WO2024021285A1 - 一种扁线电机定子和扁线电机 - Google Patents

一种扁线电机定子和扁线电机 Download PDF

Info

Publication number
WO2024021285A1
WO2024021285A1 PCT/CN2022/121587 CN2022121587W WO2024021285A1 WO 2024021285 A1 WO2024021285 A1 WO 2024021285A1 CN 2022121587 W CN2022121587 W CN 2022121587W WO 2024021285 A1 WO2024021285 A1 WO 2024021285A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
flat wire
modules
stator
layer
Prior art date
Application number
PCT/CN2022/121587
Other languages
English (en)
French (fr)
Inventor
郑广会
赵培振
陆松
Original Assignee
天蔚蓝电驱动科技(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天蔚蓝电驱动科技(江苏)有限公司 filed Critical 天蔚蓝电驱动科技(江苏)有限公司
Publication of WO2024021285A1 publication Critical patent/WO2024021285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/002Auxiliary arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • H01B7/0018Strip or foil conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/30Insulated conductors or cables characterised by their form with arrangements for reducing conductor losses when carrying alternating current, e.g. due to skin effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to the field of automobile drive motors, and in particular to a flat wire motor stator and a flat wire motor.
  • flat wire motors have high slot fullness, high heat dissipation efficiency, and good NVH characteristics.
  • the slot fullness is increased and the power is Increased density.
  • the round wire becomes a flat wire.
  • This application provides a flat wire motor stator and a flat wire motor with a reasonable structural design.
  • the stator winding is innovated and a single flat wire conductor is split and spliced using the separation principle, so that A single flat wire is composed of two or more conductor modules in smaller units, thereby dispersing and effectively reducing the skin effect of a single flat wire, which can significantly and effectively improve the flat wire without affecting the stator slot fullness rate.
  • the conduction efficiency of the conductor reduces the current loss caused by the skin effect, which significantly improves the efficiency of the motor, reduces winding heating, and increases the service life of the motor or the output capacity of the motor.
  • a flat wire motor stator including a stator core and a stator winding, the stator core is provided with stator slots; the stator winding adopts a flat wire winding, Arranged in the stator slot, each stator slot is provided with a plurality of flat wire conductors.
  • a single flat wire conductor includes an external coating layer and an internal wire composed of at least two conductor modules spliced together. Core, a separate conductor module is attached with a high interface resistance layer after extrusion. After multiple splicing and extrusion, a flat wire conductor is formed.
  • the spliced flat wire conductor is then fully varnished to form a paint layer, and Compared with the existing technology, it is equivalent to having multiple conductor modules in the original rectangular flat wire.
  • high-frequency alternating current passes through the flat wire conductor, it can reduce the copper loss caused by the skin effect and improve the utilization performance of the copper material. Reduce winding heating and increase the service life of the motor.
  • the mating surfaces of the adjacent conductor modules inside the paint layer form a high interface resistance, so that when the current in a single conductor module flows to the high interface resistance, it will be blocked and flow along the conductor module itself. flow, so that the overall current of the flat wire conductor is dispersed by the conductor module, so as to improve the current conduction efficiency of the flat wire conductor and reduce the skin effect caused by the passage of current in the flat wire conductor.
  • the high interface resistance between the conductor modules is equivalent to "a wall".
  • interlocking protrusions and grooves are provided between adjacent conductor modules in the paint layer.
  • the interlocking convex and groove structures are used to form a more reliable and stable connection and cooperation relationship between the conductor modules.
  • the structural integrity of the flat wire conductor is better, which is helpful for subsequent paintwork.
  • the shape of the flat wire conductor is stable during the layer coating and winding forming process;
  • the designed protrusions and grooves can increase the contact area between conductor modules, which is equivalent to increasing the threshold of high-level interface resistance, making the high-level interface resistance The blocking effect is stronger and the blocking effect on higher frequency alternating current is more guaranteed.
  • the shape of the protrusions and grooves between the conductor modules can be any shape such as square, triangle, other polygons, arcs, etc., as long as reliable engagement is achieved during the drawing and forming of copper conductors and the forming of stator windings. , as long as there is no separation phenomenon on the interface.
  • the paint layer of the flat wire conductor is covered with four conductor modules. The four conductor modules are divided into two groups, and the two conductor modules in each group are provided with interlocking protrusions. and grooves. The inter-group mating surface between the two groups of conductor modules also uses inter-group protrusions and inter-group grooves to achieve the engagement between the two groups of conductor modules.
  • a single flat wire conductor is separated into four conductor modules. After the four conductor modules are grouped together, the overall interlocking of the four conductor modules is achieved through inter-group protrusions and inter-group grooves. The structure is ingenious and reasonable, making full use of the structural space of the conductor module to perfectly engage it to form a flat conductor.
  • inter-group protrusions are symmetrically provided on the side surfaces of two conductor modules, and the inter-group grooves are symmetrically provided on the side surfaces of the other two conductor modules, so that the inter-group protrusions and the The grooves between the groups correspond to the occlusion.
  • This plan further clarifies the design positions of the inter-group protrusions and the inter-group grooves. This is equivalent to the fact that the inter-group protrusions are composed of two conductor modules each taking half of them. Similarly, the inter-group grooves are also composed of another conductor module.
  • Each is responsible for half of the composition, and the inter-group protrusions and component modules are symmetrically arranged close to the middle of the two parts of the conductor module, so that the two sets of conductor modules are perfectly engaged and spliced, achieving a close fit of the four conductor modules. It lays the foundation for subsequent coating and winding shaping of flat wire conductors.
  • the number of the protrusions and grooves on the bonding surface of a single conductor module is set to 1-100 pairs.
  • the number of the protrusions and the grooves may be one pair.
  • the number of grooves is based on 1 pair, and then 2 pairs, 3 pairs,..., 100 pairs are set.
  • the more the number of protrusions and grooves is set the higher the accuracy requirements for the entire drawing molding. , but at the same time, it can make the bite force between conductor modules stronger and the gap smaller.
  • the protrusions and grooves are formed by drawing, so that the conductor modules are always in an engaged state during the stator winding forming process.
  • a high interface resistance layer is provided on the adjacent surface of the conductor module.
  • a high-level interface resistance layer is provided on the adjacent surface of the conductor module to ensure that the current of the conductor module is perfectly locked inside the conductor module, so that the current passes through the mating surfaces between the conductor modules less, completely avoiding Current disturbances between conductor modules.
  • the high interface resistance layer adopts one or more of a vapor deposition layer, a laser and electron beam surface alloying layer, a thermal spraying and spray welding layer, and an electroplating layer.
  • the setting of the high-level interface resistance layer on the surface of the conductor module can be achieved by means in the existing technology.
  • an important consideration is to make the thickness of the high-level interface resistance layer as small as possible to reduce the impact of the high-level interface resistance layer on the conductor filling rate. reduction, and the above-mentioned various methods in the prior art, such as laser processing, can meet the needs of a very small thickness and high interface resistance layer, and have negligible impact on the filling rate of the conductor.
  • the proportion of the length l of the groove or protrusion to the overall length L of the conductor module ranges from 1/5 to 4/5.
  • the mainstream of flat wire conductors will choose copper.
  • the length of the groove or protrusion is too small, it will affect the engagement between the conductor modules. Effect; if the length of the groove or protrusion is too large, it will affect the stability of the conductor module shape.
  • the subsequent flat wire conductor is winding, it is prone to serious deformation problems, which can easily cause the conductor module in the flat wire conductor to be separated and damaged.
  • the proportion of the depth d of the groove or protrusion to the thickness D of the conductor module ranges from 1/40 to 1/2.
  • the depth of grooves and protrusions is also limited in this solution. If the depth of grooves and protrusions is too small, when the flat wire conductor is being wound, the conductor modules will easily separate from each other, resulting in poor torsion resistance; If the depth of grooves and protrusions is too large, it will cause the current to be unevenly distributed on the conductor cross-section, which will also affect the main strength and deformation resistance of the conductor module. In addition, too much depth will also increase the difficulty of assembly and splicing. From the actual production and processing From a perspective, too much depth is unnecessary and can cause technical flaws.
  • a flat wire motor is provided with the motor stator.
  • the beneficial effect of using the above structure in this application is that on the basis of the existing technology, the stator winding is innovated, and the separation principle is used to split and splice the single flat wire conductor, so that the single flat wire is composed of two smaller units. It is composed of one or more conductor modules, thereby dispersing and effectively reducing the skin effect of a single flat wire. It can significantly improve the conduction efficiency of the flat wire conductor and reduce the skin effect caused by it without affecting the stator slot full rate. The current loss generated significantly improves the performance of the motor, reduces winding heating, and increases the service life of the motor.
  • Figure 1 is a schematic radial cross-sectional structural diagram of a stator in an embodiment of the present invention.
  • Figure 2 is a partial enlarged structural diagram of part A in Figure 1.
  • Figure 3 is a schematic cross-sectional structural diagram of a conductor module in a flat wire conductor in an exploded state according to one or more embodiments of the present invention.
  • Figure 4 is a schematic cross-sectional structural diagram of the combined state of two conductor modules in a flat wire conductor provided by one or more embodiments of the present invention.
  • Figure 5 is a schematic cross-sectional structural diagram of four conductor modules in a flat wire conductor in an exploded state according to one or more embodiments of the present invention.
  • FIG. 6 is a schematic cross-sectional structural diagram of four conductor modules in a flat wire conductor in a combined state according to one or more embodiments of the present invention.
  • Figure 7 is a schematic cross-sectional structural diagram of the current flow potential of a conductor module in a flat wire conductor provided by one or more embodiments of the present invention.
  • Figure 8 is a schematic cross-sectional structural diagram of the current flow potential of a flat wire conductor in the prior art.
  • Figure 9 is a schematic radial cross-sectional structural diagram of a flat wire motor stator in the prior art.
  • FIG. 10 is a partially enlarged structural diagram of part B in FIG. 9 .
  • Figure 11 is a schematic cross-sectional structural diagram of multiple pairs of protrusions and grooves of a conductor module provided by one or more embodiments of the present invention in an exploded state.
  • Stator core 101. Stator slot;
  • a flat wire motor stator includes a stator core 1 and a stator winding.
  • the stator core 1 is provided with a stator slot 101; the stator winding uses a flat wire winding and is arranged in the stator slot 101.
  • Each A plurality of flat wire conductors 2 are provided in the stator slot 101.
  • a single flat wire conductor 2 includes an externally covered paint layer 201 and an internal wire core composed of at least two conductor modules 202 spliced together. The individual conductor module 202 is extruded. After compression molding, a high-level interface resistance layer is attached. After multiple splicing and extrusion, a flat wire conductor 2 is formed.
  • the spliced flat wire conductor 2 is then fully varnished to form a paint surface layer 201.
  • a paint surface layer 201 Compared with the existing technology , which is equivalent to the presence of multiple conductor modules 202 in the original rectangular flat wire.
  • high-frequency alternating current passes through the flat wire conductor 2, it can reduce the copper loss caused by the skin effect, improve the utilization performance of copper materials, and increase the efficiency of the motor. service life.
  • the number of conductor modules 202 in each flat wire conductor 2 can be set to 2, 3, 4, 6, or even more.
  • the mating surface 203 of the adjacent conductor module 202 inside the paint layer 201 forms a high interface resistance, so that when the current in a single conductor module 202 flows to the high interface resistance, it will be blocked and flow along the conductor module 202 itself, so that the flat
  • the overall current of the wire conductor 2 is dispersed by the conductor module 202 to improve the current conduction efficiency of the flat wire conductor 2 and reduce the skin effect caused by the current passing through the flat wire conductor 2 .
  • the high interface resistance between the conductor modules 202 is equivalent to "a wall". When the alternating current in the conductor modules 202 flows to the mating surface 203 between the conductor modules 202, the high interface resistance will block the current, and the current will naturally flow toward itself.
  • the electric potential flows in the parts with small potentials, and then the current on the surface of a single flat wire conductor 2 is divided, so that the current flows dispersedly in individual conductor modules 202, and the separation principle is used to effectively reduce and reduce the skin effect of the surface current of the flat wire conductor 2. .
  • interlocking protrusions 204 and grooves 205 are provided between adjacent conductor modules 202 in the paint layer 201 .
  • a more reliable and stable connection and cooperation relationship is formed between the conductor modules 202 through the mutually interlocking protrusion 204 and groove 205 structures.
  • the structural integrity of the flat wire conductor 2 is better, which is helpful for
  • the shape of the flat wire conductor 2 is stable during the subsequent coating and winding process of the paint layer 201;
  • the designed protrusions 204 and grooves 205 can increase the contact area between the conductor modules 202, which is equivalent to increasing the high-level interface resistance
  • the threshold value makes the blocking effect of high interface resistance stronger and the blocking effect of higher frequency alternating current is more guaranteed.
  • the paint layer 201 of the flat wire conductor 2 is covered with four conductor modules 202.
  • the four conductor modules 202 are divided into two groups, each group has two conductors. Interlocking protrusions 204 and grooves 205 are provided between the modules 202.
  • the inter-group mating surface between the two sets of conductor modules 202 is also realized by the inter-group protrusions 206 and the inter-group groove 207. of bite.
  • a single flat wire conductor 2 is separated into four conductor modules 202. After the four conductor modules 202 are grouped together, the inter-group protrusions 206 and the inter-group grooves 207 are used to realize four conductors.
  • the overall engagement of the module 202 is ingenious and reasonable in structure, making full use of the structural space of the conductor module 202 so that it can be perfectly engaged to form a flat conductor 2.
  • the inter-group protrusions 206 are symmetrically provided on the sides of two conductor modules 202
  • the inter-group grooves 207 are symmetrically provided on the sides of the other two conductor modules 202 , so that the inter-group protrusions are The risers 206 and the inter-group grooves 207 are correspondingly engaged.
  • This plan further clarifies the design positions of the inter-group protrusions 206 and the inter-group grooves 207. This is equivalent to the fact that the inter-group protrusions 206 are composed of two conductor modules 202 each bearing half of them.
  • the inter-group grooves 207 are also composed of The other two conductor modules 202 each bear half of the composition, and the inter-group protrusions 206 and the inter-group groove 207 are located in the two parts of the conductor module 202 and are symmetrically arranged close to the middle to make the two groups of conductor modules 202 perfectly meshed.
  • the splicing realizes the close cooperation of the four conductor modules 202, ensuring the foundation for the subsequent coating and winding of the flat wire conductor 2.
  • a high interface resistance layer 208 is provided on the surface of the conductor module 202 .
  • a high-level interface resistance layer 208 is provided on the surface of the conductor module 202 to ensure that the current of the conductor module 202 is perfectly locked inside the conductor module 202 so that the current has no chance to pass through the mating surface 203 between the conductor modules 202 , completely avoiding the current disturbance between the conductor modules 202.
  • the high interface resistance layer 208 adopts one or more of a vapor deposition layer, a laser and electron beam surface alloying layer, a thermal spray and spray welding layer, an electroplating layer, and a high temperature oxidation layer.
  • the setting of the high-level interface resistance layer 208 on the surface of the conductor module 202 can be achieved by means in the existing technology. However, an important consideration is to make the thickness of the high-level interface resistance layer as small as possible to reduce the impact of the high-level interface resistance layer on the conductor filling rate.
  • Vapor deposition is a new technology that has developed the fastest in recent years. It is divided into physical vapor deposition (PVD) and chemical vapor deposition (CVD). Recently, composite physical and chemical vapor deposition (PCVD) has been developed. Physical vapor deposition uses vacuum evaporation, ion sputtering, ion plating and other methods to deposit films; chemical vapor deposition uses the reaction products of gas decomposition or combination of volatile compounds of coating materials to deposit films; physical chemical vapor deposition is plasma. Body plus chemical vapor deposition. This method can be used to coat metal films, alloy films, ceramic films or diamond films, etc.
  • Lasers and electron beams have been used as heat sources for surface modification of materials since the 1970s. Because they have all the advantages of high-energy-speed surface treatment technology such as high energy density, fast heating and cooling speed, small heat-affected zone, and good parts modification effect, and they do not need to be carried out in a vacuum chamber, and the operation is relatively flexible, they are developing rapidly.
  • Laser and electron beam surface modification technology mainly includes three types: phase change hardening treatment, melting treatment and surface alloying and coating.
  • the laser and electron beam surface alloying process is essentially a surface metallurgical process, that is, through The high-density energy beam interacts with the surface coating alloy of the substrate to cause physical metallurgical and chemical changes to achieve the purpose of surface strengthening.
  • Thermal spray and spray welding technology has developed rapidly in the past 20 years as a new surface protection, repair and strengthening method.
  • the so-called thermal spraying uses a certain heat source (oxyacetylene flame, electric arc, plasma arc, etc.) to heat the material to be sprayed, and uses airflow to spray molten or semi-melted mist particles through the nozzle at high speed onto the pre-treated workpiece surface. Forms a firmly adherent coating.
  • Electroplating is an important means of metal anti-corrosion.
  • special electroplating including amorphous electroplating, non-metallic electroplating, composite electroplating, alloy electroplating, and brush plating
  • chemical plating nickel-phosphorus , nickel-boron
  • hot penetration plating including ion, gas, liquid, solid penetration plating
  • the electroplating process is an electrochemical redox process, which uses electrolysis to reduce metal compounds to metals and deposit them on the surface of metal or non-metal products to form a smooth and dense metal coating.
  • High-temperature oxidation is to heat copper to react with oxygen in the air to form an oxide layer, which can serve as a high-level interface resistance layer.
  • the heating method can be induction heating, flame heating, tunnel furnace heating, etc.
  • the length l of the groove 205 or the protrusion 204 accounts for 1/5 to 4/4 of the overall length L of the conductor module 202 . 5.
  • the mainstream of the flat wire conductors 2 will be copper. Considering the physical properties of copper, after several actual splicing experiments, it was found that if the length of the groove 205 or the protrusion 204 is too small, it will affect the conductor module 202 If the length of the groove 205 or the protrusion 204 is too large, it will affect the shape stability of the conductor module 202. When the subsequent flat wire conductor 2 is in the winding forming process, serious deformation problems will easily occur, and the flat wire will easily be damaged. Conductor module 202 within conductor 2 is damaged by separation.
  • the proportion of the depth d of the groove 205 or the protrusion 204 to the thickness D of the conductor module 202 ranges from 1/40 to 1/2. .
  • the depth of the groove 205 and the protrusion 204 is also limited in this solution.
  • the depth of the groove 205 and the protrusion 204 is too small.
  • the conductor modules 202 are easily separated from each other.
  • the torsion resistance is poor; if the depth of the groove 205 and the protrusion 204 is too large, it will affect the main body strength and deformation resistance of the conductor module 202.
  • too much depth will also increase the difficulty of assembly and splicing. From the perspective of actual production and processing, Said that excessive depth is unnecessary and can cause technical deficiencies.
  • the number of protrusions and grooves on the bonding surface of a single conductor module is set to 1-100 pairs.
  • the number of protrusions and grooves on the joint surface of a single conductor module may be one pair.
  • the convex and concave parts can be placed without increasing the difficulty of assembly too much and without affecting the stability of the main body of the conductor module.
  • the number of slots is based on 1 pair, and then set to 2 pairs, 3 pairs,..., 100 pairs.
  • protrusions and grooves are drawn by drawing, so that the conductor modules are always in an engaged state during the stator winding forming process.
  • the greater the number of protrusions and grooves the higher the accuracy requirements for the entire drawing molding, but at the same time It can make the bite force between conductor modules stronger and the gap smaller.
  • a flat wire motor includes a stator formed by stator winding using flat wire conductors composed of conductor modules 202 spliced together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

本发明涉及一种扁线电机定子和扁线电机,包括定子铁芯和定子绕组,定子铁芯设有定子槽;定子绕组采用扁线绕组,设置于定子槽中,每个定子槽中设有多个扁线导体,单根扁线导体包括外部包覆的漆面层和内部由至少两根导体模块拼接组成的线芯,漆面层内部相邻的导体模块的配合面形成高位界面电阻,使单个导体模块中的电流在流动至高位界面电阻时会被阻隔而沿着导体模块自身流动,以使扁线导体的整体电流由导体模块进行分散,以提高扁线导体在高频交流电下电流的传导效率,降低高频交流电流在扁线导体中通过产生的趋肤效应。本发明能够明显减小绕组发热,增加电机使用寿命。

Description

一种扁线电机定子和扁线电机
本申请要求于2022年07月29日提交中国专利局、申请号为202210906718.1、发明名称为"一种扁线电机定子和扁线电机"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及汽车驱动电机领域,具体涉及一种扁线电机定子和扁线电机。
背景技术
随着新能源汽车的快速发展,驱动电机的要求越来越高,高性能,高效率,高功率。扁线电机相对于圆线电机有高槽满率,高散热效率,以及良好的NVH特性,相同功率,体积更小,用材更少,成本更低;或者相同体积下,槽满率提升,功率密度提升。圆线变成扁线,从理论上来说,在空间条件不变的前提下,填充的铜可以增加10-20%,这意味着,理想状态可增加10-20%的效率。
当导线通过交流电时,因导线的内部和边缘部分所交链的磁通量不同,致使导线表面上的电流产生不均匀分布,相当于导线有效截面减少,这种现象称为趋肤效应,也叫集肤效应。在电机设计绕组选择电流密度和线径时必须考虑趋肤效应引起的有效截面的减小。
现有的扁线电机中因为扁线比较粗,电机在工作时的交变电流在通过扁线时会产生趋肤效应,导致电流损耗增加,当电机内部交流频率越高,扁铜线绕组的交流铜耗就会越高。传统技术中对电机的趋肤效应也有应对,例如增加绕组层数、增加绝缘避让层等方式,但传统技术中的解决方案都有各自的缺陷,有的会影响扁线的槽满率、有的会使结构冗杂不易实现。
发明内容
本申请提供了一种扁线电机定子和扁线电机,其结构设计合理,在现有技术的 基础上,对定子绕组进行创新,利用分离原理对单根扁线导体进行拆分和拼接,使单根扁线由更小单元的两根或多根导体模块组成,由此分散和有效削减单根扁线的趋肤效应,能够在不影响定子槽满率的前提下,明显有效提高扁线导体的传导效率,减少由趋肤效应产生的电流损耗,对电机的效率提升非常显著,减小绕组发热,增加电机的使用寿命或电机输出能力。
本申请为减小趋肤效应问题所采用的技术方案是:一种扁线电机定子,包括定子铁芯和定子绕组,所述定子铁芯设有定子槽;所述定子绕组采用扁线绕组,设置于所述定子槽中,每个所述定子槽中设有多个扁线导体,单根所述扁线导体包括外部包覆的漆面层和内部由至少两根导体模块拼接组成的线芯,单独的导体模块在挤压成型后附带高位界面电阻层,经过多次的拼接挤压后形成一个扁线导体,再对拼接后的扁线导体进行全周包漆形成漆面层,和现有技术相比,相当于在原来的长方形扁线里面存在多个导体模块,当高频次的交流电通过扁线导体时可以减少集肤效应带来的铜耗,提高铜材的利用性能,减小绕组发热,增加电机的使用寿命。
所述漆面层内部相邻的所述导体模块的配合面形成高位界面电阻,使单个所述导体模块中的电流在流动至所述高位界面电阻时会被阻隔而沿着所述导体模块自身流动,以使所述扁线导体的整体电流由所述导体模块进行分散,以提高所述扁线导体的电流传导效率,降低电流在所述扁线导体中通过产生的趋肤效应。导体模块之间的高位界面电阻相当于“一堵墙”,当导体模块中的交流电流动至导体模块之间的配合面时,高位界面电阻会将电流阻隔,电流自然向其自身电势小的部位流动,继而实现对单个扁线导体表面的电流进行分割,使电流分散在单独的导体模块中流动,利用分离原理有效降低和削减了扁线导体表面电流的趋肤效应。
进一步的,所述漆面层中的相邻所述导体模块之间设有相互咬合的凸起和凹槽。 本方案中通过相互咬合的凸起和凹槽结构使导体模块之间形成更加牢靠稳定的连接配合关系,其一,在结构上使扁线导体的整体性更好,有助于后续的漆面层包覆和绕组成型过程中扁线导体的形态稳定;其二,设计的凸起和凹槽能够增加导体模块之间的接触面积,相当于增加了高位界面电阻的阈值,使高位界面电阻的阻隔效果更强,对更高频次的交流电的阻隔效果更有保障。
进一步的,所述导体模块之间的凸起和凹槽形状,可以是方形、三角形、其他的多边形、弧形等任意形状,只要满足在铜导线拉拔成型及定子绕组成型过程中实现可靠咬合、界面不出现分离现象即可。进一步的,所述扁线导体的漆面层中包覆有四个导体模块,四个所述导体模块分成两组,每一组的两个所述导体模块之间设有相互咬合的凸起和凹槽,两组所述导体模块之间的组间配合面同样由组间凸起和组间凹槽实现两组所述导体模块之间的咬合。在优选的方案中,将单个扁线导体分离成四个导体模块,四个导体模块之间在分组咬合后,再通过组间凸起和组间凹槽来实现四个导体模块的整体咬合,结构巧妙合理,充分利用导体模块的结构空间,使其完美咬合形成一个扁线导体。
进一步的,所述组间凸起对称设置于两个所述导体模块的侧面,所述组间凹槽对称设置于另外两个所述导体模块的侧面,使所述组间凸起和所述组间凹槽对应咬合。本方案中进一步明确了组间凸起和组间凹槽的设计位置,相当于组间凸起由两个导体模块各自承担一半共同构成,同样的,组间凹槽也是由另外另个导体模块各自承担一半构成,而且组间凸起和组件模块在导体模块的两部分都是相互对称靠近中部贴合设置,使两组导体模块之间完美咬合拼接,实现了四个导体模块的紧密配合,为后续扁线导体的包覆和绕组成型打下基础。
进一步的,单个所述导体模块的结合面上,所述凸起和凹槽的数量设置为1-100 对。单个所述导体模块的接合面上,所述凸起和所述凹槽的数量可设有一对。当导体模块的尺寸空间相对充足前提下,为了增加两个导体模块之间的配合效果、增加配合面积,在不过多增加装配难度且不影响导体模块主体稳定的情况下,可将凸起和凹槽的数量在1对的基础上,再设置2对、3对、......、100对,当然凸起和凹槽的数量设置越多,对整个拉拔成型的精度要求更高,但同时能够使导体模块之间的咬合力更强、间隙更小。
所述凸起和凹槽采用拉拔成型,使定子绕组成型过程中所述导体模块之间始终保持咬合状态。
进一步的,所述导体模块的相邻表面设有高位界面电阻层。在一实施方案中,导体模块的相邻表面再设置高位界面电阻层,确保将导体模块的电流完美锁定在导体模块内部,使电流更少地穿过导体模块之间的配合面,完全避免了导体模块之间的电流扰动。
进一步的,所述高位界面电阻层采用气相沉积层、激光和电子束表面合金化层、热喷涂和喷焊层、电镀层中的一种或多种。所述导体模块表面高位界面电阻层的设置,可通过现有技术中的手段实现,而要着重考虑的是尽可能使高位界面电阻层的厚度更小,减少高位界面电阻层对导体填充率的削减,而上述现有技术中的多种手段,例如激光处理等方式均能够满足极小厚度高位界面电阻层的需求,对导体的填充率影响可忽略不计。
进一步的,在所述导体模块的横截面上,所述凹槽或凸起的长度l占比所述导体模块整体长度L的比例范围在1/5至4/5。本方案中,扁线导体主流都会选择铜材,考虑到铜的物理性能,经过实际的若干次拼接实验后发现,如果凹槽或凸起的长度过小,则会影响导体模块之间的咬合效果;如果凹槽或凸起的长度过大,又会影响 导体模块形态稳定,当后续扁线导体在绕组过程中,容易出现变形严重问题,容易使扁线导体内的导体模块分离损伤。
进一步的,在所述导体模块的横截面上,所述凹槽或凸起的深度d占比所述导体模块厚度D的比例范围在1/40至1/2。同样的,本方案中对凹槽和凸起的深度也做出来限定,凹槽和凸起的深度过小,扁线导体在绕组时,导体模块之间也容易脱离,抗扭能力较差;而凹槽和凸起的深度过大,会导致电流在导体截面上分布不均,又会影响导体模块的主体强度和抗变形能力,另外深度过大还会增加装配拼接难度,从实际生产加工角度来说,太大的深度没有必要且会引发技术缺陷。
一种扁线电机,设置有所述的电机定子。
本申请采用上述结构的有益效果是,在现有技术的基础上,对定子绕组进行创新,利用分离原理对单根扁线导体进行拆分和拼接,使单根扁线由更小单元的两根或多根导体模块组成,由此分散和有效削减单根扁线的趋肤效应,能够在不影响定子槽满率的前提下,明显有效提高扁线导体的传导效率,减少由趋肤效应产生的电流损耗,对电机的性能提升非常显著,减小绕组发热,增加电机的使用寿命。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本申请,并不构成对本发明的不当限定。在附图中:
图1为本发明一实施例中定子的径向截面结构示意图。
图2为图1中A部的局部放大结构示意图。
图3为本发明一个或多个实施例提供的一种扁线导体中导体模块的爆炸状态截面结构示意图。
图4为本发明一个或多个实施例提供的一种扁线导体中两个导体模块的组合状 态截面结构示意图。
图5为本发明一个或多个实施例提供的一种扁线导体中四个导体模块的爆炸状态截面结构示意图。
图6为本发明一个或多个实施例提供的一种扁线导体中四个导体模块的组合状态截面结构示意图。
图7为本发明一个或多个实施例提供的一种扁线导体中导体模块电流流动态势的截面结构示意图。
图8为现有技术中一种扁线导体电流流动态势的截面结构示意图。
图9为现有技术中一种扁线电机定子的径向截面结构示意图。
图10为图9中B部的局部放大结构示意图。
图11为本发明一个或多个实施例提供的导体模块多对凸起和凹槽的爆炸状态截面结构示意图。
附图标记:
1、定子铁芯;101、定子槽;
2、扁线导体;201、漆面层;202、导体模块;203、配合面;204、凸起;205、凹槽;206、组间凸起;207、组间凹槽;208、高位界面电阻层。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
如图1-11所示,一种扁线电机定子,包括定子铁芯1和定子绕组,定子铁芯1设有定子槽101;定子绕组采用扁线绕组,设置于定子槽101中,每个定子槽101中设有多个扁线导体2,单根扁线导体2包括外部包覆的漆面层201和内部由至少两根导体模块202拼接组成的线芯,单独的导体模块202在挤压成型后附带高位界面电阻层,经过多次的拼接挤压后形成一个扁线导体2,再对拼接后的扁线导体2进行全周包漆形成漆面层201,和现有技术相比,相当于在原来的矩形扁线里面存在多个导体模块202,当高频次的交流电通过扁线导体2时可以减少集肤效应带来的铜耗,提高铜材的利用性能,增加电机的使用寿命。
具体的,每个扁线导体2中的导体模块202数量,可设置为2个、3个、4个、6个、甚至更多。
漆面层201内部相邻的导体模块202的配合面203形成高位界面电阻,使单个导体模块202中的电流在流动至高位界面电阻时会被阻隔而沿着导体模块202自身流动,以使扁线导体2的整体电流由导体模块202进行分散,以提高扁线导体2的电流传导效率,降低电流在扁线导体2中通过产生的趋肤效应。导体模块202之间的高位界面电阻相当于“一堵墙”,当导体模块202中的交流电流动至导体模块202之间的配合面203时,高位界面电阻会将电流阻隔,电流自然向其自身电势小的部位流动,继而实现对单个扁线导体2表面的电流进行分割,使电流分散在单独的导体模块202中流动,利用分离原理有效降低和削减了扁线导体2表面电流的趋肤效应。
在一实施例中,漆面层201中的相邻导体模块202之间设有相互咬合的凸起204和凹槽205。本方案中通过相互咬合的凸起204和凹槽205结构使导体模块202之间形成更加牢靠稳定的连接配合关系,其一,在结构上使扁线导体2的整体性更好, 有助于后续的漆面层201包覆和绕组过程中扁线导体2的形态稳定;其二,设计的凸起204和凹槽205能够增加导体模块202之间的接触面积,相当于增加了高位界面电阻的阈值,使高位界面电阻的阻隔效果更强,对更高频次的交流电的阻隔效果更有保障。如附图7-8所示,由导体模块构成的扁线导体中,高频交流电电流的流动趋势以剖面线的方式表达,现有技术中传统的扁线导体中电流的流动趋势同样以剖面线方式表达,从结构上明显能够得知,由导体模块构成的扁线导体中电流的传导效率更高,铜材的利用率更高,将传统的扁线避免的电流进行了分散和分离,有效削减了趋肤效应的影响。
在一实施例中,如附图5-6所示,扁线导体2的漆面层201中包覆有四个导体模块202,四个导体模块202分成两组,每一组的两个导体模块202之间设有相互咬合的凸起204和凹槽205,两组导体模块202之间的组间配合面同样由组间凸起206和组间凹槽207实现两组导体模块202之间的咬合。在一实施方案中,将单个扁线导体2分离成四个导体模块202,四个导体模块202之间在分组咬合后,再通过组间凸起206和组间凹槽207来实现四个导体模块202的整体咬合,结构巧妙合理,充分利用导体模块202的结构空间,使其完美咬合形成一个扁线导体2。
在一实施例中,如附图5所示,组间凸起206对称设置于两个导体模块202的侧面,组间凹槽207对称设置于另外两个导体模块202的侧面,使组间凸起206和组间凹槽207对应咬合。本方案中进一步明确了组间凸起206和组间凹槽207的设计位置,相当于组间凸起206由两个导体模块202各自承担一半共同构成,同样的,组间凹槽207也是由另外两个导体模块202各自承担一半构成,而且组间凸起206和组间凹槽207位于导体模块202的两部分都是相互对称靠近中部贴合设置,使两组导体模块202之间完美咬合拼接,实现了四个导体模块202的紧密配合,为后续 扁线导体2的包覆和绕组确保基础。
在一实施例中,如附图5所示,导体模块202的表面设有高位界面电阻层208。在一实施方案中,导体模块202的表面再设置高位界面电阻层208,确保将导体模块202的电流完美锁定在导体模块202内部,使电流没有一丝机会穿过导体模块202之间的配合面203,完全避免了导体模块202之间的电流扰动。
在一实施例中,高位界面电阻层208采用气相沉积层、激光和电子束表面合金化层、热喷涂和喷焊层、电镀层、高温氧化中的一种或多种。导体模块202表面高位界面电阻层208的设置,可通过现有技术中的手段实现,而要着重考虑的是尽可能使高位界面电阻层的厚度更小,减少高位界面电阻层对导体填充率的削减,而上述现有技术中的多种手段,例如气相沉积、激光处理、高温氧化等方式均能够满足极小厚度高位界面电阻层的需求,对导体的填充率影响可忽略不计。
气相沉积是近年来发展最快的一种新技术,它分物理气相沉积(PVD),和化学气相沉积(CVD),最近又发展了复合的物理化学气相沉积(PCVD)。物理气相沉积是利用真空蒸发、离子溅射、离子镀等方法沉积成膜;化学气相沉积则是利用镀层材料的挥发性化合物气体分解或化合的反应产物而沉积成膜;物理化学气相沉积即等离子体加化学气相沉积。采用这种方法可以镀金属膜、合金膜、陶瓷膜或金刚石膜等。
激光和电子束作为热源用于材料表面改性,是从70年代开始的。由于它们具有能量密度高、加热冷却速度快、热影响区小、零件改性效果好等高能速表面处理技术的一切优点,而且又不需要在真空室内进行,操作比较灵活,故发展速度很快。激光和电子束表面改性技术主要包括三种类型:即相变硬化处理,熔凝处理和表面合金化与涂敷,激光和电子束表面合金化过程,实质上是一个表面冶金过程,即通 过高密度能束与基材表面涂层合金相互作用,使其发生物理冶金和化学变化,从而达到表面强化的目的。
热喷涂和喷焊技术作为一种新的表面防护、维修和强化方法在近20年中得到了飞速的发展。所谓热喷涂就是利用某种热源(氧乙炔火焰、电弧、等离子弧等)将欲喷涂的材料加热,借助气流把熔化或半熔化的雾状微粒通过喷嘴高速喷射到预先经过处理的工件表面上,形成附着牢固的涂层。
电镀是金属防腐的重要手段。近年来通过不断的革新和开发,出现了许多新工艺和新方法,如:特种电镀(包括非晶态电镀、非金属电镀、复合电镀、合金电镀、电刷镀);化学镀(镍-磷、镍-硼);热渗镀(包括离子、气体、液体、固体渗镀)等。电镀过程一般来说,是一个电化学的氧化还原过程,即利用电解的方法使金属的化合物还原为金属,沉积在金属或非金属制品表面,形成一层平滑而致密的金属覆盖层。
高温氧化是对铜进行加热,使铜与空气中氧气反应,形成一层氧化层,该氧化层可作为高位界面电阻层。加热方式,可以是感应加热、火焰加热、隧道炉加热等。
在一实施例中,如附图3所示,在导体模块202的横截面上,凹槽205或凸起204的长度l占比导体模块202整体长度L的比例范围在1/5至4/5。本方案中,扁线导体2主流都会选择铜材,考虑到铜的物理性能,经过实际的若干次拼接实验后发现,如果凹槽205或凸起204的长度过小,则会影响导体模块202之间的咬合效果;如果凹槽205或凸起204的长度过大,又会影响导体模块202形态稳定,当后续扁线导体2在绕组成型过程中,容易出现变形严重问题,容易使扁线导体2内的导体模块202分离损伤。
在一实施例中,如附图3所示,在导体模块202的横截面上,凹槽205或凸起 204的深度d占比导体模块202厚度D的比例范围在1/40至1/2。同样的,本方案中对凹槽205和凸起204的深度也做出来限定,凹槽205和凸起204的深度过小,扁线导体2在绕组时,导体模块202之间也容易脱离,抗扭能力较差;而凹槽205和凸起204的深度过大,又会影响导体模块202的主体强度和抗变形能力,另外深度过大还会增加装配拼接难度,从实际生产加工角度来说,过大的深度没有必要且会引发技术缺陷。
在一实施例中,如附图11所示,单个导体模块的结合面上,凸起和凹槽的数量设置为1-100对。单个导体模块的接合面上,凸起和凹槽的数量可设有一对。当导体模块的尺寸空间相对充足前提下,为了增加两个导体模块之间的配合效果、增加配合面积,在不过多增加装配难度且不影响导体模块主体稳定的情况下,可将凸起和凹槽的数量在1对的基础上,再设置2对、3对、......、100对。凸起和凹槽采用拉拔成型,使定子绕组成型过程中导体模块之间始终保持咬合状态,当然凸起和凹槽的数量设置越多,对整个拉拔成型的精度要求更高,但同时能够使导体模块之间的咬合力更强、间隙更小。
一种扁线电机,包括采用由导体模块202拼接组成的扁线导体进行定子绕组形成的定子。
上述具体实施方式不能作为对本发明保护范围的限制,对于本技术领域的技术人员来说,对本发明实施方式所做出的任何替代改进或变换均落在本发明的保护范围内。
本发明未详述之处,均为本技术领域技术人员的公知技术。

Claims (10)

  1. 一种扁线电机定子,包括定子铁芯和定子绕组,所述定子铁芯设有定子槽;所述定子绕组采用扁线绕组,设置于所述定子槽中,每个所述定子槽中设有多个扁线导体,其特征在于,单根所述扁线导体包括外部包覆的漆面层和内部由至少两根导体模块拼接组成的线芯,所述漆面层内部相邻的所述导体模块的配合面形成高位界面电阻,使单个所述导体模块中的电流在流动至所述高位界面电阻时会被阻隔而沿着所述导体模块自身流动,以使所述扁线导体的整体电流由所述导体模块进行分散,以提高所述扁线导体在高频交流电下电流的传导效率,降低高频交流电流在所述扁线导体中通过产生的趋肤效应。
  2. 根据权利要求1所述的一种扁线电机定子,其特征在于,所述漆面层中的相邻所述导体模块之间设有相互咬合的凸起和凹槽。
  3. 根据权利要求2所述的一种扁线电机定子,其特征在于,所述扁线导体的漆面层中包覆有四个导体模块,四个所述导体模块分成两组,每一组的两个所述导体模块之间设有相互咬合的凸起和凹槽,两组所述导体模块之间的组间配合面同样由组间凸起和组间凹槽实现两组所述导体模块之间的咬合。
  4. 根据权利要求2所述的一种扁线电机定子,其特征在于,单个所述导体模块的结合面上,所述凸起和凹槽的数量设置为1-100对。
  5. 根据权利要求1所述的一种扁线电机定子,其特征在于,所述导体模块的表面设有高位界面电阻层。
  6. 根据权利要求5所述的一种扁线电机定子,其特征在于,所述高位界面电阻层采用气相沉积层、激光和电子束表面合金化层、热喷涂和喷焊层、电镀层中的一种或多种。
  7. 根据权利要求2所述的一种扁线电机定子,其特征在于,在所述导体模块的 横截面上,所述凹槽或凸起的长度l占比所述导体模块整体长度L的比例范围在1/5至4/5。
  8. 根据权利要求2所述的一种扁线电机定子,其特征在于,在所述导体模块的横截面上,所述凹槽或凸起的深度d占比所述导体模块厚度D的比例范围在1/40至1/2。
  9. 根据权利要求4所述的一种扁线电机定子,其特征在于,所述凸起和凹槽采用拉拔成型,使定子绕组成型过程中所述导体模块之间始终保持咬合状态。
  10. 一种扁线电机,其特征在于,设置有权利要求1-9中任一项所述的电机定子。
PCT/CN2022/121587 2022-07-29 2022-09-27 一种扁线电机定子和扁线电机 WO2024021285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210906718.1A CN115276288B (zh) 2022-07-29 2022-07-29 一种扁线电机定子和扁线电机
CN202210906718.1 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024021285A1 true WO2024021285A1 (zh) 2024-02-01

Family

ID=83771204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121587 WO2024021285A1 (zh) 2022-07-29 2022-09-27 一种扁线电机定子和扁线电机

Country Status (2)

Country Link
CN (1) CN115276288B (zh)
WO (1) WO2024021285A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344435A (ja) * 2005-06-07 2006-12-21 Mosutetsuku:Kk 線材、コイル、ステータコイル、ロータコイル、及び変成器
WO2008093645A1 (ja) * 2007-01-30 2008-08-07 Mitsubishi Cable Industries, Ltd. 集合導体及びその製造方法
JP2013187076A (ja) * 2012-03-08 2013-09-19 Mitsubishi Cable Ind Ltd 集合導体及びその製造方法
CN209200787U (zh) * 2018-09-29 2019-08-02 蔚来汽车有限公司 电机及具有该电机的车辆
JP2019140796A (ja) * 2018-02-09 2019-08-22 古河電気工業株式会社 セグメントコイル用分割導体
CN110741448A (zh) * 2018-03-12 2020-01-31 古河电气工业株式会社 集合导线、集合导线的制造方法以及分段线圈
CN214626541U (zh) * 2021-05-14 2021-11-05 天津市松正电动汽车技术股份有限公司 一种电机定子及电机
CN114520558A (zh) * 2022-03-15 2022-05-20 北京交通大学 抑制顶匝线圈涡流损耗和温升的电机定子绕组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658492B2 (ja) * 2016-12-19 2020-03-04 トヨタ自動車株式会社 回転電機
CN210490574U (zh) * 2019-11-19 2020-05-08 南京好龙电子有限公司 具有不同厚度导体的扁线电机绕组槽内结构
CN112421815A (zh) * 2020-11-20 2021-02-26 智新科技股份有限公司 扁线定子结构及扁线电机
CN113872364A (zh) * 2021-11-09 2021-12-31 宁波磁性材料应用技术创新中心有限公司 一种漆包扁线与扁线电机
CN216872950U (zh) * 2022-01-27 2022-07-01 丽水方德智驱应用技术研究院有限公司 一种混合并绕型扁线定子绕组、定子组件及扁线电机
CN114598079A (zh) * 2022-03-17 2022-06-07 珠海格力电器股份有限公司 扁线电机定子组件、电机、车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344435A (ja) * 2005-06-07 2006-12-21 Mosutetsuku:Kk 線材、コイル、ステータコイル、ロータコイル、及び変成器
WO2008093645A1 (ja) * 2007-01-30 2008-08-07 Mitsubishi Cable Industries, Ltd. 集合導体及びその製造方法
JP2013187076A (ja) * 2012-03-08 2013-09-19 Mitsubishi Cable Ind Ltd 集合導体及びその製造方法
JP2019140796A (ja) * 2018-02-09 2019-08-22 古河電気工業株式会社 セグメントコイル用分割導体
CN110741448A (zh) * 2018-03-12 2020-01-31 古河电气工业株式会社 集合导线、集合导线的制造方法以及分段线圈
CN209200787U (zh) * 2018-09-29 2019-08-02 蔚来汽车有限公司 电机及具有该电机的车辆
CN214626541U (zh) * 2021-05-14 2021-11-05 天津市松正电动汽车技术股份有限公司 一种电机定子及电机
CN114520558A (zh) * 2022-03-15 2022-05-20 北京交通大学 抑制顶匝线圈涡流损耗和温升的电机定子绕组

Also Published As

Publication number Publication date
CN115276288A (zh) 2022-11-01
CN115276288B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN103014587B (zh) 在曲轴轴面热喷涂钼涂层的方法
CN112234223B (zh) 一种航天用燃料电池三维收缩孔流场的双极板与制备方法
CN103143761B (zh) 一种AlTiN-MoN纳米多层复合涂层铣刀及其制备方法
WO2024021285A1 (zh) 一种扁线电机定子和扁线电机
CN102936717A (zh) 一种紧凑高效的准扩散弧冷阴极弧源
CN106319469A (zh) 一种铜铟镓合金靶材的制备方法
CN102634761A (zh) 截面为带状的真空阴极电弧等离子体的磁过滤方法
CN112743204A (zh) 空心钨极同轴填丝焊接装置及调控、焊接方法
CN111659989A (zh) 一种熔覆制备钛钢复合板的方法
CN207904355U (zh) 一种旋转铬硅靶材
JP2021150284A (ja) 電極製造用の金属及び活性電池材料を含む粒子の製造方法
CN205069221U (zh) 一种铜包钢接触线生产设备
CN110834133A (zh) 一种减少铝合金电弧熔丝增材制造气孔的方法
CN110846627A (zh) 一种旋转靶材冷绑定工艺
JP6654769B2 (ja) 塗工装置、塗工方法、電池の製造方法
CN108330464B (zh) 一种线材类金刚石涂层加工装置
CN208008896U (zh) 一种线材类金刚石涂层加工装置
JP4560755B2 (ja) 誘導電動機の回転子製造方法
CN106283033A (zh) 一种三阴级转移弧等离子束精细熔覆的方法
JP6978057B2 (ja) 燃料電池用セパレータ製造方法及び成膜装置
CN220432940U (zh) 一种热镀锌钢管镀层的电磁抹拭装置
CN102744504A (zh) 绝缘片约束电弧窄间隙tig焊接方法及焊枪
CN219547068U (zh) 用于磁控卷绕镀膜的离子源清洁机构
JPH03135000A (ja) 超伝導加速管
CN102909495A (zh) 用物理氧化法生产co2气体保护实芯焊丝的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952726

Country of ref document: EP

Kind code of ref document: A1