WO2024018045A1 - Procede sol-gel de fabrication de billes creuses - Google Patents

Procede sol-gel de fabrication de billes creuses Download PDF

Info

Publication number
WO2024018045A1
WO2024018045A1 PCT/EP2023/070243 EP2023070243W WO2024018045A1 WO 2024018045 A1 WO2024018045 A1 WO 2024018045A1 EP 2023070243 W EP2023070243 W EP 2023070243W WO 2024018045 A1 WO2024018045 A1 WO 2024018045A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptacle
sol
drops
beads
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2023/070243
Other languages
English (en)
Inventor
Tarek Fathallah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gamma Tech
Original Assignee
Gamma Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamma Tech filed Critical Gamma Tech
Priority to EP23744505.1A priority Critical patent/EP4558466A1/fr
Publication of WO2024018045A1 publication Critical patent/WO2024018045A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0056Preparation of gels containing inorganic material and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0069Post treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/046Making microcapsules or microballoons by physical processes, e.g. drying, spraying combined with gelification or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/206Hardening; drying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape

Definitions

  • Sol-gel processes are known to allow the production, at low temperatures, of ceramics or glasses with high purity and good homogeneity in comparison with conventional high temperature processes.
  • microbeads In the field of cell culture, it is common to use microbeads, forming microcarriers intended to be placed in suspension in a culture medium.
  • Microcarriers often take the form of microbeads, made of glass, or plastic or an organic compound, for example a polymer (for example polystyrene or a polysaccharide).
  • the microbeads have previously undergone a surface treatment, called surface functionalization, so as to promote cell grafting. This involves promoting cell attachment or adhesion.
  • Microcarriers are frequently used for culturing adherent cells. They then act as supports, on which the cells can develop and multiply. Functionalization makes it possible to apply a compound suitable for cell grafting.
  • Document W02021/140129 describes a process for forming sol-gel microdisc type supports, in particular for applications linked to cell culture. The process consists of depositing droplets of a sol-gel solution on a support. The droplets flatten on the support then solidify by gelling/drying.
  • Document KR10 2018 0051263 describes a process allowing the formation, by pyrolysis, of solid balls. The process is carried out at high temperature, the optimal temperature being 800°C.
  • Document FR2073260 describes a process allowing the formation, by pyrolysis, of hollow balls, from a solution comprising a precursor and a swelling agent. The precursor is configured to form a metal oxide when subjected to pyrolysis. Under the effect of pyrolysis, the blowing agent releases a gas under the effect of temperature.
  • the pyrolysis temperature is between 300°C and 1200°C.
  • the inventor proposes an innovative process, simple to implement, allowing collective manufacturing of beads or microbeads in sol-gel, and this at low temperature.
  • the process makes it possible to simultaneously obtain a large number of beads or microbeads in sol-gel, while controlling the shape and diameter of the beads, and this at lower cost.
  • the beads formed can be used in the field of cell culture, but also for different applications, as described below.
  • a first object of the invention is a process for forming beads by sol-gel method, comprising: a) formation of liquid drops from a sol-gel solution, the drops being formed at a distance from a receptacle; b) following step a), movement of the drops through a gaseous medium, to the receptacle, the gaseous medium being conducive to gelling and possibly drying of the drops, so that the drops gradually solidify during their movement towards the receptacle, to form balls; c) collecting the balls on the receptacle, the balls being sufficiently solidified so as not to deform under their own weight when they reach the receptacle; d) extraction of the balls, possibly dried, from the receptacle.
  • the process may include a phase e) of additional drying of each ball, on the receptacle.
  • the gaseous medium may include air.
  • the gaseous medium can be placed under partial vacuum.
  • each drop formed is hollow, forming a bubble of sol-gel solution
  • step b) results in the formation of hollow balls.
  • the sol-gel solution may include a surfactant.
  • step a
  • each drop is expelled by a nozzle of a distributor
  • a filler gas is added to the sol-gel solution in the nozzle.
  • the dispenser can be of the nebulizer or sprayer type.
  • the diameter of each drop is less than 10 mm or 2 mm or 1 mm.
  • the diameter of each drop is greater than 100 nm or 1 pm.
  • step a) is carried out by spraying or nebulization.
  • a second object of the invention is a ball made of sol-gel material, obtained by applying a process according to the first object of the invention.
  • a third object of the invention is a process for forming beads by sol-gel method, comprising: - i) formation of liquid drops from a sol-gel solution, the drops being formed at a distance from a receptacle;
  • the process being characterized in that the receptacle comprises a liquid, conducive to gelation of the beads, the process comprising a step iv) of extracting the beads from the receptacle and drying the beads thus extracted.
  • the process according to the third object of the invention may include the technically compatible characteristics of the process according to the first object of the invention.
  • Figure 1 schematically shows a ball resulting from the invention.
  • Figure 2 shows a first embodiment of the invention.
  • FIG. 3 schematizes the main stages of the invention.
  • Figure 4 shows a second embodiment of the invention.
  • Figure 5 shows a variant of the first or second embodiment.
  • Figure 6 is a photograph of solid balls obtained by implementing the first embodiment of the invention.
  • Figure 7 is a photograph of hollow balls obtained by implementing the second embodiment of the invention.
  • the ball is made from a sol gel material. It has a diameter, less than or equal to 20 mm, and preferably less than or equal to 10 mm, and preferably less than or equal to 1 mm. The diameter is preferably between 100 nm and 1 mm, and more preferably between 1 pm and 1 mm or between 10 and 20 pm and 100 pm or 500 pm.
  • the bead may be intended for applications linked to cell culture, replacing the glass or polymer beads described in connection with the prior art. Other types of application can be considered, as described at the end of the description.
  • each ball obtained by a process according to the invention is transparent.
  • the process can make it possible to form solid balls or hollow balls.
  • a hollow ball corresponds to a bubble, extending around a gaseous central part.
  • the beads according to the invention are obtained by implementing a sol-gel type process, abbreviation of solution-gelation. This is a chemical process known to those skilled in the art, making it possible to manufacture glasses or ceramics at low temperatures.
  • a sol-gel solution formed of: a molecular metal or metalloid precursor, for example an organometallic compound or a metal salt; an organic solvent; water; of an acid or basic catalyst.
  • a network of oxides is formed, through hydrolysis-condensation reactions, trapping the organic solvent, so as to form a gel.
  • the latter then undergoes drying, to eliminate the organic solvent present in the gel.
  • the drying can be of the evaporative type, at a pressure less than or equal to atmospheric pressure, so as to form a dry gel, usually referred to by the term xerogel, in the form of a monolithic solid.
  • the molecular precursor may for example be an organometallic compound of a metal or metalloid, for example a metal alkoxide of formula M(OR)n, where M is a metal or a metalloid, and R is an organic group.
  • the metal M can be for example a transition metal, a lanthanide: it can be Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh , Pd, Ag, Cd, Hf, Ra, W, Re, Os, Ir, Pt, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Al, Ga, In, Ge , Sn, Pb.
  • a transition metal a lanthanide: it can be Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh , Pd, Ag, Cd, Hf, Ra, W, Re, Os, Ir, Pt, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Al, Ga, In, Ge , Sn, Pb.
  • the metalloid element can be chosen from Si, Se, Te.
  • R can be an alkyl group, comprising for example between 1 and 10 carbon atoms, or a phenyl group.
  • n is a natural number corresponding to the number of ligands bound to M, which corresponds to the valency of M.
  • the molecular precursor is placed in an organic solution, for example an alcoholic solution.
  • the organic solvent may be an aliphatic or aromatic monoalcohol, or a diol.
  • the sol-gel solution may also include a catalyst, and/or water, or compounds making it possible to act on the porosity, for example a surfactant.
  • the sol-gel solution comprises a functionalization compound, in particular a organic compound, whose function is to form a grafting agent.
  • grafting agent is meant a molecule or a functional group capable of promoting adhesion, by grafting, of a chemical or biological element to the surface of the xerogel resulting from the implementation of the sol-gel process.
  • the chemical or biological element is predetermined. It may be a molecule, a cell, or a protein or another organic compound, for example a growth factor or an antibody.
  • the grafting agent promotes grafting of a cell of a predetermined type.
  • the grafting agent can then be collagen, or polylysine, or a milk protein.
  • a functionalization compound comprising an epoxy function, the latter being conducive to the formation of chemical bonds with amine functions, the latter being present in most cell membranes.
  • the incorporation of an epoxy function can be carried out by a compound of the glycidoxypropyltrimethoxysilane type, usually designated by the acronym GPTM.
  • An amine function can also be integrated into the sol-gel, using an APTES (3-aminopropyl-triethoxysilane) type compound.
  • APTES 3-aminopropyl-triethoxysilane
  • the sol-gel solution can also include an active ingredient conferring particular properties to the beads that it is desired to form. These may for example be optical properties, for example a particular color, in which case the sol-gel solution may include an ink. It may also be an ability to generate fluorescence light. In the latter case, the sol-gel solution contains fluorescent agents.
  • the sol-gel solution may include agents conferring light diffusion properties, for example titanium oxide particles. This makes it possible to obtain light-diffusing beads.
  • the sol-gel solution may include agents for adjusting the dielectric or electrical properties or the light reflection properties.
  • the beads can contain electrically conductive particles, and thus be used to form electromagnetic shielding.
  • the sol-gel solution may include a compound whose optical properties are modified in the presence of a chemical or biological species.
  • the beads formed from the solution can then be used in a sensor of said chemical or biological species.
  • the sol-gel solution may include an agent having an influence on electrical conductivity.
  • These may for example be conductive particles, for example metal particles.
  • the sol-gel beads obtained can have a density generally less than 2, and preferably less than 1.8.
  • the density is preferably strictly greater than 1 and advantageously between 1 and 1.4 and even more advantageously between 1.02 and 1.04. Such density provides good flotation of the beads in aqueous culture media.
  • a sol-gel solution 2 as previously described, is introduced into a dispenser 3, of the nebulizer or sprayer type, making it possible to form drops 12, and preferably drops calibrated in volume.
  • the drops 12 are preferably microdrops, the volume of which is between 10 -5 nL and a few ml or tens of ml. For example, taking into account a diameter of 2 pm, the volume of the drop is 3.35 10 -5 nL.
  • the dispenser 3 can be a commercial spray or nebulization device.
  • the drops are formed by applying pressure pulses to the sol-gel solution, up to a nozzle. Pressure pulses are applied by a gas propellant 5.
  • the dispenser can be configured to form drops of calibrated size. The drops are formed successively or simultaneously.
  • the distributor allows the formation of drops 12 of sol-gel solution.
  • the geometric characteristics, in particular the diameter, of the drops depend on the choice of the nozzle of the distributor 3 as well as the viscosity of the sol-gel solution 2 and the flow rate of the liquid. It is usually considered that the lower the flow rate, the smaller the diameter as well.
  • FIG. 4 illustrates such an embodiment: a supply gas 5', for example air, is added at the nozzle.
  • the nozzle is placed facing a receptacle 10, at a distance from the latter.
  • the receptacle can be a solid plate, preferably a hydrophobic plate, or a reservoir comprising a liquid, for example water or an oil, for example a silicone oil.
  • the diameter of the drops 12 formed by the distributor 3, at the nozzle outlet), is preferably between 100 nm and 5 mm, or between 100 nm and 1 mm.
  • the diameter can reach 10mm or 20mm.
  • the drops 12 formed by the distributor 3 are directed towards the receptacle 10, through a gaseous medium 4 extending between the distributor 3 and the receptacle 10.
  • the gaseous medium can for example be air, or be composed mainly of air.
  • the gaseous medium through which the drops move can be confined in an enclosure 7.
  • the temperature and/or pressure in the enclosure can be adjusted, so as to promote the gelation of the drops 12.
  • the movement of the drops towards the receptacle 10 can be spontaneous, for example gravitational, which corresponds to the preferred embodiment.
  • the movement of the drops 12 towards the receptacle 10 can be forced, for example by driving the gaseous medium towards the receptacle, resulting in a movement of the drops to the receptacle.
  • the current can also be opposed to the spontaneous movement of the drops: this makes it possible to increase the duration of movement of the drops in the gaseous medium. The greater the travel time, the more advanced the gelation and drying when the drops reach the receptacle.
  • the drops undergo gelation and drying, which leads to their solidification.
  • the duration of the movement of the drops 12 between the distributor 3 and the receptacle 10 is calculated so that the drops reach the receptacle while the gelling phase has advanced sufficiently so that the drops are in a sufficiently solid state not to deform spontaneously. or break when they reach the receptacle.
  • the drops are not deformed, or to a negligible extent, in contact with the receptacle.
  • the drops gradually solidify, under the effect of gelation and drying of the sol-gel solution. They then take the shape of balls. In this example, these are solid balls.
  • Step 120 may include a complementary drying phase of the material forming each ball.
  • the use of a solid and preferably hydrophobic receptacle facilitates the recovery of the beads, avoiding the formation of OH bonds between the beads resulting from the implementation of the process, and the receptacle 10.
  • the balls 1 can be recovered using a recovery support, preferably flexible, for example a canvas. It may be a porous nylon filter.
  • the porosity of the recovery support can be optimized to retain the balls 1 while allowing the elimination of balls of too small a size or debris, the latter passing through the recovery support. For example, when the diameter (or the largest diagonal) of the beads is equal to 600 pm, the particle size of the recovery support can be 400 pm. When the diameter of the beads is 200 pm, the particle size can be 150 pm.
  • the beads recovered during step 120, placed on the recovery support, are washed, for example by a bath in a washing solution making it possible to eliminate residual acids present in the sol-gel solution or possible precursors n not having reacted.
  • the washing solution may be an aqueous solution, for example an aqueous solution comprising 50% by weight of isopropanol.
  • the process may successively comprise several baths, for example two or three successive baths.
  • the beads are dried. Drying can be carried out at room temperature or at a higher temperature, for example up to 100°C or above. The drying temperature can be lowered if a partial vacuum is formed around the beads. During drying, the balls can be placed on the recovery support and the whole is placed in an oven.
  • the beads are subject to post-drying heat treatment.
  • the distributor 3 is configured to produce hollow drops, or bubbles, that is to say drops formed by a spherical film of sol-gel solution containing a gas.
  • the production of bubbles is facilitated by the use of a surfactant in the sol-gel solution.
  • the surfactant may be a Polyethylene (40) stearate hexadecyltrimethyliammonium.
  • the mass fraction of surfactant is preferably less than 5% and can be between 0.5% and 5%.
  • the bubbles gradually solidify, by gelling/drying, so as to form hollow balls.
  • the hollow balls reach the receptacle in solid form.
  • the use of a receptacle containing a liquid makes it possible to limit the risk of damage to the hollow balls when they reach the receptacle.
  • An important aspect of the invention is that when the balls 1 reach the receptacle 10 they are sufficiently solid to be considered non-deformable. Unlike the process described in W02021/140129, the balls reaching the receptacle do not deform on the latter.
  • the main difference between the method described in W02021/140129 and the method which is the subject of the invention lies in the duration of the movement of the drops 12 between the distributor 3 and the receptacle 10.
  • the distance between the distributor and the receptacle is sufficiently weak so that the drops, reaching the receptacle, can be deformed under their own weight, so as to flatten.
  • the distance between the dispenser and the receptacle is thus preferably less than 10 cm.
  • the drops, whether full or hollow reach the receptacle having been solidified so as to no longer be deformable under their own weight, that is to say in the absence of an external constraint.
  • the distance between the receptacle 10 and the dispenser 3 is preferably strictly greater than 10 cm, or even greater than 15 cm or 20 cm. It can reach several meters.
  • the receptacle may comprise a liquid 15.
  • the liquid 15 may comprise a gelling agent, so as to finalize the gelation process.
  • the liquid can be, for example, a silicone or an oil or water.
  • the balls can reach the receptacle even though they are not solidified: they are then deformable.
  • Such an embodiment is particularly suitable for the manufacture of hollow balls. In fact, the latter are more fragile when they reach the receptacle.
  • the use of a liquid 15, present in the receptacle makes it possible to reduce the risk of breakage.
  • the liquid 15 can include an active principle promoting gelation.
  • the distance between the dispenser forming the drops and the receptacle can be reduced, for example of the order of a few cm, or less than 1 cm.
  • Drying can be carried out after extracting the beads from the liquid.
  • the liquid is an oil or silicone
  • drying can be carried out in the liquid.
  • the gaseous medium extending between the distributor 3 and the receptacle 10 can be configured so as to promote rapid gelation of the sol-gel drops.
  • the enclosure can be placed under partial vacuum, or be heated to a temperature conducive to gelling, for example a temperature of 40°C.
  • the gaseous medium may contain one or more compounds promoting gelation, for example an ammonia vapor, or a gas comprising an amine function, for example methylamine.
  • Enclosure 7 can also be saturated with water vapor. Accelerating the gelation process makes it possible to reduce the travel time of the drops between the distributor 3 and the receptacle 10. This makes it possible to reduce the distance between the distributor 3 and the receptacle 10: the process can be implemented at using a more compact device.
  • Tests were carried out to produce solid balls.
  • the experimental conditions are: Dispenser 3: Vermes MDV 3200 A dosing valve equipped with a Vermes Nll-150 nozzle to form sol-gel microdrops.
  • Receptacle 10 laboratory floor: concrete covered with a plastic sheet.
  • Mineral functionalization compound Hydroxyapatite Ca5(OH)(PO 4 ) 3 (Sigma Aldrich).
  • Organic functionalization compound Bovine collagen type 1: 10mg/ml (Vornia Ltd).
  • hydroxyapatite solution was obtained by dissolving 200 mg of hydroxyapatite powder in 2.5 ml of deionized water. and 0.5 ml of HCl, HCl facilitating dissolution of the hydroxyapatite powder. 2 ml of collagen solution were also added.
  • sol-gel solution the preparation of which is described in the previous paragraph, was introduced into a syringe of the dosing valve, the adjustment parameters of which are as follows: rising: 0.55 ms; falling: 0.75ms; open time: 0 ms; needle lift: 30; delay: 7ms; air pressure: 0.5 bar. These parameters are adjusted on a case-by-case basis by those skilled in the art.
  • the gaseous medium separating the dispenser from the receptacle was air, at a temperature of 40°C, so as to promote gelling and drying of the drops.
  • the volume of the drops formed by the dispenser was 5 nL (nanoliters).
  • the formed beads were placed on a porous nylon filter, so as to eliminate beads of too small sizes, resulting from the formation of satellite drops by the nozzle.
  • the pores measured 120 ⁇ m in diameter.
  • the porous filter, retaining the beads was placed in a crystallizer, comprising isopropanol diluted to 50% (mass fraction) in deionized water, so as to carry out washing.
  • the washing time was 1h30.
  • the washing was repeated three times. Following the washings, the filter retaining the beads was dried in an oven at 100°C for 1h30.
  • Dispenser 3 household spray.
  • Receptacle 10 laboratory floor: concrete covered with a plastic sheet. Distance between receptacle 10 and dispenser 3: 4.5 meters
  • cetyl-methylammonium bromide (Hexadecytrimethyl-ammonium bromide).
  • Mineral functionalization compound Hydroxyapatite Ca5(OH)(PO 4 )3 (Sigma Aldrich).
  • Organic functionalization compound Bovine collagen type 1: 10mg/ml (Vornia Ltd).
  • the gaseous medium separating the dispenser from the receptacle was air, at a temperature of 40°C, so as to promote gelling and drying of the drops.
  • the volume of the drops formed by the dispenser was 35 nL (nanoliters).
  • the hollow balls formed were placed on a porous nylon filter, so as to eliminate balls of too small sizes, resulting from the formation of satellite drops by the nozzle.
  • the pores measured 160 ⁇ m in diameter.
  • Figure 7 shows an example of hollow balls obtained.
  • the beads can be used for different purposes: for example the manufacture of optical elements (fluorescent beads, diffusing beads, fluorescent beads), or the manufacture of sensors (beads containing active ingredients whose optical properties are modified in the presence of a chemical or biological species).
  • the beads can be integrated into a matrix, for example a polymer, so as to modify the mechanical properties of the matrix.
  • a polymer for example, a polymer, so as to modify the mechanical properties of the matrix.
  • the integration of beads into a polymer can increase compressive strength. This can help reduce the weight of the polymer.
  • the polymer can for example be a polymer as described in US11091638. Such a polymer is designated by the term “rheoplex polymer”. Its viscosity increases almost instantly under the effect of an impact. Thus, in the “normal” state, this type of polymer is relatively flexible, while under the effect of an impact, the polymer hardens instantly. The addition of balls improves compressive strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Procédé de formation de billes (1) par voie sol-gel, comportant : a) formation de gouttes liquides (12) à partir d'une solution sol-gel (2), les gouttes étant formées à distance d'un réceptacle (10); b) suite à l'étape a), déplacement des gouttes à travers un milieu gazeux, jusqu'au réceptacle, le milieu gazeux étant propice à une gélification et éventuellement un séchage des gouttes, de façon que les gouttes se solidifient progressivement durant leur déplacement vers le réceptacle, de façon à former des billes; c) collecte des billes sur le réceptacle, les billes étant suffisamment solidifiées pour ne pas se déformer sous leur propre poids lorsqu'elles atteignent le réceptacle; d) extraction des billes, éventuellement séchées, du réceptacle.

Description

Description
Titre : Procédé sol-gel de fabrication de billes creuses ou pleines
ART ANTERIEUR
Les procédés sol-gel sont connus pour permettre la production, à basse température, de céramiques ou de verres avec une grande pureté et une bonne homogénéité en comparaison avec les procédés conventionnels à haute température.
Dans le domaine de la culture cellulaire, il est fréquent d'utiliser des microbilles, formant des microporteurs destinés à être placés en suspension dans un milieu de culture. Les microporteurs prennent souvent la forme de microbilles, réalisées en verre, ou en plastique ou en un composé organique, par exemple un polymère (par exemple polystyrène ou un polysaccharide). Généralement, les microbilles ont préalablement fait l'objet d'un traitement de surface, dit fonctionnalisation de surface, de façon à favoriser un greffage des cellules. Il s'agit de favoriser une accroche ou une adhérence de cellules. Les microporteurs sont fréquemment utilisés pour la culture de cellules adhérentes. Ils font alors office de supports, sur lesquels les cellules peuvent se développer et se multiplier. La fonctionnalisation permet d'appliquer un composé propice au greffage de cellules. Il peut s'agir d'un composé biologique (par exemple collagène, gélatine, élastine, Poly D-Lysine, fibronectrine), ou une molécule permettant un apport de charges positives ou négatives en surface (par exemple trimétyl ammonium cationique ou diéthylaminoéthyle). Le document W02021/140129 décrit un procédé permettant de former des supports de type microdisques en sol-gel, en particulier pour des applications liées à la culture cellulaire. Le procédé consiste à déposer des gouttelettes d'une solution sol-gel sur un support. Les gouttelettes s'aplatissent sur le support puis se solidifient par gélification / séchage.
Les publications Kim N. K et al, "Fabrication of hollow silica aerogel spheres by a droplet generation method and sol-gel processing", et Kim K. et al "Hollow Silica Spheres of Controlled Size and Porosity by sol-gel processing" décrivent des procédés permettant une formation de billes creuses selon un procédé sol-gel. Cependant, le procédé suppose une buse spécifique, ce qui limite le rendement de production des billes.
Les document KR10 2018 0051263 décrit un procédé permettant une formation, par pyrolyse, de billes pleines. Le procédé est mis en oeuvre à haute température, la température optimale étant de 800°C. Le document FR2073260 décrit un procédé permettant une formation, par pyrolyse, de billes creuses, à partir d'une solution comportant un précurseur et un agent gonflant. Le précurseur est configuré former pour former un oxyde de métal lorsqu'il est soumis à une pyrolyse. Sous l'effet de la pyrolyse, l'agent gonflant libère un gaz sous l'effet de la température. La température de la pyrolyse est comprise entre 300°C et 1200°C.
Le document US20170342274 décrit un procédé permettant de former des particules mésoporeuses comportant un agent anti-corrosion. Le procédé comporte une nébulisation d'une solution comportant un tensioactif. Le tensioactif est incorporé suite à une phase de gélification d'une solution sol-gel. Il en résulte une formation de particules mésoporeuses, c'est - à-dire pleines et comportant un réseau tridimensionnel inorganique ou hybride organique- inorganique. Les particules sont formées par pyrolyse, à une température comprise entre 120°C et 400°C.
L'inventeur propose un procédé innovant, et simple à mettre en oeuvre, permettant une fabrication collective de billes ou de microbilles en sol-gel, et cela à basse température. Le procédé permet d'obtenir simultanément un grand nombre de billes ou microbilles en sol-gel, tout en maîtrisant la forme et le diamètre des billes, et cela à moindre coût. Les billes formées peuvent être utilisées dans le domaine de la culture cellulaire, mais également pour différentes applications, comme décrit par la suite.
EXPOSE DE L'INVENTION
Un premier objet de l'invention est un procédé de formation de billes par voie sol-gel, comportant : a) formation de gouttes liquides à partir d'une solution sol-gel, les gouttes étant formées à distance d'un réceptacle; b) suite à l'étape a), déplacement des gouttes à travers un milieu gazeux , jusqu'au réceptacle, le milieu gazeux étant propice à une gélification et éventuellement un séchage des gouttes, de façon que les gouttes se solidifient progressivement durant leur déplacement vers le réceptacle, pour former des billes ; c) collecte des billes sur le réceptacle, les billes étant suffisamment solidifiées pour ne pas se déformer sous leur propre poids lorsqu'elles atteignent le réceptacle ; d) extraction des billes, éventuellement séchées, du réceptacle.
Le procédé peut comporter une phase e) de séchage complémentaire de chaque bille, sur le réceptacle.
Le milieu gazeux peut comporter de l'air. Le milieu gazeux peut être placé sous vide partiel.
Selon une possibilité :
- lors de l'étape a), chaque goutte formée est creuse, formant une bulle de solution sol- gel ;
- l'étape b) entraîne une formation de billes creuses.
La solution sol-gel peut comporter un agent tensio-actif.
Selon une possibilité, au cours de l'étape a),
- chaque goutte est expulsée par une buse d'un distributeur ;
- un gaz d'apport est ajouté à la solution sol-gel dans la buse.
Le distributeur peut être de type nébulisateur ou pulvérisateur.
Selon une possibilité, lors de l'étape a) le diamètre de chaque goutte est inférieur à 10 mm ou à 2 mm ou à 1 mm.
Selon une possibilité, lors de l'étape a), le diamètre de chaque goutte est supérieur à 100 nm ou à 1 pm.
Selon une possibilité, l'étape a) est réalisée par pulvérisation ou nébulisation.
Un deuxième objet de l'invention est une bille en matériau sol-gel, obtenue en appliquant un procédé selon le premier objet de l'invention.
Un troisième objet de l'invention est un procédé de formation de billes par voie sol-gel, comportant : - i) formation de gouttes liquides à partir d'une solution sol-gel, les gouttes étant formées à distance d'un réceptacle ;
- ii) suite à l'étape i), déplacement des gouttes jusqu'au réceptacle ;
- iii) collecte des billes dans le réceptacle ; le procédé étant caractérisé en ce que le réceptacle comporte un liquide, propice à une gélification des billes, le procédé comportant une étape iv) d'extraction des billes du réceptacle et de séchage des billes ainsi extraites.
Le procédé selon le troisième objet de l'invention peut comporter les caractéristiques techniquement compatibles du procédé selon le premier objet de l'invention.
L'invention sera mieux comprise à la lecture de l'exposé des exemples de réalisation présentés, dans la suite de la description, en lien avec les figures listées ci-dessous.
FIGURES
La figure 1 schématise une bille résultant de l'invention.
La figure 2 montre un premier mode de réalisation de l'invention.
La figure 3 schématise les principales étapes de l'invention.
La figure 4 montre un deuxième mode de réalisation de l'invention.
La figure 5 montre une variante du premier ou du deuxième mode de réalisation.
La figure 6 est une photographie de billes pleines obtenues en mettant en oeuvre le premier mode de réalisation de l'invention.
La figure 7 est une photographie de billes creuses obtenues en mettant en oeuvre le deuxième mode de réalisation de l'invention.
EXPOSE DE MODES DE REALISATION PARTICULIERS
On a représenté, sur la figure 1, un exemple de bille selon l'invention. La bille est réalisée selon un matériau sol gel. Elle présente un diamètre , inférieur ou égale à 20 mm, et de préférence inférieur ou égal à 10 mm, et de préférence inférieur ou égal à 1 mm. Le diamètre est de préférence compris entre 100 nm et 1 mm, et encore de préférence entre 1 pm et 1 mm ou entre 10 et 20 pm et 100 pm ou 500 pm.
La bille peut être destinée à des applications liées à la culture cellulaire, en substitution aux billes de verre ou de polymère décrites en lien avec l'art antérieur. D'autres types d'application peuvent être envisagées, comme décrit à la fin de la description.
De préférence, chaque bille obtenue par un procédé selon l'invention est transparente. Le procédé peut permettre de former des billes pleines ou des billes creuses. Une bille creuse correspond à une bulle, s'étendant autour d'une partie centrale gazeuse. Les billes selon l'invention sont obtenues en mettant en oeuvre un procédé de type sol-gel, abréviation de solution-gélification. Il s'agit d'un procédé chimique connu de l'homme du métier, permettant de fabriquer, à basse température, des verres ou des céramiques. Un tel procédé comporte l'utilisation d'une solution sol-gel, formée : d'un précurseur moléculaire de métal ou de métalloïde, par exemple un composé organométallique ou un sel métallique ; d'un solvant organique ; d'eau ; d'un catalyseur acide ou basique.
En présence d'eau, ou de vapeur d'eau, un réseau d'oxydes se forme, par le biais de réactions d'hydrolyse-condensation, emprisonnant le solvant organique, de façon à former un gel. Ce dernier subit ensuite un séchage, pour éliminer le solvant organique présent dans le gel. Le séchage peut être de type évaporatif, à une pression inférieure ou égale à la pression atmosphérique, de façon à former un gel sec, usuellement désigné par le terme xérogel, se présentant sous la forme d'un solide monolithique.
Le précurseur moléculaire peut par exemple être un composé organométallique de métal ou de métalloïde, par exemple un alcoxyde métallique de formule M(OR)n, où M est un métal ou un métallloïde, et R est un groupe organique.
Le métal M peut être par exemple un métal de transition, un lanthanide : il peut s'agir de Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ra, W, Re, Os, Ir, Pt, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Al, Ga, In, Ge, Sn, Pb.
L'élément métalloïde peut être choisi parmi Si, Se, Te.
R peut être un groupe alkyle, comportant par exemple entre 1 et 10 atomes de carbone, ou un groupe phényle. n est un entier naturel correspondant au nombre de ligands liés à M, qui correspond à la valence de M.
Le précurseur moléculaire est placé dans une solution organique, par exemple une solution alcoolique. Le solvant organique peut être un monoalcool aliphatique ou aromatique, ou un diol.
La solution sol-gel peut également comporter un catalyseur, et/ou de l'eau, ou des composés permettant d'agir sur la porosité, par exemple un tensioactif.
Selon un mode de réalisation, qui concerne particulièrement les applications de culture cellulaire, la solution sol-gel comporte un composé de fonctionnalisation, notamment un composé organique, dont la fonction est de former un agent de greffage. Par agent de greffage, on entend une molécule ou un groupe fonctionnel apte à favoriser une accroche, par greffage, d'un élément chimique ou biologique à la surface du xérogel résultant de la mise en oeuvre du procédé sol-gel. L'élément chimique ou biologique est prédéterminé. Il peut s'agir d'une molécule, d'une cellule, ou d'une protéine ou d'un autre composé organique, par exemple un facteur de croissance ou un anticorps. Pour les applications liées à la culture cellulaire, l'agent de greffage favorise un greffage d'une cellule, de type prédéterminé. L'agent de greffage peut alors être du collagène, ou de la polylysine, ou une protéine de lait. Cependant, du fait de contraintes réglementaires ou de contrôle qualité, il est parfois préférable d'éviter des molécules d'origine animale. On peut alors utiliser un composé de fonctionnalisation comportant une fonction époxy, cette dernière étant propice à la formation de liaisons chimiques avec des fonctions amines, ces dernières étant présentes dans la plupart des membranes cellulaires. L'incorporation d'une fonction epoxy peut être effectuée par un composé de type glycidoxypropyltrimethoxysilane, usuellement désigné par l'acronyme GPTM. Une fonction amine peut également être intégrée dans le sol-gel, par le biais d'un composé de type APTES (3-aminopropyl-triethoxysilane). Un tel composé permet une formation de charges positives à la surface des billes, ce qui favorise une accroche de cellules présentant des charges négatives surfaciques. Une fonction amine est propice à la formation de liaisons peptidiques avec les acides aminés de la paroi cellulaire.
La possibilité d'ajouter un composé de fonctionnalisation dans la solution sol-gel constitue un avantage intéressant, car cela évite de réaliser une fonctionnalisation post fabrication, comme dans les billes de l'art antérieur. Cela permet de fabriquer des billes spécifiques à une application prédéfinie, prenant en compte l'élément chimique ou biologique destiné à se fixer sur les billes, et/ou le milieu dans lequel la bille est destinée à être disposée.
La solution sol-gel peut également comporter un principe actif conférant des propriétés particulières aux billes que l'on souhaite former. Il peut par exemple s'agir de propriétés optiques, par exemple une couleur particulière, auquel cas la solution sol-gel peut comporter une encre. Il peut également s'agir d'une aptitude à générer une lumière de fluorescence. Dans ce dernier cas la solution sol-gel comporte des agents fluorescents. La solution sol-gel peut comporter des agents conférant des propriétés de diffusion de la lumière, par exemple des particules d'oxyde de titane. Cela permet d'obtenir des billes diffusant la lumière. La solution sol-gel peut comporter des agents permettant d'ajuster les propriétés diélectriques ou électriques ou les propriétés de réflexion de la lumière. Les billes peuvent comporter des particules électriquement conductrice, et ainsi être utilisées pour former un blindage électromagnétique.
La solution sol-gel peut comporter un composé dont les propriétés optiques sont modifiées en présence d'une espèce chimique ou biologique. Les billes formées à partir de la solution peuvent alors être utilisées dans un capteur de ladite espèce chimique ou biologique.
La solution sol-gel peut comporter un agent ayant une influence sur la conductivité électrique.
Il peut par exemple s'agir de particules conductrices, par exemple des particules de métal
Les billes sol-gel obtenues peuvent avoir une densité généralement inférieure à 2, et de préférence inférieure à 1.8. La densité est de préférence strictement supérieure à 1 et avantageusement comprise entre 1 et 1.4 et encore plus avantageusement entre 1.02 et 1.04. Une telle densité confère une bonne flottaison des billes dans des milieux de culture aqueux.
On peut également chercher à augmenter la densité, par exemple : en diminuant la porosité, par une réduction de la quantité de solvant et d'eau dans le sol ; en ajoutant des oxydes métalliques de densité supérieure à celle du verre ou en ajoutant de particules denses, par exemple plomb, or, tungstène : il peut par exemple s'agir d'oxyde de titane (densité 4.23 g/cm3), ou d'oxyde d'alumine (densité 3.95 g/cm3), oxyde d'étain (densité 6.95 g/cm3) ou oxyde de zircone (densité 5.68 g/cm3).
Un premier exemple de procédé de fabrication d'une bille, par procédé sol-gel, est à présent décrit en lien avec la figure 2. Les principales étapes sont schématisées sur la figure 3.
100 formation des gouttes
Une solution sol-gel 2, telle que précédemment décrite, est introduite dans un distributeur 3, de type nébuliseur ou pulvérisateur, permettant de former des gouttes 12, et de préférence des gouttes calibrées en volume. Les gouttes 12 sont de préférence de microgouttes, dont le volume est compris entre 10-5 nL et quelques ml ou dizaines de ml. Par exemple, en prenant en compte un diamètre de 2 pm, le volume de la goutte est de 3,35 10-5 nL.
Le distributeur 3 peut être un dispositif de pulvérisation (spray) ou de nébulisation commercial. Dans l'exemple représenté, les gouttes sont formées en appliquant des impulsions de pression sur la solution sol-gel, jusqu'à une buse. Les impulsions de pression sont appliquées par un gaz propulseur 5. Le distributeur peut être configuré pour former des gouttes de taille calibrées. Les gouttes sont formées successivement ou simultanément.
Le distributeur permet une formation de gouttes 12 de solution sol-gel. Les caractéristiques géométriques, notamment le diamètre, des gouttes dépendent du choix de la buse du distributeur 3 ainsi que de la viscosité de la solution sol-gel 2 et du débit du liquide. Il est usuellement considéré que plus le débit est faible, plus le diamètre est faible également.
L'adjonction d'air au niveau de la buse du distributeur (distributeur dit « air mixed ») permet la formation de billes de faibles tailles, par exemple de l'ordre de quelques pm à quelques dizaines de microns. Sans adjonction d'air (distributeur dit « air less »), la buse permet la formation de billes de tailles plus importantes. La figure 4 illustre un tel mode de réalisation : un gaz d'apport 5', par exemple de l'air, est ajouté au niveau de la buse.
La buse est disposée face à un réceptacle 10, à distance de ce dernier. Le réceptacle peut être une plaque solide, de préférence une plaque hydrophobe, ou un réservoir comportant un liquide, par exemple de l'eau ou une huile, par exemple une huile silicone.
Le diamètre des gouttes 12 formées par le distributeur 3, en sortie de buse), est de préférence compris entre 100 nm et 5 mm, ou entre 100 nm et 1 mm. Le diamètre peut atteindre 10 mm ou 20 mm.
110 gélification et séchage.
Suite à l'étape 110, les gouttes 12 formées par le distributeur 3 sont dirigées vers le réceptacle 10, à travers un milieu gazeux 4 s'étendant entre le distributeur 3 et le réceptacle 10. Le milieu gazeux peut par exemple être de l'air, ou être majoritairement composé d'air.
Le milieu gazeux à travers lequel les gouttes se déplacent peut être confiné dans une enceinte 7. La température et/ou la pression dans l'enceinte peut être ajustée, de façon à favoriser la gélification des gouttes 12. Le déplacement des gouttes vers le réceptacle 10 peut être spontané, par exemple gravitaire, ce qui correspond au mode de réalisation préféré. Le déplacement des gouttes 12 vers le réceptacle 10 peut être forcé, par exemple en entraînant le milieu gazeux vers le réceptacle, résultant en un déplacement des gouttes jusqu'au réceptacle. Le courant peut également être opposé au déplacement spontané des gouttes : cela permet d'augmenter la durée de déplacement des gouttes dans le milieu gazeux. Plus la durée de déplacement est importante, plus la gélification et le séchage sont avancés lorsque les gouttes atteignent le réceptacle. Au cours du déplacement entre le distributeur 3 et le réceptacle 10, les gouttes subissent une gélification et un séchage, ce qui entraîne leur solidification. La durée du déplacement des gouttes 12 entre le distributeur 3 et le réceptacle 10 est calculée de façon que les gouttes atteignent le réceptacle alors que la phase de gélification a suffisamment avancé pour que les gouttes soient dans un état suffisamment solide pour ne pas se déformer spontanément ou casser lorsqu'elles atteignent le réceptacle. Ainsi, et c'est un aspect important de l'invention, les gouttes ne sont pas déformées, ou de façon négligeable, au contact du réceptacle.
Au cours de leur déplacement vers le réceptacle 10, à travers le milieu gazeux 4, les gouttes se solidifient progressivement, sous l'effet de la gélification et du séchage de la solution sol-gel. Elles prennent alors la forme de billes. Dans cet exemple, il s'agit de billes pleines.
Etape 120. extraction
Au cours de cette étape, on extrait les billes 1 déposées sur ou dans le réceptacle 10. L'étape 120 peut comporter une phase de séchage complémentaire du matériau formant chaque bille. Le recours à un réceptacle solide et de préférence hydrophobe facilite la récupération des billes, en évitant une formation de liaisons OH entre les billes résultant de la mise en oeuvre du procédé, et le réceptacle 10.
Les billes 1 peuvent être récupérées à l'aide d'un support de récupération, de préférence souple, par exemple une toile. Il peut s'agir d'un filtre poreux en nylon. La porosité du support de récupération peut être optimisée pour retenir les billes 1 tout en permettant l'élimination de billes de taille trop faibles ou de débris, ces derniers traversant le support de récupération. Par exemple, lorsque le diamètre (ou la plus grande diagonale) des billes est égal à 600 pm, la granulométrie du support de récupération peut être de 400 pm. Lorsque le diamètre des billes est de 200 pm, la granulométrie peut être de 150 pm.
130 lavage
Les billes récupérées lors de l'étape 120, disposées sur le support de récupération, sont lavées, par exemple par un bain dans une solution de lavage permettant d'éliminer des acides résiduels présents dans la solution sol-gel ou d'éventuels précurseurs n'ayant pas réagi. La solution de lavage peut être une solution aqueuse, par exemple une solution aqueuse comportant 50% en masse d'isopropanol. Le procédé peut comprendre successivement plusieurs bains, par exemple deux ou trois bains successifs.
140 séchage post lavage Suite à l'étape 130, les billes font l'objet d'un séchage. Le séchage peut être effectué à température ambiante ou à une température plus élevée, par exemple jusqu'à 100°C ou au- delà. La température de séchage peut être abaissée si un vide partiel est formé autour des billes. Lors du séchage, les billes peuvent être disposées sur le support de récupération et l'ensemble est placé dans une étuve.
Eventuellement, les billes font l'objet d'un traitement thermique post-séchage.
Selon une variante, le distributeur 3 est configuré pour produire des gouttes creuses, ou bulles, c'est-à-dire des gouttes formées par un film sphérique de solution sol-gel renfermant un gaz. La production de bulles est facilitée par le recours à un tensio-actif dans la solution sol-gel. Le tensio-actif peut être un Polyethylene (40) stearate l'hexadecyltrimethyliammonium. La fraction massique de tensio-actif est de préférence inférieure à 5% et peut être comprise entre 0.5 % et 5%.
Durant le déplacement entre le distributeur 3 et le réceptacle 10, les bulles se solidifient progressivement, par gélification / séchage, de façon à former des billes creuses. Les billes creuses atteignent le réceptacle sous forme solide. Le recours à un réceptacle comportant un liquide permet de limiter le risque d'endommagement des billes creuses lorsqu'elles atteignent le réceptacle.
Un aspect important de l'invention est que lorsque les billes 1 atteignent le réceptacle 10 en étant suffisamment solides pour être considérées comme indéformables. Contrairement au procédé décrit dans W02021/140129, les billes atteignant le réceptacle ne se déforment pas sur ce dernier. La principale différence entre le procédé décrit dans W02021/140129 et le procédé objet de l'invention tient à la durée du déplacement des gouttes 12 entre le distributeur 3 et le réceptacle 10. Dans W02021/140129, la distance entre le distributeur et le réceptacle est suffisamment faible pour que les gouttes, atteignant le réceptacle, puissent être déformées sous leur propre poids, de façon à s'aplatir. Dans W02021/140129, la distance entre le distributeur et le réceptacle est ainsi préférentiellement inférieure à 10 cm. Au contraire, dans le procédé objet de l'invention, les gouttes, qu'elles soient pleines ou creuses, atteignent le réceptacle en ayant été solidifiées de façon à ne plus être déformable sous leur propre poids, c'est-à-dire en l'absence d'une contrainte externe.
La distance entre le réceptacle 10 et le distributeur 3 est de préférence strictement supérieure à 10 cm, voire supérieure à 15 cm ou à 20 cm. Elle peut atteindre plusieurs mètres. Selon une variante, représentée sur la figure 5, le réceptacle peut comporter un liquide 15. Le liquide 15 peut comporter un agent de gélification, de façon à finaliser le processus de gélification. Le liquide peut être par exemple une silicone ou une huile ou de l'eau. Dans ce cas, les billes peuvent atteindre le réceptacle alors qu'elles ne sont pas solidifiées :elles sont alors déformables. Un tel mode de réalisation est particulièrement approprié à la fabrication de billes creuses. En effet, ces dernières sont plus fragiles lorsqu'elles atteignent le réceptacle. Le recours à un liquide 15, présent dans le réceptacle, permet de diminuer le risque de casse. La gélification peut être effectuée ou poursuivie dans le liquide. Ainsi, le liquide 15 peut comporter un principe actif favorisant la gélification. Selon ce mode de réalisation, la distance entre le distributeur formant les gouttes et le réceptacle peut être réduite, par exemple de l'ordre de quelques cm, ou inférieure à 1 cm.
Le séchage peut être effectué après extraction des billes du liquide. Lorsque le liquide est une huile ou une silicone, le séchage peut être effectué dans le liquide.
Le milieu gazeux s'étendant entre le distributeur 3 et le réceptacle 10, peut être configuré de manière à favoriser une gélification rapide des gouttes sol-gel. L'enceinte peut être placée sous vide partiel, ou être chauffée à une température propice à la gélification, par exemple une température de 40°C. Le milieu gazeux peut comporter un ou plusieurs composés favorisant la gélification, par exemple une vapeur d'ammoniac, ou un gaz comportant une fonction amine, par exemple le méthylamine. L'enceinte 7 peut également être saturée en vapeur d'eau. L'accélération du processus de gélification permet de réduire la durée de parcours des gouttes entre le distributeur 3 et le réceptacle 10. Cela permet de réduire la distance entre le distributeur 3 et le réceptacle 10 : le procédé peut être mis en oeuvre à l'aide d'un dispositif plus compact.
Essais expérimentaux.
Des essais ont été réalisés, pour produire des billes pleines. Les conditions expérimentales sont : Distributeur 3: Vanne de dosage Vermes MDV 3200 A équipée d'une buse Vermes Nll- 150 pour former des microgouttes sol-gel.
Réceptacle 10 : sol du laboratoire : béton recouvert d'une bâche en plastique.
Distance entre le réceptacle 10 et le distributeur 3 : 4,5 mètres
Précurseur : Tétraméthoxysilane 98% (Alfa Aesar).
Solvant : Isopropanol Technical (Alfa Aesar).
Catalyseur : HCl 6IVI (Sigma Aldrich).
Composé de fonctionnalisation minéral : Hydroxyapatite Ca5(OH)(PO4)3 (Sigma Aldrich). Composé de fonctionnalisation organique : Collagène bovin de type 1 : 10mg/ml (Vornia Ltd).
On a versé, dans un bêcher de 50 ml, 10 ml de tétraméthoxysilane, maintenu sous agitation à température ambiante. On a préparé une solution de 5 ml d'eau déionisée dans laquelle on a ajouté 0.1 ml d'HCI. La solution a été versée lentement dans le bêcher contenant le tétraméthoxysilane (10 ml). L'hydrolyse du tétraméthoxysilane étant exothermique, le mélange eau + HCl est versé à raison de 2.5 ml/min.
On a ensuite ajouté, dans le bêcher, 5 ml d'isopropanol, puis 1 ml d'une solution d'hydroxyapatite La solution d'hydroxyapatite a été obtenue par dissolution de 200 mg de poudre d'hydroxyapatite dans 2.5 ml d'eau déionisée et 0.5 ml d'HCI, HCl facilitant une dissolution de la poudre d'hydroxyapatite. On a également ajouté 2 ml de solution de collagène.
La solution sol-gel, dont la préparation est décrite dans le paragraphe précédent, a été introduite dans une seringue de la vanne de dosage, dont les paramètres de réglage sont les suivants : rising : 0.55 ms ; falling : 0.75 ms ; open time : 0 ms ; needle lift : 30 ; delay : 7 ms ; air pressure : 0.5 bar. Ces paramètres sont ajustés au cas par cas par l'homme du métier.
Le milieu gazeux séparant le distributeur du réceptacle était de l'air, à une température de 40°C, de manière à favoriser la gélification et le séchage des gouttes. Le volume des gouttes formées par le distributeur était de 5 nL (nanolitres).
Les billes formées ont été placées sur un filtre poreux en nylon, de façon à éliminer des billes de trop petites tailles, résultant de la formation de gouttes satellites par la buse. Les pores mesuraient 120 pm de diamètre. Le filtre poreux, retenant les billes a été placé dans un cristallisoir, comprenant de l'isopropanol dilué à 50 % (fraction massique) dans de l'eau déionisée, de façon à effectuer un lavage. La durée du lavage était de lh30. Le lavage a été répété trois fois. Suite aux lavages, le filtre retenant les billes a été séché dans une étuve à 100°C pendant lh30.
On a ainsi obtenu des billes pleines de diamètre 120 pm, dont une image est représentée sur la figure 6.
Des essais ont été réalisés, pour produire des billes creuses. Les conditions expérimentales sont décrites ci-après:
Distributeur 3: spray ménager.
Réceptacle 10 : sol du laboratoire : béton recouvert d'une bâche en plastique. Distance entre le réceptacle 10 et le distributeur 3 : 4,5 mètres
Précurseur : Tétraméthoxysilane 98% (Alfa Aesar).
Solvant : Isopropanol Technical (Alfa Aesar).
Catalyseur : HCl 6M (Sigma Aldrich).
Tensioactif : bromure de cétyl-méthylammonium (Hexadecytrimethyl-ammonium bromide).
Composé de fonctionnalisation minéral : Hydroxyapatite Ca5(OH)(PO4)3 (Sigma Aldrich). Composé de fonctionnalisation organique : Collagène bovin de type 1 : 10mg/ml (Vornia Ltd).
On a versé, dans un bêcher de 50 ml, 10 ml de tétraméthoxysilane, maintenu sous agitation à température ambiante. On a préparé une solution de 5 ml d'eau déionisée dans laquelle on a ajouté 0.1 ml d'HCI. La solution a été versée lentement dans le bêcher contenant le tétraméthoxysilane (10 ml). L'hydrolyse du tétraméthoxysilane étant exothermique, le mélange eau + HCl était versé à raison de 2.5 ml/min. En fin de réaction, on ajouté 10 mL d'eau distillée contenant 30 mg d'Hexadecyltrimethyl-ammonium. On a ensuite ajouté, dans le bêcher, 5 ml d'isopropanol.
Le milieu gazeux séparant le distributeur du réceptacle était de l'air, à une température de 40°C, de manière à favoriser la gélification et le séchage des gouttes. Le volume des gouttes formées par le distributeur était de 35 nL (nanolitres).
Les billes creuses formées ont été placées sur un filtre poreux en nylon, de façon à éliminer des billes de trop petites tailles, résultant de la formation de gouttes satellites par la buse. Les pores mesuraient 160 pm de diamètre.
La figure 7 montre un exemple de billes creuses obtenues.
Les billes, qu'elles soient pleines ou creuses, résultant de la mise en oeuvre du procédé, peuvent être utilisées à différentes finalités : par exemple la fabrication d'éléments optiques (billes fluorescentes, billes diffusantes, billes fluorescentes), ou la fabrication de capteurs (billes comportant des principes actifs dont les propriétés optiques sont modifiées en présence d'une espèce chimique ou biologique).
Les billes peuvent être intégrées à une matrice, par exemple un polymère, de façon à modifier les propriétés mécaniques de la matrice. Par exemple, l'intégration de billes à un polymère peut permettre d'augmenter la résistance à la compression. Cela peut permettre de diminuer le poids du polymère. Le polymère peut par exemple être un polymère tel que décrit dans US11091638. Un tel polymère est désigné par le terme « polymère rhéoplexe ». Sa viscosité augmente quasiment instantanément sous l'effet d'un choc. Ainsi, à l'état « normal », ce type de polymère est relativement souple, tandis que sous l'effet d'un choc, le polymère durcit instantanément. L'adjonction de billes permet d'améliorer la résistance à la compression.

Claims

REVENDICATIONS
1. Procédé de formation de billes (1) par voie sol-gel, comportant : a) formation de gouttes liquides (12) à partir d'une solution sol-gel (2), les gouttes étant formées à distance d'un réceptacle (10); b) suite à l'étape a), déplacement des gouttes à travers un milieu gazeux (4), jusqu'au réceptacle, le milieu gazeux étant propice à une gélification et éventuellement un séchage des gouttes, de façon que les gouttes se solidifient progressivement durant leur déplacement vers le réceptacle, pour former des billes ; c) collecte des billes sur le réceptacle, la durée de déplacement des gouttes à travers le milieu gazeux étant ajustée de façon que les billes soient suffisamment solidifiées pour ne pas se déformer sous leur propre poids lorsqu'elles atteignent le réceptacle ; d) extraction des billes, éventuellement séchées, du réceptacle ; le procédé étant caractérisé en ce que :
- lors de l'étape a), la solution sol-gel comporte un agent tensioactif, chaque goutte formée étant creuse, formant une bulle de solution sol-gel;
- l'étape b) entraîne une formation de billes creuses.
2. Procédé selon la revendication 1, comportant une phase e) de séchage complémentaire de chaque bille, sur le réceptacle.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu gazeux comporte de l'air.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu gazeux est placé sous vide partiel.
5. Procédé selon l'une quelconque des revendications précédentes dans lequel au cours de l'étape a),
- chaque goutte est expulsée par une buse d'un distributeur (3);
- un gaz d'apport (5') est ajouté à la solution sol-gel dans la buse.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel lors de l'étape a) le diamètre de chaque goutte est inférieur à 10 mm ou à 2 mm ou à 1 mm.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel lors de l'étape a), le diamètre de chaque goutte est supérieur à 100 nm.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape a) est réalisée par pulvérisation ou nébulisation.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la gélification et le séchage sont mis en oeuvre à une température inférieure à 100°C.
10. Bille creuse (1) en matériau sol-gel, obtenue en appliquant un procédé selon l'une quelconque des revendications précédentes.
PCT/EP2023/070243 2022-07-22 2023-07-21 Procede sol-gel de fabrication de billes creuses Ceased WO2024018045A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23744505.1A EP4558466A1 (fr) 2022-07-22 2023-07-21 Procédé sol-gel de fabrication de billes creuses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2207545 2022-07-22
FR2207545A FR3138139A1 (fr) 2022-07-22 2022-07-22 Procédé sol-gel de fabrication de billes creuses ou pleines

Publications (1)

Publication Number Publication Date
WO2024018045A1 true WO2024018045A1 (fr) 2024-01-25

Family

ID=83506554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070243 Ceased WO2024018045A1 (fr) 2022-07-22 2023-07-21 Procede sol-gel de fabrication de billes creuses

Country Status (3)

Country Link
EP (1) EP4558466A1 (fr)
FR (1) FR3138139A1 (fr)
WO (1) WO2024018045A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025158062A1 (fr) * 2024-01-25 2025-07-31 Gamma Tech Procédé sol-gel de fabrication de billes creuses ou pleines ou comportant des pores

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2073260A1 (fr) 1969-12-05 1971-10-01 Finot Paul
US5922299A (en) * 1996-11-26 1999-07-13 Battelle Memorial Institute Mesoporous-silica films, fibers, and powders by evaporation
US7879304B1 (en) * 2002-09-16 2011-02-01 Stc. Unm Monodisperse mesoporous silica microspheres formed by evaporation-induced self-assembly of surfactant templates in aerosoles
FR2973260A1 (fr) * 2011-03-31 2012-10-05 Pylote Procede de preparation de particules d'oxyde de metal creuses utilisables en tant que barriere thermique
US20170342274A1 (en) 2014-12-15 2017-11-30 Pylote Aerosol-obtained mesostructured particles loaded with anticorrosion agents
KR20180051263A (ko) 2016-11-08 2018-05-16 경희대학교 산학협력단 무기 입자의 제조방법
WO2021140129A1 (fr) 2020-01-09 2021-07-15 Carroucell Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs
US11091638B2 (en) 2016-12-21 2021-08-17 Rheonova Shock-absorbing nanostructured polymer alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2073260A1 (fr) 1969-12-05 1971-10-01 Finot Paul
US5922299A (en) * 1996-11-26 1999-07-13 Battelle Memorial Institute Mesoporous-silica films, fibers, and powders by evaporation
US7879304B1 (en) * 2002-09-16 2011-02-01 Stc. Unm Monodisperse mesoporous silica microspheres formed by evaporation-induced self-assembly of surfactant templates in aerosoles
FR2973260A1 (fr) * 2011-03-31 2012-10-05 Pylote Procede de preparation de particules d'oxyde de metal creuses utilisables en tant que barriere thermique
US20170342274A1 (en) 2014-12-15 2017-11-30 Pylote Aerosol-obtained mesostructured particles loaded with anticorrosion agents
KR20180051263A (ko) 2016-11-08 2018-05-16 경희대학교 산학협력단 무기 입자의 제조방법
US11091638B2 (en) 2016-12-21 2021-08-17 Rheonova Shock-absorbing nanostructured polymer alloy
WO2021140129A1 (fr) 2020-01-09 2021-07-15 Carroucell Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KIM K K ET AL: "HOLLOW SILICA SPHERES OF CONTROLLED SIZE AND POROSITY BY SOL-GEL PROCESSING", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, BLACKWELL PUBLISHING, MALDEN, MA, US, vol. 74, no. 8, 1 August 1991 (1991-08-01), pages 1987 - 1992, XP000230591, ISSN: 0002-7820, DOI: 10.1111/J.1151-2916.1991.TB07819.X *
KIM K. ET AL., HOLLOW SILICA SPHERES OF CONTROLLED SIZE AND POROSITY BY SOL-GEL PROCESSING
KIM N K ET AL: "FABRICATION OF HOLLOW SILICA AEROGEL SPHERES BY A DROPLET GENERATION METHOD AND SOL-GEL PROCESSING", JOURNAL OF VACUUM SCIENCE, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 7, no. 3I, 1 May 1989 (1989-05-01), pages 1181 - 1184, XP000068627, ISSN: 0734-2101, DOI: 10.1116/1.576250 *
KIM N.K ET AL., FABRICATION OF HOLLOW SILICA AEROGEL SPHERES BY A DROPLET GÉNÉRATION METHOD AND SOL-GEL PROCESSING

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025158062A1 (fr) * 2024-01-25 2025-07-31 Gamma Tech Procédé sol-gel de fabrication de billes creuses ou pleines ou comportant des pores
FR3158654A1 (fr) * 2024-01-25 2025-08-01 Gamma Tech Procédé sol-gel de fabrication de billes creuses ou pleines ou comportant des pores

Also Published As

Publication number Publication date
FR3138139A1 (fr) 2024-01-26
EP4558466A1 (fr) 2025-05-28

Similar Documents

Publication Publication Date Title
EP2663394B1 (fr) Procede de synthese de particules dissymetriques (particules de janus) par electrochimie bipolaire
CN100435937C (zh) 一种玻璃纤维负载光催化剂的制备方法
EP2925431B1 (fr) Procédé pour préparer un verre à porosité bimodale, eventuellement fonctionnalisé et ledit verre
CN113166276B (zh) 纤维素珠粒的制造方法
WO2024018045A1 (fr) Procede sol-gel de fabrication de billes creuses
CN110200936B (zh) 一种生物粘附性多孔缓释微球及其制备方法
CN101905875A (zh) 空心碳球
EP4087911A1 (fr) Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs
CN1072120A (zh) 制造银金属细粉的方法
CN105601266B (zh) 气液界面法制备磷酸银二维有序纳米网薄膜及其方法
Krichevski et al. Growth of colloidal gold nanostars and nanowires induced by palladium doping
CN101995589A (zh) 一种二氧化硅增透膜的制备方法
CN103788385B (zh) 一种使用喷雾干燥法制备水凝胶光子晶体颗粒的方法
CN116160012A (zh) 一种高结晶银粉及其制备方法
WO2025016922A1 (fr) Supports magnétiques pour culture cellulaire et procédé de fabrication de supports
WO2025158062A1 (fr) Procédé sol-gel de fabrication de billes creuses ou pleines ou comportant des pores
CN115970601A (zh) 一种基于强电荷作用的水-水微球的制备方法
CN114874057A (zh) 一种压装钝感高聚物黏结炸药及其制备方法
CN106669661A (zh) 一种负载型纳米贵金属催化剂的制备方法
CN112029317A (zh) 一种金刚石颗粒涂层油漆制备方法
CN104947178A (zh) 大空腔Bi空心球纳米晶的制备方法
CN102618257A (zh) 一种上转换荧光纳米材料的表面包覆方法
CN110105582B (zh) 金属卟啉框架纳米晶结构的制备方法
CN117757784B (zh) 一种酶和辅因子共固定化的毫米球催化剂及其制备和应用
CN109482112B (zh) 蜡烛灰液体弹珠及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23744505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023744505

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023744505

Country of ref document: EP

Effective date: 20250224

WWP Wipo information: published in national office

Ref document number: 2023744505

Country of ref document: EP