EP4087911A1 - Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs - Google Patents

Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs

Info

Publication number
EP4087911A1
EP4087911A1 EP21700373.0A EP21700373A EP4087911A1 EP 4087911 A1 EP4087911 A1 EP 4087911A1 EP 21700373 A EP21700373 A EP 21700373A EP 4087911 A1 EP4087911 A1 EP 4087911A1
Authority
EP
European Patent Office
Prior art keywords
support
drops
microcarriers
microcarrier
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21700373.0A
Other languages
German (de)
English (en)
Inventor
Tarek Fathallah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carroucell
Original Assignee
Carroucell
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carroucell filed Critical Carroucell
Publication of EP4087911A1 publication Critical patent/EP4087911A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/10Mineral substrates
    • C12N2533/12Glass

Definitions

  • the technical field of the invention is the production of microcarriers of micrometric or millimeter size, conducive to the adhesion and development of cells.
  • Certain biological culture methods use culture supports carrying cells.
  • the supports are usually designated by the term microcarrier.
  • the microcarriers are placed in suspension in a culture medium, the objective being to grow the cells outside their original medium.
  • the culture medium is usually subjected to moderate agitation. This allows regular renewal of the culture medium to which the cells are exposed.
  • Microcarriers intended to be suspended in a culture medium often take the form of microbeads, made of glass, or of plastic or an organic compound, for example a polymer (for example polystyrene or a polysaccharide).
  • the microbeads have previously undergone a surface treatment, called surface functionalization, so as to promote cell grafting. This is to promote cell hooking or adhesion.
  • Microcarriers are frequently used for the cultivation of adherent cells. They then act as supports, on which cells can develop and multiply. Functionalization makes it possible to apply a compound suitable for grafting cells.
  • It can be a biological compound (eg collagen, gelatin, elastin, Poly D-Lysine, fibronectrin), or a molecule allowing positive or negative surface charge (eg cationic trimethyl ammonium or diethylaminoethyl). .
  • a biological compound eg collagen, gelatin, elastin, Poly D-Lysine, fibronectrin
  • a molecule allowing positive or negative surface charge eg cationic trimethyl ammonium or diethylaminoethyl.
  • agglomerates formed by a superposition of several layers of cells. It then appears conglomerates, under the effect of a
  • microcarriers can generate other drawbacks.
  • surface functionalization uses chemical compounds that can have an effect on cell development; the need to resort to relatively high stirring in the culture medium, so as to keep the microcarriers in suspension, which can lead to cellular stress.
  • microcarriers which does not have the disadvantages of ball-shaped microcarriers.
  • the microcarriers designed by the inventor also have significant advantages as described below. DISCLOSURE OF THE INVENTION
  • a first object of the invention is a process for forming microcarriers, comprising: a) forming liquid drops from a sol-gel solution; b) depositing the liquid drops on a first support, preferably flat, preferably hydrophobic; c) deformation of the drops deposited on the first support; d) solidification of the drops by gelation and drying, so as to form solid microcarriers; e) extraction of the solidified microcarriers from the first support.
  • the first support is hydrophobic.
  • the first support is preferably flat.
  • the first support is preferably rigid.
  • the liquid drops are preferably spaced apart from each other.
  • step c) the deformation of the drops is a flattening.
  • the process can be such that step c) comprises a flattening of the drops on the first support, the flattening being obtained spontaneously, during drying, during step d).
  • step c) comprises an application of a second support, preferably hydrophobic, on the drops, at a distance from the first support, such that the drops are interposed between the first support and the second support.
  • the application of the second support resulting in a flattening of the drops between the two supports, the spacing between the first support and the second support conditioning the thickness of the microcarriers formed during step d).
  • the diameter of the drops formed during step a) and the spacing between the first support and the second support taken into account during step c) are adjusted as a function of a diameter or more large diagonal, parallel to the first support, of the microcarriers resulting from step e).
  • Step d) may include an arrangement of an assembly, formed at least by the first support, the drops during gelation and the second support, in an oven, so as to promote drying.
  • the temperature of the oven can be between 30 ° C and 70 ° C.
  • the oven can be placed under partial vacuum.
  • the spacing between the first support and the second support is between 30 ⁇ m and 5 mm.
  • the second support is a flat support.
  • the second support is hydrophobic.
  • the second support is preferably rigid.
  • the drops can be formed at a distance from the first support, the distance preferably being less than 10 mm.
  • the drops can be formed in contact with the first support.
  • the drops formed may have a diameter of between 100 nm and 2 mm.
  • the first support comprises first parts and at least a second part, the first parts being less hydrophobic than each second part, each first part being bypassed by a second part, the second part forming a closed contour around it. said first part, so that during step a), the drops are deposited on each first part, and extend, along each first part, to the contour of said first part.
  • each second part is hydrophobic and each first part is less hydrophobic than each second part which goes around it.
  • each second part is hydrophobic and each first part is hydrophilic.
  • the first support comprises first parts and at least a second part, the first parts being hollow with respect to each second part, each first part being bypassed by a second part, said second part forming an outline, taking the shape of an edge, closed around said first part, so that during step a), the drops are deposited on each first part, and extend, along each first part, up to outline of said first part.
  • the sol-gel solution can comprise a functionalization compound, suitable for the formation of a grafting agent on the surface of the microcarriers, the grafting agent promoting grafting with a predetermined biological species or a predetermined chemical species.
  • the predetermined chemical species can be a molecule.
  • the predetermined biological species can be a cell, or a protein, or an antibody.
  • the functionalization compound can be inorganic or organic.
  • the sol-gel solution can contain different functionalization compounds.
  • a second object of the invention is a microcarrier, in particular obtained by implementing a method according to the first object of the invention.
  • the microcarrier may include a first planar surface and a second surface, the first planar surface and the second surface being connected to each other by a lateral surface forming a border of the microcarrier.
  • the second surface can be planar, and parallel to the first surface.
  • the second surface may be convex, and extend facing the first surface.
  • the diameter, or the greater diagonal, of the first planar surface and / or the second surface is preferably less than 5 mm or less than 1 mm, and preferably greater than 5 ⁇ m.
  • the thickness of the microcarrier, corresponding to the distance between the first flat surface and the second surface is less than 1 mm.
  • a third object of the invention is a use of a microcarrier according to the second object of the invention for the culture of cells, excluding embryonic stem cells of human origin, the microcarrier being intended to be placed in suspension. in a biological medium, for example a culture medium.
  • FIG. 1A represents an example of a microcarrier according to the invention.
  • FIG. 1B shows another example of a microcarrier according to the invention.
  • FIG. 1C shows another example of a microcarrier according to the invention.
  • FIG. 2A illustrates a step of forming drops on a first support, preferably hydrophobic.
  • FIG. 2B shows schematically an affixing of a second support, preferably hydrophobic, facing the first support.
  • Figure 2C is a diagram illustrating the definition of a contact angle.
  • FIG. 2D schematically shows a flattening of a drop during drying.
  • FIG. 3 shows schematically the main steps of a process for forming microcarriers.
  • FIGS. 4A to 4C show a deformation of a drop according to a particular embodiment.
  • FIG. 4D shows examples of microcarriers obtained by the embodiment shown schematically in FIGS. 4A to 4C.
  • FIG. 4E shows schematically a first substrate structured between hydrophobic parts delimited by strongly hydrophobic zones.
  • Figure 5 shows an example of cells that have grown on microcarriers.
  • FIG. 1A An example of a microcarrier according to the invention has been shown in FIG. 1A.
  • the microcarrier has two flat surfaces, or considered as such, opposite to each other.
  • the microcarrier has a first plane surface, or substantially plane Si, and a second plane surface, or substantially plane, S2.
  • the first planar surface and the second planar surface are parallel to each other, or substantially parallel to each other.
  • substantially parallel is meant parallel, taking into account an angular tolerance, for example less than or equal to ⁇ 20 °, and preferably less than or equal to ⁇ 10 °.
  • substantially planar surface is meant planar, admitting surface elements exhibiting a local flatness defect, within a limit of ⁇ 10 ° with respect to the rest of the surface.
  • the first surface Si has a diameter F, or a greater diagonal, less than or equal to 20 mm, and preferably less than or equal to 10 mm, and preferably less than or equal to 1 mm.
  • the diameter F is preferably greater than 5 ⁇ m or 10 ⁇ m.
  • the diameter F is preferably between 50 ⁇ m and 1 mm, and more preferably between 100 ⁇ m and 1 mm.
  • the first surface Si and the second surface S extend parallel to a main plane Rcg.
  • the microcarrier 1 comprises a lateral surface S3, extending between the first surface Si and the second surface S2.
  • the lateral surface S3 extends along a thickness e around a transverse axis Z perpendicular to the main plane Rcg.
  • FIG. 1A corresponds to a preferred embodiment, according to which the microcarrier 1 has a cylindrical geometry of revolution.
  • the first surface Si and the second surface S 2 have a circular shape, of revolution, the lateral surface S3 being an annular surface.
  • Other cylindrical configurations are possible, for example a cylinder with a polygonal base, for example in the shape of a quadrilateral, as shown in FIG. 1B.
  • the thickness e of the microcarrier 1 is preferably: less than a fifth of the diameter (or of the largest diagonal)
  • microcarrier When the microcarrier is cylindrical of revolution, due to this small thickness, such a microcarrier takes the form of a thin disc.
  • the thickness and the diameter are adjusted so as to avoid breakage of the microcarriers.
  • the microcarrier is essentially in the form of two surfaces Si and S2, extending one facing the other, the area of the lateral surface S3 being negligible.
  • the two surfaces Si and S can in particular be plane or substantially plane.
  • the microcarrier is transparent.
  • the specific surface corresponds to the surface available per unit of mass:
  • the specific surface For a spherical microcarrier, made of glass, the diameter of which is between 160 ⁇ m and 180 ⁇ m, the specific surface varies between 340 cm 2 / g and 360 cm 2 / g. • For a cylindrical microcarrier of revolution, made of glass, the specific surface depends on the thickness e. For thicknesses of 5 ⁇ m, 10 ⁇ m and 20 ⁇ m, the specific surface area reaches 3338 cm 2 / g, 1722 cm 2 / g and 888 cm 2 / g, respectively. On this type of microcarrier, the available surface corresponds to the cumulated area of the plane surfaces Si and S2. The higher the specific surface area, the greater the quantity of cells which can be cultured, per unit mass of microcarrier, is also high.
  • microcarriers according to the invention can be obtained by implementing a method of sol-gel type, short for solution-gelation.
  • This is a chemical process known to those skilled in the art, making it possible to manufacture, at low temperature, glasses or ceramics.
  • Such a method comprises the use of a sol-gel solution, formed: of a molecular precursor of a metal or of a metalloid, for example an organometallic compound or a metal salt; an organic solvent; water; an acidic or basic catalyst.
  • a network of oxides is formed, through hydrolysis-condensation reactions, trapping the organic solvent, so as to form a gel.
  • the latter then undergoes drying, to remove the organic solvent present in the gel.
  • the drying can be of the evaporative type, at a pressure less than or equal to atmospheric pressure, so as to form a dry gel, usually designated by the term xerogel, in the form of a monolithic solid.
  • the molecular precursor can for example be an organometallic compound of metal or metalloid, for example a metal alkoxide of formula M (OR) n, where M is a metal or a metalloid, and R is an organic group.
  • organometallic compound of metal or metalloid for example a metal alkoxide of formula M (OR) n, where M is a metal or a metalloid, and R is an organic group.
  • the metal M can be for example a transition metal, a lanthanide: it can be Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh , Pd, Ag, Cd, Hf, Ra, W, Re, Os, Ir, Pt, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Al, Ga, In, Ge , Sn, Pb.
  • a transition metal a lanthanide: it can be Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh , Pd, Ag, Cd, Hf, Ra, W, Re, Os, Ir, Pt, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Al, Ga, In, Ge , Sn, Pb.
  • the metalloid element can be chosen from Si, Se, Te.
  • - R can be an alkyl group, comprising for example between 1 and 10 carbon atoms, or a phenyl group.
  • n is a natural integer corresponding to the number of ligands bound to M, which corresponds to the valence of M.
  • the molecular precursor is placed in an organic solution, for example an alcoholic solution.
  • the organic solvent can be an aliphatic or aromatic monoalcohol, or a diol.
  • the sol-gel solution can also comprise a catalyst, and / or water, or compounds making it possible to act on the porosity, for example a surfactant.
  • the sol-gel solution comprises a functionalization compound, in particular an organic compound, the function of which is to form a grafting agent.
  • grafting agent is meant a molecule or a functional group capable of promoting attachment, by grafting, of a chemical or biological element to the surface of the xerogel resulting from the implementation of the sol-gel process.
  • the chemical or biological element is predetermined. It can be a molecule, a cell, or a protein or another organic compound, for example a growth factor or an antibody.
  • the grafting agent promotes grafting of a cell, of predetermined type.
  • the grafting agent can then be collagen, or polylysine, or a milk protein.
  • a functionalization compound comprising an epoxy function, the latter being conducive to the formation of chemical bonds with amine functions, the latter being present in most cell membranes.
  • the incorporation of an epoxy function can be carried out by a compound of glycidoxypropyltrimethoxysilane type, usually designated by the acronym GPTM.
  • An amine function can also be integrated into the sol-gel, by means of a compound of APTES (3-aminopropyl-triethoxysilane) type.
  • APTES 3-aminopropyl-triethoxysilane
  • the sol-gel microcarriers obtained have a density generally less than 2, and preferably less than 1.8.
  • the density is preferably strictly greater than 1 and advantageously between 1 and 1.4 and even more advantageously between 1.02 and 1.04. Such a density confers good flotation of the microcarriers in aqueous culture media.
  • FIGS. 2A to 2B A first example of a process for manufacturing a microcarrier, by the sol-gel process, is now described, in connection with FIGS. 2A to 2B. The main steps are shown in Figure 3.
  • Step 100 formation of the drops
  • a sol-gel solution 2 as described above, is introduced into a distributor 3, making it possible to form drops 12, and preferably calibrated drops.
  • the drops are preferably microdrops, the volume of which is between 5.10 10 ⁇ l and 15 ⁇ l.
  • the diameter of the drops formed is preferably between 100 nm and 5 mm, or between 100 nm and 1 mm.
  • the distributor 3 is placed at a distance from or in contact with a first support 10.
  • the first support 10 is preferably planar and preferably hydrophobic.
  • the first support is a flat support, which corresponds to a preferred embodiment: it is a rigid plate.
  • the hydrophobic character of a material can be characterized by an angle of contact Q, as shown in Figure 2C.
  • the contact angle Q is measured in the presence of a drop of the sol-gel solution used.
  • the contact angle Q is between 70 ° and 150 °. This makes it possible to avoid excessive spreading of the drops on the first support.
  • the material forming the first support 10 can for example be glass, or polypropylene, or Teflon, or silicon.
  • the first support 10 is hydrophobic or has previously undergone a hydrophobic treatment.
  • the distance d between the dispenser and the first support 10 is preferably less than 10 cm.
  • the drops can be formed in contact with the first support 10. The closer the distance, the better the precision with regard to the localization of the drops.
  • the drops formed on the first support 10 are spaced apart from each other.
  • the spacing between two adjacent drops is dimensioned such that during the flattening of the drops, resulting from the implementation of step 110, the latter remain spaced from one another.
  • first support 10 is hydrophobic makes it possible to avoid excessive spreading of the drops 12.
  • Step 110 flattening of the drops
  • the second support 20 is preferably flat and preferably rigid.
  • the second support 20 is applied facing the first support 10, being spaced from the latter by a spacing s depending on the thickness e of the microcarriers that it is desired to form. Taking into account a shrinkage occurring during drying (see step 120), the spacing s between the first support 10 and the second support 20 is greater than the thickness e of the microcarriers 1 resulting from the use of process.
  • the spacing s between the first support 10 and the second support 20 can be ensured by arranging the spacers 30 between the first support 10 and the second support 20.
  • the spacing s between the first support 10 and the second support 20 can be included between a few ⁇ m, for example 5 ⁇ m, and 5 mm or, preferably, between 50 ⁇ m and 2 mm or 1 mm.
  • the application of the second support 20 leads to a flattening of the drops 12. After their application to the first support 10, the drops 12 rapidly form a gel. It is therefore preferable that the flattening is carried out before the gelation is not too advanced, as soon as all of the drops 12 have been formed. Also, step 110 is carried out as quickly as possible after step 100.
  • the solvent used in the sol-gel composition can be chosen with low volatility, so as to be able to postpone the application of the second support 20. This prevents drying and premature gelation of the drops which would occur before the application of the second support 20. It is also possible to lower the temperature or increase the temperature. the pressure in order to be able to delay the gelation of the drops deposited on the first support 10.
  • Step 120 gelation and drying
  • the assembly 40 formed by the first support 10 and the second support 20 is preferably placed in an oven, so as to finalize the gelation and facilitate drying of the gel.
  • the temperature of the oven may for example be between 30 ° C and 80 ° C.
  • the oven can be placed at a pressure below atmospheric pressure, for example at a pressure between -200 mbar and -970 mbar with respect to atmospheric pressure. This significantly speeds up drying.
  • the duration of the passage in the oven can be between 10 minutes and 24 hours.
  • each drop 12 deposited during step 100 results in the formation of a solid monolithic microcarrier 1.
  • each microcarrier 1 undergo shrinkage, which is a known phenomenon in the field of sol-gel.
  • the thickness e of each microcarrier 1 decreases, the reduction being for example 50% when the thickness is 100 ⁇ m or 50 ⁇ m.
  • the microcarriers 1 are only in contact with a single support, for example the first support 10 on which they rest by gravity. Certain microcarriers can remain attached to the second support 20. When the second support 20 is hydrophobic, the latter are easily removed.
  • each support is hydrophobic facilitates loss of contact between each microcarrier and the support facing it, during shrinking.
  • the support facing is the support opposite to the support supporting, by gravity, the microcarriers in formation.
  • bonds for example OH bonds, can form between the gel and the supports. This leads to a risk of breakage when contact is lost, when the microcarrier retracts under the effect of drying.
  • the hydrophobic treatment of each support limits the risk of breakage.
  • Step 130 recovery of the microcarriers
  • the microcarriers 1 can easily be separated from the first support 10 or from the second support 20, due to the hydrophobic nature of the latter.
  • the microcarriers 1 can be collected on a recovery support, preferably flexible, for example a canvas. It can be a porous nylon filter. The porosity is optimized to retain the microcarriers 1 while allowing the removal of debris, for example residues of microcarriers which have broken during the implementation of the process, the latter passing through the recovery support.
  • the particle size of the recovery medium can be 400 ⁇ m.
  • the particle size can be 150 ⁇ m.
  • first support 10 is hydrophobic makes it possible to avoid formation of OH bonds between the microcarriers, resulting from the implementation of the process, and the first support 10. This facilitates the recovery of the microcarriers.
  • the microcarriers recovered during step 130, placed on the recovery support, are washed, for example by a bath in a washing solution making it possible to remove residual acids present in the sol-gel solution or any precursors n 'having not reacted.
  • the washing solution can be an aqueous solution, for example an aqueous solution comprising 50% by mass of isopropanol.
  • the method can successively comprise several baths, for example two or three successive baths.
  • Step 150 post-wash drying
  • the microcarriers are subjected to drying. Drying can be carried out at room temperature or at a higher temperature, for example up to 100 ° C or above. The drying temperature can be lowered if a partial vacuum is formed around the microcarriers. During drying, the microcarriers can be placed on the recovery support and the whole is placed in an oven.
  • the drying can be carried out by applying different successive pressure levels in the oven, for example by gradually lowering the pressure. This reduces the drying time.
  • the temperature is for example 50 °.
  • the drying time depends on the temperature and pressure conditions. It can be between 10 minutes and 5 hours, or even more.
  • the spacers 30 arranged between the two supports during step 110 are compressible.
  • the spacers are dimensioned such that when affixing the second support 20 facing the first support 10, each drop 12 is not in contact with the second support 20. See FIG. 4A.
  • pressure is exerted on the second support 20, so as to temporarily bring it closer to the first support 10.
  • the second support 20 then comes into contact with each drop 12. See FIG. 4B.
  • the pressure is released, the second support 20 moves away from the first support 10. See FIG. 4C.
  • step 110 corresponds to a deformation of the drop 12.
  • the drop 12 remains in contact with the second support 20, by surface tension of the liquid.
  • the drop 12 stretches along the transverse axis Z.
  • the microcarriers are cylindrical of revolution, the shape resembles that of an hourglass.
  • FIG. 4D is a photograph of microcarriers 1 in the shape of an hourglass obtained by implementing such a variant.
  • the drops 12 are deposited on the first support 10, as described in connection with step 100 of the first embodiment. See figure 2A.
  • the flattening of the drops 12 does not result from the affixing of a second support 20.
  • the flattening of the drops is spontaneous. It is carried out in particular gradually, during drying. See figure 2D.
  • This embodiment is particularly suitable for obtaining microcarriers 1 whose thickness is fine, typically less than 30 ⁇ m, or even less than 10 ⁇ m. This makes it possible to have microcarriers 1 having good buoyancy.
  • the geometry of the microcarriers 1 obtained according to the second embodiment is not as cylindrical as that of the microcarriers obtained according to the first embodiment.
  • the face opposite to the face resting on the support 10 may be slightly convex.
  • the drying and gelation step 120 can be carried out in the open air, without passing through an oven.
  • the second embodiment is particularly suitable for obtaining microcarriers of low thickness, for example less than 10 ⁇ m.
  • the second embodiment makes it possible to obtain a very high diameter / thickness ratio, which is favorable to good flotation.
  • the first embodiment allows better control of the flatness microcarriers. It is particularly suitable for microcarriers of large diameters, typically greater than 100 ⁇ m.
  • Steps 130 to 150 of the second embodiment are identical to those described in connection with the first embodiment.
  • the second embodiment is preferably implemented by lowering the concentration of precursors in the sol-gel solution compared to the first embodiment.
  • the contact angle Q of each drop is smaller than in the first embodiment, this to promote spreading of the drop on the first support 10.
  • a solvent having a specific tension lower than that of water for example an alcohol of the ethanol or isopropanol type.
  • a surfactant can also be added to the sol-gel composition.
  • the first support 10 can be structured so that under the effect of the flattening, each drop 12 spreads out, on the first support 10, in a predetermined shape, according to the structuring of the first support.
  • An example of such a support is shown in FIG. 4E.
  • the structuring of the support 10 makes it possible to form first parts 10i, intended to receive the drops, and second parts IO2.
  • Each first part is bounded by a second part, such that a second part forms a closed contour around each first part.
  • the first support 10 can be microstructured, so as to comprise first hollow parts 10i of predetermined shapes, for example polygons of the quadrilateral type or hexagons, and delimited by an edge, formed by a second part 10 2 .
  • the drops are deposited on each first part 10i, and extend as far as the edge delimiting said first part.
  • Microcarriers are thus obtained as shown in FIGS. IB or IC, the shape of which corresponds to the shape of each first part 10i.
  • the structuring of the first support 10 forms first parts 10i which are less hydrophobic than each second part IO2.
  • the water repellency of a material is a concept known to those skilled in the art and can be determined by measuring the contact angle. The higher the latter, the more hydrophobic the material with respect to the solution forming the drop.
  • the first parts 10i can be poorly hydrophobic or hydrophilic.
  • Each second part 10 2 is preferably hydrophobic. By slightly hydrophobic is meant a part in which the contact angle Q is at least 5 ° or 10 ° smaller than the contact angle on the more hydrophobic part.
  • each first part 10i is delimited by a second part 10 2 , so that during step 110, the drop spreads out along the first part on which it has been deposited.
  • This variant allows better control of the shape of the microcarrier. It also makes it possible to obtain microcarriers whose shape is controlled by the structuring of the first support 10.
  • a first series of tests was carried out, the experimental conditions being described below: Distributor: Vermes MDV 3200 A metering valve equipped with a Vermes Nll-150 nozzle to form sol-gel microdrops.
  • the dispenser was mounted on a Janome 200mm / 200mm triaxial robot, allowing the dispenser to move parallel to a first support 10.
  • First support 10 glass plate 200 mm ⁇ 170 mm, thickness 6 mm, hydrophobic treated beforehand by exposure to dichlorodimethylsilane.
  • Second support 20 identical to the first support.
  • Spacing s between the first support 10 and the second support 140 ⁇ m. the spacing is obtained by arranging spacers 30 of the adhesive tape type.
  • Precursor Tetramethoxysilane 98% (Alfa Aesar).
  • sol-gel solution the preparation of which is described in the previous paragraph, was introduced into a syringe of the metering valve, the adjustment parameters of which are as follows: rising: 0.25 ms; falling: 0.35 ms; open time: 2 ms; needle lift: 30; delay: 7 ms; air pressure: 0.5 bar. These parameters are adjusted on a case-by-case basis by those skilled in the art.
  • the drops are formed at a distance of 2 mm from the hydrophobic plate.
  • the spacing between two adjacent drops, arranged on the same line, was 2 mm.
  • the volume of each drop was 500 ⁇ l.
  • the thickness of the adhesive wire was 0.14 mm.
  • the number of drops formed was 5000. After all the drops had been formed, a second hydrophobic glass plate, acting as a second support 20, was gently placed above the first glass plate, in contact with the film. adhesive, so as to flatten the drops, as described in connection with step 110.
  • the temperature was then maintained at 50 ° C and the pressure gradually lowered in 8 pressure stages, respectively -200 mBar, -400 mBar, - 500 mBar, - 600 mBar, - 700 mBar, - 800 mBar, - 900 mBar and - 970 mBar relative to atmospheric pressure.
  • the duration of each stage was 15 minutes. Solid microcarriers were thus formed between the two glass plates, resulting from the gelation and the drying of the beads.
  • the plates were separated and the microcarriers were collected on a porous nylon filter, the pores measuring 400 ⁇ m in diameter.
  • the filter, retaining the microcarriers was placed in a crystallizer, comprising isopropanol diluted to 50% (mass fraction) in deionized water, so as to carry out washing. The washing time was 2 hours. The washing was repeated three times. Following the washings, the filter retaining the microcarriers was dried in a study at 100 ° C. for 1 h 30 min.
  • microcarriers resulting from the implementation of the process had a thickness of 70 ⁇ m and a diameter of 700 ⁇ m.
  • FIG. 5 shows a photograph of culture microcarriers after 72 hours of static culture in a culture medium of the “mesenchymal stem cell growth medium 2” type (Promocell). The development of cells, on the microcarriers, in a monolayer was confirmed by microscopy.
  • microcarriers according to the invention a flat culture surface, suitable for the development of cells under the same conditions as in culture supports of the culture flask or dish type. usually used Petri dishes. These are different culture conditions from those resulting from ball-shaped microcarriers. Indeed, on the latter, the cultivation surface is strongly curved. On the ball-shaped microcarriers, cells develop forming aggregates. It is believed that cells tend to favor cell-to-cell bonding to the detriment of bonding with the bead surface. On microcarriers with flat surfaces, the cells develop forming a monolayer, because they favor bonds with the flat surface of the microcarrier. easy recovery of cells cultured on each microcarrier.
  • the cells develop by forming a monolayer, which facilitates their detachment from the microcarriers. Separation of cells from each microcarrier can be facilitated by an enzyme, for example TrypLE (Microfischer).
  • TrypLE Macrofischer
  • a recovery of individual (or unit) cells which can be used to be reseeded for a new culture. a behavior, after culture, close to cells cultivated in culture flasks or in a Petri dish. Tests have shown that after recovery of the cells and their reseeding in a culture flask, the cells extend in a fibroblastic form, characteristic of mesenchymal stem cells. Their capacity for osteogenic, chondrogenic and adipogenic differentiation remains intact.
  • the cells remain pluripotent stem cells, unlike what can be observed when the cells form clumps.
  • a rate of sensescent cells similar to that obtained during 2D culture on conventional flasks was observed; a higher rate of viable cells than that obtained by using ball-shaped microcarriers, in particular due to better access to nutrients and oxygen in the culture medium; better productivity of the cells, because the latter are cultivated in the form of monolayers, without formation of agglomerate. This avoids the drawback of the contact inhibition described in connection with the prior art.
  • the invention may, without limitation, be implemented for applications related to cell culture.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Procédé de formation de microporteurs (1), comportant: a) formation de gouttes liquides (12) à partir d'une solution sol-gel (2); b) dépôts des gouttes, sous forme de liquide, sur un premier support (10), de préférence hydrophobe; c) déformation des gouttes déposées sur le premier support (10); d) solidification des gouttes par gélification et séchage, de façon à former des microporteurs solides; e) extraction des microporteurs solidifiés du premier support (10).

Description

Description
MICROPORTEURS POUR CULTURE CELLULAIRE ET PROCÉDÉ DE FABRICATION DE MICROPORTEURS
DOMAINE TECHNIQUE
5 Le domaine technique de l'invention est la réalisation de microporteurs de taille micrométrique ou millimétriques, propices à l'adhésion et au développement de cellules.
ART ANTERIEUR
Certains procédés de culture biologique mettent en oeuvre des supports de culture, portant des 10 cellules. Les supports sont usuellement désignés par le terme microporteur. Les microporteurs sont disposés en suspension, dans un milieu de culture, l'objectif étant de faire croître les cellules en dehors de leur milieu d'origine. Le milieu de culture est usuellement soumis à une agitation modérée. Cela permet un renouvellement régulier du milieu de culture auquel les cellules sont exposées.
15 Les microporteurs destinés à être placés en suspension dans un milieu de culture prennent souvent la forme de microbilles, réalisées en verre, ou en plastique ou un composé organique, par exemple un polymère (par exemple polystyrène ou un polysaccharide). Généralement, les microbilles ont préalablement fait l'objet d'un traitement de surface, dit fonctionnalisation de surface, de façon à favoriser un greffage des cellules. Il s'agit de favoriser une accroche ou une 20 adhérence de cellules. Les microporteurs sont fréquemment utilisés pour la culture de cellules adhérentes. Ils font alors office de supports, sur lesquels les cellules peuvent se développer et se multiplier. La fonctionnalisation permet d'appliquer un composé propice au greffage de cellules. Il peut s'agir d'un composé biologique (par exemple collagène, gélatine, élastine, Poly D-Lysine, fibronectrine), ou une molécule permettant un apport de charges positives ou 25 négatives en surface (par exemple trimétyl ammonium cationique ou diéthylaminoéthyle).
Lorsque les cellules sont mises en suspension dans le milieu de culture, elles se développent à la surface des microporteurs. Elles forment fréquemment, à la surface de ces derniers, des édifices tridimensionnels, usuellement désignés "agglomérats" constitués par une superposition de plusieurs couches de cellules. Il apparaît alors des conglomérats, sous l'effet d'un
30 regroupement d'agglomérats. Il en résulte certains inconvénients : lyse cellulaire : les cellules qui sont au centre des agglomérats ont un accès réduit au milieu de culture, et en particulier à l'oxygène ou aux nutriments présents dans ce dernier. Certaines peuvent subir une lyse, ce qui diminue le rendement de la culture différenciation cellulaire : dans le cas de la culture de cellules souches pluripotentes, la formation d'agglomérats peut favoriser une différenciation cellulaire non contrôlée. Or, il est généralement souhaitable de conserver les cellules à l'état de cellule souche, ou d'obtenir une différenciation, en un type cellulaire prédéterminé, de façon contrôlée inhibition de contact : lorsque l'on recherche une synthèse de molécules par culture cellulaire, par exemple des protéines, des facteurs de croissance, des anticorps, la formation d'agglomérats réduit la production. difficulté de décrochage : dans certaines applications, par exemple les applications liées à la thérapie cellulaire, la récupération des cellules est primordiale. Il s'agit de décrocher les cellules des microporteurs, de façon à obtenir des cellules unitaires (cellules isolées les unes des autres), et viables. La formation d'agglomérats rend le décrochage difficile, les cellules récupérées n'étant pas unitaires.
De plus, le recours à de tels microporteurs peut engendrer d'autres inconvénients. la fonctionnalisation de surface fait appel à des composés chimiques, pouvant avoir un effet sur le développement des cellules ; la nécessité de recourir à agitation relativement importante dans le milieu de culture, de façon à maintenir les microporteurs en suspension, ce qui peut entraîner un stress cellulaire.
L'inventeur a développé un nouveau type de microporteurs, ne comportant pas les désavantages des microporteurs en forme de bille. Les microporteurs conçus par l'inventeur présentent, de plus, des avantages significatifs comme décrit par la suite. EXPOSE DE L'INVENTION
Un premier objet de l'invention est un procédé de formation de microporteurs, comportant : a) formation de gouttes liquides à partir d'une solution sol-gel; b) dépôt des gouttes liquides sur un premier support, de préférence plan, de préférence hydrophobe; c) déformation des gouttes déposées sur le premier support; d) solidification des gouttes par gélification et séchage, de façon à former des microporteurs solides ; e) extraction des microporteurs solidifiés du premier support.
Selon un mode de réalisation, le premier support est hydrophobe. Le premier support est de préférence plan. Le premier support est de préférence rigide.
Lors de l'étape b), les gouttes liquides sont de préférence espacées les unes des autres.
Selon un mode de réalisation, lors de l'étape c), la déformation des gouttes est un aplatissement. Le procédé peut être tel que l'étape c) comporte un aplatissement des gouttes sur le premier support, l'aplatissement étant obtenu spontanément, au cours du séchage, lors de l'étape d).
Selon un mode de réalisation, l'étape c) comporte une application d'un deuxième support, de préférence hydrophobe, sur les gouttes, à distance du premier support, de telle sorte que les gouttes sont interposées entre le premier support et le deuxième support, l'application du deuxième support résultant en un aplatissement des gouttes entre les deux supports, l'espacement entre le premier support et le deuxième support conditionnant l'épaisseur des microporteurs formés lors de l'étape d). De préférence, le diamètre des gouttes formées lors de l'étape a) et l'espacement entre le premier support et le deuxième support prise en compte lors de l'étape c) sont ajustés en fonction d'un diamètre ou d'une plus grande diagonale, parallèlement au premier support, des microporteurs résultant de l'étape e). L'étape d) peut comporter une disposition d'un ensemble, formé au moins par le premier support, les gouttes en cours de gélification et le deuxième support, dans une étuve, de façon à favoriser le séchage. La température de l'étuve peut être comprise entre 30°C et 70°C. L'étuve peut être placée sous vide partiel. De préférence, lors de l'étape c), l'espacement entre le premier support et le deuxième support est compris entre 30 pm et 5 mm.
De préférence, le deuxième support est un support plan. De préférence, le deuxième support est hydrophobe. Le deuxième support est de préférence rigide.
Lors de l'étape a), les gouttes peuvent être formées à distance du premier support, la distance étant de préférence inférieure à 10 mm. Lors de l'étape a), les gouttes peuvent être formées au contact du premier support.
Lors de l'étape a), les gouttes formées peuvent présenter un diamètre compris entre 100 nm et 2 mm.
Selon un mode de réalisation, le premier support comporte des premières parties et au moins une deuxième partie, les premières parties étant moins hydrophobes que chaque deuxième partie, chaque première partie étant contournée par une deuxième partie, la deuxième partie formant un contour fermé autour de ladite première partie, de telle sorte que lors de l'étape a), les gouttes sont déposées sur chaque première partie, et s'étendent, le long de chaque première partie, jusqu'au contour de ladite première partie. Selon une possibilité, chaque deuxième partie est hydrophobe et chaque première partie est moins hydrophobe que chaque la deuxième partie qui la contourne. Selon une possibilité, chaque deuxième partie est hydrophobe et chaque première partie est hydrophile.
Selon un mode de réalisation, le premier support comporte des premières parties et au moins une deuxième partie, les premières parties étant creuses par rapport à chaque deuxième partie, chaque première partie étant contournée par une deuxième partie, ladite deuxième partie formant un contour, prenant la forme d'une arête, fermée autour de ladite première partie, de telle sorte que lors de l'étape a), les gouttes sont déposées sur chaque première partie, et s'étendent, le long de chaque première partie, jusqu'au contour de ladite première partie.
La solution sol-gel peut comporter un composé de fonctionnalisation, propice à une formation d'un agent de greffage à la surface des microporteurs, l'agent de greffage favorisant un greffage avec une espèce biologique prédéterminée ou une espèce chimique prédéterminée. L'espèce chimique prédéterminée peut être une molécule. L'espèce biologique prédéterminée peut être une cellule, ou une protéine, ou un anticorps. Le composé de fonctionnalisation peut être minéral ou organique. La solution sol-gel peut comporter différents composés de fonctionnalisation.
Un deuxième objet de l'invention est un microporteur, notamment obtenu par une mise en oeuvre d'un procédé selon le premier objet de l'invention. Le microporteur peut comporter une première surface plane et une deuxième surface, la première surface plane et la deuxième surface étant reliées l'une à l'autre par une surface latérale formant une bordure du microporteur. La deuxième surface peut être plane, et parallèle à la première surface. La deuxième surface peut être bombée, et s'étendre face à la première surface. Le diamètre, ou la plus grande diagonale, de la première surface plane et/ou de la deuxième surface est de préférence inférieur à 5 mm ou inférieur à 1 mm, et de préférence supérieur à 5 pm. De préférence, l'épaisseur du microporteur, correspondant à la distance entre la première surface plane et la deuxième surface, est inférieure à 1 mm.
Un troisième objet de l'invention est une utilisation d'un microporteur selon le deuxième objet de l'invention pour la culture de cellules, à l'exclusion des cellules souches embryonnaires d'origine humaine, le microporteur étant destiné à être placé en suspension dans un milieu biologique, par exemple un milieu de culture. L'invention sera mieux comprise à la lecture de l'exposé des exemples de réalisation présentés, dans la suite de la description, en lien avec les figures listées ci-dessous.
FIGURES
La figure IA représente un exemple de microporteur selon l'invention.
La figure IB montre un autre exemple de microporteur selon l'invention.
La figure IC montre un autre exemple de microporteur selon l'invention.
La figure 2A illustre une étape de formation de gouttes sur un premier support, de prférence hydrophobe.
La figure 2B schématise une apposition d'un deuxième support, de préférence hydrophobe, face au premier support.
La figure 2C est un schéma illustrant la définition d'un angle de contact.
La figure 2D schématise un aplatissement d'une goutte au cours d'un séchage.
La figure 3 schématise les principales étapes d'un procédé de formation de microporteurs.
Les figures 4A à 4C montrent une déformation d'une goutte selon un mode de réalisation particulier.
La figure 4D montre des exemples de microporteurs obtenus par le mode de réalisation schématisé sur les figures 4A à 4C.
La figure 4E schématise un premier substrat structuré entre des parties hydrophobes délimitées par des zones fortement hydrophobes.
La figure 5 montre un exemple de cellules s'étant développées sur des microporteurs.
EXPOSE DE MODES DE REALISATION PARTICULIERS
On a représenté, sur la figure IA, un exemple de microporteur selon l'invention. Le microporteur comporte deux surfaces planes, ou considérée comme telles, opposées l'une de l'autre. Ainsi, le microporteur présente une première surface plane, ou sensiblement plane Si et une deuxième surface plane, ou sensiblement plane, S2. La première surface plane et la deuxième surface plane sont parallèles l'une à l'autre, ou sensiblement parallèle l'une à l'autre.
Par sensiblement parallèle, on entend parallèle en prenant en compte une tolérance angulaire, par exemple inférieure ou égale à ± 20°, et de préférence inférieure ou égale à ± 10°.
Par surface sensiblement plane, on entend plane, en admettant des éléments de surface présentant un défaut de planéité local, dans une limite de ± 10° par rapport au reste de la surface. La première surface Si présente un diamètre F, ou une plus grande diagonale, inférieur ou égale à 20 mm, et de préférence inférieur ou égale à 10 mm, et de préférence inférieur ou égale à 1 mm. Il en est de même de la deuxième surface S . Le diamètre F est de préférence supérieur à 5 pm ou à 10 pm. Le diamètre F est de préférence compris entre 50 pm et 1 mm, et encore de préférence entre 100 pm et 1 mm. La première surface Si et la deuxième surface S s'étendent parallèlement à un plan principal Rcg. Le microporteur 1 comporte une surface latérale S3, s'étendant entre la première surface Si et la deuxième surface S2. La surface latérale S3 s'étend selon une épaisseur e autour d'un axe transversal Z perpendiculaire au plan principal Rcg.
La figure IA correspond à un mode préféré de réalisation, selon lequel le microporteur 1 présente une géométrie cylindrique de révolution. La première surface Si et la deuxième surface S2 ont une forme circulaire, de révolution, la surface latérale S3 étant une surface annulaire. D'autres configurations cylindriques sont possibles, par exemple un cylindre de base polygonale, par exemple en forme de quadrilatère, comme représenté sur la figure IB.
Quelle que soit la configuration, l'épaisseur e du microporteur 1 est de préférence : inférieure au cinquième du diamètre (ou de la plus grande diagonale)
- et de préférence supérieure au dixième, et de préférence au vingtième du diamètre (ou de la plus grande diagonale) F.
Lorsque le microporteur est cylindrique de révolution, du fait de cette faible épaisseur, un tel microporteur prend la forme d'un disque de faible épaisseur. L'épaisseur et le diamètre sont ajustés de façon à éviter une casse des microporteurs.
Ainsi, quelle que soit la configuration, le microporteur se présente essentiellement sous la forme de deux surfaces Si et S2, s'étendant l'une face à l'autre, l'aire de la surface latérale S3 étant négligeable. Les deux surfaces Si et S peuvent notamment être planes ou sensiblement planes.
De préférence, le microporteur est transparent.
L'inventeur a fait le choix d'une telle géométrie en raison d'avantages qu'elle confère : une surface spécifique augmentée, par rapport aux microporteurs billes usuellement utilisés dans l'art antérieur. La surface spécifique correspond à la surface disponible par unité de masse :
• Pour un microporteur sphérique, en verre, dont le diamètre est compris entre 160 pm et 180 pm, la surface spécifique varie entre 340 cm2/g et 360 cm2/g. • Pour un microporteur cylindrique de révolution, en verre, la surface spécifique dépend de l'épaisseur e. Pour des épaisseurs de 5 pm, 10 pm et 20 pm, la surface spécifique atteint respectivement 3338 cm2/g, 1722 cm2/g et 888 cm2/g. Sur ce type de microporteur, la surface disponible correspond à l'aire cumulée les surfaces planes Si et S2. Plus la surface spécifique est élevée, plus la quantité de cellules pouvant être cultivées, par unité de masse de microporteur, l'est également.
- une meilleure aptitude à la flottaison, du fait de la surface spécifique élevée, conférant une portance élevée. Une conséquence est qu'avec des microporteurs selon l'invention, l'obtention d'une suspension dans le milieu de culture ne nécessite pas autant d'agitation qu'en utilisant des microporteurs billes. Cela réduit significativement le stress des cellules se développant à la surface des microporteurs, du fait d'une portance accrue. En effet, l'impact de l'agitation sur le développement cellulaire a déjà été décrit, par exemple dans la publication Wang. Y "Cell adhesion and mechanical stimulation in the régulation of mesenchymal stem cell différentiation, J. Cell. Mol. Med 17(7), pp 823- 832 ou dans la publication Yeats, A. "Bioreactors to influence stem cell fate : augmentation of mesenchymal stem cell signaling pathways via dynamic culture Systems", Biochim Biophys Acta, 1830(2), pp 2470-2480. L'inventeur a estimé qu'une agitation plus lente permet une meilleure stabilité de l'environnement cellulaire. Une réduction de l'agitation limite également le risque de choc entre plusieurs microporteurs en suspension dans un même milieu de culture. Cela limite également le stress hydrodynamique auquel sont soumis les cellules.
D'autres avantages seront décrits en lien avec les essais expérimentaux réalisés et décrits par la suite.
Les microporteurs selon l'invention peuvent être obtenus en mettant en oeuvre un procédé de type sol-gel, abréviation de solution-gélification. Il s'agit d'un procédé chimique connu de l'homme du métier, permettant de fabriquer, à basse température, des verres ou des céramiques. Un tel procédé comporte l'utilisation d'une solution sol-gel, formée : d'un précurseur moléculaire de métal ou de métalloïde, par exemple un composé organométallique ou un sel métallique ; d'un solvant organique ; d'eau ; d'un catalyseur acide ou basique.
En présence d'eau, un réseau d'oxydes se forme, par le biais de réactions d'hydrolyse- condensation, emprisonnant le solvant organique, de façon à former un gel. Ce dernier subit ensuite un séchage, pour éliminer le solvant organique présent dans le gel. Le séchage peut être de type évaporatif, à une pression inférieure ou égale à la pression atmosphérique, de façon à former un gel sec, usuellement désigné par le terme xérogel, se présentant sous la forme d'un solide monolithique.
Le précurseur moléculaire peut par exemple être un composé organométallique de métal ou de métalloïde, par exemple un alcoxyde métallique de formule M(OR)n, où M est un métal ou un métallloïde, et R est un groupe organique.
Le métal M peut être par exemple un métal de transition, un lanthanide : il peut s'agir de Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ra, W, Re, Os, Ir, Pt, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Al, Ga, In, Ge, Sn, Pb.
L'élément métalloïde peut être choisi parmi Si, Se, Te. - R peut être un groupe alkyle, comportant par exemple entre 1 et 10 atomes de carbone, ou un groupe phényle. n est un entier naturel correspondant au nombre de ligands liés à M, qui correspond à la valence de M.
Le précurseur moléculaire est placé dans une solution organique, par exemple une solution alcoolique. Le solvant organique peut être un monoalcool aliphatique ou aromatique, ou un diol.
La solution sol-gel peut également comporter un catalyseur, et/ou de l'eau, ou des composés permettant d'agir sur la porosité, par exemple un tensioactif.
Selon un mode de réalisation, la solution sol-gel comporte un composé de fonctionnalisation, notamment un composé organique, dont la fonction est de former un agent de greffage. Par agent de greffage, on entend une molécule ou un groupe fonctionnel apte à favoriser une accroche, par greffage, d'un élément chimique ou biologique à la surface du xérogel résultant de la mise en oeuvre du procédé sol-gel. L'élément chimique ou biologique est prédéterminé. Il peut s'agir d'une molécule, d'une cellule, ou d'une protéine ou d'un autre composé organique, par exemple un facteur de croissance ou un anticorps. Pour les applications liées à la culture cellulaire, l'agent de greffage favorise un greffage d'une cellule, de type prédéterminé. L'agent de greffage peut alors être du collagène, ou de la polylysine, ou une protéine de lait. Cependant, du fait de contraintes réglementaires ou de contrôle qualité, il est parfois préférable d'éviter des molécules d'origine animale. On peut alors utiliser un composé de fonctionnalisation comportant une fonction époxy, cette dernière étant propice à la formation de liaisons chimiques avec des fonctions amines, ces dernières étant présentes dans la plupart des membranes cellulaires. L'incorporation d'une fonction epoxy peut être effectuée par un composé de type glycidoxypropyltrimethoxysilane, usuellement désigné par l'acronyme GPTM. Une fonction amine peut également être intégrée dans le sol-gel, par le biais d'un composé de type APTES (3-aminopropyl-triethoxysilane). Un tel composé permet une formation de charges positives à la surface des microporteurs, ce qui favorise une accroche de cellules présentant des charges négatives surfaciques. Une fonction amine est propice à la formation de liaisons peptidiques avec les acides aminés de la paroi cellulaire.
La possibilité d'ajouter un composé de fonctionnalisation dans la solution sol-gel constitue un avantage intéressant, car cela évite de réaliser une fonctionnalisation post fabrication, comme dans les billes de l'art antérieur. Cela permet de fabriquer des microporteurs spécifiques à une application prédéfinie, prenant en compte l'élément chimique ou biologique destiné à se fixer sur les microporteurs, et/ou le milieu dans lequel le microporteur est destiné à être disposé.
Les microporteurs sol-gel obtenus ont une densité généralement inférieure à 2, et de préférence inférieure à 1.8. La densité est de préférence strictement supérieure à 1 et avantageusement comprise entre 1 et 1.4 et encore plus avantageusement entre 1.02 et 1.04. Une telle densité confère une bonne flottaison des microporteurs dans des milieux de culture aqueux.
Un premier exemple de procédé de fabrication d'un microporteur, par procédé sol-gel, est à présent décrit, en lien avec les figures 2A à 2B. Les principales étapes sont représentées sur la figure 3.
Etape 100 : formation des gouttes
Une solution sol-gel 2, telle que précédemment décrite, est introduite dans un distributeur 3, permettant de former des gouttes 12, et de préférence des gouttes calibrées. Les gouttes sont de préférence de microgouttes, dont le volume est compris entre 5.1010 ni et 15 pl.
Le diamètre des gouttes formées est de préférence compris entre 100 nm et 5 mm, ou entre 100 nm et 1 mm.
Le distributeur 3 est disposé à distance ou au contact d'un premier support 10. Le premier support 10 est de préférence plan et de préférence hydrophobe. Dans cet exemple, le premier support est un support plan, ce qui correspond à un mode de réalisation préféré : il s'agit d'une plaque rigide. Le caractère hydrophobe d'un matériau peut être caractérisé par un angle de contact Q, tel que représenté sur la figure 2C. L'angle de contact Q est mesuré en présence d'une goutte de la solution sol-gel mise en oeuvre. De préférence, l'angle de contact Q est compris entre 70° et 150°. Cela permet d'éviter un étalement excessif des gouttes sur le premier support. Le matériau formant le premier support 10 peut par exemple être du verre, ou du polypropylène, ou du téflon, ou du silicium. De préférence, le premier support 10 est hydrophobe ou a préalablement subi un traitement hydrophobe.
La distance d entre le distributeur et le premier support 10 est de préférence inférieure à 10 cm. Les gouttes peuvent être formées au contact du premier support 10. Plus la distance est proche, meilleure est la précision quant à la localisation des gouttes.
Au cours de l'étape 100, les gouttes formées sur le premier support 10 sont espacées les unes des autres. L'espacement entre deux gouttes adjacentes est dimensionné de telle sorte que lors de l'aplatissement des gouttes, résultant de la mise en oeuvre de l'étape 110, ces dernières restent espacées les unes des autres.
Le fait que le premier support 10 soit hydrophobe permet d'éviter un étalement trop important des gouttes 12.
Etape 110 : aplatissement des gouttes
Suite à la formation des gouttes, un deuxième support 20, de préférence hydrophobe, est appliqué parallèlement au premier support 10. Le deuxième support 20 est de préférence plan et de préférence rigide. Le deuxième support 20 est appliqué face au premier support 10, en étant espacé de ce dernier d'un espacement s dépendant de l'épaisseur e des microporteurs que l'on souhaite former. Compte tenu d'un rétreint intervenant au cours d'un séchage (cf. étape 120), l'espacement s entre le premier support 10 et le deuxième support 20 est supérieur l'épaisseur e des microporteurs 1 résultant de la mise en oeuvre du procédé. L'espacement s entre le premier support 10 et le deuxième support 20 peut être assuré en disposant des espaceurs 30 entre le premier support 10 et le deuxième support 20. L'espacement s entre le premier support 10 et le deuxième support 20 peut être compris entre quelques pm, par exemple 5 pm, et 5 mm ou, de préférence, entre 50 pm et 2 mm ou 1 mm.
L'application du deuxième support 20 conduit à un aplatissement des gouttes 12. Après leur application sur le premier support 10, les gouttes 12 forment rapidement un gel. Il est donc préférable que l'aplatissement soit effectué avant que la gélification ne soit pas trop avancée, dès que l'ensemble des gouttes 12 ont été formées. Aussi, l'étape 110 est mise en oeuvre le plus rapidement possible après l'étape 100. Le solvant utilisé dans la composition sol-gel peut être choisi peu volatil, de façon à pouvoir différer l'application du deuxième support 20. On évite ainsi un séchage et une gélification précoce des gouttes qui interviendrait avant l'application du deuxième support 20. Il est également possible d'abaisser la température ou augmenter la pression pour pouvoir retarder la gélification des gouttes déposées sur le premier support 10.
Etape 120 : gélification et séchage
Au cours de la gélification et du séchage, l'ensemble 40 formé par le premier support 10 et le deuxième support 20 est de préférence placé dans une étuve, de façon à finaliser la gélification et faciliter un séchage du gel. La température de l'étuve peut être par exemple comprise entre 30°C et 80°C. L'étuve peut être placée à une pression inférieure à la pression atmosphérique, par exemple à une pression comprise entre -200 mbar et - 970 mbar par rapport à la pression atmosphérique. Cela accélère significativement le séchage. La durée du passage dans l'étuve peut être comprise entre 10 minutes et 24 heures.
Au cours du séchage, le gel résultant de chaque goutte se solidifie, de façon à former un microporteur monolithique solide 1. Ainsi, chaque goutte 12 déposée lors de l'étape 100 entraîne une formation d'un microporteur monolithique solide 1.
Durant le séchage, les microporteurs subissent un rétreint, ce qui est un phénomène connu dans le domaine des sol-gel. Ainsi, au cours du séchage, l'épaisseur e de chaque microporteur 1 diminue, la diminution étant par exemple de 50 % lorsque l'épaisseur est de 100 pm ou de 50 pm. Aussi, suite au séchage, les microporteurs 1 ne sont en contact qu'avec un seul support, par exemple le premier support 10 sur lequel ils reposent par gravité. Certains microporteurs peuvent rester accrochés au deuxième support 20. Lorsque le deuxième support 20 est hydrophobe, ces derniers sont aisément retirés.
Le fait que chaque support soit hydrophobe facilite une perte du contact entre chaque microporteur et le support qui lui fait face, durant le rétreint. Le support faisant face est le support opposé au support supportant, par gravité, les microporteurs en formation. En effet, en l'absence de traitement hydrophobe, des liaisons, par exemple des liaisons OH, peuvent se former entre le gel et les supports. Cela entraîne un risque de casse lors de la perte de contact, lorsque le microsupport se rétracte sous l'effet du séchage. Le traitement hydrophobe de chaque support limite le risque de casse.
Etape 130 : récupération des microporteurs
Suite au séchage, les microporteurs 1 peuvent être aisément séparés du premier support 10 ou du deuxième support 20, du fait du caractère hydrophobe de ces derniers. Au cours de la récupération, les microporteurs 1 peuvent être collectés sur un support de récupération, de préférence souple, par exemple une toile. Il peut s'agir d'un filtre poreux en nylon. La porosité est optimisée pour retenir les microporteurs 1 tout en permettant l'élimination de débris, par exemple des résidus de microporteurs s'étant cassés durant la mise en oeuvre du procédé, ces derniers traversant le support de récupération. Par exemple, lorsque le diamètre (ou la plus grande diagonale) des microporteurs est égale à 600 pm, la granulométrie du support de récupération peut être de 400 pm. Lorsque le diamètre des microporteurs est de 200 pm, la granulométrie peut être de 150 pm.
Le fait que le premier support 10 soit hydrophobe permet d'éviter une formation de liaisons OH entre les microporteurs, résultant de la mise en oeuvre du procédé, et le premier support 10. Cela facilite la récupération des microporteurs.
Etape 140 : lavage
Les microporteurs récupérés lors de l'étape 130, disposés sur le support de récupération, sont lavés, par exemple par un bain dans une solution de lavage permettant d'éliminer des acides résiduels présents dans la solution sol-gel ou d'éventuels précurseurs n'ayant pas réagi. La solution de lavage peut être une solution aqueuse, par exemple une solution aqueuse comportant 50% en masse d'isopropanol. Le procédé peut comprendre successivement plusieurs bains, par exemple deux ou trois bains successifs.
Etape 150 : séchage post lavage
Suite à l'étape 140, les microporteurs font l'objet d'un séchage. Le séchage peut être effectué à température ambiante ou à une température plus élevée, par exemple jusqu'à 100°C ou au- delà. La température de séchage peut être abaissée si un vide partiel est formé autour des microporteurs. Lors du séchage, les microporteurs peuvent être disposés sur le support de récupération et l'ensemble est placé dans une étuve.
Selon une possibilité, le séchage peut être effectué en appliquant différents niveaux de pression successifs dans l'étuve, par exemple en abaissant progressivement la pression. Cela permet de réduire la durée de séchage. La température est par exemple de 50°. La durée du séchage dépend des conditions de température et de pression. Elle peut être comprise entre 10 minutes et 5h, voire davantage.
Selon une variante du premier mode de réalisation, les espaceurs 30 disposés entre les deux supports lors de l'étape 110 sont compressibles. Les espaceurs sont dimensionnés de telle sorte que lors de l'apposition du deuxième support 20 face au premier support 10, chaque goutte 12 n'est pas en contact avec le deuxième support 20. Cf. figure 4A. Au cours de l'étape 110, une pression est exercée sur le deuxième support 20, de façon à le rapprocher temporairement du premier support 10. Le deuxième support 20 entre alors en contact avec chaque goutte 12. Cf. figure 4B. Lorsque la pression est relâchée, le deuxième support 20 s'éloigne du premier support 10. Cf. figure 4C. Selon cette variante, l'étape 110 correspond à une déformation de la goutte 12. Lorsque la pression est relâchée, la goutte 12 reste en contact avec le deuxième support 20, par tension superficielle du liquide. Ainsi, lorsque la pression est relâchée, la goutte 12 s'étire selon l'axe transversal Z. Il en résulte une forme de microporteur particulière, comportant un amincissement h s'étendant entre deux extrémités I2. Lorsque les microporteurs sont cylindriques de révolution, la forme ressemble à celle d'un sablier.
La figure 4D est une photographie de microporteurs 1 en forme de sablier obtenus en mettant en oeuvre une telle variante.
Selon un deuxième mode de réalisation, les gouttes 12 sont déposées sur le premier support 10, comme décrit en lien avec l'étape 100 du premier mode de réalisation. Cf. figure 2A.
Contrairement au premier mode de réalisation, lors de l'étape 110, l'aplatissement des gouttes 12 ne résulte pas de l'apposition d'un deuxième support 20. L'aplatissement des gouttes est spontané. Il s'effectue notamment progressivement, au cours du séchage. Cf. figure 2D. Cela permet d'obtenir des microporteurs 1 dont l'épaisseur est comprise entre quelques pm, par exemple 2 pm ou 3 pm, jusqu'à plusieurs pm, voire centaines de pm. Ce mode de réalisation convient particulièrement à l'obtention de microporteurs 1 dont l'épaisseur est fine, typiquement inférieure à 30 pm, voire inférieure à 10 pm. Cela permet de disposer de microporteurs 1 présentant une bonne flottabilité.
La géométrie des microporteurs 1 obtenus selon le deuxième mode de réalisation n'est pas aussi cylindrique que celle des microporteurs obtenus selon le premier mode de réalisation. En particulier la face opposée à la face reposant sur le support 10 peut être légèrement bombée.
Selon ce mode de réalisation, l'étape 120 de séchage et gélification peut être effectuée à l'air libre, sans passage par une étuve.
Le deuxième mode de réalisation convient particulièrement à l'obtention de microporteurs de faible épaisseur, par exemple inférieure à 10 pm. D'une façon générale, le deuxième mode de réalisation permet d'obtenir un ratio diamètre/épaisseur très élevé, ce qui est propice à une bonne flottaison. Le premier mode de réalisation permet une meilleure maîtrise de la planéité des microporteurs. Il convient particulièrement à des microporteurs de diamètres élevés, typiquement supérieurs à 100 pm.
Les étapes 130 à 150 du deuxième mode de réalisation sont identiques à celles décrites en lien avec le premier mode de réalisation.
Le deuxième mode de réalisation est de préférence mis en oeuvre en abaissant la concentration de précurseurs dans la solution sol-gel par rapport au premier mode de réalisation. De préférence, dans le deuxième mode de réalisation, l'angle de contact Q de chaque goutte est plus faible que dans le premier mode de réalisation, cela pour favoriser un étalement de la goutte sur le premier support 10. Pour abaisser l'angle de contact Q, on peut utiliser un solvant présentant une tension spécifique inférieure à celle de l'eau, par exemple un alcool de type éthanol ou isopropanol. On peut également ajouter un tensioactif à la composition sol-gel.
Quel que soit le mode de réalisation, le premier support 10 peut être structuré de façon à ce que sous l'effet de l'aplatissement, chaque goutte 12 s'étale, sur le premier support 10, selon une forme prédéterminée, selon la structuration du premier support. Un exemple d'un tel support est représenté sur la figure 4E. La structuration du support 10 permet de former des premières parties 10i, destinées à recevoir les gouttes, et des deuxièmes parties IO2. Chaque première partie est délimitée par une deuxième partie, de telle sorte qu'une deuxième partie forme un contour fermé autour de chaque première partie.
Selon une possibilité le premier support 10 peut être microstructuré, de façon à comporter des premières parties 10i creuses de formes préderminées, par exemple des polygones de type quadrilatères ou des hexagones, et délimitées par une arête, formée par une deuxième partie 102. Les gouttes sont déposées sur chaque première partie 10i, et s'étendent jusqu'à l'arête délimitant ladite première partie. On obtient ainsi des microporteurs tels que représentés sur les figures IB ou IC, dont la forme correspond à la forme de chaque première partie 10i.
Selon une autre possibilité, la structuration du premier support 10 forme des premières parties 10i moins hydrophobes que chaque deuxième partie IO2. L'hydrophobie d'un matériau est une notion connue de l'homme du métier et peut être déterminée par une mesure de l'angle de contact. Plus ce dernier est élevé, plus le matériau est hydrophobe à l'égard de la solution formant la goutte. Les premières parties 10i peuvent être peu hydrophobes ou hydrophiles. Chaque deuxième partie 102 est de préférence hydrophobe. Par peu hydrophobe, on entend une partie dans laquelle l'angle de contact Q est plus faible d'au moins 5° ou 10°, par rapport à l'angle de contact sur la partie la plus hydrophobe. Selon ce mode de réalisation, chaque première partie 10i est délimitée par une deuxième partie 102, de telle sorte qu'au cours de l'étape 110, la goutte s'étale le long de la première partie sur laquelle elle a été déposée. Cette variante permet un meilleur contrôle de la forme du microporteur. Elle permet également d'obtenir des microporteurs dont la forme est pilotée par la structuration du premier support 10.
Essais expérimentaux.
Une première série d'essais a été réalisée, les conditions expérimentales étant décrites ci-après: Distributeur : Vanne de dosage Vermes MDV 3200 A équipée d'une buse Vermes Nll- 150 pour former des microgouttes sol-gel. Le distributeur était monté sur un robot triaxes Janome 200 mm/200 mm, permettant un déplacement du distributeur parallèlement à un premier support 10.
Premier support 10 : plaque de verre 200 mm x 170 mm, épaisseur 6 mm, préalablement traitée hydrophobe par une exposition au dichlorodimethylsilane.
Deuxième support 20 : identique au premier support.
Espacement s entre le premier support 10 et le deuxième support: 140 pm. l'espacement est obtenu en disposant des espaceurs 30 de type scotch adhésif. Précurseur : Tétraméthoxysilane 98% (Alfa Aesar).
Solvant : Isopropanol Technical (Alfa Aesar).
Catalyseur : HCl 6M (Sigma Aldrich).
Composé de fonctionnalisation minéral : Hydroxyapatite Ca5(OH)(PC>4)3 (Sigma Aldrich). Composé de fonctionnalisation organique : Collagène bovin de type 1 : 10mg/ml (Vornia
Ltd).
On a versé, dans un bêcher de 50 ml, 10ml de tétraméthoxysilane, maintenu sous agitation à température ambiante. On a préparé une solution de 5ml d'eau déionisée dans laquelle on a ajouté 0.1 ml d'HCI. La solution a été versée lentement dans le bêcher contenant le tétraméthoxysilane (10 ml). L'hydrolyse du tétraméthoxysilane étant exothermique, le mélange eau + HCl est versé à raison de 2.5 ml/min. On a ensuite ajouté, dans le bêcher, 20 ml d'eau. 3ml d'une solution d'hydroxyapatite a été ajoutée, ainsi que 4 ml de solution de collagène. La solution d'hydroxyapatite a été obtenue par dissolution de 200 mg de poudre d'hydroxyapatite dans 2.5 ml d'eau déionisée et 0.5 ml d'HCI, HCl facilitant une dissolution de la poudre d'hydroxyapatite.
La solution sol-gel, dont la préparation est décrite dans le paragraphe précédent, a été introduite dans une seringue de la vanne de dosage, dont les paramètres de réglage sont les suivants : rising : 0.25 ms ; falling : 0.35 ms ; open time : 2 ms ; needle lift : 30 ; delay : 7 ms ; air pressure : 0.5 bar. Ces paramètres sont ajustés au cas par cas par l'homme du métier.
Une première plaque de verre hydrophobe, faisant office de premier support 10, a été disposée sur le robot précédemment cité, ce dernier étant programmé pour se déplacer parallèlement à la première plaque de verre, en décrivant des lignes espacées les unes des autres d'une distance de 3 mm. Les gouttes sont formées à une distance de 2 mm de la plaque hydrophobe. L'espacement entre deux gouttes adjacentes, disposées sur une même ligne, était de 2 mm. Le volume de chaque goutte était de 500 ni.
Un film adhésif, faisant office d'espaceur 30, a été disposé au niveau des quatre coins de la première plaque de verre. L'épaisseur du fil adhésif était de 0.14 mm.
Le nombre de gouttes formées était de 5000. Après que toutes les gouttes ont été formées, une deuxième plaque de verre hydrophobe, faisant office de deuxième support 20, a été disposée délicatement au-dessus de la première plaque de verre, au contact du film adhésif, de façon à aplatir les gouttes, comme décrit en lien avec l'étape 110.
Les deux plaques de verre, confinant les gouttes en gélification/séchage, ont ensuite été placées dans une étuve à 50 °C. On a ensuite maintenu la température de 50°C et abaissé progressivement la pression selon 8 paliers de pression, respectivement de -200 mBar, -400 mBar, - 500 mBar, - 600 mBar, - 700 mBar, - 800 mBar, - 900 mBar et - 970 mBar par rapport à la pression atmosphérique. La durée de chaque palier était de 15 minutes. Des microporteurs solides se sont ainsi formés entre les deux plaques de verre, résultant de la gélification et du séchage des billes.
Après séchage, les plaques ont été séparées et les microporteurs ont été récupérés sur un filtre poreux de nylon, les pores mesurant 400 pm de diamètre. Le filtre, retenant les microporteurs a été placé dans un cristallisoir, comprenant de l'isopropanol dilué à 50 % (fraction massique) dans de l'eau déionisée, de façon à effectuer un lavage. La durée du lavage était de 2 heures. Le lavage a été répété trois fois. Suite aux lavages, le filtre retenant les microporteurs a été séché dans une étude à 100°C pendant lh30.
Les microporteurs résultant de la mise en oeuvre du procédé présentaient une épaisseur de 70 pm et un diamètre de 700 pm.
Les microporteurs ont été utilisés pour des applications de culture cellulaire. On a par exemple procédé à une culture de cellules souches issues de tissu adipeux humain (ASC : Adipose-derived Stem Cells). La figure 5 montre une photographie de microporteurs de culture après 72 heures de culture statique dans un milieu de culture de type "mesenchymal stem cell growth medium 2" (Promocell). Le développement de cellules, sur les microporteurs, selon une monocouche a été confirmé par microscopie.
Au cours de ces essais, on a observé d'autres avantages conférés par les microporteurs selon l'invention : une surface de culture plane, propice au développement de cellules dans de mêmes conditions que dans des supports de culture de type flasques de culture ou boîtes de Pétri usuellement utilisés. Il s'agit de conditions de culture différentes de celles résultant de microporteurs en forme de bille. En effet, sur ces derniers, la surface de culture est fortement bombée. Sur les microporteurs en forme de bille, les cellules se développent en formant des agrégats. Il est considéré que les cellules tendent à privilégier l'établissement de liaisons entre cellules au détriment de liaisons avec la surface de la bille. Sur les microporteurs présentant des surfaces planes, les cellules se développent en formant une monocouche, car elles privilégient des liaisons avec la surface plane du microporteur. une récupération aisée des cellules cultivées sur chaque microporteur. Les cellules se développent en formant une monocouche, ce qui facilite leur décollement des microporteurs. La séparation des cellules de chaque microporteur peut être facilitée par une enzyme, par exemple TrypLE (Microfischer). une récupération de cellules individuelles (ou unitaires), qui peuvent être utilisées pour être réensemencées pour une nouvelle culture. un comportement, après culture, proche de cellules cultivées en flasques de culture ou en boîte de Pétri. Des essais ont montré qu'après récupération des cellules et leur réensemencement dans un flasque de culture, les cellules s'étendent selon une forme fibroblastique, caractéristique des cellules souches mésenchymateuses. Leur capacité de différenciation ostéogénique, chondrogénique et adipogénique reste intacte. Les cellules restent bien des cellules souches pluripotentes, contrairement à ce qui peut être observé lorsque les cellules forment des agglomérats. En outre, on a observé un taux de cellules sensescentes similaire à celui obtenu lors d'une culture 2D sur flasques classiques ; un taux de cellules viables supérieur à celui obtenu en utilisant des microporteurs en forme de bille, notamment en raison d'un meilleur accès aux nutriments et à l'oxygène du milieu de culture ; une meilleure productivité des cellules, du fait que ces dernières sont cultivées sous la forme de monocouches, sans formation d'agglomérat. On évite ainsi l'inconvénient de l'inhibition de contact décrite en lien avec l'art antérieur.
L'invention pourra, à titre non limitatif, être mise en oeuvre pour des applications liées à la culture cellulaire.

Claims

REVENDICATIONS
1. Procédé de formation de microporteurs (1), comportant : a) formation de gouttes liquides (12) à partir d'une solution sol-gel (2); b) dépôt des gouttes liquides sur un premier support (10) ; c) déformation des gouttes déposées sur le premier support (10) ; d) solidification des gouttes par gélification et séchage, de façon à former des microporteurs solides ; e) extraction des microporteurs solidifiés du premier support (10).
2. Procédé selon la revendication 1, dans lequel le premier support (10) est hydrophobe.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel lors de l'étape c), la déformation des gouttes est un aplatissement.
4. Procédé selon la revendication 3, dans lequel l'étape c) comporte un aplatissement des gouttes (12) sur le premier support (10), l'aplatissement étant obtenu spontanément, au cours du séchage, lors de l'étape d).
5. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'étape c) comporte une application d'un deuxième support (20), de préférence hydrophobe, sur les gouttes (12), à distance du premier support, de telle sorte que les gouttes sont interposées entre le premier support et le deuxième support, l'application du deuxième support résultant en un aplatissement des gouttes entre les deux supports, l'espacement (s) entre le premier support et le deuxième support conditionnant l'épaisseur des microporteurs formés lors de l'étape d).
6. Procédé selon la revendication 5, dans lequel le diamètre des gouttes formées lors de l'étape a) et l'espacement entre le premier support (10) et le deuxième support (20) prise en compte lors de l'étape c) sont ajustés en fonction d'un diamètre ou d'une plus grande diagonale, parallèlement au premier support, des microporteurs résultant de l'étape e).
7. Procédé selon la revendication 5 ou la revendication 6, dans lequel l'étape d) comporte une disposition d'un ensemble (40), formé au moins par le premier support (10), les gouttes (12) en cours de gélification et le deuxième support (20), dans une étuve, de façon à favoriser le séchage.
8. Procédé selon la revendication 7, dans lequel la température de l'étuve est comprise entre 30°C et 70°C.
9. Procédé selon la revendication 7 ou la revendication 8, dans lequel l'étuve est placée sous vide partiel.
10. Procédé selon l'une quelconque des revendications 5 à 9, dans lequel lors de l'étape c), l'espacement entre le premier support (10) et le deuxième support (20) est compris entre 30 pm et 5 mm.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel lors de l'étape a), les gouttes (12) sont formées à distance (d) du premier support (10), la distance étant inférieure à 10 mm.
12. Procédé selon l'une quelconque des revendications 1 à 10 dans lequel lors de l'étape a), les gouttes sont formées au contact du premier support (10).
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel lors de l'étape a), les gouttes (12) formées présentent un diamètre compris entre 100 nm et 2 mm.
14. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier support (10) comporte des premières parties (10i) et au moins une deuxième partie (IO2), les premières parties étant moins hydrophobes que chaque deuxième partie, chaque première partie étant contournée par une deuxième partie, la deuxième partie formant un contour fermé autour de ladite première partie, de telle sorte que lors de l'étape a), les gouttes sont déposées sur chaque première partie (10i), et s'étendent, le long de chaque première partie, jusqu'au contour de ladite première partie.
15. Procédé selon la revendication 14, dans lequel :
- chaque deuxième partie (IO2) est hydrophobe et chaque première partie (10i) est moins hydrophobe que la deuxième partie qui la contourne ;
- ou chaque deuxième partie est hydrophobe (IO2) et chaque première partie (10i) est hydrophile.
16. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel le premier support (10) comporte des premières parties (10i) et au moins une deuxième partie (IO2), les premières parties étant creuses par rapport à chaque deuxième partie, chaque première partie étant contournée par une deuxième partie, ladite deuxième partie formant un contour, prenant la forme d'une arête, fermée autour de ladite première partie, de telle sorte que lors de l'étape a), les gouttes sont déposées sur chaque première partie (10i), et s'étendent, le long de chaque première partie, jusqu'au contour de ladite première partie.
17. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution sol- gel comporte un composé de fonctionnalisation, propice à une formation d'un agent de greffage à la surface des microporteurs, l'agent de greffage favorisant un greffage avec une espèce biologique prédéterminée ou une espèce chimique prédéterminée.
18. Procédé selon la revendication 17, dans lequel le composé de fonctionnalisation est minéral ou organique.
19. Procédé selon la revendication 17 ou la revendication 18, dans lequel la solution sol-gel comporte différents composés de fonctionnalisation.
20. Microporteur (1), obtenu par une mise en oeuvre d'un procédé selon l'une quelconque des revendications 1 à 19.
21. Microporteur (1), selon la revendication 20, comportant une première surface plane (Si) et une deuxième surface (S2), la première surface plane et la deuxième surface étant reliées l'une à l'autre par une surface latérale (S3) formant une bordure du microporteur.
22. Microporteur (1) selon la revendication 20, comportant une première surface plane (Si) et une deuxième surface (S2) bombée par rapport à la première surface plane, la première surface plane et la deuxième surface étant reliées l'une à l'autre par une surface latérale (S3) formant une bordure du microporteur.
23. Microporteur selon l'une quelconque des revendications 20 à 22, dans lequel :
- le diamètre, ou la plus grande diagonale, de la première surface plane est inférieur à 5 mm ou inférieur à 1 mm, et supérieur à 5 pm ,
- et/ou le diamètre, ou la plus grande diagonale de la deuxième surface plane est inférieur à 5 mm ou inférieur à 1 mm, et supérieur à 5 pm.
24. Microporteur selon la revendication 23, dans lequel l'épaisseur du microporteur, correspondant à la distance entre la première surface plane et la deuxième surface, est inférieure à 1 mm.
25. Utilisation d'un microporteur selon l'une quelconque des revendications 19 à 24 pour la culture de cellules, à l'exclusion des cellules souches embryonnaires d'origine humaine, le microporteur étant destiné à être placé en suspension dans un milieu de culture.
EP21700373.0A 2020-01-09 2021-01-06 Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs Pending EP4087911A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2000158A FR3106141A1 (fr) 2020-01-09 2020-01-09 Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs
PCT/EP2021/050143 WO2021140129A1 (fr) 2020-01-09 2021-01-06 Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs

Publications (1)

Publication Number Publication Date
EP4087911A1 true EP4087911A1 (fr) 2022-11-16

Family

ID=70978040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21700373.0A Pending EP4087911A1 (fr) 2020-01-09 2021-01-06 Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs

Country Status (4)

Country Link
US (1) US20230033382A1 (fr)
EP (1) EP4087911A1 (fr)
FR (1) FR3106141A1 (fr)
WO (1) WO2021140129A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138139A1 (fr) 2022-07-22 2024-01-26 Tarek Fathallah Procédé sol-gel de fabrication de billes creuses ou pleines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257102A1 (de) * 2002-12-05 2004-06-24 Cardion Ag Verfahren zur Herstellung hochreiner Zelltypen aus Stammzellen im aktiv begasten Bioreaktor und ihre Verwendung in der Medizin, Pharmakologie und Biotechnologie
DE102004009985A1 (de) * 2004-03-01 2005-09-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetische Manipulation von biologischen Proben

Also Published As

Publication number Publication date
FR3106141A1 (fr) 2021-07-16
WO2021140129A1 (fr) 2021-07-15
US20230033382A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
Paunov et al. Supraparticles and “Janus” particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique
US20130149492A1 (en) Porous thin film having holes and a production method therefor
EP0579596B1 (fr) Support pour la culture de cellules et procede de preparation d'un tel support
JP2012249547A (ja) 細胞培養用基材及びその製造方法
WO2021140129A1 (fr) Microporteurs pour culture cellulaire et procédé de fabrication de microporteurs
WO2012085399A1 (fr) Particules dissymetriques (particules de janus) et leur procede de synthese par electrochimie bipolaire
EP0248748A1 (fr) Procédés de fabrication de membranes minérales et poudre d'oxydes mixtes de titane et de silicium
FR2836923A1 (fr) Support pour culture de cellules et procede pour cultiver des cellules.
WO2010032595A1 (fr) Procédé de production simultanée d'une grande quantité de divers groupes moléculaires ou particulaires présentant n'importe quel profil de distribution et densité de distribution et matériau de masque pour une utilisation dans le procédé
EP1897936A1 (fr) Substrat de culture pourvu d'un revêtement en silicone oxydée
FR3081168A1 (fr) Systeme de culture cellulaire en bioreacteur
JP2008278769A (ja) 膵島細胞からなる3次元凝集体をインビトロで製造する方法
CN112430565A (zh) 批量生产3d细胞球的培养基底的制备方法
CH615933A5 (en) Process for carrying out enzymatic reactions
KR102137166B1 (ko) 세포배양 기판
EP2951336B1 (fr) Procede de fabrication d'elements moules en diamant monocristallin ou a tres faible densite de joints de grain de tailles micro, submicro ou nanometriques
CN107481920B (zh) 能够利用机械应力诱导细菌形貌伸长的材料及制备和应用
FR3138139A1 (fr) Procédé sol-gel de fabrication de billes creuses ou pleines
EP0046613B1 (fr) Procédé d'immobilisation de cellules microbiennes globulaires par adhésion à un support solide
CA1156167A (fr) Procede d'immobilisation de cellules microbiennes globulaires par adhesion a un support solide
Wang et al. Fabrication of Hierarchical 3D PDMS Molds by Replica Molding from Diatom Frustules
WO2024023822A1 (fr) Procédé de création d'un motif à l'échelle nanométrique ou micrométrique sur une surface d'un corps
KR100337789B1 (ko) 미세 접촉 인쇄와 선택적 화학 용액 증착법을 이용한황화카드뮴 박막의 형상화 방법
FR2947544A1 (fr) Fonctionnalisation de surfaces a base de carbone, de silicium et/ou de germanium hybrides sp3
EP0208637A1 (fr) Procédé perfectionné de fusion cellulaire

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)