WO2024021126A1 - 车辆制动方法及计算机可读存储介质 - Google Patents

车辆制动方法及计算机可读存储介质 Download PDF

Info

Publication number
WO2024021126A1
WO2024021126A1 PCT/CN2022/109254 CN2022109254W WO2024021126A1 WO 2024021126 A1 WO2024021126 A1 WO 2024021126A1 CN 2022109254 W CN2022109254 W CN 2022109254W WO 2024021126 A1 WO2024021126 A1 WO 2024021126A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
vehicle
rear axle
front axle
axle
Prior art date
Application number
PCT/CN2022/109254
Other languages
English (en)
French (fr)
Inventor
杨斌
Original Assignee
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代(上海)智能科技有限公司
Priority to CN202280063582.0A priority Critical patent/CN118119536A/zh
Priority to PCT/CN2022/109254 priority patent/WO2024021126A1/zh
Publication of WO2024021126A1 publication Critical patent/WO2024021126A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/28Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels responsive to deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration

Definitions

  • the present application belongs to the field of vehicle control, and in particular relates to a vehicle braking method and a computer-readable storage medium.
  • Embodiments of the present application provide a vehicle braking method and a computer-readable storage medium.
  • the distribution ratio of the vehicle's front axle braking force and the rear axle braking force is adjusted. This alleviates the nodding state of the vehicle, reduces the pitch fluctuation of the vehicle, makes the braking process smoother and more natural, thereby improving passenger comfort.
  • embodiments of the present application provide a vehicle braking method, including:
  • adjusting the distribution ratio of the vehicle's front axle braking force and rear axle braking force includes:
  • Part of the braking force of the vehicle's front axle is transferred to the rear axle to reduce the vehicle's front axle braking force and increase the rear axle braking force.
  • the sum of the front axle braking force and the rear axle braking force is equal to the vehicle's total braking force. power.
  • part of the braking force of the vehicle's front axle is transferred to the rear axle, including:
  • the braking force transfer coefficient is the ratio of the braking force that needs to be transferred from the front axle to the rear axle and the front axle braking force;
  • the front and rear axles of the vehicle are controlled to brake based on the front axle target braking force and the rear axle target braking force.
  • the target braking force transfer coefficient is determined based on the vehicle speed, including:
  • the target braking force transfer coefficient is determined based on the vehicle speed, including:
  • the product of the negative reciprocal of the first difference and the second difference is used as the target braking force transfer coefficient.
  • the method before adjusting the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle during vehicle braking, the method further includes:
  • the compared vehicle speed is less than the vehicle speed threshold, it is determined that the vehicle is about to stop.
  • the method before adjusting the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle, the method further includes:
  • Adjust the distribution ratio of the vehicle's front axle braking force and rear axle braking force including:
  • the distribution ratio of the vehicle's front axle braking force and rear axle braking force is adjusted.
  • the method before adjusting the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle, the method further includes:
  • Adjust the distribution ratio of the vehicle's front axle braking force and rear axle braking force including:
  • the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle is adjusted.
  • the method before adjusting the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle, the method further includes:
  • Adjust the distribution ratio of the vehicle's front axle braking force and rear axle braking force including:
  • the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle is adjusted.
  • determining the total braking force of the vehicle includes:
  • the requested braking force will be used as the total braking force of the vehicle
  • the braking force obtained after the requested braking force is attenuated according to the preset attenuation strategy is used as the total braking force of the vehicle.
  • the method before controlling the front axle and rear axle of the vehicle to brake based on the front axle target braking force and the rear axle target braking force, the method further includes:
  • Control the front and rear axles of the vehicle to brake based on the front axle target braking force and the rear axle target braking force including:
  • the front axle and the rear axle of the vehicle are controlled to brake based on the front axle target braking force and the rear axle target braking force.
  • the method before controlling the front axle and rear axle of the vehicle to brake based on the front axle target braking force and the rear axle target braking force, the method further includes:
  • Control the front and rear axles of the vehicle to brake based on the front axle target braking force and the rear axle target braking force including:
  • the front and rear axles of the vehicle are controlled to brake based on the target braking force of the front axle and the target braking force of the rear axle.
  • the present application also provides a computer-readable storage medium.
  • Computer program instructions are stored on the computer-readable storage medium.
  • the computer program instructions implement any one of the first aspects.
  • the vehicle braking method and computer-readable storage medium of the embodiment of the present application can adjust the distribution ratio of the vehicle's front axle braking force and rear axle braking force when the vehicle is approaching a stop during the vehicle braking process.
  • the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle is adjusted to alleviate the nodding state of the vehicle, reduce the pitch fluctuation of the vehicle, and make the braking process smoother. It is smoother and more natural, thereby improving passenger comfort.
  • Figure 1 is a schematic diagram of a vehicle coordinate system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of force analysis of a vehicle during driving according to another embodiment of the present application.
  • Figure 3 is a schematic diagram of the force analysis of a vehicle during braking provided by yet another embodiment of the present application.
  • Figure 4 is a schematic flowchart of a vehicle braking method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a vehicle braking system provided by another embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a vehicle braking device provided by yet another embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a vehicle braking device provided by yet another embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the above method can improve the comfort of the vehicle when braking.
  • the change rate of ax is significantly improved during the braking stage.
  • the above method still has two shortcomings.
  • First, the pitch angle change rate of the vehicle The improvement is not obvious.
  • the vehicle still has obvious pitch changes during braking.
  • this braking method is achieved by reducing the braking force of the braking system at the moment of braking, which will It gives the driver the feeling that the vehicle's deceleration is lost when the vehicle is approaching a stop and the vehicle cannot brake, resulting in a poor driver experience.
  • Anti-squat suspension geometry (anti-squat) structures are currently commonly used in the design of vehicle suspension systems.
  • multi-link suspension, double wishbone suspension and trailing arm suspension are commonly used structures in the rear suspension of modern automobiles. Whether it is a multi-link suspension structure, a double-wishbone suspension structure or a trailing arm suspension structure, the suspension system drives the wheel movement.
  • Figure 1 is a schematic diagram of a vehicle coordinate system provided by an embodiment of the present application.
  • a virtual instant center of motion O in the y-z plane and the x-z plane as shown in Figure 2. That is, under the action of the suspension system, the beating of the wheel can be understood as the rotation around each instant center of motion O in the respective planes. sports.
  • FIG 2 is a schematic diagram of the force analysis of a vehicle with an anti-squat suspension geometry during driving according to an embodiment of the present application.
  • the driving force F Drive will generate a moment moment on the wheel and suspension system, which acts on the contact between the tire and the ground.
  • a vertical reaction force F anti will be given to the suspension system. This force reacts on the vehicle body through the instantaneous center O, thereby achieving the anti-squat effect of the vehicle.
  • FIG 3 is a schematic diagram of the force analysis during braking of a vehicle with an anti-squat suspension geometry provided by an embodiment of the present application.
  • the braking force F Brake obtained by the rear wheel acts on the contact center O' of the rear wheel and the road surface.
  • a torque can be obtained M pull :
  • svsa height represents the height of the instant center O relative to the ground.
  • svsa lenght represents the distance of the instant center O relative to the rear axis in the x-axis direction.
  • F pull is actually a virtual force.
  • F pull uses the rod system to apply the braking force to the car body through the suspension system in the form of torque, which will pull the car body down and make the whole car feel like it is sitting back.
  • the applicant found that if the braking force of the braking system is transferred to the rear axle as much as possible when the vehicle is braking and is approaching a stop, the rear axle will bear most of the braking force before the stop. Then F pull will help the vehicle create the squatting effect of the vehicle, and will produce a vehicle pitch angle change trend that is opposite to the braking nod, that is, the squat trend, helping the vehicle transition from the braking nod posture to a horizontal posture in advance. Reduce the amount of braking nod, so that the pitch angle of the vehicle will change less or even completely after braking. The vehicle will sink as a whole, and then rise as a whole, which is very friendly to comfort. Through the transfer of braking force, smooth and comfortable braking can be achieved.
  • embodiments of the present application provide a vehicle braking method, device, equipment and computer storage medium.
  • the vehicle braking method of the embodiment of the present application can adjust the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle when the vehicle is approaching a stop during the vehicle braking process.
  • the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle is adjusted to alleviate the nodding state of the vehicle, reduce the pitch fluctuation of the vehicle, and make the braking process smoother. It is smoother and more natural, thereby improving passenger comfort.
  • the following method may be used to determine whether the vehicle is approaching a stop:
  • the vehicle speed threshold can be set according to the actual situation, for example, it can be 1m/s. Specifically, it can usually be adjusted according to the vehicle performance.
  • the distribution ratio of the vehicle's front axle braking force and rear axle braking force can be performed based on the total braking force of the vehicle. Adjustment steps to mitigate pitch angle changes during braking.
  • adjusting the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle may include:
  • Part of the braking force of the vehicle's front axle is transferred to the rear axle to reduce the vehicle's front axle braking force and increase the rear axle braking force.
  • the sum of the front axle braking force and the rear axle braking force is equal to the vehicle's total braking force. power.
  • transferring part of the braking force of the vehicle's front axle to the rear axle may include the following steps:
  • Steps S42-S45 can be performed every time it is obtained to realize real-time adjustment of the front and rear axle braking forces, so that the front and rear axle braking forces can meet the needs of comfortable braking in real time.
  • the vehicle braking method of the embodiment of the present application determines the total braking force, front axle braking force and vehicle speed of the vehicle when the vehicle is braking and is approaching a stop; determines the target braking force transfer coefficient according to the vehicle speed, where the braking force transfer coefficient is The ratio of the braking force that needs to be transferred from the front axle to the rear axle and the front axle braking force; determine the front axle target braking force based on the front axle braking force and the target braking force transfer coefficient; determine the rear axle based on the total braking force and the front axle target braking force Target braking force; control the front and rear axles of the vehicle to brake based on the front axle target braking force and the rear axle target braking force.
  • the braking force of the front axle is transferred to the rear axle according to the braking force transfer coefficient, and the rear axle bears most of the braking force, thereby increasing the torque of the rear axle, thereby making the same
  • the effect is that the force at the rear wheels also increases, and the force at the rear wheels can act on the car body, pulling the car body down, thereby reducing the amount of braking nod of the vehicle, reducing the pitch fluctuation of the vehicle, and making the braking process smoother. Smooth and natural, improving the comfort of drivers and passengers.
  • the total braking force of the vehicle may be determined based on the braking force requested by the driver or the assisted driving system.
  • the requested braking force of the driver or the assisted driving system can be obtained, and whether the vehicle status of the vehicle meets the preset conditions is determined. If it is determined that the vehicle status does not meet the preset conditions, then The obtained requested braking force is used as the total braking force of the vehicle. If it is determined that the vehicle state meets the preset conditions, the braking force obtained after the requested braking force is attenuated according to the preset attenuation strategy is used as the total braking force of the vehicle. Among them, the attenuation strategy can be set according to the actual situation.
  • determining whether the vehicle status meets the preset conditions can be comprehensively determined based on factors such as road adhesion coefficient, vehicle deceleration, and the distance to the obstacle collected by the vehicle's millimeter wave or ultrasonic radar. For example, when the road adhesion coefficient is low, the deceleration is large, and/or the distance to the obstacle is close, it is not allowed to reduce the overall braking force of the vehicle.
  • the stability of the vehicle braking process can be further improved by attenuating the braking force, thereby achieving more comfortable braking. .
  • the displacement of the brake pedal may be obtained, and then the driver's requested braking force may be determined based on the displacement of the brake pedal.
  • the displacement of the brake pedal can be detected by a displacement sensor provided on the brake pedal. After the displacement of the brake pedal is obtained, the previously set correspondence between the displacement of the brake pedal and the braking force can be used to detect the displacement of the brake pedal. relationship to determine the driver's requested braking force.
  • the driver's requested braking force can also be obtained by obtaining the hydraulic pressure of the brake system.
  • the driver's requested braking force can be obtained by multiplying the obtained brake system hydraulic pressure with the sum of the front axle braking effect and the rear axle braking effect.
  • the braking signal sent by the assisted driving system may be received, and the requested braking force of the assisted driving system may be determined by analyzing the braking signal.
  • the total braking force of the vehicle can be determined based on the obtained requested braking force.
  • the obtained requested braking force may be used as the total braking force of the vehicle.
  • the front axle braking force in S41 can be obtained in the following ways:
  • the actual or estimated front axle braking force is obtained through a control system capable of controlling the braking system, or a brake actuator system.
  • the actual pressure of the front wheel pipeline is obtained.
  • the actual pressure of the front wheel pipeline can be detected through a pressure sensor installed on the front wheel pipeline, and then the front axle braking force of the vehicle is determined based on the actual pressure of the front wheel pipeline.
  • the front axle braking force can be determined by the following equation:
  • F front represents the front axle braking force
  • P f represents the actual pressure of the front wheel pipeline
  • S f represents the effective area of the air chamber of the front axle
  • L f represents the length of the front axle's brake clearance automatic adjustment arm
  • J f represents the front axle.
  • Mechanical efficiency B f represents the efficiency factor of the front axle
  • R f1 represents the brake drum radius of the front axle
  • R f2 represents the front wheel radius.
  • the vehicle speed in S41 can be obtained in the following manner:
  • the wheel speeds v whl,FL , v whl,FR , v whl,RL and v whl,RR of the four wheels of the vehicle are collected through collection equipment such as wheel speed sensors, and then the average of the four wheel speeds is calculated, and the calculated average value as vehicle speed.
  • S42 may obtain the corresponding target braking force transfer coefficient through parameter setting.
  • the corresponding relationship between the vehicle speed and the braking force transfer coefficient can be preset and recorded. Based on this, after the vehicle speed is obtained through S41, the braking force transfer coefficient corresponding to the vehicle speed can be determined according to the above correspondence relationship, and the braking force transfer coefficient corresponding to the vehicle speed can be used as the target braking force transfer coefficient.
  • the corresponding relationship between the two-dimensional array consisting of vehicle speed and road adhesion coefficient and the braking force transfer coefficient can be preset and recorded. Based on this, after the vehicle speed is obtained through S41, the adhesion coefficient of the current road surface can be obtained, and then based on the above correspondence, the braking force transfer coefficient corresponding to the array composed of the vehicle speed obtained by S41 and the adhesion coefficient of the current road surface is determined, and The determined braking force transfer coefficient is used as the target braking force transfer coefficient.
  • Determining the target braking force transfer coefficient through the above parameter settings is a simple process and easy to implement.
  • S42 may also determine the target braking force transfer coefficient through calculation.
  • S42 can calculate the target braking force transfer coefficient according to the following calculation formula:
  • co fade represents the target braking force transfer coefficient
  • v start represents the set first speed reference value
  • v end represents the set second speed reference value
  • v start is greater than v end
  • v veh represents the obtained vehicle speed
  • co Max is The preset maximum braking force transfer coefficient, when co Max is set to 1, means that when v veh reaches v end , the braking force transfer coefficient is 1.
  • the maximum braking force transfer coefficient co Max can be a preset fixed value, or it can be a value determined by looking up a table based on the road adhesion coefficient and the vehicle lateral acceleration. When the road adhesion coefficient is low, or the vehicle is lateral In the case of acceleration, the maximum brake transfer coefficient can be reduced accordingly.
  • the brake transfer coefficient represents the ratio of the braking force that needs to be transferred from the front axle to the rear axle and the front axle braking force. 0 means no transfer, and 1 means all the front axle braking force is transferred to the rear axle, that is, completely through the rear axle. Stop.
  • the required braking force transfer coefficient can be calculated based on the front axle braking force and the target braking force transfer coefficient. From the braking force transferred to the rear axle, the target braking force of the front axle is obtained by subtracting the braking force that needs to be transferred to the rear axle from the braking force of the front axle. Therefore, S43 can calculate the front axle target braking force according to the following formula:
  • F brkae,tar,FA represents the front axle target braking force
  • F brake,FA represents the front axle braking force
  • the braking force of the entire vehicle needs to meet the driver's expectations, so usually the braking force of the entire vehicle needs to be consistent with the total braking force of the vehicle.
  • the braking force of the entire vehicle is the sum of the front axle braking force and the rear axle braking force. Therefore, the sum of the front axle braking force and the rear axle braking force needs to be consistent with the total braking force of the vehicle.
  • the rear axle target braking force can be calculated by the following formula:
  • F brake,tar,RA F brake,req -F brake,tar,FA
  • F brake,tar,RA represents the target braking force of the rear axle
  • F brake,req represents the total braking force
  • the rear axle target braking force can be quickly determined.
  • braking force distribution may be performed through S45.
  • the first braking force request F tar,FA may be generated based on the front axle target braking force
  • the second braking force request F tar,RA may be generated based on the rear axle target braking force
  • F tar,FA and F tar,RA is output to the vehicle's braking system for execution.
  • the front axle brake is controlled to adjust the braking force of the front axle brake to the front axle target braking force.
  • the rear axle brake is controlled to adjust the rear axle brake. The braking force of the axle brake is adjusted to the rear axle target braking force.
  • the target braking force transfer coefficient is determined based on the vehicle speed.
  • the coefficient threshold can be set according to the actual situation.
  • the vehicle If the adhesion coefficient of the current road surface is low, the vehicle is prone to skidding. Therefore, in order to ensure the safety and stability of braking, it is prohibited to transfer the braking force of the front axle to the rear axle on roads with a low adhesion coefficient. Moreover, the braking process on a road with a low adhesion coefficient will not produce a large change rate of the vehicle's longitudinal deceleration, that is, the amount of nodding itself is relatively low.
  • the vehicle's longitudinal deceleration determine whether the longitudinal deceleration is greater than the deceleration threshold, and/or determine whether the requested braking force is greater than the braking force threshold, and determine whether the longitudinal deceleration is greater than the deceleration threshold or the requested braking force is greater than the braking force threshold.
  • the target braking force transfer coefficient is determined according to the vehicle speed.
  • the deceleration threshold can be set according to the actual situation.
  • the temperature threshold can be set according to the actual situation.
  • the brake temperature of the rear axle can be obtained through a temperature sensor disposed near the rear axle.
  • the braking temperature of the rear axle is greater than or equal to the temperature threshold, it means that the rear axle is at risk of thermal decay.
  • the braking temperature of the rear axle is greater than or equal to the temperature threshold, it means that the rear axle is at risk of thermal decay.
  • Determine the maximum braking force that the rear axle can currently provide that is, determine the maximum braking force that the rear axle brake can currently provide, determine whether the target braking force of the rear axle is less than the maximum braking force, and determine whether the target braking force of the rear axle is less than the maximum braking force.
  • the vehicle's front and rear axles are controlled to brake based on the front axle target braking force and the rear axle target braking force.
  • a saturation signal can be sent to the braking system to limit the growth of the target braking force transfer coefficient, so as to continue based on the target braking force calculated previously.
  • the power transfer coefficient re-determines the target braking force of the rear axle, and then transfers the braking force instead of transferring the braking force based on the target braking force transfer coefficient calculated this time.
  • the target braking force of the rear axle is greater than the maximum braking force that the rear axle can provide, by limiting the growth of the target braking force transfer coefficient, the situation of rear wheel slippage and locking can be effectively avoided, thus ensuring the braking stability. safety.
  • the vehicle is then controlled to brake the front and rear axles based on the target braking force of the front axle and the target braking force of the rear axle. .
  • a saturation signal can be sent to the braking system to limit the growth of the target braking force transfer coefficient, so as to continue to obtain the result based on the previous calculation.
  • the target braking force transfer coefficient of the rear axle is re-determined, and then the braking force transfer is performed, instead of the braking force transfer based on the target braking force transfer coefficient calculated this time.
  • whether the rear wheels have a tendency to lock can be determined based on the wheel speed of each wheel of the vehicle. Determining whether a locking trend occurs based on wheel speed is an existing mature technology and will not be described in detail here.
  • the increase in the target braking force transfer coefficient is limited to avoid the rear wheel locking and ensure the safety of braking.
  • a braking system for implementing the above vehicle braking method is also provided.
  • Figure 5 is a schematic diagram of the vehicle braking system.
  • the embodiment of the present application provides A vehicle braking system can include:
  • Signal receiving unit enabling processing unit, braking force distribution unit, braking force decision-making unit and saturated braking force saturation monitoring unit.
  • the signal receiving unit is used to receive the signals required for braking control, such as the total braking force F brake,FA , the front axle braking force F brake,FA , the rear axle braking force F brake,RA , and the four braking forces collected by the wheel speed sensor.
  • the enable processing unit is used to receive the signal acquired by the signal receiving unit and determine whether the conditions for triggering the braking force transfer are met. For example, the enabling processing unit can determine whether the vehicle speed is less than the vehicle speed threshold, determine whether the road adhesion coefficient is greater than the coefficient threshold, determine whether the vehicle's longitudinal deceleration is greater than the deceleration threshold, determine whether the requested braking force is greater than the braking force threshold, and/or Determine whether the braking temperature of the rear axle is less than the temperature threshold, etc. to determine whether the conditions for triggering the braking force transfer are met. Based on the judgment result, the enable signal Enable is given. Among them, Enable is set to indicate that the triggering conditions are met, and set to zero indicates that the triggering conditions are not met. .
  • the braking force distribution unit is used to determine the target braking force transfer coefficient when it is determined that the braking force transfer triggering condition is met.
  • the braking force decision-making unit is used to determine the front axle target braking force and the rear axle target braking force based on the target braking force transfer coefficient, requested braking force, current front axle braking force and/or rear axle current braking force. During the braking force transfer process, the braking force decision-making unit can also determine whether the preset conditions for the vehicle's total braking force attenuation are met, etc., and then decide whether to attenuate the total braking force based on the above judgment.
  • the braking force saturation monitoring unit is used to output the respective braking force requests F tar, FA , F tar, RA of the front and rear axles to the braking system for execution based on the enable signal and the target braking force of the front and rear axles.
  • the braking force saturation monitoring unit can also determine whether the rear wheel has a slip locking risk and/or a locking tendency before outputting the braking force request F tar,FA and F tar,RA , and determines whether the rear wheel has a slip locking tendency. Limit the growth of the target braking force transfer coefficient co fade when there is a risk and/or locking tendency.
  • this application also provides a specific implementation of the vehicle braking device. See the examples below.
  • the adjustment unit is used to adjust the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle when the vehicle is approaching a stop during the vehicle braking process.
  • the vehicle braking device of the embodiment of the present application can adjust the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle when the vehicle is approaching a stop during the vehicle braking process.
  • the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle is adjusted to alleviate the nodding state of the vehicle, reduce the pitch fluctuation of the vehicle, and make the braking process smoother. It is smoother and more natural, thereby improving passenger comfort.
  • the adjustment unit can transfer part of the braking force of the front axle of the vehicle to the rear axle to reduce the braking force of the front axle of the vehicle and increase the braking force of the rear axle, where the braking force of the front axle and the braking force of the rear axle The sum of the braking forces is equal to the total braking force of the vehicle.
  • the car adjustment unit provided by the embodiment of the present application may include the following sub-units:
  • the acquisition subunit 601 is used to determine the total braking force, front axle braking force and vehicle speed of the vehicle during vehicle braking.
  • the coefficient determination subunit 602 is used to determine the target braking force transfer coefficient according to the vehicle speed, where the braking force transfer coefficient is the ratio of the braking force that needs to be transferred from the front axle to the rear axle and the front axle braking force.
  • the first braking force determination subunit 603 is used to determine the front axle target braking force according to the front axle braking force and the target braking force transfer coefficient.
  • the second braking force determination subunit 604 is used to determine the rear axle target braking force based on the total braking force and the front axle target braking force.
  • the braking subunit 605 is used to control the front axle and rear axle of the vehicle to brake based on the front axle target braking force and the rear axle target braking force.
  • the vehicle braking device of the embodiment of the present application can determine the total braking force, front axle braking force and vehicle speed of the vehicle when the vehicle is braking and is approaching a stop; determine the target braking force transfer coefficient according to the vehicle speed, where the braking force transfer coefficient is The ratio of the braking force that needs to be transferred from the front axle to the rear axle and the front axle braking force; the front axle target braking force is determined based on the front axle braking force and the target braking force transfer coefficient; the rear axle target braking force is determined based on the requested braking force and the front target braking force Axle target braking force; controls the front and rear axles of the vehicle to brake based on the front axle target braking force and the rear axle target braking force.
  • the braking force of the front axle is transferred to the rear axle according to the braking force transfer coefficient, and the rear axle bears most of the braking force, thereby increasing the torque of the rear axle, thereby making the same
  • the effect is that the force at the rear wheels also increases, and the force at the rear wheels can act on the car body, pulling the car body down, thereby reducing the amount of braking nod of the vehicle, reducing the pitch fluctuation of the vehicle, and making the braking process smoother. Smooth and natural, improving the comfort of drivers and passengers.
  • the coefficient determination subunit 602 is used for:
  • the coefficient determination subunit 602 is used for:
  • the product of the negative reciprocal of the first difference and the second difference is used as the target braking force transfer coefficient.
  • the above device may also include a braking judgment subunit for:
  • the vehicle speed is obtained, and the vehicle speed is compared with the vehicle speed threshold. If the vehicle speed is less than If the vehicle speed threshold is reached, it is determined that the vehicle is approaching a stop.
  • the above device may also include a first judgment unit, used for:
  • Adjustment units are used for:
  • the distribution ratio of the vehicle's front axle braking force and rear axle braking force is adjusted.
  • the above device may also include a second judgment unit, used for:
  • Adjustment units are used for:
  • the distribution ratio of the vehicle's front axle braking force and rear axle braking force is adjusted.
  • the above device may also include a third judgment unit, used for:
  • the vehicle's longitudinal deceleration and/or total braking force Before adjusting the distribution ratio of the vehicle's front axle braking force and rear axle braking force, determine the vehicle's longitudinal deceleration and/or total braking force; determine whether the longitudinal deceleration is greater than the deceleration threshold and/or determine whether the total braking force is greater than braking force threshold;
  • Adjustment units are used for:
  • the distribution ratio of the front axle braking force and the rear axle braking force of the vehicle is adjusted.
  • the above device may also include a fourth judgment unit, used for:
  • Adjustment units are used for:
  • the front axle braking force and the rear axle braking force of the vehicle are adjusted.
  • the acquisition subunit 601 is used for:
  • the requested braking force from the driver or the auxiliary driving system; determine whether the vehicle status meets the preset conditions; if it is determined that the vehicle status does not meet the preset conditions, the requested braking force will be used as the total braking force of the vehicle; if it is determined that the vehicle status If the state meets the preset conditions, the braking force obtained after the requested braking force is attenuated according to the preset attenuation strategy will be used as the total braking force of the vehicle.
  • the above device may also include a fifth judgment unit, used for:
  • Braking subunit 605 is used for:
  • the front axle and the rear axle of the vehicle are controlled to brake based on the front axle target braking force and the rear axle target braking force.
  • the above device may also include a sixth judgment unit, used for:
  • Braking subunit 605 is used for:
  • the front and rear axles of the vehicle are controlled to brake based on the target braking force of the front axle and the target braking force of the rear axle.
  • FIG. 7 shows a schematic diagram of the hardware structure of the vehicle braking equipment provided by the embodiment of the present application.
  • the vehicle braking device may include a processor 701 and a memory 702 storing computer program instructions.
  • processor 701 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits according to the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 702 may include bulk storage for data or instructions.
  • memory 702 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above.
  • Memory 702 may include removable or non-removable (or fixed) media, where appropriate. Where appropriate, the memory 702 may be internal or external to the integrated gateway disaster recovery device. In certain embodiments, memory 702 is non-volatile solid-state memory.
  • Memory 702 may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices e.g., magnetic disks
  • optical storage media devices e.g., magnetic disks
  • flash memory devices e.g., electrical, optical, or other physical/tangible memory storage devices.
  • memory 702 includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by a or multiple processors) operable to perform the operations described with reference to a method according to an aspect of the present disclosure.
  • the processor 701 reads and executes the computer program instructions stored in the memory 702 to implement any of the vehicle braking methods in the above embodiments.
  • the vehicle braking device may also include a communication interface 703 and a bus 710 .
  • the processor 701, the memory 702, and the communication interface 703 are connected through the bus 710 and complete communication with each other.
  • the communication interface 703 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application.
  • Bus 710 includes hardware, software, or both, coupling the components of the online data traffic metering device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infinite Bandwidth Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • bus 710 may include one or more buses.
  • embodiments of the present application may provide a computer storage medium for implementation.
  • the computer storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the vehicle braking methods in the above embodiments is implemented.
  • the functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • elements of the application are programs or code segments that are used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit. It will also be understood that each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware that performs the specified functions or actions, or can be implemented by special purpose hardware and A combination of computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种车辆制动方法及计算机可读存储介质,在车辆制动过程中,在车辆临近刹停时,根据车辆的总制动力对车辆的前轴制动力和后轴制动力进行调整,其中,车辆的总制动力根据驾驶员或辅助驾驶系统的请求制动力确定。在车辆制动临近刹停时,根据车辆的总制动力将车辆的前轴制动器的部分制动力转移到后轴制动器,从而可以缓解车辆的点头状态,减轻车辆的俯仰波动,使刹停过程更为平顺自然,从而提升乘员舒适性。

Description

车辆制动方法及计算机可读存储介质 技术领域
本申请属于车辆控制领域,尤其涉及一种车辆制动方法及计算机可读存储介质。
背景技术
随着汽车技术的发展,现在对车辆的舒适性提出了更高的要求。其中就包括制动的舒适性。
目前在车辆制动到刹停的过程中,由于车辆减速会引起车辆的俯仰姿态变化,使得车辆内的乘员感觉不舒适,造成乘员体验不佳,因此现在急需一种可以提升驾乘人员舒适性的车辆制动方法。
发明内容
本申请实施例提供一种车辆制动方法及计算机可读存储介质,在车辆制动过程中,在车辆临近刹停时,对车辆的前轴制动力和后轴制动力的分配比例进行调整,从而缓解车辆的点头状态,减轻车辆的俯仰波动,使刹停过程更为平顺自然,从而提升乘员舒适性。
第一方面,本申请实施例提供一种车辆制动方法,包括:
在车辆制动过程中,在车辆临近刹停时,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
作为一种可能的实现方式,对车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
将车辆前轴的部分制动力转移至后轴执行,以减小车辆的前轴制动力并增大后轴制动力,其中,前轴制动力和后轴制动力的和值等于车辆的总制动力。
作为一种可能的实现方式,将车辆前轴的部分制动力转移至后轴执 行,包括:
确定车辆的总制动力、前轴制动力和车速;
根据车速确定目标制动力转移系数,其中,制动力转移系数为需要由前轴转移至后轴的制动力与前轴制动力的比值;
根据前轴制动力和目标制动力转移系数确定前轴目标制动力;
根据总制动力和前轴目标制动力确定后轴目标制动力;
基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
作为一种可能的实现方式,根据车速确定目标制动力转移系数,包括:
根据预设的车速与制动力转移系数之间的对应关系,确定与车速对应的目标制动力转移系数;和/或,
获取当前路面的附着系数,根据预设的车速以及路面附着系数与制动力转移系数之间的对应关系,确定与车速和附着系数对应的目标制动力转移系数。
作为一种可能的实现方式,根据车速确定目标制动力转移系数,包括:
获取预设的第一速度参考值和第二速度参考值,其中,第一速度参考值大于第二速度参考值;
计算第一速度参考值与第二速度参考值的第一差值;
计算车速与第一速度参考值的第二差值;
将第一差值的负倒数与第二差值的乘积作为目标制动力转移系数。
作为一种可能的实现方式,在车辆制动过程中,对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,所述方法还包括:
获取车辆的车速;
将车速与车速阈值进行比较;
若比较出车速小于车速阈值,则确定车辆临近刹停。
作为一种可能的实现方式,对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,所述方法还包括:
获取当前路面的附着系数;
判断附着系数是否大于系数阈值;
对车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
在确定附着系数大于系数阈值的情况下,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
作为一种可能的实现方式,对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,所述方法还包括:
获取车辆的纵向减速度和/或总制动力;
判断纵向减速度是否大于减速度阈值和/或判断总制动力是否大于制动力阈值;
对车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
在确定纵向减速度大于减速度阈值或请求制动力大于所述制动力阈值的情况下,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
作为一种可能的实现方式,对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,所述方法还包括:
获取车辆后轴的制动温度;
判断制动温度是否小于温度阈值;
对车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
在确定制动温度小于温度阈值的情况下,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
作为一种可能的实现方式,确定车辆的总制动力,包括:
获取驾驶员或辅助驾驶系统的请求制动力;
判断车辆的车辆状态是否满足预设条件;
若确定车辆状态不满足预设条件,则将请求制动力作为车辆的总制动力;
若确定车辆状态满足所述预设条件,则将请求制动力按照预设的衰减策略衰减后得到的制动力作为车辆的总制动力。
作为一种可能的实现方式,基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动之前,所述方法还包括:
确定后轴当前可以提供的最大制动力;
判断后轴目标制动力是否小于最大制动力;
基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动,包括:
在确定后轴目标制动力小于最大制动力的情况下,基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
作为一种可能的实现方式,基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动之前,所述方法还包括:
检测车辆的后轮是否出现抱死趋势;
基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动,包括:
在确定车辆的后轮没有出现抱死趋势的情况下,基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
第二方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如第一方面任意一项所述的车辆制动方法。
本申请实施例的车辆制动方法及计算机可读存储介质,能够在车辆制动过程中,在车辆临近刹停时,对车辆的前轴制动力和后轴制动力的分配比例进行调整。根据本申请实施例,在车辆制动临近刹停时,通过对车辆的前轴制动力和后轴制动力的分配比例进行调整,缓解车辆的点头状态,减轻车辆的俯仰波动,使刹停过程更为平顺自然,从而提升乘员舒适性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一个实施例提供的车辆坐标系的示意图;
图2是本申请另一个实施例提供一种车辆在行驶过程中的受力分析 示意图;
图3是本申请又一个实施例提供的车辆在制动过程中的受力分析示意图;
图4是本申请一个实施例提供的车辆制动方法的流程示意图;
图5是本申请另一个实施例提供的车辆制动系统的示意图;
图6是本申请又一个实施例提供的车辆制动装置的结构示意图;
图7是本申请又一个实施例提供的车辆制动设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域 的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
通常在车辆制动到刹停的过程中,也即车速从制动开始时的车速v x到车速完全为0的过程,会有两方面影响乘员的主观感受,造成乘员不舒适的感觉。
首先,在车辆刹停的过程中,会伴随着车辆纵向减速度a x的变化,a x的导数
Figure PCTCN2022109254-appb-000001
表征车辆对驾驶员的拉扯感jerk。当a x以较高速度变化时,即
Figure PCTCN2022109254-appb-000002
较大时,驾乘人员会感到不舒适。
其次,由于a x的变化造成的车辆的俯仰(pitch)姿态的变化,也会造成乘员的不适。这部分主要体现在车辆俯仰角θ的变化率
Figure PCTCN2022109254-appb-000003
上。在制动过程中,由于制动力作用,车辆会有一个点头量,而在车辆完成刹停的过程,随着制动力消失,该点头量也会消失,车辆从点头状态快速回弹到正常状态,会造成驾乘人员的不舒适。
基于上述原因,为了提升车辆的制动舒适性,希望a x的变化尽可能缓和,即
Figure PCTCN2022109254-appb-000004
的绝对值始终控制在一定范围内。同时俯仰角变化率
Figure PCTCN2022109254-appb-000005
尽可能缓和,并且希望
Figure PCTCN2022109254-appb-000006
能够尽快收敛。基于这两方面考虑,目前有一种提升舒适度的制动控制方法,该方法是通过监控车辆速度和减速度,当车辆临近刹停时,会轻微降低制动系统的制动力,以实现一种车辆平缓刹停的感觉。
上述方法能够提升车辆制动时的舒适感,通过数据分析,a x的变化率在刹停阶段得到显著改善。但是上述方法仍然存在两点不足,首先,车 辆的俯仰角变化率
Figure PCTCN2022109254-appb-000007
改善并不明显,对于一些高质心的车辆,在刹停过程中车辆仍然有明显的俯仰变化;其次,这种制动方法是通过在刹停瞬间降低制动系统制动力实现的,这就会给驾驶员一种车在临近刹停时车辆减速度丢失,车辆刹不住的感觉,造成驾驶员体验不佳。
而为了解决上述技术问题,申请人提供另一种思路解决该问题,提升车辆刹停过程的舒适性。目前车辆悬架系统设计中常用抗后蹲悬架几何(anti-squat)结构,例如多连杆悬架、双横臂悬架以及拖曳臂悬架是现代汽车后悬架常用的结构。而无论是多连杆悬架结构、双横臂悬架结构还是拖曳臂悬架结构,都是由悬架系统带动车轮运动。
参见图1,为本申请实施例提供的一种车辆坐标系的示意图。通常在y-z平面以及x-z平面都有一个虚拟的运动瞬心O,例如图2所示,即在悬架系统的作用下,车轮的跳动可以理解为在各自平面围绕各运动瞬心O进行的旋转运动。
参见图2,为本申请实施例提供的一种具有抗后蹲悬架几何结构的车辆在行驶过程中的受力分析示意图。如图2所示,对于采用后轮驱动,且具有抗后蹲悬架几何结构的车辆上,驱动力F Drive会对车轮及悬架系统产生一个力矩moment,该力矩作用在轮胎与地面的接触点O'之后,会给到悬架系统一个竖直方向的反作用力F anti,该力通过瞬心O反作用在车身上,从而可以实现车辆抗后蹲的效果。
参见图3,为本申请实施例提供的一种具有抗后蹲悬架几何结构的车辆在制动过程中的受力分析示意图。如图3所示,在车辆制动的工况中,后轮获得的制动力F Brake作用在后轮与路面的接触中心O',该制动力等效到瞬心O后,可以获得一个力矩M pull
M pull=F Brake*svsa height
其中,svsa height表示瞬心O相对于地面的高度。
上述力矩可以等效到后轮处的力F pull
F pull=M pull/svsa lenght
其中,svsa lenght表示瞬心O相对于后轴在x轴方向的距离。
F pull其实是一个虚拟的力,F pull通过杆系将制动力通过力矩的形式 通过悬架系统作用在车身上,从而会拉扯车身下沉,使整车有一种后坐的感觉。
基于上述机理,申请人发现若在车辆制动临近刹停的过程中,如果将制动系统的制动力尽可能多的转移到后轴,由后轴来负担刹停前的大部分制动力,那么F pull会帮助车辆制造车辆后蹲的效果,会产生一个与制动点头反向的车辆俯仰角变化趋势,也即后蹲趋势,帮助车辆提前从制动点头的姿态过度到水平的姿态,减小制动点头量,从而在制动刹停后车辆俯仰角变化会更小甚至完全没有,车辆表现为整车下沉,然后整车上抬,这对于舒适性是非常友好的。通过制动力的转移,进而可以实现平稳的舒适制动。
因此,本申请实施例提供了一种车辆制动方法、装置、设备及计算机存储介质。
下面首先对本申请实施例所提供的车辆制动方法进行介绍。
本申请一个实施例提供的车辆制动方法包括:
在车辆制动过程中,在车辆临近刹停时,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
本申请实施例的车辆制动方法,能够在车辆制动过程中,在车辆临近刹停时,对车辆的前轴制动力和后轴制动力的分配比例进行调整。根据本申请实施例,在车辆制动临近刹停时,通过对车辆的前轴制动力和后轴制动力的分配比例进行调整,缓解车辆的点头状态,减轻车辆的俯仰波动,使刹停过程更为平顺自然,从而提升乘员舒适性。
在一些实施例中,在车辆制动过程中,可以采用下述方式确定车辆是否临近刹停:
获取车辆的车速,将车速与车速阈值进行比较,若比较出车速小于车速阈值,则确定车辆临近刹停,在车速大于或等于车速阈值时,则认为车辆未临近刹停。其中,车速阈值可以根据实际情况设定,例如可以为1m/s,具体的,通常可以根据车辆表现进行调整。
因为车辆的俯仰角变化通常发生在车辆刹停时,所以可以在确定车辆临近刹停的情况下,再执行根据车辆的总制动力对车辆的前轴制动力和 后轴制动力的分配比例进行调整的步骤,以缓解刹停时的俯仰角变化。
在一些实施例中,对车辆的前轴制动力和后轴制动力的分配比例进行调整可以包括:
将车辆前轴的部分制动力转移至后轴执行,以减小车辆的前轴制动力并增大后轴制动力,其中,前轴制动力和后轴制动力的和值等于车辆的总制动力。
进一步的,在一些实施例中,如图4所示,将车辆前轴的部分制动力转移至后轴执行可以包括以下步骤:
S41.确定车辆的总制动力、前轴制动力和车速。
在本申请实施例中,车辆的总制动力、前轴制动力和车速都是实时获取的。可以每获取一次,就执行一次S42-S45的步骤,以实现对前后轴制动力的实时调节,从而使得前后轴制动力可以实时满足舒适制动的需求。
S42.根据车速确定目标制动力转移系数,其中,制动力转移系数为需要由前轴转移至后轴的制动力与前轴制动力的比值。
S43.根据前轴制动力和目标制动力转移系数确定前轴目标制动力。
S44.根据总制动力和前轴目标制动力确定后轴目标制动力。
S45.基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
本申请实施例的车辆制动方法,在车辆制动临近刹停过时,确定车辆的总制动力、前轴制动力和车速;根据车速确定目标制动力转移系数,其中,制动力转移系数为由需要由前轴转移至后轴的制动力与前轴制动力的比值;根据前轴制动力和目标制动力转移系数确定前轴目标制动力;根据总制动力和前轴目标制动力确定后轴目标制动力;基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。根据本申请实施例,在制动过程中,根据制动力转移系数将前轴的制动力转移至后轴,由后轴来负担大部分制动力,从而使后轴的力矩增大,进而使得等效到后轮处的力也增大,而后轮处的力可以作用到车身上,拉扯车身下沉,由此可以减小车辆的制动点头量,减轻车辆的俯仰波动,使刹停过程更为平顺自然,提成驾乘人员的舒适性。
下面介绍S41-S45各个步骤的具体实现方式。
在一些实施例中,在S41中,车辆的总制动力可以根据驾驶员或辅助驾驶系统的请求制动力确定。
在一个示例中,在确定车辆的总制动力时,可以获取驾驶员或辅助驾驶系统的请求制动力,并判断车辆的车辆状态是否满足预设条件,若确定车辆状态不满足预设条件,则将获取的请求制动力作为车辆的总制动力,若确定车辆状态满足所述预设条件,则将请求制动力按照预设的衰减策略衰减后得到的制动力作为车辆的总制动力。其中,衰减策略可以根据实际情况设置。
在一个示例中,判断车辆状态是否满足预设条件可以通过路面附着系数、车辆减速度、以及车辆的毫米波或是超声波雷达采集到的与障碍物距离等因素来综合判断。例如当路面附着系数较低、减速度较大、和/或与障碍物距离较近的情况,不允许降低车辆总体制动力。
通过上述方式,在车辆状态满足预设条件时,通过对制动力进行衰减可以进一步提高车辆制动过程中的稳定性,从而实现更舒适的制动。。
在一个示例中,在获取驾驶员的请求制动力时,可以获取制动踏板的位移量,然后根据制动踏板的位移量来确定驾驶员的请求制动力。通常,可以通过设置在制动踏板上的位移传感器来检测制动踏板的位移量,在获取到制动踏板的位移量之后,可以根据之前设置的制动踏板位移量与制动力之间的对应关系,来确定驾驶员的请求制动力。
在另一个示例中,还可以通过获取制动系统液压力的方式来获取驾驶员的请求制动力。将获取的制动系统液压力与前轴制动效能和后轴制动效能的和值相乘,即可得到驾驶员的请求制动力。
在另一个示例中,在获取辅助驾驶系统的请求制动力时,可以接收辅助驾驶系统发送的制动信号,通过对制动信号进行解析来确定辅助驾驶系统的请求制动力。
在获取到驾驶员或辅助驾驶系统的请求制动力后,即可根据获取的请求制动力确定车辆的总制动力。
在一个示例中,可以将获取的请求制动力作为车辆的总制动力。
在一些实施例中,在S41中前轴制动力可以通过以下方式来获取:
在一个示例中,通过对制动系统具备控制能力的控制系统,或制动执行系统,获取实际的或是估算的前轴制动力。
首先,获取前轮管路实际压力,例如可以通过设置在前轮管路上的压力传感器来检测前轮管路实际压力,然后根据前轮管路实际压力,确定车辆的前轴制动力。
在一个示例中,在确定出前轮管路实际压力后,可以通过以下等式来确定前轴制动力:
Figure PCTCN2022109254-appb-000008
其中,F front表示前轴制动力,P f表示前轮管路实际压力,S f表示前轴的气室有效面积,L f表示前轴的刹车间隙自动调整臂的长度,J f表示前轴的机械效率,B f表示前轴的效能因数,R f1表示前轴的制动鼓半径,R f2表示前轮半径。
在一些实施例中,S41中的车速可以通过下述方式获取:
通过轮速传感器等采集设备采集车辆四个车轮的轮速v whl,FL、v whl,FR、v whl,RL和v whl,RR,然后计算四个轮速的平均值,将计算得到的平均值作为车速。
在一些实施例中,S42可以通过参数设定的方式来获取对应的目标制动力转移系数。
在一个示例中,可以预先设置并记录车速与制动力转移系数的对应关系。基于此,在通过S41获取到车速之后,便可以根据上述对应关系确定车速对应的制动力转移系数,并将车速对应的制动力转移系数作为目标制动力转移系数。
在另一个示例中,可以预先设置并记录由车速和路面附着系数组成的二维数组与制动力转移系数的对应关系。基于此,在通过S41获取到车速之后,可以获取当前路面的附着系数,然后基于上述对应关系,确定与由S41获取到的车速和当前路面的附着系数组成的数组对应的制动力转移系数,并将该确定出的制动力转移系数作为目标制动力转移系数。
通过上述参数设置的方式来确定目标制动力转移系数,过程简单,易于实现。
在一些实施例中,S42也可以通过计算的方式确定目标制动力转移系数。
在一个示例中,在通过S41获取到车速之后,S42可以根据下述计算公式计算得出目标制动力转移系数:
Figure PCTCN2022109254-appb-000009
其中,co fade表示目标制动力转移系数,v start表示设置的第一速度参考值,v end表示设置的第二速度参考值,其中v start大于v end,v veh表示获取的车速,co Max为预设的最大制动力转移系数,当co Max设置为1时,表示当v veh达到v end时,制动力转移系数为1。其中,最大制动力转移系数co Max可以为预设的固定值,也可以为根据路面附着系数以及车辆侧向加速度通过查表等方式确定的值,当路面附着系数较低,或车辆存在侧向加速度的情况下,该最大制动转移系数可以相应的减小。
通过上述方式,当车速下降到v start,制动力转移系数开始从0上升,到车速下降到v end时,制动力转移系数上升到co Max。其中,制动转移系数表示需要由前轴转移到后轴的制动力与前轴制动力的比值,0代表不进行转移,1代表将前轴制动力全部转移到后轴,即完全通过后轴刹停。
通过上述方式,可以实现对制动力分配系数的精准控制。
在一些实施例中,因为制动力转移系数为需要由前轴转移到后轴执行的的制动力与前轴制动力的比值,所以根据前轴制动力和目标制动力转移系数便可以计算出需要转移到后轴的制动力的大小,利用前轴制动力减去需要转移到后轴的制动力之后,得到的便是前轴目标制动力。因此,S43可以根据下式计算前轴目标制动力:
F brake,tar,FA=F brake,FA*(1-co fade)
其中,F brkae,tar,FA表示前轴目标制动力,F brake,FA表示前轴制动力。
在一些实施例中,因为车辆在制动时,整车的制动力大小需要符 合驾驶员的预期,所以通常整车的制动力需要与车辆的总制动力保持一致。整车的制动力为前轴制动力和后轴制动力的总和,因此,前轴制动力和后轴制动力的总和需要与车辆的总制动力一致。基于此,在S44中,可以通过下式计算后轴目标制动力:
F brake,tar,RA=F brake,req-F brake,tar,FA
其中,F brake,tar,RA表示后轴目标制动力,F brake,req表示总制动力。
通过上述方式在确定出前轴目标制动力之后,可以快速确定出后轴目标制动力。
在一些实施例中,在确定出前轴目标制动力和后轴目标制动力之后,便可以通过S45来进行制动力分配。
在一个示例中,在S45中可以基于前轴目标制动力生成第一制动力请求F tar,FA,基于后轴目标制动力生成第二制动力请求F tar,RA,然后将F tar,FA和F tar,RA输出给车辆的制动系统进行执行,以基于F tar,FA控制前轴制动器将前轴制动器的制动力调整为前轴目标制动力,基于F tar,RA控制后轴制动器将后轴制动器的制动力调整为后轴目标制动力。
通过上述方式,可以实现在确定车辆临近刹停时再进行制动力分配控制,从而达到减少刹停后车辆点头量的目的。
作为本申请的另一种实现方式,为了提高制动的安全性,在S42之前,还可以包括以下步骤:
获取当前路面的附着系数,判断附着系数是否大于系数阈值,在确定附着系数大于系数阈值的情况下,再根据车速确定目标制动力转移系数。其中,系数阈值可以根据实际情况设置。
如果当前路面的附着系数较低,则车辆容易打滑,因此为了保证制动的安全性和稳定性,在附着系数较低的路面,可以禁止将前轴的制动力转移至后轴。而且在附着系数较低的路面制动刹停过程不会产生较大的车辆纵向减速度的变化率,也即点头量本身就比较低。
作为本申请的另一种实现方式,为了保证在紧急制动情况下可以快速制动,在S42之前,还可以包括以下步骤:
获取车辆的纵向减速度,判断纵向减速度是否大于减速度阈值, 和/或,判断请求制动力是否大于制动力阈值,在确定纵向减速度大于减速度阈值或请求制动力大于制动力阈值的情况下,根据车速确定目标制动力转移系数。其中,减速度阈值可以根据实际情况设置。
当车辆以较大的纵向减速度刹停或驾驶员/自动驾驶系统请求了较大的制动力时,通常代表此时车辆制动的情况较为紧急,需要优先保证减速度以尽快停住车辆,所以此时可以禁止将前轴的制动力转移至后轴。
作为本申请的另一种实现方式,为了进一步提高制动安全性,在S42之前,还可以包括以下步骤:
获取后轴的制动温度,判断制动温度是否小于温度阈值,在确定制动温度小于温度阈值的情况下,再根据车速确定目标制动力转移系数。其中,温度阈值可以根据实际情况设置。
在一个示例中,可以通过设置在后轴附近的温度传感器来获取后轴的制动温度。
通常,在后轴的制动温度大于或等于温度阈值时,说明后轴存在热衰退风险,为了保证制动的安全性,在确定后轴存在热衰退风险的情况下,可以禁止将前轴的制动力转移至后轴。
作为本申请的另一种实现方式,为了避免车辆后轮在制动过程中出现滑移抱死,在S45之前,还可以包括以下步骤:
确定后轴当前可以提供的最大制动力,也即确定后轴制动器当前可以提供的最大制动力,判断后轴目标制动力是否小于最大制动力,在确定后轴目标制动力小于最大制动力的情况下,基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
在后轴目标制动力大于最大制动力的情况下,若按照当前计算得出的后轴目标制动力为后轴分配制动力,则可能会出现后轮滑移抱死的情况,所以在确定后轴目标制动力大于或等于后轴可以提供的最大制动力的情况下,可以给制动系统发送饱和信号saturation,用以限制目标制动力转移系数的增长,从而继续基于前次计算得到的目标制动力转移系数重新确定后轴目标制动力,然后进行制动力转移,而非基于本次计算得到的目标制动力转移系数进行制动力转移。
通过上述方式,在确定后轴目标制动力大于后轴可提供的最大制动力时,通过限制目标制动力转移系数的增长,可以有效避免出现后轮滑移抱死的情况,从而保证了制动安全性。
作为本申请的另一种实现方式,为了避免出现后轮抱死的情况,在S45之前,还可以包括以下步骤:
检测车辆的后轮是否出现抱死趋势,在确定车辆的后轮没有出现抱死趋势的情况下,再基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
在检测出车辆后轮出现抱死趋势时,为了避免出现后轮抱死的情况,可以给制动系统发送饱和信号saturation,用以限制目标制动力转移系数的增长,从而继续基于前次计算得到的目标制动力转移系数重新确定后轴目标制动力,然后进行制动力转移,而非基于本次计算得到的目标制动力转移系数进行制动力转移。
在一个示例中,可以根据车辆的各车轮的轮速,来确定后轮是否出现抱死趋势。根据轮速确定是否出现抱死趋势,为现有成熟技术,此处不再过多描述。
通过上述方式,在确定后轮出现抱死趋势时,通过限制目标制动力转移系数的增长,来避免出现后轮抱死的情况,保证了制动的安全性。
作为本申请的另一个实施例,还提供了一种用于实现上述车辆制动方法的制动系统,参见图5,为车辆制动系统的示意图,如图5所示,本申请实施例提供的车辆制动系统可以包括:
信号接收单元、使能处理单元、制动力分配单元、制动力决策单元和饱和制动力饱和监控单元。
其中,信号接收单元用于接受制动控制所需的信号,例如总制动力F brake,FA,前轴制动力F brake,FA,后轴制动力F brake,RA,轮速传感器采集到的四个车轮的轮速v whl,FL、v whl,FR、v whl,RL和v whl,RR,预估的路面附着系数μ,以及车辆当前纵向减速度a x等。
使能处理单元用于接收信号接收单元信号获取的信号,判断是否 满足触发制动力转移的条件。例如,使能处理单元可以通过判断车辆的车速是否小于车速阈值、判断路面附着系数是否大于系数阈值、判断车辆的纵向减速度是否大于减速度阈值、判断请求制动力是否大于制动力阈值和/或判断后轴的制动温度是否小于温度阈值等来确定是否满足触发制动力转移的条件,根据判断结果给出使能信号Enable,其中,Enable置位代表满足触发条件,置零代表不满足触发条件。
制动力分配单元用于在确定满足制动力转移触发条件的情况下,确定目标制动力转移系数。
制动力决策单元用于根据目标制动力转移系数、请求制动力、前轴当前制动力和/后后轴当前制动力等确定前轴目标制动力和后轴目标制动力。在制动力转移过程中,制动力决策单元还可以判断是否满足车辆总制动力衰减的预设条件等,然后基于上述判断决定是否对总制动力进行衰减。
制动力饱和监控单元用于根据使能信号以及前后轴的目标制动力,将前后轴各自的制动力请求F tar,FA、F tar,RA输出给制动系统进行执行。制动力饱和监控单元还可以,在输出制动力请求F tar,FA、F tar,RA之前判断后轮是否有滑移抱死风险和/或抱死趋势,并在确定后轮有滑移抱死风险和/或抱死趋势时,限制目标制动力转移系数co fade的增长。
基于上述实施例提供的车辆制动方法,相应地,本申请还提供了车辆制动装置的具体实现方式。请参见以下实施例。
本申请实施例提供的车辆制动装置可以包括:
调整单元,用于在车辆制动过程中,在车辆临近刹停时,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
本申请实施例的车辆制动装置,能够在车辆制动过程中,在车辆临近刹停时,对车辆的前轴制动力和后轴制动力的分配比例进行调整。根据本申请实施例,在车辆制动临近刹停时,通过对车辆的前轴制动力和后轴制动力的分配比例进行调整,缓解车辆的点头状态,减轻车辆的俯仰波动,使刹停过程更为平顺自然,从而提升乘员舒适性。
在一些实施例中,调整单元,可以将车辆前轴的部分制动力转移 至后轴执行,以减小车辆的前轴制动力并增大后轴制动力,其中,前轴制动力和后轴制动力的和值等于车辆的总制动力。
在一个示例中,参见图6,本申请实施例提供的车调整单元可以包括以下子单元:
获取子单元601,用于在车辆制动过程中,确定车辆的总制动力、前轴制动力和车速。
系数确定子单元602,用于根据车速确定目标制动力转移系数,其中,制动力转移系数为需要由前轴转移至后轴的制动力与前轴制动力的比值。
第一制动力确定子单元603,用于根据前轴制动力和目标制动力转移系数确定前轴目标制动力。
第二制动力确定子单元604,用于根据总制动力和前轴目标制动力确定后轴目标制动力。
制动子单元605,用于基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
本申请实施例的车辆制动装置,能够在车辆制动临近刹停时,确定车辆的总制动力、前轴制动力和车速;根据车速确定目标制动力转移系数,其中,制动力转移系数为由需要由前轴转移至后轴的制动力与前轴制动力的比值;根据前轴制动力和目标制动力转移系数确定前轴目标制动力;根据请求制动力和前置目标制动力确定后轴目标制动力;基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。根据本申请实施例,在制动过程中,根据制动力转移系数将前轴的制动力转移至后轴,由后轴来负担大部分制动力,从而使后轴的力矩增大,进而使得等效到后轮处的力也增大,而后轮处的力可以作用到车身上,拉扯车身下沉,由此可以减小车辆的制动点头量,减轻车辆的俯仰波动,使刹停过程更为平顺自然,提成驾乘人员的舒适性。
作为一种可能的实现方式,系数确定子单元602用于:
根据预设的车速与制动力转移系数之间的对应关系,确定与车速对应的目标制动力转移系数;和/或;
获取当前路面的附着系数,根据预设的车速以及路面附着系数与制动力转移系数之间的对应关系,确定与车速和附着系数对应的目标制动力转移系数。
作为一种可能的实现方式,系数确定子单元602用于:
获取预设的第一速度参考值和第二速度参考值,其中,第一速度参考值大于第二速度参考值;
计算第一速度参考值与第二速度参考值的第一差值;
计算车速与第一速度参考值的第二差值;
将第一差值的负倒数与第二差值的乘积作为目标制动力转移系数。
作为一种可能的实现方式,上述装置还可以包括刹停判断子单元,用于:
在车辆制动过程中,根据车辆的总制动力对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,获取车辆的车速,将车速与车速阈值进行比较,若比较出车速小于车速阈值,则确定车辆临近刹停。
作为一种可能的实现方式,上述装置还可以包括第一判断单元,用于:
对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,判断车速是否小于车速阈值;
调整单元用于:
在确定车速小于车速阈值的情况下,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
作为一种可能的实现方式,上述装置还可以包括第二判断单元,用于:
对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,获取当前路面的附着系数;判断附着系数是否大于系数阈值;
调整单元用于:
在确定附着系数大于系数阈值的情况下,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
作为一种可能的实现方式,上述装置还可以包括第三判断单元, 用于:
对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,确定车辆的纵向减速度和/或总制动力;判断纵向减速度是否大于减速度阈值和/或判断总制动力是否大于制动力阈值;
调整单元用于:
在确定纵向减速度大于减速度阈值或总制动力大于制动力阈值的情况下,对车辆的前轴制动力和后轴制动力的分配比例进行调整。
作为一种可能的实现方式,上述装置还可以包括第四判断单元,用于:
对车辆的前轴制动力和后轴制动力的分配比例进行调整之前,获取后轴的制动温度;判断制动温度是否小于温度阈值;
调整单元用于:
在确定制动温度小于温度阈值的情况下,对车辆的前轴制动力和后轴制动力进行调整。
作为一种可能的实现方式,获取子单元601用于:
获取驾驶员或辅助驾驶系统的请求制动力;判断车辆的车辆状态是否满足预设条件;若确定车辆状态不满足所述预设条件,则将请求制动力作为车辆的总制动力;若确定车辆状态满足预设条件,则将请求制动力按照预设的衰减策略衰减后得到的制动力作为车辆的总制动力。
作为一种可能的实现方式,上述装置还可以包括第五判断单元,用于:
基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动之前,确定后轴当前可以提供的最大制动力;判断后轴目标制动力是否小于最大制动力;
制动子单元605用于:
在确定后轴目标制动力小于所述最大制动力的情况下,基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
作为一种可能的实现方式,上述装置还可以包括第六判断单元,用于:
基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动之前,检测车辆的后轮是否出现抱死趋势;
制动子单元605用于:
在确定车辆的后轮没有出现抱死趋势的情况下,基于前轴目标制动力和后轴目标制动力控制车辆的前轴和后轴进行制动。
图7示出了本申请实施例提供的车辆制动设备的硬件结构示意图。在车辆制动设备可以包括处理器701以及存储有计算机程序指令的存储器702。
具体地,上述处理器701可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器702可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器702可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器702可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器702可在综合网关容灾设备的内部或外部。在特定实施例中,存储器702是非易失性固态存储器。
存储器702可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器702包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器701通过读取并执行存储器702中存储的计算机程序指令,以实现上述实施例中的任意一种车辆制动方法。
在一个示例中,车辆制动设备还可包括通信接口703和总线710。其中,如图7所示,处理器701、存储器702、通信接口703通过总线710连接并完成相互间的通信。
通信接口703,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线710包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线710可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
另外,结合上述实施例中的车辆制动方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种车辆制动方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、 射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种车辆制动方法,包括:
    在车辆制动过程中,在所述车辆临近刹停时,对所述车辆的前轴制动力和后轴制动力的分配比例进行调整。
  2. 根据权利要求1所述的方法,其中,所述对所述车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
    将所述车辆前轴的部分制动力转移至后轴执行,以减小所述车辆的前轴制动力并增大后轴制动力,其中,所述前轴制动力和所述后轴制动力的和值等于所述车辆的总制动力。
  3. 根据权利要求2所述的方法,其中,所述将所述车辆前轴的部分制动力转移至后轴执行,包括:
    确定所述车辆的总制动力、前轴制动力和车速;
    根据所述车速确定目标制动力转移系数,其中,制动力转移系数为需要由前轴转移至后轴执行的制动力与前轴制动力的比值;
    根据所述前轴制动力和所述目标制动力转移系数确定前轴目标制动力;
    根据所述总制动力和所述前轴目标制动力确定后轴目标制动力;
    基于所述前轴目标制动力和所述后轴目标制动力控制所述车辆的前轴和后轴进行制动。
  4. 根据权利要求3所述的方法,其中,所述根据所述车速确定目标制动力转移系数,包括:
    根据预设的车速与制动力转移系数之间的对应关系,确定与所述车速对应的目标制动力转移系数;和/或;
    获取当前路面的附着系数,根据预设的车速以及路面附着系数与制动力转移系数之间的对应关系,确定与所述车速和所述附着系数对应的目标制动力转移系数。
  5. 根据权利要求3所述的方法,其中,所述根据所述车速确定目标制动力转移系数,包括:
    获取预设的第一速度参考值和第二速度参考值,其中,所述第一速度参考值大于所述第二速度参考值;
    计算所述第一速度参考值与所述第二速度参考值的第一差值;
    计算所述车速与所述第一速度参考值的第二差值;
    将所述第一差值的负倒数与所述第二差值的乘积作为目标制动力转移系数。
  6. 根据权利要求1所述的方法,其中,在车辆制动过程中,对所述车辆的前轴制动力和后轴制动力进行调整之前,所述方法还包括:
    获取所述车辆的车速;
    将所述车速与车速阈值进行比较;
    若比较出所述车速小于所述车速阈值,则确定所述车辆临近刹停。
  7. 根据权利要求1所述的方法,其中,所述对所述车辆的前轴制动力和后轴制动力的分配比例进行调整之前,所述方法还包括:
    获取当前路面的附着系数;
    判断所述附着系数是否大于系数阈值;
    所述对所述车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
    在确定所述附着系数大于所述系数阈值的情况下,对所述车辆的前轴制动力和后轴制动力的分配比例进行调整。
  8. 根据权利要求1所述的方法,其中,所述对所述车辆的前轴制动力和后轴制动力的分配比例进行调整之前,所述方法还包括:
    确定所述车辆的纵向减速度和/或总制动力;
    判断所述纵向减速度是否大于减速度阈值和/或判断所述总制动力是 否大于制动力阈值;
    所述对所述车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
    在确定所述纵向减速度大于所述减速度阈值或所述总制动力大于所述制动力阈值的情况下,对所述车辆的前轴制动力和后轴制动力的分配比例进行调整。
  9. 根据权利要求1所述的方法,其中,所述对所述车辆的前轴制动力和后轴制动力的分配比例进行调整之前,所述方法还包括:
    获取所述后轴的制动温度;
    判断所述制动温度是否小于温度阈值;
    所述对所述车辆的前轴制动力和后轴制动力的分配比例进行调整,包括:
    在确定所述制动温度小于所述温度阈值的情况下,对所述车辆的前轴制动力和后轴制动力的分配比例进行调整。
  10. 根据权利要求3或8所述的方法,其中,所述确定所述车辆的总制动力,包括:
    获取驾驶员或辅助驾驶系统的请求制动力;
    判断所述车辆的车辆状态是否满足预设条件;
    若确定所述车辆状态不满足所述预设条件,则将所述请求制动力作为所述车辆的总制动力;
    若确定所述车辆状态满足所述预设条件,则将所述请求制动力按照预设的衰减策略衰减后得到的制动力作为所述车辆的总制动力。
  11. 根据权利要求3所述的方法,其中,所述基于所述前轴目标制动力和所述后轴目标制动力控制所述车辆的前轴和后轴进行制动之前,所述方法还包括:
    确定所述后轴当前可以提供的最大制动力;
    判断所述后轴目标制动力是否小于所述最大制动力;
    所述基于所述前轴目标制动力和所述后轴目标制动力控制所述车辆的前轴和后轴进行制动,包括:
    在确定所述后轴目标制动力小于所述最大制动力的情况下,基于所述前轴目标制动力和所述后轴目标制动力控制所述车辆的前轴和后轴进行制动。
  12. 根据权利要求3所述的方法,其中,所述基于所述前轴目标制动力和所述后轴目标制动力控制所述车辆的前轴和后轴进行制动之前,所述方法还包括:
    检测所述车辆的后轮是否出现抱死趋势;
    所述基于所述前轴目标制动力和所述后轴目标制动力控制所述车辆的前轴和后轴进行制动,包括:
    在确定所述车辆的后轮没有出现抱死趋势的情况下,基于所述前轴目标制动力和所述后轴目标制动力控制所述车辆的前轴和后轴进行制动。
  13. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-12任意一项所述的车辆制动方法。
PCT/CN2022/109254 2022-07-29 2022-07-29 车辆制动方法及计算机可读存储介质 WO2024021126A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280063582.0A CN118119536A (zh) 2022-07-29 2022-07-29 车辆制动方法及计算机可读存储介质
PCT/CN2022/109254 WO2024021126A1 (zh) 2022-07-29 2022-07-29 车辆制动方法及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109254 WO2024021126A1 (zh) 2022-07-29 2022-07-29 车辆制动方法及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024021126A1 true WO2024021126A1 (zh) 2024-02-01

Family

ID=89705110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109254 WO2024021126A1 (zh) 2022-07-29 2022-07-29 车辆制动方法及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN118119536A (zh)
WO (1) WO2024021126A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117962835A (zh) * 2024-03-29 2024-05-03 长春深蓝智造电子产品有限公司 一种汽车电子稳定控制系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001877A (ja) * 1999-06-15 2001-01-09 Komatsu Ltd ダンプトラックのブレーキ装置
JP2001018777A (ja) * 1999-07-06 2001-01-23 Daihatsu Motor Co Ltd 車両のブレーキ制御装置
JP2008201291A (ja) * 2007-02-21 2008-09-04 Advics:Kk 車両挙動制御装置
JP2011156983A (ja) * 2010-02-01 2011-08-18 Toyota Motor Corp 車両の制動力制御装置
CN104773150A (zh) * 2014-01-13 2015-07-15 福特全球技术公司 用于机动车辆制动系统的操作方法及机动车辆的制动系统
JP2017109696A (ja) * 2015-12-18 2017-06-22 三菱自動車工業株式会社 制動力制御装置
WO2019077973A1 (ja) * 2017-10-20 2019-04-25 日立オートモティブシステムズ株式会社 車両のブレーキシステム
CN114802139A (zh) * 2021-06-17 2022-07-29 长城汽车股份有限公司 车辆制动控制方法、装置、介质和设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001877A (ja) * 1999-06-15 2001-01-09 Komatsu Ltd ダンプトラックのブレーキ装置
JP2001018777A (ja) * 1999-07-06 2001-01-23 Daihatsu Motor Co Ltd 車両のブレーキ制御装置
JP2008201291A (ja) * 2007-02-21 2008-09-04 Advics:Kk 車両挙動制御装置
JP2011156983A (ja) * 2010-02-01 2011-08-18 Toyota Motor Corp 車両の制動力制御装置
CN104773150A (zh) * 2014-01-13 2015-07-15 福特全球技术公司 用于机动车辆制动系统的操作方法及机动车辆的制动系统
JP2017109696A (ja) * 2015-12-18 2017-06-22 三菱自動車工業株式会社 制動力制御装置
WO2019077973A1 (ja) * 2017-10-20 2019-04-25 日立オートモティブシステムズ株式会社 車両のブレーキシステム
CN114802139A (zh) * 2021-06-17 2022-07-29 长城汽车股份有限公司 车辆制动控制方法、装置、介质和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117962835A (zh) * 2024-03-29 2024-05-03 长春深蓝智造电子产品有限公司 一种汽车电子稳定控制系统及方法

Also Published As

Publication number Publication date
CN118119536A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
JP6653396B2 (ja) 車両運動状態推定装置
US8370038B2 (en) Vehicle subsystem control method and apparatus
JP5879143B2 (ja) 車両運動制御装置及び車両運動制御方法
WO2022027753A1 (zh) 基于路面附着系数识别的整车动态性能控制方法及系统
WO2017028800A1 (en) Vehicle stability control method and system, and vehicle
WO2024021126A1 (zh) 车辆制动方法及计算机可读存储介质
JP7343972B2 (ja) 制動制御装置
CN113044008B (zh) 一种车辆行驶状态自适应的紧急制动控制系统
CN113830043B (zh) 车辆的制动点头优化方法、装置、车辆及存储介质
CN112109683A (zh) 车辆姿势控制装置
CN108382391A (zh) 一种适应恶劣环境的驾驶控制系统及方法
JP6708111B2 (ja) 車両の制御装置
JP5983000B2 (ja) 車体制振制御装置
CN116552252A (zh) 一种动能回收控制系统
CN112109684A (zh) 车辆姿态控制装置
JP4966736B2 (ja) 車両操作支援装置
CN110107412A (zh) 一种提高车辆过弯性能的发动机控制方法
CN110641431A (zh) 一种商用车的电子制动系统
WO2023029711A1 (zh) 高速工况的底盘域控制方法及相关装置
US20230011130A1 (en) Vehicle control device
JP7350230B2 (ja) 車両姿勢制御装置
EP4400354A1 (en) Driving force control method and driving force control device
CN113200035B (zh) 集成自动制动与减速降挡的辅助驾驶控制方法及控制系统
CN117864159A (zh) 一种域控制系统和车辆
JP7390220B2 (ja) 駆動力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952572

Country of ref document: EP

Kind code of ref document: A1