WO2024020882A1 - 清洁机器人的控制、清洁方法、装置、系统及存储介质 - Google Patents

清洁机器人的控制、清洁方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2024020882A1
WO2024020882A1 PCT/CN2022/108344 CN2022108344W WO2024020882A1 WO 2024020882 A1 WO2024020882 A1 WO 2024020882A1 CN 2022108344 W CN2022108344 W CN 2022108344W WO 2024020882 A1 WO2024020882 A1 WO 2024020882A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
task
mopping
threshold
dirt
Prior art date
Application number
PCT/CN2022/108344
Other languages
English (en)
French (fr)
Inventor
黄翊峰
卢涛
王宇谦
梁辰
张文涛
Original Assignee
云鲸智能(深圳)有限公司
云鲸智能创新(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云鲸智能(深圳)有限公司, 云鲸智能创新(深圳)有限公司 filed Critical 云鲸智能(深圳)有限公司
Priority to PCT/CN2022/108344 priority Critical patent/WO2024020882A1/zh
Priority to EP22946055.5A priority patent/EP4342353A1/en
Priority to US18/513,637 priority patent/US20240081599A1/en
Publication of WO2024020882A1 publication Critical patent/WO2024020882A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4038Disk shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4091Storing or parking devices, arrangements therefor; Means allowing transport of the machine when it is not being used
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/028Refurbishing floor engaging tools, e.g. cleaning of beating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning

Definitions

  • the present application relates to the field of cleaning technology, and in particular to a control of a cleaning robot, a cleaning method, a device, a system and a storage medium.
  • Cleaning robots can be used to automatically clean floors, and their application scenarios can include household indoor cleaning, large-scale place cleaning, etc.
  • the cleaning robot can mop the floor through mopping parts.
  • the mopping parts often become dirty after mopping the ground for a period of time, and need to be returned to the base station to clean the mopping parts.
  • Cleaning robots in related technologies usually mop the floor. After the parts are cleaned, the floor that has not been mopped is directly mopped without monitoring whether the mopped floor is clean. As a result, some floors are not fully cleaned and are still relatively dirty.
  • This application provides a control, cleaning method, device, system and storage medium for a cleaning robot, aiming to solve the technical problems of existing cleaning robots such as some floors that cannot be fully cleaned and are still relatively dirty when cleaning the floors.
  • embodiments of the present application provide a control method for a cleaning robot, including:
  • the preset cleaning area includes a target area, and the target area is an area that needs to be repeatedly mopped;
  • the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • embodiments of the present application provide a cleaning method of a mopping element for use in a cleaning system.
  • the method includes:
  • the cleaning threshold is determined according to the value range of the dirt degree of the mopping part, and the cleaning task of the mopping part is ended according to the cleaning threshold.
  • embodiments of the present application provide a cleaning method of a mopping element for use in a cleaning system.
  • the method includes:
  • Obtain the task progress of the preset cleaning task which includes dragging the preset cleaning area in the cleaning task map through the dragging member;
  • control device includes a memory and a processor
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and when executing the computer program, implement the steps of the aforementioned control method for the cleaning robot and/or the steps of the aforementioned cleaning method for the mopping element.
  • embodiments of the present application provide a base station, which is at least used to clean the mopping parts of a cleaning robot, and the base station includes the aforementioned control device.
  • inventions of the present application provide a cleaning robot, which is used to clean the floor.
  • the cleaning robot includes:
  • embodiments of the present application provide a cleaning system, including:
  • the cleaning robot includes a walking unit and a mopping part, the walking unit is used to drive the cleaning robot to move, so that the mopping part mops the ground;
  • a base station which is used at least for cleaning or replacing the mopping parts of the cleaning robot.
  • embodiments of the present application provide a cleaning system, including:
  • the cleaning robot includes a walking unit and a mopping part, the walking unit is used to drive the cleaning robot to move, so that the mopping part mops the ground;
  • a base station including a dirt detection device to detect the dirtiness of the mopping parts of the cleaning robot;
  • embodiments of the present application provide a cleaning system, including:
  • a first cleaning robot the first cleaning robot includes a walking unit and a mopping member, the walking unit is used to drive the first cleaning robot to move so that the mopping member mops the ground;
  • a base station the base station is at least used to clean the mopping member of the first cleaning robot.
  • the cleaning system also includes:
  • the control device or the first cleaning robot can send information about the target area to the handheld cleaning device or the second cleaning robot.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the processor causes the processor to implement the aforementioned cleaning robot.
  • Embodiments of the present application provide a control, cleaning method, device, system and storage medium for a cleaning robot.
  • the method includes: controlling the cleaning robot to drag a preset cleaning area through a dragging member; and obtaining the first number corresponding to the preset cleaning area.
  • a degree of dirt according to the first degree of dirt, it is determined that the preset cleaning area includes the target area, and the target area is the area that needs to be repeatedly mopped; after the mopping of the preset cleaning area is completed, and after the mopping parts are maintained , controlling the cleaning robot to mop at least part of the target area through the mopping member.
  • the preset cleaning area By determining whether at least part of the preset cleaning area needs to be repeatedly mopped according to the degree of dirt in the preset cleaning area, if necessary, after maintaining the mopping member, the preset cleaning area is At least part of the cleaning area is repeatedly mopped to improve the cleaning effect of the preset cleaning area.
  • Figure 1 is a schematic flowchart of a control method for a cleaning robot provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a cleaning system in an embodiment
  • Figure 3 is a schematic structural diagram of a cleaning robot in one embodiment
  • Figure 4 is a schematic block diagram of a cleaning robot in an embodiment
  • Figure 5 is a schematic structural diagram of a base station in an embodiment
  • Figure 6 is a schematic block diagram of a base station in an embodiment
  • Figure 7 is a schematic diagram of changes in the degree of dirtiness of the mopping parts in one embodiment
  • Figure 8 is a schematic flowchart of a cleaning method of a mopping element provided by an embodiment of the present application.
  • Figure 9 shows the corresponding relationship between the value range and the cleaning threshold in one embodiment
  • Figure 10 is a schematic diagram of multiple preset cleaning areas in an embodiment
  • Figure 11 is a schematic diagram of repeatedly dragging a target area in an embodiment
  • Figure 12 is a schematic flow chart of a cleaning method of a mopping element provided by another embodiment of the present application.
  • Figure 13 is a schematic block diagram of a control device of a cleaning robot provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of a cleaning system provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a control method for a cleaning robot provided by an embodiment of the present application.
  • the control method of the cleaning robot can be applied in a cleaning system to control the cleaning robot in the system so that the cleaning robot performs a cleaning task and cleans the area to be cleaned corresponding to the cleaning task map.
  • the area to be cleaned can be any area to be cleaned such as a family space, a room unit of a family space, a part of a room unit, a large place or a part of a large place. From another perspective, the area to be cleaned can refer to the larger area that is cleaned for the first time, such as the entire room unit; it can also refer to the area that needs to be cleaned after the first cleaning of the larger area, such as the wall area in the room unit. or obstacle areas.
  • the cleaning system includes one or more cleaning robots 100 and one or more base stations 200 .
  • the base station 200 is used in conjunction with the cleaning robot 100.
  • the base station 200 can charge the cleaning robot 100, and the base station 200 can provide a parking position for the cleaning robot 100, etc.
  • the base station 200 can also perform maintenance on the mopping member 110 of the cleaning robot 100.
  • the base station 200 can clean or replace the mopping member 110, where the mopping member 110 is used for mopping the ground.
  • the cleaning system also includes a control device 300.
  • the control device 300 can be used to implement the steps of the control method of the cleaning robot in the embodiment of the present application and/or the steps of the aforementioned cleaning method of the mop element.
  • the robot controller 104 of the cleaning robot 100 and/or the base station controller 206 of the base station 200 can be used alone or in combination as the control device 300 to implement the steps of the method in the embodiment of the present application; in other embodiments,
  • the cleaning system includes a separate control device 300, which is used to implement the steps of the method in the embodiment of the present application.
  • the control device 300 can be provided on the cleaning robot 100, or can be provided on the base station 200; of course, it is not limited to this, for example, the control device 300 may be a device other than the cleaning robot 100 and the base station 200, such as a home smart terminal, a master control device, etc.
  • the cleaning robot 100 can be used to automatically mop the floor.
  • the application scenarios of the cleaning robot 100 can be household indoor cleaning, large-scale place cleaning, etc.
  • FIG. 3 is a schematic three-dimensional view of the cleaning robot 100 in one embodiment
  • FIG. 4 is a schematic block diagram of the cleaning robot 100 in one embodiment.
  • the cleaning robot 100 includes a robot body 101, a driving motor 102, a sensor unit 103, a robot controller 104, a battery 105, a walking unit 106, a robot memory 107, a robot communication unit 108, a robot interaction unit 109, a mopping part 110, and a charging part. 111 etc.
  • the robot body 101 may have a circular structure, a square structure, etc.
  • the robot body 101 having a D-shaped structure is taken as an example for description.
  • the front part of the robot body 101 is a rectangular structure with rounded corners, and the rear part is a semicircular structure.
  • the robot body 101 has a left-right symmetrical structure.
  • the mopping member 110 is used for mopping the ground, and the number of the mopping member 110 may be one or more.
  • the mopping member 110 is, for example, a mop.
  • the wiping member 110 is disposed at the bottom of the robot body 101 , specifically at the front position of the bottom of the robot body 101 .
  • a driving motor 102 is provided inside the robot body 101. Two rotating shafts extend from the bottom of the robot body 101, and the wiping member 110 is sleeved on the rotating shafts.
  • the driving motor 102 can drive the rotating shaft to rotate, so that the rotating shaft drives the mopping member 110 to rotate.
  • the walking unit 106 is a component related to the movement of the cleaning robot 100 and is used to drive the cleaning robot 100 to move so that the mopping member 110 mops the ground.
  • the robot controller 104 is provided inside the robot body 101, and the robot controller 104 is used to control the cleaning robot 100 to perform specific operations.
  • the robot controller 104 may be, for example, a central processing unit (CPU) or a microprocessor (Microprocessor).
  • the robot controller 104 is electrically connected to components such as the battery 105, robot memory 107, drive motor 102, walking unit 106, sensor unit 103, and robot interaction unit 109 to control these components.
  • the cleaning robot 100 described in the embodiment of the present application is only a specific example and does not constitute a specific limitation to the cleaning robot 100 of the embodiment of the present application.
  • the cleaning robot 100 of the embodiment of the present application can also be implemented in other specific ways.
  • the cleaning robot may have more or fewer components than the cleaning robot 100 shown in FIG. 3 or FIG. 4 .
  • FIG. 5 is a schematic three-dimensional diagram of the base station 200 in an embodiment
  • FIG. 6 is a schematic block diagram of the base station 200 in an embodiment.
  • the base station 200 is used in conjunction with the cleaning robot 100.
  • the base station 200 can charge the cleaning robot 100, and the base station 200 can provide a parking position for the cleaning robot 100, etc.
  • the base station 200 can also clean the mopping member 110 of the cleaning robot 100.
  • the mopping member 110 is used for mopping the ground.
  • the base station 200 in the embodiment of the present application includes a base station body 202, a cleaning tank 203 and a water tank (not shown).
  • the cleaning tank 203 is provided on the base station body 202, and the cleaning tank 203 is used to clean the mopping member 110 of the cleaning robot.
  • the cleaning ribs 2031 provided on the cleaning tank 203 can scrape and clean the mopping member 110 .
  • the base station main body 202 is provided with an inlet 205, and the inlet 205 leads to the cleaning tank 203.
  • the cleaning robot 100 can drive into the base station 200 through the entry slot 205, so that the cleaning robot 100 can park at a preset parking position on the base station 200.
  • the water tank is provided in the base station body 202, and specifically includes a clean water tank and a sewage tank. The clean water tank is used to store clean water.
  • the cleaning robot 100 is parked on the base station 200 , the mopping member 110 of the cleaning robot 100 is accommodated in the cleaning tank 203 .
  • the clean water tank provides clean water to the cleaning tank 203, and the clean water is used to clean the mopping member 110.
  • the base station body 202 is provided with a top cover (not shown), and the user can take out the water tank from the base station body 202 by opening the top cover.
  • the water tank can be connected to a water inlet pipe (such as a tap water pipe) and a sewage pipe (such as a drainage pipe), in which case the water tank can be fixed in the base station body 202; in other embodiments, the base station 200
  • a water inlet pipe such as a tap water pipe
  • a sewage pipe such as a drainage pipe
  • the water tank can be fixed in the base station body 202
  • the base station 200 One or both of the clean water tank and the sewage tank may not be provided.
  • the water inlet pipe may directly provide clean water to the cleaning tank 203, and the dirty sewage after cleaning the mop member 110 may also be directly discharged from the sewage pipe.
  • the base station 200 further includes a dirt detection device, which is used to detect the degree of dirt of the mopping element 110 .
  • the dirt detection device includes at least one of the following: a visual sensor and a sewage detection sensor.
  • the image or color information of the mopping element 110 can be obtained according to the visual sensor.
  • the image or color information of the mopping element 110 can be obtained according to the visual sensor.
  • the degree of dirtiness of the mopping element 110 is determined. For example, the darker the grayscale of the surface of the mopping element 110, the greater the degree of dirtiness of the mopping element.
  • the sewage detection sensor can obtain the detection value of the sewage obtained by cleaning the mopping member 110, and the degree of dirtiness of the mopping member 110 can be determined based on the obtained detection value; optionally, the sewage detection sensor includes at least the following: One: visible light detection sensor, infrared detection sensor, total dissolved solids detection sensor; for example, the infrared detection sensor collects the turbidity of sewage, the visible light detection sensor collects the color of sewage, and the total dissolved solids detection sensor collects sewage
  • the water conductivity of the water; the degree of dirtiness of the mop parts can be determined based on one or more of turbidity, color, and water conductivity; for example, the greater the turbidity of the sewage, the greater the water conductivity, and the greater the water conductivity of the mop parts.
  • the degree of dirtiness is also greater.
  • the base station 200 may also include a base station controller 206, a base station communication unit 207, a base station memory 208, a water pump 209, a base station interaction unit 210, and the like.
  • the base station controller 206 is provided inside the base station main body 202, and the base station controller 206 is used to control the base station 200 to perform specific operations.
  • the base station controller 206 may be, for example, a central processing unit (Central Processing Unit, CPU) or a microprocessor (Microprocessor). Among them, the base station controller 206 is electrically connected to the base station communication unit 207, the base station memory 208, the water pump 209 and the base station interaction unit 210.
  • CPU Central Processing Unit
  • Microprocessor Microprocessor
  • the base station memory 208 is provided on the base station main body 202.
  • the base station memory 208 stores programs, which implement corresponding operations when executed by the base station controller 206.
  • Base station memory 208 is also used to store parameters for use by base station 200.
  • the base station memory 208 includes but is not limited to disk memory, CD-ROM, optical memory, etc.
  • the water pump 209 is provided inside the base station body 202.
  • One water pump 209 is used to control the clean water tank to provide clean water to the cleaning tank 203, and the other water pump 209 is used to clean the dirty water behind the mop 110. Sewage is collected into the sewage tank.
  • the water inlet pipe directly provides cleaning water to the cleaning tank 203, and the cleaning water can be provided to the cleaning tank 203 by controlling the solenoid valve on the water inlet pipe.
  • the base station communication unit 207 is disposed on the base station body 202.
  • the base station communication unit 207 is used to communicate with external devices.
  • the base station 200 can communicate with the terminal through the WI-FI communication module and/or communicate with the cleaning robot 100.
  • the base station interaction unit 210 is used to interact with the user.
  • the cleaning mode can be obtained through the base station interaction unit 210.
  • the information of the target area can be displayed for selection of whether to repeat mopping.
  • the cleaning robot can be controlled to move to the target according to the user's determined operation. Drag the area.
  • the base station interaction unit 210 includes, for example, a display screen and control buttons.
  • the display screen and control buttons are provided on the base station body 202.
  • the display screen is used to display information to the user, and the control buttons are used for the user to press to control the startup or operation of the base station 200. Downtime etc.
  • the cleaning robot 100 can be used to mop the floor.
  • the cleaning robot 100 mops the room floor for a period of time.
  • the cleaning robot 100 drives to the base station 200 .
  • the cleaning robot 100 enters the base station 200 through the entry slot 205 on the base station 200 and stops at a preset parking position on the base station 200 .
  • the mopping part 110 of the cleaning robot 100 is accommodated in the cleaning tank 203.
  • the cleaning water in the clean water tank in the base station 200 flows to the cleaning tank 203, and is sprayed through the liquid inlet structure on the cleaning tank 203.
  • the aforementioned cleaning system is only a specific example and does not constitute a specific limitation to the cleaning robot and base station in the embodiment of the present application.
  • the base station in the embodiment of the present application can also be implemented in other specific ways, for example, the base station in the embodiment of the present application
  • the water tank may not be included, and the main body of the base station can be connected to the tap water pipe and the drain pipe, so that the tap water from the tap water pipe is used to clean the mopping part 110 of the cleaning robot 100.
  • the dirty sewage after cleaning the mopping part 110 flows out of the base station 200 through the cleaning tank 203 through the drainage pipe.
  • the base station may have more or fewer components than the base station 200 shown in FIG. 5 or FIG. 6 .
  • the cleaning robot in the embodiment of the present application can also be implemented in other specific ways.
  • the cleaning robot according to the embodiment of the present application may include a cleaning mechanism configured to clean the mopping member.
  • the cleaning robot includes a water tank and the dirt detection device.
  • the water tank supplies water to the cleaning mechanism to clean the mopping element.
  • the dirt detection device is used to detect the degree of dirt of the mopping element.
  • the control method of the cleaning robot in the embodiment of the present application can be used to control the cleaning robot to mop the preset cleaning area, for example, the degree of dirtiness of the preset cleaning area is determined based on the degree of dirtiness of the mopping member. , drag the preset cleaning area according to the degree of dirt in the preset cleaning area.
  • the cleaning robot can control the cleaning mechanism to perform self-cleaning of the mopping part during the process of cleaning the floor.
  • the cleaning method of the mopping element in the embodiment of the present application can be used to control the cleaning mechanism of the cleaning robot to self-clean the mopping element, for example, based on the value range of the degree of dirtiness of the mopping element. a cleaning threshold, and the cleaning threshold ends the cleaning task of the mopping part.
  • the cleaning method of the mopping element in the embodiment of the present application can be applied to a base station or a cleaning robot, for example, used to control the cleaning mechanism on the base station (such as including the cleaning tank 203 and the cleaning rib 2031), or used to control Cleaning mechanism on the cleaning robot.
  • cleaning robots in related technologies usually mop the unmopped floors directly after cleaning the mopping parts, without monitoring whether the mopped floors are clean, causing some floors to be mopped. Not fully cleaned and still relatively dirty.
  • the inventor of the present application has improved the control method of the cleaning robot to determine whether it is necessary to repeatedly mop at least part of the preset cleaning area based on the degree of dirt in the preset cleaning area. If necessary After the mopping member is maintained, at least part of the preset cleaning area is repeatedly mopped to improve the cleaning effect of the preset cleaning area.
  • the control method of the cleaning robot according to the embodiment of the present application includes steps S110 to S140.
  • the preset cleaning area may be determined based on the room in the cleaning task map and/or the workload threshold of the cleaning robot.
  • the workload of each preset cleaning area is less than or equal to the workload threshold.
  • a room may be a preset cleaning area, or a room may have multiple preset cleaning areas; of course, it is not limited thereto.
  • a preset cleaning area may include one room and at least part of another room.
  • the preset cleaning area can also be determined based on the user's division operation on the cleaning task map, or can be determined based on preset area division rules.
  • the cleaning task of the cleaning robot includes mopping multiple preset cleaning areas, for example, mopping multiple preset cleaning areas in a cleaning task map.
  • the workload of the cleaning robot includes at least one of the following: the amount of dirt absorbed by the cleaning robot's mopping member when mopping the floor, the power consumption of the cleaning robot when cleaning the floor, the amount of dirt the cleaning robot cleans.
  • the embodiments of the present application mainly take the example of the workload of the cleaning robot including the amount of dirt collected when the cleaning robot cleans the floor, for example, the amount of dirt collected by the mopping part.
  • the cleaning robot needs to interrupt the current cleaning task and move to the base station for maintenance before completing the workload corresponding to the workload threshold to ensure a better cleaning effect.
  • the mopping part such as a mop
  • the mopping part starts mopping the floor from the moment it is washed until the degree of dirt on the mopping part reaches the maximum.
  • the cleaning robot moves forward at a constant speed without repeating
  • the amount of dirt collected by the mopping part that is, the relationship between the dirt degree d of the mopping part and the mopping time is shown in Figure 7.
  • the mopping part When the mopping part is dirty After the degree d reaches the maximum dirt value d_max of the mopping part, the mopping part will no longer be able to become dirtier by mopping the floor, and the mopping effect on the ground is also very poor. It can be determined that the degree of dirtiness of the mopping part d has reached
  • the workload threshold requires stopping mopping; the cleaning robot can also be controlled to move to the base station for maintenance, such as cleaning the mopping parts or replacing the cleaned mopping parts.
  • the maximum dirt value d_max of the mopping part is an empirical value, which can be measured in a laboratory, for example.
  • the cleaning robot when the cleaning robot moves in the preset cleaning area, such as when mopping the preset cleaning area, it obtains the preset cleaning area through at least one of the sensors mounted on the cleaning robot, such as a visual sensor, an infrared sensor, etc.
  • Corresponding first degree of dirtiness It can be understood that the corresponding first degree of dirt can be obtained before mopping the preset cleaning area, or when mopping the preset cleaning area. Of course, it is not limited to this.
  • the first degree of dirt corresponding to the preset cleaning area can be obtained based on a sensor that is not on the cleaning robot, such as a visual sensor installed on the roof.
  • obtaining the first degree of dirt corresponding to the preset cleaning area includes: after the cleaning robot completes mopping the preset cleaning area through the mopping member, obtaining the degree of dirt of the mopping member. the degree of contamination of the mopping member; and determining the first degree of contamination corresponding to the preset cleaning area according to the degree of contamination of the mopping member.
  • the first degree of dirtiness corresponding to the preset cleaning area is positively correlated with the degree of dirtiness of the mopping element, that is, the degree of dirtiness of the mopping element The larger it is, the dirtier the preset cleaning area is; when the degree of dirtiness of the mopping member is equal to the maximum dirt value d_max of the mopping member, it can be determined that the preset cleaning area is very dirty, and the preset cleaning area is completed in step S110 After mopping, there is still dirt in the preset cleaning area that has not been absorbed by the mopping element.
  • obtaining the degree of dirtiness of the mopping member includes: when cleaning the mopping member, obtaining a detection value of the sewage used to clean the mopping member; and determining the degree of dirt of the mopping member based on the detection value. Degree of soiling.
  • the dirt detection device includes a sewage detection sensor.
  • the sewage detection sensor is used to detect sewage after cleaning the mop piece, for example, detecting one or more of turbidity, color, and water conductivity of the sewage.
  • the amount of dirt removed from the mop element can be determined by the turbidity of the wastewater, the color of the wastewater or the water conductivity of the wastewater.
  • the turbidity, color or water conductivity of the sewage when the turbidity, color or water conductivity of the sewage is greater, it means that the sewage after cleaning the mop parts is dirtier, and the amount of dirt cleaned from the mop parts is larger, which is used to indicate the amount of dirt removed from the mop parts.
  • the turbidity of sewage, the color of sewage, and the water conductivity of sewage can all be used to characterize the amount of dirt cleaned from the mop parts, that is, it can characterize the degree of dirt on the mop parts, and they are all related to the elution of dirt.
  • the turbidity detected for the sewage from cleaning the mop for the first time is 1 NTU
  • the turbidity elution value or dirt amount corresponding to 1 NTU is 100.
  • the turbidity detected for the sewage from cleaning the mop for the second time is 1NTU. 2NTU.
  • the corresponding dirt elution value or dirt amount of sewage with a turbidity of 2NTU is 200. It can be judged that the amount of dirt cleaned from the mop part for the first time is less than the amount of dirt cleaned from the mop part for the second time. The amount of dirt removed, that is, the dirt elution value of the first cleaning is less than the dirt elution value of the second cleaning.
  • the corresponding relationship between the chromaticity of sewage, the water conductivity of sewage and the dirt elution value or dirt amount is the same, and will not be repeated here.
  • the degree of dirtiness of the mopping part can be represented by a numerical value, such as any one of the turbidity of the sewage, the color of the sewage, the water conductivity of the sewage, the amount of dirt, and the dirt elution value.
  • the characterization, or the degree of contamination can be determined by any of the turbidity of the sewage, the color of the sewage, the water conductivity of the sewage, the amount of dirt, and the dirt elution value.
  • the turbidity of the sewage after cleaning the mop parts is 1 NTU, it can indicate that the degree of dirtiness of the mop parts is 1; or if the turbidity of the sewage after cleaning the mop parts is 1 NTU, the corresponding degree of dirtiness is 100, then the degree of dirtiness of the mopping parts is 100.
  • the degree of dirtiness of the mopping element is obtained through a dirt detection device on the base station, such as a visual sensor.
  • a dirt detection device on the base station such as a visual sensor.
  • the darker the color of the mopping element 110 the greater the degree of dirtiness of the mopping element.
  • the degree of contamination of the mopping element of the mopping element can also be obtained through a visual sensor mounted on the cleaning robot and facing the mopping surface of the mopping element.
  • obtaining the degree of dirtiness of the mopping member includes: cleaning the mopping member, obtaining a detection value of the sewage used to clean the mopping member; and determining based on the detection value The degree of dirtiness of the mopping element.
  • the dirt detection device includes a sewage detection sensor.
  • the sewage detection sensor is used to detect sewage after cleaning the mop piece, for example, detecting one or more of turbidity, color, and water conductivity of the sewage. For example, when the turbidity, color or water conductivity of the sewage is greater, it means that the sewage after cleaning the mop parts is dirtier.
  • the amount of dirt cleaned from the mop parts that is, the greater the dirt elution value, can It is determined that the greater the amount of dirt adsorbed on the mopping element before cleaning is, that is, it is determined that the degree of dirt on the mopping element is greater.
  • the detection value of the sewage detection sensor can be obtained at intervals, and the dirt corresponding to the detection value can be calculated according to the time and/or the amount of water used to clean the mop member.
  • the amount of dirt is accumulated to obtain an accumulation result d of the amount of dirt, where the amount of water can be determined based on the amount of cleaning water provided to the cleaning tank and/or the amount of waste water discharged.
  • the mop cleaning operation performed between two floor cleaning operations can be used as a mop cleaning task.
  • the cleaning task of cleaning the mopping element includes, for example, a process of cleaning the mopping element after cleaning a preset cleaning area and before cleaning another preset cleaning area, and may also include ending the cleaning process.
  • the process of cleaning the mopping parts after the cleaning task of the task map For example, when the degree of dirt in all areas of the cleaning task map is less than the corresponding dirt amount threshold, the cleaning task is ended and the cleaning of the mopping parts is performed. Task.
  • the cleaning task of cleaning the mopping parts includes one or more stage tasks.
  • clean water is provided to the cleaning tank of the base station to clean the mopping parts, and then the mopping parts are cleaned. Sewage discharge, this process does not need to be circulated or can be circulated multiple times; or clean water is provided to the cleaning tank at the same time to clean the mop parts and the sewage after cleaning the mop parts is discharged.
  • it is not limited to this, such as providing cleaning water to the washing tank.
  • the time and/or amount of water for cleaning the mopping parts corresponding to tasks in different stages can be the same or different. According to the time and/or amount of water corresponding to one or more stages of the task of cleaning the mopping parts, the tasks in each stage are The dirt amount corresponding to the detection value obtained during execution is accumulated to obtain the accumulation result d of the dirt amount.
  • the detection value such as the turbidity of the sewage
  • the degree of dirtiness of the mopping member of the mopping member is determined based on the accumulated result of the amount of dirt.
  • the degree of dirtiness d of the mop piece that is, the cumulative result of the amount of dirt, can be obtained by integrating the amount of water l used to clean the mop piece and the sewage turbidity T, expressed as follows:
  • the cumulative result d of the amount of dirt can be determined based on the detection value of one or more samples and the amount of water in the sampling interval, which is expressed as follows:
  • Ti represents the sewage turbidity T of the i-th sampling
  • l i represents the water volume between two samplings
  • i is any value among 1, 2,..., n
  • n is the total number of samplings.
  • the degree of contamination of the mopping member may also be predicted based on the single detection value. For example, after stopping the supply of clean water to the cleaning tank, the sewage is discharged, and the sewage turbidity is detected once during the sewage discharge process, and the water volume of the discharged sewage is obtained. The product of the sewage turbidity and the water volume can be determined as The cumulative result of the amount of dirt d. Of course, it is not limited to this. For example, the turbidity of the sewage can be detected multiple times during the sewage discharge process, and the product of the average, maximum, or minimum value of the multiple detected turbidities of the sewage and the amount of water is determined as the amount of dirt. Accumulated result d.
  • the amount of dirt corresponding to the detection value is accumulated according to the time and/or amount of water used to clean the mop member, and the accumulated result of the dirt amount represents the amount of dirt cleaned from the mop member.
  • the amount of dirt can be called the dirt elution value.
  • the dirt elution value of the mopping part cleaning task may be determined based on the dirt elution values of one or more stages of the mopping part cleaning task; for example, the mopping part cleaning task The dirt elution values of all stages of the cleaning task are accumulated to obtain the dirt elution value of the mopping part cleaning task.
  • the detection value of sewage can be obtained only once, or the detection value of sewage can be obtained multiple times, and the dirt elution value of the stage task is determined based on one or more detection values. For example, based on multiple detection values The product of the average detection value and the water volume of the task stage determines the dirt elution value of the task in this stage.
  • the degree of dirtiness of the mopping element may be determined based on the dirt elution value of one or more stage tasks, or the dirt elution value of the mopping element cleaning task.
  • the degree of dirtiness of the mopping part is determined based on the dirt elution value of the first stage task in the mopping part cleaning task.
  • the greater the dirt elution value of the first stage task the greater the dirt elution value of the first stage task.
  • the greater the degree of dirtiness of the mopping part; or the degree of dirtiness of the mopping part is determined based on the maximum or average value of the dirt elution values of multiple stages of tasks, and the maximum value or The larger the average value, the greater the degree of dirtiness of the mopping element.
  • the degree of dirtiness of the mop part can be predicted based on the dirt elution value in each cleaning stage task among the multiple stage tasks based on a prediction model;
  • the number of stage tasks in the cleaning task of mopping parts in the data buried point is obtained by fitting the dirt elution value of each stage task.
  • the degree of dirtiness of mopping parts T f(t)
  • t represents n ⁇ [sequence identification , dirt elution value] matrix
  • n represents the number of stage tasks in the drag part cleaning task
  • [sequence identifier, dirt elution value] represents the cleaning and dirt elution value corresponding to the stage tasks executed in a certain order, for example , when the sequence identifier corresponds to the first stage task, the dirt elution value is the dirt elution value of the first stage task; when the sequence identifier corresponds to the second stage task, the dirt elution value is the second stage task.
  • the dirt elution value of the stage task and so on.
  • the degree of dirtiness of the mopping element of the mopping element can be determined based on the dirt elution value of the executed stage task.
  • obtaining the first degree of dirt corresponding to the preset cleaning area includes: after the cleaning robot completes mopping the preset cleaning area through the mopping member, performing a cleaning task of the mopping member, and cleaning the preset cleaning area.
  • the dirt elution values of all stages of the task in the mopping part cleaning task are accumulated to obtain the dirt elution value of the mopping part cleaning task, and the dirt elution value of the mopping part cleaning task is determined as The first degree of dirt corresponding to the preset cleaning area.
  • the preset cleaning area includes a target area, and the target area is an area that needs to be repeatedly mopped.
  • whether the preset cleaning area includes the target area may be determined based on the first degree of dirt.
  • the entire preset cleaning area may be used as the target area according to the first degree of dirtiness, or a part of the preset cleaning area may be used as the target area according to the first degree of dirtiness.
  • the target area for example, when obtaining the first degree of contamination of the preset cleaning area through a visual sensor, the distribution of contamination levels in different areas in the preset cleaning area can be determined.
  • the dirtiness degree distribution of the area is determined, and the dirtier area is determined to be the target area.
  • the preset cleaning area When it is determined that the preset cleaning area is very dirty according to the first degree of dirt corresponding to the preset cleaning area, it is determined that the preset cleaning area includes the target area.
  • the preset cleaning area After mopping the preset cleaning area in step S110, when mopping the preset cleaning area in step S110, or after mopping the preset cleaning area in step S110, obtain The preset cleaning area corresponds to the first degree of dirt, and it is determined whether the preset cleaning area includes the target area.
  • the embodiment of the present application mainly determines the first degree of dirtiness corresponding to the preset cleaning area according to the degree of dirtiness of the mopping member after mopping the preset cleaning area in step S110, and based on Determining whether the preset cleaning area includes a target area by the first degree of dirtiness will be described as an example.
  • the preset cleaning area when the first degree of dirt corresponding to the preset cleaning area is greater than or equal to a preset dirt amount threshold, it is determined that the preset cleaning area includes the target area; and/or when the preset cleaning area is greater than or equal to a preset dirt amount threshold. When the first degree of dirt corresponding to the cleaning area is less than the preset dirt amount threshold, it is determined that the preset cleaning area does not include the target area.
  • the dirt amount threshold can be determined according to the maximum dirt value d_max of the mopping element.
  • the dirt amount threshold is positively correlated with the maximum dirt value d_max of the mopping element.
  • the total amount of dirt in the preset cleaning area currently being mopped by the cleaning robot is V.
  • V is greater than the maximum dirt value d_max of the mopping member
  • the mopping member mops the preset cleaning area
  • the mopping The accumulated dirt amount d on the wiper is approximately equal to d_max
  • the accumulated dirt amount d on the mopping piece is approximately equal to V.
  • the dirt amount threshold is less than or equal to the maximum dirt value d_max of the mop piece; in actual use, it is difficult for the mop to collect as much dirt as d_max, so the dirt amount threshold can be less than the maximum dirt value d_max. .
  • the dirt amount threshold can also be determined based on the cleaning mode (or mopping mode) of the cleaning robot. For example, the higher the cleaning requirements of the cleaning mode (such as the deep cleaning mode), the smaller the dirt amount threshold; the lower the cleaning requirements of the cleaning mode (such as the quick cleaning mode), the larger the dirt amount threshold.
  • the dirt volume threshold d_var k ⁇ d_max, where 0 ⁇ k ⁇ 1; different cleaning modes can set different k values.
  • the k value of the deep cleaning mode can be smaller, and the k value of the quick cleaning mode can be smaller.
  • the k value can be larger.
  • Cleaning robots include fast cleaning mode, normal cleaning mode, deep cleaning mode or more other modes. Different cleaning modes correspond to different dirt thresholds.
  • the dirt amount threshold corresponding to the normal cleaning mode is 20. After the user selects the normal cleaning mode, if the first dirtiness level of the preset cleaning area is greater than 20, the preset cleaning area will be cleaned repeatedly. When the first degree of dirtiness is less than 20, the cleaning of the preset cleaning area will stop; the corresponding dirtiness threshold of the deep cleaning mode is 10, then after the user selects the deep cleaning mode, if the first degree of dirtiness of the preset cleaning area is greater than 10 Then the preset cleaning area is repeatedly cleaned. When the first degree of dirt is less than 10, cleaning of the preset cleaning area is stopped.
  • the first degree of dirt corresponding to the preset cleaning area is certain (such as 15), it will appear in the cleaning mode with higher cleaning requirements that the first degree of dirt is greater than or equal to the dirt amount threshold (deep cleaning mode dirt amount).
  • the threshold is, for example, 10) and it is determined that the preset cleaning area includes the target area, and in the cleaning mode with lower cleaning requirements, the first degree of dirt is less than the dirt amount threshold (the dirt amount threshold of the quick cleaning mode is, for example, 20) and It is determined that the preset cleaning area does not include the target area, so in a cleaning mode with higher cleaning requirements, at least part of the preset cleaning area can be repeatedly mopped to achieve deep cleaning of the floor.
  • the cleaning mode in the related art is only defined based on the difference in the number of mopping times. For example, the quick cleaning mode cleans (mops the floor) once, and the deep cleaning mode cleans (mops the floor) twice.
  • the cleaning efficiency of this defined mode Lower and unnecessary time may be wasted. For example, when the area is relatively clean but the user sets the cleaning mode to deep cleaning, it still needs to be cleaned twice, and the cleaning efficiency is low.
  • Embodiments of the present application can adjust the dirt amount threshold according to the cleaning mode of the cleaning robot to determine whether the preset cleaning area needs to be repeatedly mopped based on the comparison result between the dirt amount threshold and the first degree of dirt in the preset cleaning area. It can improve cleaning efficiency; for example, when the preset cleaning area is relatively clean but the user sets the cleaning mode to deep cleaning, it can only be cleaned once, and the cleaning efficiency is higher.
  • the cleaning robot when it is determined in step S130 that the preset cleaning area includes the target area, then after completing the mopping of the preset cleaning area, the cleaning robot is controlled to move to the base station, and the mopping member is Maintenance, such as replacing the mopping parts, or cleaning the mopping parts; for example, the mopping parts may include at least one of the following: rotating mops, one-piece mops, roller mops, crawler mops, etc., Of course it is not limited to this. It should be noted that the maintenance of the mopping member is not limited to being performed by the base station, or by the cleaning robot, or by both the base station and the cleaning robot. The user may also be notified and the user may perform the maintenance.
  • the degree of dirtiness of the mopping element is obtained and the degree of dirtiness of the mopping element is obtained according to the degree of dirtiness of the mopping element.
  • the amount of dirt adsorbed on the mopping member is the amount of dirt brought back from the preset cleaning area, that is, the degree of dirt on the mopping member can be used to refer to the degree of dirt in the preset cleaning area.
  • the cleaning robot is controlled to clean the mopping part through the mopping part.
  • the target area is mopped, and the target area is the area cleaned by the mopping member before the mopping member cleaning task.
  • the mopping element cleaning task can be ended after the at least first stage task; after the at least first stage task, The mopping part has been cleaned to a certain extent. At this time, the mopping part has the ability to absorb dirt, and there is no need to perform subsequent tasks. It can still play a more effective role in repeated mopping of the target area. Obvious cleaning effect, and can reduce the consumption of time and water when cleaning mopping parts.
  • Embodiments of the present application also provide a cleaning method of a mopping member.
  • the cleaning method of a mopping member can be applied in a cleaning system to control the base station and/or the cleaning robot in the cleaning system to control the base station.
  • the cleaning mechanism on the cleaning robot and/or the cleaning mechanism on the cleaning robot cleans the mopping parts of the cleaning robot.
  • the cleaning system also includes a control device 300 .
  • the control device 300 is used to implement the steps of the control method of the cleaning robot according to the embodiment of the present application and/or the steps of the aforementioned cleaning method of the mop element.
  • the robot controller 104 of the cleaning robot 100 and/or the base station controller 206 of the base station 200 can be used alone or in combination as the control device 300 to implement the steps of the method in the embodiment of the present application; in other embodiments,
  • the cleaning system includes a separate control device 300, which is used to implement the steps of the method in the embodiment of the present application.
  • the control device 300 can be provided on the cleaning robot 100, or can be provided on the base station 200; of course, it is not limited to this, for example, the control device 300 may be a device other than the cleaning robot 100 and the base station 200, such as a home smart terminal, a master control device, etc.
  • the robot controller 104 is used to implement the steps of the cleaning robot control method in the embodiment of the present application
  • the base station controller 206 is used to implement the steps of the cleaning method of the mopping element in the embodiment of the present application. Of course it is not limited to this.
  • the inventor of this application found that although some equipment in the related art can clean mopping parts, in order to ensure that mops and other mopping parts are cleaned, the cleaning time is usually fixed to a long time, which affects the working efficiency of the cleaning robot. , and it is a waste of water.
  • the inventor of the present application improved the cleaning method of the mopping element to at least improve the cleaning efficiency of the mopping element.
  • the mopping element can be cleaned as quickly as possible to control the cleaning robot to clean other preset cleaning areas or Mop the area you last cleaned.
  • the cleaning method of the mopping element includes steps S210 to S230.
  • the order of the steps of performing the cleaning task of the mopping parts and the steps of obtaining the degree of contamination of the mopping parts is not limited.
  • the mopping can be started after the degree of contamination of the mopping parts is obtained using a visual or infrared sensor.
  • the cleaning task of the wiping parts is performed, and the cleaning task of the wiping parts is ended according to the cleaning threshold corresponding to the degree of dirt of the wiping parts.
  • the degree of dirtiness of the mopping element is determined based on the dirt elution value of the executed phase task.
  • the mop cleaning task includes an executed stage task and an unexecuted stage task, and the unexecuted stage task is another stage task after the executed stage task.
  • the executed stage tasks may include one or more stage tasks that have been executed in the drag cleaning task.
  • the executed stage tasks may be called historical stage tasks, and the stages before the current stage task are The tasks can all be regarded as the executed stage tasks; the unexecuted stage tasks can include the current stage tasks, or can also include stage tasks to be executed after the current stage tasks.
  • obtaining the degree of contamination of the mopping element of the mopping element includes: obtaining the degree of contamination of the mopping element in the executed stage task.
  • the degree of dirtiness of the mopping parts in the executed phase tasks can be obtained by using visual or infrared sensors, or it can also be determined based on the dirt elution value when the mopping parts are cleaned in the executed phase tasks. .
  • obtaining the degree of dirtiness of the mopping element in the executed phase task includes: obtaining the image or color of the mopping element through a visual sensor before the executed phase task. information, and determine the degree of dirtiness of the mopping piece in the executed stage task based on the image or color information of the mopping piece.
  • the stage task is executed after the image or color information of the mopping member is acquired through the visual sensor and the degree of dirtiness of the mopping member is determined based on the image or color information of the mopping member.
  • obtaining the degree of contamination of the mopping element in the executed phase task includes: acquiring the dirt elution value of the mopping element in the executed phase task. ; Determine the degree of dirtiness of the dragging part based on the dirt elution value of the executed stage task. For example, based on the preset corresponding relationship or model between the degree of dirtiness of the mopping part and the dirt elution value of the executed phase task, the mopping method is determined according to the dirt elution value of the executed phase task. For example, the greater the dirt elution value of the executed stage task, the greater the degree of dirtiness of the mopping part.
  • the degree of contamination of the wiping part is determined based on the dirt elution value of the first stage of the wiping part cleaning task.
  • the degree of dirtiness of the mopping part is determined based on the dirt elution value of the first stage task in the mopping part cleaning task; usually the amount of dirt eluted by the first stage task is the largest, and the amount of dirt eluted by the mopping part cleaning task is the largest.
  • the greater the degree of dirtiness of the wiping piece the greater the amount of dirt eluted by the first stage task. According to the dirt elution value of the first stage task, the degree of dirtiness of the wiping piece can be quickly determined.
  • the degree of contamination of the mopping element is determined based on the dirt elution value of the most recently executed stage task before the unexecuted stage task. For example, when the unexecuted phase task is the second phase task in the cleaning task of the wiping part, it is determined that the wiping part is dirty according to the dirt elution value of the first phase task in the cleaning task of the wiping part. degree of contamination; when the unexecuted stage task is the i-th stage task in the mopping part cleaning task, the dirt elution value of the i-1th stage task in the mopping part cleaning task is determined according to the The degree of dirtiness of the mopping parts, where i is an integer greater than 1. For example, the greater the latest dirt elution value, the dirtier the mopping part is.
  • At least one method is to determine the degree of contamination of the mopping part.
  • the degree of contamination of the mopping part may be determined based on a prediction model and based on the dirt elution values of the multiple executed phase tasks. .
  • the unexecuted stage task is the i-th stage task
  • the multiple executed stage tasks such as the 1st stage task to the i-th stage task
  • the accumulated value of the dirt elution value (-1 stage task) determines the degree of dirtiness of the mopping part, which can more accurately determine the degree of dirtiness of the mopping part.
  • the cleaning member can be used to mop the preset cleaning area.
  • the current degree of dirtiness of the mopping part can be obtained using visual or infrared sensors.
  • the current degree of dirt of the mopping member can be determined based on the dirt elution value when the mopping member is cleaned by the current stage task.
  • the mopping part cleaning task is ended, that is, the current stage task is the mopping part cleaning task. The final stage of the task.
  • the corresponding cleaning threshold is determined according to the value range in which the degree of dirt on the mopping part is located.
  • the cleaning threshold is positively correlated with the upper limit of the value range in which the degree of dirtiness of the mopping element is located, or is positively correlated with the lower limit of the value range, for example, the mopping
  • the degree of dirtiness of the mopping element is related to the degree of dirtiness of the floor that has been mopped by the mopping element, such as the first degree of dirtiness of the preset cleaning area.
  • the cleaning effect of the floor is equivalent to that of cleaning the mop parts to a generally clean state and then mopping the floor repeatedly, but the water consumed to clean the mop parts to a very clean state and to clean the mop parts to a generally clean state.
  • the benefits of cleaning the mopping parts to very clean are smaller than the benefits of cleaning the mopping parts to generally clean, which affects the working efficiency of the cleaning robot. And it is a waste of water.
  • the cleaning threshold is negatively correlated with the upper limit of the value range in which the degree of dirtiness of the mop part is located, or is negatively correlated with the lower limit of the value range, that is, the The larger the value range of the dirtiness of the mopping parts, the smaller the cleaning threshold.
  • the cleaning threshold When the mopping part is heavily soiled, it can be determined that the ground that has been mopped is dirty. By cleaning the mopping part to be cleaner, the cleaned mopping part can absorb more when mopping the floor.
  • it can reduce the number of times the ground is mopped, thereby improving the working efficiency of the cleaning robot and improving the cleaning efficiency of the ground; it can also reduce the number of times it returns to the base station for cleaning after mopping the ground, reducing the round trip time and cleaning mopping time. piece of water consumption.
  • the cleaning threshold can also be adjusted according to the area of the area to be mopped in the cleaning task; the exemplary cleaning threshold is positively correlated with the area of the area to be mopped. For example, when the area to be mopped is large, by raising the cleaning threshold, you can prevent the base station from running out of water before the area to be mopped is completely cleaned.
  • the cleaning method of the mopping part can determine the cleaning threshold according to the value range of the dirt degree of the mopping part, and can end the cleaning task of the mopping part in time according to the cleaning threshold.
  • the degree of dirtiness of the parts can reflect the degree of dirtiness of the ground, so that the cleaning degree of the mopping parts can be adjusted according to the degree of dirtiness of the ground, thereby improving the working efficiency of the cleaning robot.
  • determining a cleaning threshold based on a value range in which the degree of dirt of the mopping part is located, and ending the cleaning task of the mopping part according to the cleaning threshold includes: according to the executed stage task Determine the cleaning threshold of the unexecuted phase task within the value range of the degree of dirtiness of the mopping part; obtain the degree of dirtiness of the mopping part in the unexecuted phase task; and determine the unexecuted phase task. If the degree of contamination of the mopping parts in the execution phase task is less than or equal to the cleaning threshold of the unexecuted phase task, the mopping part cleaning task ends.
  • the degree of contamination of the mopping member in the unexecuted phase of the task can be obtained by using visual or infrared sensors, or it can also be based on the degree of contamination of the mopping element when the mopping element is cleaned in the unexecuted phase of the task.
  • the elution value is determined. For example, the step of obtaining the degree of dirtiness of the dragging element in the unexecuted phase task, and determining that the degree of dirtiness of the dragging element in the unexecuted phase task is less than or equal to the unexecuted phase task.
  • Executing the cleaning threshold of the phase task and ending the cleaning task of the dragging part includes: obtaining the dirt elution value of the dragging part in the unexecuted phase task, and when the dragging part is in the unexecuted phase task, When the dirt elution value in the execution stage task is less than or equal to the cleaning threshold of the unexecuted stage task, the cleaning task of the mopping part is ended.
  • the degree of dirtiness of the drag piece is determined based on the dirt elution values of one or more executed stage tasks, for example, based on the dirtiness of multiple executed stage tasks.
  • the accumulated value or predicted value of the elution value determines the degree of dirtiness of the dragging part; and determines the cleaning threshold of the unexecuted phase task according to the degree of dirtiness of the dragging part; and then determines the cleaning threshold of the unexecuted phase task on the dragging part during the unexecuted phase.
  • the cleaning task of the drag piece is ended, that is, the The unexecuted phase task is the last phase task of the drag part cleaning task.
  • the cleaning threshold of the task For example, when the dirt elution value of the unexecuted stage task is greater than the cleaning threshold of the unexecuted stage task, the unexecuted stage task is regarded as the executed stage task, and the dirt of the stage task is washed.
  • the values are accumulated to the degree of dirtiness of the towed parts to obtain the updated degree of dirtiness of the towed parts, and the cleaning threshold of the unexecuted phase task is updated according to the updated degree of dirtiness of the towed part; and then the task in the new unexecuted phase is continued. Clean the drag parts, and compare the dirt elution value of the new unexecuted stage task with the updated cleaning threshold; until the dirt elution value in a certain stage task is less than or equal to the cleaning threshold of the stage task, The cleaning task of the mopping parts is ended.
  • the dirt elution value of the unexecuted phase task is greater than the cleaning threshold of the unexecuted phase task, then continue to clean the mopping parts in the new unexecuted phase task, and compare the new unexecuted phase task.
  • the dirt elution value of the stage task and the cleaning threshold are executed; until the dirt elution value of a certain stage task is less than or equal to the cleaning threshold of the stage task, the drag part cleaning task is ended.
  • the cleaning threshold can also be determined only once, and in each subsequent stage task, the dirt elution value of each stage task will be compared with the cleaning threshold; for example, after the first stage task is completed, according to the first stage task The dirt elution value of the task determines the cleaning threshold, and in each subsequent stage, the tasks will compare the dirt elution value of the task in each stage with the cleaning threshold.
  • the preset value ranges include multiple value ranges, and the multiple value ranges are different.
  • the value ranges do not overlap, and the cleaning thresholds corresponding to the value ranges are also different.
  • the value range includes at least a first value range and a second value range, and the first value range and the second value range are different.
  • Determining the cleaning threshold of the unexecuted phase task according to the value range in which the degree of dirt of the mopping part in the executed phase task includes: when the degree of dirt of the mopping part is in the first value range range, the cleaning threshold of the unexecuted phase task is determined to be the first cleaning threshold; when the degree of dirt of the mop part is within the second value range, the cleaning threshold of the unexecuted phase task is determined to be the third cleaning threshold.
  • Two cleaning thresholds; wherein the first cleaning threshold and the second cleaning threshold are not equal. For example, when the values in the first value range are greater than the values in the second value range, the first cleaning threshold is greater than the second cleaning threshold, that is, the cleaning threshold is equal to the value range in which the degree of dirt of the mop part is located.
  • the upper limit value is positively correlated or positively correlated with the lower limit value of the stated value range.
  • the first cleaning threshold is greater than the second cleaning threshold, that is, the cleaning threshold is consistent with the dirtiness of the mop member.
  • the upper limit of the value range in which the degree lies is negatively correlated or negatively correlated with the lower limit of the value range.
  • the value ranges corresponding to the determination of the degree of contamination of the wiper include three, wherein the degree of contamination of the wiper in the first value range is all less than the second contamination amount threshold,
  • the cleaning threshold corresponding to the first value range is threshold 0; the degree of dirtiness of the mop parts in the second value range is greater than or equal to the second dirt amount threshold and less than the first dirt amount threshold.
  • the second The cleaning threshold corresponding to the value range is threshold 1; the degree of dirtiness of the mop parts in the third value range is greater than or equal to the first dirt amount threshold, and the cleaning threshold corresponding to the third value range is threshold 2; Of course it is not limited to this. Among them, threshold 2 is greater than threshold 1, and threshold 1 is greater than threshold 0. For example, when the degree of dirtiness of the mopping part is relatively large, it means that the mopped floor is dirty. The cleaning can be ended after the mopping part is cleaned a few times according to a larger cleaning threshold.
  • the degree of dirtiness of the mopping element is greater than or equal to a preset dirt amount threshold, such as the second dirt amount threshold, it can be determined that the floor mopped by the mopping element includes the target area, and in the After the cleaning task of the mopping member is completed, at least part of the target area is repeatedly mopped (which may be called back mopping).
  • a preset dirt amount threshold such as the second dirt amount threshold
  • the cleaning method further includes: determining a cleaning strategy for the unexecuted phase task based on the dirt elution value of the executed phase task.
  • the cleaning strategy may be determined based on the dirt elution value of the executed phase task.
  • the cleaning duration and/or water volume of the unexecuted stage tasks are of course not limited to this.
  • the rotation speed of the pump that provides cleaning water to the cleaning tank can be adjusted to increase or decrease the pressure of water supply to the mopping member.
  • the cleaning duration and/or water volume of the unexecuted phase tasks are positively correlated with the dirt elution value of the executed phase tasks.
  • the dirt elution value of the executed stage task is large, it can be determined that the mopping part absorbs more dirt, and the cleaning time and/or water volume of the unexecuted stage task can be extended to remove the unexecuted stage task. More dirt will improve the cleaning efficiency of dirty parts; when the dirt elution value of the executed phase task is small, it can be determined that the mopping part absorbs less dirt, and the cleaning of the unexecuted phase task can be shortened. time and/or water volume, saving time and water consumption.
  • the cleaning robot moves to the base station to clean the mopping parts.
  • the first phase task cleans the mopping parts for 15 seconds, and the dirt is washed away according to the first phase task.
  • the value determines the degree of dirtiness of the dragging parts, and determines the cleaning threshold according to the value range in which the degree of dirtiness of the dragging parts is located; when the dirt elution value of the first stage task is greater than the cleaning threshold, the cleaning threshold is determined according to the first stage task.
  • the dirt elution value of one stage task determines the cleaning time (such as 18 seconds) and/or the amount of water for the unexecuted stage task, and then the second stage task is executed to clean the mopping parts for 18 seconds; by extending the unexecuted stage task
  • the cleaning time can reduce the number of subsequent unexecuted tasks and improve the cleaning efficiency of dirty parts.
  • the degree of dirtiness of the mopping part may be determined based on the dirt elution value of at least one phase of the task of cleaning the mopping part (for example, according to the dirt elution value of the mopping part cleaning task).
  • the accumulated value of the dirt elution values of all stages of the task in the cleaning task is determined) and the first degree of dirt corresponding to the preset cleaning area. According to the first degree of dirt, it is determined that the preset cleaning area includes the target area. .
  • the cleaning duration and/or water volume of the unexecuted phase tasks are negatively correlated with the dirt elution value of the executed phase tasks.
  • the dirt elution value of the executed phase tasks is large, you can shorten the cleaning time and/or water volume of the unexecuted phase tasks, and you can also increase the number of unexecuted phase tasks to ensure that the mopping parts are sufficiently cleaned, and the overall It can also improve the cleaning efficiency of dirty parts; when the dirt elution value of the executed stage tasks is small, you can extend the cleaning time and/or water volume of the unexecuted stage tasks to remove the dirt in each unexecuted stage task. More dirt, reduce the number of subsequent unexecuted tasks, make the mopping parts clean enough as soon as possible, and improve the cleaning efficiency of dirty parts.
  • the cleaning threshold of the unexecuted stage task is determined based on the value range of the degree of dirt of the drag part in the executed stage task
  • the cleaning threshold of the stage task that has been executed can be determined based on the dirtiness of the stage task that has been executed.
  • the elution value and the cleaning threshold of the unexecuted stage task determine the cleaning strategy of the unexecuted stage task.
  • the cleaning duration and/or water volume of the unexecuted phase tasks may be adjusted according to the dirt elution value of the executed phase tasks and the cleaning threshold of the unexecuted phase tasks. For example, if the dirt elution value of the task in the executed stage is less than or equal to the cleaning threshold, the cleaning task of the mopping part can be ended; the dirt elution value of the task in the executed stage is greater than the cleaning threshold.
  • the unexecuted stage task cleaning strategy such as cleaning duration and/or water volume, is adjusted, and the unexecuted stage task is executed according to the cleaning duration and/or water volume of the unexecuted stage task.
  • the method further includes: when performing the cleaning task of the mopping member, when the amount of water consumed in cleaning the mopping member reaches a preset water volume threshold or the time reaches a preset time threshold, ending the cleaning task.
  • Cleaning tasks for dragging parts, and/or outputting exception reminders For example, when only clean water is provided from the clean water tank to the cleaning tank, the amount of water that can be used to clean the mopping parts is limited. The amount of water consumed in a certain cleaning task of the mopping parts reaches the preset water volume threshold or the time reaches the preset time.
  • an abnormal reminder can be output when the amount of water consumed for cleaning the mopping element reaches a preset water amount threshold or the time reaches a preset time threshold, for example, prompting the user to add water to the clean water tank.
  • the degree of dirtiness of the mopping member on the cleaning robot meets the requirements, for example, is less than or equal to the corresponding cleaning threshold; the cleaning robot can be controlled to use the mopping member to clean the mopping member.
  • At least part of the target area is dragged.
  • the remaining dirt amount of V-d_max on the target area is continued to be adsorbed to improve the dragging of the target area. Cleaning effect.
  • the preset cleaning area includes multiple areas. If it is determined in step S130 that the current preset cleaning area includes the target area, after completing mopping and mopping all the preset cleaning areas, After the wiping member is maintained, the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • all the preset cleaning areas are all preset cleaning areas in the cleaning task map.
  • the preset cleaning areas include multiple preset cleaning areas, such as preset cleaning areas A1 to preset cleaning areas A9 respectively, and the cleaning sequence of the preset cleaning areas A1 to preset cleaning areas A9 is, for example, are A1, A2,...,A9.
  • the preset cleaning area A1 After mopping the preset cleaning area A1, it is determined that the preset cleaning area A1 includes the target area, and the preset cleaning area A1 can be marked as containing the target area; and then after maintaining the mopping member, clean according to the Drag the preset cleaning area A2 to the preset cleaning area A9 in sequence; wherein, after dragging the preset cleaning area A2, it is determined that the preset cleaning area A2 includes the target area, and the preset cleaning area A2 can be marked In order to include the target area, after dragging the preset cleaning area A4, it is determined that the preset cleaning area A4 includes the target area, and after dragging the preset cleaning area A7, it is determined that the preset cleaning area A7 includes the target area, such as As shown in Figure 10, the gray marked area represents the preset cleaning area including the target area.
  • the cleaning robot After completing mopping the preset cleaning area A9 and performing maintenance on the mopping member, the cleaning robot is controlled to use the mopping member to mop at least part of the target areas of the preset cleaning areas A1, A2, A4, and A7. Do mopping. After all the preset cleaning areas are dragged and wiped, at least part of the target area is dragged and wiped, so that all the preset cleaning areas in the cleaning task map can be cleaned at least once; for example, during cleaning When there are multiple preset cleaning areas in the task map that are dirty, you can make the ground corresponding to the cleaning task map less dirty as soon as possible.
  • the preset cleaning area includes multiple areas. If it is determined in step S130 that the current preset cleaning area includes a target area, other than the preset cleaning area corresponding to the target area will be processed. Before mopping the preset cleaning area, the mopping member is maintained, and the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • the target area of the preset cleaning area A1 is Mopping is performed at least partially to clean the preset cleaning area A1 as soon as possible; and then the preset cleaning area A2 to the preset cleaning area A9 are mopped in accordance with the cleaning sequence, wherein after the preset cleaning area A2 is mopped, If it is determined that the preset cleaning area A2 includes the target area, then after the mopping member is maintained, at least part of the target area of the preset cleaning area A2 is mopped, and then the preset cleaning area A3 is mopped.
  • the cleaning task map there are individual preset cleaning areas that are dirty.
  • the individual preset cleaning areas can be cleaned as soon as possible, and then the remaining preset cleaning areas can be cleaned; for example , after cleaning the dirty preset cleaning area, clean the remaining preset cleaning area, so that even when the cleaning robot moves to the base station through the remaining preset cleaning area after repeatedly dragging the target area, the adsorption on the mopping part will The dirt contaminates the remaining preset cleaning area, and these contaminations can also be cleaned when cleaning the remaining preset cleaning area.
  • the preset cleaning area includes multiple, and when the first degree of dirt in the current preset cleaning area is greater than or equal to the preset first dirt amount threshold, the current preset cleaning area is determined to be It is assumed that the cleaning area includes a target area; and before mopping other preset cleaning areas except the current preset cleaning area, the mopping member is maintained, and the cleaning robot is controlled to mop the The wiping member mops at least part of the target area, that is, when the first degree of dirt is greater than or equal to the preset first dirt amount threshold, the cleaning robot is immediately controlled to mop the target area through the mopping member. Drag at least part of the target area.
  • the first degree of dirt in the current preset cleaning area is greater than or equal to the preset second dirt amount threshold and less than the first dirt amount threshold, it is determined that the preset cleaning area includes a target area; And after the entire preset cleaning area is mopped and the mopping member is maintained, the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • the first degree of contamination of the preset cleaning area is determined according to the degree of contamination of the mopping element. When the first degree of contamination of the preset cleaning area is greater than or equal to the preset first contamination amount threshold, control is performed immediately.
  • the cleaning robot mops at least part of the target area through the mopping member; the first degree of dirt in the preset cleaning area is greater than or equal to the preset second dirt amount threshold and less than the first
  • the cleaning robot is controlled to use the mopping member to perform cleaning on at least part of the target area through the mopping member. Drag and wipe.
  • the second dirt amount threshold is smaller than the first dirt amount threshold.
  • the first degree of dirt in the current preset cleaning area is greater than or equal to the first dirt amount threshold, it can be determined that the preset cleaning area is dirty, and at least part of the target area of the preset cleaning area can be cleaned multiple times, In order to clean at least part of the area as soon as possible to a relatively clean state (for example, the degree of dirt is less than the first dirt amount threshold) or to a very clean state (for example, a degree of dirt is less than the second dirt amount threshold), and then clean The remaining preset cleaning area; in this way, even when the cleaning robot moves toward the base station through the remaining preset cleaning area after repeatedly mopping the target area, the dirt adsorbed on the mopping element will contaminate the remaining preset cleaning area.
  • these contaminations can also be cleaned when cleaning the remaining preset cleaning areas.
  • the first degree of dirt in the current preset cleaning area is greater than or equal to the second dirt amount threshold and less than the first dirt amount threshold, it can be determined that the preset cleaning area is not very dirty, and the remaining preset cleaning area can be cleaned first.
  • the ground corresponding to the cleaning task map can be cleaned at least once as soon as possible, so that the overall appearance does not look very dirty.
  • controlling the cleaning robot to mop at least part of the target area through the mopping member further includes: obtaining a second degree of dirtiness corresponding to the target area; and according to the target area Corresponding to the second degree of dirtiness, it is determined that the target area needs to be repeatedly mopped; and at least part of the target area is again mopped. It can be understood that, according to the second degree of dirt corresponding to the target area, it is determined whether the target area needs to be repeatedly mopped; if yes, then at least part of the target area is repeatedly mopped.
  • the first degree of dirtiness and the second degree of dirtiness can both be used to indicate the degree of dirtiness of the same area; or the first degree of dirtiness is used to indicate the degree of dirtiness of an area, and the second degree of dirtiness can be used to indicate the degree of dirtiness of an area.
  • Degree indicates how dirty at least part of the area is.
  • the first degree of contamination may be the degree of contamination of the preset cleaning area determined based on the degree of contamination of the mopping member when the preset cleaning area is mopped for the first time in the current cleaning task;
  • the second degree of contamination is the degree of contamination determined based on the degree of contamination of the mopping parts when repeatedly mopping the target area; or it can be at least part of the target area being repeatedly mopped.
  • the degree of soiling is determined based on the degree of soiling of the mopping parts.
  • the cleaning robot when the first degree of dirt is greater than or equal to a preset first dirt amount threshold, immediately control the cleaning robot to mop at least part of the target area through the mopping member; and obtain The second degree of contamination corresponding to the target area, for example, after the mopping member is used to mop at least part of the target area, the detection value of the sewage obtained by cleaning the mopping member is obtained, according to the obtained The detection value may determine the degree of dirtiness of the mopping element, and determine the second degree of dirtiness corresponding to the target area according to the degree of dirtiness of the mopping element. Of course, it is not limited to this.
  • the degree of dirtiness of the wiping element and the second degree of dirtiness corresponding to the target area can be determined based on the image or color information of the wiping element, or the visual sensor, infrared sensor, etc. can be used to determine the degree of dirtiness of the wiping element. At least one of them obtains the second degree of dirtiness corresponding to the target area.
  • the method further includes: when the number of times of repeated dragging of the target area meets a cleaning times threshold, terminating the repeated dragging of the target area. For example, when the second degree of dirt corresponding to the target area is greater than or equal to a preset dirt amount threshold, such as a first dirt amount threshold or a second dirt amount threshold, at least part of the target area is reconstructed.
  • a preset dirt amount threshold such as a first dirt amount threshold or a second dirt amount threshold
  • the second degree of dirt corresponding to the target area can be obtained again to determine whether the target area needs to be repeatedly dragged...; when the target area is When the number of repeated dragging times of the area meets the cleaning times threshold, for example, 3 times, the repeated dragging of the target area is terminated. It can be understood that if the second degree of dirt in the target area after repeated mopping has not dropped below the dirt amount threshold, if the number of cleanings reaches the maximum number of cleanings, that is, the number of cleanings threshold, then the process will also stop. Clean this target area. This prevents the cleaning of other preset cleaning areas from being affected by repeated dragging of the area when there is a lot of dirt in a preset cleaning area.
  • the repeated dragging of the target area is terminated, and a message can also be sent to the user interface to remind the user that the target area is more dirty. , users can go to the target area based on this message to check whether there is continuous leakage of dirt and deal with it in a timely manner.
  • the cleaning frequency threshold can be determined according to the cleaning mode. Different cleaning modes correspond to different cleaning frequency thresholds; for example, the cleaning frequency threshold of the deep cleaning mode is greater than the cleaning frequency threshold of the normal cleaning mode or the quick cleaning mode.
  • the cleaning robot when the first degree of dirt is greater than or equal to the preset first dirt amount threshold, the cleaning robot is immediately controlled to mop the target area through the mopping member to obtain the target area.
  • the corresponding second degree of dirt when the second degree of dirt is greater than the second dirt amount threshold, it is determined that the target area needs to be repeatedly mopped, and the cleaning robot can be controlled to continue mopping the target area. .
  • the second degree of dirt corresponding to the target area is less than the second dirt amount threshold, then mopping is completed in at least part of the target area, and after the maintenance of the mopping member is completed, other preset Mop the clean area.
  • the cleaning robot is controlled to continue to mop the target area, and the target can be acquired again after repeatedly mopping the target area.
  • the second degree of dirt corresponding to the area When the second degree of dirt is greater than the second dirt amount threshold, then after the mopping member is maintained, the target area is continued to be mopped until the area corresponding to the target area is When the second degree of dirt is less than the second dirt amount threshold, the mopping of the target area ends, and other preset cleaning areas can be cleaned.
  • the cleaning robot passes through other areas after mopping the target area, the dirt adsorbed on the mopping member will contaminate the passing areas. After finishing mopping the target area, other pre-cleaned areas are cleaned. Provide a clean area to remove said contamination.
  • the cleaning robot when the first degree of dirt is greater than or equal to the preset first dirt amount threshold, the cleaning robot is immediately controlled to mop the target area through the mopping member to obtain the target area.
  • the cleaning robot is controlled to continue mopping the target area until the second degree of dirt is greater than or equal to the preset value.
  • the cleaning robot is controlled to use the mopping The wiping member drags at least part of the target area.
  • the target area when the target area is repeatedly dragged and wiped, other preset cleaning areas can be cleaned by repeatedly dragging until the second degree of dirt in the target area is less than the first dirt amount threshold;
  • the target area can be marked as requiring all preset cleaning areas to be mopped.
  • each area can be cleaned quickly, and the contamination of the mopped floor by the mopping parts can be reduced; After all areas have been cleaned, mop the floors that are not very dirty again to improve the cleanliness of that area.
  • the preset The cleaning area includes a target area; and after the entire preset cleaning area is mopped and the mopping member is maintained, the cleaning robot is controlled to mop at least part of the target area through the mopping member. wipe. After all the preset cleaning areas are mopped, it can be determined that one or more of the preset cleaning areas include the target area. Refer to FIG. 10 .
  • the preset cleaning areas A1, A2, A4, and A7 include the target area.
  • the method further includes: after completing mopping all the preset cleaning areas, determining the mopping order of multiple target areas according to the characteristic parameters of the target area.
  • the characteristics of the target area are: The parameters at least include: the degree of dirtiness corresponding to the target area, the distance between the target area and the cleaning robot, and the room identification of the room where the target area is located;
  • the cleaning robot may be controlled to mop at least part of multiple target areas according to the mopping sequence. Cleaning the areas that need to be repeatedly mopped according to the mopping sequence can improve the cleaning effect and/or cleaning efficiency of repeated mopping.
  • the cleaning robot is controlled to mop at least part of the plurality of target areas in descending order of soiling degree. For example, when a target area with a greater degree of soiling is repeatedly mopped first and then a target area with a less soiled degree is repeatedly mopped, this way, even when the cleaning robot passes through the target area with a less soiled degree, , the dirt adsorbed on the mopping element contaminates the target area, and it is also possible to clean away these contaminations better when cleaning the target area with a smaller degree of dirt.
  • the cleaning robot is controlled to mop at least part of the plurality of target areas in order from small to large degree of soiling.
  • the mopping element still has the ability to absorb dirt.
  • the cleaning robot passes through a target area with a greater degree of dirt, it can absorb the dirt in the area. It is at least partially dirty, and then returned to the base station for maintenance; and then the cleaning effect of the target area can be improved when the target area with a greater degree of dirt is mopped.
  • the cleaning robot is controlled to mop at least part of multiple target areas in order from near to far according to the distance between the target area and the cleaning robot.
  • mopping the closer target area first can reduce the walking distance of the cleaning robot and improve cleaning efficiency.
  • the cleaning robot is controlled to mop at least part of multiple target areas in order from far to near according to the distance between the target area and the cleaning robot. For example, repeatedly drag the far target area first and then drag the closer target area. In this way, when cleaning the closer target area, the farther target area can be cleaned and then dragged. Contamination of the nearby target area caused by the wiper. For example, after repeatedly mopping a distant target area, when the cleaning robot passes through a closer target area and returns to the base station, the mopping member can absorb at least part of the dirt in the closer target area and then return to the base station. Perform maintenance; later mopping at a closer target area improves the cleaning effect on that target area.
  • the kitchen can be repeatedly mopped first, and then the living room and bedroom can be mopped.
  • the reverse order can also be followed.
  • determining the mopping order of multiple target areas according to the degree of dirt corresponding to the target area includes: determining the degree of dirt.
  • the target area whose difference is less than or equal to the difference threshold is a merged area; the degree of dirtiness of the merged area is determined according to the degree of dirtiness of multiple target areas within the same merged area.
  • one or more preset cleaning areas may be determined as target areas that still need to be repeatedly mopped. For example, when the difference in dirtiness levels of multiple target areas is less than or equal to the difference threshold, and the sum of the dirtiness levels of the multiple target areas is less than or equal to the first dirtiness amount threshold or the third dirtiness amount threshold, When the dirt amount threshold is 2, the multiple target areas are determined to be merged areas.
  • the preset cleaning areas A1, A2, A4, and A7 are target areas. The target area A1 has been wiped once.
  • the corresponding degree of dirtiness of the target area A1 that is, the first degree of dirtiness of the preset cleaning area A1 is 20;
  • the target area A2 has been mopped twice.
  • the second degree of dirtiness of the target area A2 is determined to be 25 based on the degree of dirtiness of the mopping object. It can be determined that the target area A1 and the target area A2 are merged areas.
  • the degree of contamination of the merged area may be determined based on the maximum value, minimum value, sum or average value of the degree of contamination corresponding to each target area in the merged area.
  • controlling the cleaning robot to mop the target area through the mopping member includes: when the degree of dirt in the combined area is less than or equal to a preset combined dirt threshold, controlling The cleaning robot mops multiple target areas in the merged area through the mopping member.
  • the combined dirt threshold is determined according to the maximum dirt value d_max of the mopping element.
  • the combined dirt threshold may be the first dirt amount threshold or the second dirt amount threshold.
  • the area of the repeated drag area can be increased, the time spent by the cleaning robot traveling to and from the base station can be reduced, and the cleaning efficiency can be improved; and when the sum of the dirtiness levels corresponding to each target area in the merged area is When it is less than or equal to the maximum dirt value d_max of the mopping part, the cleaning effect of each target area in the merged area can still be guaranteed.
  • the dragging order of multiple merged areas may be determined based on the degree of dirt of the merged areas; or when a target area is not merged, the order of dragging may be determined based on the degree of dirt of the merged areas and the unmerged areas.
  • the degree of dirtiness of the target area determines the dragging order of the merged area and the unmerged target area. Cleaning the areas that need to be repeatedly mopped according to the mopping sequence can improve the cleaning effect and/or cleaning efficiency of repeated mopping.
  • the dragging order of the merged area and the unmerged target area is determined according to the characteristic parameters of the merged area and the unmerged target area. For details, refer to the aforementioned characteristics of the target area.
  • the parameter determines the dragging order of multiple target areas.
  • controlling the cleaning robot to mop at least part of the target area B through the mopping member includes: splitting the target area B into several sub-areas.
  • the target area (for example, including B1 and B2), controls the cleaning robot to mop at least one of the sub-target areas (for example, B1) through the mopping member.
  • the sub-target areas for example, B1
  • B1 and B2 controls the cleaning robot to mop at least one of the sub-target areas through the mopping member.
  • the sub-target areas for example, B1 through the mopping member.
  • controlling the cleaning robot to mop at least one of the sub-target areas through the mopping member includes: controlling the cleaning robot to mop the sub-target areas sequentially through the mopping member ( B1, B2) perform dragging; obtain the third degree of dirtiness of the sub-target area (such as B1), and determine whether the sub-target area (B1) needs to be dragged again; if yes, then drag the sub-target area (B1) Continue splitting and drag and wipe the split area (for example, B11 and B12). It can be understood that according to the third degree of dirt of the sub-target area, it is determined whether the sub-target area needs to be repeatedly dragged; if yes, the sub-target area is continued to be split, and the split area is Drag and wipe.
  • the target area is divided into several sub-target areas, and after dragging the sub-target area, the third degree of dirt of the sub-target area can be determined according to the degree of dirt of the mopping member, A dirtier sub-target area in the target area may be determined; and the sub-target area may be further divided, and the degree of dirtiness of the smaller area may be determined to perform repeated dragging on the smaller area. It is understandable that the cleaning efficiency and cleaning effect of repeated mopping can be improved by dividing the areas that need to be repeatedly mopped and gradually reducing the areas that need to be repeatedly mopped.
  • the controlling the cleaning robot to mop at least one of the sub-target areas through the mopping member includes: controlling the cleaning robot to mop a sub-target area through the mopping member.
  • the sub-target area such as B1
  • the sub-target area B is dragged; the second degree of dirtiness of the target area B is estimated, and the third degree of dirtiness of the sub-target area B1 is obtained.
  • the degree of dirtiness determines whether the target area has not been repeatedly dragged and wiped; if not (repeated dragging is completed), then the next sub-target area is repeatedly dragged and wiped.
  • the third degree of dirtiness of the target area B1 when the third degree of dirtiness of the target area B1 is close to or equal to the second degree of dirtiness of the target area B, it can be determined that the dirtiness of the target area B is mainly concentrated in the sub-target area B1, and the sub-target area B1 is not dirty.
  • the target area B2 is relatively clean and does not need to be repeatedly mopped, that is, it is determined that the target area has been repeatedly mopped; when the third degree of dirt of the target area B1 is much smaller than the second degree of dirt of the target area B, If it is half smaller, other sub-target areas can be determined.
  • B2 is still very dirty, and the sub-target area B2 needs to be repeatedly dragged and wiped. That is, it is determined that the target area has not been repeatedly dragged and wiped.
  • the sub-target area B1 When the sub-target area B1 is repeatedly dragged and wiped, the sub-target area B1 is divided into several smaller areas B11 and B12, and the cleaning robot is controlled to drag the area B11, and the area of the area B11 can be determined. According to the degree of dirtiness of area B11 and the third degree of dirtiness of sub-target area B1, it can be determined whether B11 and B12 need to be repeatedly dragged and wiped; by splitting the areas that need to be repeatedly dragged and wiped and according to the The degree of dirtiness determines whether smaller areas need to be mopped repeatedly, so that the scope of repeated mopping can be gradually reduced and cleaning efficiency improved.
  • the cleaning method of the mopping member further includes: determining whether the mopping member is used to mop the ground within a preset time period, and if not, executing and ending the cleaning method according to the post-task cleaning threshold.
  • the cleaning task of the mopping parts; the cleaning threshold after the task is less than or equal to the cleaning threshold determined according to the value range of the dirt degree of the mopping parts.
  • the post-task cleaning threshold is smaller than the first cleaning threshold and the second cleaning threshold, or the post-task cleaning threshold is equal to the smallest cleaning threshold among the cleaning thresholds determined by the value range.
  • the mopping member When the mopping member is no longer used for mopping the floor for a long period of time, such as within a day, or the current cleaning task has been completed (for example, each preset cleaning area of the cleaning task map does not include the target area, sub-target area, or (smaller area of dirty area), the next cleaning task will be executed after the preset time, then the mopping parts can be cleaned until the dirt elution value is less than or equal to the post-task cleaning threshold, and the mopping parts will be cleaned more thoroughly Cleaning to prevent odor generation within a preset period of time.
  • the degree of dirtiness of the mopping element is determined based on the detection value of the sewage used to clean the mopping element and the zero offset value of the mopping element.
  • the dirt elution value of each stage of the task is determined based on the detection value and zero offset value of the sewage of each stage of the task.
  • the zero-offset value is the detection value when the sewage detection sensor detects clean water or sewage close to clean water. The difference between the detection value of sewage and the zero-offset value can more accurately indicate the amount of dirt and cleanliness of the mop cleaning floor.
  • the amount of elution during mopping can eliminate deviations caused by errors in the sewage detection sensor and/or aging of the mopping parts.
  • the stable value can be determined to be Zero offset value.
  • the zero offset value includes a pre-stored first zero offset value of factory settings, and/or a second zero offset value updated according to the detection value of the sewage detection sensor.
  • the first zero offset value can be determined based on the factory setting. The degree of dirtiness of the wiping part; when the second zero offset value is stored, the second zero offset value is used with priority.
  • the second zero offset value is determined based on the factory-set first zero offset value and the detection value of the sewage used to clean the mop piece; and then The degree of contamination of the wiping member of the wiping member may be determined based on the second zero-offset value and the detection value; the second zero-offset value may also be calibrated based on the detection value.
  • the method further includes: after completing the cleaning task of the mopping member and/or before mopping the ground with the mopping member, obtaining a detection value of the sewage used to clean the mopping member; when When the absolute value of the difference between the detection value and the zero offset value is less than or equal to the first difference threshold, the zero offset value is calibrated according to the detection value.
  • the cleaning task of the mopping parts is ended according to the post-task cleaning threshold; and it is determined to end the cleaning of the mopping parts.
  • the value threshold is less than or equal to the first difference threshold, for example, the detection value is updated to the second zero offset value. Deviations caused by errors of the sewage detection sensor and/or aging of the wiping parts when determining the detection value of sewage based on the first zero offset value/second zero offset value can be eliminated.
  • the method further includes: when the absolute value of the difference between the detection value of the executed stage task in the mopping part cleaning task and the zero offset value is greater than the first difference threshold, continue Execute the next stage task; when the absolute value of the difference between the detection value of the next stage task and the zero offset value is less than or equal to the second difference threshold, and is different from the detection value of the most recently executed stage task
  • the absolute value of the difference is less than or equal to the third difference threshold
  • the zero offset value is calibrated according to the detection value of the next stage task. For example, when the absolute value of the difference between the detection value and the zero offset value is greater than the first difference threshold, the cleaning of the mopping member can be continued.
  • the degree of dirtiness of the mopping member is stable (two adjacent ones are When the absolute value of the difference between the phase task detection value is less than or equal to the third difference threshold), and the absolute value of the difference between the latest detection value and the zero offset value is less than or equal to the second difference threshold, all values can be The latest detection value is updated as the second zero offset value.
  • the second difference threshold is greater than or equal to the first difference threshold, so that when the wiping member ages, the second zero offset value can still be updated according to the detection value.
  • the method further includes: when the absolute value of the difference between the detection values of two adjacent tasks in the mop cleaning task is greater than the third difference threshold, continue to execute the next step. stage tasks; until the absolute value of the difference between the detection values of two adjacent stage tasks is less than or equal to the third difference threshold.
  • the degree of dirtiness of the mopping parts is not stable, and it is not yet certain that the mopping parts have been cleaned to the cleanest degree possible, the cleaning of the mopping parts will continue; until the degree of dirtiness of the mopping parts is stable, it can be determined that the mopping parts The wiped parts have been cleaned to the cleanest degree possible, and the second zero offset value is updated based on the stabilized detection value.
  • the method further includes: when the absolute value of the difference between the detection value of the latter of the two adjacent stage tasks and the zero offset value is greater than the second difference threshold , continue to execute the next stage task; until the absolute value of the difference between the detection value of the latter stage task and the zero offset value of the two adjacent stage tasks is less than or equal to the second difference threshold.
  • the absolute value of the difference between the detection value and the zero offset value is greater than the second difference threshold, it cannot be determined that the wiping part has been cleaned to the cleanest degree that can be cleaned, and the wiping part will continue to be cleaned. Cleaning; until the absolute value of the difference between the latest detection value and the zero offset value is less than or equal to the second difference threshold, the latest detection value can be updated to the second zero offset value.
  • the method further includes: when the number of stage tasks reaches a stage number threshold, outputting prompt information, where the prompt information is used to indicate that the sensor detecting the sewage is abnormal.
  • the prompt information is used to indicate that the sensor detecting the sewage is abnormal.
  • the number of stage tasks reaches the stage number threshold
  • the absolute value of the difference between the detection value of each stage and the first zero offset value/second zero offset value is greater than the first difference. value threshold or the second difference threshold
  • the absolute value of the difference between the detection values of two adjacent stage tasks is greater than the third difference threshold
  • the cleaning task of the mopping parts can be stopped; the detection can be determined If the sewage sensor is abnormal, the prompt information can also be used to prompt the user to replace the mopping parts.
  • the method further includes: after the sum of the duration/water consumed by the stage tasks reaches a corresponding threshold, outputting prompt information, the prompt information being used to indicate that the sensor detecting the sewage is abnormal.
  • the method further includes: sending a message to a user interface, such as to a user interface on a base station or a user interface on a user terminal, for the user to select.
  • a user interface such as to a user interface on a base station or a user interface on a user terminal
  • the target area is mopped, and it is determined that the target area is to be mopped, then the preset cleaning area is mopped and the mopping member is maintained, the cleaning robot is controlled to pass through The dragging member drags at least part of the target area. It can be understood that a message is sent to the user interface for the user to choose whether to mop the target area.
  • controlling the cleaning robot to mop at least part of the target area through the mopping member controlling the cleaning robot to mop at least part of the target area through the mopping member.
  • the user may choose whether to repeatedly drag the target area. For example, when the user is preparing to sleep, the user may choose not to drag the target area.
  • the cleaning system further includes a handheld cleaning device, or the cleaning system includes a plurality of cleaning robots, such as a first cleaning robot and a second cleaning robot.
  • control device or the first cleaning robot can send the information of the target area to the handheld cleaning device or the second cleaning robot.
  • the information of the target area may be sent to the handheld cleaning device, or when it is determined that the area needs to be repeatedly mopped based on the degree of dirt of the mopping member after the first cleaning robot cleans the area,
  • the information of the area is sent to the handheld cleaning device and/or the second cleaning robot, so that the cleaning device other than the first cleaning robot can repeatedly mop the area.
  • the first cleaning robot can continue to mop other areas to improve cleaning efficiency and effectiveness through collaborative cleaning with multiple devices.
  • the control method of the cleaning robot includes: controlling the cleaning robot to drag the preset cleaning area through the dragging member; obtaining the first degree of dirt corresponding to the preset cleaning area; according to the first degree of dirt, It is determined that the preset cleaning area includes the target area, and the target area is the area that needs to be repeatedly mopped; after the preset cleaning area is mopped and the mop piece is maintained, the cleaning robot is controlled to use the mop piece to mop the target area. At least partially dragging.
  • the preset cleaning area By determining whether at least part of the preset cleaning area needs to be repeatedly mopped according to the degree of dirt in the preset cleaning area, if necessary, after maintaining the mopping member, the preset cleaning area is At least part of the cleaning area is repeatedly mopped to improve the cleaning effect of the preset cleaning area.
  • the degree of dirtiness of the plot of land dragged by the cleaning robot can be determined through the detection of dirt on the mopping part; for example, the degree of dirtiness of the mopping part can be determined based on whether the degree of dirtiness of the mopping part reaches the limit of the ability of the mopping part to absorb dirt. Determine whether the area mopped by the cleaning robot is clean.
  • the cleaning mode is set with different soiling thresholds, and based on the comparison of the soiling detection results of the mopping parts and the soiling threshold, it is determined whether to continue cleaning or to terminate the cleaning of the plot dragged by the cleaning robot; optional , set the maximum number of cleanings. Even if the dirtiness of the mopping parts does not drop below the dirtiness threshold, cleaning can be terminated when the number of cleanings reaches the upper limit.
  • the cleaning method of the mopping part includes: performing a cleaning task of the mopping part; obtaining the degree of dirt of the mopping part; and according to the value range of the degree of dirt of the mopping part. Determine a cleaning threshold, and end the cleaning task of the mopping part according to the cleaning threshold; by automatically adjusting the cleaning degree of the mopping part, the working efficiency of the cleaning robot is improved.
  • the degree of dirtiness of the mopping part can reflect the degree of dirtiness of the ground.
  • the degree of dirtiness of the cleaned area of the mopping part can be determined according to the degree of dirtiness of the mopping part.
  • Determining the cleaning threshold within the value range can adjust the cleaning degree of the mopping parts according to the degree of dirt on the ground, and improve the working efficiency of the cleaning robot.
  • the cleaning robot cleans the preset cleaning area, it cleans the mopping part, and detects the dirt elution value of the mopping part when the cleaning time meets the preset time length (such as the stage task length);
  • the cleaning threshold of each stage task can be preset, or the cleaning threshold of at least one stage task can be determined based on the dirt elution value of the executed stage task.
  • the degree of regional contamination of the mopped area can be determined according to the dirt elution value of the mopping element, as described in the preset first degree of contamination of the cleaning area; when the degree of regional contamination of the mopped area is greater than the first degree of contamination, When the dirt amount threshold is reached, the cleaning robot immediately returns to the mopped area to repeat mopping after completing the cleaning task of the mopped parts; when the degree of dirt in the mopped area is less than the first dirt amount threshold and greater than or equal to When the second dirt amount threshold is reached, the dragged area is marked as a target area, that is, an area that needs to be repeatedly dragged.
  • the cleaning task is determined to be completed when there are no areas in the cleaning task map that need to be mopped again.
  • the mopped parts can be cleaned to be cleaner according to the post-task cleaning threshold for long-term storage.
  • the cleaning robot when the degree of dirt in the mopped area is greater than the first dirt amount threshold, the cleaning robot immediately returns to the mopped area to repeat mopping after completing the cleaning task of the mopping parts; When cleaning the mopping parts after repeatedly mopping the mopped area, continue to determine whether the dirt elution value is less than or equal to the cleaning threshold. If not, it can be determined that the mopped area is still not clean, and the cleaning of the mopping parts can be stopped. task, and continue to repeatedly mop the mopped area until the mopped area is clean, such as the dirt elution value is less than or equal to the cleaning threshold. Later, if there are still areas in the cleaning task map that have not been cleaned, you can drag and wipe the areas that have not yet been cleaned.
  • FIG. 12 shows a schematic flow chart of a cleaning method for a mopping element provided by an embodiment of the present application.
  • the cleaning method of the mopping element includes step S310 to step S340.
  • the ability of the mop piece to collect dirt is limited.
  • the amount of dirt collected by the mop piece that is, the dirt degree d of the mop piece reaches the maximum dirt value d_max of the mop piece, the mop piece will no longer be able to collect dirt.
  • the cleaning effect of the mopping on the ground is also poor, and mopping needs to be stopped; by controlling the cleaning mechanism to perform the cleaning task of the mopping parts to clean the mopping parts, after the mopping parts are cleaned to a certain extent Has the ability to absorb dirt.
  • the preset cleaning area may be determined based on the room in the cleaning task map and/or the workload threshold of the cleaning robot.
  • the workload of each preset cleaning area is less than or equal to the workload threshold.
  • a room may be a preset cleaning area, or a room may have multiple preset cleaning areas; of course, it is not limited thereto.
  • a preset cleaning area may include one room and at least part of another room.
  • the preset cleaning area can also be determined based on the user's division operation on the cleaning task map, or can be determined based on preset area division rules.
  • the preset cleaning task includes mopping one or more of the preset cleaning areas in the cleaning task map, for example, mopping all the preset cleaning areas in the cleaning task map.
  • a mopping element cleaning operation performed between two floor cleaning operations can be used as a mopping element cleaning task.
  • the cleaning task of cleaning the mopping element includes, for example, a process of cleaning the mopping element after cleaning a preset cleaning area and before cleaning another preset cleaning area, and may also include ending the cleaning process.
  • the process of cleaning the mopping parts after the cleaning task of the task map For example, when the degree of dirt in all areas of the cleaning task map is less than the corresponding dirt amount threshold, the preset cleaning task is ended and the mopping is performed. cleaning tasks.
  • the cleaning mechanism of the cleaning robot can clean the mopping member when performing the preset cleaning task. After completing the preset cleaning task, the cleaning robot is controlled to return to the base station, by The cleaning mechanism of the base station cleans the mopping member; it can be understood that the cleaning task of the mopping member includes the cleaning mechanism of the cleaning robot cleaning the mopping member during the execution of the preset cleaning task.
  • the sub-wiping part cleaning task may also include a sub-wiping part cleaning task in which the cleaning mechanism of the base station cleans the mopping part after completing the preset cleaning task.
  • the task progress of the cleaning task includes whether the preset cleaning task is completed.
  • the preset cleaning task when there is an area in the cleaning task map that is relatively dirty (for example, the degree of dirt in the area is greater than or equal to the corresponding dirt amount threshold), it can be determined that within a preset time period after the completion of the cleaning task of the mop parts, It is also necessary to drag and clean at least part of the area in the cleaning task map, that is, the preset cleaning task has not been completed; when all areas in the cleaning task map are relatively clean (for example, the degree of dirt in each area is less than (corresponding dirt amount threshold), it can be determined that there is no need to mop and clean the floor within the preset time period after the completion of the cleaning task of the mopping parts, that is, the preset cleaning task has been completed.
  • S330 Determine the cleaning threshold of the cleaning task of the mopping part according to the task progress of the preset cleaning task.
  • the cleaning degree of the mopping part after cleaning according to the cleaning threshold can be made to correspond to the current task progress, thereby improving the working efficiency of the cleaning robot.
  • determining the cleaning threshold of the cleaning task based on the task progress of the preset cleaning task includes: when the task progress of the preset cleaning task is that the preset cleaning task has not been completed. when the cleaning threshold is determined to be the cleaning threshold during the task; when the task progress of the preset cleaning task is that the preset cleaning task has been executed, the cleaning threshold is determined to be the post-task cleaning threshold; wherein, The post-task cleaning threshold is smaller than the in-task cleaning threshold.
  • the next preset cleaning task will be executed after the preset time, then the cleaning threshold of the current mopping part cleaning task can be determined to be the smaller post-task cleaning threshold, so that the post-task cleaning threshold can be
  • the cleaning task of the mopping part is completed, the mopping part is cleaned more thoroughly to prevent the generation of odor within a preset time period.
  • the task progress of the preset cleaning task also includes a sub-cleaning task after the end of the cleaning task of the mopping part, that is, the next sub-cleaning task.
  • the next sub-cleaning task is, for example, mopping a preset cleaning area that has been mopped, or mopping a preset cleaning area in the cleaning task map that has not yet been mopped.
  • the preset cleaning area that has been mopped can be called a target area, and the target area is a preset cleaning area that needs to be repeatedly mopped to increase the degree of cleanliness.
  • the target area may be an area that will be dirty, and/or an area with higher cleaning requirements.
  • the first degree of contamination corresponding to each preset cleaning area in the cleaning task map can be obtained, and based on the first degree of contamination, it is determined that the preset cleaning area includes a target area, and the target area needs to be repeated The area to be mopped; after the preset cleaning area is mopped and the mopping member is cleaned, the cleaning robot is controlled to mop at least part of the target area through the mopping member. wipe.
  • the cleaning robot when the cleaning robot moves in the preset cleaning area, such as when mopping the preset cleaning area, it obtains the preset cleaning area through at least one of the sensors mounted on the cleaning robot, such as a visual sensor, an infrared sensor, etc.
  • Corresponding first degree of dirtiness It can be understood that the corresponding first degree of dirt can be obtained before mopping the preset cleaning area, or when mopping the preset cleaning area. Of course, it is not limited to this.
  • the first degree of dirt corresponding to the preset cleaning area can be obtained based on a sensor that is not on the cleaning robot, such as a visual sensor installed on the roof.
  • obtaining the first degree of dirt corresponding to the preset cleaning area includes: after the cleaning robot completes mopping the preset cleaning area through the mopping member, obtaining the degree of dirt of the mopping member. the degree of contamination of the mopping member; and determining the first degree of contamination corresponding to the preset cleaning area according to the degree of contamination of the mopping member.
  • the degree of dirtiness of the mopping element is obtained through a dirt detection device on the base station, such as a visual sensor.
  • a dirt detection device on the base station such as a visual sensor.
  • the darker the color of the mopping element 110 the greater the degree of dirtiness of the mopping element.
  • the degree of contamination of the mopping element of the mopping element can also be obtained through a visual sensor mounted on the cleaning robot and facing the mopping surface of the mopping element.
  • obtaining the degree of dirtiness of the mopping member includes: when cleaning the mopping member, obtaining a detection value of the sewage used to clean the mopping member; and determining the degree of dirt of the mopping member based on the detection value. Degree of soiling.
  • the dirt detection device includes a sewage detection sensor.
  • the sewage detection sensor is used to detect sewage after cleaning the mop piece, for example, detecting one or more of turbidity, color, and water conductivity of the sewage.
  • the amount of dirt removed from the mop element can be determined by the turbidity of the wastewater, the color of the wastewater or the water conductivity of the wastewater.
  • the turbidity, color or water conductivity of the sewage when the turbidity, color or water conductivity of the sewage is greater, it means that the sewage after cleaning the mop parts is dirtier, and the amount of dirt cleaned from the mop parts is larger, which is used to indicate the amount of dirt removed from the mop parts.
  • the turbidity of sewage, the color of sewage, and the water conductivity of sewage can all be used to characterize the amount of dirt cleaned from the mop parts, that is, it can characterize the degree of dirt on the mop parts, and they are all related to the elution of dirt.
  • the turbidity detected for the sewage from cleaning the mop for the first time is 1 NTU
  • the turbidity elution value or dirt amount corresponding to 1 NTU is 100.
  • the turbidity detected for the sewage from cleaning the mop for the second time is 1NTU. 2NTU.
  • the corresponding dirt elution value or dirt amount of sewage with a turbidity of 2NTU is 200. It can be judged that the amount of dirt cleaned from the mop part for the first time is less than the amount of dirt cleaned from the mop part for the second time. The amount of dirt removed, that is, the dirt elution value of the first cleaning is less than the dirt elution value of the second cleaning.
  • the corresponding relationship between the chromaticity of sewage, the water conductivity of sewage and the dirt elution value or dirt amount is the same, and will not be repeated here.
  • the degree of dirtiness of the mopping part can be represented by a numerical value, such as any one of the turbidity of the sewage, the color of the sewage, the water conductivity of the sewage, the amount of dirt, and the dirt elution value.
  • the characterization, or the degree of contamination can be determined by any of the turbidity of the sewage, the color of the sewage, the water conductivity of the sewage, the amount of dirt, and the dirt elution value.
  • the turbidity of the sewage after cleaning the mop parts is 1 NTU, it can indicate that the degree of dirtiness of the mop parts is 1; or if the turbidity of the sewage after cleaning the mop parts is 1 NTU, the corresponding degree of dirtiness is 100, then the degree of dirtiness of the mopping parts is 100.
  • the dirt amount threshold can be determined according to the maximum dirt value d_max of the mopping element.
  • the dirt amount threshold is positively correlated with the maximum dirt value d_max of the mopping element.
  • the degree of dirtiness of the mopping element is obtained and the degree of dirtiness of the mopping element is obtained according to the degree of dirtiness of the mopping element.
  • the amount of dirt adsorbed on the mopping member is the amount of dirt brought back from the preset cleaning area, that is, the degree of dirt on the mopping member can be used to refer to the degree of dirt in the preset cleaning area.
  • the cleaning robot is controlled to clean the mopping part through the mopping part.
  • the target area is mopped, and the target area is the area cleaned by the mopping member before the mopping member cleaning task.
  • the mopping element cleaning task can be ended after the at least first stage task; after the at least first stage task, The mopping part has been cleaned to a certain extent. At this time, the mopping part has the ability to absorb dirt, and there is no need to perform subsequent tasks. It can still play a more effective role in repeated mopping of the target area. Obvious cleaning effect, and can reduce the consumption of time and water when cleaning mopping parts.
  • the preset cleaning area includes multiple areas. If it is determined in step S130 that the current preset cleaning area includes the target area, after completing mopping and mopping all the preset cleaning areas, After the wiping member is maintained, the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • all the preset cleaning areas are all preset cleaning areas in the cleaning task map.
  • the preset cleaning areas include multiple preset cleaning areas, such as preset cleaning areas A1 to preset cleaning areas A9 respectively, and the cleaning sequence of the preset cleaning areas A1 to preset cleaning areas A9 is, for example, are A1, A2,...,A9.
  • the preset cleaning area A1 After mopping the preset cleaning area A1, it is determined that the preset cleaning area A1 includes the target area, and the preset cleaning area A1 can be marked as containing the target area; and then after maintaining the mopping member, clean according to the Drag the preset cleaning area A2 to the preset cleaning area A9 in sequence; wherein, after dragging the preset cleaning area A2, it is determined that the preset cleaning area A2 includes the target area, and the preset cleaning area A2 can be marked In order to include the target area, after dragging the preset cleaning area A4, it is determined that the preset cleaning area A4 includes the target area, and after dragging the preset cleaning area A7, it is determined that the preset cleaning area A7 includes the target area, such as As shown in Figure 10, the gray marked area represents the preset cleaning area including the target area.
  • the cleaning robot After completing mopping the preset cleaning area A9 and performing maintenance on the mopping member, the cleaning robot is controlled to use the mopping member to mop at least part of the target areas of the preset cleaning areas A1, A2, A4, and A7. Do mopping. After all the preset cleaning areas are dragged and wiped, at least part of the target area is dragged and wiped, so that all the preset cleaning areas in the cleaning task map can be cleaned at least once; for example, during cleaning When there are multiple preset cleaning areas in the task map that are dirty, you can make the ground corresponding to the cleaning task map less dirty as soon as possible.
  • the preset cleaning area includes multiple areas. If it is determined in step S130 that the current preset cleaning area includes a target area, other than the preset cleaning area corresponding to the target area will be processed. Before mopping the preset cleaning area, the mopping member is maintained, and the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • the target area of the preset cleaning area A1 is Mopping is performed at least partially to clean the preset cleaning area A1 as soon as possible; and then the preset cleaning area A2 to the preset cleaning area A9 are mopped in accordance with the cleaning sequence, wherein after the preset cleaning area A2 is mopped, If it is determined that the preset cleaning area A2 includes the target area, then after the mopping member is maintained, at least part of the target area of the preset cleaning area A2 is mopped, and then the preset cleaning area A3 is mopped.
  • the cleaning task map there are individual preset cleaning areas that are dirty.
  • the individual preset cleaning areas can be cleaned as soon as possible, and then the remaining preset cleaning areas can be cleaned; for example , after cleaning the dirty preset cleaning area, clean the remaining preset cleaning area, so that even when the cleaning robot moves to the base station through the remaining preset cleaning area after repeatedly dragging the target area, the adsorption on the mopping part will The dirt contaminates the remaining preset cleaning area, and these contaminations can also be cleaned when cleaning the remaining preset cleaning area.
  • the preset cleaning area includes multiple, and when the first degree of dirt in the current preset cleaning area is greater than or equal to the preset first dirt amount threshold, the current preset cleaning area is determined to be It is assumed that the cleaning area includes a target area; and before mopping other preset cleaning areas except the current preset cleaning area, the mopping member is maintained, and the cleaning robot is controlled to mop the The wiping member mops at least part of the target area, that is, when the first degree of dirt is greater than or equal to the preset first dirt amount threshold, the cleaning robot is immediately controlled to mop the target area through the mopping member. Drag at least part of the target area.
  • the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • the first degree of dirtiness of the preset cleaning area is determined according to the degree of dirtiness of the mopping element.
  • the cleaning robot When the first degree of dirtiness of the preset cleaning area is greater than or equal to the preset first dirt amount threshold, the cleaning robot is immediately controlled to pass through The mopping member mops at least part of the target area; when the first degree of dirt in the preset cleaning area is greater than or equal to the preset second dirt amount threshold and less than the first dirt amount threshold , after completing one mopping cleaning of all the preset cleaning areas and performing maintenance on the mopping member, the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • the second dirt amount threshold is smaller than the first dirt amount threshold.
  • the first degree of dirt in the current preset cleaning area is greater than or equal to the first dirt amount threshold, it can be determined that the preset cleaning area is dirty, and at least part of the target area of the preset cleaning area can be cleaned multiple times, In order to clean at least part of the area as soon as possible to a relatively clean state (for example, the degree of dirt is less than the first dirt amount threshold) or to a very clean state (for example, a degree of dirt is less than the second dirt amount threshold), and then clean The remaining preset cleaning area; in this way, even when the cleaning robot moves toward the base station through the remaining preset cleaning area after repeatedly mopping the target area, the dirt adsorbed on the mopping element will contaminate the remaining preset cleaning area.
  • these contaminations can also be cleaned when cleaning the remaining preset cleaning areas.
  • the first degree of dirt in the current preset cleaning area is greater than or equal to the second dirt amount threshold and less than the first dirt amount threshold, it can be determined that the preset cleaning area is not very dirty, and the remaining preset cleaning area can be cleaned first.
  • the ground corresponding to the cleaning task map can be cleaned at least once as soon as possible, so that the overall appearance does not look very dirty.
  • determining the cleaning threshold of the cleaning task based on the task progress of the preset cleaning task includes: when the task progress of the preset cleaning task is that the preset cleaning task has not been completed. , and when the next sub-cleaning task is to mop at least part of the target area, the cleaning threshold is determined to be the cleaning threshold in the first task, wherein the target area is a preset cleaning area that requires repeated mopping; And when the task progress of the preset cleaning task is that the preset cleaning task has not been completed, and the next sub-cleaning task is to mop the preset cleaning area in the cleaning task map that has not yet been mopped. , determine the cleaning threshold as the cleaning threshold in the second task.
  • the cleaning threshold includes a cleaning dirty threshold
  • ending the cleaning task of the mopping part according to the cleaning threshold includes: in the cleaning task of the mopping part, when the mopping part When the degree of dirtiness of the mopping parts is less than or equal to the cleaning dirt threshold, the cleaning task of the mopping parts is ended.
  • the cleaning task of the mopping part if it is determined that the current degree of dirt of the mopping part is lower than the cleaning dirt threshold, it may be determined that the mopping part has been cleaned to meet the requirements, and all cleaning of the mopping part may be ended.
  • the cleaning of the mopping member for example, the mopping member can be used to mop the preset cleaning area, or can end the preset cleaning task.
  • the cleaning contamination threshold in the second task is smaller than the cleaning contamination threshold in the first task.
  • the mopping member is cleaned to be cleaner, so that when the preset cleaning area is mopped by the cleaned mopping member, the mopping member can Adsorb more dirt and improve the cleaning effect on the preset cleaning area.
  • the mopping part Before the target area that has been mopped needs to be mopped, on the one hand, the mopping part has a certain ability to absorb dirt after it is clean and meets the larger cleaning dirt threshold.
  • the cleaning task of the mopping part can be ended earlier by using a larger cleaning threshold in the first task, thereby improving the efficiency of the cleaning robot in executing the preset cleaning task.
  • the degree of dirtiness of the mopping parts can be obtained using visual or infrared sensors.
  • the degree of dirtiness of the mopping member is determined based on the detection value of the sewage used to clean the mopping member.
  • the cleaning task of cleaning the mopping element includes one or more stage tasks.
  • clean water is provided to the cleaning tank of the base station to clean the mopping element, and then the mopping element is cleaned.
  • the sewage after cleaning the mopping parts is recycled. This process does not need to be recycled or can be recycled multiple times; or clean water is provided to the cleaning tank at the same time to clean the mopping parts and the sewage after cleaning the mopping parts is recycled.
  • it is not limited to this.
  • the sewage after cleaning the mopping parts is intermittently recycled.
  • the time and/or amount of water for cleaning the mopping parts corresponding to tasks in different stages can be the same or different. According to the time and/or amount of water corresponding to one or more stages of the task of cleaning the mopping parts, the tasks in each stage are The dirt amount corresponding to the detection value obtained during execution is accumulated to obtain the accumulation result d of the dirt amount.
  • the detection value such as the turbidity of the sewage
  • the degree of dirtiness of the mopping member of the mopping member is determined based on the accumulated result of the amount of dirt.
  • the degree of dirtiness d of the mop piece that is, the cumulative result of the amount of dirt, can be obtained by integrating the amount of water l used to clean the mop piece and the sewage turbidity T, expressed as follows:
  • the cumulative result d of the amount of dirt can be determined based on the detection value of one or more samples and the amount of water in the sampling interval, which is expressed as follows:
  • Ti represents the sewage turbidity T of the i-th sampling
  • l i represents the water volume between two samplings
  • i is any value among 1, 2,..., n
  • n is the total number of samplings.
  • the degree of contamination of the mopping member may also be predicted based on the single detection value. For example, after stopping the supply of clean water to the cleaning tank, the sewage is recycled, and the sewage turbidity is detected once during the sewage recycling process, and the water volume of the recycled sewage is obtained. The product of the sewage turbidity and the water volume can be determined as The cumulative result of the amount of dirt d. Of course, it is not limited to this.
  • the turbidity of the sewage can be detected multiple times during the sewage recovery process, and the product of the average, maximum, or minimum value of the multiple detected turbidities of the sewage and the amount of water is determined as the amount of dirt. Accumulated result d.
  • the amount of dirt corresponding to the detection value is accumulated according to the time and/or amount of water used to clean the mop member, and the accumulated result of the dirt amount represents the amount of dirt cleaned from the mop member.
  • the amount of dirt can be called the dirt elution value.
  • the detection value of sewage can be obtained only once, or the detection value of sewage can be obtained multiple times, and the dirt elution value of the stage task is determined based on one or more detection values. For example, based on multiple detection values The product of the average detection value and the water volume of the task stage determines the dirt elution value of the task in this stage.
  • the cleaning task of the mopping part obtain the dirt elution value of the mopping part in each stage task; when the dirt elution value in the stage task is less than or equal to When the cleaning threshold is reached, the cleaning task of the mopping part is ended.
  • the current degree of dirtiness of the mopping part can be determined based on the dirt elution value when the mopping part is cleaned by the current stage task. The smaller the dirt elution value, the greater the degree of dirtiness of the current mopping part. The smaller, the cleaner.
  • the mopping part cleaning task is ended, that is, the current stage task is the last one of the mopping part cleaning tasks. stage tasks.
  • the degree of dirtiness of the mopping element is determined based on the detection value of the sewage used to clean the mopping element and the zero offset value of the mopping element.
  • the dirt elution value of each stage of the task is determined based on the detection value and zero offset value of the sewage of each stage of the task.
  • the zero-offset value is the detection value when the sewage detection sensor detects clean water or sewage close to clean water. The difference between the detection value of sewage and the zero-offset value can more accurately indicate the amount of dirt and cleanliness of the mop cleaning floor.
  • the amount of elution during mopping can eliminate deviations caused by errors in the sewage detection sensor and/or aging of the mopping parts. For example, when cleaning the mop parts, when the detection value of the sewage detection sensor reaches a stable value, if it does not change for a period of time, or the slope of the change is basically 0, then the stable value can be determined to be Zero offset value.
  • the zero offset value includes a pre-stored first zero offset value of factory settings, and/or a second zero offset value updated according to the detection value of the sewage detection sensor.
  • the first zero offset value can be determined based on the factory setting. The degree of dirtiness of the wiping part; when the second zero offset value is stored, the second zero offset value is used with priority.
  • the second zero offset value is determined based on the factory-set first zero offset value and the detection value of the sewage used to clean the mop piece; and then The degree of contamination of the wiping member of the wiping member may be determined based on the second zero-offset value and the detection value; the second zero-offset value may also be calibrated based on the detection value.
  • the method further includes: after completing the cleaning task of the mopping member and/or before mopping the ground with the mopping member, obtaining a detection value of the sewage used to clean the mopping member; when When the absolute value of the difference between the detection value and the zero offset value is less than or equal to the first difference threshold, the zero offset value is calibrated according to the detection value.
  • the cleaning task of the mopping parts is ended according to the post-task cleaning threshold; and it is determined to end the cleaning of the mopping parts.
  • the value threshold is less than or equal to the first difference threshold, for example, the detection value is updated to the second zero offset value. Deviations caused by errors of the sewage detection sensor and/or aging of the wiping parts when determining the detection value of sewage based on the first zero offset value/second zero offset value can be eliminated.
  • the method further includes: when the absolute value of the difference between the detection value of the executed stage task in the mopping part cleaning task and the zero offset value is greater than the first difference threshold, continue Execute the next stage task; when the absolute value of the difference between the detection value of the next stage task and the zero offset value is less than or equal to the second difference threshold, and is different from the detection value of the most recently executed stage task
  • the absolute value of the difference is less than or equal to the third difference threshold
  • the zero offset value is calibrated according to the detection value of the next stage task. For example, when the absolute value of the difference between the detection value and the zero offset value is greater than the first difference threshold, the cleaning of the mopping member can be continued.
  • the degree of dirtiness of the mopping member is stable (two adjacent ones are When the absolute value of the difference between the phase task detection value is less than or equal to the third difference threshold), and the absolute value of the difference between the latest detection value and the zero offset value is less than or equal to the second difference threshold, all values can be The latest detection value is updated as the second zero offset value.
  • the second difference threshold is greater than or equal to the first difference threshold, so that when the wiping member ages, the second zero offset value can still be updated according to the detection value.
  • the method further includes: when the absolute value of the difference between the detection values of two adjacent tasks in the mop cleaning task is greater than the third difference threshold, continue to execute the next step. stage tasks; until the absolute value of the difference between the detection values of two adjacent stage tasks is less than or equal to the third difference threshold.
  • the degree of dirtiness of the mopping parts is not stable, and it is not yet certain that the mopping parts have been cleaned to the cleanest degree possible, the cleaning of the mopping parts will continue; until the degree of dirtiness of the mopping parts is stable, it can be determined that the mopping parts The wiped parts have been cleaned to the cleanest degree possible, and the second zero offset value is updated based on the stabilized detection value.
  • the method further includes: when the absolute value of the difference between the detection value of the latter of the two adjacent stage tasks and the zero offset value is greater than the second difference threshold , continue to execute the next stage task; until the absolute value of the difference between the detection value of the latter stage task and the zero offset value of the two adjacent stage tasks is less than or equal to the second difference threshold.
  • the absolute value of the difference between the detection value and the zero offset value is greater than the second difference threshold, it cannot be determined that the wiping part has been cleaned to the cleanest degree that can be cleaned, and the wiping part will continue to be cleaned. Cleaning; until the absolute value of the difference between the latest detection value and the zero offset value is less than or equal to the second difference threshold, the latest detection value can be updated to the second zero offset value.
  • the method further includes: when the number of stage tasks reaches a stage number threshold, outputting prompt information, where the prompt information is used to indicate that the sensor detecting the sewage is abnormal.
  • the prompt information is used to indicate that the sensor detecting the sewage is abnormal.
  • the number of stage tasks reaches the stage number threshold
  • the absolute value of the difference between the detection value of each stage and the first zero offset value/second zero offset value is greater than the first difference. value threshold or the second difference threshold
  • the absolute value of the difference between the detection values of two adjacent stage tasks is greater than the third difference threshold
  • the cleaning task of the mopping parts can be stopped; the detection can be determined If the sewage sensor is abnormal, the prompt information can also be used to prompt the user to replace the mopping parts.
  • the method further includes: after the sum of the duration/water consumed by the stage tasks reaches a corresponding threshold, outputting prompt information, the prompt information being used to indicate that the sensor detecting the sewage is abnormal.
  • the cleaning threshold includes a cleaning time threshold.
  • ending the cleaning task of the mopping part according to the cleaning threshold includes: in the cleaning task of the mopping part, the time for cleaning the mopping part reaches the cleaning time corresponding to the task progress.
  • the cleaning task of the drag parts is ended. That is, the cleaning time of the cleaning task of the mopping part can be adjusted according to the task progress of the preset cleaning task, so that the cleaning time of the mopping part corresponds to the current task progress, thereby improving the working efficiency of the cleaning robot.
  • determining the cleaning threshold of the cleaning task based on the task progress of the preset cleaning task includes: when the task progress of the preset cleaning task is that the preset cleaning task has not been completed, The cleaning time threshold is determined to be the cleaning time threshold in the task; when the task progress of the preset cleaning task is that the preset cleaning task has been executed, the cleaning time threshold is determined to be the post-task cleaning time threshold; wherein, The post-task cleaning time threshold is greater than the mid-task cleaning time threshold.
  • the next preset cleaning task will be executed after the preset time, then it can be determined that the cleaning time threshold of the current mopping part cleaning task is the larger post-task cleaning time threshold, so as to pass the longer cleaning time.
  • the cleaning task of the mopping part is completed, the mopping part is cleaned more thoroughly to prevent the generation of odor within a preset time period.
  • the cleaning threshold is determined to be the first.
  • a cleaning time threshold in a task and when the task progress of the preset cleaning task is that the preset cleaning task has not been executed, and the next sub-cleaning task is a preset that has not yet been dragged in the cleaning task map.
  • the cleaning threshold is determined to be the cleaning time threshold in the second task; wherein the cleaning time threshold in the second task is greater than the cleaning time threshold in the first task.
  • the mopping member is cleaned for a longer period of time, so that when the preset cleaning area is mopped by the cleaned mopping member, the mopping member can Adsorb more dirt and improve the cleaning effect on the preset cleaning area.
  • the mopping part Before mopping the target area that has been mopped, on the one hand, the mopping part has a certain ability to absorb dirt after using a small cleaning time to clean it, and on the other hand, because the target If the amount of dirt in the area is small, the cleaning task of the mopping part can be ended earlier through a smaller cleaning time threshold, thereby improving the efficiency of the cleaning robot in executing the preset cleaning task.
  • the cleaning threshold includes a cleaning water volume threshold. Ending the cleaning task of the dragging part according to the cleaning threshold includes: in the cleaning task of the dragging part, when the amount of water used to clean the dragging part reaches the threshold of the cleaning water amount corresponding to the task progress, The cleaning task of the mopping parts is ended. That is, the amount of cleaning water for the cleaning task of the mopping part can be adjusted according to the task progress of the preset cleaning task, so that the amount of cleaning water for the mopping part corresponds to the current task progress, thereby improving the working efficiency of the cleaning robot.
  • determining the cleaning threshold of the cleaning task based on the task progress of the preset cleaning task includes: when the task progress of the preset cleaning task is that the preset cleaning task has not been completed, The clean water volume threshold is determined to be the clean water volume threshold in the task; when the task progress of the preset cleaning task is that the preset cleaning task has been executed, the clean water volume threshold is determined to be the clean water volume threshold after the task; wherein, The clean water volume threshold after the task is greater than the clean water volume threshold during the task.
  • the next preset cleaning task will be executed after the preset time, then it can be determined that the cleaning water volume threshold of the current mopping part cleaning task is the larger post-task cleaning water volume threshold, so as to pass the longer cleaning time.
  • the cleaning task of the mopping part is completed, the mopping part is cleaned more thoroughly to prevent the generation of odor within a preset time period.
  • the cleaning threshold is determined to be the first.
  • the threshold value of the cleaning water volume in a task and when the task progress of the preset cleaning task is that the preset cleaning task has not been executed, and the next sub-cleaning task is to pre-drag the preset cleaning task map.
  • the cleaning threshold is determined to be the cleaning water volume threshold in the second task; wherein the cleaning water volume threshold in the second task is greater than the cleaning water volume threshold in the first task.
  • the mopping member is cleaned for a longer period of time, so that when the preset cleaning area is mopped by the cleaned mopping member, the mopping member can Adsorb more dirt and improve the cleaning effect on the preset cleaning area.
  • the mopping element Before mopping the target area that has been mopped, on the one hand, the mopping element has a certain ability to absorb dirt after using a small amount of water to clean it; on the other hand, because the target area The amount of dirt is less, and the cleaning task of the mopping parts can be ended with a smaller threshold of clean water volume, which improves the efficiency of the cleaning robot in executing the preset cleaning tasks and saves water.
  • the cleaning method of the mopping part includes: executing a cleaning task of the mopping part; and obtaining the task progress of the preset cleaning task.
  • the preset cleaning task includes using the mopping part to clean the objects in the cleaning task map.
  • the preset cleaning area is mopped; the cleaning threshold of the mopping part cleaning task is determined according to the task progress of the preset cleaning task; and the mopping part cleaning task is ended according to the cleaning threshold.
  • FIG. 13 is a schematic block diagram of the control device 300 provided by the embodiment of the present application.
  • the control device 300 includes a processor 301 and a memory 302.
  • processor 301 and the memory 302 are connected through a bus 303, such as an I2C (Inter-integrated Circuit) bus.
  • bus 303 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 301 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP), etc.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk or a mobile hard disk, etc.
  • ROM Read-Only Memory
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk or a mobile hard disk, etc.
  • the processor 301 is used to run a computer program stored in the memory 302, and when executing the computer program, implement the steps of the aforementioned control method of the cleaning robot and/or implement the aforementioned cleaning method of the mop element. step.
  • the processor 301 is used to run a computer program stored in the memory 302, and implement the following steps when executing the computer program:
  • the preset cleaning area includes a target area, and the target area is an area that needs to be repeatedly mopped;
  • the cleaning robot is controlled to mop at least part of the target area through the mopping member.
  • the processor 301 is used to run a computer program stored in the memory 302, and implement the following steps when executing the computer program:
  • the cleaning threshold is determined according to the value range of the dirt degree of the mopping part, and the cleaning task of the mopping part is ended according to the cleaning threshold.
  • the robot controller 104 of the cleaning robot 100 and/or the base station controller 206 of the base station 200 can be used as the control device 300 alone or in combination to implement the cleaning robot according to the embodiment of the present application.
  • the control device 300 can be set on the cleaning robot 100, or can be set on the base station 200; of course, it is not limited to this.
  • the control device 300 can be a device other than the cleaning robot 100 and the base station 200, such as a home smart terminal, a master control device, etc. .
  • control device 300 on the base station 200 such as the base station controller 206
  • the control device 300 on the cleaning robot 100 such as the robot controller 104
  • the control device 300 on the base station 200 can be used to implement the steps of the cleaning robot control method in the embodiment of the present application.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the processor can implement the steps of the above-mentioned control method for a cleaning robot. /Or implement the steps of the aforementioned cleaning method of the mopping part.
  • the computer-readable storage medium may be an internal storage unit of the control device described in any of the preceding embodiments, such as a hard disk or memory of the control device.
  • the computer-readable storage medium may also be an external storage device of the control device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), or a secure digital (SD) equipped on the control device. ) card, Flash Card, etc.
  • the embodiment of the present application also provides a base station, which is at least used to clean the mopping parts of the cleaning robot.
  • the base station also includes a control device 300, such as the base station controller 206, for implementing the implementation of the present application.
  • An embodiment of the present application also provides a cleaning robot, which includes:
  • the aforementioned control device 300 such as the robot controller 104, is used to implement the steps of the cleaning method of the mopping element according to the embodiment of the present application and/or is used to implement the steps of the control method of the cleaning robot according to the embodiment of the present application.
  • Figure 2 is a schematic diagram of a cleaning system provided by an embodiment of the present application.
  • the cleaning system includes:
  • Cleaning robot 100 includes a walking unit 106 and a mopping member 110.
  • the walking unit 106 is used to drive the cleaning robot 100 to move so that the mopping member 110 mops the ground;
  • the base station 200 is at least used to clean or replace the mopping member 110 of the cleaning robot 100; and/or the base station 200 includes a dirt detection device (not shown) to detect the degree of dirtiness of the mopping member 110 of the cleaning robot 100. testing; and
  • Figure 14 is a schematic diagram of the cleaning system provided by the embodiment of the present application. As shown in Figure 14, the cleaning system includes:
  • the first cleaning robot 100 includes a walking unit 106 and a mopping member 110.
  • the walking unit 106 is used to drive the first cleaning robot 100 to move so that the mopping member 110 mops the ground;
  • the base station 200 is at least used to clean the mopping member 110 of the first cleaning robot 100.
  • the cleaning system also includes:
  • the control device 300 or the first cleaning robot 100 can send the information of the target area to the handheld cleaning device 401 or the second cleaning robot 402, where the target area is an area that needs to be repeatedly mopped.
  • the optional base station 200 can also be used to clean the mopping element of the second cleaning robot 402 .

Landscapes

  • Electric Vacuum Cleaner (AREA)

Abstract

本申请实施例提供了一种清洁机器人的控制、清洁方法、装置、系统及存储介质,方法包括:控制清洁机器人通过拖擦件对预设清洁区域进行拖擦;获取预设清洁区域对应的第一脏污程度;根据第一脏污程度,确定预设清洁区域包括目标区域,目标区域为需要重复拖擦的区域;在对预设清洁区域完成拖擦,且在对拖擦件进行维护之后,控制清洁机器人通过拖擦件对目标区域的至少部分进行拖擦。通过根据预设清洁区域的脏污程度,判断是否需要对所述预设清洁区域中的至少部分区域进行重复拖擦,若需要则在对所述拖擦件进行维护之后,对所述预设清洁区域中的至少部分区域进行重复拖擦,以提高对该预设清洁区域的清洁效果。

Description

清洁机器人的控制、清洁方法、装置、系统及存储介质 技术领域
本申请涉及清洁技术领域,尤其涉及一种清洁机器人的控制、清洁方法、装置、系统及存储介质。
背景技术
清洁机器人可用于对地面进行自动清洁,应用场景可以为家庭室内清洁、大型场所清洁等。清洁机器人可以通过拖擦件对地面进行拖擦,拖擦件在拖擦地面一段时间后往往变得脏污,需要返回基站对拖擦件进行清洗;相关技术中的清洁机器人通常在对拖擦件进行清洗后直接对未进行拖擦的地面进行拖擦,而不去监测已拖擦的地面是否清洁干净,使得有些地面未能得到充分的清洁,仍比较脏。
发明内容
本申请提供了一种清洁机器人的控制、清洁方法、装置、系统及存储介质,旨在解决现有的清洁机器人在对地面清洁时有些地面未能得到充分的清洁,仍比较脏等技术问题。
第一方面,本申请实施例提供了一种清洁机器人的控制方法,包括:
控制清洁机器人通过拖擦件对预设清洁区域进行拖擦;
获取所述预设清洁区域对应的第一脏污程度;
根据所述第一脏污程度,确定所述预设清洁区域包括目标区域,所述目标区域为需要重复拖擦的区域;
在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
第二方面,本申请实施例提供了一种拖擦件的清洁方法,用于清洁系统,所述方法包括:
执行拖擦件清洗任务;
获取所述拖擦件的拖擦件脏污程度;
根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,根据所述清洗阈值结束所述拖擦件清洗任务。
第三方面,本申请实施例提供了一种拖擦件的清洁方法,用于清洁系统,所述方法包括:
执行拖擦件清洗任务;
获取预设清洁任务的任务进度,所述预设清洁任务包括通过所述拖擦件对清洁任务地图中的预设清洁区域进行拖擦;
根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值;
根据所述清洗阈值结束所述拖擦件清洗任务。
第四方面,本申请实施例提供了一种控制装置,所述控制装置包括存储器和处理器;
其中,所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现前述的清洁机器人的控制方法的步骤,和/或前述的拖擦件的清洁方法的步骤。
第五方面,本申请实施例提供了一种基站,所述基站至少用于对清洁机器人的拖擦件进行清洁,所述基站包括前述的控制装置。
第六方面,本申请实施例提供了一种清洁机器人,所述清洁机器人用于对地面进行清洁,所述清洁机器人包括:
前述的控制装置。
第七方面,本申请实施例提供了一种清洁系统,包括:
清洁机器人,所述清洁机器人包括行走单元和拖擦件,所述行走单元用于驱动所述清洁机器人运动,以使所述拖擦件对地面进行拖擦;
基站,所述基站至少用于对清洁机器人的拖擦件进行清洁或更换;以及
前述的控制装置。
第八方面,本申请实施例提供了一种清洁系统,包括:
清洁机器人,所述清洁机器人包括行走单元和拖擦件,所述行走单元用于驱动所述清洁机器人运动,以使所述拖擦件对地面进行拖擦;
基站,所述基站包括脏污检测装置以对清洁机器人的拖擦件脏污程度进行检测;以及
前述的控制装置。
第九方面,本申请实施例提供了一种清洁系统,包括:
第一清洁机器人,所述第一清洁机器人包括行走单元和拖擦件,所述行走单元用于驱动所述第一清洁机器人运动,以使所述拖擦件对地面进行拖擦;
基站,所述基站至少用于对所述第一清洁机器人的拖擦件进行清洁;以及
前述的控制装置;
所述清洁系统还包括:
手持清洁设备或第二清洁机器人,
所述控制装置或者所述第一清洁机器人能够将所述目标区域的信息发送至所述手持清洁设备或所述第二清洁机器人。
第十方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现前述的清洁机器人的控制方法的步骤,和/或前述的拖擦件的清洁方法的步骤。
本申请实施例提供了一种清洁机器人的控制、清洁方法、装置、系统及存储介质,方法包括:控制清洁机器人通过拖擦件对预设清洁区域进行拖擦;获取预设清洁区域对应的第一脏污程度;根据第一脏污程度,确定预设清洁区域包括目标区域,目标区域为需要重复拖擦的区域;在对预设清洁区域完成拖擦,且在对拖擦件进行维护之后,控制清洁机器人通过拖擦件对目标区域的至少部分进行拖擦。通过根据预设清洁区域的脏污程度,判断是否需要对所述预设清洁区域中的至少部分区域进行重复拖擦,若需要则在对所述拖擦件进行维护之后,对所述预设清洁区域中的至少部分区域进行重复拖擦,以提高对该预设清洁区域的清洁效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种清洁机器人的控制方法的流程示意图;
图2是一实施方式中清洁系统的示意图;
图3是一实施方式中清洁机器人的结构示意图;
图4是一实施方式中清洁机器人的示意性框图;
图5是一实施方式中基站的结构示意图;
图6是一实施方式中基站的示意性框图;
图7是一实施方式中拖擦件脏污程度的变化示意图;
图8是本申请实施例提供的一种拖擦件的清洁方法的流程示意图;
图9是一实施方式中值域范围与清洗阈值的对应关系;
图10是一实施方式中多个预设清洁区域的示意图;
图11是一实施方式中对目标区域重复拖擦的示意图;
图12是本申请另一实施例提供的一种拖擦件的清洁方法的流程示意图;
图13是本申请实施例提供的一种清洁机器人的控制装置的示意性框图;
图14是本申请实施例提供的一种清洁系统的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种清洁机器人的控制方法的流程示意图。所述清洁机器人的控制方法可以应用在清洁系统中,用于对系统中的清洁机器人进行控制,以使清洁机器人执行清洁任务,对清洁任务地图对应的待清洁区域进行清洁。
待清洁区域可以为家庭空间、家庭空间的一个房间单元、一个房间单元的部分区域、大型场所或者大型场所的部分区域等任一个待清洁的区域。从另一角度看,待清洁区域可以指首次清洁的较大区域,例如整个房间单元;也可以指对较大区域进行首次清洁后需要进行补漏扫的区域,例如房间单元内的靠墙区域,或者障碍物区域。
如图2所示,清洁系统包括一个或多个清洁机器人100,以及一个或多个基站200。基站200用于和清洁机器人100配合使用,例如,基站200可以向清洁机器人100进行充电、基站200可以向清洁机器人100提供停靠位置等。基站200还可以对清洁机器人100的拖擦件110进行维护,例如基站200可以对拖擦件110的进行清洁或更换,其中,拖擦件110用于对地面进行拖擦。
清洁系统还包括控制装置300,控制装置300可以用于实现本申请实施例的清洁机器人的控制方法的步骤和/或实现前述的拖擦件的清洁方法的步骤。可选地,清洁机器人100的机器人控制器104和/或基站200的基站控制器206可以单独或者配合作为控制装置300,用于实现本申请实施例的方法的步骤;在另一些实施方式中,清洁系统包括单独的控制装置300,用于实现本申请实施例的方法的步骤,该控制装置300可以设置在清洁机器人100上,或者可以设置在基站200上;当然也不限于此,例如控制装置300可以为除清洁机器人100和基站200之外的装置,如家庭智能终端、总控设备等。
清洁机器人100可用于对地面进行自动拖擦,清洁机器人100的应用场景可以为家庭室内清洁、大型场所清洁等。
图3为一实施方式中清洁机器人100的立体示意图,图4为一实施方式中清洁机器人100的示意性框图。清洁机器人100包括机器人主体101、驱动电机102、传感器单元103、机器人控制器104、电池105、行走单元106、机器 人存储器107、机器人通信单元108、机器人交互单元109、拖擦件110、和充电部件111等。
机器人主体101可以为圆形结构、方形结构等。在本申请实施例中,以机器人主体101为D字形结构为例进行说明。如图3所示,机器人主体101前部为倒圆角的矩形结构,后部为半圆形结构。在本申请实施例中,机器人主体101为左右对称结构。
拖擦件110用于对地面进行拖擦,拖擦件110的数量可以为一个或多个。拖擦件110例如为拖布。拖擦件110设置在机器人主体101的底部,具体为机器人主体101的底部靠前的位置。在机器人主体101内部设有驱动电机102,在机器人主体101的底部伸出两个转轴,拖擦件110套接在转轴上。驱动电机102可带动转轴旋转,从而转轴带动拖擦件110旋转。
行走单元106为与清洁机器人100的移动相关的部件,用于驱动清洁机器人100运动,以使拖擦件110对地面进行拖擦。
机器人控制器104设置在机器人主体101内部,机器人控制器104用于控制清洁机器人100执行具体的操作。该机器人控制器104例如可以为中央处理器(Central Processing Unit,CPU)、或微处理器(Microprocessor)等。如图4所示,机器人控制器104与电池105、机器人存储器107、驱动电机102、行走单元106、传感器单元103、以及机器人交互单元109等部件电连接,以对这些部件进行控制。
应该理解,本申请实施例描述的清洁机器人100只是一个具体示例,并不对本申请实施例的清洁机器人100构成具体限定,本申请实施例的清洁机器人100还可以为其它的具体实现方式。例如,在其它的实现方式中,清洁机器人可以比图3或图4所示的清洁机器人100有更多或更少的部件。
图5为一实施方式中基站200的立体示意图,图6为一实施方式中基站200的示意性框图。基站200用于和清洁机器人100配合使用,例如,基站200可以向清洁机器人100进行充电、基站200可以向清洁机器人100提供停靠位置等。基站200还可以清洗清洁机器人100的拖擦件110。其中,拖擦件110用于对地面进行拖擦。
如图5和图6所示,本申请实施例的基站200包括基站主体202、清洗槽 203和水箱(图未示)。清洗槽203设置在基站主体202上,清洗槽203用于清洗清洁机器人的拖擦件110。设置在清洗槽203上的清洗肋2031可对拖擦件110进行刮擦清洁。
在基站主体202上设有入槽口205,入槽口205通向清洗槽203。清洁机器人100可通过入槽口205驶入基站200,以使得清洁机器人100停靠在基站200上的预设停靠位置。水箱设置在基站主体202内,水箱具体包括清水箱和污水箱。清水箱用于存储清洁用水。在清洁机器人100停靠在基站200上,清洁机器人100的拖擦件110容置于清洗槽203上。清水箱向清洗槽203提供清洁用水,清洁用水用于清洗拖擦件110。然后,清洗拖擦件110后的脏污水被收集到污水箱中。可选的,在基站主体202上设有顶盖(图未示),用户通过打开顶盖,可从基站主体202中取出水箱。在另一些实施方式中,水箱能够连接进水管(如连接至自来水管)和排污管(如连接至排水管),此时水箱可以固定在基站主体202内;在其他一些实施方式中,基站200也可以不设置清水箱、污水箱中的一种或两种,例如可以由进水管直接向清洗槽203提供清洁用水,清洗拖擦件110后的脏污水也可以直接由排污管排出。
在一些实施方式中,基站200还包括脏污检测装置,脏污检测装置用于对拖擦件110的拖擦件脏污程度进行检测。示例性的,脏污检测装置包括以下至少一种:视觉传感器、污水检测传感器,举例而言,可以根据视觉传感器获取拖擦件110的图像或颜色信息,根据拖擦件110的图像或颜色信息确定拖擦件110的拖擦件脏污程度,例如拖擦件110表面的灰度越深,拖擦件脏污程度也越大。举例而言,污水检测传感器可以获取清洗拖擦件110得到的污水的检测值,根据获取的检测值可以确定拖擦件110的拖擦件脏污程度;可选的,污水检测传感器包括以下至少一种:可见光检测传感器、红外检测传感器、总溶解性固体物质检测传感器;举例而言,红外检测传感器采集污水的浊度,可见光检测传感器采集污水的色度,总溶解性固体物质检测传感器采集污水的水导电率;可以根据浊度、色度、水导电率中的一种或多种,确定拖擦件脏污程度;例如,污水的浊度越大,水导电率越大,拖擦件脏污程度也越大。
参阅图6,基站200还可以包括基站控制器206、基站通信单元207、基站存储器208、水泵209和基站交互单元210等。
基站控制器206设置在基站主体202内部,基站控制器206用于控制基站200执行具体的操作。基站控制器206例如可以为中央处理器(Central Processing Unit,CPU)、或微处理器(Microprocessor)等。其中,基站控制器206与基站通信单元207、基站存储器208、水泵209和基站交互单元210电连接。
基站存储器208设置在基站主体202上,基站存储器208上存储有程序,该程序被基站控制器206执行时实现相应的操作。基站存储器208还用于存储供基站200使用的参数。其中,基站存储器208包括但不限于磁盘存储器、CD-ROM、光学存储器等。
水泵209设置在基站主体202内部,举例来说,水泵209有两个,一个水泵209用于控制清水箱向清洗槽203提供清洁用水,另一个水泵209用于将清洗拖擦件110后的脏污水收集到污水箱中。当然也不限于此,例如由进水管直接向清洗槽203提供清洁用水,可以通过控制进水管上的电磁阀向清洗槽203提供清洁用水。
基站通信单元207设置在基站主体202上,基站通信单元207用于和外部设备进行通信,基站200可以通过WI-FI通信模块与终端进行通信,和/或与清洁机器人100进行通信。
基站交互单元210用于和用户进行交互,例如可以通过基站交互单元210获取清洁模式,例如可以显示目标区域的信息,以供选择是否重复拖擦,如根据用户的确定操作控制清洁机器人对该目标区域进行拖擦。基站交互单元210例如包括显示屏和控制按钮,显示屏和控制按钮设置在基站主体202上,显示屏用于向用户展示信息,控制按钮用于供用户进行按压操作,以控制基站200的开机或停机等。
示例性的,清洁机器人100可用于对地面进行拖擦。清洁机器人100对房间地面拖擦一段时间,拖擦件110变脏污后,清洁机器人100驶向基站200。清洁机器人100通过基站200上的入槽口205进入基站200,并停靠在基站200上的预设停靠位置。此时,清洁机器人100的拖擦件110容置在清洗槽203上,在水泵209的作用下,基站200内的清水箱的清洁用水流向清洗槽203,通过清洗槽203上的进液结构喷向拖擦件110上,同时拖擦件110与清洁槽内的凸 起的清洗肋2031刮擦,从而实现对拖擦件110的清洁。清洗拖擦件110后的脏污水从清洁槽上的排液结构流出清洗槽203,在水泵209的作用下,脏污水收集到污水箱。
应该理解,前述的清洁系统只是一个具体示例,并不对本申请实施例的清洁机器人和基站构成具体限定,本申请实施例的基站还可以为其它的具体实现方式,例如,本申请实施例的基站可以不包括水箱,基站主体可以连接自来水管和排水管,从而使用自来水管的自来水清洗清洁机器人100的拖擦件110,清洗拖擦件110后的脏污水由清洗槽203通过排水管流出基站200。或者,在其它的实现方式中,基站可以比图5或图6所示的基站200有更多或更少的部件。
本申请实施例的清洁机器人也可以为其它的具体实现方式。在一些实施方式中,本申请实施例的清洁机器人可以包括清洁机构,所述清洁机构用于对所述拖擦件进行清洁。示例性的,清洁机器人包括水箱及所述脏污检测装置,水箱向清洁机构供水以对所述拖擦件进行清洁,脏污检测装置用于检测拖擦件的拖擦件脏污程度。举例而言,本申请实施例的清洁机器人的控制方法可以用于控制清洁机器人对预设清洁区域进行拖擦,例如根据拖擦件的拖擦件脏污程度确定预设清洁区域的脏污程度,根据预设清洁区域的脏污程度对预设清洁区域进行拖擦。清洁机器人可以在清洁地面过程中控制所述清洁机构对拖擦件进行自清洁。举例而言,本申请实施例的拖擦件的清洁方法可以用于控制清洁机器人的清洁机构对拖擦件进行自清洁,例如根据拖擦件的拖擦件脏污程度所在的值域范围确定清洗阈值,以及所述清洗阈值结束对拖擦件的清洁任务。可以理解的,本申请实施例的拖擦件的清洁方法可以应用于基站或者应用于清洁机器人,例如用于控制基站上的清洁机构(如包括清洗槽203、清洗肋2031),或者用于控制清洁机器人上的清洁机构。
本申请的发明人还发现,相关技术中清洁机器人通常在对拖擦件进行清洗后直接对未进行拖擦的地面进行拖擦,而不去监测已拖擦的地面是否清洁干净,使得有些地面未能得到充分的清洁,仍比较脏。
基于此,本申请的发明人对清洁机器人的控制方法进行改进,以根据预设清洁区域的脏污程度,判断是否需要对所述预设清洁区域中的至少部分区域进 行重复拖擦,若需要则在对所述拖擦件进行维护之后,对所述预设清洁区域中的至少部分区域进行重复拖擦,以提高对该预设清洁区域的清洁效果。
如图1所示,本申请实施例的清洁机器人的控制方法包括步骤S110至步骤S140。
S110、控制清洁机器人通过拖擦件对预设清洁区域进行拖擦。
在一些实施方式中,预设清洁区域可以根据清洁任务地图中房间,和/或所述清洁机器人的工作量阈值确定。示例性的,各所述预设清洁区域的工作量均小于或等于所述工作量阈值。示例性的,一个房间可以为一个预设清洁区域,或者一个房间有多个预设清洁区域;当然也不限于此,例如一个预设清洁区域可以包括一个房间以及另一个房间的至少部分区域。可选的,预设清洁区域还可以根据用户在清洁任务地图上的划分操作确定,或者可以根据预设的区域划分规则进行划分确定。
在一些实施方式中,所述清洁机器人的清洁任务包括对多个所述预设清洁区域进行拖擦,例如对清洁任务地图中的多个所述预设清洁区域进行拖擦。
示例性的,清洁机器人的工作量包括以下至少一种:所述清洁机器人的拖擦件拖擦地面时吸附的脏污量、所述清洁机器人清洁地面时的耗电量、所述清洁机器人清洁地面时的耗水量、所述清洁机器人清洁地面时的脏污收集量、所述清洁机器人清洁地面时的污水收集量、所述清洁机器人清洁地面的面积、所述清洁机器人清洁地面的路径长度。本申请实施例主要以所述清洁机器人的工作量包括所述清洁机器人清洁地面时的脏污收集量为例进行说明,示例性的,如拖擦件的收集脏污的量。
在一些实施方式中,所述清洁机器人在完成所述工作量阈值对应的工作量之前需要中断当前清洁任务以及运动到基站进行维护,以保证较好的清洁效果。示例性的,拖擦件,如拖布收集脏污的能力有限,请参阅图7,拖擦件从刚洗完开始拖地至拖擦件脏污程度达到最大,当清洁机器人匀速前进且不重复拖一块脏污分布均匀的地面(面积无限大)时,拖擦件收集的脏污量,即拖擦件脏污程度d和拖地时间的关系为图7所示,当拖擦件脏污程度d达到拖擦件的最大脏污值d_max之后,拖擦件将无法再通过拖地变得更脏,对地面的拖擦清洁效果也很差,可以确定拖擦件脏污程度d达到了工作量阈值,需要停止拖地; 还可以控制清洁机器人运动到基站进行维护,如对拖擦件进行清洁,或者更换清洁后的拖擦件。可选的,拖擦件的最大脏污值d_max为经验值,例如可以在实验室中测得。
S120、获取所述预设清洁区域对应的第一脏污程度。
示例性的,清洁机器人在预设清洁区域运动时,如对预设清洁区域进行拖擦时通过清洁机器人搭载的传感器,如视觉传感器、红外传感器等中的至少一种获取所述预设清洁区域对应的第一脏污程度。可以理解的,可以在对所述预设清洁区域进行拖擦之前,或者在对所述预设清洁区域进行拖擦时获取对应的第一脏污程度。当然也不限于此,例如可以根据不在清洁机器人上的传感器,如房顶上设置的视觉传感器获取所述预设清洁区域对应的第一脏污程度。
在一些实施方式中,所述获取所述预设清洁区域对应的第一脏污程度,包括:在清洁机器人通过拖擦件完成对预设清洁区域的拖擦之后,获取所述拖擦件的拖擦件脏污程度;以及根据所述拖擦件脏污程度确定所述预设清洁区域对应的第一脏污程度。示例性的,在拖擦件脏污程度小于拖擦件的最大脏污值d_max时,预设清洁区域对应第一脏污程度与拖擦件脏污程度正相关,即拖擦件脏污程度越大,预设清洁区域越脏;在拖擦件脏污程度等于拖擦件的最大脏污值d_max时,可以确定预设清洁区域很脏,而且在步骤S110完成对所述预设清洁区域的拖擦之后,该预设清洁区域仍有脏污未被拖擦件吸附。
示例性的,所述获取所述拖擦件的拖擦件脏污程度,包括:在对拖擦件进行清洗时,获取清洗拖擦件的污水的检测值;根据检测值确定拖擦件的脏污程度。可选的,脏污检测装置包括污水检测传感器,污水检测传感器用于检测清洁拖擦件后的污水,例如检测污水的浊度、色度、水导电率中的一种或多种。可通过污水的浊度、污水的色度或污水的水电导率确定从拖擦件上清洗下来的脏污量。例如当污水的浊度、色度或者水电导率越大时,表示清洁拖擦件后的污水越脏,从拖擦件上清洗下来的脏污量越大,即用于表征从拖擦件上清洗下来的脏污量的脏污洗脱值越大,可以确定清洁之前拖擦件上吸附的脏污量越大,即确定所述拖擦件脏污程度越大。可以理解,污水的浊度、污水的色度、污水的水电导率都可用于表征从拖擦件上清洗下来的脏污量,即可以表征拖擦件脏污程度,都与脏污洗脱值、脏污量或拖擦件脏污程度正相关或有对应关系。例 如,对第一次清洗拖布的污水检测得到的浊度为1NTU,浊度为1NTU对应的脏污洗脱值或脏污量为100,对第二次清洗拖布的污水检测得到的浊度为2NTU,浊度为2NTU的污水对应的脏污洗脱值或脏污量为200,则可以判断第一次从拖擦件上清洗下来的脏污的量小于第二次从拖擦件上清洗下来的脏污的量,即第一次清洁的脏污洗脱值小于第二次清洁的脏污洗脱值。污水的色度、污水的水电导率与脏污洗脱值或脏污量的对应关系同理,在此不再赘述。同样可以理解,拖擦件的脏污程度可以由数值表征,如可以由污水的浊度、污水的色度、污水的水电导率、脏污量、脏污洗脱值中的任意一种数值表征,或脏污程度可以由为污水的浊度、污水的色度、污水的水电导率、脏污量、脏污洗脱值中的任意一种数值确定。例如,清洗拖擦件后的污水的浊度为1NTU,则可表征拖擦件的拖擦件脏污程度为1;或者清洗拖擦件后的污水的浊度为1NTU对应的脏污程度为100,则拖擦件脏污程度为100。
示例性的,通过基站上的脏污检测装置,如视觉传感器等获取所述拖擦件的拖擦件脏污程度,例如拖擦件110的颜色越深,拖擦件脏污程度也越大;当然也不限于此,例如还可以通过清洁机器人上搭载的且朝向所述拖擦件拖擦面的视觉传感器获取所述拖擦件的拖擦件脏污程度。
示例性的,所述获取所述拖擦件的拖擦件脏污程度,包括:对所述拖擦件进行清洁,获取清洁所述拖擦件的污水的检测值;根据所述检测值确定所述拖擦件的拖擦件脏污程度。可选的,脏污检测装置包括污水检测传感器,污水检测传感器用于检测清洁拖擦件后的污水,例如检测污水的浊度、色度、水导电率中的一种或多种。例如当污水的浊度、色度或者水电导率越大时,表示清洁拖擦件后的污水越脏,从拖擦件上清洗下来的脏污量,即脏污洗脱值越大,可以确定清洁之前拖擦件上吸附的脏污量越大,即确定所述拖擦件的拖擦件脏污程度越大。
举例而言,对所述拖擦件进行清洁时,可以及间隔性的获取污水检测传感器的检测值,可以根据清洁所述拖擦件的时间和/或水量,对所述检测值对应的脏污量进行累加得到脏污量的累加结果d,其中水量可以根据向清洗槽提供清洁用水的水量和/或排出的废水的水量确定。
在一些实施方式中,两次地面清洁操作之间执行的拖擦件清洁操作可以作 为一个拖擦件清洗任务。对所述拖擦件进行清洁的拖擦件清洗任务,例如包括在清洁一个预设清洁区域之后及在清洁另一个预设清洁区域之前对拖擦件进行清洁的过程,还可以包括结束对清洁任务地图的清洁任务之后对拖擦件进行清洁的过程,例如在清洁任务地图的所有区域的脏污程度均小于对应的脏污量阈值时,结束所述清洁任务以及执行所述拖擦件清洗任务。
对所述拖擦件进行清洁的拖擦件清洗任务包括一个或多个阶段任务,在每个阶段任务,向基站的清洗槽提供清洁用水对拖擦件清洁,之后将清洁拖擦件后的污水排出,这个过程可以不循环或者可以循环多次;或者同时向清洗槽提供清洁用水对拖擦件清洁以及将清洁拖擦件后的污水排出,当然也不限于此,例如向清洗槽提供清洁用水时间歇性的将清洁拖擦件后的污水排出。
不同阶段任务对应的清洁所述拖擦件的时间和/或水量可以相同也可以不同,根据拖擦件清洗任务中一个或多个阶段任务对应的时间和/或水量,对所述各阶段任务执行时获取的检测值对应的脏污量进行累加得到脏污量的累加结果d。
可选的,可以将检测值,如污水浊度直接作为脏污量;根据所述脏污量的累加结果确定所述拖擦件的拖擦件脏污程度。例如,所述拖擦件脏污程度d,即脏污量的累加结果可以根据清洁所述拖擦件的水量l,对污水浊度T的积分得到,表示如下:
d=∫T dl
在污水检测传感器存在检测水容量的限制和检测频率的限制时,可以根据一次或多次采样的检测值,与采样间隔中的水量,确定所述脏污量的累加结果d,表示如下:
d=ΣT i×l i
其中,T i表示第i次采样的污水浊度T,l i表示两次采样之间的水量,i为1、2、……、n中的任一数值,n为总采样次数。
举例而言,也可以根据单次所述检测值预判所述拖擦件的拖擦件脏污程度。例如,在停止向清洗槽提供清洁用水之后,将污水排出,以及在污水排出过程中检测一次污水浊度,以及获取排出的污水的水量,该污水浊度与该水量的乘 积可以确定为所述脏污量的累加结果d。当然也不限于此,例如可以在污水排出过程中多次检测污水浊度,将多个检测污水浊度的平均值、最大值、或最小值与该水量的乘积确定为所述脏污量的累加结果d。
在一些实施方式中,根据清洁所述拖擦件的时间和/或水量,对所述检测值对应的脏污量进行累加,所述脏污量的累加结果表示从拖擦件上清洗下来的脏污量,可以称为脏污洗脱值。
在一些实施方式中,可以根据所述拖擦件清洗任务中一个或多个阶段任务的脏污洗脱值,确定所述拖擦件清洗任务的脏污洗脱值;例如所述拖擦件清洗任务中所有阶段任务的脏污洗脱值累加得到所述拖擦件清洗任务的脏污洗脱值。
在每个阶段任务中,可以只获取一次污水的检测值,也可以多次获取污水的检测值,根据一次或多次的检测值确定所述阶段任务的脏污洗脱值,例如根据多次的检测值的平均值与该任务阶段的水量的乘积确定该阶段任务的脏污洗脱值。
示例性的,可以根据一个或多个阶段任务的脏污洗脱值,或者所述拖擦件清洗任务的脏污洗脱值,确定所述拖擦件的拖擦件脏污程度。例如根据所述拖擦件清洗任务中第一个阶段任务的脏污洗脱值,确定所述拖擦件的拖擦件脏污程度,如第一个阶段任务的脏污洗脱值越大则所述拖擦件脏污程度越大;或者根据多个阶段任务的脏污洗脱值的最大值或平均值,确定所述拖擦件的拖擦件脏污程度,所述最大值或平均值越大则所述拖擦件脏污程度越大。当然也不限于此,例如可以基于预测模型,根据多个阶段任务中每个清洁阶段任务中的脏污洗脱值,预测所述拖擦件脏污程度;其中所述预测模型可以通过对大数据埋点中拖擦件清洗任务中阶段任务的数量和各阶段任务的脏污洗脱值进行拟合得到,如拖擦件脏污程度T=f(t),t表示n×[次序标识,脏污洗脱值]矩阵,n表示拖擦件清洗任务中阶段任务的数量,[次序标识,脏污洗脱值]表示按某次序执行的阶段任务对应的清洗脏污洗脱值,例如,次序标识对应第一个阶段任务时,该脏污洗脱值为第一个阶段任务的脏污洗脱值,次序标识对应第二个阶段任务时,该脏污洗脱值为第二个阶段任务的脏污洗脱值,以此类推。
举例而言,可以根据已执行阶段任务的脏污洗脱值,确定所述拖擦件的拖擦件脏污程度。
举例而言,所述获取所述预设清洁区域对应的第一脏污程度,包括:在清洁机器人通过拖擦件完成对预设清洁区域的拖擦之后,执行拖擦件清洗任务,以及将所述拖擦件清洗任务中所有阶段任务的脏污洗脱值累加得到所述拖擦件清洗任务的脏污洗脱值,将所述拖擦件清洗任务的脏污洗脱值确定为所述预设清洁区域对应的第一脏污程度。
S130、根据所述第一脏污程度,确定所述预设清洁区域包括目标区域,所述目标区域为需要重复拖擦的区域。
本实施例中,可以根据第一脏污程度,确定预设清洁区域是否包括目标区域。示例性的,可以根据所述第一脏污程度将整个所述预设清洁区域作为所述目标区域,或者可以根据所述第一脏污程度将所述预设清洁区域中的部分区域作为所述目标区域;例如在通过视觉传感器获取所述预设清洁区域的第一脏污程度时,可以确定所述预设清洁区域中不同区域的脏污程度分布,根据所述预设清洁区域中不同区域的脏污程度分布,确定其中较脏的区域为所述目标区域。
当根据所述预设清洁区域对应的第一脏污程度确定所述预设清洁区域很脏时,判定所述预设清洁区域包括所述目标区域。可选的,在步骤S110对所述预设清洁区域进行拖擦之前,在步骤S110对所述预设清洁区域进行拖擦时,或者在步骤S110对所述预设清洁区域拖擦之后,获取所述预设清洁区域对应第一脏污程度,以及确定所述预设清洁区域是否包括所述目标区域。
为便于说明,本申请实施例主要以在步骤S110对所述预设清洁区域进行拖擦之后,根据所述拖擦件脏污程度确定所述预设清洁区域对应第一脏污程度,以及根据所述第一脏污程度确定所述预设清洁区域是否包括目标区域为例进行说明。
在一些实施方式中,当所述预设清洁区域对应的第一脏污程度大于或等于预设的脏污量阈值时,确定所述预设清洁区域包括目标区域;和/或当所述预设清洁区域对应的第一脏污程度小于预设的脏污量阈值时,确定所述预设清洁区域不包括目标区域。
示例性的,所述脏污量阈值可以根据拖擦件的最大脏污值d_max确定,例如脏污量阈值与拖擦件的最大脏污值d_max正相关。
示例性的,清洁机器人当前拖擦的预设清洁区域的总脏污量为V,当V大 于拖擦件的最大脏污值d_max,在拖擦件对该预设清洁区域拖擦时,拖擦件上累加的脏污量d近似等于d_max,预设清洁区域剩余的总脏污量为V-d=V-d_max>0,可以确定该预设清洁区域未清洁干净;当V小于或等于拖擦件的最大脏污值d_max,在拖擦件对该预设清洁区域拖擦时,拖擦件上累加的脏污量d近似等于V,预设清洁区域剩余的总脏污量为V-d=0,可以确定该预设清洁区域已经清洁干净。
举例而言,脏污量阈值小于或等于拖擦件的最大脏污值d_max;在实际使用过程中,拖布很难收集d_max这么多脏污量,所以脏污量阈值可以小于最大脏污值d_max。
可选的,脏污量阈值还可以根据清洁机器人的清洁模式(或者称为拖地模式)确定。例如清洁模式的清洁要求越高(如深度清洁模式),脏污量阈值越小,清洁模式的清洁要求越低(如快速清洁模式),脏污量阈值越大。举例而言,脏污量阈值d_var=k×d_max,其中,0<k<1;不同的清洁模式可以设定不同的k值,如深度清洁模式的k值就可以小一些,快速清洁模式的k值就可以大一些。清洁机器人包括快速清洁模式、普通清洁模式、深度清洁模式或者更多其他模式,不同的清洁模式对应不同的脏污阈值。举例而言,普通清洁模式对应的脏污量阈值为20,用户选择普通清洁模式后,如果预设清洁区域的第一脏污程度大于20,则重复对该预设清洁区域进行清洁,当第一脏污程度小于20时,则停止清洁该预设清洁区域;深度清洁模式对应的脏污量阈值为10,则用户选择深度清洁模式后,如果预设清洁区域的第一脏污程度大于10则重复对该预设清洁区域进行清洁,当第一脏污程度小于10时,则停止清洁该预设清洁区域。
在预设清洁区域对应的第一脏污程度一定(如15)时,会出现在清洁要求较高的清洁模式下,第一脏污程度大于或等于脏污量阈值(深度清洁模式脏污量阈值例如为10)而判定该预设清洁区域包括目标区域,而在清洁要求较低的清洁模式下,第一脏污程度小于脏污量阈值(快速清洁模式脏污量阈值例如为20)而判定该预设清洁区域不包括目标区域的情况,因此在清洁要求较高的清洁模式下可以对该预设清洁区域的至少部分区域进行重复拖擦,以实现对地面的深度清洁。
需要说明的是,相关技术中的清洁模式仅根据拖地的次数差别定义,如快速清洁模式即清洁(拖地)一次,深度清洁模式即清洁(拖地)两次,该种定义模式清洁效率较低,可能会浪费不必要的时间。例如在区域比较干净但用户设置清洁模式为深度清洁时,还需要清洁两次,清洁效率较低。
本申请实施例可以通过根据清洁机器人的清洁模式调整脏污量阈值,以根据脏污量阈值和预设清洁区域的第一脏污程度的比较结果判断该预设清洁区域是否需要重复拖擦,可以提高清洁效率;例如在预设清洁区域比较干净但用户设置清洁模式为深度清洁时,可以只清洁一次,清洁效率较高。
S140、在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
在一些实施方式中,当在步骤S130确定所述预设清洁区域包括目标区域时,则在对所述预设清洁区域完成拖擦之后,控制清洁机器人运动至基站,对所述拖擦件进行维护,例如更换拖擦件,或者对所述拖擦件进行清洁;举例而言,所述拖擦件可以包括以下至少一种:旋转拖布、一片式拖布、滚筒式拖布、履带式拖布等,当然也不限于此。需要说明的是,对所述拖擦件进行维护不限于由基站,或者由清洁机器人,或者由基站和清洁机器人共同执行,还可以是通知用户,由用户进行维护。
在一些实施方式中,在对所述预设清洁区域完成拖擦,以及执行拖擦件清洗任务时,获取所述拖擦件的拖擦件脏污程度以及根据所述拖擦件脏污程度确定所述预设清洁区域的第一脏污程度,当所述预设清洁区域包括目标区域时,则在结束所述拖擦件清洗任务之后,可以控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
示例性的,所述拖擦件上吸附的脏污量为从预设清洁区域上带回的脏污量,即可以用拖擦件脏污程度指代预设清洁区域的脏污程度,在执行拖擦件清洗任务时,当所述拖擦件脏污程度大于或等于预设的脏污量阈值时,在结束所述拖擦件清洗任务后,控制清洁机器人通过所述拖擦件对目标区域进行拖擦,所述目标区域为所述拖擦件清洗任务之前所述拖擦件清洁的区域。举例而言,在根据所述拖擦件清洗任务的至少第一个阶段任务的脏污洗脱值确定所述拖擦件脏污程度,当所述拖擦件脏污程度大于或等于预设的脏污量阈值时,确定拖擦件 拖擦的地面包括目标区域,可以在所述至少第一个阶段任务后结束所述拖擦件清洗任务;在所述至少第一个阶段任务后,拖擦件已经得到了一定程度的清洁,此时拖擦件已具备吸附脏污的能力,则无需再执行后续阶段任务,仍能在对所述目标区域进行重复拖擦时仍可以起到较为明显的清洁效果,且可以降低清洁拖擦件时时间和水的消耗。
本申请实施例还提供了一种拖擦件的清洁方法,所述拖擦件的清洁方法可以应用在清洁系统中,用于对清洁系统中的基站和/或清洁机器人进行控制,以控制基站上的清洁机构和/或清洁机器人上的清洁机构对清洁机器人的拖擦件进行清洁。
请继续参阅图2,清洁系统还包括控制装置300,控制装置300用于实现本申请实施例的清洁机器人的控制方法的步骤和/或实现前述的拖擦件的清洁方法的步骤。可选地,清洁机器人100的机器人控制器104和/或基站200的基站控制器206可以单独或者配合作为控制装置300,用于实现本申请实施例的方法的步骤;在另一些实施方式中,清洁系统包括单独的控制装置300,用于实现本申请实施例的方法的步骤,该控制装置300可以设置在清洁机器人100上,或者可以设置在基站200上;当然也不限于此,例如控制装置300可以为除清洁机器人100和基站200之外的装置,如家庭智能终端、总控设备等。在一些实施方式中,机器人控制器104用于实现本申请实施例的清洁机器人的控制方法的步骤,基站控制器206用于实现本申请实施例的拖擦件的清洁方法的步骤。当然也不限于此。
本申请的发明人发现,相关技术中虽然有些设备可以对拖擦件进行清洁,但是为了保证将拖布等拖擦件洗干净,通常清洁时间都固定为一较长的时间,影响清洁机器人工作效率,且较为浪费水。
针对该发现,本申请的发明人对拖擦件的清洁方法进行改进,以至少提高对拖擦件的清洁效率,例如可以尽快将拖擦件清洁干净以控制清洁机器人清洁其他预设清洁区域或对上一次清洁的区域进行拖擦。
如图8所示,拖擦件的清洁方法包括步骤S210至步骤S230。
210、执行拖擦件清洗任务。
220、获取所述拖擦件的拖擦件脏污程度。
需要说明的是,执行拖擦件清洗任务的步骤和获取拖擦件脏污程度的步骤的顺序不限定先后,例如可以在采用视觉或红外等传感器获取拖擦件脏污程度之后,开始执行拖擦件清洗任务,以及根据所述拖擦件脏污程度对应的清洗阈值结束所述拖擦件清洗任务。
在一些实施方式中,执行拖擦件清洗任务的每个阶段任务后,根据已执行阶段任务的脏污洗脱值,确定所述拖擦件的拖擦件脏污程度。
在一些实施方式中,所述拖擦件清洗任务包括已执行阶段任务和未执行阶段任务,所述未执行阶段任务为所述已执行阶段任务之后的其它阶段任务。举例而言,所述已执行阶段任务可以包括所述拖擦件清洗任务中已执行的一个或多个阶段任务,所述已执行阶段任务可以称为历史阶段任务,当前阶段任务之前的各阶段任务均可作为所述已执行阶段任务;所述未执行阶段任务可以包括当前阶段任务,或者还可以包括当前阶段任务之后待执行的阶段任务。
示例性的,所述获取所述拖擦件的拖擦件脏污程度,包括:获取所述拖擦件在所述已执行阶段任务中的拖擦件脏污程度。
拖擦件在已执行阶段任务中的拖擦件脏污程度,可以采用视觉或红外等传感器获取,或者也可以根据已执行阶段任务中对所述拖擦件清洁时的脏污洗脱值确定。
举例而言,所述获取所述拖擦件在所述已执行阶段任务中的拖擦件脏污程度,包括:在所述已执行阶段任务之前,通过视觉传感器获取拖擦件的图像或颜色信息,根据拖擦件的图像或颜色信息确定拖擦件在所述已执行阶段任务中的拖擦件脏污程度。例如在通过视觉传感器获取拖擦件的图像或颜色信息以及根据拖擦件的图像或颜色信息确定拖擦件的拖擦件脏污程度之后,执行所述阶段任务。
示例性的,所述获取所述拖擦件在所述已执行阶段任务中的拖擦件脏污程度,包括:获取所述拖擦件在所述已执行阶段任务中的脏污洗脱值;根据所述已执行阶段任务的脏污洗脱值,确定所述拖擦件脏污程度。举例而言,基于预设的拖擦件脏污程度与已执行阶段任务的脏污洗脱值的对应关系或者模型,根据所述已执行阶段任务的脏污洗脱值,确定所述拖擦件脏污程度,例如所述已执行阶段任务的脏污洗脱值越大则所述拖擦件脏污程度越大。
可选的,根据所述拖擦件清洗任务中第一个阶段任务的脏污洗脱值,确定所述拖擦件脏污程度。例如根据所述拖擦件清洗任务中的第一个阶段任务的脏污洗脱值,确定所述拖擦件脏污程度;通常第一个阶段任务洗脱的脏污量是最大的,拖擦件脏污程度越大则第一个阶段任务洗脱的脏污量越大,根据第一个阶段任务的脏污洗脱值可以快速的确定所述拖擦件脏污程度。
可选的,根据所述未执行阶段任务之前最近一次的已执行阶段任务的脏污洗脱值,确定所述拖擦件脏污程度。例如在所述未执行阶段任务为拖擦件清洗任务中的第二个阶段任务时,根据所述拖擦件清洗任务中第一个阶段任务的脏污洗脱值确定所述拖擦件脏污程度;在所述未执行阶段任务为拖擦件清洗任务中的第i个阶段任务时,根据所述拖擦件清洗任务中第i-1个阶段任务的脏污洗脱值确定所述拖擦件脏污程度,其中i为大于1的整数。例如最近一次的脏污洗脱值越大,则确定拖擦件脏污程度越脏。
可选的,根据所述未执行阶段任务之前的多个已执行阶段任务的脏污洗脱值,如多个已执行阶段任务的脏污洗脱值的累加值、最大值、平均值中的至少一种,确定所述拖擦件脏污程度,当然也不限于此,例如可以基于预测模型,根据所述多个已执行阶段任务的脏污洗脱值确定所述拖擦件脏污程度。举例而言,通过根据多个阶段任务的脏污洗脱值,如在所述未执行阶段任务为第i个阶段任务时,根据多个已执行阶段任务(如第1个阶段任务至第i-1个阶段任务)的脏污洗脱值的累加值确定所述拖擦件脏污程度,可以更准确的确定拖擦件脏污程度。
230、根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,根据所述清洗阈值结束所述拖擦件清洗任务。
在一些实施方式中,当在某一阶段任务结束时确定拖擦件当前的脏污程度低于所述清洗阈值,可以确定拖擦件清洁至满足需求,可以结束对所述拖擦件的清洁;例如该拖擦件可以用于对预设清洁区域进行拖擦。
示例性的,拖擦件当前的脏污程度可以采用视觉或红外等传感器获取。
示例性的,拖擦件当前的脏污程度可以根据当前阶段任务对所述拖擦件清洁时的脏污洗脱值确定,所述脏污洗脱值越小,表示拖擦件当前的脏污程度越小,即越干净。示例性的,当当前阶段任务所述拖擦件的脏污洗脱值小于或等 于所述清洗阈值,则结束所述拖擦件清洗任务,即所述当前阶段任务为该拖擦件清洗任务中的最后一个阶段任务。
示例性的,基于预设的清洗阈值与拖擦件脏污程度所在值域范围的对应关系或者模型,如函数关系,根据所述拖擦件脏污程度所在的值域范围确定对应的清洗阈值。
在一些实施方式中,所述清洗阈值与所述拖擦件脏污程度所在值域范围的上限值呈正相关关系或与所述值域范围的下限值呈正相关关系,例如所述拖擦件脏污程度所在值域范围的上限值越大则清洗阈值越大。当拖擦件脏污程度较大时,可以确定已拖擦的地面较脏,在清洁拖擦件时将拖擦件清洁至一般干净,即在较大的清洗阈值结束所述拖擦件清洗任务,可以降低时间和水的消耗;而且在通过该拖擦件对较脏的地面进行拖擦时,仍可以起到较为明显的清洁效果。
所述拖擦件脏污程度与所述拖擦件已拖擦的地面的脏污程度,如预设清洁区域的第一脏污程度相关。当拖擦件脏污程度较大时,可以确定已拖擦的地面较脏;在需要对该地面进行重复拖擦时,如果将拖擦件清洁至非常干净之后进行重复拖擦,拖擦件对该地面的清洁效果,与将拖擦件清洁至一般干净之后再重复拖擦该地面的清洁效果相当,但是将拖擦件清洁至非常干净和将拖擦件清洁至一般干净所消耗的水和时间却相差很大,因此,在需要对该地面进行重复拖擦时,将拖擦件清洁至非常干净的收益较将拖擦件清洁至一般干净的收益小,影响清洁机器人的工作效率,且较为浪费水。
在另一些实施方式中,所述清洗阈值与所述拖擦件脏污程度所在值域范围的上限值呈负相关关系或与所述值域范围的下限值呈负相关关系,即所述拖擦件脏污程度所在值域范围越大则清洗阈值越小。当拖擦件脏污程度较大时,可以确定已拖擦的地面较脏,通过将拖擦件清洁至更干净,可以使得清洁后的拖擦件在对该地面拖擦时能够吸附更多的脏污,例如可以减少对该地面的拖擦次数,从而提高清洁机器人工作效率,提高对地面的清洁效率;还可以减少对地面拖擦后返回基站清洁的次数,降低往返时间和清洁拖擦件的水的消耗。
在一些实施方式中,还可以根据清洁任务中待拖擦区域的面积,调整所述清洗阈值;示例性的所述清洗阈值与所述待拖擦区域的面积正相关。例如在待拖擦区域的面积较大的情况下,通过调高清洗阈值,可以防止在待拖擦区域未 完全清洁之前基站的水量消耗完。
本申请实施例的拖擦件的清洁方法,可以通过根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,可以根据所述清洗阈值及时结束所述拖擦件清洗任务,拖擦件脏污程度可以反映地面的脏污程度,从而可以实现根据地面的脏污程度调整对拖擦件的清洁程度,提高清洁机器人的工作效率。
在一些实施方式中,所述根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,根据所述清洗阈值结束所述拖擦件清洗任务,包括:根据所述已执行阶段任务中的拖擦件脏污程度所在的值域范围确定所述未执行阶段任务的清洗阈值;获取所述拖擦件在所述未执行阶段任务中的拖擦件脏污程度;以及确定所述未执行阶段任务中的拖擦件脏污程度小于或等于所述未执行阶段任务的清洗阈值,结束所述拖擦件清洗任务。
示例性的,拖擦件在未执行阶段任务中的拖擦件脏污程度,可以采用视觉或红外等传感器获取,或者也可以根据未执行阶段任务中对所述拖擦件清洁时的脏污洗脱值确定。举例而言,所述获取所述拖擦件在所述未执行阶段任务中的拖擦件脏污程度,以及确定所述未执行阶段任务中的拖擦件脏污程度小于或等于所述未执行阶段任务的清洗阈值,结束所述拖擦件清洗任务,包括:获取所述拖擦件在所述未执行阶段任务中的脏污洗脱值,以及当所述拖擦件在所述未执行阶段任务中的脏污洗脱值小于或等于所述未执行阶段任务的清洗阈值时,结束所述拖擦件清洗任务。
在一些实施方式中,在最近一次的已执行阶段任务结束后根据一个或多个已执行阶段任务的脏污洗脱值确定拖擦件脏污程度,例如根据多个已执行阶段任务的脏污洗脱值的累加值或预测值确定拖擦件脏污程度;以及根据所述拖擦件脏污程度确定所述未执行阶段任务的清洗阈值;之后在所述未执行阶段任务对拖擦件进行清洁时,获取未执行阶段任务的脏污洗脱值,且在所述未执行阶段任务的脏污洗脱值小于或等于所述清洗阈值时,结束所述拖擦件清洗任务,即所述未执行阶段任务为所述拖擦件清洗任务的最后一个阶段任务。
可选的,根据未执行阶段任务之前的至少一个已执行阶段任务的脏污洗脱值,确定所述拖擦件脏污程度,以及根据所述拖擦件脏污程度确定所述未执行阶段任务的清洗阈值。举例而言,当所述未执行阶段任务的脏污洗脱值大于所 述未执行阶段任务的清洗阈值时,将所述未执行阶段任务作为已执行阶段任务,将该阶段任务的脏污洗脱值累加至拖擦件脏污程度得到更新后的拖擦件脏污程度,以及根据更新后的拖擦件脏污程度更新未执行阶段任务的清洗阈值;之后继续在新的未执行阶段任务对拖擦件进行清洁,以及比较新的未执行阶段任务的脏污洗脱值与更新后的清洗阈值;直至某阶段任务中的脏污洗脱值小于或等于该阶段任务的清洗阈值时,结束所述拖擦件清洗任务。
可选的,当所述未执行阶段任务的脏污洗脱值大于所述未执行阶段任务的清洗阈值时,之后继续在新的未执行阶段任务对拖擦件进行清洁,以及比较新的未执行阶段任务的脏污洗脱值与所述清洗阈值;直至某阶段任务的脏污洗脱值小于或等于该阶段任务的清洗阈值时,结束所述拖擦件清洗任务。可以理解的,也可以只确定一次清洗阈值,在之后的各阶段任务均将各阶段任务的脏污洗脱值与该清洗阈值比较;例如在第一个阶段任务结束后根据第一个阶段任务的脏污洗脱值确定所述清洗阈值,在之后各阶段任务均将各阶段任务的脏污洗脱值与该清洗阈值比较。
示例性的,预设的值域范围包括多个,且多个所述值域范围均不同,如各值域范围均不重合,各值域范围对应的清洗阈值也不同。举例而言,所述值域范围至少包括第一值域范围和第二值域范围,所述第一值域范围和所述第二值域范围不同。所述根据所述已执行阶段任务中的拖擦件脏污程度所在的值域范围确定所述未执行阶段任务的清洗阈值包括:当所述拖擦件脏污程度在所述第一值域范围时,确定所述未执行阶段任务的清洗阈值为第一清洗阈值;当所述拖擦件脏污程度在所述第二值域范围时,确定所述未执行阶段任务的清洗阈值为第二清洗阈值;其中,所述第一清洗阈值和所述第二清洗阈值不相等。例如当第一值域范围中的值均大于第二值域范围的值时,第一清洗阈值大于第二清洗阈值,即所述清洗阈值与所述拖擦件脏污程度所在值域范围的上限值呈正相关关系或与所述值域范围的下限值呈正相关关系。当然也不限于此,例如当第一值域范围中的值均小于第二值域范围的值时,第一清洗阈值大于第二清洗阈值,即所述清洗阈值与所述拖擦件脏污程度所在值域范围的上限值呈负相关关系或与所述值域范围的下限值呈负相关关系。
示例性的,如图9所示,拖擦件脏污程度确定对应的值域范围包括三个, 其中第一个值域范围中的拖擦件脏污程度均小于第二脏污量阈值,第一个值域范围对应的清洗阈值为阈值0;第二个值域范围中的拖擦件脏污程度均大于或等于第二脏污量阈值且小于第一脏污量阈值,第二个值域范围对应的清洗阈值为阈值1;第三个值域范围中的拖擦件脏污程度均大于或等于第一脏污量阈值,第三个值域范围对应的清洗阈值为阈值2;当然也不限于此。其中阈值2大于阈值1,阈值1大于阈值0。举例而言,当拖擦件脏污程度较大时表示已拖擦的地面较脏,可以根据较大的清洗阈值在拖擦件清洗较少次数后结束清洗。
请参阅图9,还可以在拖擦件脏污程度大于或等于预设的脏污量阈值,如第二脏污量阈值时,确定拖擦件拖擦的地面包括目标区域,以及在所述拖擦件的拖擦件清洗任务结束后,对所述目标区域的至少部分进行重复拖擦(可以称为回拖)。
在一些实施方式中,所述清洁方法还包括:根据已执行阶段任务的脏污洗脱值确定所述未执行阶段任务的清洁策略,例如可以根据已执行阶段任务的脏污洗脱值确定所述未执行阶段任务的清洁时长和/或水量,当然也不限于此,例如可以通过调整向清洗槽提供清洁用水的泵的转速,加大或减小向拖擦件供水的压力。
可选的,所述未执行阶段任务的清洁时长和/或水量,与所述已执行阶段任务的脏污洗脱值呈正相关的关系。在已执行阶段任务的脏污洗脱值较大时,可以确定拖擦件吸附较多的脏污,可以通过延长未执行阶段任务的清洁时间和/或水量,在未执行阶段任务的带走更多的脏污,提高对脏污件的清洁效率;在已执行阶段任务的脏污洗脱值较小时,可以确定拖擦件吸附较少的脏污,可以通过缩短未执行阶段任务的清洁时间和/或水量,节省时间和水的消耗。
举例而言,对一预设清洁区域拖擦之后,清洁机器人运动至基站对拖擦件进行清洁,第一个阶段任务对拖擦件清洁15秒,根据第一个阶段任务的脏污洗脱值确定拖擦件脏污程度,以及根据所述拖擦件脏污程度所在的值域范围确定清洗阈值;第一个阶段任务的脏污洗脱值大于所述清洗阈值时,根据所述第一个阶段任务的脏污洗脱值确定未执行阶段任务的清洁时长(如18秒)和/或水量,之后执行第二个阶段任务,对拖擦件清洁18秒;通过延长未执行阶段任务的清洁时间,可以减少后续未执行阶段任务的数量,提高对脏污件的清洁效率。
示例性的,在结束所述拖擦件清洗任务之后,可以根据所述拖擦件清洗任务中至少一个阶段任务的脏污洗脱值确定所述拖擦件脏污程度(如根据所述拖擦件清洗任务中所有阶段任务的脏污洗脱值的累加值确定)和预设清洁区域对应的第一脏污程度,根据所述第一脏污程度确定所述预设清洁区域包括目标区域。
可选的,所述未执行阶段任务的清洁时长和/或水量,与所述已执行阶段任务的脏污洗脱值呈负相关的关系。在已执行阶段任务的脏污洗脱值较大时,可以通过缩短未执行阶段任务的清洁时间和/或水量,还可以通过增加未执行阶段任务的数量保证拖擦件得到足够的清洁,整体上也可以提高对脏污件的清洁效率;在已执行阶段任务的脏污洗脱值较小时,可以通过延长未执行阶段任务的清洁时间和/或水量,在每一未执行阶段任务带走更多的脏污,减少后续未执行阶段任务的数量,尽快使拖擦件足够清洁,提高对脏污件的清洁效率。
示例性的,可以在所述根据所述已执行阶段任务中的拖擦件脏污程度所在的值域范围确定所述未执行阶段任务的清洗阈值之后,根据所述已执行阶段任务的脏污洗脱值及所述未执行阶段任务的清洗阈值确定所述未执行阶段任务的清洁策略。
示例性的,可以根据所述已执行阶段任务的脏污洗脱值及所述未执行阶段任务的清洗阈值,调整所述未执行阶段任务的清洁时长和/或水量。举例而言,在所述已执行阶段任务的脏污洗脱值小于或等于所述清洗阈值,可以结束所述拖擦件清洗任务;在所述已执行阶段任务的脏污洗脱值大于所述清洗阈值时,调整所述未执行阶段任务清洁策略,如清洁时长和/或水量,以及根据所述未执行阶段任务的清洁时长和/或水量执行未执行阶段任务。
在一些实施方式中,所述方法还包括:在执行所述拖擦件清洗任务时,当清洁所述拖擦件消耗的水量达到预设水量阈值或时间达到预设时间阈值时,结束所述拖擦件清洗任务,和/或输出异常提醒。举例而言,在仅由清水箱向清洗槽提供清洁用水时,能够用于清洁拖擦件的水量有限,在某次拖擦件清洗任务消耗的水量达到预设水量阈值或时间达到预设时间阈值时,及时结束所述拖擦件清洗任务,可以保留一些清洁用水在拖擦件对地面拖擦之后再次对拖擦件进行清洁,以防止在地面清洁任务未完成时水箱的水已经消耗完。或者可以在清 洁所述拖擦件消耗的水量达到预设水量阈值或时间达到预设时间阈值时输出异常提醒,例如提示用户给清水箱加水。
在对所述拖擦件进行维护之后,清洁机器人上的拖擦件的拖擦件脏污程度满足要求,例如小于或等于对应的清洗阈值;可以控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,在步骤S110吸附了d_max的脏污值后,继续吸附所述目标区域上剩余的V-d_max的脏污量,以提高对所述目标区域的拖擦清洁效果。
在一些实施方式中,所述预设清洁区域包括多个,若在步骤S130确定当前的预设清洁区域包括目标区域,则在对全部的所述预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。可选的,所述全部的预设清洁区域为清洁任务地图中所有的预设清洁区域。
举例而言,如图10所示,所述预设清洁区域包括多个,如分别为预设清洁区域A1至预设清洁区域A9,预设清洁区域A1至预设清洁区域A9的清洁顺序例如为A1、A2、……、A9。在对预设清洁区域A1进行拖擦之后,确定预设清洁区域A1包括目标区域,可以将该预设清洁区域A1标记为包含目标区域;然后在对所述拖擦件进行维护之后,按照清洁顺序对预设清洁区域A2至预设清洁区域A9进行拖擦;其中,在对预设清洁区域A2进行拖擦之后,确定预设清洁区域A2包括目标区域,可以将该预设清洁区域A2标记为包含目标区域,在对预设清洁区域A4进行拖擦之后,确定预设清洁区域A4包括目标区域,在对预设清洁区域A7进行拖擦之后,确定预设清洁区域A7包括目标区域,如图10所示,灰色标记的区域表示为包括目标区域的预设清洁区域。
在对预设清洁区域A9完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对预设清洁区域A1、A2、A4、A7的目标区域的至少部分进行拖擦。在对全部的所述预设清洁区域完成拖擦之后,对所述目标区域的至少部分进行拖擦,可以先使得清洁任务地图中的全部预设清洁区域均可以得到至少一次清洁;例如在清洁任务地图中有多个预设清洁区域较脏时,可以尽快使得清洁任务地图对应的地面不那么脏。
在另一些实施方式中,所述预设清洁区域包括多个,若在步骤S130确定当 前的预设清洁区域包括目标区域,则在对除所述目标区域对应的预设清洁区域之外的其他预设清洁区域进行拖擦之前,对所述拖擦件进行维护,以及控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
请参阅图10,在对预设清洁区域A1进行拖擦之后,确定预设清洁区域A1包括目标区域,则在对所述拖擦件进行维护之后,对该预设清洁区域A1的目标区域的至少部分进行拖擦,以尽快使预设清洁区域A1清洁干净;之后按照清洁顺序对预设清洁区域A2至预设清洁区域A9进行拖擦,其中在对预设清洁区域A2进行拖擦之后,确定预设清洁区域A2包括目标区域,则在对所述拖擦件进行维护之后,对该预设清洁区域A2的目标区域的至少部分进行拖擦,之后对预设清洁区域A3进行拖擦。示例性的,在清洁任务地图中有个别预设清洁区域较脏,如泼洒有脏污液体时,可以尽快清洁干净所述个别预设清洁区域,然后清洁剩余的预设清洁区域;举例而言,在清洁干净较脏的预设清洁区域之后再清洁剩余的预设清洁区域,这样即使在清洁机器人对目标区域重复拖擦后通过剩余的预设清洁区域向基站运动时,拖擦件上吸附的脏污对所述剩余的预设清洁区域产生污染,也可以在清洁所述剩余的预设清洁区域时,清洁掉这些污染。
在其他一些实施方式中,所述预设清洁区域包括多个,且当前所述预设清洁区域的第一脏污程度大于或等于预设的第一脏污量阈值时,确定所述当前预设清洁区域包括目标区域;且在对除当前所述预设清洁区域之外的其他预设清洁区域进行拖擦之前,对所述拖擦件进行维护,以及控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,即,当第一脏污程度大于或等于预设的第一脏污量阈值时,立即控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。在当前所述预设清洁区域的第一脏污程度大于或等于预设的第二脏污量阈值,且小于所述第一脏污量阈值时,确定所述预设清洁区域包括目标区域;且在对全部的预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。请参阅图9,根据拖擦件脏污程度确定预设清洁区域的第一脏污程度,预设清洁区域的第一脏污程度大于或等于预设的第一脏污量阈值时,立即控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦;预设清洁区域的第一脏污程度大于或等于预设的第二脏污量阈值且小于所述第 一脏污量阈值时,在对全部的预设清洁区域完成一次拖擦清洁以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
其中,第二脏污量阈值小于所述第一脏污量阈值。在当前预设清洁区域的第一脏污程度大于或等于第一脏污量阈值时,可以确定该预设清洁区域很脏,可以通过多次清洁该预设清洁区域的目标区域的至少部分,以尽快将所述至少部分区域清洁到比较干净(如脏污程度小于所述第一脏污量阈值)或者清洁到很干净(如脏污程度小于所述第二脏污量阈值),然后清洁剩余的预设清洁区域;这样即使在清洁机器人对目标区域重复拖擦后通过剩余的预设清洁区域向基站运动时,拖擦件上吸附的脏污对所述剩余的预设清洁区域产生污染,也可以在清洁所述剩余的预设清洁区域时,清洁掉这些污染。在当前预设清洁区域的第一脏污程度大于或等于所述第二脏污量阈值且小于第一脏污量阈值时,可以确定该预设清洁区域不是很脏,可以先清洁剩余的预设清洁区域,可以尽快使得清洁任务地图对应的地面都能先清洁至少一遍,整体看起来不是很脏。
示例性的,所述控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,还包括:获取所述目标区域对应的第二脏污程度;根据所述目标区域对应的第二脏污程度,确定所述目标区域需要再重复拖擦;对所述目标区域的至少部分再重复拖擦。可以理解的,根据所述目标区域对应的第二脏污程度,确定所述目标区域是否需要再重复拖擦;是,则对所述目标区域的至少部分再重复拖擦。
需要说明的是,所述第一脏污程度、第二脏污程度均可以用于指示同一区域的脏污程度;或者第一脏污程度用于指示一区域的脏污程度,第二脏污程度用于指示该区域中至少部分区域的脏污程度。示例性的,所述第一脏污程度可以为当前清洁任务中第一次对预设清洁区域进行拖擦时根据拖擦件脏污程度确定的预设清洁区域的脏污程度;所述第二脏污程度为对预设清洁区域的至少部分区域,如目标区域进行重复拖擦时根据拖擦件脏污程度确定的脏污程度;或者可以是对目标区域的至少部分区域进行重复拖擦时根据拖擦件脏污程度确定的脏污程度。
示例性的,当第一脏污程度大于或等于预设的第一脏污量阈值时,立即控 制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦;以及获取所述目标区域对应的第二脏污程度,例如在通过所述拖擦件对所述目标区域的至少部分进行拖擦之后,获取清洁所述拖擦件得到的污水的检测值,根据获取的检测值可以确定所述拖擦件的拖擦件脏污程度,以及根据所述拖擦件的拖擦件脏污程度确定所述目标区域对应的第二脏污程度。当然也不限于此,例如可以根据拖擦件的图像或颜色信息确定拖擦件的拖擦件脏污程度和所述目标区域对应的第二脏污程度,或者可以通过视觉传感器、红外传感器等中的至少一种获取所述目标区域对应的第二脏污程度。
示例性的,根据所述目标区域对应的第二脏污程度确定所述目标区域需要再重复拖擦时,则对所述目标区域的至少部分再重复拖擦;以及在对所述目标区域再重复拖擦之后还包括:当对所述目标区域的再重复拖擦次数满足清洁次数阈值时,终止对所述目标区域重复拖擦。例如,在所述目标区域对应的第二脏污程度大于或等于预设的脏污量阈值,如第一脏污量阈值或第二脏污量阈值时,对所述目标区域的至少部分再重复拖擦;在对所述目标区域再重复拖擦之后还可以再次获取所述目标区域对应的第二脏污程度,判断所述目标区域是否需要再重复拖擦……;当对所述目标区域的再重复拖擦次数满足清洁次数阈值,如3次时,终止对所述目标区域重复拖擦。可以理解的,如果目标区域重复多次拖擦后的第二脏污程度仍然没有降到所述脏污量阈值以下时,如果清洁次数达到最大的清洁次数上限,即清洁次数阈值,则也停止对该目标区域进行清洁。防止在某个预设清洁区域有较多脏污时,反复对该区域重复拖擦,而影响对其他预设清洁区域的清洁。
可选地,当所述目标区域的再重复拖擦次数满足清洁次数阈值时,终止对所述目标区域重复拖擦,还可以发送消息至用户界面,以提示用户该目标区域有较多脏污,用户可以根据该消息前往目标区域检查是否有脏污持续泄露,及时处理。
可选的,清洁次数阈值可以根据清洁模式确定,不同的清洁模式对应不同的清洁次数阈值;例如,深度清洁模式的清洁次数阈值大于普通清洁模式或快速清洁模式的清洁次数阈值。
示例性的,当第一脏污程度大于或等于预设的第一脏污量阈值时,立即控 制所述清洁机器人通过所述拖擦件对所述目标区域进行拖擦,获取所述目标区域对应的第二脏污程度;当第二脏污程度大于第二脏污量阈值时,确定所述目标区域需要再重复拖擦,则可以控制所述清洁机器人对所述目标区域继续再拖擦。直至所述目标区域对应的第二脏污程度小于第二脏污量阈值时,则在所述目标区域的至少部分完成拖擦,且在对所述拖擦件完成维护后,对其他预设清洁区域进行拖擦。举例而言,在确定所述目标区域需要再重复拖擦时,控制所述清洁机器人对所述目标区域继续再拖擦,在对所述目标区域再重复拖擦之后还可以再次获取所述目标区域对应的第二脏污程度,当第二脏污程度大于第二脏污量阈值时,则在对拖擦件进行维护之后对所述目标区域继续再拖擦,直至所述目标区域对应的第二脏污程度小于第二脏污量阈值时结束对所述目标区域的拖擦,可以去清洁其他的预设清洁区域。其中,在清洁机器人对所述目标区域拖擦后经过其他区域时,拖擦件上吸附的脏污会对经过的区域污染,通过在结束对所述目标区域的拖擦之后,清洁其他的预设清洁区域,可以清除掉所述污染。
示例性的,当第一脏污程度大于或等于预设的第一脏污量阈值时,立即控制所述清洁机器人通过所述拖擦件对所述目标区域进行拖擦,获取所述目标区域对应的第二脏污程度,当第二脏污程度大于第一脏污量阈值时,控制所述清洁机器人对所述目标区域继续再拖擦,直至第二脏污程度大于或等于预设的第二脏污量阈值,且小于所述第一脏污量阈值时,在对全部的预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。举例而言,在对所述目标区域进行重复拖擦时,重复拖擦至目标区域的第二脏污程度小于所述第一脏污量阈值即可去对其他的预设清洁区域进行清洁;当目标区域的第二脏污程度小于所述第一脏污量阈值,且大于或等于预设的第二脏污量阈值时,可以标记该目标区域为需要对全部的预设清洁区域完成拖擦之后重复拖擦的区域;以及在对全部的预设清洁区域完成拖擦以及对所述拖擦件进行维护之后通过所述拖擦件对所述目标区域的至少部分进行拖擦,以进一步清洁该预设清洁区域。通过将很脏的区域先拖擦至不是很脏,然后对其他区域进行拖擦,可以使各区域均能较快的得到清洁,且能减少拖擦件对已拖擦地面的污染;在对全部的区域清洁完成后,对不 是很脏的地面进行重复拖擦,以提高该部分区域的清洁度。
在一些实施方式中,在当前所述预设清洁区域的第一脏污程度大于或等于预设的第二脏污量阈值,且小于所述第一脏污量阈值时,确定所述预设清洁区域包括目标区域;且在对全部的预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。在对全部的预设清洁区域完成拖擦后,可以确定一个或多个所述预设清洁区域包括目标区域,请参阅图10,预设清洁区域A1、A2、A4、A7包括目标区域。示例性的,所述方法还包括:在对全部的预设清洁区域完成拖擦之后,根据所述目标区域的特征参数,确定多个所述目标区域的拖擦顺序,所述目标区域的特征参数至少包括:所述目标区域对应的脏污程度、所述目标区域与所述清洁机器人的距离、所述目标区域所在房间的房间标识;在控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦时,可以按照所述拖擦顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦。按照所述拖擦顺序对需要重复拖擦的区域进行清洁,可以提高重复拖擦的清洁效果和/或清洁效率。
示例性的,按照脏污程度从大到小的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦。举例而言,当先对脏污程度较大的目标区域进行重复拖擦之后再对脏污程度较小的目标区域进行重复拖擦,这样即使在清洁机器人在经过脏污程度较小的目标区域时,拖擦件上吸附的脏污对所述目标区域产生污染,也可以较好的在清洁所述脏污程度较小的目标区域时,清洁掉这些污染。
示例性的,按照脏污程度从小到大的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦。举例而言,在对脏污程度较小的目标区域进行重复拖擦之后,拖擦件仍有吸附脏污的能力,在清洁机器人经过脏污程度较大的目标区域时,可以吸附该区域的至少部分脏污,然后回到基站进行维护;之后对所述脏污程度较大的目标区域进行拖擦时可以提高对该目标区域的清洁效果。
示例性的,按照所述目标区域与所述清洁机器人的距离,从近到远的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦。举例而言,先 对较近的目标区域进行拖擦,可以降低清洁机器人的行走距离,提高清洁效率。
示例性的,按照所述目标区域与所述清洁机器人的距离,从远到近的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦。举例而言,先对较远的目标区域进行重复拖擦之后在对较近的目标区域进行重复拖擦,这样可以在清洁较近的目标区域时,清洁掉拖擦较远的目标区域后拖擦件对较近的目标区域产生的污染。举例而言,在对较远的目标区域进行重复拖擦之后,在清洁机器人经过较近的目标区域返回基站时,拖擦件可以吸附较近的目标区域的至少部分脏污,然后回到基站进行维护;之后对较近的目标区域进行拖擦时可以提高对该目标区域的清洁效果。
示例性的,可以先对厨房进行重复拖擦,然后对客厅、卧室进行拖擦,当然也不限于此,例如也可以按照相反的顺序。
在一些实施方式中,所述在对全部的预设清洁区域完成拖擦之后,根据所述目标区域对应的脏污程度,确定多个所述目标区域的拖擦顺序,包括:确定脏污程度的差异小于或等于差异阈值的目标区域为合并区域;根据同一合并区域内的多个目标区域的脏污程度,确定所述合并区域的脏污程度。
示例性的,在对全部的预设清洁区域完成拖擦,即每个预设清洁区域至少拖擦过一次之后,可以确定一个或多个预设清洁区域为仍需要重复拖擦的目标区域。举例而言,当有多个目标区域的脏污程度的差异小于或等于差异阈值,且所述多个目标区域的脏污程度的和小于或等于所述第一脏污量阈值或所述第二脏污量阈值时,确定所述多个目标区域为合并区域。参阅图10,预设清洁区域A1、A2、A4、A7为目标区域,其中目标区域A1拖擦过一次,目标区域A1对应的脏污程度,即预设清洁区域A1的第一脏污程度为20;目标区域A2拖擦过两次,最近一次拖擦后根据拖擦件脏污程度确定目标区域A2的第二脏污程度为25,可以确定目标区域A1和目标区域A2为合并区域。
示例性的,可以根据合并区域中各目标区域对应的脏污程度中的最大值、最小值、总和或者平均值确定所述合并区域的脏污程度。
可选的,所述控制所述清洁机器人通过所述拖擦件对所述目标区域进行拖擦,包括:当所述合并区域的脏污程度小于或等于预设的合并脏污阈值时,控制所述清洁机器人通过所述拖擦件对所述合并区域中的多个目标区域进行拖擦。 举例而言,所述合并脏污阈值根据拖擦件的最大脏污值d_max确定,例如所述合并脏污阈值可以为所述第一脏污量阈值或所述第二脏污量阈值。通过对多个目标区域合并的区域进行重复拖擦,可以增大复拖的区域面积,减少清洁机器人来往基站的时间,提高清洁效率;且当合并区域中各目标区域对应的脏污程度的总和小于或等于拖擦件的最大脏污值d_max时,仍可以保证合并区域中各目标区域的清洁效果。
示例性的,可以根据所述合并区域的脏污程度,确定多个所述合并区域的拖擦顺序;或者可以在有目标区域未合并时,根据所述合并区域的脏污程度以及未合并的目标区域的脏污程度,确定所述合并区域以及所述未合并的目标区域的拖擦顺序。按照所述拖擦顺序对需要重复拖擦的区域进行清洁,可以提高重复拖擦的清洁效果和/或清洁效率。举例而言,根据所述合并区域以及所述未合并的目标区域的特征参数,确定所述合并区域以及所述未合并的目标区域的拖擦顺序,具体可以参照前述根据所述目标区域的特征参数确定多个所述目标区域的拖擦顺序的步骤。
在一些实施方式中,请参阅图11,所述控制所述清洁机器人通过所述拖擦件对所述目标区域B的至少部分进行拖擦,包括:将所述目标区域B拆分为若干子目标区域(如包括B1、B2),控制所述清洁机器人通过所述拖擦件对至少一个所述子目标区域(如B1)进行拖擦。举例而言,在对所述目标区域进行重复拖擦时,可以先拖擦部分子目标区域,然后在对拖擦件进行维护之后再清洁其余部分子目标区域(如B2);或者在对所述目标区域进行重复拖擦时,可以仅拖擦其中较脏的子目标区域(如B1)。
示例性的,所述控制所述清洁机器人通过所述拖擦件对至少一个所述子目标区域进行拖擦,包括:控制所述清洁机器人通过所述拖擦件依次对所述子目标区域(B1、B2)进行拖擦;获取所述子目标区域(如B1)的第三脏污程度,确定所述子目标区域(B1)是否需要再重复拖擦;是,则对所述子目标区域(B1)继续拆分,对拆分所得的区域(如包括B11、B12)进行拖擦。可以理解的,根据所述子目标区域的第三脏污程度,确定所述子目标区域是否需要再重复拖擦;是,则对所述子目标区域继续拆分,对拆分所得的区域进行拖擦。举例而言,将所述目标区域拆分为若干子目标区域,可以在对所述子目标区域进行拖擦之 后,根据拖擦件脏污程度确定所述子目标区的第三脏污程度,可以确定该目标区域中较脏的子目标区域;以及将所述子目标区域进一步拆分,以及确定更小区域的脏污程度,以对该更小区域进行重复拖擦。可以理解的,可以通过对需要重复拖擦的区域进行拆分,逐步缩小需要重复拖擦的区域,可以提高重复拖擦的清洁效率和清洁效果。
示例性的,请参阅图11,所述控制所述清洁机器人通过所述拖擦件对至少一个所述子目标区域进行拖擦,包括:控制所述清洁机器人通过所述拖擦件对其一所述子目标区域,如B1进行拖擦;预估所述目标区域B的第二脏污程度,获取所述子目标区域B1的第三脏污程度,根据所述第二脏污程度和第三脏污程度确定所述目标区域是否未完成重复拖擦;若否(完成重复拖擦),则对下一所述子目标区域重复拖擦。例如当所述目标区域B1的第三脏污程度接近或等于所述目标区域B的第二脏污程度时,可以确定所述目标区域B的脏污主要集中在该子目标区域B1,而子目标区域B2较干净,可以不用重复拖擦,即确定所述目标区域完成重复拖擦;当所述目标区域B1的第三脏污程度比所述目标区域B的第二脏污程度小很多,如小一半时,可以确定其他的子目标区域,如B2仍有较多脏污,需要对子目标区域B2重复拖擦,即确定所述目标区域未完成重复拖擦。
请参阅图11,对子目标区域B1进行重复拖擦时,将子目标区域B1拆分为若干更小的区域B11、B12,控制所述清洁机器人对区域B11进行拖擦,可以确定区域B11的脏污程度,根据区域B11的脏污程度和子目标区域B1的第三脏污程度可以确定B11、B12是否需要重复拖擦;通过对需要重复拖擦的区域进行拆分和根据拆分的区域的脏污程度确定更小的区域是否需要重复拖擦,以次可以逐步缩小重复拖擦的范围,提高清洁效率。
在一些实施方式中,所述拖擦件的清洁方法还包括:判断所述拖擦件在预设时长内是否用于对地面拖擦,若否,则根据任务后清洗阈值执行和结束所述拖擦件清洗任务;所述任务后清洗阈值小于或等于根据所述拖擦件脏污程度所在的值域范围确定的清洗阈值。可选的,所述任务后清洗阈值小于所述第一清洗阈值和第二清洗阈值,或者所述任务后清洗阈值等于所述值域范围确定的清洗阈值中最小的清洗阈值。
当所述拖擦件在较长的时间,如一天内不再用于对地面拖擦,或者当前清洁任务已完成(例如清洁任务地图的各预设清洁区域均不包括目标区域、子目标区域或者更小面积的较脏区域),下一清洁任务在预设时长之后才执行,则可以将拖擦件清洗至脏污洗脱值小于或等于所述任务后清洗阈值,拖擦件得到更彻底的清洁,防止在预设时长内产生异味。
在一些实施方式中,所述拖擦件的拖擦件脏污程度,根据清洁所述拖擦件的污水的检测值,以及所述拖擦件的零偏值确定。例如各阶段任务的脏污洗脱值是根据各阶段任务的污水的检测值和零偏值确定的。举例而言,零偏值为污水检测传感器检测清水或者接近清水的污水时的检测值,污水的检测值与零偏值的差值可以更准确的指示拖擦件清洁地面的脏污量和清洁拖擦件时洗脱的量,可以消除因污水检测传感器误差和/或拖擦件老化引起的偏差。
举例而言,在对拖擦件进行清洗时,当污水检测传感器的检测值达到稳定值,如在一段时间内不再变化,或者变化的斜率基本为0,则可以确定该稳定值为所述零偏值。
示例性的,所述零偏值包括预先存储的出厂设置的第一零偏值,和/或根据所述污水检测传感器的检测值更新的第二零偏值。举例而言,对于还未使用过的拖擦件,或者所述拖擦件还未确定第二零偏值或第二零偏值丢失时,可以根据出厂设置的第一零偏值确定所述拖擦件的拖擦件脏污程度;当存储有所述第二零偏值时,则优先使用所述第二零偏值。举例而言,在还未使用过的拖擦件进行首次清洗时,根据出厂设置的第一零偏值和清洁所述拖擦件的污水的检测值,确定所述第二零偏值;之后可以根据所述第二零偏值和所述检测值,确定所述拖擦件的拖擦件脏污程度;还可以根据所述检测值对所述第二零偏值进行校准。
可选的,所述方法还包括:在结束所述拖擦件清洗任务之后和/或在通过所述拖擦件对地面拖擦之前,获取清洁所述拖擦件的污水的检测值;当所述检测值与所述零偏值的差值的绝对值小于或等于第一差值阈值时,根据所述检测值对所述零偏值进行校准。
举例而言,当执行拖擦件清洗任务时,在已执行完所述预设清洁任务的情况下,根据任务后清洗阈值结束所述拖擦件清洗任务;以及确定结束所述拖擦 件清洗任务时,或者结束所述拖擦件清洗任务之后所述拖擦件的污水的检测值与所述第一零偏值/第二零偏值的差值的绝对值是否小于或等于第一差值阈值,当小于或等于第一差值阈值时,例如将所述检测值更新为所述第二零偏值。可以消除在根据所述第一零偏值/第二零偏值确定污水的检测值时,因污水检测传感器误差和/或拖擦件老化引起的偏差。
可选的,所述方法还包括:当所述拖擦件清洗任务中已执行的阶段任务的检测值与所述零偏值的差值的绝对值大于所述第一差值阈值时,继续执行下一阶段任务;当所述下一阶段任务的检测值,与所述零偏值的差值的绝对值小于或等于第二差值阈值,且与最近一次已执行的阶段任务的检测值的差值的绝对值小于或等于第三差值阈值时,根据所述下一阶段任务的检测值对所述零偏值进行校准。举例而言,在检测值与所述零偏值的差值的绝对值大于所述第一差值阈值时可以继续对拖擦件进行清洁,在拖擦件脏污程度稳定(相邻两个阶段任务检测值的差值的绝对值小于或等于第三差值阈值),且最新的检测值与所述零偏值的差值的绝对值小于或等于第二差值阈值时,可以将所述最新的检测值更新为所述第二零偏值。可选的,所述第二差值阈值大于或等于所述第一差值阈值,以便在拖擦件老化时仍可以根据所述检测值更新所述第二零偏值。
在一些实施方式中,所述方法还包括:当所述拖擦件清洗任务中相邻两个阶段任务的检测值的差值的绝对值大于所述第三差值阈值时,继续执行下一阶段任务;直至相邻两个阶段任务的检测值的差值的绝对值小于或等于第三差值阈值。在拖擦件脏污程度未稳定时,还不能确定拖擦件已清洗至能清洗到的最干净程度,则继续对拖擦件进行清洁;直至拖擦件脏污程度稳定时,可以确定拖擦件已清洗至能清洗到的最干净程度,根据稳定后的检测值更新所述第二零偏值。
在一些实施方式中,所述方法还包括:当所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值大于所述第二差值阈值时,继续执行下一阶段任务;直至所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值小于或等于所述第二差值阈值。所述检测值与所述零偏值的差值的绝对值大于所述第二差值阈值时,还不能确定拖擦件已清洗至能清洗到的最干净程度,则继续对拖擦件进行清洁;直至最新的检测值与所 述零偏值的差值的绝对值小于或等于第二差值阈值时,可以将所述最新的检测值更新为所述第二零偏值。
可选的,所述方法还包括:所述阶段任务的个数达到阶段个数阈值时,输出提示信息,所述提示信息用于指示所述检测所述污水的传感器异常。举例而言,当所述阶段任务的个数达到阶段个数阈值,各阶段的检测值与所述第一零偏值/第二零偏值的差值的绝对值均大于所述第一差值阈值或所述第二差值阈值,且相邻两个阶段任务的检测值的差值的绝对值大于所述第三差值阈值时,可以停止所述拖擦件清洗任务;可以确定检测所述污水的传感器异常,所述提示信息还可以用于提示用户更换拖擦件。
可选的,所述方法还包括:所述阶段任务消耗的时长/水量之和达到相应的阈值后,输出提示信息,所述提示信息用于指示所述检测所述污水的传感器异常。
在一些实施方式中,所述确定所述预设清洁区域包括目标区域之后,还包括:发送消息至用户界面,如发送至基站上的用户界面,或者用户终端上的用户界面,以供用户选择对所述目标区域进行拖擦,确定对所述目标区域进行拖擦,则在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。可以理解的,发送消息至用户界面,以供用户选择是否对所述目标区域进行拖擦,若是,则在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。可以由用户自主选择是否对所述目标区域重复拖擦,例如在用户准备睡觉时,可以选择不对所述目标区域进行拖擦。
在一些实施方式中,所述清洁系统还包括手持清洁设备,或者清洁系统包括多个清洁机器人,如第一清洁机器人和第二清洁机器人。
可选的,所述控制装置或者所述第一清洁机器人能够将所述目标区域的信息发送至所述手持清洁设备或所述第二清洁机器人。
示例性的,可以将所述目标区域的信息发送给所述手持清洁设备,或者可以在根据第一清洁机器人对某区域清洁之后拖擦件的脏污程度确定该区域需要重复拖擦时,将所述区域的信息发送给所述手持清洁设备和/或所述第二清洁机 器人,以使所述第一清洁机器人之外的清洁设备对所述区域进行重复拖擦。可选的,所述第一清洁机器人可以继续对其他区域进行拖擦,通过多设备协同清洁,提高清洁效率和清洁效果。
本申请实施例提供的清洁机器人的控制方法,包括:控制清洁机器人通过拖擦件对预设清洁区域进行拖擦;获取预设清洁区域对应的第一脏污程度;根据第一脏污程度,确定预设清洁区域包括目标区域,目标区域为需要重复拖擦的区域;在对预设清洁区域完成拖擦,且在对拖擦件进行维护之后,控制清洁机器人通过拖擦件对目标区域的至少部分进行拖擦。通过根据预设清洁区域的脏污程度,判断是否需要对所述预设清洁区域中的至少部分区域进行重复拖擦,若需要则在对所述拖擦件进行维护之后,对所述预设清洁区域中的至少部分区域进行重复拖擦,以提高对该预设清洁区域的清洁效果。
在一些实施方式中,可以通过拖擦件脏污检测,判断清洁机器人拖过的地块的脏污程度;例如可以根据拖擦件脏污程度是否达到拖擦件吸附脏污能力的极限值,判断清洁机器人拖过的地块是否拖干净。
在一些实施方式中,清洁模式对应设定有不同的脏污阈值,根据拖擦件脏污程度检测结果和脏污阈值对比来判断清洁机器人拖过的地块是继续清洁还是终止清洁;可选的,设定最大的清洁次数,即使拖擦件脏污程度未降低到脏污阈值以下,但清洁次数达到上限时也可以终止清洁。
本申请实施例提供的拖擦件的清洁方法,包括:执行拖擦件清洗任务;获取所述拖擦件的拖擦件脏污程度;根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,以及根据所述清洗阈值结束所述拖擦件清洗任务;通过自动调整对拖擦件的清洁程度,提高清洁机器人的工作效率。其中,拖擦件脏污程度可以反映地面的脏污程度,例如可以根据拖擦件的拖擦件脏污程度确定拖擦件已清洁区域的脏污程度,根据所述拖擦件脏污程度所在的值域范围确定清洗阈值可以实现根据地面的脏污程度调整对拖擦件的清洁程度,提高清洁机器人的工作效率。
在一些实施方式中,清洁机器人清洁完预设清洁区域后,对拖擦件进行清洁,且清洁的时长满足预设时长(如阶段任务时长)时检测拖擦件的脏污洗脱值;在脏污洗脱值大于清洗阈值时继续在下一阶段任务对拖擦件进行清洁,以 及在某一阶段任务的脏污洗脱值小于或等于该阶段任务的清洗阈值时,停止拖擦件清洗任务;其中各阶段任务的清洗阈值可以预先设定,或者有至少一个阶段任务的清洗阈值可以根据已执行阶段任务的脏污洗脱值确定。根据拖擦件的脏污洗脱值可以确定已拖擦区域的区域脏污程度,如所述预设清洁区域的第一脏污程度;当已拖擦区域的区域脏污程度大于第一脏污量阈值时,在结束拖擦件清洗任务后清洁机器人立即回到所述已拖擦区域进行重复拖擦;当已拖擦区域的区域脏污程度小于第一脏污量阈值且大于或等于第二脏污量阈值时,将所述已拖擦区域标记为目标区域,即需要重复拖擦的区域。当清洁任务地图中还有区域没有进行清洁,可以对还未清洁的区域进行拖擦;当清洁任务地图中所有的预设清洁区域都完成至少一遍清洁后,可以对标记为目标区域的已拖擦区域进行重复拖擦。在清洁任务地图中没有需要复拖的区域时判定清洁任务完成,可以根据任务后清洗阈值将拖擦件清洁至更干净,以便长期保存。
在另一些实施方式中,当已拖擦区域的区域脏污程度大于第一脏污量阈值时,在结束拖擦件清洗任务后清洁机器人立即回到所述已拖擦区域进行重复拖擦;在对已拖擦区域进行重复拖擦后清洁拖擦件时继续判断脏污洗脱值是否小于或等于清洗阈值,当否时可以确定该已拖擦区域仍未清洁干净则可以停止拖擦件清洗任务,以及继续对该已拖擦区域进行重复拖擦,直至该已拖擦区域清洁干净,如脏污洗脱值小于或等于清洗阈值。之后在清洁任务地图中还有区域没有进行清洁时,可以对还未清洁的区域进行拖擦。
请结合前述实施例参阅图12,图12所示为本申请实施例提供的拖擦件的清洁方法的流程示意图。通过根据预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,可以使得根据所述清洗阈值清洗后的拖擦件的清洁程度与当前的任务进度相对应,提高提高清洁机器人的工作效率。
如图12所示,拖擦件的清洁方法包括步骤S310至步骤S340。
S310、执行拖擦件清洗任务。
示例性的,拖擦件收集脏污的能力有限,当拖擦件收集的脏污量,即拖擦件脏污程度d达到拖擦件的最大脏污值d_max之后,拖擦件将无法再通过拖地变得更脏,对地面的拖擦清洁效果也很差,需要停止拖地;通过控制清洁机构执行拖擦件清洗任务对拖擦件进行清洁,拖擦件得到一定程度的清洁后具备吸 附脏污的能力。
S320、获取预设清洁任务的任务进度,所述预设清洁任务包括通过所述拖擦件对清洁任务地图中的预设清洁区域进行拖擦。
在一些实施方式中,预设清洁区域可以根据清洁任务地图中房间,和/或所述清洁机器人的工作量阈值确定。示例性的,各所述预设清洁区域的工作量均小于或等于所述工作量阈值。示例性的,一个房间可以为一个预设清洁区域,或者一个房间有多个预设清洁区域;当然也不限于此,例如一个预设清洁区域可以包括一个房间以及另一个房间的至少部分区域。可选的,预设清洁区域还可以根据用户在清洁任务地图上的划分操作确定,或者可以根据预设的区域划分规则进行划分确定。
所述预设清洁任务包括对清洁任务地图中的一个或多个所述预设清洁区域进行拖擦,例如对清洁任务地图中的所有所述预设清洁区域进行拖擦。
在一些实施方式中,两次地面清洁操作之间执行的拖擦件清洁操作可以作为一个拖擦件清洗任务。对所述拖擦件进行清洁的拖擦件清洗任务,例如包括在清洁一个预设清洁区域之后及在清洁另一个预设清洁区域之前对拖擦件进行清洁的过程,还可以包括结束对清洁任务地图的清洁任务之后对拖擦件进行清洁的过程,例如在清洁任务地图的所有区域的脏污程度均小于对应的脏污量阈值时,结束所述预设清洁任务以及执行所述拖擦件清洗任务。
在一些实施方式中,可以在执行所述预设清洁任务时,由清洁机器人的清洁机构对所述拖擦件进行清洁,在执行完所述预设清洁任务之后,控制清洁机器人返回基站,由基站的清洁机构对所述拖擦件进行清洁;可以理解的,所述拖擦件清洗任务包括在执行所述预设清洁任务期间所述清洁机器人的清洁机构对所述拖擦件进行清洁的子拖擦件清洗任务,还可以包括在执行完所述预设清洁任务之后基站的清洁机构对所述拖擦件进行清洁的子拖擦件清洗任务。
在一些实施方式中,所述清洁任务的任务进度,包括是否执行完所述预设清洁任务。其中,当清洁任务地图中还有区域比较脏(例如区域的脏污程度大于或等于对应的脏污量阈值)时,可以确定在执行完所述拖擦件清洗任务之后的预设时长内,还需要对所述清洁任务地图中的至少部分区域进行拖擦清洁,即所述预设清洁任务未执行完;当清洁任务地图中的全部区域均比较干净(例 如各区域的脏污程度均小于对应的脏污量阈值)时,可以确定在执行完所述拖擦件清洗任务之后的预设时长内,不需要对地面进行拖擦清洁,即所述预设清洁任务已执行完。
S330、根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值。
S340、根据所述清洗阈值结束所述拖擦件清洗任务。
通过根据任务进度确定拖擦件清洗任务的清洗阈值,可以使得根据所述清洗阈值清洗后的拖擦件的清洁程度与当前的任务进度相对应,提高清洁机器人的工作效率。
在一些实施方式中,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:当所述预设清洁任务的任务进度为未执行完所述预设清洁任务时,确定所述清洗阈值为任务中清洗阈值;当所述预设清洁任务的任务进度为已执行完所述预设清洁任务时,确定所述清洗阈值为任务后清洗阈值;其中,所述任务后清洗阈值小于所述任务中清洗阈值。
当所述拖擦件在较长的时间,如一天内不再用于对地面拖擦,或者当前的预设清洁任务已完成(例如清洁任务地图的各预设清洁区域均不包括目标区域等较脏区域),下一预设清洁任务在预设时长之后才执行,则可以确定当前拖擦件清洗任务的清洗阈值为较小的所述任务后清洗阈值,以便在根据所述任务后清洗阈值结束所述拖擦件清洗任务时,拖擦件得到更彻底的清洁,防止在预设时长内产生异味。
在一些实施方式中,所述预设清洁任务的任务进度还包括所述拖擦件清洗任务结束后的子清洁任务,即下一子清洁任务。下一子清洁任务例如为对已进行过拖擦的预设清洁区域进行拖擦,或者对所述清洁任务地图中还未进行拖擦的预设清洁区域进行拖擦。其中,已进行过拖擦的预设清洁区域可以称为目标区域,所述目标区域为需要进行重复拖擦以增加洁净程度的预设清洁区域。举例而言,目标区域可以为将脏的区域,和/或清洁要求较高的区域。
示例性的,可以获取清洁任务地图中各预设清洁区域对应的第一脏污程度,根据所述第一脏污程度,确定所述预设清洁区域包括目标区域,所述目标区域为需要重复拖擦的区域;在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行清洁之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部 分进行拖擦。
示例性的,清洁机器人在预设清洁区域运动时,如对预设清洁区域进行拖擦时通过清洁机器人搭载的传感器,如视觉传感器、红外传感器等中的至少一种获取所述预设清洁区域对应的第一脏污程度。可以理解的,可以在对所述预设清洁区域进行拖擦之前,或者在对所述预设清洁区域进行拖擦时获取对应的第一脏污程度。当然也不限于此,例如可以根据不在清洁机器人上的传感器,如房顶上设置的视觉传感器获取所述预设清洁区域对应的第一脏污程度。
在一些实施方式中,所述获取所述预设清洁区域对应的第一脏污程度,包括:在清洁机器人通过拖擦件完成对预设清洁区域的拖擦之后,获取所述拖擦件的拖擦件脏污程度;以及根据所述拖擦件脏污程度确定所述预设清洁区域对应的第一脏污程度。
示例性的,通过基站上的脏污检测装置,如视觉传感器等获取所述拖擦件的拖擦件脏污程度,例如拖擦件110的颜色越深,拖擦件脏污程度也越大;当然也不限于此,例如还可以通过清洁机器人上搭载的且朝向所述拖擦件拖擦面的视觉传感器获取所述拖擦件的拖擦件脏污程度。
示例性的,所述获取所述拖擦件的拖擦件脏污程度,包括:在对拖擦件进行清洗时,获取清洗拖擦件的污水的检测值;根据检测值确定拖擦件的脏污程度。可选的,脏污检测装置包括污水检测传感器,污水检测传感器用于检测清洁拖擦件后的污水,例如检测污水的浊度、色度、水导电率中的一种或多种。可通过污水的浊度、污水的色度或污水的水电导率确定从拖擦件上清洗下来的脏污量。例如当污水的浊度、色度或者水电导率越大时,表示清洁拖擦件后的污水越脏,从拖擦件上清洗下来的脏污量越大,即用于表征从拖擦件上清洗下来的脏污量的脏污洗脱值越大,可以确定清洁之前拖擦件上吸附的脏污量越大,即确定所述拖擦件脏污程度越大。可以理解,污水的浊度、污水的色度、污水的水电导率都可用于表征从拖擦件上清洗下来的脏污量,即可以表征拖擦件脏污程度,都与脏污洗脱值、脏污量或拖擦件脏污程度正相关或有对应关系。例如,对第一次清洗拖布的污水检测得到的浊度为1NTU,浊度为1NTU对应的脏污洗脱值或脏污量为100,对第二次清洗拖布的污水检测得到的浊度为2NTU,浊度为2NTU的污水对应的脏污洗脱值或脏污量为200,则可以判断第一次从拖 擦件上清洗下来的脏污的量小于第二次从拖擦件上清洗下来的脏污的量,即第一次清洁的脏污洗脱值小于第二次清洁的脏污洗脱值。污水的色度、污水的水电导率与脏污洗脱值或脏污量的对应关系同理,在此不再赘述。同样可以理解,拖擦件的脏污程度可以由数值表征,如可以由污水的浊度、污水的色度、污水的水电导率、脏污量、脏污洗脱值中的任意一种数值表征,或脏污程度可以由为污水的浊度、污水的色度、污水的水电导率、脏污量、脏污洗脱值中的任意一种数值确定。例如,清洗拖擦件后的污水的浊度为1NTU,则可表征拖擦件的拖擦件脏污程度为1;或者清洗拖擦件后的污水的浊度为1NTU对应的脏污程度为100,则拖擦件脏污程度为100。
在一些实施方式中,当所述预设清洁区域对应的第一脏污程度大于或等于预设的脏污量阈值时,确定所述预设清洁区域包括目标区域;和/或当所述预设清洁区域对应的第一脏污程度小于预设的脏污量阈值时,确定所述预设清洁区域不包括目标区域。示例性的,所述脏污量阈值可以根据拖擦件的最大脏污值d_max确定,例如脏污量阈值与拖擦件的最大脏污值d_max正相关。
在一些实施方式中,在对所述预设清洁区域完成拖擦,以及执行拖擦件清洗任务时,获取所述拖擦件的拖擦件脏污程度以及根据所述拖擦件脏污程度确定所述预设清洁区域的第一脏污程度,当所述预设清洁区域包括目标区域时,则在结束所述拖擦件清洗任务之后,可以控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
示例性的,所述拖擦件上吸附的脏污量为从预设清洁区域上带回的脏污量,即可以用拖擦件脏污程度指代预设清洁区域的脏污程度,在执行拖擦件清洗任务时,当所述拖擦件脏污程度大于或等于预设的脏污量阈值时,在结束所述拖擦件清洗任务后,控制清洁机器人通过所述拖擦件对目标区域进行拖擦,所述目标区域为所述拖擦件清洗任务之前所述拖擦件清洁的区域。举例而言,在根据所述拖擦件清洗任务的至少第一个阶段任务的脏污洗脱值确定所述拖擦件脏污程度,当所述拖擦件脏污程度大于或等于预设的脏污量阈值时,确定拖擦件拖擦的地面包括目标区域,可以在所述至少第一个阶段任务后结束所述拖擦件清洗任务;在所述至少第一个阶段任务后,拖擦件已经得到了一定程度的清洁,此时拖擦件已具备吸附脏污的能力,则无需再执行后续阶段任务,仍能在对所 述目标区域进行重复拖擦时仍可以起到较为明显的清洁效果,且可以降低清洁拖擦件时时间和水的消耗。
在一些实施方式中,所述预设清洁区域包括多个,若在步骤S130确定当前的预设清洁区域包括目标区域,则在对全部的所述预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。可选的,所述全部的预设清洁区域为清洁任务地图中所有的预设清洁区域。
举例而言,如图10所示,所述预设清洁区域包括多个,如分别为预设清洁区域A1至预设清洁区域A9,预设清洁区域A1至预设清洁区域A9的清洁顺序例如为A1、A2、……、A9。在对预设清洁区域A1进行拖擦之后,确定预设清洁区域A1包括目标区域,可以将该预设清洁区域A1标记为包含目标区域;然后在对所述拖擦件进行维护之后,按照清洁顺序对预设清洁区域A2至预设清洁区域A9进行拖擦;其中,在对预设清洁区域A2进行拖擦之后,确定预设清洁区域A2包括目标区域,可以将该预设清洁区域A2标记为包含目标区域,在对预设清洁区域A4进行拖擦之后,确定预设清洁区域A4包括目标区域,在对预设清洁区域A7进行拖擦之后,确定预设清洁区域A7包括目标区域,如图10所示,灰色标记的区域表示为包括目标区域的预设清洁区域。
在对预设清洁区域A9完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对预设清洁区域A1、A2、A4、A7的目标区域的至少部分进行拖擦。在对全部的所述预设清洁区域完成拖擦之后,对所述目标区域的至少部分进行拖擦,可以先使得清洁任务地图中的全部预设清洁区域均可以得到至少一次清洁;例如在清洁任务地图中有多个预设清洁区域较脏时,可以尽快使得清洁任务地图对应的地面不那么脏。
在另一些实施方式中,所述预设清洁区域包括多个,若在步骤S130确定当前的预设清洁区域包括目标区域,则在对除所述目标区域对应的预设清洁区域之外的其他预设清洁区域进行拖擦之前,对所述拖擦件进行维护,以及控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
请参阅图10,在对预设清洁区域A1进行拖擦之后,确定预设清洁区域A1包括目标区域,则在对所述拖擦件进行维护之后,对该预设清洁区域A1的目标 区域的至少部分进行拖擦,以尽快使预设清洁区域A1清洁干净;之后按照清洁顺序对预设清洁区域A2至预设清洁区域A9进行拖擦,其中在对预设清洁区域A2进行拖擦之后,确定预设清洁区域A2包括目标区域,则在对所述拖擦件进行维护之后,对该预设清洁区域A2的目标区域的至少部分进行拖擦,之后对预设清洁区域A3进行拖擦。示例性的,在清洁任务地图中有个别预设清洁区域较脏,如泼洒有脏污液体时,可以尽快清洁干净所述个别预设清洁区域,然后清洁剩余的预设清洁区域;举例而言,在清洁干净较脏的预设清洁区域之后再清洁剩余的预设清洁区域,这样即使在清洁机器人对目标区域重复拖擦后通过剩余的预设清洁区域向基站运动时,拖擦件上吸附的脏污对所述剩余的预设清洁区域产生污染,也可以在清洁所述剩余的预设清洁区域时,清洁掉这些污染。
在其他一些实施方式中,所述预设清洁区域包括多个,且当前所述预设清洁区域的第一脏污程度大于或等于预设的第一脏污量阈值时,确定所述当前预设清洁区域包括目标区域;且在对除当前所述预设清洁区域之外的其他预设清洁区域进行拖擦之前,对所述拖擦件进行维护,以及控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,即,当第一脏污程度大于或等于预设的第一脏污量阈值时,立即控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。在当前所述预设清洁区域的第一脏污程度大于或等于预设的第二脏污量阈值,且小于所述第一脏污量阈值时,确定所述预设清洁区域包括目标区域;且在对全部的预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。根据拖擦件脏污程度确定预设清洁区域的第一脏污程度,预设清洁区域的第一脏污程度大于或等于预设的第一脏污量阈值时,立即控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦;预设清洁区域的第一脏污程度大于或等于预设的第二脏污量阈值且小于所述第一脏污量阈值时,在对全部的预设清洁区域完成一次拖擦清洁以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
其中,第二脏污量阈值小于所述第一脏污量阈值。在当前预设清洁区域的第一脏污程度大于或等于第一脏污量阈值时,可以确定该预设清洁区域很脏, 可以通过多次清洁该预设清洁区域的目标区域的至少部分,以尽快将所述至少部分区域清洁到比较干净(如脏污程度小于所述第一脏污量阈值)或者清洁到很干净(如脏污程度小于所述第二脏污量阈值),然后清洁剩余的预设清洁区域;这样即使在清洁机器人对目标区域重复拖擦后通过剩余的预设清洁区域向基站运动时,拖擦件上吸附的脏污对所述剩余的预设清洁区域产生污染,也可以在清洁所述剩余的预设清洁区域时,清洁掉这些污染。在当前预设清洁区域的第一脏污程度大于或等于所述第二脏污量阈值且小于第一脏污量阈值时,可以确定该预设清洁区域不是很脏,可以先清洁剩余的预设清洁区域,可以尽快使得清洁任务地图对应的地面都能先清洁至少一遍,整体看起来不是很脏。
在一些实施方式中,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对目标区域的至少部分进行拖擦时,确定所述清洗阈值为第一任务中清洗阈值,其中,所述目标区域为需要进行重复拖擦的预设清洁区域;以及当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对所述清洁任务地图中还未进行拖擦的预设清洁区域进行拖擦时,确定所述清洗阈值为第二任务中清洗阈值。
在一些实施方式中,所述清洗阈值包括清洗脏污阈值,所述根据所述清洗阈值结束所述拖擦件清洗任务,包括:在所述拖擦件清洗任务中,当所述拖擦件的拖擦件脏污程度小于或等于所述清洗脏污阈值时,结束所述拖擦件清洗任务。
示例性的,在所述拖擦件清洗任务中,在确定拖擦件当前的脏污程度低于所述清洗脏污阈值的情况下,可以确定拖擦件清洁至满足需求,可以结束对所述拖擦件的清洁;例如该拖擦件可以用于对预设清洁区域进行拖擦,或者可以结束所述预设清洁任务。
可选的,所述第二任务中清洗脏污阈值小于所述第一任务中清洗脏污阈值。例如在还未进行清洁的预设清洁区域进行拖擦之前,将拖擦件清洁至更干净,以在通过清洁后的拖擦件对所述预设清洁区域进行拖擦时,拖擦件能够吸附更多的脏污,提高对所述预设清洁区域的清洁效果。在需要对已经进行过拖擦的目标区域进行拖擦之前,一方面由于拖擦件清洁且满足较大清洗脏污阈值后已 使得拖擦件具备一定的吸附脏污的能力,另一方面由于所述目标区域的脏污量较少,可以通过较大的第一任务中清洗阈值较早的结束所述拖擦件清洗任务,提高清洁机器人执行预设清洁任务的工作效率。
预设清洁区域的第一脏污程度较大时,可以确定已拖擦的预设清洁区域较脏;在需要对该地面进行重复拖擦时,如果将拖擦件清洁至非常干净之后进行重复拖擦,拖擦件对该地面的清洁效果,与将拖擦件清洁至一般干净之后再重复拖擦该地面的清洁效果相当,但是将拖擦件清洁至非常干净和将拖擦件清洁至一般干净所消耗的水和时间却相差很大,因此,在需要对该地面进行重复拖擦时,将拖擦件清洁至非常干净的收益较将拖擦件清洁至一般干净的收益小,影响清洁机器人的工作效率,且较为浪费水。
可选的,拖擦件脏污程度可以采用视觉或红外等传感器获取。
可选的,所述拖擦件的拖擦件脏污程度,根据清洁所述拖擦件的污水的检测值确定。
在一些实施方式中,对所述拖擦件进行清洁的拖擦件清洗任务包括一个或多个阶段任务,在每个阶段任务,向基站的清洗槽提供清洁用水对拖擦件清洁,之后将清洁拖擦件后的污水回收,这个过程可以不循环或者可以循环多次;或者同时向清洗槽提供清洁用水对拖擦件清洁以及将清洁拖擦件后的污水回收,当然也不限于此,例如向清洗槽提供清洁用水时间歇性的将清洁拖擦件后的污水回收。
不同阶段任务对应的清洁所述拖擦件的时间和/或水量可以相同也可以不同,根据拖擦件清洗任务中一个或多个阶段任务对应的时间和/或水量,对所述各阶段任务执行时获取的检测值对应的脏污量进行累加得到脏污量的累加结果d。
可选的,可以将检测值,如污水浊度直接作为脏污量;根据所述脏污量的累加结果确定所述拖擦件的拖擦件脏污程度。例如,所述拖擦件脏污程度d,即脏污量的累加结果可以根据清洁所述拖擦件的水量l,对污水浊度T的积分得到,表示如下:
d=∫T dl
在污水检测传感器存在检测水容量的限制和检测频率的限制时,可以根据一次或多次采样的检测值,与采样间隔中的水量,确定所述脏污量的累加结果d,表示如下:
d=ΣT i×l i
其中,T i表示第i次采样的污水浊度T,l i表示两次采样之间的水量,i为1、2、……、n中的任一数值,n为总采样次数。
举例而言,也可以根据单次所述检测值预判所述拖擦件的拖擦件脏污程度。例如,在停止向清洗槽提供清洁用水之后,将污水回收,以及在污水回收过程中检测一次污水浊度,以及获取回收的污水的水量,该污水浊度与该水量的乘积可以确定为所述脏污量的累加结果d。当然也不限于此,例如可以在污水回收过程中多次检测污水浊度,将多个检测污水浊度的平均值、最大值、或最小值与该水量的乘积确定为所述脏污量的累加结果d。
在一些实施方式中,根据清洁所述拖擦件的时间和/或水量,对所述检测值对应的脏污量进行累加,所述脏污量的累加结果表示从拖擦件上清洗下来的脏污量,可以称为脏污洗脱值。
在每个阶段任务中,可以只获取一次污水的检测值,也可以多次获取污水的检测值,根据一次或多次的检测值确定所述阶段任务的脏污洗脱值,例如根据多次的检测值的平均值与该任务阶段的水量的乘积确定该阶段任务的脏污洗脱值。
示例性的,在所述拖擦件清洗任务中,获取所述拖擦件在每个所述阶段任务中的脏污洗脱值;当所述阶段任务中的脏污洗脱值小于或等于所述清洗阈值时,结束所述拖擦件清洗任务。当前的拖擦件脏污程度可以根据当前阶段任务对所述拖擦件清洁时的脏污洗脱值确定,所述脏污洗脱值越小,表示当前所述拖擦件脏污程度越小,即越干净。当当前阶段任务所述拖擦件的脏污洗脱值小于或等于相应的清洗阈值,则结束所述拖擦件清洗任务,即所述当前阶段任务为该拖擦件清洗任务中的最后一个阶段任务。
在一些实施方式中,所述拖擦件的拖擦件脏污程度,根据清洁所述拖擦件的污水的检测值,以及所述拖擦件的零偏值确定。例如各阶段任务的脏污洗脱值是根据各阶段任务的污水的检测值和零偏值确定的。举例而言,零偏值为污 水检测传感器检测清水或者接近清水的污水时的检测值,污水的检测值与零偏值的差值可以更准确的指示拖擦件清洁地面的脏污量和清洁拖擦件时洗脱的量,可以消除因污水检测传感器误差和/或拖擦件老化引起的偏差。举例而言,在对拖擦件进行清洗时,当污水检测传感器的检测值达到稳定值,如在一段时间内不再变化,或者变化的斜率基本为0,则可以确定该稳定值为所述零偏值。
示例性的,所述零偏值包括预先存储的出厂设置的第一零偏值,和/或根据所述污水检测传感器的检测值更新的第二零偏值。举例而言,对于还未使用过的拖擦件,或者所述拖擦件还未确定第二零偏值或第二零偏值丢失时,可以根据出厂设置的第一零偏值确定所述拖擦件的拖擦件脏污程度;当存储有所述第二零偏值时,则优先使用所述第二零偏值。举例而言,在还未使用过的拖擦件进行首次清洗时,根据出厂设置的第一零偏值和清洁所述拖擦件的污水的检测值,确定所述第二零偏值;之后可以根据所述第二零偏值和所述检测值,确定所述拖擦件的拖擦件脏污程度;还可以根据所述检测值对所述第二零偏值进行校准。
可选的,所述方法还包括:在结束所述拖擦件清洗任务之后和/或在通过所述拖擦件对地面拖擦之前,获取清洁所述拖擦件的污水的检测值;当所述检测值与所述零偏值的差值的绝对值小于或等于第一差值阈值时,根据所述检测值对所述零偏值进行校准。
举例而言,当执行拖擦件清洗任务时,在已执行完所述预设清洁任务的情况下,根据任务后清洗阈值结束所述拖擦件清洗任务;以及确定结束所述拖擦件清洗任务时,或者结束所述拖擦件清洗任务之后所述拖擦件的污水的检测值与所述第一零偏值/第二零偏值的差值的绝对值是否小于或等于第一差值阈值,当小于或等于第一差值阈值时,例如将所述检测值更新为所述第二零偏值。可以消除在根据所述第一零偏值/第二零偏值确定污水的检测值时,因污水检测传感器误差和/或拖擦件老化引起的偏差。
可选的,所述方法还包括:当所述拖擦件清洗任务中已执行的阶段任务的检测值与所述零偏值的差值的绝对值大于所述第一差值阈值时,继续执行下一阶段任务;当所述下一阶段任务的检测值,与所述零偏值的差值的绝对值小于或等于第二差值阈值,且与最近一次已执行的阶段任务的检测值的差值的绝对 值小于或等于第三差值阈值时,根据所述下一阶段任务的检测值对所述零偏值进行校准。举例而言,在检测值与所述零偏值的差值的绝对值大于所述第一差值阈值时可以继续对拖擦件进行清洁,在拖擦件脏污程度稳定(相邻两个阶段任务检测值的差值的绝对值小于或等于第三差值阈值),且最新的检测值与所述零偏值的差值的绝对值小于或等于第二差值阈值时,可以将所述最新的检测值更新为所述第二零偏值。可选的,所述第二差值阈值大于或等于所述第一差值阈值,以便在拖擦件老化时仍可以根据所述检测值更新所述第二零偏值。
在一些实施方式中,所述方法还包括:当所述拖擦件清洗任务中相邻两个阶段任务的检测值的差值的绝对值大于所述第三差值阈值时,继续执行下一阶段任务;直至相邻两个阶段任务的检测值的差值的绝对值小于或等于第三差值阈值。在拖擦件脏污程度未稳定时,还不能确定拖擦件已清洗至能清洗到的最干净程度,则继续对拖擦件进行清洁;直至拖擦件脏污程度稳定时,可以确定拖擦件已清洗至能清洗到的最干净程度,根据稳定后的检测值更新所述第二零偏值。
在一些实施方式中,所述方法还包括:当所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值大于所述第二差值阈值时,继续执行下一阶段任务;直至所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值小于或等于所述第二差值阈值。所述检测值与所述零偏值的差值的绝对值大于所述第二差值阈值时,还不能确定拖擦件已清洗至能清洗到的最干净程度,则继续对拖擦件进行清洁;直至最新的检测值与所述零偏值的差值的绝对值小于或等于第二差值阈值时,可以将所述最新的检测值更新为所述第二零偏值。
可选的,所述方法还包括:所述阶段任务的个数达到阶段个数阈值时,输出提示信息,所述提示信息用于指示所述检测所述污水的传感器异常。举例而言,当所述阶段任务的个数达到阶段个数阈值,各阶段的检测值与所述第一零偏值/第二零偏值的差值的绝对值均大于所述第一差值阈值或所述第二差值阈值,且相邻两个阶段任务的检测值的差值的绝对值大于所述第三差值阈值时,可以停止所述拖擦件清洗任务;可以确定检测所述污水的传感器异常,所述提示信息还可以用于提示用户更换拖擦件。
可选的,所述方法还包括:所述阶段任务消耗的时长/水量之和达到相应的阈值后,输出提示信息,所述提示信息用于指示所述检测所述污水的传感器异常。
在另一些实施方式中,所述清洗阈值包括清洁时间阈值。示例性的,所述根据所述清洗阈值结束所述拖擦件清洗任务,包括:在所述拖擦件清洗任务中,对所述拖擦件进行清洁的时间达到所述任务进度对应的清洁时间阈值时,结束所述拖擦件清洗任务。即可以通过根据所述预设清洁任务的任务进度,调整所述拖擦件清洗任务的清洁时间,使得拖擦件的清洁时间与当前的任务进度相对应,提高清洁机器人的工作效率。
示例性的,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:当所述预设清洁任务的任务进度为未执行完所述预设清洁任务时,确定所述清洁时间阈值为任务中清洁时间阈值;当所述预设清洁任务的任务进度为已执行完所述预设清洁任务时,确定所述清洁时间阈值为任务后清洁时间阈值;其中,所述任务后清洁时间阈值大于所述任务中清洁时间阈值。
当所述拖擦件在较长的时间,如一天内不再用于对地面拖擦,或者当前的预设清洁任务已完成(例如清洁任务地图的各预设清洁区域均不包括目标区域等较脏区域),下一预设清洁任务在预设时长之后才执行,则可以确定当前拖擦件清洗任务的清洁时间阈值为较大的所述任务后清洁时间阈值,以通过较长时间的清洁使所述拖擦件清洗任务结束时,拖擦件得到更彻底的清洁,防止在预设时长内产生异味。
示例性的,当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对目标区域的至少部分进行拖擦时,确定所述清洗阈值为第一任务中清洁时间阈值;以及当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对所述清洁任务地图中还未进行拖擦的预设清洁区域进行拖擦时,确定所述清洗阈值为第二任务中清洁时间阈值;其中,所述第二任务中清洁时间阈值大于所述第一任务中清洁时间阈值。例如在还未进行清洁的预设清洁区域进行拖擦之前,对拖擦件清洁更长时间,以在通过清洁后的拖擦件对所述预设清洁区域进行拖擦时,拖擦件能够吸附更多的脏污,提高对所述预设清洁区域的清洁效果。在需要对已经进行过拖擦的目标区 域进行拖擦之前,一方面由于使用较小清洁时间清洁拖擦件后已使得拖擦件具备一定的吸附脏污的能力,另一方面由于所述目标区域的脏污量较少,可以通过较小的清洁时间阈值较早的结束所述拖擦件清洗任务,提高清洁机器人执行预设清洁任务的工作效率。
在另一些实施方式中,所述清洗阈值包括清洁水量阈值。所述根据所述清洗阈值结束所述拖擦件清洗任务,包括:在所述拖擦件清洗任务中,对所述拖擦件进行清洁的水量达到所述任务进度对应的清洁水量阈值时,结束所述拖擦件清洗任务。即可以通过根据所述预设清洁任务的任务进度,调整所述拖擦件清洗任务的清洁水量,使得拖擦件的清洁水量与当前的任务进度相对应,提高提高清洁机器人的工作效率。
示例性的,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:当所述预设清洁任务的任务进度为未执行完所述预设清洁任务时,确定所述清洁水量阈值为任务中清洁水量阈值;当所述预设清洁任务的任务进度为已执行完所述预设清洁任务时,确定所述清洁水量阈值为任务后清洁水量阈值;其中,所述任务后清洁水量阈值大于所述任务中清洁水量阈值。
当所述拖擦件在较长的时间,如一天内不再用于对地面拖擦,或者当前的预设清洁任务已完成(例如清洁任务地图的各预设清洁区域均不包括目标区域等较脏区域),下一预设清洁任务在预设时长之后才执行,则可以确定当前拖擦件清洗任务的清洁水量阈值为较大的所述任务后清洁水量阈值,以通过较长时间的清洁使所述拖擦件清洗任务结束时,拖擦件得到更彻底的清洁,防止在预设时长内产生异味。
示例性的,当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对目标区域的至少部分进行拖擦时,确定所述清洗阈值为第一任务中清洁水量阈值;以及当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对所述清洁任务地图中还未进行拖擦的预设清洁区域进行拖擦时,确定所述清洗阈值为第二任务中清洁水量阈值;其中,所述第二任务中清洁水量阈值大于所述第一任务中清洁水量阈值。例如在还未进行清洁的预设清洁区域进行拖擦之前,对拖擦件清洁更长时间,以在通过清洁后的拖擦件对所述预设清洁区域进行拖擦时,拖擦件能够吸附更多的脏 污,提高对所述预设清洁区域的清洁效果。在需要对已经进行过拖擦的目标区域进行拖擦之前,一方面由于使用较小水量清洁拖擦件后已使得拖擦件具备一定的吸附脏污的能力,另一方面由于所述目标区域的脏污量较少,可以通过较小的清洁水量阈值结束所述拖擦件清洗任务,提高清洁机器人执行预设清洁任务的工作效率,节省用水。
本申请实施例提供的拖擦件的清洁方法,包括:执行拖擦件清洗任务;获取预设清洁任务的任务进度,所述预设清洁任务包括通过所述拖擦件对清洁任务地图中的预设清洁区域进行拖擦;根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值;根据所述清洗阈值结束所述拖擦件清洗任务。通过根据预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,可以使得根据所述清洗阈值清洗后的拖擦件的清洁程度与当前的任务进度相对应,提高提高清洁机器人的工作效率。
请结合上述实施例参阅图13,图13是本申请实施例提供的控制装置300的示意性框图。该控制装置300包括处理器301和存储器302。
示例性的,处理器301和存储器302通过总线303连接,该总线303比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器301可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器302可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器301用于运行存储在存储器302中的计算机程序,并在执行所述计算机程序时实现前述的清洁机器人的控制方法的步骤和/或实现前述的拖擦件的清洁方法的步骤。
示例性的,所述处理器301用于运行存储在存储器302中的计算机程序,并在执行所述计算机程序时实现如下步骤:
控制清洁机器人通过拖擦件对预设清洁区域进行拖擦;
获取所述预设清洁区域对应的第一脏污程度;
根据所述第一脏污程度,确定所述预设清洁区域包括目标区域,所述目标 区域为需要重复拖擦的区域;
在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
示例性的,所述处理器301用于运行存储在存储器302中的计算机程序,并在执行所述计算机程序时实现如下步骤:
执行拖擦件清洗任务;
获取所述拖擦件的拖擦件脏污程度;
根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,根据所述清洗阈值结束所述拖擦件清洗任务。
本申请实施例提供的控制装置的具体原理和实现方式均与前述实施例的方法类似,此处不再赘述。
请参阅图2至图6,可选地,清洁机器人100的机器人控制器104和/或基站200的基站控制器206可以单独或者配合作为控制装置300,用于实现本申请实施例的清洁机器人的控制方法的步骤和/或实现前述的拖擦件的清洁方法的步骤;在另一些实施方式中,清洁系统包括单独的控制装置300,用于实现本申请实施例的方法的步骤,该控制装置300可以设置在清洁机器人100上,或者可以设置在基站200上;当然也不限于此,例如控制装置300可以为除清洁机器人100和基站200之外的装置,如家庭智能终端、总控设备等。
在一些实施方式中,基站200上的控制装置300,如基站控制器206,用于实现本申请实施例的拖擦件的清洁方法的步骤;清洁机器人100上的控制装置300,如机器人控制器104用于实现本申请实施例的清洁机器人的控制方法的步骤;当然也不限于此,例如基站200上的控制装置300可以用于实现本申请实施例的清洁机器人的控制方法的步骤。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述清洁机器人的控制方法的步骤和/或实现前述的拖擦件的清洁方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的控制装置的内部存储单元,例如所述控制装置的硬盘或内存。所述计算机可读存储介质也可以是所述控制装置的外部存储设备,例如所述控制装置上配备的插接式硬盘, 智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
可以理解的,本申请实施例还提供一种基站,该基站至少用于对清洁机器人的拖擦件进行清洁,所述基站还包括控制装置300,如基站控制器206,用于实现本申请实施例的拖擦件的清洁方法的步骤和/或用于实现本申请实施例的清洁机器人的控制方法的步骤。
本申请实施例还提供一种清洁机器人,所述清洁机器人包括:
拖擦件;
清洁机构,所述清洁机构用于对所述拖擦件进行清洁;以及
前述的控制装置300,如机器人控制器104,用于实现本申请实施例的拖擦件的清洁方法的步骤和/或用于实现本申请实施例的清洁机器人的控制方法的步骤。
请结合上述实施例参阅图2,图2是本申请实施例提供的清洁系统的示意图。
如图2至图6所示,清洁系统包括:
清洁机器人100,清洁机器人100包括行走单元106和拖擦件110,行走单元106用于驱动清洁机器人100运动,以使拖擦件110对地面进行拖擦;
基站200,基站200至少用于对清洁机器人100的拖擦件110进行清洁或更换;和/或基站200包括脏污检测装置(图未视)以对清洁机器人100的拖擦件脏污程度进行检测;以及
控制装置300。
请结合上述实施例参阅图14,图14是本申请实施例提供的清洁系统的示意图。如图14所示,清洁系统包括:
第一清洁机器人100,第一清洁机器人100包括行走单元106和拖擦件110,行走单元106用于驱动第一清洁机器人100运动,以使拖擦件110对地面进行拖擦;
基站200,基站200至少用于对第一清洁机器人100的拖擦件110进行清洁;以及
控制装置300;
清洁系统还包括:
手持清洁设备401或第二清洁机器人402,
控制装置300或者第一清洁机器人100能够将目标区域的信息发送至手持清洁设备401或第二清洁机器人402,其中目标区域为需要重复拖擦的区域。可选的基站200也可以用于对第二清洁机器人402的拖擦件进行清洁。
本申请实施例提供的清洁系统的具体原理和实现方式均与前述实施例的清洁机器人的控制方法类似,此处不再赘述。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (61)

  1. 一种清洁机器人的控制方法,其特征在于,包括:
    控制清洁机器人通过拖擦件对预设清洁区域进行拖擦;
    获取所述预设清洁区域对应的第一脏污程度;
    根据所述第一脏污程度,确定所述预设清洁区域包括目标区域,所述目标区域为需要重复拖擦的区域;
    在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
  2. 根据权利要求1所述的控制方法,其特征在于,所述获取所述预设清洁区域对应的第一脏污程度,包括:
    在清洁机器人通过拖擦件完成对预设清洁区域的拖擦之后,获取所述拖擦件的拖擦件脏污程度;以及
    根据所述拖擦件脏污程度确定所述预设清洁区域对应第一脏污程度。
  3. 根据权利要求2所述的控制方法,其特征在于,所述获取所述拖擦件的拖擦件脏污程度,包括:
    对所述拖擦件进行清洁,获取清洁所述拖擦件的污水的检测值;
    根据所述检测值确定所述拖擦件的拖擦件脏污程度。
  4. 根据权利要求3所述的控制方法,其特征在于,所述根据所述检测值确定所述拖擦件的拖擦件脏污程度,包括:
    根据清洁所述拖擦件的时间和/或水量,对所述检测值对应的脏污量进行累加;根据所述脏污量的累加结果确定所述拖擦件的拖擦件脏污程度;或者
    根据单次所述检测值预判所述拖擦件的拖擦件脏污程度。
  5. 根据权利要求1所述的控制方法,其特征在于,所述清洁机器人的清洁任务包括对多个所述预设清洁区域进行拖擦;
    所述在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,包括:
    在对全部的所述预设清洁区域完成拖擦以及对所述拖擦件进行维护之后, 控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
  6. 根据权利要求1所述的控制方法,其特征在于,所述清洁机器人的清洁任务包括对多个所述预设清洁区域进行拖擦;
    所述在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,包括:
    在对除所述目标区域对应的预设清洁区域之外的其他预设清洁区域进行拖擦之前,对所述拖擦件进行维护,以及控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
  7. 根据权利要求1所述的控制方法,其特征在于,所述根据所述第一脏污程度,确定所述预设清洁区域包括目标区域,所述目标区域为需要重复拖擦的区域,包括:
    当所述预设清洁区域对应的第一脏污程度大于或等于预设的脏污量阈值时,确定所述预设清洁区域包括目标区域。
  8. 根据权利要求1所述的控制方法,其特征在于,所述控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,还包括:
    获取所述目标区域对应的第二脏污程度;
    根据所述目标区域对应的第二脏污程度,确定所述目标区域需要再重复拖擦;对所述目标区域的至少部分再重复拖擦。
  9. 根据权利要求8所述的控制方法,其特征在于,对所述目标区域再重复拖擦之后还包括:
    当所述目标区域的再重复拖擦次数满足清洁次数阈值时,终止对所述目标区域重复拖擦。
  10. 根据权利要求7所述的控制方法,其特征在于,所述清洁机器人的清洁任务包括对多个所述预设清洁区域进行拖擦;所述脏污量阈值包括第一脏污量阈值和第二脏污量阈值;
    当第一脏污程度大于或等于所述第一脏污量阈值时,确定所述预设清洁区域包括目标区域;且在对除当前所述预设清洁区域之外的其他预设清洁区域进行拖擦之前,对所述拖擦件进行维护,以及控制所述清洁机器人通过所述拖擦 件对所述目标区域的至少部分进行拖擦;和/或
    当第一脏污程度大于或等于所述第二脏污量阈值,且小于所述第一脏污量阈值时,确定所述预设清洁区域包括目标区域;且
    在对全部的预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
  11. 根据权利要求10所述的控制方法,其特征在于,所述当第一脏污程度大于或等于所述第一脏污量阈值时,确定所述预设清洁区域包括目标区域;且在对除当前所述预设清洁区域之外的其他预设清洁区域进行拖擦之前,对所述拖擦件进行维护,以及控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,包括:
    当第一脏污程度大于或等于所述第一脏污量阈值时,立即控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,获取所述目标区域对应的第二脏污程度,当第二脏污程度大于第二脏污量阈值时,控制所述清洁机器人对所述目标区域继续再拖擦,直至所述第二脏污程度小于第二脏污量阈值时,则在所述目标区域的至少部分完成拖擦,且在对所述拖擦件完成维护后,对其他预设清洁区域进行拖擦;或者,
    当第一脏污程度大于或等于所述第一脏污量阈值时,立即控制所述清洁机器人通过所述拖擦件对所述目标区域进行拖擦,获取所述目标区域对应的第二脏污程度,当第二脏污程度大于第一脏污量阈值时,控制所述清洁机器人对所述目标区域继续再拖擦,直至第二脏污程度大于或等于所述第二脏污量阈值,且小于所述第一脏污量阈值时,在对全部的预设清洁区域完成拖擦以及对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
  12. 根据权利要求5或10所述的控制方法,其特征在于,还包括:
    在对全部的预设清洁区域完成拖擦之后,根据所述目标区域的特征参数,确定多个所述目标区域的拖擦顺序,所述目标区域的特征参数至少包括:所述目标区域对应的脏污程度、所述目标区域与所述清洁机器人的距离、所述目标区域所在房间的房间标识;
    所述控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行 拖擦,包括:
    按照所述拖擦顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦。
  13. 根据权利要求12所述的控制方法,其特征在于,所述按照所述拖擦顺序,控制所述清洁机器人对多个所述目标区域进行拖擦包括:
    按照脏污程度从大到小的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦;或者
    按照脏污程度从小到大的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦;或者
    按照所述目标区域与所述清洁机器人的距离,从近到远的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦;或者
    按照所述目标区域与所述清洁机器人的距离,从远到近的顺序,控制所述清洁机器人对多个所述目标区域的至少部分进行拖擦。
  14. 根据权利要求12所述的控制方法,其特征在于,所述在对全部的预设清洁区域完成拖擦之后,根据所述目标区域对应的脏污程度,确定多个所述目标区域的拖擦顺序,包括:确定脏污程度的差异小于或等于差异阈值的目标区域为合并区域;
    根据同一合并区域内的多个目标区域的脏污程度,确定所述合并区域的脏污程度;
    根据所述合并区域的脏污程度,确定多个所述合并区域的拖擦顺序;或者在有目标区域未合并时,根据所述合并区域的脏污程度以及未合并的目标区域的脏污程度,确定所述合并区域以及所述未合并的目标区域的拖擦顺序。
  15. 根据权利要求14所述的控制方法,其特征在于,所述控制所述清洁机器人通过所述拖擦件对所述目标区域进行拖擦,包括:
    当所述合并区域的脏污程度小于或等于预设的合并脏污阈值时,控制所述清洁机器人通过所述拖擦件对所述合并区域中的多个目标区域进行拖擦。
  16. 根据权利要求1所述的控制方法,其特征在于,所述控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦,包括:
    将所述目标区域拆分为若干子目标区域,控制所述清洁机器人通过所述拖 擦件对至少一个所述子目标区域进行拖擦。
  17. 根据权利要求16所述的控制方法,其特征在于,所述控制所述清洁机器人通过所述拖擦件对至少一个所述子目标区域进行拖擦,包括:
    控制所述清洁机器人通过所述拖擦件依次对所述子目标区域进行拖擦;
    获取所述子目标区域的第三脏污程度,确定所述子目标区域需要再重复拖擦;对所述子目标区域继续拆分,对拆分所得的区域进行拖擦。
  18. 根据权利要求16所述的控制方法,其特征在于,所述控制所述清洁机器人通过所述拖擦件对至少一个所述子目标区域进行拖擦,包括:
    控制所述清洁机器人通过所述拖擦件对其一所述子目标区域进行拖擦;
    预估所述目标区域的第二脏污程度,获取所述子目标区域的第三脏污程度,根据所述第二脏污程度和第三脏污程度确定所述目标区域未完成重复拖擦;则对下一所述子目标区域重复拖擦。
  19. 根据权利要求1所述的控制方法,其特征在于,所述确定所述预设清洁区域包括目标区域之后,还包括:
    发送消息至用户界面,以供用户选择对所述目标区域进行拖擦,
    确定对所述目标区域进行拖擦,则在对所述预设清洁区域完成拖擦,且在对所述拖擦件进行维护之后,控制所述清洁机器人通过所述拖擦件对所述目标区域的至少部分进行拖擦。
  20. 根据权利要求7、10-11中任一项所述的控制方法,其特征在于,所述脏污量阈值根据所述清洁机器人的清洁模式确定。
  21. 一种拖擦件的清洁方法,其特征在于,用于清洁系统,所述方法包括:
    执行拖擦件清洗任务;
    获取所述拖擦件的拖擦件脏污程度;
    根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,根据所述清洗阈值结束所述拖擦件清洗任务。
  22. 根据权利要求21所述的清洁方法,其特征在于,所述获取所述拖擦件的拖擦件脏污程度,包括:
    获取清洁所述拖擦件的污水的检测值;
    根据所述检测值确定所述拖擦件脏污程度。
  23. 根据权利要求21所述的清洁方法,其特征在于,所述拖擦件清洗任务包括已执行阶段任务和未执行阶段任务,所述未执行阶段任务为所述已执行阶段任务之后的其它阶段任务;
    所述获取所述拖擦件的拖擦件脏污程度,包括:
    获取所述拖擦件在所述已执行阶段任务中的拖擦件脏污程度;
    所述根据所述拖擦件脏污程度所在的值域范围确定清洗阈值,根据所述清洗阈值结束所述拖擦件清洗任务,包括:
    根据所述已执行阶段任务中的拖擦件脏污程度所在的值域范围确定所述未执行阶段任务的清洗阈值;
    获取所述拖擦件在所述未执行阶段任务中的拖擦件脏污程度;以及
    确定所述未执行阶段任务中的拖擦件脏污程度小于或等于所述未执行阶段任务的清洗阈值,结束所述拖擦件清洗任务。
  24. 根据权利要求23所述的清洁方法,其特征在于,所述获取所述拖擦件在所述未执行阶段任务中的拖擦件脏污程度,以及确定所述未执行阶段任务中的拖擦件脏污程度小于或等于所述未执行阶段任务的清洗阈值,结束所述拖擦件清洗任务,包括:
    获取所述拖擦件在所述未执行阶段任务中的脏污洗脱值;以及
    确定所述拖擦件在所述未执行阶段任务中的脏污洗脱值小于或等于所述未执行阶段任务的清洗阈值,结束所述拖擦件清洗任务。
  25. 根据权利要求23所述的清洁方法,其特征在于,所述获取所述拖擦件在所述已执行阶段任务中的拖擦件脏污程度,包括:
    获取所述拖擦件在所述已执行阶段任务中的脏污洗脱值;
    根据所述已执行阶段任务中的脏污洗脱值,确定所述拖擦件脏污程度。
  26. 根据权利要求25所述的清洁方法,其特征在于,所述根据所述已执行阶段任务的脏污洗脱值,确定所述拖擦件脏污程度,包括:
    根据所述拖擦件清洗任务中第一个阶段任务的脏污洗脱值,确定所述拖擦件脏污程度;和/或
    根据所述未执行阶段任务之前最近一次的已执行阶段任务的脏污洗脱值,确定所述拖擦件脏污程度;和/或
    根据所述未执行阶段任务之前的多个已执行阶段任务脏污洗脱值,确定所述拖擦件脏污程度。
  27. 根据权利要求23所述的清洁方法,其特征在于,所述值域范围至少包括第一值域范围和第二值域范围,所述第一值域范围和所述第二值域范围不同,所述根据所述已执行阶段任务中的拖擦件脏污程度所在的值域范围确定所述未执行阶段任务的清洗阈值包括:
    当所述拖擦件脏污程度在所述第一值域范围时,确定所述未执行阶段任务的清洗阈值为第一清洗阈值;
    当所述拖擦件脏污程度在所述第二值域范围时,确定所述未执行阶段任务的清洗阈值为第二清洗阈值;
    其中,所述第一清洗阈值和所述第二清洗阈值不相等。
  28. 根据权利要求21-27中任一项所述的清洁方法,其特征在于,所述清洗阈值与所述拖擦件脏污程度所在值域范围的上限值呈正相关关系或与所述值域范围的下限值呈正相关关系。
  29. 根据权利要求25或26所述的清洁方法,其特征在于,所述清洁方法还包括:
    在所述根据所述已执行阶段任务中的拖擦件脏污程度所在的值域范围确定所述未执行阶段任务的清洗阈值之后,根据所述已执行阶段任务的脏污洗脱值及所述未执行阶段任务的清洗阈值确定所述未执行阶段任务的清洁策略。
  30. 根据权利要求29所述的清洁方法,其特征在于,所述根据所述已执行阶段任务的脏污洗脱值及所述未执行阶段任务的清洗阈值确定所述未执行阶段任务的清洁策略,包括:
    根据所述已执行阶段任务的脏污洗脱值及所述未执行阶段任务的清洗阈值,调整所述未执行阶段任务的清洁时长和/或水量。
  31. 根据权利要求21-27中任一项所述的清洁方法,其特征在于,所述方法还包括:
    在执行所述拖擦件清洗任务时,当清洁所述拖擦件消耗的水量达到预设水量阈值或时间达到预设时间阈值时,结束所述拖擦件清洗任务;和/或
    在执行所述拖擦件清洗任务时,当清洁所述拖擦件消耗的水量达到预设水 量阈值或时间达到预设时间阈值时,输出异常提醒。
  32. 根据权利要求21所述的清洁方法,其特征在于,所述方法还包括:
    确定所述拖擦件在预设时长内未用于对地面拖擦,根据任务后清洗阈值执行和结束所述拖擦件清洗任务;
    所述任务后清洗阈值小于或等于根据所述拖擦件脏污程度所在的值域范围确定的清洗阈值。
  33. 根据权利要求22所述的清洁方法,其特征在于,所述拖擦件的拖擦件脏污程度,根据清洁所述拖擦件的污水的检测值,以及所述拖擦件的零偏值确定;
    所述方法还包括:
    在结束所述拖擦件清洗任务之后和/或在通过所述拖擦件对地面拖擦之前,获取清洁所述拖擦件的污水的检测值;
    当所述检测值与所述零偏值的差值的绝对值小于或等于第一差值阈值时,根据所述检测值对所述零偏值进行校准。
  34. 根据权利要求33所述的清洁方法,其特征在于,所述方法还包括:
    当所述拖擦件清洗任务中已执行的阶段任务的检测值与所述零偏值的差值的绝对值大于所述第一差值阈值时,继续执行下一阶段任务;当所述下一阶段任务的检测值,与所述零偏值的差值的绝对值小于或等于第二差值阈值,且与最近一次已执行的阶段任务的检测值的差值的绝对值小于或等于第三差值阈值时,根据所述下一阶段任务的检测值对所述零偏值进行校准。
  35. 根据权利要求34所述的清洁方法,其特征在于,所述方法还包括:
    当所述拖擦件清洗任务中相邻两个阶段任务的检测值的差值的绝对值大于所述第三差值阈值时,继续执行下一阶段任务;直至相邻两个阶段任务的检测值的差值的绝对值小于或等于第三差值阈值,或者
    当所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值大于所述第二差值阈值时,继续执行下一阶段任务;直至所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值小于或等于所述第二差值阈值。
  36. 根据权利要求35所述的清洁方法,其特征在于,所述方法还包括:
    所述阶段任务的个数达到阶段个数阈值时,输出提示信息,所述提示信息用于指示所述检测所述污水的传感器异常。
  37. 根据权利要求21-27、32-36中任一项所述的清洁方法,其特征在于,所述方法还包括:
    在执行拖擦件清洗任务时,当所述拖擦件脏污程度大于或等于预设的脏污量阈值时,结束所述拖擦件清洗任务;以及
    控制清洁机器人通过所述拖擦件对目标区域进行拖擦,所述目标区域为所述拖擦件清洗任务之前所述拖擦件清洁的区域。
  38. 根据权利要求21-27、32-36中任一项所述的清洁方法,其特征在于,所述方法还包括:
    根据清洁任务中待拖擦区域的面积,调整所述清洗阈值;
    所述清洗阈值与所述待拖擦区域的面积正相关。
  39. 一种拖擦件的清洁方法,其特征在于,用于清洁系统,所述方法包括:
    执行拖擦件清洗任务;
    获取预设清洁任务的任务进度,所述预设清洁任务包括通过所述拖擦件对清洁任务地图中的预设清洁区域进行拖擦;
    根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值;
    根据所述清洗阈值结束所述拖擦件清洗任务。
  40. 根据权利要求39所述的清洁方法,其特征在于,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务时,确定所述清洗阈值为任务中清洗阈值;
    当所述预设清洁任务的任务进度为已执行完所述预设清洁任务时,确定所述清洗阈值为任务后清洗阈值;
    其中,所述任务后清洗阈值小于所述任务中清洗阈值。
  41. 根据权利要求39所述的清洁方法,其特征在于,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对目标区域的至少部分进行拖擦时,确定所述清洗阈值为第一任务 中清洗阈值,其中,所述目标区域为需要进行重复拖擦的预设清洁区域;
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对所述清洁任务地图中还未进行拖擦的预设清洁区域进行拖擦时,确定所述清洗阈值为第二任务中清洗阈值;
    其中,所述第二任务中清洗阈值小于所述第一任务中清洗阈值。
  42. 根据权利要求39-41中任一项所述的清洁方法,其特征在于,所述清洗阈值包括清洗脏污阈值,所述根据所述清洗阈值结束所述拖擦件清洗任务,包括:
    在所述拖擦件清洗任务中,当所述拖擦件的拖擦件脏污程度小于或等于所述清洗脏污阈值时,结束所述拖擦件清洗任务。
  43. 根据权利要求42所述的清洁方法,其特征在于,所述拖擦件的拖擦件脏污程度,根据清洁所述拖擦件的污水的检测值确定。
  44. 根据权利要求42所述的清洁方法,其特征在于,所述拖擦件清洗任务包括至少一个阶段任务;所述在所述拖擦件清洗任务中,当所述拖擦件的拖擦件脏污程度小于或等于所述清洗脏污阈值时,结束所述拖擦件清洗任务,包括:
    在所述拖擦件清洗任务中,获取所述拖擦件在每个所述阶段任务中的脏污洗脱值;
    当所述阶段任务中的脏污洗脱值小于或等于所述清洗脏污阈值时,结束所述拖擦件清洗任务。
  45. 根据权利要求43所述的清洁方法,其特征在于,所述拖擦件的拖擦件脏污程度,根据清洁所述拖擦件的污水的检测值,以及所述拖擦件的零偏值确定;
    所述方法还包括:
    在结束所述拖擦件清洗任务之后和/或在通过所述拖擦件对地面拖擦之前,获取清洁所述拖擦件的污水的检测值;
    当所述检测值与所述零偏值的差值的绝对值小于或等于第一差值阈值时,根据所述检测值对所述零偏值进行校准。
  46. 根据权利要求45所述的清洁方法,其特征在于,所述方法还包括:
    当所述拖擦件清洗任务中已执行的阶段任务的检测值与所述零偏值的差值 的绝对值大于所述第一差值阈值时,继续执行下一阶段任务;当所述下一阶段任务的检测值,与所述零偏值的差值的绝对值小于或等于第二差值阈值,且与最近一次已执行的阶段任务的检测值的差值的绝对值小于或等于第三差值阈值时,根据所述下一阶段任务的检测值对所述零偏值进行校准。
  47. 根据权利要求46所述的清洁方法,其特征在于,所述方法还包括:
    当所述拖擦件清洗任务中相邻两个阶段任务的检测值的差值的绝对值大于所述第三差值阈值时,继续执行下一阶段任务;直至相邻两个阶段任务的检测值的差值的绝对值小于或等于第三差值阈值,或者
    当所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值大于所述第二差值阈值时,继续执行下一阶段任务;直至所述相邻两个阶段任务中后一个阶段任务的检测值与所述零偏值的差值的绝对值小于或等于所述第二差值阈值。
  48. 根据权利要求47所述的清洁方法,其特征在于,所述方法还包括:
    所述阶段任务的个数达到阶段个数阈值时,输出提示信息,所述提示信息用于指示所述检测所述污水的传感器异常。
  49. 根据权利要求39所述的清洁方法,其特征在于,所述清洗阈值包括清洁时间阈值,所述根据所述清洗阈值结束所述拖擦件清洗任务,包括:
    在所述拖擦件清洗任务中,对所述拖擦件进行清洁的时间达到所述任务进度对应的清洁时间阈值时,结束所述拖擦件清洗任务。
  50. 根据权利要求49所述的清洁方法,其特征在于,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务时,确定所述清洁时间阈值为任务中清洁时间阈值;
    当所述预设清洁任务的任务进度为已执行完所述预设清洁任务时,确定所述清洁时间阈值为任务后清洁时间阈值;
    其中,所述任务后清洁时间阈值大于所述任务中清洁时间阈值。
  51. 根据权利要求49所述的清洁方法,其特征在于,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子 清洁任务为对目标区域的至少部分进行拖擦时,确定所述清洗阈值为第一任务中清洁时间阈值,其中,所述目标区域为需要进行重复拖擦的预设清洁区域;
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对所述清洁任务地图中还未进行拖擦的预设清洁区域进行拖擦时,确定所述清洗阈值为第二任务中清洁时间阈值;
    其中,所述第二任务中清洁时间阈值大于所述第一任务中清洁时间阈值。
  52. 根据权利要求39所述的清洁方法,其特征在于,所述清洗阈值包括清洁水量阈值,所述根据所述清洗阈值结束所述拖擦件清洗任务,包括:
    在所述拖擦件清洗任务中,对所述拖擦件进行清洁的水量达到所述任务进度对应的清洁水量阈值时,结束所述拖擦件清洗任务。
  53. 根据权利要求52所述的清洁方法,其特征在于,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务时,确定所述清洁水量阈值为任务中清洁水量阈值;
    当所述预设清洁任务的任务进度为已执行完所述预设清洁任务时,确定所述清洁水量阈值为任务后清洁水量阈值;
    其中,所述任务后清洁水量阈值大于所述任务中清洁水量阈值。
  54. 根据权利要求52所述的清洁方法,其特征在于,所述根据所述预设清洁任务的任务进度确定拖擦件清洗任务的清洗阈值,包括:
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对目标区域的至少部分进行拖擦时,确定所述清洗阈值为第一任务中清洁水量阈值,其中,所述目标区域为需要进行重复拖擦的预设清洁区域;
    当所述预设清洁任务的任务进度为未执行完所述预设清洁任务,且下一子清洁任务为对所述清洁任务地图中还未进行拖擦的预设清洁区域进行拖擦时,确定所述清洗阈值为第二任务中清洁水量阈值;
    其中,所述第二任务中清洁水量阈值大于所述第一任务中清洁水量阈值。
  55. 一种控制装置,其特征在于,所述控制装置包括存储器和处理器;
    其中,所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现:
    如权利要求1-20中任一项所述的清洁机器人的控制方法的步骤;和/或
    如权利要求21-38中任一项所述的拖擦件的清洁方法的步骤;和/或
    如权利要求39-54中任一项所述的拖擦件的清洁方法的步骤。
  56. 一种基站,其特征在于,所述基站至少用于对清洁机器人的拖擦件进行清洁,所述基站包括如权利要求55所述的控制装置。
  57. 一种清洁机器人,其特征在于,所述清洁机器人用于对地面进行清洁,所述清洁机器人包括:
    如权利要求55所述的控制装置。
  58. 一种清洁系统,其特征在于,包括:
    清洁机器人,所述清洁机器人包括行走单元和拖擦件,所述行走单元用于驱动所述清洁机器人运动,以使所述拖擦件对地面进行拖擦;
    基站,所述基站至少用于对清洁机器人的拖擦件进行清洁或更换;以及
    如权利要求55所述的控制装置。
  59. 一种清洁系统,其特征在于,包括:
    清洁机器人,所述清洁机器人包括行走单元和拖擦件,所述行走单元用于驱动所述清洁机器人运动,以使所述拖擦件对地面进行拖擦;
    基站,所述基站包括脏污检测装置以对清洁机器人的拖擦件脏污程度进行检测;以及
    如权利要求55所述的控制装置。
  60. 一种清洁系统,其特征在于,包括:
    第一清洁机器人,所述第一清洁机器人包括行走单元和拖擦件,所述行走单元用于驱动所述第一清洁机器人运动,以使所述拖擦件对地面进行拖擦;
    基站,所述基站至少用于对所述第一清洁机器人的拖擦件进行清洁;以及
    如权利要求55所述的控制装置;
    所述清洁系统还包括:
    手持清洁设备或第二清洁机器人,
    所述控制装置或者所述第一清洁机器人能够将目标区域的信息发送至所述手持清洁设备或所述第二清洁机器人,所述目标区域为需要重复拖擦的区域。
  61. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储 有计算机程序,所述计算机程序被处理器执行时使所述处理器实现:
    如权利要求1-20中任一项所述的清洁机器人的控制方法的步骤;和/或
    如权利要求21-38中任一项所述的拖擦件的清洁方法的步骤;和/或
    如权利要求39-54中任一项所述的拖擦件的清洁方法的步骤。
PCT/CN2022/108344 2022-07-27 2022-07-27 清洁机器人的控制、清洁方法、装置、系统及存储介质 WO2024020882A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/108344 WO2024020882A1 (zh) 2022-07-27 2022-07-27 清洁机器人的控制、清洁方法、装置、系统及存储介质
EP22946055.5A EP4342353A1 (en) 2022-07-27 2022-07-27 Cleaning robot control method and apparatus, cleaning method and system, and storage medium
US18/513,637 US20240081599A1 (en) 2022-07-27 2023-11-20 Controlling method and apparatus of cleaning robot, cleaning method and apparatus, system, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108344 WO2024020882A1 (zh) 2022-07-27 2022-07-27 清洁机器人的控制、清洁方法、装置、系统及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/513,637 Continuation US20240081599A1 (en) 2022-07-27 2023-11-20 Controlling method and apparatus of cleaning robot, cleaning method and apparatus, system, and storage medium

Publications (1)

Publication Number Publication Date
WO2024020882A1 true WO2024020882A1 (zh) 2024-02-01

Family

ID=89704850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108344 WO2024020882A1 (zh) 2022-07-27 2022-07-27 清洁机器人的控制、清洁方法、装置、系统及存储介质

Country Status (3)

Country Link
US (1) US20240081599A1 (zh)
EP (1) EP4342353A1 (zh)
WO (1) WO2024020882A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128782A (ja) * 2012-12-28 2014-07-10 Masahiko Terada 清掃用具用清掃器具
CN105380575A (zh) * 2015-12-11 2016-03-09 美的集团股份有限公司 扫地机器人的控制方法、系统、云服务器和扫地机器人
CN110236456A (zh) * 2019-01-08 2019-09-17 云鲸智能科技(东莞)有限公司 拖地机器人的控制方法、装置、设备及存储介质
CN110236455A (zh) * 2019-01-08 2019-09-17 云鲸智能科技(东莞)有限公司 拖地机器人的控制方法、装置、设备及存储介质
CN112986079A (zh) * 2021-02-25 2021-06-18 深圳市银星智能科技股份有限公司 拖擦组件清洁程度检测方法、检测电路及相关设备
CN113273933A (zh) * 2021-05-24 2021-08-20 美智纵横科技有限责任公司 清洁机器人及其控制方法、装置和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128782A (ja) * 2012-12-28 2014-07-10 Masahiko Terada 清掃用具用清掃器具
CN105380575A (zh) * 2015-12-11 2016-03-09 美的集团股份有限公司 扫地机器人的控制方法、系统、云服务器和扫地机器人
CN110236456A (zh) * 2019-01-08 2019-09-17 云鲸智能科技(东莞)有限公司 拖地机器人的控制方法、装置、设备及存储介质
CN110236455A (zh) * 2019-01-08 2019-09-17 云鲸智能科技(东莞)有限公司 拖地机器人的控制方法、装置、设备及存储介质
CN112986079A (zh) * 2021-02-25 2021-06-18 深圳市银星智能科技股份有限公司 拖擦组件清洁程度检测方法、检测电路及相关设备
CN113273933A (zh) * 2021-05-24 2021-08-20 美智纵横科技有限责任公司 清洁机器人及其控制方法、装置和存储介质

Also Published As

Publication number Publication date
US20240081599A1 (en) 2024-03-14
EP4342353A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP7208675B2 (ja) 床拭きロボットの制御方法、装置、機器及び記憶媒体
WO2020143337A1 (zh) 拖地机器人的控制方法、装置、设备及存储介质
CN112043217A (zh) 全自动清洁机器人系统及控制方法
CN108018674B (zh) 洗衣机控制方法
CN112168094B (zh) 一种用于扫地机的控制方法及控制器
CN113143123A (zh) 一种清洁机器人系统及清洁控制方法
CN113951774A (zh) 清洁设备的控制方法、装置、清洁设备及可读存储介质
WO2024051704A1 (zh) 清洁机器人及其控制方法、装置、系统及存储介质
CN213371808U (zh) 全自动清洁机器人系统
WO2024020882A1 (zh) 清洁机器人的控制、清洁方法、装置、系统及存储介质
CN109875466B (zh) 一种擦地机器人的擦地方法
CN107461879B (zh) 空调器的清洁控制方法
CN115429162B (zh) 拖擦件的清洁方法、控制装置、基站、清洁系统及存储介质
CN115429160B (zh) 清洁机器人的控制方法、装置、系统及存储介质
CN115429161B (zh) 清洁机器人的控制方法、装置、系统及存储介质
CN115429163B (zh) 拖擦件的清洁方法、控制装置、基站、清洁系统及存储介质
CN216602758U (zh) 清洁设备
CN114052601A (zh) 清洁设备、清洁设备的控制方法及其控制装置
CN114610009A (zh) 清洗控制方法及装置、计算机可读存储介质和电子设备
CN114903387A (zh) 地面清洗机的自清洁方法、计算机可读存储介质和地面清洗机
CN116250772B (zh) 洗地机的自清洁方法和洗地机
CN117204758A (zh) 清洁设备
CN212066659U (zh) 一种洗碗机
CN117179661A (zh) 清洁方法、清洁装置、清洁设备、清洁系统和存储介质
CN118252420A (zh) 智能洗地机的自助力控制方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022946055

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022946055

Country of ref document: EP

Effective date: 20231222