WO2024018782A1 - 蓄電素子 - Google Patents

蓄電素子 Download PDF

Info

Publication number
WO2024018782A1
WO2024018782A1 PCT/JP2023/021819 JP2023021819W WO2024018782A1 WO 2024018782 A1 WO2024018782 A1 WO 2024018782A1 JP 2023021819 W JP2023021819 W JP 2023021819W WO 2024018782 A1 WO2024018782 A1 WO 2024018782A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
material layer
storage element
Prior art date
Application number
PCT/JP2023/021819
Other languages
English (en)
French (fr)
Inventor
直樹 上原
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2024018782A1 publication Critical patent/WO2024018782A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage element.
  • Nonaqueous electrolyte secondary batteries represented by lithium ion nonaqueous electrolyte secondary batteries
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically isolated by a separator, and a non-aqueous electrolyte interposed between the electrodes.
  • the battery is configured to be charged and discharged by receiving and receiving the battery.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
  • the electrode of the electricity storage element has an active material layer containing an active material and a binder.
  • various proposals regarding binders have been made.
  • a binder with a glass transition temperature of 20°C to 40°C is used to adjust the mixture paste.
  • a method for producing a negative electrode for a nonaqueous electrolyte secondary battery has been proposed, in which each of the process, coating process, and coating film drying process is performed at a temperature 10°C or more higher than the glass transition temperature of the binder. (Refer to Japanese Unexamined Patent Publication No. 2008-135262).
  • An object of the present invention is to provide a power storage element that can suppress drop-off of a negative electrode active material layer and decrease in capacity retention rate after charge/discharge cycles.
  • a power storage element includes a negative electrode having a negative electrode active material layer and a positive electrode, wherein the negative electrode active material layer contains negative electrode active material particles and a cellulose derivative, and the negative electrode active material layer contains negative electrode active material particles and a cellulose derivative.
  • the average circularity is 0.60 or less, and the peak top molecular weight of the cellulose derivative is 2,800,000 or more.
  • the power storage element according to one aspect of the present invention can suppress falling off of the negative electrode active material layer and decrease in capacity retention rate after charge/discharge cycles.
  • FIG. 1 is a transparent perspective view showing one embodiment of a power storage element.
  • FIG. 2 is a schematic diagram showing an embodiment of a power storage device configured by collecting a plurality of power storage elements.
  • a power storage element includes a negative electrode having a negative electrode active material layer and a positive electrode, the negative electrode active material layer containing negative electrode active material particles and a cellulose derivative, and the negative electrode active material layer containing negative electrode active material particles and a cellulose derivative.
  • the average circularity of the material particles is 0.60 or less, and the peak top molecular weight of the cellulose derivative is 2,800,000 or more.
  • the negative electrode active material layer contains negative electrode active material particles and a cellulose derivative, the average circularity of the negative electrode active material particles is 0.60 or less, and the peak top molecular weight of the cellulose derivative is is 2,800,000 or more, the effect of suppressing the falling off of the negative electrode active material layer and the decrease in capacity retention after charge/discharge cycles is excellent.
  • the reason for this is not certain, it is thought to be as follows.
  • Negative electrode active material particles with a low average circularity have a larger contact area between the negative electrode active material particles than negative electrode active material particles with a high average circularity, so it is easier to secure a conductive path between the negative electrode active material particles, and the negative electrode It is considered that active material particles are less likely to become isolated.
  • the average circularity of the negative electrode active material particles is 0.60 or less, the conductivity between the negative electrode active material particles is improved, and as a result, capacity can be maintained after charge/discharge cycles. It is thought that the effect of suppressing the decrease in rate is excellent.
  • the adhesion strength between the negative electrode active material particles can be increased. It is thought that this increases specifically, suppressing a decrease in conductivity between negative electrode active material particles due to charge/discharge cycles, and suppressing falling off of the negative electrode active material layer. Therefore, the electricity storage element described in [1] has an excellent effect of suppressing shedding of the negative electrode active material layer and reduction in capacity retention after charge/discharge cycles.
  • the "average circularity" is determined by the following procedure. First, a negative electrode including negative electrode active material particles to be measured is fixed with a thermosetting resin. Using the ion milling method (Cross Section Polisher (registered trademark) manufactured by JEOL Ltd.), the cross section of the negative electrode fixed with resin was exposed to prepare a measurement sample, and a scanning electron microscope (SEM) was used. to obtain a SEM image. In measuring the average circularity, the storage element after undergoing the initial charging and discharging process is measured. Specifically, a sample to be measured is collected according to the following procedure. First, the electricity storage element to be measured is subjected to constant current discharge with a current of 0.1 C to the discharge end voltage during normal use, and is brought into a discharged state.
  • normal use refers to a case where the electricity storage element is used under recommended or specified charge/discharge conditions for the electricity storage element.
  • the discharged electricity storage element is disassembled, the negative electrode is taken out, and components (electrolyte, etc.) adhering to the negative electrode are thoroughly washed with dimethyl carbonate. Thereafter, drying is performed under reduced pressure at room temperature.
  • the work from dismantling the power storage element to acquiring the SEM image is performed in a dry air atmosphere with a dew point of -40°C or lower.
  • JSM-7001F manufactured by JEOL Ltd.
  • the SEM image is assumed to be a secondary electron image.
  • the accelerating voltage is 15 kV.
  • the observation magnification is set at a magnification such that 30 to 200 negative electrode active material particles appear in one field of view.
  • the obtained SEM image is saved as an image file.
  • Other conditions such as spot diameter, working distance, irradiation current, brightness, and focus are appropriately set so that the outline of the negative electrode active material particles becomes clear.
  • image analysis software the area and outer circumferential length of each projected image of the negative electrode active material particles are measured for the acquired SEM image. Image analysis is performed using image analysis software PopImaging 6.00.
  • the circularity of the negative electrode active material particles is calculated using the following formula. The average value of circularity calculated for each of the 30 negative electrode active material particles is defined as "average circularity".
  • Circularity outer circumference of a perfect circle having the same area as the projected image of negative electrode active material particles/outer circumference of the projected image of negative electrode active material particles
  • the peak top molecular weight of the cellulose derivative is a value determined by GPC (gel permeation chromatography) measurement according to the following procedure. 5 mg of the cellulose derivative to be measured is dissolved in 5 mL of water to obtain a solution. This solution is filtered through a hydrophilic PTFE (polytetrafluoroethylene) membrane filter with a pore size of 0.45 ⁇ m, and the filtrate is subjected to GPC measurement. The molecular weight corresponding to the peak of the differential molecular weight distribution curve obtained by GPC measurement is the peak top molecular weight.
  • the GPC measurement conditions are as follows.
  • the reason why the molecular weight of the cellulose derivative is specified by the peak top molecular weight will be explained.
  • insoluble matter in the cellulose derivative may be removed during filtration.
  • those with higher molecular weights have lower solubility in water and tend to be removed during filtration. Therefore, even if cellulose derivatives have the same actual weight-average molecular weight, a cellulose derivative with a large amount of components with a large molecular weight will have more parts removed than one with a small amount of components with a large molecular weight, so the measured weight-average molecular weight will be becomes smaller.
  • the negative electrode active material layer may not contain a binder, and may contain 0.8% by mass or less of a binder.
  • the negative electrode active material layer does not contain a binder that is an insulator, or the content of the binder is 0.8% by mass or less, so that the negative electrode active material layer
  • the conductivity is improved, and the effect of suppressing a decrease in capacity retention after charge/discharge cycles can be further enhanced.
  • the content of the above-mentioned binder is calculated in terms of solid content.
  • the content of the cellulose derivative in the negative electrode active material layer may be 0.5% by mass or more and 2.0% by mass or less.
  • the content of the cellulose derivative in the negative electrode active material layer is within the above range, so that the conductivity of the negative electrode active material layer can be further improved.
  • the content of the cellulose derivative described above is calculated in terms of solid content.
  • the negative electrode active material particles may be graphite particles.
  • a configuration of a power storage element, a configuration of a power storage device, a method for manufacturing a power storage element, and other embodiments of the present invention will be described in detail. Note that the name of each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
  • a power storage element includes an electrode body having a positive electrode, a negative electrode, and a separator, a nonaqueous electrolyte, and a container housing the electrode body and the nonaqueous electrolyte.
  • the electrode body is usually a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are stacked with a separator in between, or a wound type in which a positive electrode and a negative electrode are stacked and wound with a separator in between.
  • the nonaqueous electrolyte exists in a state impregnated with the positive electrode, negative electrode, and separator.
  • a non-aqueous electrolyte secondary battery hereinafter also simply referred to as a "secondary battery" will be described.
  • the negative electrode includes a negative electrode base material and a negative electrode active material layer disposed on the negative electrode base material directly or via an intermediate layer.
  • the negative electrode active material layer is laminated along at least one surface of the negative electrode base material directly or via an intermediate layer.
  • the negative electrode base material has electrical conductivity. Whether or not it has “conductivity” is determined by using a volume resistivity of 10 7 ⁇ cm as a threshold value, which is measured in accordance with JIS-H-0505 (1970).
  • a volume resistivity of 10 7 ⁇ cm As the material of the negative electrode base material, metals such as copper, nickel, stainless steel, nickel-plated steel, alloys thereof, carbonaceous materials, etc. are used. Among these, copper or copper alloy is preferred.
  • Examples of the negative electrode base material include foil, vapor deposited film, mesh, porous material, etc., and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode base material. Examples of copper foil include rolled copper foil, electrolytic copper foil, and the like.
  • the average thickness of the negative electrode base material is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the intermediate layer is a layer disposed between the negative electrode base material and the negative electrode active material layer.
  • the intermediate layer reduces contact resistance between the negative electrode base material and the negative electrode active material layer by containing a conductive agent such as carbon particles.
  • the structure of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the negative electrode active material layer contains negative electrode active material particles and a cellulose derivative.
  • the negative electrode active material layer is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, etc.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, and other transition metal elements are used as negative electrode active material particles, cellulose derivatives, and conductive agents. , binder, and filler.
  • the type of negative electrode active material can be appropriately selected from known negative electrode active materials.
  • a negative electrode active material for a lithium ion secondary battery a material that can insert and release lithium ions is usually used.
  • negative electrode active materials include metal Li; metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide, Ti oxide, and Sn oxide; Li 4 Ti 5 O 12 , Examples include titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphoric acid compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon); It will be done. Among these materials, graphite and non-graphitic carbon are preferred. In the negative electrode active material layer, one type of these materials may be used alone, or two or more types may be used in combination.
  • the negative electrode active material particles preferably contain graphite particles, and particularly preferably contain spherical graphite obtained by spheroidizing flaky graphite.
  • the average circularity of the graphite particles can be adjusted by controlling the conditions of the spheroidization treatment.
  • Graphite refers to a carbon material whose average lattice spacing (d 002 ) of the (002) plane is 0.33 nm or more and less than 0.34 nm, as determined by X-ray diffraction, before charging and discharging or in a discharged state. .
  • Examples of graphite include natural graphite and artificial graphite. Natural graphite is preferred from the viewpoint of excellent input/output characteristics.
  • Non-graphitic carbon is a carbon material whose average lattice spacing (d 002 ) of the (002) plane is 0.34 nm or more and 0.42 nm or less, as determined by X-ray diffraction before charging and discharging or in a discharged state. means.
  • Examples of non-graphitic carbon include non-graphitizable carbon and easily graphitizable carbon.
  • Examples of the non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, alcohol-derived materials, and the like.
  • the discharged state of carbon materials such as graphite means that charge carrier ions such as lithium ions, which can be intercalated and released during charging and discharging, are sufficiently released from the carbon material that is the negative electrode active material.
  • charge carrier ions such as lithium ions
  • the open circuit voltage is 0.7 V or more.
  • Non-graphitizable carbon refers to a carbon material in which the above d 002 is 0.36 nm or more and 0.42 nm or less.
  • Graphitizable carbon refers to a carbon material in which the above d 002 is 0.34 nm or more and less than 0.36 nm.
  • the upper limit of the average circularity of the negative electrode active material particles is 0.60, preferably 0.55.
  • the average circularity of the negative electrode active material particles is less than or equal to the above upper limit, the conductivity between the negative electrode active material particles becomes good, and therefore, the effect of suppressing a decrease in capacity retention after charge/discharge cycles is excellent.
  • the lower limit of the average circularity is preferably 0.40, more preferably 0.50. When the average circularity of the negative electrode active material particles is equal to or greater than the above lower limit, it is possible to suppress deterioration of input/output characteristics due to increased orientation of the negative electrode active material particles.
  • the lower limit of the BET specific surface area of the negative electrode active material particles is preferably 0.5 m 2 /g, more preferably 2.0 m 2 /g. When the BET specific surface area is equal to or larger than the lower limit, input/output characteristics can be improved.
  • the upper limit of the BET specific surface area is preferably 10.0 m 2 /g, more preferably 8.0 m 2 /g. When the BET specific surface area is less than or equal to the upper limit, decomposition of the nonaqueous electrolyte on the negative electrode surface can be suppressed, and a decrease in capacity retention rate after charge/discharge cycles can be further suppressed.
  • BET specific surface area is determined by measuring the pressure and adsorption amount based on the fact that nitrogen molecules are physically adsorbed on the particle surface by immersing the particle in liquid nitrogen and supplying nitrogen gas.
  • the amount of nitrogen adsorbed (m 2 ) on the sample is determined by a single point method.
  • the value obtained by dividing the obtained nitrogen adsorption amount by the mass (g) of the sample is defined as the BET specific surface area (m 2 /g).
  • the median diameter of the negative electrode active material particles is preferably 1.0 ⁇ m or more and 50.0 ⁇ m or less, more preferably 3.0 ⁇ m or more and 20.0 ⁇ m or less.
  • the “median diameter” of negative electrode active material particles means the value (D50) at which the volume-based integrated distribution calculated in accordance with JIS-Z-8819-2 (2001) is 50%.
  • the values are measured using the following method. The measurement is performed using a laser diffraction particle size distribution measuring device (Shimadzu Corporation's "SALD-2200") as a measuring device and Wing SALD-2200 as the measurement control software. A scattering measurement mode is adopted, and a laser beam is irradiated onto a wet cell in which a dispersion liquid in which a measurement sample is dispersed in a dispersion solvent circulates, thereby obtaining a scattered light distribution from the measurement sample.
  • SALD-2200 laser diffraction particle size distribution measuring device
  • the scattered light distribution is approximated by a log-normal distribution, and the particle diameter corresponding to a cumulative degree of 50% is defined as the median diameter (D50). It has been confirmed that the median diameter based on the above measurement is approximately the same as the median diameter measured by extracting 100 particles from the SEM image, avoiding extremely large particles and extremely small particles.
  • the storage element after undergoing the above-mentioned initial charging/discharging process is the object of measurement.
  • a pulverizer, classifier, etc. are used to obtain powder with a predetermined particle size.
  • the pulverization method include methods using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling jet mill, a sieve, and the like.
  • wet pulverization in which water or an organic solvent such as hexane is present can also be used.
  • a sieve, a wind classifier, etc. may be used, both dry and wet, as necessary.
  • the content of the negative electrode active material particles in the negative electrode active material layer is preferably 90.0% by mass or more and 99.5% by mass or less, more preferably 95% by mass or more and 99.0% by mass or less.
  • the negative electrode active material layer contains a cellulose derivative.
  • the cellulose derivative is a component that normally functions as a thickener when forming a negative electrode active material layer by coating a negative electrode mixture paste or the like.
  • a cellulose derivative is a compound having a structure in which at least a portion of the hydrogen atoms of the hydroxyl groups of cellulose are substituted with other groups.
  • cellulose derivatives include carboxyalkylcellulose (carboxymethylcellulose (CMC), carboxyethylcellulose, carboxypropylcellulose, etc.), alkylcellulose (methylcellulose, ethylcellulose, etc.), hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropyl) methyl cellulose, etc.), cellulose acetate phthalate, hydroxypropyl methyl cellulose phthalate, acetyl cellulose, and the like.
  • carboxyalkylcellulose is preferred, and CMC is more preferred.
  • One type of cellulose derivative may be used alone or two or more types may be used in combination.
  • cellulose derivatives may exist in the form of a salt.
  • Counter cations of cellulose derivatives when present in the form of salts include, for example, sodium ions, magnesium ions, lithium ions, ammonium ions, and the like.
  • the lower limit of the peak top molecular weight of the cellulose derivative is 2,800,000, preferably 3,000,000.
  • the peak top molecular weight of the cellulose derivative is at least the above lower limit, the adhesion strength between the negative electrode active material particles becomes high, and it is possible to suppress the negative electrode active material layer from falling off.
  • the upper limit of the peak top molecular weight of the cellulose derivative is preferably 4,000,000, more preferably 3,500,000. When the peak top molecular weight of the cellulose derivative is less than or equal to the above upper limit, solubility in water can be improved.
  • the lower limit of the degree of etherification of the cellulose derivative is preferably 0.60, more preferably 0.63, and even more preferably 0.65.
  • the upper limit of the degree of etherification is preferably 1.00, more preferably 0.95, and even more preferably 0.90.
  • the lower limit of the viscosity of the aqueous solution of the cellulose derivative is preferably 2000 mPa ⁇ s, more preferably 3000 mPa ⁇ s.
  • the viscosity of the aqueous solution of the cellulose derivative is equal to or higher than the above lower limit, the adhesion strength between the negative electrode active material particles in the negative electrode active material layer containing such a cellulose derivative increases, and it is possible to suppress the negative electrode active material layer from falling off.
  • the upper limit of the viscosity of the cellulose derivative aqueous solution is preferably 10,000 mPa ⁇ s, more preferably 8,000 mPa ⁇ s.
  • viscosity of an aqueous solution of a cellulose derivative is a value obtained by measuring the viscosity of a 2% by mass aqueous solution of a cellulose derivative at 20° C. using a B-type viscometer.
  • the lower limit of the cellulose derivative content in the negative electrode active material layer is preferably 0.5% by mass, more preferably 0.6% by mass. Since the content of the cellulose derivative is equal to or higher than the lower limit, it is possible to maintain the adhesion between the negative electrode active material particles, thereby further improving the conductivity between the negative electrode active material particles.
  • the upper limit of the content of the cellulose derivative is preferably 2.0% by mass, more preferably 1.5% by mass. When the content of the cellulose derivative is at most the above upper limit, deterioration in input/output characteristics can be suppressed.
  • the negative electrode active material layer contains no binder, or preferably contains 0.8% by mass or less, more preferably 0.6% by mass or less of binder.
  • the negative electrode active material layer does not contain an insulating binder or the content of the binder is below the above lower limit, the conductivity of the negative electrode active material layer is improved and the capacity retention rate after charge/discharge cycles is reduced. can further enhance the suppression effect.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacrylic, polyimide, etc.; ethylene-propylene-diene rubber (EPDM); Examples include elastomers such as sulfonated EPDM, styrene butadiene rubber (SBR), and fluororubber; polysaccharide polymers, and the like.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, polyacrylic, polyimide, etc.
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene butadiene rubber
  • fluororubber examples include polysaccharide polymers, and the like.
  • the negative electrode active material layer can contain a filler if necessary.
  • the filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate, magnesium hydroxide, calcium hydroxide, and hydroxide.
  • Hydroxides such as aluminum, carbonates such as calcium carbonate, poorly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Examples include substances derived from mineral resources such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • the content of the filler in the negative electrode active material layer may be, for example, 0.1% by mass or more and 8% by mass or less, or 0.5% by mass or more and 5% by mass or less.
  • the filler content in the negative electrode active material layer may be 3% by mass or less, 1% by mass or less, and the negative electrode active material layer does not need to contain any filler.
  • the negative electrode active material layer does not need to contain a conductive agent.
  • Carbon materials such as the graphite, graphitizable carbon, and non-graphitizable carbon, metal Li; metals and metalloids such as Si and Sn, which are exemplified as negative electrode active materials, also have conductivity; Carbon materials such as carbon and non-graphitizable carbon, metal Li; metals or metalloids such as Si and Sn are not included in the conductive agent in the negative electrode active material layer.
  • the negative electrode active material particles are less likely to become isolated, so that conductivity can be ensured even when the negative electrode active material layer does not contain a conductive agent.
  • the negative electrode active material layer does not contain a conductive agent, the BET specific surface area of the negative electrode active material layer is reduced and decomposition of the non-aqueous electrolyte on the negative electrode surface can be suppressed, so the charge/discharge cycle of the electricity storage element is The subsequent decline in capacity retention rate can be further suppressed.
  • the positive electrode includes a positive electrode base material and a positive electrode active material layer disposed on the positive electrode base material directly or via an intermediate layer.
  • the configuration of the intermediate layer is not particularly limited, and can be selected from, for example, the configurations exemplified for the negative electrode.
  • the positive electrode base material has electrical conductivity.
  • metals such as aluminum, titanium, tantalum, stainless steel, or alloys thereof are used.
  • aluminum or aluminum alloy is preferred from the viewpoint of potential resistance, high conductivity, and cost.
  • the positive electrode base material include foil, vapor deposited film, mesh, porous material, etc., and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material.
  • aluminum or aluminum alloy include A1085, A3003, A1N30, etc. specified in JIS-H-4000 (2014) or JIS-H-4160 (2006).
  • the average thickness of the positive electrode base material is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, as necessary.
  • the positive electrode active material can be appropriately selected from known positive electrode active materials.
  • a positive electrode active material for a lithium ion secondary battery a material that can insert and release lithium ions is usually used.
  • the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, and sulfur.
  • lithium transition metal composite oxides having ⁇ -NaFeO type 2 crystal structure examples include Li[Li x Ni (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[Li x Ni ⁇ Co ( 1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1, 0 ⁇ 1-x- ⁇ ), Li[Li x Co (1-x) ]O 2 (0 ⁇ x ⁇ 0.5 ), Li [ Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1, 0 ⁇ 1-x- ⁇ - ⁇ ), Li[Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1, 0 ⁇ 1-x- ⁇ - ⁇ ).
  • lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • the polyanion compound examples include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, and the like.
  • chalcogen compounds include titanium disulfide, molybdenum disulfide, molybdenum dioxide, and the like. Atoms or polyanions in these materials may be partially substituted with atoms or anion species of other elements. The surfaces of these materials may be coated with other materials. In the positive electrode active material layer, one type of these materials may be used alone, or two or more types may be used in combination.
  • the positive electrode active material is usually particles (powder).
  • the median diameter of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By setting the median diameter of the positive electrode active material to be equal to or larger than the above lower limit, the manufacturing or handling of the positive electrode active material becomes easier. By setting the median diameter of the positive electrode active material to be equal to or less than the above upper limit, the electronic conductivity of the positive electrode active material layer is improved. Note that when a composite of a positive electrode active material and another material is used, the median diameter of the composite is defined as the median diameter of the positive electrode active material.
  • a pulverizer, classifier, etc. are used to obtain powder with a predetermined particle size. The pulverization method and classification method can be selected from, for example, the methods exemplified for the negative electrode.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
  • the conductive agent is not particularly limited as long as it is a material that has conductivity.
  • Examples of such conductive agents include carbonaceous materials, metals, conductive ceramics, and the like.
  • Examples of the carbonaceous material include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • Examples of non-graphitic carbon include carbon nanofibers, pitch-based carbon fibers, carbon black, and the like.
  • Examples of carbon black include furnace black, acetylene black, Ketjen black, and the like.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerene.
  • Examples of the shape of the conductive agent include powder, fiber, and the like.
  • the conductive agent one type of these materials may be used alone, or two or more types may be used in combination. Further, these materials may be used in combination.
  • a composite material of carbon black and CNT may be used.
  • carbon black is preferred from the viewpoint of electronic conductivity and coatability, and acetylene black is particularly preferred.
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • the binder can be selected from the materials exemplified for the negative electrode above.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder within the above range, the positive electrode active material can be stably held.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • this functional group may be deactivated in advance by methylation or the like.
  • the filler can be selected from the materials exemplified for the negative electrode above.
  • the positive electrode active material layer is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, etc.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W, and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners, and fillers. It may be contained as a component other than the above.
  • the separator can be appropriately selected from known separators.
  • a separator consisting of only a base material layer, a separator in which a heat resistant layer containing heat resistant particles and a binder is formed on one or both surfaces of the base material layer, etc.
  • Examples of the form of the base material layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these forms, a porous resin film is preferred from the viewpoint of strength, and a nonwoven fabric is preferred from the viewpoint of liquid retention of the nonaqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferred from the viewpoint of shutdown function, and polyimide, aramid, etc. are preferred from the viewpoint of oxidative decomposition resistance.
  • a composite material of these resins may be used as the base material layer of the separator.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500°C in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800°C. is more preferably 5% or less.
  • Inorganic compounds are examples of materials whose mass loss is less than a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
  • carbonates such as calcium carbonate
  • sulfates such as barium sulfate
  • poorly soluble ionic crystals such as calcium fluoride, barium fluoride, barium titanate
  • covalent crystals such as silicon and diamond
  • talc montmorillonite, boehmite
  • examples include substances derived from mineral resources such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • these substances may be used alone or in combination, or two or more types may be used in combination.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the electricity storage element.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • porosity is a value based on volume, and means a value measured with a mercury porosimeter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator.
  • the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like.
  • Use of polymer gel has the effect of suppressing liquid leakage.
  • a separator a porous resin film or nonwoven fabric as described above and a polymer gel may be used in combination.
  • Nonaqueous electrolyte The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
  • a non-aqueous electrolyte may be used as the non-aqueous electrolyte.
  • the nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic esters, phosphoric esters, sulfonic esters, ethers, amides, and nitriles.
  • compounds in which some of the hydrogen atoms contained in these compounds are replaced with halogens may be used.
  • cyclic carbonates examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and the like. Among these, EC is preferred.
  • chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC is preferred.
  • the nonaqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a cyclic carbonate and a chain carbonate together.
  • a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
  • chain carbonate By using chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts, and the like. Among these, lithium salts are preferred.
  • lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), and lithium difluorooxalate borate (LiFOB).
  • inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , and LiN(SO 2 F) 2
  • LiBOB lithium bis(oxalate) borate
  • LiFOB lithium difluorooxalate borate
  • lithium oxalate salts such as lithium bis(oxalate) difluorophosphate (LiFOP), LiSO 3 CF 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 )
  • lithium salts having halogenated hydrocarbon groups such as (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 and LiC (SO 2 C 2 F 5 ) 3 .
  • inorganic lithium salts are preferred, and LiPF 6 is more preferred.
  • the content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, and 0.3 mol/dm 3 or more and 2.0 mol/dm at 20° C. and 1 atmosphere. It is more preferably 3 or less, even more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less.
  • the non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt.
  • additives include oxalates such as lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), and lithium bis(oxalate)difluorophosphate (LiFOP); lithium bis(fluorosulfonyl)imide ( imide salts such as LiFSI); aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated products of terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl; Partial halides of the above aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene
  • halogenated anisole compounds vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride; ethylene sulfite, Propylene sulfite, dimethyl sulfite, methyl methanesulfonate, busulfan, methyl toluenesulfonate, dimethyl sulfate, ethylene sulfate, sulfolane, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'- Bis(2,2-dioxo-1,3,2-dioxathiolane), 4-methyls
  • the content of the additive contained in the nonaqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less based on the mass of the entire nonaqueous electrolyte. It is more preferable if it is present, more preferably from 0.2% by mass to 5% by mass, and particularly preferably from 0.3% by mass to 3% by mass.
  • a solid electrolyte may be used as the non-aqueous electrolyte, or a non-aqueous electrolyte and a solid electrolyte may be used together.
  • the solid electrolyte can be selected from any material that has ionic conductivity, such as lithium, sodium, and calcium, and is solid at room temperature (for example, 15° C. to 25° C.).
  • Examples of solid electrolytes include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, polymer solid electrolytes, gel polymer electrolytes, and the like.
  • Examples of the sulfide solid electrolyte in the case of a lithium ion secondary battery include Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5 , Li 10 Ge-P 2 S 12 , and the like.
  • the shape of the power storage element of this embodiment is not particularly limited, and examples include a cylindrical battery, a square battery, a flat battery, a coin battery, a button battery, and the like.
  • FIG. 1 shows a power storage element 1 as an example of a square battery. Note that this figure is a perspective view of the inside of the container.
  • An electrode body 2 having a positive electrode and a negative electrode wound together with a separator in between is housed in a rectangular container 3.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode lead 41.
  • the negative electrode is electrically connected to the negative electrode terminal 5 via a negative electrode lead 51.
  • the power storage element of this embodiment can be used as a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), or a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer or a communication terminal, or a power source for power storage. etc., it can be mounted as a power storage unit (battery module) configured by collecting a plurality of power storage elements.
  • the technology of the present invention may be applied to at least one power storage element included in the power storage unit.
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected power storage elements 1 are assembled is further assembled.
  • Power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like.
  • the power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements 1.
  • the method for manufacturing the electricity storage element of this embodiment can be appropriately selected from known methods.
  • the manufacturing method includes, for example, preparing an electrode body, preparing a non-aqueous electrolyte, and accommodating the electrode body and the non-aqueous electrolyte in a container.
  • Preparing the electrode body includes preparing a positive electrode and a negative electrode, and forming the electrode body by laminating or winding the positive electrode and the negative electrode with a separator in between.
  • the above-mentioned positive electrode can be obtained by laminating the above-mentioned positive electrode active material layer on a positive electrode base material directly or via an intermediate layer.
  • the above-mentioned positive electrode active material layer is laminated by applying a positive electrode mixture paste to the positive electrode base material.
  • the negative electrode can be obtained by laminating the negative electrode active material layer on the negative electrode base material directly or via an intermediate layer, similarly to the positive electrode.
  • the negative electrode active material layer is laminated by applying a negative electrode mixture paste containing negative electrode active material particles and a cellulose derivative to the negative electrode base material.
  • the positive electrode mixture paste and the negative electrode mixture paste may contain a dispersion medium.
  • aqueous solvents such as water and a mixed solvent mainly composed of water
  • organic solvents such as N-methylpyrrolidone and toluene can be used.
  • Storing the non-aqueous electrolyte in a container can be appropriately selected from known methods.
  • the injection port may be sealed after the nonaqueous electrolyte is injected through an injection port formed in the container.
  • the power storage element of the present invention is not limited to the above embodiments, and various changes may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments may be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the electricity storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the electricity storage element are arbitrary.
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
  • the electrode body does not need to include a separator.
  • the positive electrode and the negative electrode may be in direct contact with each other with a non-conductive layer formed on the active material layer of the positive electrode or the negative electrode.
  • Example 1 (Negative electrode) A negative electrode mixture paste was prepared by mixing negative electrode active material particles made of natural graphite A as a negative electrode active material, sodium carboxymethylcellulose (CMC-A) as a cellulose derivative, and water as a dispersion medium. The mass ratio of the negative electrode active material particles and CMC-A was 99:1 in terms of solid content. Then, the negative electrode mixture paste was applied to one side of a copper foil having an average thickness of 20 ⁇ m as a negative electrode base material, and then dried and pressed to form a negative electrode active material layer, thereby obtaining the negative electrode of Example 1.
  • CMC-A sodium carboxymethylcellulose
  • the peak top molecular weight of CMC-A in which the counter cation was a sodium ion was 3,180,000, the viscosity of the aqueous solution was 6940 mPa ⁇ s, and the degree of etherification was 0.65-0.75.
  • the above-mentioned negative electrode was used as a working electrode, metal Li was used as a counter electrode, and they were made to face each other with a polyethylene separator interposed therebetween, and a non-aqueous electrolyte was injected to prepare a half-cell, thereby obtaining the electricity storage element of Example 1.
  • the nonaqueous electrolyte used was one in which LiPF 6 was dissolved at a concentration of 1.0 mol/dm 3 in a solvent in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio of 30:35:35. .
  • Example 2 and Comparative Example 1 were prepared in the same manner as in Example 1, except that the negative electrode active material particles, the type and content of the cellulose derivative, and the binder content used in the preparation of the negative electrode were as shown in Table 1.
  • Each power storage element of Comparative Example 6 was obtained from the following. Note that styrene-butadiene rubber was used as the binder in Example 2, Comparative Example 3, Comparative Example 4, and Comparative Example 6.
  • the charging termination condition was until the charging current reached 0.01C. Thereafter, a rest period of 10 minutes was provided. Thereafter, constant current discharge was performed with a discharge current of 1.0 C and a discharge end voltage of 2.0 V, followed by a rest period of 10 minutes. This charging and discharging was performed for 3 cycles.
  • (2) Charge/discharge cycle test Next, the following charge/discharge cycle test was conducted. After storing each energy storage element in a thermostatic chamber at 25°C for 1 hour, constant current charging was performed with a charging current of 1.0C to 0.02V, and then constant voltage was maintained at 0.02V until the charging current reached 0.01C. Charged. Thereafter, a rest period of 10 minutes was provided.
  • Table 1 shows the capacity retention rate after charge/discharge cycles and the shedding rate of the negative electrode active material layer in each Example and Comparative Example.
  • Table 1 shows the values of the BET specific surface area, median diameter, and average circularity of the negative electrode active material determined by the above procedure and method for the negative electrode taken out from the energy storage element after the charge/discharge cycle in each Example and Comparative Example. It is shown in Table 1.
  • Comparative Examples 1 and 2 in which the average circularity of the negative electrode active material particles is 0.60 or less, but the peak top molecular weight of the cellulose derivative is less than 2,800,000, the negative electrode active material layer does not contain the binder. By not containing it, the effect of suppressing the decrease in capacity retention after charge/discharge cycles was increased, but the rate of shedding of the negative electrode active material layer was increased.
  • Comparative Examples 3 and 4 in which the average circularity of the negative electrode active material particles is 0.60 or less, but the peak top molecular weight of the cellulose derivative is less than 2,800,000, the binder content is 0.8 mass %, the shedding rate of the negative electrode active material layer was good, but the effect of suppressing the decrease in capacity retention after charge/discharge cycles was reduced.
  • Comparative Example 5 in which the cellulose derivative has a peak top molecular weight of 2,800,000 or more, but the average circularity of the negative electrode active material particles exceeds 0.60, the negative electrode active material layer does not contain a binder.
  • Comparative Example 6 in which the cellulose derivative has a peak top molecular weight of 2,800,000 or more, but the average circularity of the negative electrode active material particles exceeds 0.60, the binder content exceeds 0.8% by mass. Although the rate of shedding of the negative electrode active material layer was good, the effect of suppressing the decrease in capacity retention after charge/discharge cycles was significantly reduced.
  • the electricity storage element can suppress the falling off of the negative electrode active material layer and the decrease in the capacity retention rate after charge/discharge cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一側面に係る蓄電素子は、負極活物質層を有する負極と、正極とを備え、上記負極活物質層が負極活物質粒子及びセルロース誘導体を含有し、上記負極活物質粒子の平均円形度が0.60以下であり、上記セルロース誘導体のピークトップ分子量が2,800,000以上である。

Description

蓄電素子
 本発明は、蓄電素子に関する。
 リチウムイオン非水電解質二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間で電荷輸送イオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 一般に上記蓄電素子の電極は、活物質及びバインダを含有する活物質層を有している。従来技術においては、バインダに関して様々な提案がなされている。例えば負極活物質層の脱落や剥離を抑制し、生産性の高い負極を提供することを目的として、ガラス転移温度が20℃から40℃である結着剤を用い、合剤ペーストを調整する調整工程、塗工工程及び塗膜乾燥工程については、それぞれ結着剤のガラス転移温度より10℃以上高い温度で行うことを特徴とする非水電解質二次電池用負極の製造方法が提案されている(特開2008-135262号公報参照)。
特開2008-135262号公報
 しかしながら、上記従来技術は、負極活物質層の脱落の抑制について、まだ改善の余地がある。また、近年のエネルギー源としてのリチウムイオン二次電池に対する需要も急増している状況においては、充放電サイクル後の容量維持率のさらなる向上が求められている。
 本発明は、負極活物質層の脱落及び充放電サイクル後の容量維持率の低下を抑制できる蓄電素子を提供することを目的とする。
 本発明の一側面に係る蓄電素子は、負極活物質層を有する負極と、正極とを備えており、上記負極活物質層が負極活物質粒子及びセルロース誘導体を含有し、上記負極活物質粒子の平均円形度が0.60以下であり、上記セルロース誘導体のピークトップ分子量が2,800,000以上である。
 本発明の一側面に係る蓄電素子は、負極活物質層の脱落及び充放電サイクル後の容量維持率の低下を抑制できる。
図1は、蓄電素子の一実施形態を示す透視斜視図である。 図2は、蓄電素子を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。
 初めに、本明細書によって開示される蓄電素子の概要について説明する。
 [1]本発明の一側面に係る蓄電素子は、負極活物質層を有する負極と、正極とを備えており、上記負極活物質層が負極活物質粒子及びセルロース誘導体を含有し、上記負極活物質粒子の平均円形度が0.60以下であり、上記セルロース誘導体のピークトップ分子量が2,800,000以上である。
 [1]に記載の蓄電素子は、負極活物質層が負極活物質粒子及びセルロース誘導体を含有し、上記負極活物質粒子の平均円形度が0.60以下であり、上記セルロース誘導体のピークトップ分子量が2,800,000以上であることで、負極活物質層の脱落及び充放電サイクル後の容量維持率の低下の抑制効果に優れる。この理由は定かではないが、次のように考えられる。平均円形度が低い負極活物質粒子は、平均円形度が高い負極活物質粒子と比較して負極活物質粒子同士の接触面積が大きいために負極活物質粒子間における導電パスが確保されやすく、負極活物質粒子の孤立化が生じにくいと考えられる。[1]に記載の蓄電素子においては、負極活物質粒子の平均円形度が0.60以下であることで、負極活物質粒子間の導電性が良好になる結果、充放電サイクル後の容量維持率の低下の抑制効果が優れると考えられる。さらに、負極活物質粒子同士の接触面積が大きくなる平均円形度の低い負極活物質粒子と共にピークトップ分子量が2,800,000以上のセルロース誘導体を用いることで、負極活物質粒子同士の密着強度が特異的に高くなり、充放電サイクルに伴う負極活物質粒子間の導電性の低下を抑制できるとともに負極活物質層の脱落を抑制できると考えられる。従って、[1]に記載の蓄電素子は、負極活物質層の脱落及び充放電サイクル後の容量維持率の低下の抑制効果に優れる。
 「平均円形度」は、以下の手順で決定する。まず、測定対象とする負極活物質粒子を備えた負極を熱硬化性の樹脂で固定する。イオンミリング法(日本電子株式会社製、クロスセクション・ポリッシャ(登録商標))を用いて、樹脂で固定された負極の断面を露出させ、測定用試料を作製し、走査型電子顕微鏡(SEM)を用いてSEM像を取得する。平均円形度の測定においては、初期充放電工程を経た後の蓄電素子を測定対象とする。具体的には、以下の手順によって測定対象の試料を採取する。まず、上記測定対象の蓄電素子を、0.1Cの電流で、通常使用時の放電終止電圧まで定電流放電し、放電された状態とする。ここで、通常使用時とは、当該蓄電素子について推奨され、又は指定される充放電条件を採用して当該蓄電素子を使用する場合をいう。次に、この放電された状態の蓄電素子を解体し、負極を取り出して、ジメチルカーボネートにより負極に付着した成分(電解質等)を充分に洗浄する。その後、室温にて減圧乾燥を行う。蓄電素子の解体からSEM像の取得までの作業は、露点-40℃以下の乾燥空気雰囲気中で行う。SEM像の取得には、走査型電子顕微鏡としてJSM-7001F(日本電子株式会社製)を用いる。SEM像は、二次電子像を観察するものとする。加速電圧は、15kVとする。観察倍率は、一視野に現れる負極活物質粒子が30個以上200個以内となる倍率に設定する。得られたSEM像は、画像ファイルとして保存する。その他、スポット径、ワーキングディスタンス、照射電流、輝度、フォーカス等の諸条件は、負極活物質粒子の輪郭が明瞭になるように適宜設定する。画像解析ソフトにより、取得したSEM像について、負極活物質粒子のそれぞれの投影画像の面積と外周長とを測定する。画像解析は、画像解析ソフトPopImaging 6.00を用いて行う。下記式により、負極活物質粒子の円形度を算出する。30個の負極活物質粒子のそれぞれについて算出した円形度の平均値を「平均円形度」とする。なお、上記SEM像の取得に用いる走査型電子顕微鏡、負極活物質粒子の投影画像の面積と外周長との測定に用いる画像解析ソフトに代えて、これらと同等の測定及び画像解析が可能な装置及びソフトウェア等を用いてもよい。
 円形度=負極活物質粒子の投影画像と同一面積を有する真円の外周長/負極活物質粒子の投影画像の外周長
 セルロース誘導体のピークトップ分子量は、以下の手順のGPC(ゲル浸透クロマトグラフィー)測定により求められる値とする。測定対象のセルロース誘導体5mgを水5mLに溶解させ、溶解液を得る。この溶解液を孔径0.45μmの親水性PTFE(ポリテトラフルオロエチレン)メンブレンフィルターでろ過し、ろ液をGPC測定に供する。GPC測定により得られる微分分子量分布曲線のピークに対応する分子量が、ピークトップ分子量である。GPC測定条件は、以下の通りである。
[GPC測定条件]
カラム/温度:2本×「OHpak SB-806M HQ」,8.0mm×30cm(Shodex)/40℃
移動相:0.1mol/dm NaCl水溶液
流量:1.0mL/min
注入量:100μL
検出:示差屈折計(RI)
カラム較正:単分散プルラン
分子量較正:相対的較正法(プルラン換算)
測定装置:デュアルポンプ「KP-22-13」(フロム)、自動注入装置「717plus」(日本ウォーターズ)、示差屈折率検出器「RI-101」(Shodex)
解析ソフト:Empower3(日本ウォーターズ)
 ここで、セルロース誘導体の分子量をピークトップ分子量で特定する理由について説明する。上記方法でGPC測定に供するろ液を調製するにあたり、ろ過の際にセルロース誘導体中の不溶分が取り除かれる場合がある。典型的には、分子量が大きいものは水への溶解性が低く、ろ過の際に取り除かれる傾向にある。そのため、実際の重量平均分子量が同じセルロース誘導体であっても、分子量が大きい成分が多いものは、分子量が大きい成分が少ないものと比べて取り除かれる部分が多くなるため、測定される重量平均分子量は小さくなる。一方、ピークトップ分子量の場合は、ピークトップ分子量よりも分子量が大きい成分がろ過の際に取り除かれても、測定されるピークトップ分子量は同じ値になり、測定値へのろ過の影響が小さい。このため、セルロース誘導体の分子量が小さいことにより効果が奏される本発明においては、重量平均分子量でセルロース誘導体の分子量を特定することは適当ではなく、ピークトップ分子量によりセルロース誘導体の分子量を特定している。
 [2]上記[1]に記載の蓄電素子において、上記負極活物質層がバインダを含有しなくてもよく、0.8質量%以下のバインダを含んでもよい。
 上記[2]に記載の蓄電素子によれば、上記負極活物質層が絶縁体であるバインダを含有しない、又はバインダの含有量が0.8質量%以下であることで、負極活物質層の導電性が向上し、充放電サイクル後の容量維持率の低下の抑制効果をより高めることができる。上記バインダの含有量は固形分換算である。
  [3] 上記[1]又は[2]に記載の蓄電素子において、上記負極活物質層における上記セルロース誘導体の含有量が0.5質量%以上2.0質量%以下であってもよい。
 上記[3]に記載の蓄電素子によれば、上記負極活物質層における上記セルロース誘導体の含有量が上記範囲であることで、負極活物質層の導電性をより向上できる。上記セルロース誘導体の含有量は固形分換算である。
 [4] 上記[1]から[3]のいずれかに記載の蓄電素子において、上記負極活物質粒子が黒鉛粒子であってもよい。
 上記[4]に記載の蓄電素子によれば、本発明の効果が確実に奏された蓄電素子を提供できる。
 本発明の一実施形態に係る蓄電素子の構成、蓄電装置の構成、及び蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<蓄電素子の構成>
 本発明の一実施形態に係る蓄電素子は、正極、負極及びセパレータを有する電極体と、非水電解質と、上記電極体及び非水電解質を収容する容器と、を備える。電極体は、通常、複数の正極及び複数の負極がセパレータを介して重ねられた積層型、又は、正極及び負極がセパレータを介して重ねられた状態で巻回された巻回型である。非水電解質は、正極、負極及びセパレータに含浸された状態で存在する。蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。
(負極)
 負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。上記負極活物質層は、上記負極基材の少なくとも一方の面に沿って直接又は中間層を介して積層される。
 負極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1970年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 中間層は、負極基材と負極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで負極基材と負極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。
 負極活物質層は、負極活物質粒子及びセルロース誘導体を含有する。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質粒子、セルロース誘導体、導電剤、バインダ、フィラー以外の成分として含有してもよい。
 負極活物質の種類は、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 負極活物質粒子は黒鉛粒子を含むことが好ましく、なかでも、鱗片状黒鉛を球状化処理した球状黒鉛を含むことが好ましい。黒鉛粒子の平均円形度は、上記球状化処理の条件を制御すること等により調整できる。
 「黒鉛」とは、充放電前又は放電された状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。入出力特性に優れるという観点で、天然黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電された状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、黒鉛等の炭素材料の「放電された状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオン等の電荷担体イオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、リチウム金属(Li)を対極として用いた半電池において、開回路電圧が0.7V以上である状態である。
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質粒子の平均円形度の上限としては、0.60であり、0.55が好ましい。負極活物質粒子の平均円形度が上記上限以下であることで、負極活物質粒子間の導電性が良好になるため、充放電サイクル後の容量維持率の低下の抑制効果に優れる。一方、平均円形度の下限としては、0.40が好ましく、0.50がより好ましい。負極活物質粒子の平均円形度が上記下限以上であることで、負極活物質粒子の配向性が高くなることによる入出力特性の低下を抑制できる。
 上記負極活物質粒子のBET比表面積の下限としては、0.5m/gが好ましく、2.0m/gがより好ましい。上記BET比表面積が上記下限以上であることで、入出力特性を向上できる。上記BET比表面積の上限としては、10.0m/gが好ましく、8.0m/gがより好ましい。上記BET比表面積が上記上限以下であることで、負極表面での非水電解質の分解を抑制でき、充放電サイクル後の容量維持率の低下をより抑制できる。
 上記「BET比表面積」は、液体窒素中に浸し、窒素ガスを供給することにより粒子表面に窒素分子が物理吸着することを基にその時の圧力と吸着量を測定することにより求められる。具体的な測定手法としては、一点法により、試料に対する窒素吸着量(m)を求める。得られた窒素吸着量を、試料の質量(g)で除した値をBET比表面積(m/g)とする。
 負極活物質粒子のメジアン径としては、1.0μm以上50.0μm以下が好ましく、3.0μm以上20.0μm以下がより好ましい。上記負極活物質粒子のメジアン径を上記範囲とすることで、負極活物質粒子の製造又は取り扱いが容易になるとともに入出力特性が向上する。
 負極活物質粒子の「メジアン径」とは、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値(D50)を意味する。具体的には以下の方法による測定値とする。測定装置としてレーザ回折式粒度分布測定装置(島津製作所社の「SALD-2200」)、測定制御ソフトとしてWing SALD-2200を用いて測定する。散乱式の測定モードを採用し、測定試料が分散溶媒中に分散する分散液が循環する湿式セルにレーザ光を照射し、測定試料から散乱光分布を得る。そして、散乱光分布を対数正規分布により近似し、累積度50%にあたる粒子径をメジアン径(D50)とする。なお、上記測定に基づくメジアン径は、SEM画像から、極端に大きい粒子及び極端に小さい粒子を避けて100個の粒子を抽出して測定するメジアン径とほぼ一致することが確認されている。
 本発明において、メジアン径及びBET比表面積の測定においては、上述した初期充放電工程を経た後の蓄電素子を測定対象とする。
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
 負極活物質層における負極活物質粒子の含有量は、90.0質量%以上99.5質量%以下が好ましく、95質量%以上99.0質量%以下がより好ましい。負極活物質粒子の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。
 負極活物質層は、セルロース誘導体を含有する。セルロース誘導体は、通常、負極合剤ペーストの塗工等により負極活物質層を形成する際の増粘剤として機能する成分である。
 セルロース誘導体は、セルロースが有するヒドロキシ基の水素原子の少なくとも一部が、他の基で置換された構造を有する化合物である。セルロース誘導体としては、カルボキシアルキルセルロース(カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、カルボキシプロピルセルロース等)、アルキルセルロース(メチルセルロース、エチルセルロース等)、ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等)、酢酸フタル酸セルロース、ヒドロキシプロピルメチルセルロースフタレート、アセチルセルロース等を挙げることができる。これらの中でも、カルボキシアルキルセルロースが好ましく、CMCがより好ましい。セルロース誘導体は1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 セルロース誘導体の一部又は全部は、塩の状態で存在していてもよい。塩の状態で存在する場合における、セルロース誘導体のカウンターカチオンとしては、例えばナトリウムイオン、マグネシウムイオン、リチウムイオン、アンモニウムイオン等が挙げられる。
 セルロース誘導体のピークトップ分子量の下限としては、2,800,000であり、3,000,000が好ましい。セルロース誘導体のピークトップ分子量が上記下限以上であることで、負極活物質粒子同士の密着強度が高くなり、負極活物質層の脱落を抑制できる。一方、セルロース誘導体のピークトップ分子量の上限としては、4,000,000が好ましく、3,500,000がより好ましい。セルロース誘導体のピークトップ分子量が上記上限以下であることで、水への溶解性を向上できる。
 セルロース誘導体がカルボキシアルキルセルロースである場合、セルロース誘導体のエーテル化度の下限としては、0.60が好ましく、0.63がより好ましく、0.65がさらに好ましい。上記エーテル化度の上限としては、1.00が好ましく、0.95がより好ましく、0.90がさらに好ましい。セルロース誘導体のエーテル化度を上記範囲とすることで、負極合剤ペースト中の水等の分散媒に溶解しないセルロース誘導体を減少させつつ、負極活物質層において、負極活物質粒子同士の密着強度を向上できる。セルロース誘導体のエーテル化度は、無水グルコース1単位あたりに結合しているカルボキシアルキル基の置換度をアルカリ度又は酸度で測定することにより算出する。
 セルロース誘導体がカルボキシアルキルセルロース等のように水に可溶である場合、セルロース誘導体の水溶液の粘度の下限としては、2000mPa・sが好ましく、3000mPa・sがより好ましい。セルロース誘導体の水溶液の粘度が上記下限以上であることで、このようなセルロース誘導体を含有する負極活物質層における負極活物質粒子同士の密着強度が高くなり、負極活物質層の脱落を抑制できる。一方、セルロース誘導体の水溶液の粘度の上限としては、10000mPa・sが好ましく、8000mPa・sがより好ましい。セルロース誘導体の水溶液の粘度が上記上限以下であることで、水等の分散媒への溶解性を向上できる。上記「セルロース誘導体の水溶液の粘度」は、セルロース誘導体の2質量%水溶液の20℃における粘度をB型粘度計により測定した値である。
 上記負極活物質層におけるセルロース誘導体の含有量の下限としては、0.5質量%が好ましく、0.6質量%がより好ましい。上記セルロース誘導体の含有量が上記下限以上であることで、負極活物質粒子同士の密着性を維持できるので、負極活物質粒子間の導電性をより向上できる。一方、上記セルロース誘導体の含有量の上限としては、2.0質量%が好ましく、1.5質量%がより好ましい。上記セルロース誘導体の含有量が上記上限以下であることで、入出力特性の低下を抑制できる。
 上記負極活物質層がバインダを含有しない、又は好ましくは0.8質量%以下、より好ましくは0.6質量%以下のバインダを含むことが好ましい。上記負極活物質層が絶縁体であるバインダを含有しない、又はバインダの含有量が上記下限以下であることで、負極活物質層の導電性が向上し、充放電サイクル後の容量維持率の低下の抑制効果をより高めることができる。
 上記バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 負極活物質層は必要に応じてフィラーを含むことができる。フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
 負極活物質層におけるフィラーの含有量としては、例えば0.1質量%以上8質量%以下であってもよく、0.5質量%以上5質量%以下であってもよい。負極活物質層におけるフィラーの含有量は、3質量%以下であってもよく、1質量%以下であってもよく、負極活物質層においてフィラーは含有されていなくてもよい。
 負極活物質層は導電剤を含有しなくてもよい。負極活物質として例示した上記黒鉛、易黒鉛化性炭素、難黒鉛化性炭素等の炭素材料、金属Li;Si、Sn等の金属又は半金属も導電性を有するが、上記黒鉛、易黒鉛化性炭素、難黒鉛化性炭素等の炭素材料、金属Li;Si、Sn等の金属又は半金属は負極活物質層における導電剤に含まれない。当該蓄電素子は、負極活物質粒子の孤立化が生じにくいため、負極活物質層が導電剤を含有していない場合も導電性を確保することができる。また、負極活物質層が導電剤を含有していないことで、負極活物質層のBET比表面積が低減されて負極表面での非水電解質の分解を抑制できるので、当該蓄電素子の充放電サイクル後の容量維持率の低下をより抑制できる。
(正極)
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。中間層の構成は特に限定されず、例えば上記負極で例示した構成から選択することができる。
 正極基材は、導電性を有する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 正極活物質層は、正極活物質を含む。正極活物質層は、必要に応じて、導電剤、バインダ(結着剤)、増粘剤、フィラー等の任意成分を含む。
 正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1、0<1-x-γ)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1、0<1-x-γ)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1、0<1-x-γ-β)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1、0<1-x-γ-β)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 正極活物質は、通常、粒子(粉体)である。正極活物質のメジアン径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質のメジアン径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質のメジアン径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体のメジアン径を正極活物質のメジアン径とする。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び分級方法は、例えば、上記負極で例示した方法から選択できる。
 正極活物質層における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 正極活物質層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、蓄電素子のエネルギー密度を高めることができる。
 バインダは、上記負極で例示した材料から選択できる。正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、正極活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。
 フィラーは、上記負極で例示した材料から選択できる。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
(セパレータ)
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形態としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形態の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。
(非水電解質)
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。
 非水電解液は、非水溶媒及び電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、1,3-プロペンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,4-ブテンスルトン、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。
 非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。
 固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば15℃から25℃)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、及び窒化物固体電解質、ポリマー固体電解質、ゲルポリマー電解質等が挙げられる。
 硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12等が挙げられる。
 本実施形態の蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
 図1に角型電池の一例としての蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。
<蓄電装置の構成>
 本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の技術が適用されていればよい。
 図2に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子1の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<蓄電素子の製造方法>
 本実施形態の蓄電素子の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体を準備することと、非水電解質を準備することと、電極体及び非水電解質を容器に収容することと、を備える。電極体を準備することは、正極及び負極を準備することと、セパレータを介して正極及び負極を積層又は巻回することにより電極体を形成することとを備える。上記正極は、正極基材に直接又は中間層を介して上記正極活物質層を積層することにより得ることができる。上記正極活物質層の積層は、正極基材に、正極合剤ペーストを塗工することにより行う。また、上記負極は、上記正極と同様、負極基材に直接又は中間層を介して上記負極活物質層を積層することにより得ることができる。上記負極活物質層の積層は、負極基材に、負極活物質粒子及びセルロース誘導体を含有する負極合剤ペーストを塗工することにより行う。上記正極合剤ペースト及び負極合剤ペーストは、分散媒を含んでいてもよい。この分散媒としては、例えば、水、水を主体とする混合溶媒等の水系溶媒;N-メチルピロリドン、トルエン等の有機系溶媒を用いることができる。
 非水電解質を容器に収容することは、公知の方法から適宜選択できる。例えば、非水電解質に非水電解液を用いる場合、容器に形成された注入口から非水電解液を注入した後、注入口を封止すればよい。上記製造方法によって得られる蓄電素子を構成する各要素についての詳細は上述したとおりである。
<その他の実施形態>
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 上記実施形態では、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。
 上記実施形態では、正極及び負極がセパレータを介して積層された電極体について説明したが、電極体は、セパレータを備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。
[実施例1]
(負極)
 負極活物質である天然黒鉛Aからなる負極活物質粒子、セルロース誘導体であるカルボキシメチルセルロースナトリウム(CMC-A)及び分散媒である水を混合して負極合剤ペーストを調製した。負極活物質粒子及びCMC-Aの質量比率は固形分換算で99:1とした。そして、負極合剤ペーストを負極基材である平均厚さ20μmの銅箔の片面に塗工後に、乾燥及びプレスを行うことで負極活物質層を形成し、実施例1の負極を得た。カウンターカチオンがナトリウムイオンであるCMC-Aにおけるピークトップ分子量は3,180,000であり、水溶液の粘度が6940mPa・sであり、エーテル化度が0.65-0.75であった。
(蓄電素子の作製)
 次に、上記負極を作用極とし、金属Liを対極とし、ポリエチレン製セパレータを介して対向させ、非水電解質を注液して半電池を作製し、実施例1の蓄電素子を得た。なお、非水電解質には、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを体積比率30:35:35で混合した溶媒に、1.0mol/dmの濃度でLiPFを溶解させたものを用いた。
[実施例2及び比較例1から比較例6]
 負極の作製に用いた負極活物質粒子、セルロース誘導体の種類及び含有量並びにバインダの含有量を表1に記載の通りとしたこと以外は実施例1と同様にして、実施例2及び比較例1から比較例6の各蓄電素子を得た。なお、実施例2、比較例3、比較例4及び比較例6におけるバインダには、スチレン-ブタジエンゴムを用いた。
[評価]
(充放電サイクル後の容量維持率)
(1)初期充放電
(初期充放電)
 得られた各蓄電素子について、以下の条件にて初期充放電を行った。なお、ここでは、負極を作用極としての評価であるため、以下の説明において、負極活物質に電荷輸送イオンであるリチウムイオンを挿入する工程を「充電」、負極活物質からリチウムイオンを脱離する工程を「放電」とする。25℃において、充電電流1.0C、充電終止電圧0.02Vとして定電流充電を行った後、0.02Vで定電圧充電を行った。充電の終了条件は、充電電流が0.01Cとなるまでとした。その後、10分間の休止期間を設けた。その後、放電電流1.0C、放電終止電圧2.0Vとして定電流放電を行い、その後、10分間の休止期間を設けた。この充放電を3サイクル行った。
(2)充放電サイクル試験
 次に、以下の充放電サイクル試験を行った。各蓄電素子を、25℃の恒温槽内に1時間保管した後、1.0Cの充電電流で0.02Vまで定電流充電した後、充電電流が0.01Cとなるまで0.02Vで定電圧充電した。その後、10分間の休止期間を設けた。その後、1.0Cの放電電流で2.0Vまで定電流放電を行い、10分間の休止を設けた。これら充電及び放電の工程を1サイクルとして、このサイクルを3サイクル、放電電流を2.0C、3.0C、4.0C、1.0Cに変えて各1サイクル、計7サイクル行った。充電、放電及び休止ともに、25℃の恒温槽内で行った。そして、上記1サイクル目の放電容量に対する7サイクル目の放電容量の百分率を充放電サイクル後の容量維持率[%]として求めた。
(負極活物質層の脱落率)
 プレス後の各負極を円形に5枚打ち抜き、ポリプロピレンカップに入れて、試験管ミキサーで回転数1120rpmにて5分間振動させた。そして、振動前の負極の質量に対する振動後に減少した負極の質量の割合(%)を負極活物質層の脱落率として求めた。
 表1に各実施例及び比較例における充放電サイクル後の容量維持率と負極活物質層の脱落率を示す。また、各実施例及び比較例における充放電サイクル後の蓄電素子から取り出した負極について、上記の手順及び方法により求めた負極活物質のBET比表面積、メジアン径、及び平均円形度の値を併せて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、負極活物質粒子の平均円形度が0.60以下であり、セルロース誘導体のピークトップ分子量が2,800,000以上である実施例1及び実施例2の各蓄電素子は、充放電サイクル後の容量維持率が95%以上であるとともに、負極活物質層の脱落率が2.5%以下となり、良好な結果が得られた。また、実施例1及び実施例2の対比から、負極活物質層がバインダを含有しない、又はバインダの含有量が0.8質量%以下の場合、充放電サイクル後の容量維持率の低下の抑制効果が高くなることがわかる。
 一方、負極活物質粒子の平均円形度が0.60以下であるが、セルロース誘導体のピークトップ分子量が2,800,000未満の比較例1及び比較例2においては、負極活物質層がバインダを含有しないことにより、充放電サイクル後の容量維持率の低下の抑制効果は高くなったが、負極活物質層の脱落率が大きくなった。負極活物質粒子の平均円形度が0.60以下であるが、セルロース誘導体のピークトップ分子量が2,800,000未満の比較例3及び比較例4においては、バインダの含有量が0.8質量%を超えることにより、負極活物質層の脱落率は良好であったが、充放電サイクル後の容量維持率の低下の抑制効果が低下した。
 また、セルロース誘導体のピークトップ分子量が2,800,000以上であるが、負極活物質粒子の平均円形度が0.60を超える比較例5においては、負極活物質層がバインダを含有しないことにより、充放電サイクル後の容量維持率の低下の抑制効果が低下するとともに、負極活物質層の脱落率が非常に大きくなった。セルロース誘導体のピークトップ分子量が2,800,000以上であるが、負極活物質粒子の平均円形度が0.60を超える比較例6においては、バインダの含有量が0.8質量%を超えることにより、負極活物質層の脱落率は良好であるが、充放電サイクル後の容量維持率の低下の抑制効果が大きく低下した。
 以上のように、当該蓄電素子は、負極活物質層の脱落及び充放電サイクル後の容量維持率の低下を抑制できることが示された。
1  蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (4)

  1.  負極活物質層を有する負極と、
     正極と
     を備え、
     上記負極活物質層が負極活物質粒子及びセルロース誘導体を含有し、
     上記負極活物質粒子の平均円形度が0.60以下であり、
     上記セルロース誘導体のピークトップ分子量が2,800,000以上である蓄電素子。
  2.  上記負極活物質層がバインダを含有しない、又は0.8質量%以下のバインダを含む請求項1に記載の蓄電素子。
  3.  上記負極活物質層における上記セルロース誘導体の含有量が0.5質量%以上2.0質量%以下である請求項1又は請求項2に記載の蓄電素子。
  4.  上記負極活物質粒子が黒鉛粒子である請求項1又は請求項2に記載の蓄電素子。
     
PCT/JP2023/021819 2022-07-21 2023-06-13 蓄電素子 WO2024018782A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-116784 2022-07-21
JP2022116784 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024018782A1 true WO2024018782A1 (ja) 2024-01-25

Family

ID=89617484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021819 WO2024018782A1 (ja) 2022-07-21 2023-06-13 蓄電素子

Country Status (1)

Country Link
WO (1) WO2024018782A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039949A1 (ja) * 2009-09-29 2011-04-07 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2013089422A (ja) * 2011-10-17 2013-05-13 Toyota Motor Corp リチウム二次電池の製造方法
WO2020045514A1 (ja) * 2018-08-31 2020-03-05 星光Pmc株式会社 製紙用添加剤、紙及び紙の製造方法
JP2021524134A (ja) * 2019-01-03 2021-09-09 エルジー・ケム・リミテッド 二次電池用負極活物質、それを含む電極及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039949A1 (ja) * 2009-09-29 2011-04-07 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2013089422A (ja) * 2011-10-17 2013-05-13 Toyota Motor Corp リチウム二次電池の製造方法
WO2020045514A1 (ja) * 2018-08-31 2020-03-05 星光Pmc株式会社 製紙用添加剤、紙及び紙の製造方法
JP2021524134A (ja) * 2019-01-03 2021-09-09 エルジー・ケム・リミテッド 二次電池用負極活物質、それを含む電極及びその製造方法

Similar Documents

Publication Publication Date Title
JP2020123465A (ja) 負極及び負極の製造方法
US20230207784A1 (en) Positive electrode and energy storage device
US20230113038A1 (en) Positive electrode for energy storage device and energy storage device
WO2024018782A1 (ja) 蓄電素子
WO2023243336A1 (ja) 蓄電素子用負極及び蓄電素子
WO2024029333A1 (ja) 非水電解質蓄電素子
WO2023286718A1 (ja) 蓄電素子
WO2023190422A1 (ja) 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子
WO2023199942A1 (ja) 非水電解質蓄電素子
WO2023224070A1 (ja) 非水電解質蓄電素子
WO2022163422A1 (ja) 蓄電素子及び蓄電素子用の負極
WO2023233790A1 (ja) 蓄電素子
WO2024057925A1 (ja) 非水電解質蓄電素子及び蓄電装置
WO2024116629A1 (ja) 蓄電素子用負極及び蓄電素子
WO2023189140A1 (ja) 蓄電素子用正極、蓄電素子及び蓄電装置
EP4290617A1 (en) Nonaqueous electrolyte power storage element
WO2023281960A1 (ja) 正極、蓄電素子及び蓄電装置
WO2023013269A1 (ja) 負極及び蓄電素子
US20230411624A1 (en) Electrode, energy storage device, and energy storage apparatus
WO2022181516A1 (ja) 非水電解質蓄電素子
WO2023090333A1 (ja) 非水電解質蓄電素子
WO2024014376A1 (ja) 蓄電素子
WO2024010016A1 (ja) 非水電解質蓄電素子、機器、非水電解質蓄電素子の使用方法及び非水電解質蓄電素子の製造方法
WO2022249667A1 (ja) 非水電解質蓄電素子及び蓄電装置
WO2022259724A1 (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842714

Country of ref document: EP

Kind code of ref document: A1