WO2024017738A2 - Schnüffellecksuchvorrichtung mit halbleitergassensor sowie verfahren zur schnüffellecksuche - Google Patents

Schnüffellecksuchvorrichtung mit halbleitergassensor sowie verfahren zur schnüffellecksuche Download PDF

Info

Publication number
WO2024017738A2
WO2024017738A2 PCT/EP2023/069347 EP2023069347W WO2024017738A2 WO 2024017738 A2 WO2024017738 A2 WO 2024017738A2 EP 2023069347 W EP2023069347 W EP 2023069347W WO 2024017738 A2 WO2024017738 A2 WO 2024017738A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor
gas inlet
measuring
inlet
Prior art date
Application number
PCT/EP2023/069347
Other languages
English (en)
French (fr)
Other versions
WO2024017738A3 (de
Inventor
Daniel Wetzig
Original Assignee
Inficon Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inficon Gmbh filed Critical Inficon Gmbh
Publication of WO2024017738A2 publication Critical patent/WO2024017738A2/de
Publication of WO2024017738A3 publication Critical patent/WO2024017738A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0026General constructional details of gas analysers, e.g. portable test equipment using an alternating circulation of another gas

Definitions

  • the invention relates to a sniffer leak detection device with a measurement gas inlet for sucking in measurement gas at a measurement location, wherein the measurement gas is to be examined for the presence of a possible leakage gas at the measurement location.
  • Such sniffer leak detection devices are usually designed as hand-held probes that are connected via a gas-conducting connecting line to a gas detector for gas analysis.
  • a stream of air gas is sucked in via a sniffer tip of the sniffer probe and fed to a sensor unit in the gas detector. It is examined whether the analyzed gas mixture contains a leakage gas that has escaped from the inside of the test object to the outside through a leak in the test object.
  • the test specimen is typically filled with a known test gas, such as helium, or is already filled with a gas or refrigerant that is used as a test gas.
  • a known test gas such as helium
  • the test gas contains a natural amount of helium. It is therefore important to determine the natural proportion of the test gas used in the atmosphere surrounding the test object that is not the result of a leak in the test object.
  • a switchover valve is used to switch between the reference gas inlet and the sample gas inlet.
  • a gas delivery pump is connected to the changeover valve through a gas line path, which in turn can optionally be connected to the measurement gas inlet and/or the reference gas inlet.
  • a gas-conducting connection can be created between the measurement gas inlet and a gas sensor arranged in the path to the gas feed pump and/or a gas-conducting connection between the reference gas inlet and the gas sensor.
  • the gas delivery pump then sucks gas from the measurement gas inlet and/or the reference gas inlet, depending on the situation Switching state of the switching valve and conveys the sucked gas to the gas sensor.
  • an optical sensor in the form of an infrared gas analyzer is typically used as the gas sensor.
  • a measuring cuvette is filled with the gas to be examined and then illuminated with infrared radiation. The resulting absorption spectrum can be used to determine the composition of the gas within the measuring cuvette.
  • the invention is based on the object of providing a sniffer leak detection device which enables rapid switching between a measurement gas inlet and a reference gas inlet during gas analysis.
  • the sniffer leak detection device is defined by the features of patent claim 1.
  • the method according to the invention is defined by patent claim 8.
  • the sniffing leak detection device has a measurement gas inlet for sucking in measurement gas at a measurement location, wherein the measurement gas is to be examined for the presence of a possible leakage gas at the measurement location.
  • a leak gas is a gas that has escaped from the interior of the test object into its external environment due to a leak in a test object and is picked up there by the sniffing leak detection device.
  • a known test gas is used as the leakage gas, with which the test object is filled or which is already contained in the test object.
  • a reference gas inlet that is different from the measurement gas inlet is provided for sucking in reference gas from the surroundings of the measuring location, ie from the surroundings of the area in which a leak is suspected and from which gas is sucked in through the measuring gas inlet.
  • a gas delivery pump of the sniffer leak detection device generates a gas flow through a gas line path connecting the measurement gas inlet and the reference gas inlet to the gas delivery pump in order to suck in the gas through the gas inlet used in each case.
  • the gas line path is optionally connected to the measurement gas inlet and/or to the reference gas inlet in such a way that the gas feed pump sucks in gas through the measurement gas inlet and/or through the reference gas inlet, depending on the switching state of the changeover valve. Switching between the measurement gas inlet and the reference gas inlet can take place. Alternatively, the reference gas inlet can be briefly switched on to the gas line path connecting the measurement gas inlet to the gas feed pump. A gas sensor analyzes the gas drawn in by the gas pump.
  • the gas sensor of the sniffing leak detection device is not a conventional optical sensor, such as a conventional infrared gas analyzer, but rather a gas sensor with a sensor surface that has at least one physically measurable property that depends on the gas contacting the sensor surface changes and can be measured by the sensor.
  • the sensor surface is arranged in such a way that at least part of the Gas delivery pump of sucked gas conveyed through the gas line path is guided along the sensor and thereby contacts the sensor surface and changes the physical property of the sensor surface.
  • the physical property of the sensor surface can be measured electrically, for example, with the measurement signal being evaluated to identify gas components of the gas mixture being examined.
  • the physical property can be, for example, the electrical resistance of the sensor surface or the voltage-current characteristic.
  • the gas sensor can be a semiconductor gas sensor.
  • the gas sensor can also be a heat conduction sensor, in which the measurable physical property of the sensor surface is the thermal conductivity, which changes depending on the gas in contact.
  • the invention offers the decisive advantage that, compared to the optical sensors known in the prior art, a significantly smaller amount of gas is required to generate an electrical measurement signal that is suitable for gas detection. While, for example, with optical infrared radiation absorption sensors the sensor volume must be filled before a meaningful measurement signal can be generated, with a gas sensor with a gas-sensitive sensor surface, only a much smaller gas volume is sufficient to contact or wet the sensor surface.
  • the invention thus offers the advantage that the gas volume within the gas sensor or in the measuring environment of the sensor surface can be limited to a value that enables rapid switching of the switching valve with a rapid signal response from the gas sensor.
  • the gas volume within the gas sensor or in the measuring environment of the sensor surface is limited to a value of 1 cm 3 , preferably 500 mm 3 and particularly preferably 100 mm 3 .
  • a gas quantity of maximum 1 see, (standard cubic centimeter), 0.5 see or 0.1 see is sufficient to generate an electrically evaluable measurement signal and thereby enable a high switching frequency of the changeover valve.
  • the gas delivery flow must then be 8 sees (standard cubic centimeters per second), 4 sees or 0.8 sees in order to achieve a complete gas exchange for each measuring cycle.
  • a sniffing leak detector is operated with a larger sniffing gas flow in order to achieve a faster gas exchange in the detection volume, this leads to the amount of leakage gas recorded being more diluted, which in turn is associated with a loss of sensitivity.
  • a faster gas exchange in the detection volume can be achieved with an unchanged sniffer gas flow by lowering the working pressure in the detection volume to a constantly lower level. This also reduces the amount of gas to be exchanged. However, this leads to a reduced test gas partial pressure, which in turn is associated with reduced sensitivity and is therefore also not effective.
  • a gas quantity of less than 1 scc (standard cubic centimeter), less than 0.5 scc or particularly preferably less than 0.1 scc is passed past the sensor surface while the measurement signal is evaluated.
  • the reduced amount of gas to be exchanged enables a higher gas modulation frequency with complete gas exchange in the detection volume and/or enables the sniffing gas flow to be reduced to the minimum for complete gas exchange in the detection volume for each modulation cycle.
  • the reduced sniffing gas flow in turn leads to a increased test gas concentration for a given leakage rate, which in turn improves the sensitivity of the detection.
  • Such semiconductor gas sensors are known, for example, in the form of metal-oxide sensors in which the sensor surface has a metal-oxide coating, but not in the area of sniffer leak detection.
  • Semiconductor sensors e.g. SnO2 sensors
  • SnO2 sensors are suitable for detecting hydrogen or hydrocarbons.
  • the sensor behavior is non-linear, the signal reaction to changes at low concentration levels is strong, the signal change flattens out more and more as the concentration increases, and at high concentrations there is only a small signal change.
  • a signal change at a low or medium concentration level is easily detectable; such a signal change is generated by the modulation operation, especially if the reference gas concentration is low.
  • the invention exploits this advantage of the strong signal reaction at low concentrations as follows:
  • a sufficient IR absorption distance is required in the measuring cuvette between the IR emitter and the IR detector.
  • the entire measuring gas cell must be completely filled with measuring gas or reference gas for each modulation cycle to ensure full sensitivity.
  • the cuvette length can be shortened, but this also shortens the IR absorption path.
  • An alternative solution to A faster gas exchange would result in a stronger gas delivery flow (gas flow), but this reduces the sample gas concentration and thus the sensitivity for leakage measurements.
  • the task is therefore the rapid complete gas exchange at the sensor with the lowest possible gas flow in order to achieve a high modulation frequency.
  • a compact and at the same time sensitive sensor element is, for example, a semiconductor sensor.
  • the use of a semiconductor sensor in connection with gas alternating modulation is not yet known.
  • the switching valve is preferably designed to switch between the measurement gas inlet and the reference gas inlet with a switching frequency or modulation frequency of at least 4 Hz and preferably at least 8 Hz.
  • a switching frequency or modulation frequency of at least 4 Hz and preferably at least 8 Hz.
  • the changeover valve can be designed to switch the reference gas inlet to the gas line path connecting the measurement gas inlet to the gas feed pump with a frequency of at least 4 Hz.
  • the frequency (modulation frequency) can be at least 8 Hz.
  • a gas mixture is supplied to the gas sensor at alternating intervals, which either consists only of the measurement gas or of a mixture of measurement gas and reference gas.
  • the sensor surface of the semiconductor gas sensor preferably has an electrical resistance or current-voltage characteristic that reacts to the leakage gas or the test gas used in the test object.
  • the electrical resistance of the sensor surface or current-voltage characteristic curve of the semiconductor is changed by the test gas used.
  • a suitable test gas is, for example, helium.
  • a gas flow is generated with the gas delivery pump, which, depending on the switching position of the switching valve, is sucked in through the measurement gas inlet and / or the reference gas inlet and is guided past the gas sensor along the gas line path in such a way that gas components of the gas flow react with the sensor surface in such a way that the electrical resistance of the sensor surface or current-voltage characteristic curve of the semiconductor changes depending on the gas type of the gas component in order to thereby detect a leakage gas or test gas drawn in through the measurement gas inlet.
  • the electrical resistance of the sensor surface is measured electrically, with the measurement signal from the resistance measurement being used for gas analysis.
  • the switching valve is switched to the reference gas inlet or connects the reference gas inlet to the gas line path between the measurement gas inlet and the gas sensor in order to examine gas drawn in through the reference gas inlet from the surroundings of the measuring location for the presence of leakage gas components and these leakage gas components when evaluating the gas drawn in through the measurement gas inlet to be taken into account.
  • the determined proportions of test gas or leakage gas in the examined reference gas are subtracted from the corresponding proportions of the test gas or leakage gas in the analyzed measurement gas in order to determine the proportion of test gas or the test gas concentration that comes from a leak in the test object.
  • the sniffing leak detection device 10 shown has a hand-held sniffing probe 12, which has a gas connection line is connected to a gas feed pump 16.
  • a gas sensor 18 is arranged in the sniffer probe 12.
  • the sniffer probe 12 has a housing 14, which also encloses the gas sensor 18.
  • a three-way switching valve 20 is also arranged in the housing 14 and is connected to the gas sensor 18 by a gas line path 22.
  • a further section of the gas line path 22 connects the gas sensor 18 to the gas feed pump 16, the portion of the gas line path 22 running outside the housing 14 passing through the gas line path 22
  • Gas connection line 13 is formed.
  • the housing 14 has a measuring gas sniffer tip 24 and a
  • Reference gas sniffer tip 26 on.
  • the two sniffing tips 24, 26 can also be combined or arranged in a common housing of a common sniffing tip.
  • the reference gas sniffing tip 26 can alternatively also be attached to the housing 14 further away from the measuring gas sniffing tip 24.
  • the measuring gas sniffer tip 24 has a measuring gas inlet 28 at its front end opposite the housing 14.
  • the end of the reference gas sniffing tip 26 opposite the housing 14 is provided with a reference gas inlet 30.
  • the measurement gas inlet 28 is connected to a first connection of the switching valve 20 through a measurement gas line path 32, while the reference gas inlet 30 is also connected to the switching valve 20 through a reference gas line path 34, which is different from the measurement gas line path 32.
  • the measurement gas line path 32 is connected to a first connection 36 of the switching valve 20, while the reference gas line path 34 is connected to a second connection 38 of the switching valve 20, while the Gas line path 22 is connected to a third connection 40 of the switching valve 20, which is different from the first two connections 36, 38.
  • the switching valve 20 selectively connects either the first connection 36 or the second connection 38 to the third connection 40, so that in the case of the first connection 36 the measurement gas line path 32 is connected to the gas line path 22, while in the case of the second connection 38 the reference gas line path 34 is connected the gas line path 22 is connected.
  • the switching valve 20 connects both the first connection 36 and the second connection 38 to the third connection 40, so that in this case both the measurement gas line path 32 and the reference gas line path 34 are connected to the gas line path 22.
  • the gas sensor 18 is designed as a semiconductor sensor in the form of a metal-oxide sensor.
  • the gas sensor 18 has a sensor surface 42 in the form of a metal oxide surface.
  • the sensor surface 42 is arranged within the gas sensor 18 in such a way that the gas flow guided along the gas line path 22 within the housing 14 flows past the sensor surface 42.
  • part of the pumped gas mixture comes into contact with the sensor surface 42 and influences the electrical resistance of the sensor surface 42 or the current-voltage characteristic of the transistor.
  • the sensor resistance is changed.
  • the resistance of the sensor surface 42 is measured in an electrically conventional and known manner, with the gas composition at the sensor surface 42 being deduced from the measurement signal of the resistance values and in particular specific gas components, such as test gas contained in a test specimen, being able to be detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Schnüffellecksuchvorrichtung (10) mit einem Messgaseinlass (28) zum Ansaugen von Messgas an einem Messort, wobei das Messgas auf das Vorhandensein eines möglichen Leckagegases am Messort zu untersuchen ist, einem von dem Messgaseinlass (28) verschiedenen Referenzgaseinlass (30) zum Ansaugen von Referenzgas aus der Umgebung des Messortes, einer das durch den Messgaseinlass (28) und durch den Referenzgaseinlass (30) angesogene Gas fördernden Gasförderpumpe (16), einem mit der Gasförderpumpe (16) durch einen Gasleitungsweg (22) verbundenen Umschaltventil (20), das gasleitend mit dem Referenzgaseinlass (30) und mit dem Messgaseinlass (28) derart verbunden und ausgebildet ist, dass die Gasförderpumpe (16) je nach Schaltzustand des Umschaltventils (20) Gas durch den Messgaseinlass (28) und/oder durch den Referenzgaseinlass (30) ansaugt, und einem Gassensor (18) zum Analysieren des von der Gasförderpumpe (16) angesogenen Gases, dadurch gekennzeichnet, dass der Gassensor (18) eine gassensitive Sensorfläche (42) mit mindestens einer physikalischen Eigenschaft, die sich in Abhängigkeit von dem die Sensorfläche (42) kontaktierenden Gas ändert und messbar ist, aufweist, wobei die Sensorfläche (42) derart angeordnet ist, dass zumindest ein Teil des von der Gasförderpumpe (16) geförderten Gases an dem Sensor entlang geführt wird und dabei die Sensorfläche (42) kontaktiert, um dadurch die messbare Eigenschaft zu verändern.

Description

Schnüffellecksuchvorrichtunq mit Halbleiterqassensor sowie Verfahren zur
Schnüffellecksuche
Die Erfindung betrifft eine Schnüffellecksuchvorrichtung mit einem Messgaseinlass zum Ansaugen von Messgas an einem Messort, wobei das Messgas auf das Vorhandensein eines möglichen Leckagegases am Messort zu untersuchen ist.
Derartige Schnüffellecksuchvorrichtungen sind meist als handgeführte Sonden ausgebildet, die über eine gasleitende Verbindungsleitung mit einem Gasdetektor zur Gasanalyse verbunden sind. Über eine Schnüffelspitze der Schnüffelsonde wird ein Luftgasstrom angesaugt und einer Sensoreinheit im Gasdetektor zugeführt. Dabei wird untersucht, ob in dem analysierten Gasgemisch ein Leckagegas enthalten ist, das aus dem Inneren des Prüflings durch ein Leck im Prüfling nach außen entwichen ist. Hierzu wird der Prüfling typischerweise mit einem bekannten Prüfgas, wie z.B. Helium, gefüllt oder ist bereits mit einem Gas oder Kältemittel gefüllt, das als Prüfgas genutzt wird. Allerdings gibt es oftmals ein natürliches Vorkommen des verwendeten Prüfgases in der den Prüfling umgebenden Atmosphäre. So enthält Luft beispielsweise einen natürlichen Heliumanteil. Daher ist von Bedeutung, den natürlichen, nicht aus einem Leck im Prüfling resultierenden Anteil des verwendeten Prüfgases in der den Prüfling umgebenden Atmosphäre zu ermitteln.
Hierzu ist es beispielsweise aus EP 1 342 070 Bl bekannt, zusätzlich zu dem Messgaseinlass der Schnüffellecksuchvorrichtung einen von dem Messgaseinlass verschiedenen Referenzgaseinlass zu verwenden. Durch den Referenzgaseinlass soll Referenzgas aus der Umgebung des Messortes, also aus der Umgebung des untersuchten Prüflings und des vermuteten Lecks, angesaugt werden. Dem liegt der Gedanke zugrunde, dass der in dem Referenzgas vorkommende Anteil des verwendeten Prüfgases nicht aus einem Leck im Prüfling resultiert, sondern dem natürlichen Vorkommen des verwendeten Prüfgases in dem untersuchten Gasgemisch entspricht.
Zwischen dem Referenzgaseinlass und dem Messgaseinlass wird mit Hilfe eines Umschaltventils umgeschaltet. Eine Gasförderpumpe ist durch einen Gasleitungsweg mit dem Umschaltventil verbunden, das wiederum wahlweise mit dem Messgaseinlass und/oder dem Referenzgaseinlass verbindbar ist. Dadurch kann mit Hilfe des Umschaltventils eine gasleitende Verbindung zwischen dem Messgaseinlass und einem in dem Weg zur Gasförderpumpe angeordneten Gassensor und/oder eine gasleitende Verbindung zwischen dem Referenzgaseinlass und dem Gassensor geschaffen werden. Die Gasförderpumpe saugt dann Gas aus dem Messgaseinlass und/oder dem Referenzgaseinlass je nach Schaltzustand des Umschaltventils an und fördert das angesaugte Gas zu dem Gassensor.
Bei den bekannten Schnüffellecksuchvorrichtungen mit Umschaltung zwischen einem Messgaseinlass und einem Referenzgaseinlass wird als Gassensor typischerweise ein optischer Sensor in Form eines Infrarot-Gas-Analysators verwendet. Dabei wird eine Messküvette mit dem zu untersuchenden Gas gefüllt und anschließend mit Infrarotstrahlung durchleuchtet. Anhand des resultierenden Absorptionsspektrums kann auf die Zusammensetzung des Gases innerhalb der Messküvette geschlossen werden.
Die herkömmlichen Infrarotgasanalysatoren gestatten kein beliebig schnelles Umschalten zwischen dem Messgaseinlass und dem Referenzgaseinlass. Vielmehr muss die verwendete Messküvette zunächst mit dem zu untersuchenden Gasgemisch gefüllt werden, bevor die Analyse erfolgen kann und anschließend das nachfolgend zu untersuchende Gasgemisch in die Messküvette eingebracht werden, bevor dieses untersucht werden kann. Daraus resultieren für die Umschaltung zwischen dem Messgaseinlass und dem Referenzgaseinlass durch das Umschaltventil begrenzte Umschaltfrequenzen, auch Modulationsfrequenzen genannt. Bei höheren Frequenzen wird die Sensitivität der Gasanalyse verringert, weil das Gas in der Messküvette nicht vollständig ausgetauscht wird.
Der Erfindung liegt die Aufgabe zugrunde, eine Schnüffellecksuchvorrichtung bereitzustellen, die eine schnelle Umschaltung zwischen einem Messgaseinlass und einem Referenzgaseinlass bei der Gasanalyse ermöglicht.
Die erfindungsgemäße Schnüffellecksuchvorrichtung ist definiert durch die Merkmale von Patentanspruch 1. Das erfindungsgemäße Verfahren ist definiert durch Patentanspruch 8. Die Schnüffellecksuchvorrichtung weist einen Messgaseinlass zum Ansaugen von Messgas an einem Messort auf, wobei das Messgas auf das Vorhandensein eines möglichen Leckagegases am Messort zu untersuchen ist. Als Leckagegas wird ein Gas bezeichnet, das durch ein Leck in einem Prüfling aus dem Innenraum des Prüflings in dessen äußere Umgebung entwichen ist und dort mit der Schnüffellecksuchvorrichtung aufgenommen wird. Typischerweise wird als Leckagegas ein bekanntes Prüfgas verwendet, mit dem der Prüfling befüllt wird oder das in dem Prüfling bereits enthalten ist. Ein von dem Messgaseinlass verschiedener Referenzgaseinlass ist zum Ansaugen von Referenzgas aus der Umgebung des Messortes vorgesehen, d.h. aus der Umgebung des Bereichs, in dem ein Leck vermutet wird und aus dem Gas durch den Messgaseinlass angesogen wird. Eine Gasförderpumpe der Schnüffellecksuchvorrichtung generiert einen Gasstrom durch einen den Messgaseinlass und den Referenzgaseinlass mit der Gasförderpumpe verbindenden Gasleitungsweg, um so das Gas durch den jeweils verwendeten Gaseinlass anzusaugen. Mit Hilfe eines Umschaltventils wird der Gasleitungsweg wahlweise mit dem Messgaseinlass und/oder mit dem Referenzgaseinlass derart verbunden, dass die Gasförderpumpe je nach Schaltzustand des Umschaltventils Gas durch den Messgaseinlass und/oder durch den Referenzgaseinlass ansaugt. Dabei kann ein Umschalten zwischen dem Messgaseinlass und dem Referenzgaseinlass erfolgen. Alternativ kann der Referenzgaseinlass kurzzeitig zu dem den Messgaseinlass mit der Gasförderpumpe verbindenden Gasleitungsweg zugeschaltet werden. Ein Gassensor analysiert das von der Gasförderpumpe angesogene Gas.
Erfindungsgemäß handelt es sich bei dem Gassensor der Schnüffellecksuchvorrichtung nicht um einen herkömmlichen optischen Sensor, wie z.B. einen konventionellen Infrarotgasanalysator, sondern stattdessen vielmehr um einen Gassensor mit einer Sensorfläche, die mindestens eine physikalisch messbare Eigenschaft aufweist, die sich in Abhängigkeit von dem die Sensorfläche kontaktierenden Gas ändert und von dem Sensor messbar ist. Dabei ist die Sensorfläche derart angeordnet, dass zumindest ein Teil des von der Gasförderpumpe durch den Gasleitungsweg geförderten angesogenen Gases an dem Sensor entlanggeführt wird und dabei die Sensorfläche kontaktiert und die physikalische Eigenschaft der Sensorfläche verändert. Die physikalische Eigenschaft der Sensorfläche kann beispielsweise elektrisch gemessen werden, wobei das Messsignal zur Identifizierung von Gaskomponenten des untersuchten Gasgemischs ausgewertet wird.
Bei der physikalischen Eigenschaft kann es sich beispielsweise um den elektrischen Widerstand der Sensorfläche handeln oder um die Spannungs-Strom-Kennlinie. So kann es sich bei dem Gassensor um einen Halbleitergassensor handeln. Alternativ kann es sich bei dem Gassensor auch um einen Wärmeleitungssensor handeln, bei dem die messbare physikalische Eigenschaft der Sensorfläche die Wärmeleitfähigkeit ist, die sich in Abhängigkeit von dem kontaktierenden Gas ändert.
Die Erfindung bietet den entscheidenden Vorteil, dass gegenüber den im Stand der Technik bekannten optischen Sensoren eine deutlich geringere Gasmenge erforderlich ist, um ein elektrisches Messsignal zu generieren, das zur Gasdetektion geeignet ist. Während beispielsweise bei optischen Infrarotstrahlungsabsorptionssensoren das Sensorvolumen gefüllt werden muss, bevor ein aussagekräftiges Messsignal generiert werden kann, reicht bei einem Gassensor mit gassensitiver Sensorfläche lediglich ein sehr viel geringeres Gasvolumen aus, das die Sensorfläche kontaktiert oder benetzt.
Damit bietet die Erfindung den Vorteil, dass das Gasvolumen innerhalb des Gassensors oder in der Messumgebung der Sensorfläche auf einen Wert beschränkt werden kann, der ein schnelles Umschalten des Umschaltventils mit schneller Signalreaktion des Gassensors ermöglicht. Vorzugsweise ist das Gasvolumen innerhalb des Gassensors oder in der Messumgebung der Sensorfläche auf einen Wert von 1 cm3, bevorzugt 500 mm3 und besonders bevorzugt 100 mm3 beschränkt. Das bedeutet, dass eine Gasmenge von maximal 1 see, (Standard Kubikzentimeter), 0,5 see bzw. 0,1 see ausreicht, um ein elektrisch auswertbares Messsignal zu generieren und dadurch eine hohe Umschaltfrequenz des Umschaltventils zu ermöglichen. Zu einer Umschaltfrequenz des Umschaltventils von z.B. 4Hz muss der Gasförderfluss dann 8 sees, (Standard Kubikzentimeter pro Sekunde), 4 sees bzw. 0,8 sees betragen, um einen kompletten Gasaustausch zu jedem Messzyklus zu erreichen.
Wird dagegen ein Schnüffellecksucher mit größerem Schnüffelgasfluss betrieben, um so einen schnelleren Gasaustausch im Nachweisvolum zu erreichen, führt das dazu, dass die aufgenommene Leckagegasmenge stärker verdünnt wird, was wiederum mit einem Verlust an Sensitivität verbunden ist.
Grundsätzlich kann ein schnellerer Gasaustausch im Nachweisvolumen bei unverändertem Schnüffelgasstrom erreicht werden, in dem der Arbeitsdruck im Nachweisvolumen auf ein konstant niedrigeres Niveau abgesenkt wird. Auch damit ist die auszutauschende Gasmenge reduziert. Dies führt jedoch zu einem reduzierten Prüfgaspartialdruck, was wiederum mit einer reduzierten Sensitivität verbunden ist, also ebenso nicht zielführend ist.
So wird insbesondere bei dem erfindungsgemäßen Verfahren zur Schnüffellecksuche eine Gasmenge von weniger als 1 scc (Standard Kubikzentimeter), weniger als 0,5 scc oder besonders bevorzugt von weniger als 0,1 scc an der Sensorfläche vorbeigeführt, während das Messsignal ausgewertet wird.
Die reduzierte auszutauschende Gasmenge ermöglicht eine höhere Gasmodulationfrequenz mit vollständigem Gasaustausch im Nachweisvolumen und/oder ermöglicht ein Absenken des Schnüffelgasstroms auf das Mindestmaß zum vollständigen Gasaustausch im Nachweisvolumen zu jedem Modulationszyklus. Der reduzierte Schnüffelgasstrom wiederum führt zu einer erhöhten Prüfgaskonzentration bei gegebener Leckagerate, was wiederrum die Sensitivität des Nachweises verbessert.
Derartige Halbleitergassensoren sind beispielsweise in Form von Metall-Oxid- Sensoren, bei denen die Sensorfläche eine Metall-Oxid-Beschichtung aufweist, bekannt, nicht jedoch im Bereich der Schnüffellecksuche.
Halbleitersensoren (z.B SnO2-Sensoren) eignen sich zum Nachweis von Wasserstoff oder Kohlen-Wasserstoffen. Das Sensorverhalten ist allerdings nichtlinear, die Signalreaktion bei Änderungen auf geringem Konzentrationslevel ist stark, die Signaländerung flacht mit zunehmender Konzentration mehr und mehr ab, bei hohen Konzentrationen erfolgt nur noch eine geringe Signaländerung. Eine Signaländerung auf geringem oder mittlerem Konzentrationsniveau ist gut nachweisbar, eine solche Signaländerung wird durch den Modulationsbetrieb erzeugt, insbesondere wenn die Referenzgaskonzentration gering ist. Diesen Vorteil der starken Signalreaktion bei geringen Konzentrationen nutzt die Erfindung wie folgt aus:
• Die Störgasunterdrückung bei der Gaswechsel-Modulation wird umso besser, je höher die Modulationsfrequenz gewählt wird.
• Hier gilt eine Einschränkung: Sobald das Signal bei einem schnellen Modulationszyklus nicht mehr den vollen Signalhub erreicht, geht Empfindlichkeit verloren.
• Bei einem optischen IR-Strahlungs-Absorptions-Nachweis wird eine ausreichende IR-Absorptionsstrecke in der Messküvette zwischen IR- Emitter und IR-Detektor benötigt. Die gesamte Mess-Gasküvette muss zu jedem Modulationszyklus zur vollen Empfindlichkeit komplett mit Messgas bzw. mit Referenzgas gefüllt sein. Um das Gasvolumen in der Küvette zu reduzieren, kann die Küvettenlänge gekürzt werden, hierdurch verkürzt sich jedoch auch die IR-Absortionsstrecke. Eine alternative Lösung zum schnelleren Gasaustausch wäre ein stärkerer Gasförderstrom (Gasfluss), dieser reduziert jedoch die Messgaskonzentration und damit die Empfindlichkeit für Leckagemessungen.
• Aufgabenstellung ist also der schnelle komplette Gasaustausch am Sensor bei möglichst geringem Gasförderstrom um eine hohe Modulationsfrequenz zu erreichen.
• Ein kompaktes und zugleich empfindliches Sensorelement ist beispielsweise ein Halbleitersensor. Der Einsatz eines Halbleitersensors im Zusammenhang mit Gas-Wechselmodulation ist bisher nicht bekannt.
• Alternativ zum Halbleitersensor sind weitere Sensorelemente denkbar:
- Gasselektives Wärmeleitungs-Sensorelement
-Pirani-Gasdetektor
Das Umschaltventil ist vorzugsweise zum Umschalten zwischen dem Messgaseinlass und dem Referenzgaseinlass mit einer Umschaltfrequenz oder Modulationsfrequenz von mindestens 4 Hz und vorzugsweise mindestens 8 Hz ausgebildet. Bei herkömmlichen Infrarotgasanalysatoren oder anderen optischen Sensoren führt eine derart hohe Umschaltfrequenz zu einem Sensitivitätsverlust. Die Halbleitergasanalyse ermöglicht jedoch ein derart schnelles Umschalten mit ausreichend hoher Sensitivität zur Auswertung der Messsignale sowohl des Messgases als auch des Referenzgases.
Das Umschaltventil kann zum Zuschalten des Referenzgaseinlasses zu dem den Messgaseinlass mit der Gasförderpumpe verbindenden Gasleitungsweg mit einer Frequenz von mindesten 4 Hz ausgebildet sein. Auch hierbei kann die Frequenz (Modulationsfrequenz) mindestens 8 Hz betragen. Dadurch wird in wechselnden Intervallen dem Gassensor ein Gasgemisch zugeführt, das entweder nur aus dem Messgas besteht oder aus einer Mischung aus Messgas und Referenzgas. Die Sensorfläche des Halbleitergassensors weist vorzugsweise einen auf das Leckagegas bzw. das im Prüfling verwendete Prüfgas reagierenden elektrischen Widerstand oder Strom-Spannungs-Kennlinie auf. Vorzugsweise wird also der elektrische Widerstand der Sensorfläche oder Strom-Spannungs-Kennlinie des Halbleiters durch das verwendete Prüfgas verändert. Ein geeignetes Prüfgas ist beispielsweise Helium.
Gemäß dem erfindungsgemäßen Verfahren wird mit der Gasförderpumpe ein Gasstrom erzeugt, der je nach Schaltstellung des Umschaltventils durch den Messgaseinlass und/oder den Referenzgaseinlass angesogen und entlang des Gasleitungsweges derart an dem Gassensor vorbeigeführt wird, dass Gasbestandteile des Gasstroms mit der Sensorfläche derart reagieren, dass sich der elektrische Widerstand der Sensorfläche oder Strom-Spannungs-Kennlinie des Halbleiters je nach Gastyp des Gasbestandteils verändert, um dadurch ein durch den Messgaseinlass angesogenes Leckagegas oder Prüfgas zu detektieren. Der elektrische Widerstand der Sensorfläche wird elektrisch gemessen, wobei das Messsignal der Widerstandsmessung für die Gasanalyse verwendet wird.
Vorzugsweise wird das Umschaltventil auf den Referenzgaseinlass umgeschaltet oder verbindet den Referenzgaseinlass mit dem Gasleitungsweg zwischen Messgaseinlass und Gassenor, um durch den Referenzgaseinlass eingesogenes Gas aus der Umgebung des Messorts auf das Vorhandensein von Leckagegaskomponenten zu untersuchen und diese Leckagegaskomponenten bei der Auswertung des durch den Messgaseinlass angesogenen Gases zu berücksichtigen. So ist insbesondere denkbar, dass die ermittelten Anteile von Prüfgas oder Leckagegas in dem untersuchten Referenzgas von den entsprechenden Anteilen des Prüfgases oder Leckagegases in dem analysierten Messgas abgezogen werden, um so denjenigen Prüfgasanteil oder die Prüfgaskonzentration zu ermitteln, die aus einem Leck im Prüfling stammt. Im Folgenden wird anhand der Figur ein Ausführungsbeispiel der Erfindung näher erläutert.
Die dargestellte Schnüffellecksuchvorrichtung 10 weist eine handgeführte Schnüffelsonde 12 auf, die über eine Gasverbindungsleitung
Figure imgf000012_0001
mit einer Gasförderpumpe 16 verbunden ist. In der Schnüffelsonde 12 ist ein Gassensor 18 angeordnet. Hierzu weist die Schnüffelsonde 12 ein Gehäuse 14 auf, welches auch den Gassensor 18 umschließt. In dem Gehäuse 14 ist zudem ein Dreiwege- Umschaltventil 20 angeordnet, welches durch einen Gasleitungsweg 22 mit dem Gassensor 18 verbunden ist. Ein weiterer Abschnitt des Gasleitungsweges 22 verbindet den Gassensor 18 mit der Gasförderpumpe 16, wobei der außerhalb des Gehäuses 14 verlaufende Anteil des Gasleitungsweges 22 durch die
Gasverbindungsleitung 13 gebildet wird.
Das Gehäuse 14 weist eine Messgasschnüffelspitze 24 und eine
Referenzgasschnüffelspitze 26
Figure imgf000012_0002
auf. Die beiden Schnüffelspitzen 24, 26 können auch in einem gemeinsamen Gehäuse einer gemeinsamen Schnüffelspitze vereint oder angeordnet sein. Die Referenzgasschnüffelspitze 26 kann alternativ auch am Gehäuse 14 weiter von der Messgasschnüffelspitze 24 entfernt angebracht sein.
Die Messgasschnüffelspitze 24 weist an ihrem vorderen, dem Gehäuse 14 gegenüberliegenden Ende einen Messgaseinlass 28 auf. In entsprechender Weise ist das dem Gehäuse 14 gegenüberliegende Ende der Referenzgasschnüffelspitze 26 mit einem Referenzgaseinlass 30 versehen. Von besonderer Bedeutung ist, dass der Messgaseinlass 28 durch einen Messgasleitungsweg 32 mit einem ersten Anschluss des Umschaltventils 20 verbunden ist, während der Referenzgaseinlass 30 durch einen Referenzgasleitungsweg 34, der von dem Messgasleitungsweg 32 verschieden ist, ebenfalls mit dem Umschaltventil 20 verbunden ist. Dabei ist der Messgasleitungsweg 32 an einen ersten Anschluss 36 des Umschaltventils 20 angeschlossen, während der Referenzgasleitungsweg 34 an einen zweiten Anschluss 38 des Umschaltventils 20 angeschlossen ist, während der Gasleitungsweg 22 an einen dritten, von den ersten beiden Anschlüssen 36, 38 verschiedenen Anschluss 40 des Umschaltventils 20 angeschlossen ist.
Das Umschaltventil 20 verbindet wahlweise entweder den ersten Anschluss 36 oder den zweiten Anschluss 38 mit dem dritten Anschluss 40, so dass im Falle des ersten Anschlusses 36 der Messgasleitungsweg 32 mit dem Gasleitungsweg 22 verbunden wird, während im Falle des zweiten Anschlusses 38 der Referenzgasleitungsweg 34 mit dem Gasleitungsweg 22 verbunden wird.
Alternativ oder ergänzend besteht die Möglichkeit, dass das Umschaltventil 20 sowohl den ersten Anschluss 36 als auch den zweiten Anschluss 38 mit dem dritten Anschluss 40 verbindet, so dass in dem Fall sowohl der Messgasleitungsweg 32 als auch der Referenzgasleitungsweg 34 mit dem Gasleitungsweg 22 verbunden sind.
Der Gassensor 18 ist als Halbleitersensor in Form eines Metall-Oxid-Sensors ausgebildet. Dabei weist der Gassensor 18 eine Sensorfläche 42 in Form einer Metall-Oxid-Oberfläche auf. Die Sensorfläche 42 ist derart innerhalb des Gassensors 18 angeordnet, dass der entlang des Gasleitungsweges 22 innerhalb des Gehäuses 14 geführte Gasstrom an der Sensorfläche 42 vorbeiströmt. Dadurch gelangt ein Teil des geförderten Gasgemisches in Kontakt mit der Sensorfläche 42 und beeinflusst den elektrischen Widerstand der Sensorfläche 42 oder die Strom- Spannungs-Kennlinie des Transistors. Je nach Gasart der mit der Sensorfläche 42 in Kontakt kommenden Gasbestandteile wird der Sensorwiderstand verändert.
Der Widerstand der Sensorfläche 42 wird auf elektrisch herkömmliche und bekannte Weise gemessen, wobei aus dem Messsignal der Widerstandswerte auf die Gaszusammensetzung an der Sensorfläche 42 geschlossen wird und so insbesondere konkrete Gasbestandteile, wie z.B. in einem Prüfling enthaltenes Prüfgas, detektiert werden kann.

Claims

Ansprüche Schnüffellecksuchvorrichtung (10) mit einem Messgaseinlass (28) zum Ansaugen von Messgas an einem Messort, wobei das Messgas auf das Vorhandensein eines möglichen Leckagegases am Messort zu untersuchen ist, einem von dem Messgaseinlass (28) verschiedenen Referenzgaseinlass (30) zum Ansaugen von Referenzgas aus der Umgebung des Messortes, einer das durch den Messgaseinlass (28) und durch den Referenzgaseinlass (30) angesogene Gas fördernden Gasförderpumpe (16), einem mit der Gasförderpumpe (16) durch einen Gasleitungsweg (22) verbundenen Umschaltventil (20), das gasleitend mit dem Referenzgaseinlass (30) und mit dem Messgaseinlass (28) derart verbunden und ausgebildet ist, dass die Gasförderpumpe (16) je nach Schaltzustand des Umschaltventils (20) Gas durch den Messgaseinlass (28) und/oder durch den Referenzgaseinlass (30) ansaugt, und einem Gassensor (18) zum Analysieren des von der Gasförderpumpe (16) angesogenen Gases, d a d u r c h g e k e n n z e i c h n e t , dass der Gassensor (18) eine gassensitive Sensorfläche (42) mit mindestens einer physikalischen Eigenschaft, die sich in Abhängigkeit von dem die Sensorfläche (42) kontaktierenden Gas ändert und messbar ist, aufweist, wobei die Sensorfläche (42) derart angeordnet ist, dass zumindest ein Teil des von der Gasförderpumpe (16) geförderten Gases an dem Sensor entlang geführt wird und dabei die Sensorfläche (42) kontaktiert, um dadurch die messbare Eigenschaft zu verändern. Schnüffellecksuchvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Gassensor (18) ein Halbleitergassensor mit einer Sensorfläche ist, deren elektrischer Widerstand oder Strom-Spannungs- Kennlinie sich gasartabhängig ändert, z.B. in Form eines Metalloxidsensors. Schnüffellecksuchvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Gassensor ein Wärmeleitungssensor ist, wobei die Wärmeabgabe von der Sensorfläche an die Gasumgebung gasartabhängig ist. Schnüffellecksuchvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gassensor (18) ein das an die Sensorfläche (42) angrenzende Gasvolumen auf 1 Kubikzentimeter, vorzugsweise 0,5 Kubikzentimeter und besonders bevorzugt 0,1 Kubikzentimeter begrenzendes Gehäuse (19) aufweist. Schnüffellecksuchvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Umschaltventil (20) zum Umschalten zwischen dem Messgaseinlass (28) und dem Referenzgaseinlass (30) mit einer Frequenz von mindestens 4 Hz ausgebildet ist. Schnüffellecksuchvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Umschaltventil (20) zum Zuschalten des Referenzganseinlasses (30) zu dem den Messgaseinlass (28) mit der Gasförderpumpe (16) Verbindendenden Gasleitungsweg (22) mit einer Frequenz von mindestens 3 Hz ausgebildet ist. Schnüffellecksuchvorrichtung (10) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Frequenz mindestens 5 Hz und beispielsweise mindestens 10 Hz beträgt. Schnüffellecksuchvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die physikalische Eigenschaft der Sensorfläche (42) der elektrische Widerstand, die Strom-Spannungs- Kennlinie und/oder die Wärmeleitfähigkeit ist. Schnüffellecksuchvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gassensor (18) und das Umschaltventil (20) innerhalb eines eine handgeführte Schnüffelsonde (12) der Schnüffellecksuchvorrichtung (10) bildenden Gehäuses (14) angeordnet sind. Verfahren zur Schnüffellecksuche mit einer Schnüffellecksuchvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mit der Gasförderpumpe (16) ein Gasstrom erzeugt wird, der je nach Schaltstellung des Umschaltventils (20) durch den Messgaseinlass (28) und/oder den Referenzgaseinlass (30) angesogen und entlang des Gasleitungsweges (22) derart an dem Gassensor (18) vorbeigeführt wird, dass Gasbestandteile des Gasstroms mit der Sensorfläche (42) derart reagieren, dass sich die physikalische Eigenschaft der Sensorfläche (42) je nach Gastyp des Gasbestandteils verändert, um dadurch ein durch den Messgaseinlass (28) angesogenes Leckagegas zu detektieren. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Umschaltventil (20) auf den Referenzgaseinlass (30) umgeschaltet wird oder den Referenzgaseinlass (30) mit dem Gasleitungsweg (22) verbindet, um durch den Referenzgaseinlass (30) angesogenes Gas aus der Umgebung des Messorts auf das Vorhandensein von Leckagegaskomponenten zu untersuchen und diese Leckagegaskomponenten bei der Auswertung des durch den Messgaseinlass (28) angesogenen Gases zu berücksichtigen.
PCT/EP2023/069347 2022-07-22 2023-07-12 Schnüffellecksuchvorrichtung mit halbleitergassensor sowie verfahren zur schnüffellecksuche WO2024017738A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022118431.5A DE102022118431A1 (de) 2022-07-22 2022-07-22 Schnüffellecksuchvorrichtung mit Halbleitergassensor sowie Verfahren zur Schnüffellecksuche
DE102022118431.5 2022-07-22

Publications (2)

Publication Number Publication Date
WO2024017738A2 true WO2024017738A2 (de) 2024-01-25
WO2024017738A3 WO2024017738A3 (de) 2024-03-28

Family

ID=87340829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/069347 WO2024017738A2 (de) 2022-07-22 2023-07-12 Schnüffellecksuchvorrichtung mit halbleitergassensor sowie verfahren zur schnüffellecksuche

Country Status (2)

Country Link
DE (1) DE102022118431A1 (de)
WO (1) WO2024017738A2 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342070B1 (de) 2000-12-13 2010-01-20 Inficon GmbH Verfahren zur feststellung eines gases mit hilfe eines infrarot-gas-analysators sowie für die durchführung dieses verfahrens geeigneter gasanalysator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185490A (en) * 1978-10-06 1980-01-29 Hewlett-Packard Company Phase discrimination in modulated thermal conductivity detector
CH668648A5 (de) * 1984-04-04 1989-01-13 Cerberus Ag Verfahren und vorrichtung zum nachweis von reduzierenden gasen in einem gasgemisch.
JPS61130864A (ja) * 1984-11-30 1986-06-18 Nippon Paionikusu Kk 不純ガスの検知方法
US6085576A (en) 1998-03-20 2000-07-11 Cyrano Sciences, Inc. Handheld sensing apparatus
US7051577B2 (en) 2003-12-12 2006-05-30 Radiaulics, Inc. Multi-functional leak detection instrument along with sensor mounting assembly and methodology utilizing the same
JP5757837B2 (ja) * 2011-10-11 2015-08-05 ジーエルサイエンス株式会社 ガスリ−クディテクタ−
US11747233B2 (en) 2020-09-28 2023-09-05 Agilent Technologies, Inc. Gas leak detector cartridge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342070B1 (de) 2000-12-13 2010-01-20 Inficon GmbH Verfahren zur feststellung eines gases mit hilfe eines infrarot-gas-analysators sowie für die durchführung dieses verfahrens geeigneter gasanalysator

Also Published As

Publication number Publication date
WO2024017738A3 (de) 2024-03-28
DE102022118431A1 (de) 2024-01-25

Similar Documents

Publication Publication Date Title
EP1924833B1 (de) Lecksuchgerät mit schnüffelsonde
EP1161675B1 (de) Infrarot-gasanalysator und verfahren zum betrieb dieses analysators
EP3788340B1 (de) Verfahren zum ermitteln der relativen lage eines gaslecks
DE69931469T2 (de) Vorrichtung zum füllen mittels kapillar-aktion
DE4427725C2 (de) Meßeinrichtung zur Analyse von Flüssigkeiten
DE102009004363B4 (de) Leckdetektionsverfahren
EP3377870B1 (de) Lecksuche mit sauerstoff
DE102008008262A1 (de) Schnüffellecksucher nach dem Referenzmessprinzip
DE19813432A1 (de) Verfahren und Anordnung zur lokalen Dichtheitsprüfung
WO2024017738A2 (de) Schnüffellecksuchvorrichtung mit halbleitergassensor sowie verfahren zur schnüffellecksuche
DE10243510B4 (de) Vorrichtung zur Zustandsbestimmung von Öl
DE102016219401A1 (de) Schnüffellecksucher mit abstandsabhängiger Steuerung des Fördergasstroms
EP0646781B1 (de) Verfahren und Anordnung zum Prüfen der Dichtigkeit des Gasentnahmesystems einer Gasanalysevorrichtung
DE4038266A1 (de) Verfahren und vorrichtung zur pruefung der gasdichtigkeit von bauteilen, insbesondere sf(pfeil abwaerts)6(pfeil abwaerts)-dichtigkeit von kondensatoren
EP3112845B1 (de) Vorrichtung zur optischen in-situ analyse eines messgases
WO2019048221A1 (de) Verfahren und vorrichtung zum analysieren eines gases
EP2224238A2 (de) Vorrichtung und Verfahren zur Elementaranalyse
EP3688438B1 (de) Vorrichtung und verfahren zur unterscheidung eines aus einem leck austretenden prüfgases von störgas
EP1240491B1 (de) Verfahren zum betrieb eines folien-lecksuchers sowie für die durchführung dieses verfahrens geeigneter folien-lecksucher
DE19962006A1 (de) Verfahren zum Betrieb eines Folien-Lecksuchers sowie für die Durchführung dieses Verfahrens geeigneter Folien-Lecksucher
DE19610475C1 (de) Vorrichtung zur Auffindung von Leckagen in Rohren, insbesondere Kanalisationsrohren
DE102008047820A1 (de) Verfahren und Vorrichtung zur Undichtigkeitsprüfung von mit Schüttgut gefüllten Säcken und Transporteinrichtung
US5382894A (en) Method and apparatus for the measurement of contaminants in textiles during continuous processing
DE102008014132B4 (de) Gasanalysegerät und Verfahren zur Bestimmung einer Stoffkonzentration in einem Gasgemisch
DE102004041621A1 (de) Vorrichtung zur Analyse eines Messfluids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742031

Country of ref document: EP

Kind code of ref document: A2