升了信号传输的稳定性和精准性。

Description

一种微针与排线倒焊连接结构及其制备工艺 技术领域
本发明涉及微针技术领域,具体为一种微针与排线倒焊连接结构及其制备工艺。
背景技术
众所周知,人类进行思考的速度比进行书面交流或者口头交流的速度要快得多,例如:当我们在使用键盘输入文字的过程中,很多人就会意识到这一点,自己的打字速度是远远不如自己的思考速度的。而且,对于身体患有疾病如重度瘫痪或者肢体不够健全的人来说,这种信息传输瓶颈更为极端。
因此,人类一直在寻求如何实现人类神经与外部设备的连接,这样便可以有效提升信息的传输速度。神经接口也因此而诞生。神经接口,也通常被称为神经植入物或神经“纽带”,其可以建立起神经细胞与外部设备的连接。例如:Willett等人在《Nature》杂志上发表了一篇论文(Willett,F.R.,Avansino,D.T.,Hochberg,L.R.,Henderson,J.M.&Shenoy,K.V.Nature 593,249–254(2021)),报告了一种用于打字的脑机接口(BCI)的开发,这种接口最终可以让瘫痪的人以他们的思维速度进行交流。同时,神经接口被广泛用于研究和治疗各种神经性疾病。
微针是神经接口中的重要组成部件,已经知晓的是,传统的微针由TSV工艺集成,例如:专利文献1(CN114343655A)公开了一种可以形成具有多触点的面阵的微针,并公开了上述微针的制备方法,其制备过程需要采用TSV工艺在微针体尾部两端形成通孔,之后通过打线工艺将微针信号引出。
然而,使用传统的TSV工艺制备微针存在制备工艺复杂且成本高的技术问题,而且微针和排线之间连接的稳定性和信号传输的精准性都有待提高。
发明内容
有鉴于此,本发明提供了一种微针与排线倒焊连接结构及其制备工艺,其通过使用倒焊连接的方式将微针和排线焊接在一起,与传统的TSV工艺制备微针阵列相比,明显简化了工艺步骤,且能够实现信号的精准传输。
为了达到上述目的,根据本发明的一个方面,本发明提供了如下所述的技术方案:
一种微针与排线倒焊连接结构的制备工艺,包括如下步骤:
S1.制备微针的倒焊金属层:在微针上制作微针绝缘层,在所述微针绝缘层上对应微针信号输出上方刻蚀微针绝缘层形成刻蚀孔,在所述刻蚀孔中电镀金属,将微针绝缘层释放,露出微针的倒焊金属层;
S2.制备排线的倒焊金属层:在硅片上制作排线布线层,在所述排线布线层上制作排线绝缘层,在所述排线绝缘层上对应信号输入上方刻蚀排线绝缘层形成刻蚀孔,在所述刻蚀孔中电镀金属,将硅片背面对应的倒焊区域的硅刻蚀,将排线绝缘层释放,露出排线的倒焊金属层;
S3.将微针的倒焊金属层与排线的倒焊金属层对齐,按压形成倒焊连接结构。
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述工艺为MEMS工艺。
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述步骤S1中,所述微针为单针或多针;
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述步骤S1中,所述多针为8针或32针;
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述步骤S1中,所述微针为阵列微针;
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述步骤S1中,所述阵列微针为8×8针或32×32针;
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述步骤S1或S2中,所述绝缘层为聚酰亚胺;
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述步骤S1或S2中,所述金属包括铟、铜、镍或金;
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方案,其中:所述步骤S2中,所述排线为单排线或多排线,每个排线上均设置有倒焊金属层;
作为本发明所述的一种微针与排线倒焊连接结构的制备工艺的优选方 案,其中:所述步骤S3中,所述按压为常温按压;
作为本发明所述的一种微针与排线道焊连接结构的制备工艺的优选方案,其中:所述步骤S3中,所述微针和所述排线模块化连接;
作为本发明所述的一种微针与排线道焊连接结构的制备工艺的优选方案,其中:所述步骤S3中,所述倒焊连接结构为通过上下金属倒焊的方式或通过金属侧壁连接倒焊的方式实现倒焊连接。
根据本发明的一个方面,本发明还提供了一种微针与排线倒焊连接结构,其采用上述的制备工艺制备而成。
本发明的有益效果如下:
本发明提供了一种微针与排线倒焊连接结构及其制备工艺,通过制备微针的倒焊金属层、制备排线的倒焊金属层、将微针的倒焊金属层与排线的倒焊金属层对齐,按压形成倒焊接触的方式实现了微针与排线的倒焊连接,与传统的TSV工艺制备微针阵列相比,明显简化了工艺步骤,且能够实现信号的精准传输。通过本发明的工艺倒焊连接的微针和排线的焊接稳定性比传统TSV工艺制备得到的连接到一起的微针和排线的稳定性更高,使用寿命更长,故障率明显降低;触点的电学接触产生的欧姆电阻的阻值明显降低,明显提升了信号传输的稳定性和精准性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明的微针倒焊接触金属的工艺流程示意图;
图2为本发明的微针倒焊接触阵列的俯视示意图;
图3为本发明的排线倒焊接触金属的工艺流程示意图;
图4为本发明的排线倒焊接触阵列的俯视示意图;
图5为本发明的微针阵列与排线阵列金属上下倒焊连接的示意图;
图6为本发明的微针阵列与排线阵列金属侧壁倒焊连接的示意图;
图7为本发明的单针焊接的示意图;
图8为本发明的8针焊接的示意图;
图9为本发明的排线的放大示意图;
图10为本发明的8×8针焊接的示意图;
图11为本发明的32针焊接的示意图;
图12为本发明的32×32针焊接的示意图。
附图标号说明:
1-微针,2-微针绝缘层,3-刻蚀孔,4-金属,5a-微针倒焊接触金属,5b-排线倒焊接触金属,6-硅片,7-排线布线层,8-排线绝缘层,9-排线布线区域,10-排线引线,11-排线,12-排线接触孔,13-单针微针,14-微针倒焊接触,15-微针与排线倒焊连接,16-8个微针,17-8个微针倒焊接触,18-8个微针与排线倒焊连接,19-8×8针排线,20-排线接触阵列,21-32×32针排线,22-8×8针排线,23-8×8阵列微针,24-8×8阵列微针倒焊接触,25-8×8阵列微针与8×8针排线倒焊连接,26-32个微针,27-32个微针倒焊接触,28-32个微针与排线倒焊连接,29-32×32针排线,30-32×32阵列微针,31-32×32阵列微针倒焊接触,32-32×32阵列微针与32×32针排线倒焊连接。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之 间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提供了一种微针与排线倒焊连接结构及其制备工艺,具备如下优势:
1、本发明利用MEMS工艺制作微针和排线,尤其是当微针为阵列微针时,可以将上百根乃至上千根读出电路的信号线通过金属倒焊的方式引出,解决了多根信号引出的难题,同时本发明所使用的连接工艺相对于传统的工艺过程还有效减少了工艺步骤,提升了生产效率,降低了生产成本。
2、本发明通过分别在微针和排线上制备倒焊金属层,尤其是金属铟层,并通过常温按压的方式将微针和排线两个模块相连接,降低了电学接触的欧姆阻值,稳固了焊接的稳定性,提升了信号输出的精准性。
3、本发明在实现排线和微针的连接过程中,尤其是当微针为阵列微针时,可以通过旋转将排线插入微针阵列中,并使排线上的金属与微针阵列上的金属对齐,经常温按压形成倒焊接触;通过以上操作,由于微针阵列倒焊接触金属段的固定长度,与排线倒焊端相交,则可以大幅提高倒焊的对准精度,解决了两个模块之间倒焊对准的难题;
4、本发明的排线和微针不仅可以通过上下金属倒焊的方式实现连接,进一步地,还可以通过金属侧壁连接完成二者的倒焊。由于上下金属倒焊连接过程中接触面积会受金属布线的影响,所以使用金属侧壁倒焊连接一方面可以进一步增大倒焊接触面积,另一方面可以进一步提高倒焊的稳固性。
下面给出具体实施例继续对本发明的微针与排线倒焊连接结构及其制备工艺予以示例说明。
本发明人发现,现有的TSV工艺制备微针存在制备工艺复杂、成本高、微针和排线之间连接的稳定性和信号传输的精准性较差。基于此,发明人所提供的本发明的实施方式中,通过制备微针的倒焊金属层、制备排线的倒焊金属层、将微针的倒焊金属层与排线的倒焊金属层对齐,按压形成倒焊接触的方式实现了微针与排线的倒焊连接,与传统的TSV工艺制备微针阵列相比,明显简化了工艺步骤,且能够实现信号的精准传输。通过本发明的工艺倒焊连接的微针和排线的焊接稳定性比传统TSV工艺制备得到的连接到一起的微 针和排线的稳定性更高,使用寿命更长,故障率明显降低;触点的电学接触产生的欧姆电阻的阻值明显降低,明显提升了信号传输的稳定性和精准性。
参见图1-5,在本发明的一个实施方式中,实现微针与排线倒焊连接的工艺包括如下步骤:
步骤S1:准备待焊接的微针1,在微针1上制作微针绝缘层2,微针绝缘层2的材料为优选为聚酰亚胺,在指定位置刻蚀微针绝缘层形成刻蚀孔3,在所述刻蚀孔3中电镀金属4,电镀金属4包括铟、铜、镍或金,电镀金属4优选为铟,将微针绝缘层2释放,露出微针1的倒焊接触金属5a。其中,前述指定位置为微针绝缘层2上对应微针信号输出上方。
步骤S2:准备硅片6,在硅片6上制作排线布线层7,在排线布线层7上制作排线绝缘层8,排线绝缘层8的材料为优选为聚酰亚胺,在指定位置刻蚀排线绝缘层8形成刻蚀孔3,在刻蚀孔3中电镀金属4,电镀金属4优选为铟,刻蚀硅片6背面对应的倒焊区域的硅,释放排线绝缘层8使排线的倒焊接触金属5b露出。其中,前述指定位置为排线绝缘层上8对应信号输入上方。
步骤S3:最后,将微针的倒焊接金属5a与排线的倒焊接触金属5b上下对齐,通过常温按压的方式形成倒焊接触。
参见图1-4和图6所示,在本发明的又一个实施方式中,实现微针与排线倒焊连接的工艺包括如下步骤:
步骤S1:准备待焊接的微针1,在微针1上制作微针绝缘层2,微针绝缘层2的材料为优选为聚酰亚胺,在微针绝缘层2上对应微针信号输出上方刻蚀微针绝缘层形成刻蚀孔3,在所述刻蚀孔3中电镀金属4,电镀金属4优选为铟,将微针绝缘层2释放,露出微针1的倒焊接触金属5a。
步骤S2:准备硅片6,在硅片6上制作排线布线层7,在排线布线层7上制作排线绝缘层8,排线绝缘层8的材料为优选为聚酰亚胺,在排线绝缘层上8对应信号输入上方刻蚀排线绝缘层8形成刻蚀孔3,在刻蚀孔3中电镀金属4,电镀金属4优选为铟,刻蚀硅片6背面对应的倒焊区域的硅,释放排线绝缘层8使排线的倒焊接触金属5b露出。
步骤S3:最后,将微针的倒焊接金属5a与排线的倒焊接触金属5b侧壁相互连接,并通过常温按压的方式形成倒焊接触。
通过此种金属侧壁连接倒焊的方式,可以增大倒焊面积,进一步提高了 微针和排线焊接的稳固性。
参见图7所示,在本发明的又一个实施方式中,所述微针为单针或多针,每个针体上均设置有倒焊金属层,例如,通过制备单针微针13的微针倒焊接触14、制备排线的倒焊金属层、将单针微针13的微针倒焊接触14与排线的倒焊金属层对齐,或者将单针微针13的微针倒焊接触14与排线的倒焊金属层侧壁相互连接,按压形成倒焊接触的方式实现了单针微针与排线的倒焊连接。具体实施步骤可以参考前述实施方式。
参见图8所示,在本发明的又一个实施方式中,通过制备8个微针16的微针倒焊接触17、制备排线的倒焊金属层、将8个微针16的微针倒焊接触17与排线的倒焊金属层对齐,或者将8个微针16的微针倒焊接触17与排线的倒焊金属层侧壁相互连接,按压形成倒焊接触的方式实现了8个微针16与排线11的倒焊连接。具体实施步骤可以参考前述实施方式。
如图9所示为8×8针排线19以及32×32针排线21所对应的排线阵列的放大示意图,且当所使用的微针为阵列微针且排线为阵列排线时,例如图10所示的8×8针阵列微针23和8×8针排线22进行倒焊连接时或者如图12所示的32×32针阵列微针30和32×32针排线29进行倒焊连接时,本发明所采用的阵列排线可以通过旋转的方式插入到微针阵列当中,然后进行阵列排线和微针阵列之间的倒焊连接,进而实现微针阵列和阵列排线的模块化快速焊接,相较于传统的TVS工艺制备的微针阵列后通过打线工艺将微针信号引出的方式,整个工艺流程的效率具有十分显著的提高。
参见图10所示,在本发明的又一个实施方式中,通过制备8×8针阵列微针23的8×8阵列微针倒焊接触24、制备8×8针排线22的倒焊金属层、将8×8针阵列微针23的8×8阵列微针倒焊接触24与8×8针排线22的倒焊金属层对齐,或者将8×8针阵列微针23的8×8阵列微针倒焊接触24与8×8针排线22的倒焊金属层侧壁相互连接,按压形成倒焊接触的方式实现了8×8针阵列微针与8×8针排线的倒焊连接25。具体实施步骤可以参考前述实施方式。
参见图11所示,在本发明的又一个实施方式中,通过制备32个微针26的微针倒焊接触27、制备排线的倒焊金属层、将32个微针26的微针倒焊接触27与排线的倒焊金属层对齐,或者将32个微针26的微针倒焊接触27与排线的倒焊金属层侧壁相互连接,按压形成倒焊接触的方式实现了32个微针 26与排线11的倒焊连接。具体实施步骤可以参考前述实施方式。
参见图12所示,在本发明的又一个实施方式中,通过制备32×32针阵列微针30的32×32阵列微针倒焊接触31、制备32×32针排线29的倒焊金属层、将32×32针阵列微针30的32×32阵列微针倒焊接触31与32×32针排线的倒焊金属层对齐,或者将32×32针阵列微针30的32×32阵列微针倒焊接触31与32×32针排线的倒焊金属层侧壁相互连接,按压形成倒焊接触的方式实现了32×32针阵列微针30与32×32针排线29的倒焊连接。具体实施步骤可以参考前述实施方式。
在本发明的又一实施方式中,提供了一种通过倒焊连接的微针和排线,其采用了上述任何实施方式中的一种进行制备。该微针和排线之间的焊接稳定性比传统TSV工艺制备得到的连接到一起的微针和排线的稳定性更高,因此使用寿命更长,故障率明显降低;而且,进一步地,通过电镀铟金属接触,使得触点的电学接触产生的欧姆电阻的阻值明显降低,明显提升了信号传输的稳定性和精准性。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种微针与排线倒焊连接结构的制备工艺,其特征在于,包括如下步骤:
    S1.制备微针的倒焊金属层;
    S2.制备排线的倒焊金属层;
    S3.将微针的倒焊金属层与排线的倒焊金属层对齐,按压形成倒焊连接结构。
  2. 根据权利要求1所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述制备微针的倒焊金属层包括:
    在微针上制作微针绝缘层;
    在指定位置刻蚀微针绝缘层形成刻蚀孔,在所述刻蚀孔中电镀金属;
    将微针绝缘层释放,露出微针的倒焊金属层。
  3. 根据权利要求1所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述制备排线的倒焊金属层包括:
    在硅片上制作排线布线层,在所述排线布线层上制作排线绝缘层;
    在指定位置刻蚀排线绝缘层形成刻蚀孔,在所述刻蚀孔中电镀金属,将硅片背面对应的倒焊区域的硅刻蚀,将排线绝缘层释放,露出排线的倒焊金属层。
  4. 根据权利要求2或3所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述绝缘层为聚酰亚胺。
  5. 根据权利要求2或3所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述金属包括铟、铜、镍或金。
  6. 根据权利要求1所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述倒焊连接结构为通过上下金属倒焊的方式。
  7. 根据权利要求1所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述倒焊连接结构为通过金属侧壁连接倒焊的方式实现倒焊连接。
  8. 根据权利要求1所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述排线为单排线或多排线,每个排线上均设置有倒焊金属层。
  9. 根据权利要求1所述的一种微针与排线倒焊连接结构的制备工艺,其特征在于,所述微针为单针或多针,每个针体上均设置有倒焊金属层。
  10. 一种微针与排线倒焊连接结构,采用权利要求1-9中任一项所述的制备工艺制备而成。
PCT/CN2022/126569 2022-07-25 2022-10-21 一种微针与排线倒焊连接结构及其制备工艺 WO2024021322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210878799.9 2022-07-25
CN202210878799.9A CN115285930A (zh) 2022-07-25 2022-07-25 一种微针与排线倒焊连接结构及其制备工艺

Publications (1)

Publication Number Publication Date
WO2024021322A1 true WO2024021322A1 (zh) 2024-02-01

Family

ID=83824205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126569 WO2024021322A1 (zh) 2022-07-25 2022-10-21 一种微针与排线倒焊连接结构及其制备工艺

Country Status (2)

Country Link
CN (1) CN115285930A (zh)
WO (1) WO2024021322A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030548A (zh) * 2007-03-27 2007-09-05 中国科学院上海微系统与信息技术研究所 微机械圆片级芯片测试探卡及制作方法
CN101543406A (zh) * 2008-03-26 2009-09-30 中国科学院半导体研究所 使用硅阵列孔装配微丝电极阵列的方法
US20210098341A1 (en) * 2019-09-30 2021-04-01 Paradromics Inc. Microelectrode array and methods of fabricating same
CN112701092A (zh) * 2020-12-24 2021-04-23 北京国联万众半导体科技有限公司 毫米波单片集成电路封装结构及其封装方法
CN114305433A (zh) * 2022-01-10 2022-04-12 武汉衷华脑机融合科技发展有限公司 一种基于集成电路芯片的微针
CN114343655A (zh) * 2021-12-31 2022-04-15 武汉衷华脑机融合科技发展有限公司 一种微针

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394377B1 (ko) * 2000-09-07 2003-08-14 이진구 플립칩용 범프 제조 방법
TWI287284B (en) * 2005-12-02 2007-09-21 Ind Tech Res Inst Interconnect structure of the integrated circuit and manufacturing method thereof
CN103985647B (zh) * 2014-05-22 2017-02-01 中国科学院微电子研究所 一种制备铜柱凸点的方法
CN110916651A (zh) * 2018-09-20 2020-03-27 深圳先进技术研究院 一种皮肤干电极
CN109534284B (zh) * 2018-11-28 2020-08-21 上海交通大学 用于微电极与柔性排线之间热压焊接的方法
CN111053535A (zh) * 2019-12-18 2020-04-24 上海交通大学 用于生物植入的柔性可拉伸神经探针以及其制备方法
CN111134654B (zh) * 2019-12-25 2021-06-29 上海交通大学 集成内部金属屏蔽层的光电神经探针及其制备方法
CN111613964B (zh) * 2020-05-27 2021-07-27 杭州电子科技大学温州研究院有限公司 一种用于神经记录和刺激的柔性神经光电极及其制备方法
CN113428832B (zh) * 2021-06-25 2024-02-02 杭州电子科技大学温州研究院有限公司 一种高密度多模态神经微电极阵列及其制备与集成方法
CN114284390B (zh) * 2021-12-23 2024-04-16 中国电子科技集团公司第四十四研究所 垂直入射超宽带集成型光电探测器芯片及其制作方法
CN114767122A (zh) * 2022-04-19 2022-07-22 杭州电子科技大学 具有激光二极管耦合光波导结构的三维神经光电极阵列

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030548A (zh) * 2007-03-27 2007-09-05 中国科学院上海微系统与信息技术研究所 微机械圆片级芯片测试探卡及制作方法
CN101543406A (zh) * 2008-03-26 2009-09-30 中国科学院半导体研究所 使用硅阵列孔装配微丝电极阵列的方法
US20210098341A1 (en) * 2019-09-30 2021-04-01 Paradromics Inc. Microelectrode array and methods of fabricating same
CN112701092A (zh) * 2020-12-24 2021-04-23 北京国联万众半导体科技有限公司 毫米波单片集成电路封装结构及其封装方法
CN114343655A (zh) * 2021-12-31 2022-04-15 武汉衷华脑机融合科技发展有限公司 一种微针
CN114305433A (zh) * 2022-01-10 2022-04-12 武汉衷华脑机融合科技发展有限公司 一种基于集成电路芯片的微针

Also Published As

Publication number Publication date
CN115285930A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US4184729A (en) Flexible connector cable
US6184053B1 (en) Method of making microelectronic spring contact elements
JP4160693B2 (ja) プローブカード・アセンブリ及びキット、及びそれらを用いる方法
JP3608795B2 (ja) より大きな基板にばね接触子を定置させるための接触子担体(タイル)
US4268956A (en) Method of fabricating an interconnection cable
CN102165582B (zh) 引线框基板及其制造方法以及半导体装置
JP2006004928A (ja) スタッドバンプソケット
JP2013515371A (ja) 低インダクタンス化された結合素子が接合されたマイクロ電子アセンブリ
KR20070083527A (ko) 프루브 카드용 접속 어셈블리
JPH0770683B2 (ja) 赤外線検出器の形成方法
JP2000077477A (ja) 半導体装置及びその製造方法並びにこれに用いる金属基板
WO2024021322A1 (zh) 一种微针与排线倒焊连接结构及其制备工艺
US7579269B2 (en) Microelectronic spring contact elements
US9476913B2 (en) Probe card
CN101626011B (zh) 具有无垫式导电迹线的封装用基板
CN113855032A (zh) 一种脑电极器件的制备方法及脑电极器件
WO1999004424A1 (en) Semiconductor device, mounting structure thereof and method of fabrication thereof
CN114343655A (zh) 一种微针
US9470718B2 (en) Probe card
WO2019184768A1 (zh) 一种可分离式导电接触结构及其制备方法
CN215729767U (zh) 一种单面布线脑机接口模块
CN111818725B (zh) 解决智能屏上模组光标遗失的方法
CN114678163A (zh) 一种柔性连接线缆的结构、制备方法及脑电极器件
KR101324284B1 (ko) 프로브 카드용 전기 연결 어셈블리, 이를 가지는 프로브카드, 프로브 카드용 전기 연결 어셈블리의 제조 방법 및이를 이용한 프로브 카드의 제조 방법
JP4401627B2 (ja) コンタクトプローブの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952761

Country of ref document: EP

Kind code of ref document: A1