WO2024019124A1 - 炭素原子含有膜のドライエッチング方法 - Google Patents

炭素原子含有膜のドライエッチング方法 Download PDF

Info

Publication number
WO2024019124A1
WO2024019124A1 PCT/JP2023/026649 JP2023026649W WO2024019124A1 WO 2024019124 A1 WO2024019124 A1 WO 2024019124A1 JP 2023026649 W JP2023026649 W JP 2023026649W WO 2024019124 A1 WO2024019124 A1 WO 2024019124A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atom
etching
containing film
dry etching
gas
Prior art date
Application number
PCT/JP2023/026649
Other languages
English (en)
French (fr)
Inventor
勝 堀
健治 石川
ティ トゥイ ガー グエン
優太 青木
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2024019124A1 publication Critical patent/WO2024019124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a method of dry etching a film containing carbon atoms.
  • Patent Document 1 discloses a method of etching a carbonaceous layer with plasma of an etchant gas mixture containing oxygen and a gas containing carbon/sulfur terminal ligands.
  • Patent Document 1 has the following problems. That is, in the above method, it is necessary to repeat etching and observation with an electron microscope (SEM) in order to set etching conditions at a high etching rate. There was room for.
  • SEM electron microscope
  • the present disclosure has been made in view of the above problems, and aims to provide a dry etching method for a carbon atom-containing film that can easily perform etching of a carbon atom-containing film at a high etching rate.
  • ions or radicals derived from oxygen atoms work to speed up etching
  • ions or radicals derived from S atoms and C atoms work to slow down etching.
  • the inventors of the present disclosure thought that it acts to deposit S atoms and C atoms. Therefore, in order to increase the etching rate for a carbon-containing film, the amount of ions or radicals derived from oxygen atoms relative to ions or radicals derived from S and C atoms should be increased to a certain value or more. That's what I thought.
  • the inventors of the present disclosure first performed an analysis result (Optical Emission Spectrometer (OES) chart) when performing an emission spectroscopic analysis on a plasma gas of a mixed gas of oxygen and carbonyl sulfide or sulfur dioxide.
  • OES Optical Emission Spectrometer
  • the upper emission spectrometry chart is a chart when the concentration of SO 2 in the mixed gas is 30% by volume
  • the lower emission spectrometry chart is a chart when the concentration of COS in the mixed gas is 30% by volume. It is a chart when it is volume %.
  • the emission peak intensity derived from oxygen atoms at 777 nm is greater than a certain value with respect to the emission peak intensities at 257 nm, 300 nm, and 500 nm, , it was found that the etching rate becomes larger and the etching rate becomes smaller. That is, it has been found that conditions for increasing the etching rate can be easily found by simply looking at the results of emission spectroscopic analysis of plasma gas, without consuming a sample wafer and performing observation using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • each emission peak has a width
  • the position of the emission peak near 257 nm is specified in the wavelength range of 250-260 nm
  • the position of the emission peak near 300 nm is specified in the wavelength range of 280-350 nm
  • one aspect of the present disclosure provides a dry etching method for a carbon atom-containing film in which a carbon atom-containing film containing carbon atoms is etched with an etching gas, in which a mixed gas containing at least oxygen and a sulfur compound is etched into the carbon atom-containing film.
  • a method for dry etching a carbon atom-containing film is provided, in which the plasma gas described above is generated to meet at least one requirement.
  • the maximum intensity ratio R1 of the maximum emission intensity in the 770-780 nm wavelength range to the maximum emission intensity in the 250-260 nm wavelength range is 0.52 or more
  • the maximum intensity ratio R2 of the maximum emission intensity in the wavelength range of 770-780 nm to the maximum emission intensity in the wavelength range of 770-780 nm is 0.12 or more.
  • Intensity ratio R3 is 0.48 or more
  • the carbon atom-containing film can be easily etched at a high etching rate.
  • the plasma gas may be generated such that the analysis result of the plasma gas by optical emission spectrometry satisfies at least two of the requirements (A), (B), and (C).
  • the plasma gas may be generated such that the analysis result of the plasma gas by optical emission spectrometry satisfies all of the requirements (A), (B), and (C).
  • the thickness of the carbon atom-containing film may be 0.1 ⁇ m or less.
  • the thickness of the carbon atom-containing film may be 10.0 ⁇ m or less.
  • the structure may further include a mask having a first opening, and in the mixed gas, the content of the sulfur compound in the total volume of the sulfur compound and the oxygen may be 20 to 40% by volume.
  • the thickness of the mask may be 0.01 times or more the thickness of the carbon atom-containing film.
  • the thickness of the mask may be 0.5 times or less the thickness of the carbon atom-containing film.
  • Sulfur dioxide or carbonyl sulfide may be used as the sulfur compound.
  • Sulfur dioxide may be used as the sulfur compound.
  • a dry etching method for a carbon atom-containing film is provided, which allows the carbon atom-containing film to be easily etched at a high etching rate.
  • FIG. 1 shows an emission spectroscopic analysis chart when an emission spectroscopic analysis was performed on a plasma gas of a mixed gas of oxygen and carbonyl sulfide or sulfur dioxide (concentration of carbonyl sulfide or sulfur dioxide: 30% by volume).
  • FIG. 2 is a cross-sectional view showing an example of a structure before an etching step in the dry etching method for a carbon atom-containing film according to the present disclosure.
  • FIG. 3 is a schematic diagram showing an etching chamber in which the structure of FIG. 2 is placed.
  • FIG. 2 is a cross-sectional view illustrating an example of a structure after an etching step of the dry etching method for a carbon atom-containing film according to the present disclosure.
  • FIG. 5 is a partially enlarged view of the mask and carbon atom-containing film in FIG. 4.
  • FIG. 2 is a graph showing the relationship between maximum intensity ratio R1 and etching rate (ER) in Examples 1 to 7 and Comparative Examples 1 to 6.
  • 2 is a graph showing the relationship between maximum intensity ratio R2 and etching rate (ER) in Examples 1 to 7 and Comparative Examples 1 to 6.
  • 3 is a graph showing the relationship between maximum intensity ratio R3 and etching rate (ER) in Examples 1 to 7 and Comparative Examples 1 to 6.
  • FIG. 2 is a cross-sectional view showing an example of a structure before the etching process of the dry etching method for a carbon atom-containing film of the present disclosure
  • FIG. 3 is a schematic diagram showing an etching chamber in which the structure of FIG. 2 is arranged.
  • FIG. 4 is a cross-sectional view showing an example of a structure after the etching step of the dry etching method for a carbon atom-containing film of the present disclosure
  • FIG. 5 is a partially enlarged view of the mask and carbon atom-containing film of FIG. 4.
  • the dry etching method of a carbon atom-containing film is a method of etching the carbon atom-containing film 20 containing carbon atoms with an etching gas, in which a mixed gas G containing at least oxygen and a sulfur compound is applied to the carbon atom-containing film 20. 20 and a step of introducing a mixed gas into the etching chamber 1 in which the structure 100 equipped with the mask 30 having the first opening 31 is placed, and a step of turning the mixed gas G into plasma in the etching chamber 1 to produce plasma gas. and an etching step of etching the carbon atom-containing film of the structure 100 using this plasma gas to form the second opening 21 (see FIGS. 2 to 4).
  • plasma gas is generated such that the analysis result of plasma gas by optical emission spectrometry satisfies at least one of the following requirements (A), (B), and (C).
  • A) The maximum intensity ratio R1 of the maximum emission intensity in the 770-780 nm wavelength range to the maximum emission intensity in the 250-260 nm wavelength range is 0.52 or more
  • C) The maximum intensity ratio R2 of the maximum emission intensity in the wavelength range of 770-780 nm to the maximum emission intensity in the wavelength range of 770-780 nm is 0.12 or more.
  • Intensity ratio R3 is 0.48 or more
  • the carbon atom-containing film can be easily etched at a high etching rate.
  • the structure 100 includes a carbon atom-containing film 20 containing carbon atoms, and a mask 30 having a first opening 31.
  • the structure 100 may further include a support 10 that supports the carbon atom-containing film 20, as shown in FIG. In this case, the carbon atom-containing film 20 is placed between the mask 30 and the support 10. Further, the structure 100 may further include an intermediate film (not shown) between the support body 10 and the carbon atom-containing film 20. Note that the structure 100 does not necessarily have to include the mask 30.
  • the support body 10 is not particularly limited as long as it is a member that supports the carbon atom-containing film 20, examples of the material constituting the support body 10 include silicon, germanium, and the like. Among them, silicon is preferred. In this case, since the bandgap is wide, durability under high pressure is further improved.
  • the thickness of the support 10 is not particularly limited, but may be 254 ⁇ m or more, or 520 ⁇ m or more. When the thickness of the support 10 is 254 ⁇ m or more, the mechanical strength is further improved. Moreover, the thickness of the support body 10 may be 795 ⁇ m or less, or may be 725 ⁇ m or less. When the thickness of the support 10 is 795 ⁇ m or less, the structure 100 can be easily cut into a predetermined wafer size.
  • intermediate film examples include silica (SiO 2 ), silicon nitride (Si 3 N 4 ), amorphous silicon (a:Si), and polycrystalline silicon (poly:Si).
  • the carbon atom-containing film 20 is not particularly limited as long as it contains carbon atoms.
  • the carbon atom-containing film 20 may be an inorganic carbon film such as amorphous carbon, or may be an organic polymer film such as a resist film or a polyimide film.
  • the etching selectivity i.e., the ratio of the etching rate Vc of the carbon atom-containing film 20 to the etching rate Vm of the mask
  • Amorphous carbon can be formed, for example, by a plasma CVD method or a method in which a coating liquid containing carbon is applied and dried.
  • the thickness of the carbon atom-containing film 20 is not particularly limited, but may be 0.1 ⁇ m or more, or 0.5 ⁇ m or more.
  • the thickness of the carbon atom-containing film 20 when an insulating film is laminated as a layer to be etched under the carbon atom-containing film 20, the carbon atom-containing film 20 serves as a mask for the layer to be etched. It becomes possible to demonstrate the functions of Further, the thickness of the carbon atom-containing film 20 may be 10.0 ⁇ m or less, or may be 5.0 ⁇ m or less. When the thickness of the carbon atom-containing film 20 is 10.0 ⁇ m or less, the carbon atom-containing film 20 becomes difficult to collapse after etching.
  • the mask 30 has a first opening 31 that allows the etching gas to pass through and guide it to the carbon atom-containing film 20 .
  • the first opening 31 may be a trench or a hole.
  • the mask 30 has a lower etching rate with an etching gas than the carbon atom-containing film 20, and such a mask 30 preferably contains an oxygen-containing material. In this case, the etching rate by the etching gas becomes low.
  • the oxygen-containing material include silicon dioxide and silicon oxynitride. Among them, silicon dioxide is preferred from the viewpoint of economy.
  • the thickness of the mask 30 is not particularly limited, but may be 0.01 times or more, or 0.05 times or more, the thickness of the carbon atom-containing film 20. When the thickness of the mask 30 is 0.01 times or more the thickness of the carbon atom-containing film 20, anisotropic etching of the carbon atom-containing film 20 becomes possible. Further, the thickness of the mask 30 may be 0.5 times or less, or 0.2 times or less, the thickness of the carbon atom-containing film 20. When the thickness of the mask 30 is 0.5 times or less than the thickness of the carbon atom-containing film 20, the carbon atom-containing film 20 becomes difficult to collapse after etching.
  • the etching apparatus includes an etching chamber 1.
  • the etching chamber 1 is a container in which the carbon atom-containing film 20 is etched with a plasma gas obtained by turning a mixed gas G containing oxygen and a sulfur compound into plasma.
  • Examples of etching equipment include microwave ECR plasma etching equipment, capacitively coupled plasma (CCP) etching equipment, and inductively coupled plasma (ICP) etching equipment, but etching equipment is not limited to these. It's not something you can do.
  • the etching apparatus is equipped with a plasma gas emission spectrometer capable of analyzing the emission of plasma gas of the mixed gas G generated in the etching chamber 1.
  • the plasma gas emission spectrometer includes, for example, a lens that collects light that has passed through a window that is installed in the etching chamber 1 at a location where plasma light emission (light in the ultraviolet and visible wavelength ranges) can be observed, and a lens that collects the light.
  • the device is equipped with an optical fiber that guides the light, a spectrometer that separates the light guided by the optical fiber, and a detector that detects the separated light.
  • Mixed gas G contains oxygen and sulfur compounds.
  • sulfur compounds include carbonyl sulfide, sulfur dioxide, hydrogen sulfide, carbon disulfide, and methyl mercaptan. These can be used alone or in combination of two or more. Among these, sulfur dioxide is preferred as the sulfur compound. In this case, a high etching rate can be maintained over a wide concentration range. That is, in order to maintain a high etching rate, it becomes easy to adjust the concentration of sulfur compounds in the mixed gas G.
  • the mixed gas G contains the intensity of the emission peak derived from CO etc. in the wavelength range of 470-600 nm (for example, around 500 nm) and the intensity of the emission peak in the wavelength range of 250-260 nm (for example, around 257 nm).
  • a gas containing carbon may be further included as necessary.
  • the content of sulfur compounds in the total volume of oxygen and sulfur compounds is not particularly limited as long as it is larger than 0% by volume, but may be 20 to 40% by volume, or may be 25 to 35% by volume. .
  • the etching rate for the carbon atom-containing film 20 can be more effectively improved.
  • the flow rate of the mixed gas G when introduced into the etching chamber 1 may be 0.1 mL/min or more, 1 mL/min or more, or 10 mL/min or more. When the flow rate of the mixed gas G is 1 mL/min or more, it becomes possible to efficiently generate ions and radicals necessary for etching the carbon atom-containing film 20.
  • the flow rate of the mixed gas G when introduced into the etching chamber 1 may be 10000 mL/min or less, 1000 mL/min or less, or 100 mL/min or less. When the flow rate of the mixed gas G is 10,000 mL/min or less, the degree of vacuum in the etching apparatus can be easily maintained at a low pressure.
  • the mixed gas G is turned into plasma in the etching chamber 1 to generate plasma gas, and the carbon atom-containing film 20 of the structure 100 is etched using this plasma gas to form the second opening 21. It is a process.
  • the structure 100 becomes a structure 200 through the etching process.
  • plasma gas As described above, in the etching process, plasma gas is generated such that the analysis result of plasma gas by emission spectrometry satisfies at least one of the requirements (A), (B), and (C) above. .
  • R1 is less than 0.52
  • R2 is less than 0.12
  • R3 is less than 0.48
  • etching of the carbon atom-containing film can be easily improved at a higher etching rate. .
  • the analysis results by the plasma gas emission spectrometry method satisfy at least two of the requirements (A), (B), and (C) above. It is preferable to generate the plasma gas so that the plasma gas satisfies all of the requirements (A), (B), and (C) above, and the plasma gas is generated so that the analysis result of the plasma gas by optical emission spectrometry satisfies all of the requirements (A), (B), and (C) above. It is particularly preferable to do so.
  • R1 is 0.25 or more when the plasma gas is generated so that the analysis result of the plasma gas by optical emission spectrometry satisfies at least one of the requirements (B) and (C) above. It may be 0.35 or more, or 0.45 or more. Further, R1 may be 1 or more, 2 or more, or 3 or more. Moreover, R1 may be 100 or less, may be 50 or less, may be 10 or less, or may be 5 or less.
  • R2 is 0.08 or more when the plasma gas is generated so that the analysis result of the plasma gas by optical emission spectrometry satisfies at least one of the requirements (A) and (C) above. It may be 0.09 or more, or 0.10 or more. Further, R2 may be 0.15 or more, 0.20 or more, or 0.50 or more. Moreover, R2 may be 50 or less, may be 10 or less, may be 5 or less, may be 2 or less, or may be 1 or less.
  • R3 is 0.38 or more when the plasma gas is generated so that the analysis result of the plasma gas by optical emission spectrometry satisfies at least one of the requirements (A) and (B) above. It may be 0.42 or more, or 0.46 or more. Further, R3 may be 1 or more, 2 or more, or 4 or more. Further, R3 may be 100 or less, 50 or less, 10 or less, or 5 or less.
  • the pressure inside the etching chamber 1 during dry etching may be between 0.1 mTorr and 100 mTorr, and may also be between 0.1 mTorr and 100 mTorr. When the pressure inside the etching chamber 1 is between 0.1 mTorr and 100 mTorr, the pressure is low, so it becomes possible to perform excellent shape control on the second opening 21.
  • the antenna power is not particularly limited, but may be 50 to 1000 W, or 100 to 800 W. It may be 200 to 600W. By setting the antenna power to 50 to 1000 W, the carbon atom-containing film 20 can be etched at high speed and anisotropically.
  • ICP inductively coupled plasma
  • bias power When an inductively coupled plasma (ICP) etching device is used as the etching device, the bias power is not particularly limited, but may be 10 W or more, 25 W or more, 50 W or more. It may be. By setting the bias power to 10 W or more, it becomes easier to increase the aspect ratio. Further, the bias power may be 500W or less, 300W or less, or 200W or less. By setting the bias power to 500 W or less, it becomes easier to appropriately control dry etching.
  • ICP inductively coupled plasma
  • the shape of the second opening 21 of the carbon atom-containing film 20 after etching is the same as the shape of the first opening 31. That is, when the first opening 31 is a trench, the second opening 21 is also a trench, and when the first opening 31 is a hole, the second opening 21 is also a hole.
  • the aspect ratio after etching is not particularly limited, but may be 0.1 to 60, 1 to 40, 4 to 40, 5 to 40, It may be between 5 and 25.
  • the etching rate for the carbon atom-containing film 20 can be improved compared to the case where the carbon atom-containing film 20 is etched with a plasma gas of the mixed gas G containing oxygen and carbonyl sulfide.
  • the aspect ratio is 0.1 or more, so that, for example, the carbon atom-containing film 20 is It becomes more effective as a mask.
  • the lower layer include silica (SiO 2 ), silicon nitride (Si 3 N 4 ), amorphous silicon (a:Si), and polycrystalline silicon (poly:Si).
  • the aspect ratio is expressed by the above formula (1). That is, the aspect ratio refers to the ratio (L2/L1) of the depth (L2) of the second opening 21 to the designed width (L1) of the first opening 31 (see FIG. 5).
  • the design width of the first opening 31 refers to the length of the first opening 31 along the interface between the carbon atom-containing film 20 and the mask 30 in the cross section of the mask 30.
  • the cross section of the mask 30 refers to a cross section along a surface perpendicular to the longitudinal direction of the trench and along the thickness direction of the mask 30.
  • the depth of the second opening 21 is the length from the interface between the carbon atom-containing film 20 and the mask 30 to the bottom surface of the second opening 21 in the cross section of the carbon atom-containing film 20. 20 along the thickness direction.
  • Analytical instruments for checking etching performance include SEM (scanning electron microscope), TEM (transmission electron microscope), and spectroscopic ellipsometer, but analytical instruments are devices that can confirm etching speed and occurrence of bowing. If so, it is not particularly limited.
  • the gist of the present disclosure is as follows. [1] In a dry etching method for a carbon atom-containing film in which a carbon atom-containing film is etched with an etching gas, a mixed gas containing at least oxygen and a sulfur compound is applied to a structure including the carbon atom-containing film. A step of introducing a mixed gas into an etching chamber arranged in the etching chamber, and generating a plasma gas by converting the mixed gas into plasma in the etching chamber, and using this plasma gas as the etching gas to remove the carbon atoms of the structure.
  • an etching step of etching the containing film and in the etching step, an analysis result of the plasma gas by an optical emission spectrometry method satisfies at least one of the following requirements (A), (B), and (C).
  • the maximum intensity ratio R1 of the maximum emission intensity in the 770-780 nm wavelength range to the maximum emission intensity in the 250-260 nm wavelength range is 0.52 or more
  • the maximum intensity ratio R2 of the maximum emission intensity in the wavelength range of 770-780 nm to the maximum emission intensity in the wavelength range of 770-780 nm is 0.12 or more.
  • Intensity ratio R3 is 0.48 or more [2]
  • the analysis result of the plasma gas by optical emission spectrometry satisfies at least two of the requirements (A), (B), and (C).
  • the plasma gas is generated such that the analysis result of the plasma gas by optical emission spectrometry satisfies all of the requirements (A), (B), and (C).
  • the structure further includes a mask having a first opening, and in the mixed gas, the content of the sulfur compound in the total volume of the sulfur compound and the oxygen is 20 to 40% by volume.
  • Example 1 First, a wafer with a diameter of 150 mm was placed on a processing stage in an etching chamber of an etching apparatus. At this time, an inductively coupled plasma (ICP) etching apparatus (product name "NLD6000", manufactured by ULVAC) was used as the etching apparatus.
  • ICP inductively coupled plasma
  • This etching apparatus was equipped with a plasma emission spectrometer capable of analyzing the emission of plasma gas.
  • a plasma gas emission spectrometer uses a lens to collect light that passes through a window installed at a location where plasma emission can be observed, guides it to an optical fiber, and detects it with a spectrometer and detector that can detect light in the ultraviolet and visible regions. This is a device that analyzes plasma emission.
  • the vacuum pressure inside the etching chamber was set to 7.5 mTorr, the antenna power was set to 200 W, and the bias power was set to 50 W, and a mixed gas was introduced into the etching chamber at a flow rate of 50 mL/min to generate plasma gas as an etching gas.
  • the mixed gas is composed of a mixed gas of oxygen and carbonyl sulfide (COS), the etching time is 5 minutes, and the content of COS in the total volume of oxygen and COS is 30% by volume (oxygen content was 70% by volume).
  • COS carbonyl sulfide
  • Table 1 shows the analysis results of plasma gas by emission spectrometry.
  • the maximum emission intensity in the wavelength range of 770-780 nm is S 770-780
  • the maximum emission intensity in the wavelength range of 250-260 nm is S 250-260
  • the maximum emission intensity in the wavelength range of 280-350 nm is
  • a laminate consisting of a Si substrate as a support and an amorphous carbon film (thickness: about 700 nm) as a carbon atom-containing film was prepared. Then, on the amorphous carbon film of this laminate, a mask pattern as a first opening is formed by lithography, and a silicon dioxide film having a silicon film as an underlying layer (total thickness of silicon film and silicon dioxide film: approx. 50 nm) was placed as a mask, and a 20 mm square structure was prepared (see FIG. 2).
  • the mask pattern of the mask was a trench pattern
  • the trench design width (design width of the first opening) L1 was 80 nm
  • the mask design width (width between trench patterns) W was 80 nm (see Figure 2).
  • the vacuum pressure in the etching chamber was set to 7.5 mTorr, the antenna power to 200 W, and the bias power to 50 W, and a mixed gas was introduced into the etching chamber at a flow rate of 50 mL/min to generate plasma gas as an etching gas.
  • the mixed gas is composed of a mixed gas of oxygen and carbonyl sulfide (COS), the etching time is 5 minutes, and the content of COS in the total volume of oxygen and COS is 30% by volume (the content of oxygen is 70% by volume).
  • COS carbonyl sulfide
  • plasma gas was generated as an etching gas so that the same analysis results as those obtained by emission spectroscopic analysis of plasma gas could be obtained. Then, dry etching of the amorphous carbon film was performed using this plasma gas to form a trench pattern as a second opening in the amorphous carbon film. In this way, dry etching of the carbon atom-containing film was completed.
  • R1, R2, and R3 are as shown in Table 1, and a silicon dioxide film (silicon film) having a silicon film as a lower layer, on which a mask pattern as a first opening is formed by lithography on the amorphous carbon film of the laminate. Dry etching of amorphous carbon was carried out in the same manner as in Example 1 except that the total thickness of the silicon dioxide film (total thickness: about 50 nm) was not used as a mask.
  • Example 3 On the amorphous carbon film of the laminate, a silicon dioxide film (total thickness of the silicon film and silicon dioxide film: approximately 50 nm) having a silicon film as a lower layer, in which a mask pattern as a first opening is formed by lithography, is formed. Dry etching of amorphous carbon was carried out in the same manner as in Example 1 except that no mask was used.
  • a mixed gas having the composition shown in Table 1 was used as the mixed gas during the plasma gas emission spectroscopic analysis and the dry etching of the amorphous carbon film, and R1, R2, and R3 according to the plasma gas emission spectroscopic analysis were as shown in Table 1,
  • Examples 5 to 7 A mixed gas having the composition shown in Table 2 was used as a mixed gas during the plasma gas emission spectroscopic analysis and the dry etching of the amorphous carbon film, and R1, R2, and R3 according to the plasma gas emission spectroscopic analysis were as shown in Table 2, A silicon dioxide film (total thickness of the silicon film and silicon dioxide film: about 50 nm) having a silicon film as a lower layer, on which a mask pattern as a first opening is formed by lithography, is formed on the amorphous carbon film of the stack. Dry etching of amorphous carbon was carried out in the same manner as in Example 1 except that it was not disposed as a mask.
  • a mixed gas having the composition shown in Table 2 was used as a mixed gas during the plasma gas emission spectroscopic analysis and the dry etching of the amorphous carbon film, and R1, R2, and R3 according to the plasma gas emission spectroscopic analysis were as shown in Table 2,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

炭素原子含有膜のドライエッチング方法は、酸素及び硫黄化合物を含む混合ガスを、炭素原子含有膜を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、混合ガスをエッチングチャンバー内でプラズマ化し、プラズマガスをエッチングガスとして構造体の炭素原子含有膜をエッチングするエッチング工程とを含む。エッチング工程においては、プラズマガスの発光分光分析法による分析結果が下記(A)、(B)及び(C)の要件のうち少なくとも1つの要件を満たすようにプラズマガスを発生させる。 (A)最大強度比R1が0.52以上であること (B)最大強度比R2が0.12以上であること (C)最大強度比R3が0.48以上であること

Description

炭素原子含有膜のドライエッチング方法
 本開示は、炭素原子含有膜のドライエッチング方法に関する。
 半導体集積回路においては、素子の微細化および積層化が進んでおり、半導体集積回路の製造では、炭素を含む被エッチング膜をパターニングするためにフォトレジストなどのマスクを用いて、被エッチング膜に、開口が小さくアスペクト比の大きい深いホールやトレンチを高精度かつ高速に加工する技術が求められている。
 そのための技術として、例えば特許文献1には、酸素と炭素・硫黄末端リガンドを含むガスとを含むエッチャントガス混合物のプラズマで炭素質層をエッチングする方法が開示されている。
特開2009-200459号公報
 しかし、上記特許文献1に記載の方法は、以下の課題を有していた。
 すなわち、上記方法では、大きいエッチング速度でのエッチング条件を設定するためにエッチングの実施及び電子顕微鏡(SEM)での観察を繰り返すことが必要となり、大きいエッチング速度でのエッチングを簡便に行う点で改善の余地があった。
 本開示は、上記課題に鑑みてなされたものであり、炭素原子含有膜に対するエッチングを、大きいエッチング速度で簡便に行うことができる炭素原子含有膜のドライエッチング方法を提供することを目的とする。
 本開示の発明者らは、上記課題を解決するため鋭意検討した。まず、エッチングガスとしてのプラズマガスにおいて、酸素原子に由来するイオン又はラジカルがエッチングを速める働きをするのに対して、S原子及びC原子に由来するイオン又はラジカルがエッチングを遅くするように働く、すなわちS原子及びC原子を堆積させるように働くものと本開示の発明者らは考えた。したがって、炭素原子含有膜に対するエッチング速度を大きくするためには、S原子及びC原子に由来するイオン又はラジカルに対する酸素原子に由来するイオン又はラジカルの量をある一定値以上にすればよいのではないかと考えた。そこで、本開示の発明者らは、まず酸素と、硫化カルボニル又は二酸化硫黄との混合ガスのプラズマガスについて発光分光分析を行った時の分析結果(発光分光分析(OES:Optical Emission Spectrometer)チャート)に着目した(図1参照)。図1において、上側の発光分光分析チャートは、混合ガス中のSOの濃度が30体積%であるときのチャートであり、下側の発光分光分析チャートは、混合ガス中のCOSの濃度が30体積%であるときのチャートである。これらの発光分光分析チャートでは、波長257nm付近に鋭い形状の発光ピークと、300nm付近及び500nm付近を中心に幅の広い形状の二つの発光ピークが観測され、さらに、777nm付近には酸素原子に由来する発光ピークが観測される。その波長から257nm付近の発光ピークはCSとS、300nm付近の発光ピークはSO、500nm付近のピークはCOとSに対応するものと考えられた。
また、これらの発光ピーク強度の絶対値は、観測状況に依存するものであるが、発光ピーク強度同士間の強度比は、観測条件に依存しにくいこともわかった。
 そして、本開示の発明者らが更に鋭意研究を重ねた結果、777nmの酸素原子に由来する発光ピーク強度が、257nm、300nm、500nmの発光ピーク強度に対してそれぞれ一定値以上である場合には、エッチング速度が大きくなり、小さい場合は小さくなることが判明した。すなわち、エッチング速度が大きくなる条件を、サンプルウエハーを消費して走査電子顕微鏡(SEM)による観察等を行うことなくプラズマガスの発光分光分析の結果を見るだけで簡便に見出せることが判明した。
 また、各発光ピークは幅を有しているため、257nm付近の発光ピークの位置は250-260nmの波長範囲で特定し、300nm付近の発光ピークの位置は280-350nmの波長範囲で特定し、500nm付近の発光ピークの位置は470-600nmの波長範囲で特定し、777nm付近の発光ピークは770-780nmの波長範囲で特定することが適当であると考えられた。
 こうして本開示の発明者らは、以下の本開示により上記課題を解決し得ることを見出したものである。
 すなわち、本開示の一側面は、炭素原子を含有する炭素原子含有膜を、エッチングガスによりエッチングする炭素原子含有膜のドライエッチング方法において、少なくとも酸素及び硫黄化合物を含む混合ガスを、上記炭素原子含有膜を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、上記混合ガスを上記エッチングチャンバー内でプラズマ化してプラズマガスを発生させ、このプラズマガスを上記エッチングガスとして用いて、上記構造体の上記炭素原子含有膜をエッチングするエッチング工程とを含み、上記エッチング工程において、上記プラズマガスの発光分光分析法による分析結果が下記(A)、(B)及び(C)の要件のうち少なくとも1つの要件を満たすように上記プラズマガスを発生させる、炭素原子含有膜のドライエッチング方法を提供する。
(A)250-260nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R1が0.52以上であること
(B)280-350nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R2が0.12以上であること
(C)470-600nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R3が0.48以上であること
 上記炭素原子含有膜のドライエッチング方法によれば、炭素原子含有膜に対するエッチングを、大きいエッチング速度で簡便に行うことができる。
 上記エッチング工程において、上記プラズマガスの発光分光分析法による分析結果が上記(A)、(B)及び(C)の要件のうち少なくとも2つの要件を満たすように上記プラズマガスを発生させてよい。
 上記エッチング工程において、上記プラズマガスの発光分光分析法による分析結果が上記(A)、(B)及び(C)の要件のすべてを満たすように上記プラズマガスを発生させてよい。
 上記炭素原子含有膜の厚さは、0.1μm以下であってよい。
 上記炭素原子含有膜の厚さは、10.0μm以下であってよい。
 上記構造体が、第1開口部を有するマスクをさらに備え、上記混合ガスにおいて、上記硫黄化合物及び上記酸素の合計体積中の上記硫黄化合物の含有率が20~40体積%であってよい。
 上記マスクの厚さは、上記炭素原子含有膜の厚さの0.01倍以上であってよい。
 上記マスクの厚さは、上記炭素原子含有膜の厚さの0.5倍以下であってよい。
 上記硫黄化合物として二酸化硫黄または硫化カルボニルを用いてよい。
 上記硫黄化合物として二酸化硫黄を用いてもよい。
 本開示によれば、炭素原子含有膜に対するエッチングを、大きいエッチング速度で簡便に行うことができる炭素原子含有膜のドライエッチング方法が提供される。
酸素と、硫化カルボニル又は二酸化硫黄との混合ガス(硫化カルボニル又は二酸化硫黄の濃度:30体積%)のプラズマガスについて発光分光分析を行った時の発光分光分析チャートを示す。 本開示の炭素原子含有膜のドライエッチング方法のエッチング工程前の構造体の一例を示す断面図である。 図2の構造体が配置されたエッチングチャンバーを示す概略図である。 本開示の炭素原子含有膜のドライエッチング方法のエッチング工程後の構造体の一例を示す断面図である。 図4のマスク及び炭素原子含有膜の部分拡大図である。 実施例1~7及び比較例1~6に係る最大強度比R1とエッチング速度(ER)との関係を示すグラフである。 実施例1~7及び比較例1~6に係る最大強度比R2とエッチング速度(ER)との関係を示すグラフである。 実施例1~7及び比較例1~6に係る最大強度比R3とエッチング速度(ER)との関係を示すグラフである。
 以下、本開示の炭素原子含有膜のドライエッチング方法の実施形態について図2~図5を参照しながら詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。
 図2は、本開示の炭素原子含有膜のドライエッチング方法のエッチング工程前の構造体の一例を示す断面図であり、図3は、図2の構造体が配置されたエッチングチャンバーを示す概略図、図4は、本開示の炭素原子含有膜のドライエッチング方法のエッチング工程後の構造体の一例を示す断面図、図5は、図4のマスク及び炭素原子含有膜の部分拡大図である。
 本開示の炭素原子含有膜のドライエッチング方法は、炭素原子を含有する炭素原子含有膜20を、エッチングガスによりエッチングする方法であり、少なくとも酸素及び硫黄化合物を含む混合ガスGを、炭素原子含有膜20、及び、第1開口部31を有するマスク30を備えた構造体100が配置されたエッチングチャンバー1に導入する混合ガス導入工程と、混合ガスGをエッチングチャンバー1内でプラズマ化してプラズマガスを発生させ、このプラズマガスを用いて、構造体100の炭素原子含有膜をエッチングして第2開口部21を形成するエッチング工程とを含む(図2~図4参照)。
 エッチング工程においては、プラズマガスの発光分光分析法による分析結果が下記(A)、(B)及び(C)の要件のうち少なくとも1つの要件を満たすようにプラズマガスを発生させる。
(A)250-260nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R1が0.52以上であること
(B)280-350nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R2が0.12以上であること
(C)470-600nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R3が0.48以上であること
 上記炭素原子含有膜のドライエッチング方法によれば、炭素原子含有膜に対するエッチングを、大きいエッチング速度で簡便に行うことができる。
 以下、上記混合ガス導入工程及びエッチング工程について詳細に説明する。
<混合ガス導入工程>
 構造体100は、炭素原子を含有する炭素原子含有膜20、および、第1開口部31を有するマスク30を備える。構造体100は、図2に示すように、炭素原子含有膜20を支持する支持体10をさらに備えてもよい。この場合、炭素原子含有膜20は、マスク30と支持体10との間に配置される。また、構造体100は、支持体10と炭素原子含有膜20との間に中間膜(図示せず)をさらに備えてもよい。なお、構造体100は、マスク30を必ずしも有していなくてもよい。
(支持体)
 支持体10は、炭素原子含有膜20を支持する部材であれば特に制限されるものではないが、支持体10を構成する材料としては、例えばシリコン、ゲルマニウムなどが挙げられる。中でも、シリコンが好ましい。この場合、バンドギャップが広いため高圧下における耐久性がより向上する。
 支持体10の厚さは、特に制限されるものではないが、254μm以上であってよく、520μm以上であってもよい。支持体10の厚さが254μm以上であると、機械的強度がより向上する。また、支持体10の厚さは、795μm以下であってよく、725μm以下であってもよい。支持体10の厚さが795μm以下であると、構造体100を所定のウエハーサイズにカットし易くなる。
(中間膜)
 中間膜としては、シリカ(SiO)、窒化ケイ素(Si)、アモルファスシリコン(a:Si)や多結晶シリコン(poly:Si)などが挙げられる。
(炭素原子含有膜)
 炭素原子含有膜20は、炭素原子を含有する膜であれば特に制限されるものではない。炭素原子含有膜20は、アモルファスカーボン等の無機系カーボン膜でよく、レジスト膜やポリイミド系膜等の有機高分子膜であってもよい。炭素原子含有膜20がアモルファスカーボンであると、炭素原子含有膜20にパターンを転写する際にエッチング選択比(すなわちマスクのエッチング速度Vmに対する炭素原子含有膜20のエッチング速度Vcの比)を大きくすることができる。アモルファスカーボンは、例えばプラズマCVD法又はカーボンを含む塗液を塗布して乾燥させる方法により形成することができる。
 炭素原子含有膜20の厚さは、特に制限されるものではないが、0.1μm以上であってよく、0.5μm以上であってもよい。炭素原子含有膜20の厚さが0.1μm以上であると、炭素原子含有膜20の下層に絶縁膜が被エッチング層として積層されていた場合、炭素原子含有膜20が被エッチング層のマスクとしての機能を示すことが可能となる。また、炭素原子含有膜20の厚さは、10.0μm以下であってよく、5.0μm以下であってもよい。炭素原子含有膜20の厚さが10.0μm以下であると、エッチング後の炭素原子含有膜20が倒れ難くなる。
(マスク)
 マスク30は、エッチングガスを通過させて炭素原子含有膜20に導く第1開口部31を有する。第1開口部31は、トレンチでよく、ホールでもよい。マスク30は、炭素原子含有膜20よりもエッチングガスによるエッチング速度が低いものであることが好ましく、このようなマスク30は、酸素含有材料を含むことが好ましい。この場合、エッチングガスによるエッチング速度が低くなる。酸素含有材料としては、二酸化珪素、酸窒化珪素などが挙げられる。中でも、経済性の観点から、二酸化珪素が好ましい。
 マスク30の厚さは、特に制限されるものではないが、炭素原子含有膜20の厚さの0.01倍以上であってよく、0.05倍以上であってもよい。マスク30の厚さが炭素原子含有膜20の厚さの0.01倍以上であると、炭素原子含有膜20の異方性エッチングが可能となる。また、マスク30の厚さは、炭素原子含有膜20の厚さの0.5倍以下であってよく、0.2倍以下であってもよい。マスク30の厚さが炭素原子含有膜20の厚さの0.5倍以下であると、エッチング後において炭素原子含有膜20が倒れ難くなる。
(エッチング装置)
 エッチング装置は、エッチングチャンバー1を備える。
 エッチングチャンバー1は、酸素及び硫黄化合物を含む混合ガスGをプラズマ化して得られるプラズマガスにより炭素原子含有膜20のエッチングが行われる容器である。
 エッチング装置としては、マイクロ波ECRプラズマ方式のエッチング装置、容量結合型プラズマ方式(CCP)のエッチング装置、誘導結合型プラズマ方式(ICP)のエッチング装置などが挙げられるが、エッチング装置はこれらに限定されるものではない。
 エッチング装置には、エッチングチャンバー1で発生させる混合ガスGのプラズマガスの発光を分析することが可能なプラズマガス発光分光分析装置が設置される。
 プラズマガス発光分光分析装置は、例えばエッチングチャンバー1においてプラズマの発光(紫外線及び可視光線の波長領域の光)が観測できる箇所に設けられる窓を通過した光を集光するレンズと、レンズで集光された光を導光する光ファイバーと、光ファイバーによって導光された光を分光する分光器と、分光された光を検出する検出器とを備える。
(混合ガス)
 混合ガスGは、酸素及び硫黄化合物を含む。硫黄化合物としては、例えば硫化カルボニル、二酸化硫黄、硫化水素、二硫化炭素及びメチルメルカプタンが挙げられる。これらはそれぞれ単独で又は2種以上を混合して用いることができる。中でも、硫黄化合物としては、二酸化硫黄が好ましい。この場合、広い濃度範囲で高いエッチング速度を維持できる。すなわち、高いエッチング速度を維持するために、混合ガスG中の硫黄化合物の濃度調整を行うことが容易となる。
 なお、上記混合ガスGは、酸素及び硫黄化合物に加えて、470-600nmの波長範囲(例えば500nm付近)におけるCO等に由来する発光ピークの強度や250-260nmの波長範囲(例えば257nm付近)に位置するCS等に由来する発光ピーク強度を調整するために、必要に応じて、炭素を含むガスをさらに含んでもよい。
 酸素及び硫黄化合物の合計体積中の硫黄化合物の含有率は0体積%より大きければ特に制限されるものではないが、20~40体積%であってよく、25~35体積%であってもよい。
 酸素及び硫黄化合物の合計体積中の硫黄化合物の含有率が20~40体積%の範囲内にあると、炭素原子含有膜20に対するエッチング速度をより効果的に向上させることができる。
 エッチングチャンバー1に導入する際の上記混合ガスGの流量は、0.1mL/min以上であってよく、1mL/min以上であってもよく、10mL/min以上であってもよい。混合ガスGの流量が1mL/min以上であると、炭素原子含有膜20のエッチングに必要なイオンやラジカルを効率的に生成することが可能となる。
 エッチングチャンバー1に導入する際の上記混合ガスGの流量は、10000mL/min以下であってよく、1000mL/min以下であってもよく、100mL/min以下であってもよい。混合ガスGの流量が10000mL/min以下であると、エッチング装置の真空度を低圧で保持し易くなる。
<エッチング工程>
 エッチング工程は、混合ガスGをエッチングチャンバー1内でプラズマ化してプラズマガスを発生させ、このプラズマガスを用いて、構造体100の炭素原子含有膜20をエッチングして第2開口部21を形成する工程である。エッチング工程により構造体100は構造体200となる。
 (プラズマガス)
 上述したように、エッチング工程においては、プラズマガスの発光分光分析法による分析結果が上記(A)、(B)及び(C)の要件のうち少なくとも1つの要件を満たすようにプラズマガスを発生させる。
 この場合、R1が0.52未満、R2が0.12未満又はR3が0.48未満である場合に比べて、炭素原子含有膜に対するエッチングを、より大きいエッチング速度で簡便に向上させることができる。
 ここで、炭素原子含有膜に対するエッチング速度をより向上させる観点からは、プラズマガスの発光分光分析法による分析結果が上記(A)、(B)及び(C)の要件のうち少なくとも2つの要件を満たすようにプラズマガスを発生させることが好ましく、プラズマガスの発光分光分析法による分析結果が上記(A)、(B)及び(C)の要件のうちすべての要件を満たすようにプラズマガスを発生させることが特に好ましい。
 R1は、プラズマガスの発光分光分析法による分析結果が上記(B)及び(C)の要件のうち少なくとも1つの要件を満たすようにプラズマガスを発生させる場合には、0.25以上であってもよく、0.35以上であってもよく、0.45以上であってもよい。また、R1は、1以上であってもよく、2以上であってもよく、3以上であってもよい。また、R1は、100以下であってもよく、50以下であってもよく、10以下であってもよく、5以下であってもよい。
 R2は、プラズマガスの発光分光分析法による分析結果が上記(A)及び(C)の要件のうち少なくとも1つの要件を満たすようにプラズマガスを発生させる場合には、0.08以上であってもよく、0.09以上であってもよく、0.10以上であってもよい。また、R2は、0.15以上であってもよく、0.20以上であってもよく、0.50以上であってもよい。また、R2は、50以下であってもよく、10以下であってもよく、5以下であってもよく、2以下であってもよく、1以下であってもよい。
 R3は、プラズマガスの発光分光分析法による分析結果が上記(A)及び(B)の要件のうち少なくとも1つの要件を満たすようにプラズマガスを発生させる場合には、0.38以上であってもよく、0.42以上であってもよく、0.46以上であってもよい。また、R3は、1以上であってもよく、2以上であってもよく、4以上であってもよい。また、R3は、100以下であってもよく、50以下であってもよく、10以下であってもよく、5以下であってもよい。
(エッチングチャンバー内の圧力)
 ドライエッチングを行う際のエッチングチャンバー1内の圧力は、0.1mTorr~100Torrであってよく、0.1mTorr~100mTorrであってもよい。エッチングチャンバー1内の圧力が0.1mTorr~100mTorrであると、圧力が低いため、第2開口部21に対し優れた形状制御を行うことが可能となる。
(アンテナ電力)
 エッチング装置として、誘導結合型プラズマ方式(ICP)のエッチング装置が用いられる場合、アンテナ電力は、特に制限されるものではないが、50~1000Wであってよく、100~800Wであってもよく、200~600Wであってもよい。アンテナ電力を50~1000Wとすることで、炭素原子含有膜20を高速かつ異方的にエッチングできる。
(バイアス電力)
 エッチング装置として、誘導結合型プラズマ方式(ICP)のエッチング装置が用いられる場合、バイアス電力は、特に制限されるものではないが、10W以上であってよく、25W以上であってもよく、50W以上であってもよい。バイアス電力を10W以上とすることで、アスペクト比を大きくしやすくなる。
 また、バイアス電力は、500W以下であってよく、300W以下であってもよく、200W以下であってもよい。バイアス電力を500W以下とすることで、ドライエッチングを適切に制御し易くなる。
(第2開口部)
 エッチング後の炭素原子含有膜20の第2開口部21の形状は、第1開口部31の形状と同一である。すなわち、第1開口部31がトレンチである場合には、第2開口部21もトレンチであり、第1開口部31がホールである場合には第2開口部21もホールである。
 エッチング後のアスペクト比は特に限定されるものではないが、0.1~60でよく、1~40であってもよく、4~40であってもよく、5~40であってもよく、5~25であってもよい。
 アスペクト比が60以下であることで、酸素及び硫化カルボニルを含む混合ガスGのプラズマガスで炭素原子含有膜20をエッチングする場合に比べて、炭素原子含有膜20に対するエッチング速度を向上させることができる。なお、炭素原子含有膜20に対してマスク30と反対側に層(下層)が設けられている場合、アスペクト比が0.1以上であることで、例えば炭素原子含有膜20が下層のエッチング時にマスクとして効果を示し易くなる。下層としては、シリカ(SiO)、窒化ケイ素(Si)、アモルファスシリコン(a:Si)や多結晶シリコン(poly:Si)などが挙げられる。
 ここで、アスペクト比とは、上記式(1)で表される。すなわち、アスペクト比とは、第1開口部31の設計幅(L1)に対する第2開口部21の深さ(L2)の比(L2/L1)をいう(図5参照)。第1開口部31の設計幅とは、マスク30の断面における炭素原子含有膜20とマスク30との界面に沿った第1開口部31の長さをいう。ここで、マスク30の第1開口部31がトレンチパターンである場合には、マスク30の断面は、トレンチの長手方向に直交しかつマスク30の厚さ方向に沿った面に沿った断面をいう。第2開口部21の深さとは、炭素原子含有膜20の断面において、炭素原子含有膜20とマスク30との界面から第2開口部21の底面までの長さであって、炭素原子含有膜20の厚さ方向に沿った長さをいう。
 エッチング性能を確認する分析機器としては、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)及び分光エリプソメーターが挙げられるが、分析機器は、エッチング速度やボーイングの発生状況を確認できる装置であれば特に限定されるものではない。
 なお、本開示の要旨は以下のとおりである。
[1]炭素原子を含有する炭素原子含有膜を、エッチングガスによりエッチングする炭素原子含有膜のドライエッチング方法において、少なくとも酸素及び硫黄化合物を含む混合ガスを、前記炭素原子含有膜を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、前記混合ガスを前記エッチングチャンバー内でプラズマ化してプラズマガスを発生させ、このプラズマガスを前記エッチングガスとして用いて、前記構造体の前記炭素原子含有膜をエッチングするエッチング工程とを含み、前記エッチング工程において、前記プラズマガスの発光分光分析法による分析結果が下記(A)、(B)及び(C)の要件のうち少なくとも1つの要件を満たすように前記プラズマガスを発生させる、炭素原子含有膜のドライエッチング方法。
(A)250-260nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R1が0.52以上であること
(B)280-350nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R2が0.12以上であること
(C)470-600nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R3が0.48以上であること
[2]前記エッチング工程において、前記プラズマガスの発光分光分析法による分析結果が前記(A)、(B)及び(C)の要件のうち少なくとも2つの要件を満たすように前記プラズマガスを発生させる、[1]に記載の炭素原子含有膜のドライエッチング方法。
[3]前記エッチング工程において、前記プラズマガスの発光分光分析法による分析結果が前記(A)、(B)及び(C)の要件のすべてを満たすように前記プラズマガスを発生させる、[2]に記載の炭素原子含有膜のドライエッチング方法。
[4]前記炭素原子含有膜の厚さが、0.1μm以下である、[1]~[3]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[5]前記炭素原子含有膜の厚さが、10.0μm以下である、[1]~[4]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[6]前記構造体が、第1開口部を有するマスクをさらに備え、前記混合ガスにおいて、前記硫黄化合物及び前記酸素の合計体積中の前記硫黄化合物の含有率が20~40体積%である、[1]~[5]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[7]前記マスクの厚さが、前記炭素原子含有膜の厚さの0.01倍以上である、[6]に記載の炭素原子含有膜のドライエッチング方法。
[8]前記マスクの厚さが、前記炭素原子含有膜の厚さの0.5倍以下である、[6]に記載の炭素原子含有膜のドライエッチング方法。
[9]前記硫黄化合物として二酸化硫黄または硫化カルボニルを用いる、[1]~[8]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[10]前記硫黄化合物として二酸化硫黄を用いる、[9]に記載の炭素原子含有膜のドライエッチング方法。
 以下、実施例および比較例を挙げて本開示について更に具体的に説明する。ただし、本開示は以下の実施例に限定されるものではない。
 (実施例1)
 まず、直径150mmのウエハーを、エッチング装置のエッチングチャンバー内にある処理ステージ上に設置した。このとき、エッチング装置としては、誘導結合型プラズマ方式(ICP)のエッチング装置(製品名「NLD6000」、アルバック社製)を用いた。このエッチング装置には、プラズマガスの発光を分析できるプラズマ発光分光分析装置を設置した。プラズマガス発光分光分析装置は、プラズマの発光が観測できる箇所に設けられる窓を通過した光をレンズで集光して光ファイバーに導き、紫外可視領域の光を検出できる分光器及び検出器で検出して、プラズマ発光を分析する装置である。
 そして、エッチングチャンバー内の真空圧を7.5mTorr、アンテナ電力を200W、バイアス電力を50Wに設定し、エッチングチャンバー内に混合ガスを50mL/minの流量で導入してプラズマガスをエッチングガスとして発生させた。
 このとき、混合ガスは、酸素及び硫化カルボニル(COS)の混合ガスで構成され、エッチング時間は5分であり、酸素及びCOSの合計体積中のCOSの含有率は30体積%(酸素の含有率は70体積%)とした。
 また、このとき、プラズマ発光分光分析装置によりプラズマガスの発光分光分析を行った。プラズマガスの発光分光分析による分析結果を表1に示す。表1に示すように、770-780nmの波長範囲における最大発光強度をS770-780、250-260nmの波長範囲における最大発光強度をS250-260、280-350nmの波長範囲における最大発光強度をS280-350、470-600nmの波長範囲における最大発光強度をS470-600としたとき、R1(=S770-780/S250-260)は0.52、R2(=S770-780/S280-350)は0.13、R3(=S770-780/S470-600)は0.48であった。
 次に、支持体としてのSi基板、及び、炭素原子含有膜としてのアモルファスカーボン膜(厚さ:約700nm)からなる積層体を用意した。そして、この積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置し、20mm角の構造体を用意した(図2参照)。このとき、マスクのマスクパターンはトレンチパターンであり、トレンチ設計幅(第1開口部の設計幅)L1は80nm、マスク設計幅(トレンチパターン同士間の幅)Wは80nmとした(図2参照)。そして、直径150mmのウエハーに、上記のようにして得られた構造体を貼り付けて、エッチング装置のエッチングチャンバー内にある処理ステージ上に設置した。このとき、エッチング装置としては、誘導結合型プラズマ方式(ICP)のエッチング装置(製品名「NLD6000」、アルバック社製)を用いた。
 そして、以下のようにしてアモルファスカーボン膜のドライエッチングを実施した。
 まずエッチングチャンバー内の真空圧を7.5mTorr、アンテナ電力を200W、バイアス電力を50Wに設定し、エッチングチャンバー内に混合ガスを50mL/minの流量で導入してプラズマガスをエッチングガスとして発生させた。このとき、混合ガスは、酸素及び硫化カルボニル(COS)の混合ガスで構成し、エッチング時間は5分とし、酸素及びCOSの合計体積中のCOSの含有率は30体積%(酸素の含有率は70体積%)とした。
 すなわち、プラズマガスの発光分光分析による分析結果と同じ分析結果が得られるようにプラズマガスをエッチングガスとして発生させた。
 そして、このプラズマガスによりアモルファスカーボン膜のドライエッチングを行い、アモルファスカーボン膜に第2開口部としてのトレンチパターンを形成した。こうして炭素原子含有膜のドライエッチングが完了した。
 (実施例2)
 プラズマガスの発光分光分析時及びアモルファスカーボン膜のドライエッチング時に混合ガスとして、表1に示す組成の混合ガス(COS=10体積%、酸素=90体積%)を用い、プラズマガスの発光分光分析によるR1、R2及びR3を表1に示すとおりとし、積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置しなかったこと以外は実施例1と同様にしてアモルファスカーボンのドライエッチングを実施した。
 (実施例3)
 積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置しなかったこと以外は実施例1と同様にしてアモルファスカーボンのドライエッチングを実施した。
 (比較例1~3)
 プラズマガスの発光分光分析時及びアモルファスカーボン膜のドライエッチング時に混合ガスとして、表1に示す組成の混合ガスを用い、プラズマガスの発光分光分析によるR1、R2及びR3を表1に示すとおりとし、積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置しなかったこと以外は実施例1と同様にしてアモルファスカーボンのドライエッチングを実施した。
 (実施例4)
 プラズマガスの発光分光分析時及びアモルファスカーボン膜のドライエッチング時に混合ガスとして、表2に示す組成の混合ガス(SO=30体積%、酸素=70体積%)を用い、プラズマガスの発光分光分析によるR1、R2及びR3を表2に示すとおりとし、アモルファスカーボン膜に対し、表2に示すエッチング時間でパターンを形成したこと以外は実施例1と同様にしてアモルファスカーボンのドライエッチングを実施した。
 (比較例4)
 プラズマガスの発光分光分析時及びアモルファスカーボン膜のドライエッチング時に混合ガスとして、表2に示す組成の混合ガス(SO=100体積%、酸素=0体積%)を用い、プラズマガスの発光分光分析によるR1、R2及びR3を表2に示すとおりとし、アモルファスカーボン膜に対し、表2に示すエッチング時間でパターンを形成したこと以外は実施例1と同様にしてアモルファスカーボンのドライエッチングを実施した。
 (実施例5~7)
 プラズマガスの発光分光分析時及びアモルファスカーボン膜のドライエッチング時に混合ガスとして、表2に示す組成の混合ガスを用い、プラズマガスの発光分光分析によるR1、R2及びR3を表2に示すとおりとし、積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置しなかったこと以外は実施例1と同様にしてアモルファスカーボンのドライエッチングを実施した。
 (比較例5~6)
 プラズマガスの発光分光分析時及びアモルファスカーボン膜のドライエッチング時に混合ガスとして、表2に示す組成の混合ガスを用い、プラズマガスの発光分光分析によるR1、R2及びR3を表2に示すとおりとし、積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置しなかったこと以外は実施例1と同様にしてアモルファスカーボンのドライエッチングを実施した。
 実施例1,4及び比較例4について、エッチング完了後のアモルファスカーボン膜の断面をSEM(製品名「SU8230」、日立ハイテク社製)で観察し、アモルファスカーボン膜に形成されたトレンチパターンのエッチング深さを求めた。また、エッチング時間とエッチング深さとから、エッチング速度を求めた。結果を表1及び表2に示す。また、パターン最大幅は、76nm、86nm、84nmであり、形状異常のボーイングが起きていないことが確認できた。
 また、実施例2、3、5~7及び比較例1~3、5、6について、エッチング前後のアモルファスカーボン膜の膜厚を分光エリプソメーター(製品名「M-2000U」、J.A.Woollam製)で測定し、エッチング速度を求めた。結果を表1及び表2に示す。
 さらに、最大強度比R1とエッチング速度(ER)との関係、最大強度比R2とエッチング速度(ER)との関係、最大強度比R3とエッチング速度(ER)との関係をそれぞれ図6~図8に示す。
 表1~表2及び図6~図8に示す結果より、炭素原子含有膜としてのアモルファスカーボン膜におけるパターンの有無にかかわらず、実施例1~7は、比較例1~6に比べて、R1、R2、R3を調節するだけで大きいエッチング速度が得られることが分かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 1…エッチングチャンバー、10…支持体、20…炭素原子含有膜、21…第2開口部、30…マスク、31…第1開口部、100…構造体、200…構造体、L1…第1開口部の設計幅、L2…第2開口部の深さ、W…マスク設計幅、G…混合ガス。

Claims (10)

  1.  炭素原子を含有する炭素原子含有膜を、エッチングガスによりエッチングする炭素原子含有膜のドライエッチング方法において、
     少なくとも酸素及び硫黄化合物を含む混合ガスを、前記炭素原子含有膜を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、
     前記混合ガスを前記エッチングチャンバー内でプラズマ化してプラズマガスを発生させ、このプラズマガスを前記エッチングガスとして用いて、前記構造体の前記炭素原子含有膜をエッチングするエッチング工程とを含み、
     前記エッチング工程において、前記プラズマガスの発光分光分析法による分析結果が下記(A)、(B)及び(C)の要件のうち少なくとも1つの要件を満たすように前記プラズマガスを発生させる、炭素原子含有膜のドライエッチング方法。
    (A)250-260nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R1が0.52以上であること
    (B)280-350nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R2が0.12以上であること
    (C)470-600nmの波長範囲における最大発光強度に対する770-780nmの波長範囲における最大発光強度の最大強度比R3が0.48以上であること
  2.  前記エッチング工程において、前記プラズマガスの発光分光分析法による分析結果が前記(A)、(B)及び(C)の要件のうち少なくとも2つの要件を満たすように前記プラズマガスを発生させる、請求項1に記載の炭素原子含有膜のドライエッチング方法。
  3.  前記エッチング工程において、前記プラズマガスの発光分光分析法による分析結果が前記(A)、(B)及び(C)の要件のすべてを満たすように前記プラズマガスを発生させる、請求項2に記載の炭素原子含有膜のドライエッチング方法。
  4.  前記炭素原子含有膜の厚さが、0.1μm以下である、請求項1に記載の炭素原子含有膜のドライエッチング方法。
  5.  前記炭素原子含有膜の厚さが、10.0μm以下である、請求項1に記載の炭素原子含有膜のドライエッチング方法。
  6.  前記構造体が、第1開口部を有するマスクをさらに備え、
     前記混合ガスにおいて、前記硫黄化合物及び前記酸素の合計体積中の前記硫黄化合物の含有率が20~40体積%である、請求項1に記載の炭素原子含有膜のドライエッチング方法。
  7.  前記マスクの厚さが、前記炭素原子含有膜の厚さの0.01倍以上である、請求項6に記載の炭素原子含有膜のドライエッチング方法。
  8.  前記マスクの厚さが、前記炭素原子含有膜の厚さの0.5倍以下である、請求項6に記載の炭素原子含有膜のドライエッチング方法。
  9.  前記硫黄化合物として二酸化硫黄または硫化カルボニルを用いる、請求項1~8のいずれか一項に記載の炭素原子含有膜のドライエッチング方法。
  10.  前記硫黄化合物として二酸化硫黄を用いる、請求項9に記載の炭素原子含有膜のドライエッチング方法。
PCT/JP2023/026649 2022-07-22 2023-07-20 炭素原子含有膜のドライエッチング方法 WO2024019124A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-117496 2022-07-22
JP2022117496 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024019124A1 true WO2024019124A1 (ja) 2024-01-25

Family

ID=89617910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026649 WO2024019124A1 (ja) 2022-07-22 2023-07-20 炭素原子含有膜のドライエッチング方法

Country Status (1)

Country Link
WO (1) WO2024019124A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217226A (ja) * 1997-07-22 2001-08-10 Matsushita Electric Ind Co Ltd 半導体装置の製造装置及びその製造方法
JP2001335932A (ja) * 2000-05-24 2001-12-07 Natl Inst Of Advanced Industrial Science & Technology Meti 低温プラズマによる固体表面処理制御方法
JP2002226290A (ja) * 2000-11-29 2002-08-14 Japan Fine Ceramics Center ダイヤモンド加工体の製造方法、及び、ダイヤモンド加工体
JP2014096499A (ja) * 2012-11-09 2014-05-22 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置
JP2016529740A (ja) * 2013-09-09 2016-09-23 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード エッチングガスを用いて半導体構造をエッチングする方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217226A (ja) * 1997-07-22 2001-08-10 Matsushita Electric Ind Co Ltd 半導体装置の製造装置及びその製造方法
JP2001335932A (ja) * 2000-05-24 2001-12-07 Natl Inst Of Advanced Industrial Science & Technology Meti 低温プラズマによる固体表面処理制御方法
JP2002226290A (ja) * 2000-11-29 2002-08-14 Japan Fine Ceramics Center ダイヤモンド加工体の製造方法、及び、ダイヤモンド加工体
JP2014096499A (ja) * 2012-11-09 2014-05-22 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置
JP2016529740A (ja) * 2013-09-09 2016-09-23 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード エッチングガスを用いて半導体構造をエッチングする方法

Similar Documents

Publication Publication Date Title
US20200118811A1 (en) Method for etching a carbon-containing feature
KR102480249B1 (ko) 에칭 기체로 반도체 구조를 에칭하는 방법
US8367303B2 (en) Semiconductor device fabrication and dry develop process suitable for critical dimension tunability and profile control
US7235478B2 (en) Polymer spacer formation
JP5122106B2 (ja) 炭素含有膜エッチング方法及びこれを利用した半導体素子の製造方法
KR101476435B1 (ko) 다중-레이어 레지스트 플라즈마 에치 방법
US20210391181A1 (en) Forming a semiconductor device using a protective layer
US7105442B2 (en) Ashable layers for reducing critical dimensions of integrated circuit features
JP2010062587A (ja) 半導体集積回路装置の製造方法
US7067435B2 (en) Method for etch-stop layer etching during damascene dielectric etching with low polymerization
US6136722A (en) Plasma etching method for forming hole in masked silicon dioxide
US11037798B2 (en) Self-limiting cyclic etch method for carbon-based films
US20130029484A1 (en) Maintaining mask integrity to form openings in wafers
US20060128141A1 (en) Semiconductor device and method for fabricating the same
WO2024019124A1 (ja) 炭素原子含有膜のドライエッチング方法
Sun et al. Vertical sidewall of silicon nitride mask and smooth surface of etched-silicon simultaneously obtained using CHF3/O2 inductively coupled plasma
JP2006024730A (ja) 半導体装置の製造方法
US9111875B2 (en) Pattern formation method
TWI833930B (zh) 乾式蝕刻方法及半導體裝置之製造方法
KR20210023906A (ko) 황 원자를 함유하는 가스 분자를 사용한 플라즈마 에칭 방법
TW202413591A (zh) 含碳原子膜之乾式蝕刻法
WO2024019123A1 (ja) 炭素原子含有膜のドライエッチング方法
WO2024019122A1 (ja) 炭素原子含有膜のドライエッチング方法
US20080102553A1 (en) Stabilizing an opened carbon hardmask
US20220359200A1 (en) Methods for fabricating semiconductor devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843047

Country of ref document: EP

Kind code of ref document: A1