WO2024021110A1 - 冷却系统、电池系统及电动车 - Google Patents
冷却系统、电池系统及电动车 Download PDFInfo
- Publication number
- WO2024021110A1 WO2024021110A1 PCT/CN2022/109208 CN2022109208W WO2024021110A1 WO 2024021110 A1 WO2024021110 A1 WO 2024021110A1 CN 2022109208 W CN2022109208 W CN 2022109208W WO 2024021110 A1 WO2024021110 A1 WO 2024021110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- battery pack
- tab
- battery
- cooling component
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 284
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 66
- 239000003973 paint Substances 0.000 claims description 6
- 230000017525 heat dissipation Effects 0.000 abstract description 50
- 230000000694 effects Effects 0.000 abstract description 24
- 239000002826 coolant Substances 0.000 description 33
- 238000010586 diagram Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000003292 glue Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
Definitions
- This application relates to the field of batteries, and in particular to cooling systems, battery systems and electric vehicles.
- the battery system is a key system of electric vehicles, which largely determines the overall performance of electric vehicles. Since the battery system generates a large amount of heat during operation and charging, a cooling system is usually configured within the battery system.
- a cooling system is configured at the bottom of the battery system, and the heat generated by the battery system is conducted away from the bottom of the battery system through the cooling system, thereby dissipating and cooling the battery system.
- Embodiments of the present application provide a cooling system, a battery system and an electric vehicle to overcome the problem of poor heat dissipation in related technologies.
- the present application provides a cooling system that can be applied to a battery pack to achieve cooling and heat dissipation of the battery pack.
- the cooling system includes a first cooling component and a second cooling component, the first cooling component and the second cooling component being spaced apart from each other such that the battery pack can be positioned between the first cooling component and the second cooling component. between.
- the first cooling component is located at the tab of the battery pack to dissipate and cool the tab of the battery pack.
- the second cooling component is located at the bottom of the battery pack to dissipate and cool the bottom of the battery pack.
- the battery pack can be dissipated and cooled through the first cooling assembly, and the battery pack can be dissipated and cooled through the second cooling assembly, which effectively improves the performance of the cooling system.
- the heat dissipation and cooling effect of the battery pack enables the battery pack to charge at a high rate.
- the cooling system includes the first cooling component and the second cooling component
- the first cooling component can be used to dissipate and cool the battery pack
- the second cooling component can be used to cool the battery pack.
- the battery pack performs heat dissipation and cooling, which effectively improves the heat dissipation and cooling effect of the cooling system on the battery pack.
- the first cooling component is located at the tab of the battery pack
- the second cooling component is opposite to the first cooling component, that is, the second cooling component is located at the bottom of the battery pack.
- the first cooling component is disposed at the tabs of the battery pack, and the second cooling component is The assembly is arranged at the bottom of the battery pack, which can further improve the heat dissipation and cooling effect of the cooling system on the battery pack, so that the battery pack can be charged at a high rate.
- the first cooling component includes a carrier and a flow channel group
- the carrier is used to provide a stable installation foundation for the flow channel group
- the flow channel group is used to cool down the battery.
- the set provides good thermal cooling.
- the carrier has a plurality of pole tab holes arranged at intervals. When one side of the carrier is in contact with the battery pack, the pole tabs of the battery pack will be inserted into the pole tab holes, thereby facilitating The flow channel group located on the carrier is in contact with the tab.
- the flow channel group is located on a side of the carrier away from the battery pack. The flow channel group passes through the tab hole and can be in contact with the tab to dissipate and cool the tab.
- the flow channel group includes a water inlet pipe, a water outlet pipe and a heat exchange pipe.
- the water inlet pipe is used to introduce the cooling medium into the flow channel group
- the water outlet pipe is used to lead the cooling medium out of the flow channel group, thereby realizing the circulation of the cooling medium in the flow channel group.
- the cooling medium can enter the heat exchange tube from the water inlet pipe and pass through the outlet pipe. Water pipes lead out from the heat exchange pipes.
- the cooling medium can interact with the heat exchange tube while flowing in the heat exchange tube. Sufficient heat exchange occurs between the tabs, that is, the heat dissipation and cooling of the battery pack is achieved through liquid cooling.
- the heat exchange tube is a meandering serpentine tube.
- Such a design enables the heat exchange tube to contact as many of the tabs as possible in a limited space, which is beneficial to the miniaturization design of the cooling system while ensuring the heat exchange efficiency.
- the water inlet pipe and the water outlet pipe are arranged side by side, which not only makes the structure of the flow channel group more compact, but also enables the water inlet pipe and the water outlet pipe to be more conveniently connected with each other.
- the heat exchange tubes are connected.
- the heat exchange tube is located on the same side of the water inlet pipe and the water outlet pipe, which can facilitate the arrangement of the heat exchange tube, so that it can be better and stably arranged on the carrier, so as to realize the installation of the battery pack. heat dissipation cooling.
- the carrier includes a mainboard and a plurality of buckles.
- the main board is used to provide an installation basis for the buckle
- the buckle is used to snap and fix the heat exchange tube on the main board.
- a plurality of the buckles are connected to one side of the main board, the buckles and the heat exchange tube are located on the same side of the main board, and the heat exchange tube is buckled in the buckle, realizing The heat exchange tube is clamped and fixed on the main board.
- the arrangement direction of the plurality of buckles is consistent with the arrangement direction of the plurality of pole tab holes, the plurality of buckles can extend along the arrangement direction of the plurality of pole tab holes on the carrier.
- the heat exchange tube is fully clamped, which improves the stability of the heat exchange tube clamping on the main board.
- the carrier has a plurality of safety holes arranged at intervals, and the safety holes are opposite to the pressure relief port of the battery pack.
- the pressure relief port on the battery pack can explode when the internal pressure of the battery pack is too high, thereby realizing the internal pressure relief of the battery pack. Since the safety hole on the carrier is opposite to the pressure relief port, even if the carrier comes into contact with the battery pack, the safety hole can give space for the pressure relief port to explode, so it will not affect the pressure of the pressure relief port when the battery pack is overflowing. When the battery pack explodes, the safety performance of the battery pack will not be affected by adding a cooling system to the battery pack.
- the heat-conducting medium can achieve good heat conduction between the flow channel group and the tab, so that the pole The heat at the ear can be quickly conducted to the flow channel group through the heat-conducting medium, thereby achieving heat dissipation and cooling.
- the thermally conductive medium is any one of thermally conductive glue and thermally conductive pads. Through the thermally conductive glue or the thermally conductive pad, good heat conduction between the flow channel group and the tab can be achieved.
- the heat-conducting medium is provided between the flow channel group and the pole tabs, and the heat-conducting medium can be used to weaken assembly tolerances and ensure the tightness between the flow channel group and the pole tabs.
- the contact area is such that the flow channel group is in full contact with the tab through the heat-conducting medium.
- the outer wall of the flow channel group has an insulating layer.
- the insulation layer can prevent the current at the tab from flowing to the flow channel group and causing circuit failure.
- the insulating layer is any one of insulating paint and insulating film.
- the cooling system further includes a connected pump and a radiator, and the first cooling component and the second cooling component are connected in series in a circuit formed by the pump and the radiator.
- the pump is used to pump the cooling medium so that the cooling medium can flow between the radiator, the first cooling component and the second cooling component.
- the cooling medium flows through the first cooling component and the second cooling component, it can perform heat exchange with the battery pack to absorb the heat generated by the battery pack, thereby achieving heat dissipation and cooling of the battery pack.
- the cooling medium flows through the radiator, it can dissipate the absorbed heat to the outside world, thereby reducing its own temperature, so that when it flows through the first cooling component and the second cooling component again, the cooling medium can achieve better performance. Absorb the heat generated by the battery pack. It is designed in such a way that the pump, the radiator, the first cooling component and the second cooling component form a circulation loop of cooling medium, thereby performing cyclic heat dissipation and cooling of the battery pack.
- the cooling system further includes a three-way valve, an inlet of the three-way valve is connected to the radiator, and one outlet of the three-way valve is connected to the first cooling component.
- the other outlet of the three-way valve is connected to the second cooling component.
- the cooling medium can be controlled to flow through the first cooling component, or the second cooling component, or the first cooling component and the second cooling component through the three-way valve.
- the three-way valve is connected to one of the first cooling component or the second cooling component so that the cooling medium output by the radiator can enter the third cooling component.
- a cooling component or one of the second cooling components to dissipate and cool the battery pack.
- the three-way valve is connected to both the first cooling component and the second cooling component, so that the cooling medium output by the radiator enters the cooling components respectively.
- the first cooling component and the second cooling component are used to dissipate and cool the battery pack.
- the cooling system can control the working status of the first cooling component and the second cooling component according to the heat generated by the battery pack, thereby not only meeting the heat dissipation and cooling requirements, but also saving energy.
- this application also provides a battery system, which includes a battery pack and the cooling system described in the first aspect.
- the battery pack is located between the first cooling component and the second cooling component.
- the battery pack includes a plurality of electric cores arranged side by side.
- the electric cores include a main body and two tabs.
- the pole tabs have opposite polarities, and the two pole tabs are respectively in contact with the first cooling component. Designed in this way, the tabs of the battery pack can be dissipated and cooled through the first cooling assembly, and the bottom of the battery pack can be dissipated and cooled through the second cooling assembly, effectively improving the efficiency of the battery pack.
- the overall heat dissipation and cooling effect of the battery system enables the battery system to charge at a high rate.
- the battery pack Since the battery pack is located between the first cooling assembly and the second cooling assembly, the battery pack can be cooled by both the first cooling assembly and the second cooling assembly, effectively improving the efficiency of the battery pack.
- the cooling system has a heat dissipation and cooling effect on the battery pack. Since the cells of the battery pack are arranged side by side, the tabs of the cells are in contact with the first cooling component, and the bottom of the cells is in contact with the second cooling component, so through the A cooling component can effectively dissipate and cool the tab portion of the battery core, and the second cooling component can effectively dissipate and cool the bottom of the battery core.
- the battery pack further includes a plurality of tab motherboards, the tab motherboards are respectively connected to one tab of two adjacent battery cores, and the tab motherboards in contact with the first cooling component.
- the tab motherboard since the tab motherboard is connected to the two tabs, the heat of the two tabs will be conducted to the tab motherboard, and the first cooling component will cool down the tab motherboard.
- the heat dissipation and cooling By performing heat dissipation and cooling, the heat dissipation and cooling of the two pole tabs can be achieved. In this way, the arrangement of the first cooling component is effectively simplified while ensuring the heat dissipation and cooling effect of the first cooling component.
- the present application also provides an electric vehicle, which includes the battery system described in the second aspect, and can utilize the battery system to achieve high-rate charging.
- the electric vehicle can be adapted to high-rate charging, such as super charging, which effectively improves the charging speed of the electric vehicle.
- Figure 1 is a schematic structural diagram of a cooling system provided by an embodiment of the present application.
- FIG. 2 is a schematic structural diagram of a cooling system provided by an embodiment of the present application.
- Figure 3 is a schematic structural diagram of a carrier provided by an embodiment of the present application.
- Figure 4 is a cross-sectional view along the A-A direction of Figure 2 provided by an embodiment of the present application;
- Figure 5 is a schematic structural diagram of the flow channel group provided by the embodiment of the present application.
- FIG. 6 is a cross-sectional view of the heat exchange tube provided by the embodiment of the present application.
- Figure 7 is an exploded view of the battery system provided by the embodiment of the present application.
- Figure 8 is a schematic structural diagram of a battery pack provided by an embodiment of the present application.
- Figure 9 is a schematic structural diagram of a battery system provided by an embodiment of the present application.
- Figure 10 is a schematic structural diagram of an electric vehicle provided by an embodiment of the present application.
- pole lug 310, pole lug; 320, battery core; 330, pole lug motherboard; 340, pressure relief port;
- Electric vehicles are new energy vehicles, and the battery system is the key system of electric vehicles, which largely determines the overall performance of electric vehicles. With the rapid development of electric vehicles, battery systems are developing towards high energy density, long cruising range, short charging time, high safety, high space utilization, lightweight, and long cycle life.
- the main problem faced by short charging times is the heat dissipation and cooling of the battery system.
- the battery pack 30 Under high-rate charging, the battery pack 30 generates a very large amount of heat.
- the bottom of the battery system is equipped with a cooling system. The heat generated by the battery system is discharged from the bottom of the battery system through the cooling system, thereby affecting the battery. The system plays a role in heat dissipation and cooling.
- FIG. 1 is a schematic structural diagram of the cooling system.
- the cooling system is applied to the battery pack 30.
- the cooling system includes a first cooling component 10 and the second cooling assembly 20 .
- the first cooling assembly 10 and the second cooling assembly 20 are respectively located on opposite sides of the battery pack 30 , and the first cooling assembly 10 is located at the tab 310 of the battery pack 30 .
- the cooling system includes the first cooling component 10 and the second cooling component 20 , the first cooling component 10 can be used to dissipate and cool the battery pack 30 , and the second cooling component 20 can be used to dissipate and cool the battery pack 30 , effectively.
- the cooling system's heat dissipation and cooling effect on the battery pack 30 is improved.
- the first cooling component 10 is located at the tab 310 of the battery pack 30
- the second cooling component 20 is opposite to the first cooling component 10 , that is, the second cooling component 20 is located at the bottom of the battery pack 30 .
- the first cooling component 10 is disposed at the tabs 310 of the battery pack 30 and the second cooling component 20 is disposed At the bottom of the battery pack 30, the heat dissipation and cooling effect of the cooling system on the battery pack 30 can be further improved, so that the battery pack 30 can be charged at a high rate.
- both the first cooling component 10 and the second cooling component 20 are liquid-cooled, that is, a cooling medium flows through them, and heat exchange is achieved through the cooling medium.
- the cooling medium is either a cooling liquid or a refrigerant. Both the cooling liquid and the refrigerant can achieve good heat exchange with the battery pack 30 , thereby achieving heat dissipation and cooling of the battery pack 30 .
- the cooling system further includes a connected pump 40 and a radiator 50 , and the first cooling component 10 and the second cooling component 20 are connected in series in a circuit composed of the pump 40 and the radiator 50 .
- the pump 40 is used to pump the cooling medium so that the cooling medium can flow between the radiator 50 , the first cooling component 10 and the second cooling component 20 .
- the cooling medium flows through the first cooling component 10 and the second cooling component 20 , it can perform heat exchange with the battery pack 30 to absorb the heat generated by the battery pack 30 , thereby achieving heat dissipation and cooling of the battery pack 30 .
- the cooling medium flows through the radiator 50, it can dissipate the absorbed heat to the outside, thereby reducing its own temperature, so as to better absorb the battery pack when it flows through the first cooling component 10 and the second cooling component 20 again. 30 heat generated.
- the pump 40 , the radiator 50 , the first cooling component 10 and the second cooling component 20 form a circulation loop of cooling medium, thereby performing cyclic heat dissipation and cooling of the battery pack 30 .
- the pump 40 is an electric water pump 40, which can be controlled individually to adjust its working state according to different needs.
- the cooling system has a large heat dissipation and cooling demand, it can increase its own speed to allow the cooling medium to flow at a high speed.
- the heat dissipation cooling demand of the cooling system is small, its own rotation speed can be lowered, thus saving energy.
- the cooling system further includes a three-way valve 60 , the inlet of the three-way valve 60 is connected to the radiator 50 , one outlet of the three-way valve 60 is connected to the first cooling component 10 , and the other outlet of the three-way valve 60 Connected to the second cooling component 20 .
- the three-way valve 60 serves as a passage connecting the radiator 50 to the first cooling assembly 10 and the second cooling assembly 20 .
- the cooling medium output by the radiator 50 can be controlled to flow through the first cooling assembly.
- the component 10 is either the second cooling component 20 , or the first cooling component 10 and the second cooling component 20 , which is determined according to the heat dissipation and cooling requirements of the cooling system.
- the three-way valve 60 is connected to one of the first cooling assembly 10 or the second cooling assembly 20 so that the cooling medium output by the radiator 50 can enter the first cooling assembly 10 or the second cooling assembly 20 One to dissipate and cool the battery pack 30 . At this time, it can not only meet the smaller heat dissipation and cooling needs, but also save energy.
- the three-way valve 60 is connected to both the first cooling assembly 10 and the second cooling assembly 20 , so that the cooling medium output by the radiator 50 enters the first cooling assembly 10 and the second cooling assembly 20 respectively.
- the second cooling assembly 20 is used to dissipate and cool the battery pack 30 . At this time, since both the first cooling component 10 and the second cooling component 20 are working, the increased heat dissipation and cooling requirements can be met.
- the cooling system can control the working status of the first cooling component 10 and the second cooling component 20 according to the heat generated by the battery pack 30, thereby not only meeting the heat dissipation and cooling requirements, but also Energy saving.
- both the first cooling component 10 and the second cooling component 20 are liquid-cooled.
- the first cooling component 10 and the second cooling component 20 will be introduced respectively below.
- Figure 2 is a schematic structural diagram of the cooling system.
- the previously mentioned pump 40, radiator 50 and three-way valve 60 are omitted in Figure 2, and only the first cooling assembly 10, the second cooling assembly 20 and the battery pack 30 are shown.
- the first cooling component 10 includes a carrier 110 and a flow channel group 120 .
- Figure 3 is a schematic structural diagram of the carrier 110. Combined with Figure 3, the carrier 110 has a plurality of pole holes 111 arranged at intervals.
- Figure 4 is a cross-sectional view along the A-A direction of Figure 2.
- one side of the carrier 110 is in contact with the battery pack 30, so that the tabs 310 are located in the tab holes 111, and the flow channel group 120 is located on the other side of the carrier 110, and the flow The channel group 120 is in contact with the pole ear 310 .
- the carrier 110 is used to provide a stable installation foundation for the flow channel group 120 , and the flow channel group 120 is used to provide a flow channel for the cooling medium, thereby providing good heat dissipation and cooling for the battery pack 30 .
- the carrier 110 has a plurality of tab holes 111 arranged at intervals, when one side of the carrier 110 contacts the battery pack 30, the tabs 310 of the battery pack 30 will be inserted into the tab holes 111. In this way, the tabs 310 of the battery pack 30 will be inserted into the tab holes 111.
- the flow channel group 120 on the other side of 110 can be in contact with the tab 310, thereby dissipating and cooling the tab 310.
- the carrier 110 and the battery pack 30 are connected by adhesive, so that the carrier 110 can be firmly connected to the battery pack 30 , so that the flow channel group 120 on the carrier 110 can be connected with the tabs of the battery pack 30 310 has a firm contact, thereby ensuring the heat dissipation and cooling effect of the pole lug 310.
- the heat conductive medium 130 can achieve good heat conduction between the flow channel group 120 and the tabs 310, so that the heat at the tabs 310 can be quickly conducted to the flow channel group 120 through the heat conductive medium 130, thereby achieving heat dissipation and cooling.
- the thermally conductive medium 130 is any one of thermally conductive glue and thermally conductive pads. Good thermal conductivity between the flow channel group 120 and the tabs 310 can be achieved through the thermally conductive glue or thermally conductive pads.
- the thermal conductive medium 130 is provided between the flow channel group 120 and the tab 310, and the heat conductive medium 130 can be used to weaken the assembly tolerance, ensuring the contact area between the flow channel group 120 and the tab 310, so that the flow channel The group 120 is in full contact with the tab 310 through the thermally conductive medium 130 .
- the outer wall of the flow channel group 120 has an insulating layer.
- the insulating layer is any one of insulating paint and insulating film.
- the insulation layer should have good thermal conductivity, so that the heat at the tab 310 can be conducted to the flow channel group 120 .
- FIG. 5 is a schematic structural diagram of the flow channel group 120.
- the flow channel group 120 includes: a water inlet pipe 121, a water outlet pipe 122 and a heat exchange pipe 123.
- One end of the heat exchange pipe 123 is connected to the water inlet pipe 121.
- the other end of the heat exchange tube 123 is connected to the water outlet pipe 122 .
- the heat exchange tube 123 extends along the arrangement direction of the plurality of tab holes 111 on the carrier 110 to contact the plurality of tabs 310 .
- the water inlet pipe 121 is used to introduce the cooling medium into the flow channel group 120
- the water outlet pipe 122 is used to guide the cooling medium out of the flow channel group 120 .
- the water inlet pipe 121 is connected to an outlet of the three-way valve 60
- the water outlet pipe 122 is connected to the inlet of the pump 40. Since one end of the heat exchange pipe 123 is connected to the water inlet pipe 121, the other end of the heat exchange pipe 123 is connected to the water outlet pipe. 122 are connected, so the cooling medium can enter the heat exchange pipe 123 from the water inlet pipe 121 and be led out of the heat exchange pipe 123 through the water outlet pipe 122, thereby realizing the circulation of the cooling medium in the flow channel group 120.
- the cooling medium can interact with the tabs while flowing in the heat exchange tube 123 .
- Sufficient heat exchange occurs between 310, that is, the heat dissipation and cooling of the battery pack 30 is achieved through liquid cooling.
- the heat exchange tube 123 is a meandering serpentine tube. Such a design allows the heat exchange tube 123 to contact as many pole tabs 310 as possible in a limited space, which is beneficial to the miniaturization design of the cooling system while ensuring the heat exchange efficiency.
- Figure 6 is a cross-sectional view of the heat exchange tube 123.
- the cross-section of the heat exchange tube 123 is an isosceles trapezoid.
- the upper bottom of the trapezoid is away from the carrier 110, and the lower bottom of the trapezoid faces the carrier 110. That is, the lower bottom of the trapezoid is in contact with the pole.
- the tabs 310 are in contact, thus ensuring the contact area between the heat exchange tube 123 and the tabs 310, which is beneficial to the heat exchange between the heat exchange tube 123 and the tabs 310.
- designing the cross-section of the heat exchange tube 123 into an isosceles trapezoid can also facilitate spraying insulating paint on the heat exchange tube 123.
- the water inlet pipe 121 and the water outlet pipe 122 are arranged side by side, and the heat exchange pipe 123 is located on the same side of the water inlet pipe 121 and the water outlet pipe 122 .
- the water inlet pipe 121 and the water outlet pipe 122 are arranged side by side, which not only makes the structure of the flow channel group 120 more compact, but also allows the water inlet pipe 121 and the water outlet pipe 122 to be connected to the heat exchange pipe 123 more conveniently.
- the heat exchange pipe 123 is located on the same side of the water inlet pipe 121 and the water outlet pipe 122, which can facilitate the arrangement of the heat exchange pipe 123, so that it can be better and stably arranged on the carrier 110 to achieve heat dissipation and cooling of the battery pack 30.
- the water inlet pipe 121, the water outlet pipe 122 and the heat exchange pipe 123 are all parallel to the plane where the carrier 110 is located, and the water inlet pipe 121 and the water outlet pipe 122 are stacked in a direction perpendicular to the plane.
- the heat exchange pipe 123 is located between the water inlet pipe 121 and the water outlet pipe 122 in the stacking direction of the water inlet pipe 121 and the water outlet pipe 122.
- both ends of the heat exchange tube 123 are provided with inclined tubes 124.
- One end of one inclined tube 124 is connected to the heat exchange tube 123, the other end is inclined toward the water inlet pipe 121 and connected to the water inlet pipe 121, and one end of the other inclined tube 124 is connected to the water inlet pipe 121.
- the heat exchange tube 123 is connected, and the other end is inclined toward the water outlet pipe 122 and connected to the water outlet pipe 122 .
- the inclined tube 124 is connected to the heat exchange tube 123, the water inlet pipe 121, and the water outlet pipe 122 through quick-connect joints, thereby ensuring the structural stability and assembly convenience of the flow channel group 120.
- the main board 112 and a plurality of buckles 113 are connected to one side of the main board 112 , and the arrangement direction of the buckles 113 is in line with the plurality of tab holes 111
- the heat exchange tubes 123 are arranged in the same direction, and the heat exchange tubes 123 are clamped in the buckles 113 (see Figure 4).
- the main board 112 is used to provide an installation basis for the buckles 113, and the buckles 113 are used to snap and fix the heat exchange tube 123 on the main board 112.
- the plurality of buckles 113 are connected to one side of the main board 112.
- the buckles 113 and the heat exchange tube 123 are located on the same side of the main board 112.
- the heat exchange tube 123 is buckled in the buckle 113, so that the heat exchange tube 123 is connected to the main board 112. Carry out snap-on fixation.
- the plurality of buckles 113 can exchange heat extending along the arrangement direction of the plurality of tab holes 111 on the carrier 110.
- the tube 123 is fully clamped, which improves the stability of the heat exchange tube 123 being clamped on the main board 112 .
- the bayonet includes a pair of hooks, and the pair of hooks are arranged oppositely, so that the heat exchange tube 123 can be locked in the pair of hooks.
- the carrier 110 has a plurality of safety holes 114 arranged at intervals, and the safety holes 114 are opposite to the pressure relief port 340 of the battery pack 30 .
- the pressure relief port 340 on the battery pack 30 can explode when the internal pressure of the battery pack 30 is too high, thereby realizing the internal pressure relief of the battery pack 30 . Since the safety hole 114 on the carrier 110 is opposite to the pressure relief port 340, even if the carrier 110 comes into contact with the battery pack 30, it will not affect the pressure relief port 340 from exploding when the internal pressure of the battery pack 30 is too high, that is, it will not Adding a cooling system to the battery pack 30 will affect the safety performance of the battery pack 30 .
- the second cooling component 20 is a liquid cooling plate
- the inlet of the liquid cooling plate is connected to an outlet of the three-way valve 60
- the outlet of the liquid cooling plate is connected to the inlet of the pump 40 .
- the liquid cooling plate is bonded to the bottom of the battery pack 30 through thermally conductive adhesive, thereby dissipating heat from the bottom of the battery pack 30 .
- Figure 7 is an exploded view of a battery system provided by an embodiment of the present disclosure.
- the pump 40, the radiator 50 and the three-way valve 60 are omitted in Figure 7.
- the battery system includes a battery pack. 30 and the cooling system shown in Figure 1-6.
- FIG 8 is a schematic structural diagram of the battery pack 30.
- the battery pack 30 includes a plurality of battery cells 320 arranged side by side.
- the battery core 320 includes a main body and two tabs 310 with opposite polarities.
- the two tabs 310 are respectively connected to the first cooling unit.
- Component 10 contacts.
- the battery pack 30 Since the battery pack 30 is located between the first cooling assembly 10 and the second cooling assembly 20 , the battery pack 30 can be cooled by both the first cooling assembly 10 and the second cooling assembly 20 , effectively improving the efficiency of the battery pack 30 .
- the cooling system has a heat dissipation and cooling effect on the battery pack 30 . Since the cells 320 of the battery pack 30 are arranged side by side, the tabs 310 of the cells 320 are in contact with the first cooling assembly 10 , and the bottom of the cells 320 is in contact with the second cooling assembly 20 , so the first cooling assembly 10 can The tab 310 portion of the battery core 320 is effectively dissipated and cooled, and the second cooling component 20 can be used to effectively dissipate and cool the bottom of the battery core 320 .
- the battery pack 30 is composed of a plurality of battery cells 320 arranged side by side. As shown in FIGS. 7 and 8 , 12 battery cells 320 are arranged side by side to form one battery pack 30 , and two battery packs 30 They are arranged side by side and share the first cooling component 10 and the second cooling component 20 .
- FIG. 9 which is a schematic structural diagram of another battery system. The difference between FIG. 9 and FIG. 7 is that there are two rows of battery packs 30 in FIG. 9 , and the two rows of battery packs 30 share a second
- the cooling assembly 20 has a plurality of parallel-arranged battery packs 30 in a row of battery packs 30.
- Each battery pack 30 in a row of battery packs 30 shares a water inlet pipe 121 and a water outlet pipe 122. Two adjacent parallel battery packs 30 One carrier 110 and one heat exchange tube 123 are shared. Such a design is conducive to the integration of the battery system, thereby reducing the installation space required for the battery system and improving space utilization.
- the number of battery packs 30 in the battery system and the number of cells 320 in each battery pack 30 can be adjusted according to actual needs.
- the layout of the cooling system should also be adjusted accordingly, for example, setting a corresponding number
- the carrier 110, heat exchange tube 123, etc. are not limited in this application.
- the battery pack 30 further includes a plurality of tab motherboards 330 .
- the tab motherboards 330 are respectively connected to one tab 310 of two adjacent battery cores 320 .
- the tab motherboards 330 is in contact with the first cooling component 10 .
- two adjacent battery cores 320 are connected together through the tab motherboard 330. Since the tab motherboard 330 is connected to the two tabs 310, the heat of the two tabs 310 will The heat dissipation and cooling of the two tabs 310 can be achieved by conducting heat dissipation and cooling to the tab motherboard 330 through the first cooling component 10 . In this way, the arrangement of the first cooling component 10 is effectively simplified while ensuring the heat dissipation and cooling effect of the first cooling component 10 .
- connection method of the tab motherboard 330 for example, one way is that one end of the tab motherboard 330 is connected to the positive tab of one battery core 320, and the other end of the tab motherboard 330 is connected to another battery core. The negative tabs of 320 are connected, so that the two battery cores 320 are connected in series. Another way is that one end of the tab motherboard 330 is connected to the positive tab of one battery core 320, and the other end of the tab motherboard 330 is connected to the positive tab of another battery core 320, so that the two battery cores 320 connected in parallel.
- the above two methods can be selected according to actual needs, and this disclosure does not limit this.
- the lug motherboard 330 has two positioning points for laser welding between the lug motherboard 330 and the lug 310 .
- the positioning points can also play a role in positioning during laser welding, ensuring the accuracy of laser welding.
- FIG. 10 is a schematic structural diagram of an electric vehicle provided by an embodiment of the present disclosure. Combined with FIG. 10 , the electric vehicle includes the battery system 100 shown in FIGS. 7-9.
- the electric vehicle can adapt to high-rate charging, such as super charging, which effectively increases the charging speed of the electric vehicle.
- Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up”, “down”, “left”, “right”, etc. are only used to express relative positional relationships. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
本申请公开了一种冷却系统、电池系统及电动车,属于电池领域。该冷却系统应用于电池组,该冷却系统包括:第一冷却组件和第二冷却组件;第一冷却组件和第二冷却组件分别位于电池组的相对两侧,且第一冷却组件位于电池组的极耳处。本申请能够具有良好的散热冷却效果。
Description
本申请涉及电池领域,尤其涉及冷却系统、电池系统及电动车。
电池系统是电动汽车的关键系统,很大程度上决定了电动车的整体性能。由于电池系统在工作和充电的过程中,会产生大量的热量,所以通常会在电池系统内配置冷却系统。
在相关技术中,冷却系统被配置在电池系统的底部,通过冷却系统将电池系统产生的热量,由电池系统的底部导出,从而对电池系统起到散热冷却的作用。
然而,随着电池系统的充电速率提升,其在充电过程中产生的热量也随之提升。相关技术中的冷却系统已经无法满足散热冷却需求。
发明内容
本申请实施例提供了一种冷却系统、电池系统及电动车,以克服相关技术中存在的散热效果不佳的问题。
第一方面,本申请提供了一种冷却系统,该冷却系统能够应用于电池组,以实现对于电池组的冷却散热。该冷却系统包括第一冷却组件和第二冷却组件,所述第一冷却组件和所述第二冷却组件相互间隔,使得所述电池组能够位于所述第一冷却组件和所述第二冷却组件之间。所述第一冷却组件位于所述电池组的极耳处,以对所述电池组的极耳处进行散热冷却。所述第二冷却组件位于所述电池组的底部,以对所述电池组的底部进行散热冷却。如此一来,既能够通过所述第一冷却组件对所述电池组进行散热冷却,又能够通过所述第二冷却组件对所述电池组进行散热冷却,有效的提高了所述冷却系统对于所述电池组的散热冷却效果,使得所述电池组能够进行高速率充电。
本申请实施例提供的所述冷却系统,至少具有以下效果:
由于所述冷却系统包括所述第一冷却组件和所述第二冷却组件,所以既能够利用所述第一冷却组件对所述电池组进行散热冷却,又能够利用所述第二冷却组件对所述电池组进行散热冷却,有效的提高了所述冷却系统对于所述电池组的散热冷却效果。并且,所述第一冷却组件位于所述电池组的极耳处,所述第二冷却组件与所述第一冷却组件相对,即所述第二冷却组件位于所述电池组的底部。由于所述电池组的极耳处和底部这两部位的传热效率大大的高于其他部位,所以将所述第一冷却组件设置在所述电池组的极耳处,将所述第二冷却组件设置在电池组的底部,能够更进一步的提高所述冷却系统对于所述电池组的散热冷却效果,使得所述电池组能够进行高速率充电。
作为一种示例性实施例,所述第一冷却组件包括载体和流道组,所述载体用于为所述流道组提供稳固的安装基础,所述流道组则用于对所述电池组提供良好的散热冷却。所述载体具有多个相互间隔排布的所述极耳孔,在所述载体的一侧与所述电池组接触时,所述电池组 的极耳会插接至所述极耳孔内,从而便于位于所述载体上的所述流道组与所述极耳接触。所述流道组位于所述载体的背离所述电池组的一侧,所述流道组通过所述极耳孔,能够与所述极耳接触,以对所述极耳进行散热冷却。
作为一种示例性实施例,所述流道组包括进水管、出水管和换热管。其中,所述进水管用于将所述冷却介质导入所述流道组内,所述出水管用于将冷却介质导出所述流道组,从而实现冷却介质在所述流道组内的循环。由于所述换热管的一端与所述进水管相连,所述换热管的另一端与所述出水管相连,使得冷却介质能够由所述进水管进入所述换热管,由所述出水管导出所述换热管。并且,由于所述换热管沿所述载体上的多个所述极耳孔的排布方向延伸,且与多个所述极耳接触,所以冷却介质在换热管内流动的过程中,能够与极耳之间产生充分的热交换,也即通过液冷的方式实现了对于电池组的散热冷却。
作为一种示例性实施例,所述换热管为曲折的蛇形管道。如此设计,使得所述换热管能够在有限的空间内,与尽量多的所述极耳接触,从而在保证了换热效率的情况下,有利于所述冷却系统的小型化设计。
作为一种示例性实施例,所述进水管和所述出水管并排布置,不仅使得所述流道组的结构更为紧凑,还使得所述进水管和所述出水管能够更为方便的与所述换热管相连。并且,所述换热管位于所述进水管和所述出水管的同一侧,能够便于所述换热管的布置,从而更好的稳固设置在所述载体上,以实现对于所述电池组的散热冷却。
作为一种示例性实施例,所述载体包括主板和多个卡扣。其中,所述主板用于对所述卡扣提供安装基础,所述卡扣用于将所述换热管在所述主板上进行卡接固定。多个所述卡扣均与所述主板的一侧相连,所述卡扣与所述换热管位于所述主板的同一侧,所述换热管卡接在所述卡扣内,实现了所述换热管在所述主板上进行卡接固定。并且,由于多个所述卡扣的排布方向与多个所述极耳孔的排布方向一致,所以多个卡扣能够对沿所述载体上的多个所述极耳孔的排布方向延伸的所述换热管进行充分的卡接,提高了所述换热管在所述主板上的卡接稳固性。
作为一种示例性实施例,所述载体具有多个相互间隔排布的安全孔,所述安全孔与所述电池组的泄压口相对。电池组上的泄压口,能够在电池组内部压力过大时爆开,从而实现电池组的内部泄压。由于载体上的安全孔与泄压口相对,所以即使是载体与电池组接触,安全孔也能够给泄压口让出爆开的空间,所以不会影响到泄压口在电池组内部压力过大时爆开,也即不会因为在电池组上增设冷却系统而影响到电池组的安全性能。
作为一种示例性实施例,所述流道组与所述极耳之间具有导热介质,所述导热介质能够实现所述流道组与所述极耳之间的良好热传导,使得所述极耳处的热量能够快速的通过所述导热介质传导至所述流道组,从而实现散热冷却。所述导热介质为导热胶、导热垫中的任一种,通过所述导热胶或所述导热垫,均能够实现所述流道组和所述极耳之间的良好热传导。 除此之外,在所述流道组和所述极耳之间设置所述导热介质,能够利用所述导热介质来弱化装配公差,保证了所述流道组与所述极耳之间的接触面积,使得所述流道组通过所述导热介质与所述极耳充分接触。
作为一种示例性实施例,所述流道组的外壁具有绝缘层,所述绝缘层能够避免所述极耳处的电流流通至流道组,造成电路故障。所述绝缘层为绝缘涂料、绝缘膜中的任一种,通过在所述流道组的外壁喷涂所述绝缘涂料或在所述流道组的外壁包覆绝缘膜,均能够起到对于所述流道组的绝缘效果。
作为一种示例性实施例,所述冷却系统还包括相连的泵和散热器,所述第一冷却组件和所述第二冷却组件一同串联在所述泵和所述散热器组成的回路中。其中,所述泵用于泵送冷却介质,使得冷却介质能够在所述散热器、所述第一冷却组件和所述第二冷却组件之间流动。在冷却介质流经所述第一冷却组件和所述第二冷却组件时,能够与所述电池组进行热交换,以吸收所述电池组产生的热量,从而实现对于所述电池组的散热冷却。在冷却介质流经所述散热器时,能够将吸收的热量散发至外界,从而降低自身的温度,以在后续再次流经所述第一冷却组件和所述第二冷却组件时,更好的吸收所述电池组产生的热量。如此设计,使得所述泵、散热器、所述第一冷却组件和所述第二冷却组件组成一个冷却介质的循环回路,从而对所述电池组进行循环散热冷却。
作为一种示例性实施例,所述冷却系统还包括三通阀,所述三通阀的进口与所述散热器相连,所述三通阀的一个出口与所述第一冷却组件相连,所述三通阀的另一个出口与所述第二冷却组件相连。如此设计,能够通过所述三通阀,控制所述冷却介质流经所述第一冷却组件,或者是所述第二冷却组件,又或者是所述第一冷却组件和所述第二冷却组件。在所述电池组的发热量较小时,所述三通阀与所述第一冷却组件或者所述第二冷却组件中的一个连通,使得由所述散热器输出的冷却介质能够进入所述第一冷却组件或者所述第二冷却组件中的一个,以对所述电池组进行散热冷却。此时既能够满足较小的散热冷却需求,又能够节能。在所述电池组的发热量较大时,所述三通阀既与所述第一冷却组件连通,又与所述第二冷却组件连通,使得由所述散热器输出的冷却介质分别进入所述第一冷却组件和所述第二冷却组件,以对所述电池组进行散热冷却。此时由于所述第一冷却组件和所述第二冷却组件均工作,所以能够满足加大的散热冷却需求。如此设计,使得所述冷却系统能够根据所述电池组的发热量,控制所述第一冷却组件和所述第二冷却组件的工作状态,从而既能够满足散热冷却需求,又能够节能。
第二方面,本申请还提供了一种电池系统,该电池系统包括电池组和第一方面所述的冷却系统。所述电池组位于所述第一冷却组件和所述第二冷却组件之间,所述电池组包括多个并排排布的电芯,所述电芯包括主体和两个极耳,两个所述极耳的极性相反,两个所述极耳分别与所述第一冷却组件接触。如此设计,既能够通过所述第一冷却组件对所述电池组的极耳进行散热冷却,又能够通过所述第二冷却组件对所述电池组的底部进行散热冷却,有效的提高了所述电池系统的整体散热冷却效果,使得所述电池系统能够进行高速率充电。
本申请实施例提供的所述电池系统,至少具有以下效果:
由于所述电池组位于所述第一冷却组件和所述第二冷却组件之间,所以电池组既能够通过第一冷却组件进行散热冷却,又能够通过第二冷却组件进行散热冷却,有效的提高了所述冷却系统对于所述电池组的散热冷却效果。由于所述电池组的电芯并排排布,且所述电芯的极耳与所述第一冷却组件接触,所述电芯的底部则与所述第二冷却组件接触,所以通过所述第一冷却组件能够有效的对所述电芯的极耳部分进行散热冷却,通过所述第二冷却组件能够有效的对所述电芯的底部进行散热冷却。由于所述电池组的极耳处和底部这两部位的传热效率大大的高于其他部位,所以如此设计所述第一冷却组件和所述第二冷却组件的设置位置,能够更进一步的保证所述电池系统的整体散热冷却效果,使得所述电池系统能够进行高速率充电。
作为一种示例性实施例,所述电池组还包括多个极耳母板,所述极耳母板分别与相邻的两个所述电芯的一个极耳相连,所述极耳母板与所述第一冷却组件接触。如此设计,由于所述极耳母板与两个所述极耳相连,所以两个极耳的热量会传导至所述极耳母板,通过所述第一冷却组件对所述极耳母板进行散热冷却,即可实现对于两个所述极耳的散热冷却。如此一来,在保证了第一冷却组件的散热冷却效果的情况下,有效的简化了第一冷却组件的布置。
第三方面,本申请还提供了一种电动汽车,该电动汽车包括第二方面所述的电池系统,能够利用所述电池系统,实现高倍率的充电。
本申请实施例提供的所述电动汽车,至少具有以下效果:
由于所述电动汽车所配置的所述电池系统具有良好的散热冷却效果,所以使得电动汽车能够适应于高倍率的充电,例如超级充电等,有效的提高了电动汽车的充电速度。
图1为本申请实施例提供的冷却系统的结构简图;
图2为本申请实施例提供的冷却系统的结构示意图;
图3为本申请实施例提供的载体的结构示意图;
图4为本申请实施例提供的图2的A-A方向剖视图;
图5为本申请实施例提供的流道组的结构示意图;
图6为本申请实施例提供的换热管的剖视图;
图7为本申请实施例提供的电池系统的爆炸图;
图8为本申请实施例提供的电池组的结构示意图;
图9为本申请实施例提供的电池系统的结构示意图;
图10为本申请实施例提供的电动汽车的结构示意图。
图例说明:
10、第一冷却组件;
110、载体;
111、极耳孔;112、主板;113、卡扣;114、安全孔;
120、流道组;
121、进水管;122、出水管;123、换热管;124、斜管;
130、导热介质;
20、第二冷却组件;
30、电池组;
310、极耳;320、电芯;330、极耳母板;340、泄压口;
40、泵;
50、散热器;
60、三通阀;
100、电池系统。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
电动汽车为一种新能源汽车,电池系统是电动汽车的关键系统,很大程度上决定了电动车的整体性能。随着电动汽车的迅速发展,电池系统正朝着高能量密度、长续航里程、短充电时间、高安全性、高空间利用率、轻质化、长循环寿命的方向发展。
目前,短充电时间所面临的主要问题是电池系统的散热冷却。在高倍率充电下,电池组30的发热量非常的大,在相关技术中,电池系统的底部配置有冷却系统,通过冷却系统将电池系统产生的热量,由电池系统的底部导出,从而对电池系统起到散热冷却的作用。
然而,对于超级快充这种高倍率充电,相关技术中的冷却系统已经无法满足散热冷却需求。
为了解决上述技术问题,本申请实施例提供了一种冷却系统,图1为该冷却系统的结构简图,参见图1,该冷却系统应用于电池组30,该冷却系统包括第一冷却组件10和第二冷却组件20,第一冷却组件10和第二冷却组件20分别位于电池组30的相对两侧,且第一冷却组件10位于电池组30的极耳310处。
由于冷却系统包括第一冷却组件10和第二冷却组件20,所以既能够利用第一冷却组件10对电池组30进行散热冷却,又能够利用第二冷却组件20对电池组30进行散热冷却,有效的提高了冷却系统对于电池组30的散热冷却效果。并且,第一冷却组件10位于电池组30的极耳310处,第二冷却组件20与第一冷却组件10相对,即第二冷却组件20位于电池组30的底部。由于电池组30的极耳310处和底部这两部位的传热效率大大的高于其他部位,所以将第一冷却组件10设置在电池组30的极耳310处,将第二冷却组件20设置在电池组30的底部,能够更进一步的提高冷却系统对于电池组30的散热冷却效果,使得电池组30能够进行高速率充电。
在本实施例中,第一冷却组件10和第二冷却组件20均为液冷,即其中流通有冷却介质,通过冷却介质来实现热交换。
示例性地,冷却介质为冷却液、冷媒中的任一种,通过冷却液和冷媒,均能够实现与电池组30的良好热交换,从而实现对于电池组30的散热冷却。
下面继续参见图1,对冷却介质的流通方式进行介绍。
在本实施例中,冷却系统还包括相连的泵40和散热器50,第一冷却组件10和第二冷却组件20一同串联在泵40和散热器50组成的回路中。
在上述实现方式中,泵40用于泵送冷却介质,使得冷却介质能够在散热器50、第一冷却组件10和第二冷却组件20之间流动。在冷却介质流经第一冷却组件10和第二冷却组件20时,能够与电池组30进行热交换,以吸收电池组30产生的热量,从而实现对于电池组30的散热冷却。在冷却介质流经散热器50时,能够将吸收的热量散发至外界,从而降低自身的温度,以在后续再次流经第一冷却组件10和第二冷却组件20时,更好的吸收电池组30产生的热量。如此设计,使得泵40、散热器50、第一冷却组件10和第二冷却组件20组成一个冷却介质的循环回路,从而对电池组30进行循环散热冷却。
示例性地,泵40为电动水泵40,能够单独的控制,从而根据不同的需求来调整自身的工作状态,在冷却系统的散热冷却需求较大时,能够提高自身转速,使得冷却介质高速流动,在冷却系统的散热冷却需求较小时,能够较低自身转速,起到节能的作用。
在本实施例中,冷却系统还包括三通阀60,三通阀60的进口与散热器50相连,三通阀60的一个出口与第一冷却组件10相连,三通阀60的另一个出口与第二冷却组件20相连。
在上述实现方式中,三通阀60作为散热器50与第一冷却组件10和第二冷却组件20连通的通道,能够通过三通阀60,控制散热器50输出的冷却介质流经第一冷却组件10,或者是第二冷却组件20,又或者是第一冷却组件10和第二冷却组件20,这是根据冷却系统的散热冷却需求决定的。
举例来说,在电池组30的发热量较小时,对于冷却系统的散热冷却需求相应的较小。在此情况下,三通阀60与第一冷却组件10或者第二冷却组件20中的一个连通,使得由散热器50输出的冷却介质能够进入第一冷却组件10或者第二冷却组件20中的一个,以对电池组30进行散热冷却。此时,既能够满足较小的散热冷却需求,又能够节能。在电池组30的发热量较大时,三通阀60既与第一冷却组件10连通,又与第二冷却组件20连通,使得由散热器50输出的冷却介质分别进入第一冷却组件10和第二冷却组件20,以对电池组30进行散热冷却。此时由于第一冷却组件10和第二冷却组件20均工作,所以能够满足加大的散热冷却需求。
也就是说,通过三通阀60的控制,使得冷却系统能够根据电池组30的发热量,控制第一冷却组件10和第二冷却组件20的工作状态,从而既能够满足散热冷却需求,又能够节能。
由前文可知,第一冷却组件10和第二冷却组件20均为液冷,下面分别对第一冷却组件10和第二冷却组件20进行介绍。
图2为冷却系统的结构示意图,图2中省略了前文中提到的泵40、散热器50和三通阀60,仅展示了第一冷却组件10、第二冷却组件20和电池组30。结合图2,在本实施例中,第一冷却组件10包括载体110和流道组120。
图3为载体110的结构示意图,结合图3,载体110具有多个相互间隔排布的极耳孔111,
图4为图2的A-A方向剖视图,结合图4,载体110的一侧与电池组30接触,以使极耳310位于极耳孔111内,流道组120位于载体110的另一侧,且流道组120与极耳310接触。
在上述实现方式中,载体110用于为流道组120提供稳固的安装基础,流道组120则用于为冷却介质提供流动的通道,从而对电池组30提供良好的散热冷却。由于载体110具有多 个相互间隔排布的极耳孔111,所以在载体110的一侧与电池组30接触时,电池组30的极耳310会插接至极耳孔111内,如此一来,位于载体110另一侧的流道组120就能够与极耳310接触到,从而对极耳310进行散热冷却。
示例性地,载体110与电池组30之间通过粘接的方式相连,使得载体110能够稳固的连接在电池组30上,从而使得载体110上的流道组120能够与电池组30的极耳310稳固的接触,从而保证了对于极耳310的散热冷却效果。
为了进一步地提高流道组120与极耳310之间的充分接触,在本实施例中,流道组120与极耳310之间具有导热介质130。导热介质130能够实现流道组120与极耳310之间的良好热传导,使得极耳310处的热量能够快速的通过导热介质130传导至流道组120,从而实现散热冷却。
示例性地,导热介质130为导热胶、导热垫中的任一种,通过导热胶或导热垫,均能够实现流道组120和极耳310之间的良好热传导。除此之外,在流道组120和极耳310之间设置导热介质130,能够利用导热介质130来弱化装配公差,保证了流道组120与极耳310之间的接触面积,使得流道组120通过导热介质130与极耳310充分接触。
由于电池组30在工作时,极耳310带电,所以为了避免极耳310处的电流流通至流道组120,造成电路故障,在本实施例中,流道组120的外壁具有绝缘层。示例性地,绝缘层为绝缘涂料、绝缘膜中的任一种,通过在流道组120的外壁喷涂绝缘涂料或在流道组120的外壁包覆绝缘膜,均能够起到对于流道组120的绝缘效果。
需要说明的是,为了保证流道组120的散热冷却效果,绝缘层应该具有较好的热传导性,以使得极耳310处的热量能够传导至流道组120。
图5为流道组120的结构示意图,结合图5,在本实施例中,流道组120包括:进水管121、出水管122和换热管123,换热管123的一端与进水管121相连,换热管123的另一端与出水管122相连,换热管123沿载体110上的多个极耳孔111的排布方向延伸,以与多个极耳310接触。
在上述实现方式中,进水管121用于将冷却介质导入流道组120内,出水管122用于将冷却介质导出流道组120。示例性地,进水管121与三通阀60的一个出口相连,出水管122与泵40的进口相连,由于换热管123的一端与进水管121相连,换热管123的另一端与出水管122相连,所以冷却介质能够由进水管121进入换热管123,由出水管122导出换热管123,从而实现了冷却介质在流道组120内的流通。
并且,由于换热管123沿载体110上的多个极耳孔111的排布方向延伸,且与多个极耳310接触,所以冷却介质在换热管123内流动的过程中,能够与极耳310之间产生充分的热交换,也即通过液冷的方式实现了对于电池组30的散热冷却。
示例性地,换热管123为曲折的蛇形管道。如此设计,使得换热管123能够在有限的空间内,与尽量多的极耳310接触,从而在保证了换热效率的情况下,有利于冷却系统的小型化设计。
图6为换热管123的剖视图,结合图6,换热管123的剖面为一等腰梯形,梯形的上底背离载体110,梯形的下底朝向载体110,也即梯形的下底与极耳310接触,从而保证了换热管123与极耳310之间的接触面积,有利于换热管123与极耳310之间的热交换。
除此之外,将换热管123的剖面设计为等腰梯形,也能够方便在换热管123上喷涂绝缘 涂料。
再次参见图5,在本实施例中,进水管121和出水管122并排布置,换热管123位于进水管121和出水管122的同一侧。
在上述实现方式中,进水管121和出水管122并排布置,不仅使得流道组120的结构更为紧凑,还使得进水管121和出水管122能够更为方便的与换热管123相连。并且,换热管123位于进水管121和出水管122的同一侧,能够便于换热管123的布置,从而更好的稳固设置在载体110上,以实现对于电池组30的散热冷却。
示例性地,进水管121、出水管122和换热管123均平行于载体110所处的平面,且进水管121和出水管122在垂直于该平面方向上叠设。为了保证换热管123既能够与进水管121连接,又能够与出水管122连接,在进水管121和出水管122的叠设方向上,换热管123位于进水管121和出水管122之间,换热管123的两端均具有斜管124,一个斜管124的一端与换热管123相连,另一端朝向进水管121倾斜,且与进水管121相连,另一个斜管124的一端与换热管123相连,另一端朝向出水管122倾斜,且与出水管122相连。
示例性地,斜管124与换热管123、进水管121、出水管122之间均通过快接接头的方式相连,从而保证了流道组120的结构稳定性和装配便捷性。
再次参见图3,在本实施例中,主板112和多个卡扣113,多个卡扣113均与主板112的一侧相连,且多个卡扣113的排布方向与多个极耳孔111的排布方向一致,换热管123卡接在卡扣113内(参见图4)。
在上述实现方式中,主板112用于对卡扣113提供安装基础,卡扣113用于将换热管123在主板112上进行卡接固定。多个卡扣113均与主板112的一侧相连,卡扣113与换热管123位于主板112的同一侧,换热管123卡接在卡扣113内,实现了换热管123在主板112上进行卡接固定。并且,由于多个卡扣113的排布方向与多个极耳孔111的排布方向一致,所以多个卡扣113能够对沿载体110上的多个极耳孔111的排布方向延伸的换热管123进行充分的卡接,提高了换热管123在主板112上的卡接稳固性。
示例性地,卡口包括一对卡钩,一对卡钩相对布置,从而能够将换热管123卡接在一对卡钩内。
在本实施例中,载体110具有多个相互间隔排布的安全孔114,安全孔114与电池组30的泄压口340相对。
在上述实现方式中,电池组30上的泄压口340,能够在电池组30内部压力过大时爆开,从而实现电池组30的内部泄压。由于载体110上的安全孔114与泄压口340相对,所以即使是载体110与电池组30接触,也不会影响到泄压口340在电池组30内部压力过大时爆开,也即不会因为在电池组30上增设冷却系统而影响到电池组30的安全性能。
在本实施例中,第二冷却组件20为液冷板,液冷板的进口与三通阀60的一个出口相连,液冷板的出口与泵40的进口相连。液冷板通过导热胶粘接在电池组30的底部,从而实现对于电池组30的底部散热。
图7为本公开实施例提供的一种电池系统的爆炸图,图7中省略了泵40、散热器50和三通阀60,结合图7,在本实施例中,该电池系统包括电池组30和图1-6所示的冷却系统。
图8为电池组30的结构示意图,电池组30包括多个并排排布的电芯320,电芯320包括主体和两个极性相反的极耳310,两个极耳310分别与第一冷却组件10接触。
由于电池组30位于第一冷却组件10和第二冷却组件20之间,所以电池组30既能够通过第一冷却组件10进行散热冷却,又能够通过第二冷却组件20进行散热冷却,有效的提高了冷却系统对于电池组30的散热冷却效果。由于电池组30的电芯320并排排布,且电芯320的极耳310与第一冷却组件10接触,电芯320的底部则与第二冷却组件20接触,所以通过第一冷却组件10能够有效的对电芯320的极耳310部分进行散热冷却,通过第二冷却组件20能够有效的对电芯320的底部进行散热冷却。由于电池组30的极耳310处和底部这两部位的传热效率大大的高于其他部位,所以如此设计第一冷却组件10和第二冷却组件20的设置位置,能够更进一步的保证电池系统的整体散热冷却效果,使得电池系统能够进行高速率充电。
在本实施例中,电池组30由多个电芯320并排排布组成,由图7和8示例来说,12个电芯320并排排布,组成一组电池组30,两组电池组30并列布置,共用第一冷却组件10和第二冷却组件20。在另一示例中,参见图9,图9为另一种电池系统的结构示意图,图9与图7的区别在于,图9中具有两排电池组30,两排电池组30共用一个第二冷却组件20,一排电池组30中具有多个并列布置的电池组30,一排电池组30中的各电池组30共用一个进水管121和出水管122,两个相邻并列的电池组30共用一个载体110和一个换热管123。如此设计,有利于实现电池系统的集成化,从而缩小电池系统所需的安装空间,提高了空间利用率。
当然,电池系统中电池组30的数量,每一组电池组30中电芯320的数量,都能够根据实际需求进行调整,相应的,冷却系统的布置方式也应该随之调整,例如设置相应数量的载体110、换热管123等,本申请对此不做限制。
再次参见图8,在本实施例中,电池组30还包括多个极耳母板330,极耳母板330分别与相邻的两个电芯320的一个极耳310相连,极耳母板330与第一冷却组件10接触。
在上述实现方式中,通过极耳母板330,将相邻的两个电芯320连接在了一起,由于极耳母板330与两个极耳310相连,所以两个极耳310的热量会传导至极耳母板330,通过第一冷却组件10对极耳母板330进行散热冷却,即可实现对于两个极耳310的散热冷却。如此一来,在保证了第一冷却组件10的散热冷却效果的情况下,有效的简化了第一冷却组件10的布置。
对于极耳母板330的连接方式,举例来说,一种方式是,极耳母板330的一端与一个电芯320的正极极耳相连,极耳母板330的另一端与另一个电芯320的负极极耳相连,使得两个电芯320串联在一起。另一种方式是,极耳母板330的一端与一个电芯320的正极极耳相连,极耳母板330的另一端与另一个电芯320的正极极耳相连,使得两个电芯320并联在一起。上述两种方式能够根据实际需求进行选择,本公开对此不做限制。
在本实施例中,极耳母板330上具有两个定位点,用于实现极耳母板330与极耳310之间的激光焊接。另外,定位点也能够在激光焊接时起到定位的作用,保证了激光焊接的准确性。
图10为本公开实施例提供的一种电动汽车的结构示意图,结合图10,该电动汽车包括图7-9所示的电池系统100。
由于电动汽车所配置的电池系统100具有良好的散热冷却效果,所以使得电动汽车能够适应于高倍率的充电,例如超级充电等,有效的提高了电动汽车的充电速度。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (14)
- 一种冷却系统,应用于电池组(30),其特征在于,包括:第一冷却组件(10)和第二冷却组件(20);所述第一冷却组件(10)和所述第二冷却组件(20)分别位于所述电池组(30)的相对两侧,且所述第一冷却组件(10)位于所述电池组(30)的极耳(310)处。
- 根据权利要求1所述的冷却系统,其特征在于,所述第一冷却组件(10)包括:载体(110)和流道组(120);所述载体(110)具有多个相互间隔排布的极耳孔(111),所述载体(110)的一侧与所述电池组(30)接触,以使所述极耳(310)位于所述极耳孔(111)内;所述流道组(120)位于所述载体(110)的另一侧,且所述流道组(120)与所述极耳(310)接触。
- 根据权利要求2所述的冷却系统,其特征在于,所述流道组(120)包括:进水管(121)、出水管(122)和换热管(123);所述换热管(123)的一端与所述进水管(121)相连,所述换热管(123)的另一端与所述出水管(122)相连,所述换热管(123)沿所述载体(110)上的多个所述极耳孔(111)的排布方向延伸,以与多个所述极耳(310)接触。
- 根据权利要求3所述的冷却系统,其特征在于,所述换热管(123)为曲折的蛇形管道。
- 根据权利要求3或4所述的冷却系统,其特征在于,所述进水管(121)和所述出水管(122)并排布置,所述换热管(123)位于所述进水管(121)和所述出水管(122)的同一侧。
- 根据权利要求3-5任一项所述的冷却系统,其特征在于,所述载体(110)包括:主板(112)和多个卡扣(113);多个所述卡扣(113)均与所述主板(112)的一侧相连,且多个所述卡扣(113)的排布方向与多个所述极耳孔(111)的排布方向一致;所述换热管(123)卡接在所述卡扣(113)内。
- 根据权利要求2-6任一项所述的冷却系统,其特征在于,所述载体(110)具有多个相互间隔排布的安全孔(114),所述安全孔(114)与所述电池组(30)的泄压口相对。
- 根据权利要求2-7任一项所述的冷却系统,其特征在于,所述流道组(120)与所述极耳(310)之间具有导热介质(130),所述导热介质(130)为导热胶、导热垫中的任一种。
- 根据权利要求2-8任一项所述的冷却系统,其特征在于,所述流道组(120)的外壁具有绝缘层,所述绝缘层为绝缘涂料、绝缘膜中的任一种。
- 根据权利要求1-9任一项所述的冷却系统,其特征在于,所述冷却系统还包括:相连的泵(40)和散热器(50);所述第一冷却组件(10)和所述第二冷却组件(20)一同串联在所述泵(40)和所述散热器(50)组成的回路中。
- 根据权利要求10所述的冷却系统,其特征在于,所述冷却系统还包括三通阀(60);所述三通阀(60)的进口与所述散热器(50)相连,所述三通阀(60)的一个出口与所述第一冷却组件(10)相连,所述三通阀(60)的另一个出口与所述第二冷却组件(20)相连。
- 一种电池系统,其特征在于,包括电池组(30)和权利要求1-11任一项所述的冷却系统;所述电池组(30)包括多个并排排布的电芯(320),所述电芯(320)包括主体和两个极性相反的极耳(310),两个所述极耳(310)分别与所述第一冷却组件(10)接触。
- 根据权利要求12所述的电池系统,其特征在于,所述电池组(30)还包括多个极耳母板(330);所述极耳母板(330)分别与相邻的两个所述电芯(320)的一个极耳(310)相连,所述极耳母板(330)与所述第一冷却组件(10)接触。
- 一种电动汽车,其特征在于,包括权利要求12或13所述的电池系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/109208 WO2024021110A1 (zh) | 2022-07-29 | 2022-07-29 | 冷却系统、电池系统及电动车 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/109208 WO2024021110A1 (zh) | 2022-07-29 | 2022-07-29 | 冷却系统、电池系统及电动车 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024021110A1 true WO2024021110A1 (zh) | 2024-02-01 |
Family
ID=89705119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109208 WO2024021110A1 (zh) | 2022-07-29 | 2022-07-29 | 冷却系统、电池系统及电动车 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024021110A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015010925A1 (de) * | 2015-08-20 | 2016-03-03 | Daimler Ag | Zellverbindereinheit und/oder Zellspannungsabgriffseinheit |
CN106992273A (zh) * | 2016-09-21 | 2017-07-28 | 比亚迪股份有限公司 | 动力电池包 |
CN210120215U (zh) * | 2019-08-29 | 2020-02-28 | 蜂巢能源科技有限公司 | 电池包的冷却板组件、电池包和车辆 |
CN111403845A (zh) * | 2020-03-28 | 2020-07-10 | 哈尔滨工程大学 | 一种可排废气的动力电池极耳散热系统 |
CN111403853A (zh) * | 2020-03-28 | 2020-07-10 | 哈尔滨工程大学 | 一种基于极耳与模组底部联合液冷散热的动力电池热管理系统 |
CN114583324A (zh) * | 2022-03-01 | 2022-06-03 | 贵州梅岭电源有限公司 | 基于极耳散热的直冷式电池组热管理装置及热管理系统 |
-
2022
- 2022-07-29 WO PCT/CN2022/109208 patent/WO2024021110A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015010925A1 (de) * | 2015-08-20 | 2016-03-03 | Daimler Ag | Zellverbindereinheit und/oder Zellspannungsabgriffseinheit |
CN106992273A (zh) * | 2016-09-21 | 2017-07-28 | 比亚迪股份有限公司 | 动力电池包 |
CN210120215U (zh) * | 2019-08-29 | 2020-02-28 | 蜂巢能源科技有限公司 | 电池包的冷却板组件、电池包和车辆 |
CN111403845A (zh) * | 2020-03-28 | 2020-07-10 | 哈尔滨工程大学 | 一种可排废气的动力电池极耳散热系统 |
CN111403853A (zh) * | 2020-03-28 | 2020-07-10 | 哈尔滨工程大学 | 一种基于极耳与模组底部联合液冷散热的动力电池热管理系统 |
CN114583324A (zh) * | 2022-03-01 | 2022-06-03 | 贵州梅岭电源有限公司 | 基于极耳散热的直冷式电池组热管理装置及热管理系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110534843A (zh) | 一种用于电池热管理的散热模组 | |
WO2024082591A1 (zh) | 一种框架散热结构及具有该结构的动力电池模组 | |
CN217768458U (zh) | 一种电池模组及电池包 | |
CN218632215U (zh) | 电池包、热管理系统及车辆 | |
CN211630683U (zh) | 散热装置及电动汽车控制器 | |
EP4273996A1 (en) | Battery cell and battery module comprising same | |
WO2023066259A1 (zh) | 电池包和储能系统 | |
CN210073975U (zh) | 一种高效散热的软包电池模组 | |
CN115528349A (zh) | 一种集成热管理结构的单体电池及电池模组 | |
WO2024021110A1 (zh) | 冷却系统、电池系统及电动车 | |
WO2023169395A1 (zh) | 一种大容量电池组 | |
CN216671792U (zh) | 一种多层热管理结构的电池包及电动汽车 | |
CN216250879U (zh) | 一种带有液冷组件的电池结构 | |
CN209822831U (zh) | 一种新能源汽车用电池组热管理系统 | |
CN113871746A (zh) | 电池以及电池模组 | |
CN221304782U (zh) | 一种与集成盖板连接的电芯侧方液冷板 | |
CN218244247U (zh) | 一种水冷散热射频设备 | |
CN217182330U (zh) | 电池模组、电池包以及电子设备 | |
CN218731384U (zh) | 一种集成热管理结构的单体电芯及电池模组 | |
CN215184207U (zh) | 散热板及电池模组 | |
CN216054912U (zh) | 一种电池模块热管理系统 | |
CN219917322U (zh) | 一种低温差电池模组冷却装置及电池热管理系统 | |
WO2024198332A1 (zh) | 电池包以及用电装置 | |
CN213546401U (zh) | 方形电池模组液冷装置 | |
CN216120467U (zh) | 一种电池模组侧板液冷集成系统及电池模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22952557 Country of ref document: EP Kind code of ref document: A1 |