WO2024017440A1 - Verfahren zur einstellung einer ofenatmosphäre in einem wärmebehandlungsofen - Google Patents

Verfahren zur einstellung einer ofenatmosphäre in einem wärmebehandlungsofen Download PDF

Info

Publication number
WO2024017440A1
WO2024017440A1 PCT/DE2023/100535 DE2023100535W WO2024017440A1 WO 2024017440 A1 WO2024017440 A1 WO 2024017440A1 DE 2023100535 W DE2023100535 W DE 2023100535W WO 2024017440 A1 WO2024017440 A1 WO 2024017440A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
free
volume
fuel gas
Prior art date
Application number
PCT/DE2023/100535
Other languages
English (en)
French (fr)
Inventor
Dr. Daniel SCHUBERT
Dr. Nils JÄGER
Martin Körner
Original Assignee
Thyssenkrupp Steel Europe Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag filed Critical Thyssenkrupp Steel Europe Ag
Publication of WO2024017440A1 publication Critical patent/WO2024017440A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets

Definitions

  • the invention relates to a method for setting a furnace atmosphere in a directly heated heat treatment furnace.
  • Heat treatment furnaces such as direct fired furnaces (also called DFF) are established furnaces in practice that are used for the heat treatment of metals. As standard, these are powered by fossil fuels such as natural gas. Since combustion takes place in the oven, a reducing or oxidizing oven atmosphere can be set using direct heating, depending on the air ratio (lambda value of the fuel gas) set.
  • the furnace contains the combustion gas from the burners, which contains a high proportion of water and, depending on the air ratio, oxygen (0 2 ) and carbon dioxide (C0 2 ) or hydrogen (H 2 ) and carbon monoxide/carbon dioxide (CO/CO 2 ).
  • Decarbonization requires a reduction in the use of fossil fuels or energy sources and, in turn, a reduction in CO 2 emissions.
  • a heat treatment furnace is converted to an alternative, hydrogen-containing fuel with regard to its fossil fuel (natural gas), this will have a massive impact on the atmosphere when these fuels are burned and thus also on the metals to be heat-treated or their surface(s).
  • hydrogen-containing fuels When burning the hydrogen-containing fuels, a larger amount of water vapor is generated compared to natural gas, which ensures that there would be a higher water vapor partial pressure in the furnace atmosphere.
  • steel (as a metal) is very sensitive to an increase in the water vapor partial pressure in furnace atmospheres during heat treatments. This can also promote an undesirable introduction of hydrogen into the steel, among other things. lead to problems with high-strength steels, which is known as a “delayed fracture”.
  • scale on the surface of the steel such as FeO at a furnace room temperature of 1369 °C and Fe 3 O 4 or Fe 2 O 3 at a furnace room temperature of 1539 °C can be reduced.
  • the adhesion of the scale can increase and become more “sticky” due to the shift in the phase proportions.
  • the scaling can be increased and accelerated by the hot steam.
  • Parts of the scale are difficult to remove (approx. 20 - 60% [also depending on the alloy]), especially the scale close to the substrate.
  • the scale layer on the other hand, which lies on the scale close to the substrate, is very brittle and can be removed with even slight mechanical action. It can be assumed that the increased water vapor partial pressure results in increased material loss due to the accelerated scale formation.
  • grain layers in the structure can be changed, which can lead to undesirable, advanced grain boundary oxidation, which in turn can cause coating and/or surface defects. Due to the increased scale formation, grain boundary oxidation can also occur more quickly and also penetrate deeper into the substrate.
  • Heat treatment of a steel in a steam atmosphere can also lead to a higher decarburization depth, which means that the properties of the intermediate or final product are also influenced, in particular adversely. This can manifest itself, for example, in that the mechanical characteristics lie outside the required range and can also lead to poorer surface properties or magnetic properties. Decarbonization in the application of heat treatment of metals in directly heated furnaces, especially steels, would therefore not only be a simple switch from fossil to non-fossil fuels, but would also involve a complex influence on the product parameters.
  • EP 2 762 599 Al and EP 3 109 338 Al it is known to use DFF ovens in hot-dip coating lines for cold steel strips. Furthermore, it is known from DE 10 2011 053 698 B3, for example, to use DFF furnaces for austenitization in hot forming lines for steels to be press-hardened.
  • the object of the present invention is to further develop this method in such a way that reduces the use of fossil fuels and does not have the aforementioned disadvantages.
  • the teaching thus relates to a method for setting a furnace atmosphere in a directly heated heat treatment furnace, the heat treatment furnace having at least one burner which is operated with a fuel gas and an oxygen-containing gas, which are burned to form a combustion gas, depending on the composition of the Fuel gas and the composition of the oxygen-containing gas and their mixture, the combustion gas has a defined composition with a defined water vapor partial pressure.
  • the hydrogen used in the fuel gas can, for example, be generated and provided in water electrolysis using renewable energies such as wind, water and sun. Any oxygen that may be required can also be generated and used using electrolysis using renewable energies (sun, wind, water, etc.).
  • the steam-free and/or hydrogen-free gas for the mixture can contain or consist of dry air, nitrogen (N 2 ), argon (Ar), carbon dioxide (C0 2 ) or a mixture thereof. Other gases or mixtures of gases that do not contain hydrogen or hydrogen compounds and are suitable for the heat treatment of metals can also be used accordingly.
  • the oxygen-containing gas for operating the burner can be air, for example ambient air, oxygen or a combination of air and oxygen.
  • hydrogen can be contained in the fuel gas in a proportion of at least 20% by volume.
  • Hydrogen can preferably be contained in the fuel gas in a proportion of at least 40% by volume.
  • Hydrogen can preferably be contained in the fuel gas in a proportion of at least 60% by volume.
  • Hydrogen can particularly preferably be contained in the fuel gas in a proportion of at least 80% by volume.
  • hydrogen can be contained in the fuel gas in a proportion of at least 98% by volume.
  • This embodiment includes, for example, a 100% use of Hydrogen, in other words, the fuel gas consists of hydrogen, with impurities in the fuel gas being permitted up to 0.5% by volume, in particular up to 0.2% by volume, preferably less than 0.1% by volume, Whereby contamination cannot be technically avoided or can only be avoided with a great deal of equipment expenditure.
  • the fuel gas does not consist entirely of hydrogen, it contains, in addition to hydrogen, further amounts of methane (CH 4 ) and/or carbon monoxide (CO), around 100% by volume, as well as impurities of up to 0.5% by volume, in particular up to 0.2% by volume, preferably less than 0.1% by volume, can be permitted.
  • methane CH 4
  • CO carbon monoxide
  • the proportions of methane can vary and can therefore also include other components, such as ethane, propane, ethene and butane, individually or in combination.
  • the steam-free and/or hydrogen-free gas is heated before flooding the heat treatment furnace and/or the burner.
  • the heating takes place to a temperature which preferably corresponds to the temperature of the combustion gas +/- 300 ° C.
  • the temperature can therefore correspond to a temperature window between minus and plus 300 ° C based on the temperature of the combustion gas.
  • the temperature of the combustion gas can be recorded using means known to those skilled in the art. Preheating the fuel gas and/or the oxidizing agent can lead to an increase in the adiabatic flame temperature.
  • the (additional) heating can also be carried out using other means, for example electrically, if in particular a higher temperature level is required compared to the exhaust gas temperature.
  • the heat treatment furnace in question here is particularly preferably used for steels or steel alloys in any form, whether as a slab, plate, sheet, strip or (pre-)formed sheet metal component.
  • the temperature for the heat treatment is in Essentially between 200 °C and 1350 °C, in particular between 400 °C and 1260 °C, this temperature referring to the temperature of the metal to which it is to be heated.
  • the oven atmosphere temperature or oven chamber temperature can certainly be higher.
  • the temperature of the burner flame also influences the temperature of the furnace atmosphere or the temperature of the furnace chamber.
  • the combustion temperature with ambient air and natural gas is approximately 1970 °C and with ambient air and hydrogen it is approximately 2130 °C and with combustion with oxygen and natural gas it is approximately 2860 °C and with oxygen and hydrogen it is approximately 3080 °C.
  • the water content plays a crucial role in furnace atmospheres for the heat treatment of metals. This will, among other things, controlled whether the furnace atmosphere has a reducing or oxidizing effect on metals.
  • a common method known to those skilled in the art for determining the water content is the so-called dew point determination.
  • the dew point of a furnace atmosphere can be between -70°C and +35°C. Negative dew points usually indicate a reducing furnace atmosphere.
  • a directly heated heat treatment furnace (1) has at least one burner (2), which is operated with a fuel gas (3) and an oxygen-containing gas (4), which are burned to form a combustion gas (10) in the heat treatment furnace (1), in Depending on the composition of the fuel gas (3) and the composition of the oxygen-containing gas (4) and their mixture, the combustion gas (10) has a defined composition with a defined water vapor partial pressure.
  • the heat treatment furnace (1) is additionally flooded with a steam-free and/or hydrogen-free gas (5), thereby producing the steam-free and/or hydrogen-free gas (5) mixes with the combustion gas (10), such that a water vapor partial pressure of the mixture in the furnace atmosphere (9) of the heat treatment furnace (10) is smaller than the defined water vapor partial pressure of the combustion gas (10).
  • the steam-free and/or hydrogen-free gas (5) be heated.
  • An exhaust gas (7) can be removed from the heat treatment furnace (1), which can be used partially or completely to heat the hydrogen-free gas (5) by means of a suitable heat exchanger (6).
  • the steam-free and/or hydrogen-free gas (5) in particular additionally, can be heated, for example by an electrical heating device (11), shown in dashed lines, with which the temperature of the steam-free and/or hydrogen-free gas (5) can also be increased above the Temperature of the combustion gas (10) would be possible.
  • an electrical heating device (11) shown in dashed lines
  • heat treatment of a metal (8) for example a steel, preferably a steel alloy, is possible without the disadvantages of a changed or different type of scale formation on the surface of the metal/steel (8) despite the use of non-fossil fuels.
  • hydrogen is used in proportions between 10 and 100% by volume in the fuel gas (3), possible.
  • Figures 2 and 3 each show a diagram when natural gas is used as fuel, assuming approximately 99% by volume of methane, with a proportion of between 0 and 100% by volume of hydrogen (abscissa). Left means no hydrogen and 100% by volume of natural gas, while on the right means no natural gas and 100% by volume of hydrogen in the fuel gas.
  • the oxygen-containing gas for the burner was ambient air ( Figure 2) and oxygen ( Figure 3), taken into account in the calculation with an air ratio of 1.1.
  • the components of the combustion gas (left ordinate) are also shown in the diagram. On the right ordinate, depending on the composition of the fuel gas, the volume of combustion gas produced can be determined in m 3 per m 3 of fuel gas used.
  • the water vapor partial pressure (Fig. 1) begins to rise significantly.
  • Figure 2 when hydrogen is burned with oxygen, the ratio is more extreme.
  • the water vapor partial pressure ultimately increases to a maximum when 100% by volume of hydrogen is used in the fuel gas. If 100% by volume of hydrogen is burned without “diluting” the furnace atmosphere, this has a negative effect on the product properties of the metal, so that the water vapor content of the furnace atmosphere can be reduced accordingly by adding air, for example, to 20% by volume. This would lead to an improvement in the further processing properties. “Diluting”, for example with air that has not been preheated, would result in a drop in temperature, which would potentially deprive the metal of necessary heating energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Einstellung einer Ofenatmosphäre in einem direkt beheizten Wärmebehandlungsofen, wobei der Wärmebehandlungsofen über wenigstens einen Brenner verfügt, welcher mit einem Brenngas und einem sauerstoffhaltigen Gas betrieben wird, welche zu einem Verbrennungsgas verbrannt werden, wobei in Abhängigkeit von der Zusammensetzung des Brenngases und der Zusammensetzung des sauerstoffhaltigen Gases und deren Mischung das Verbrennungsgas eine definierte Zusammensetzung mit einem definierten Wasserdampfpartialdruck aufweist, wobei Wasserstoff im Brenngas mit einem Anteil von mindestens 10 Vol.-% verwendet wird, und der Wärmebehandlungsofen zusätzlich mit einem wasserdampffreien und/oder wasserstofffreien Gas geflutet wird, wobei sich dadurch das wasserdampffreie und/oder wasserstofffreie Gas mit dem Verbrennungsgas mischt, derart, dass ein Wasserdampfpartialdruck der Mischung in der Ofenatmosphäre des Wärmebehandlungsofens kleiner als der definierte Wasserdampfpartialdruck des Verbrennungsgases bewirkt wird.

Description

Verfahren zur Einstellung einer Ofenatmosphäre in einem Wärmebehandlungsofen
Die Erfindung betrifft ein Verfahren zur Einstellung einer Ofenatmosphäre in einem direkt beheizten Wärmebehandlungsofen.
Wärmebehandlungsöfen, wie zum Beispiel direkt beheizte Öfen (direct fired furnace, auch DFF genannt), sind in der Praxis etablierte Öfen, die zur Wärmebehandlung von Metallen verwendet werden. Diese werden standardmäßig mit fossilen Brennstoffen, wie zum Beispiel Erdgas, gespeist. Da die Verbrennung im Ofen stattfindet, kann mit Hilfe der direkten Beheizung, je nach eingestellter Luftzahl (Lambda-Wert des Brenngases), eine reduzierende oder oxidierende Ofenatmosphäre eingestellt werden. Im Ofen befindet sich somit das Verbrennungsgas der Brenner, welches einen hohen Anteil Wasser und, je nach Luftzahl, Sauerstoff (02) und Kohlenstoffdioxid (C02) oder Wasserstoff (H2) und Kohlenstoffmonoxid/ Kohlenstoffdioxid (CO/CO2) enthält.
Im Rahmen der weltweit geforderten Dekarbonisierung sollen mit fossilen Brennstoffen betriebene Anlagen in Zukunft auf umweltfreundlichere Brennstoffe bzw. Energieträger, wie zum Beispiel Wasserstoff, umgerüstet bzw. umgestellt werden, um somit den Einsatz von fossiler Energie zu reduzieren oder letztendlich zu vermeiden.
Die Dekarbonisierung fordert eine Reduzierung des Einsatzes fossiler Einsatzstoffe bzw. Energieträger und damit wiederrum verbunden eine Reduzierung des CO2-Ausstoßes.
Eine Umstellung insbesondere bei einer Wärmebehandlung von Metallen im direkt beheizten Ofen würde sich eine neue Ofenatmosphäre mit sehr einflussreichen Parameter bezüglich der später zu erzielenden Stoffeigenschaften am Endprodukt oder Zwischenprodukt des wärmebehandelten Metalls ergeben. Sollte somit ein Wärmebehandlungsofen hinsichtlich seines fossilen Brennstoffs (Erdgas) auf einen alternativen, wasserstoffhaltigen Brennstoff umgestellt werden, so hat dies massive Auswirkungen auf die Atmosphäre beim Verbrennen dieser Brennstoffe und damit auch auf die wärmezubehandelnden Metalle respektive ihre Ober- fläche(n). Beim Verbrennen der wasserstoffhaltigen Brennstoffe wird eine im Vergleich zum Erdgas größere Menge an Wasserdampf erzeugt, was dafür sorgt, dass ein höherer Wasserdampfpartialdruck in der Ofenatmosphäre vorliegen würde. Dies hat zur Folge, dass eine höhere Tendenz zur Oxidation (Zunderbildung) während der Wärmebehandlung durch sauerstoffaffine Elemente im Metall gegeben ist, welche insbesondere an der Oberfläche des Metalls entsteht. Durch das Vorhandensein eines höheren Wasserdampfpartialdrucks wird die Verbindung zwischen Zunder und Metalloberfläche, vereinfacht gesagt die Haftung an der Metalloberfläche, beeinflusst.
Insbesondere reagiert Stahl (als Metall) sehr empfindlich auf eine Erhöhung des Wasserdampfpartialdrucks in Ofenatmosphären bei Wärmebehandlungen. Dies kann auch einen unerwünschten Wasserstoffeintrag in den Stahl begünstigen, u. a. bei hochfesten Stählen zu Problemen führen, was unter „delayed fracture“ bekannt ist.
So kann beispielsweise durch eine Wärmebehandlung eines Stahls in einer 100 %igen Wasserdampfatmosphäre Zunder auf der Oberfläche des Stahls wie FeO bei einer Ofenraumtemperatur von 1369 °C und Fe3O4 bzw. Fe2O3 bei einer Ofenraumtemperatur von 1539 °C reduziert werden. Durch das Reduzieren im Wasserdampf kann die Haftung des Zunders aufgrund der Verschiebung der Phasenanteile zunehmen und „klebriger“ werden. Darüber hinaus kann die Verzunderung durch den heißen Wasserdampf verstärkt und beschleunigt ablaufen. Teile des Zunders sind hierbei nur schwer zu entfernen (ca. 20 - 60 % [u.a. auch legierungsabhängig]), insbesondere der substratnahe Zunder. Die Zunderschicht hingegen, die auf dem substratnahen Zunder liegt, ist sehr spröde und kann schon durch geringe mechanische Einwirkung entfernt werden. Es kann vermutet werden, dass durch den erhöhten Wasserdampfpartialdruck ein erhöhter Materialverlust aufgrund der beschleunigten Zunderbildung gegeben ist.
Durch eine Wärmebehandlung des Stahls in einer Wasserdampfatmosphäre können die Kornlagen im Gefüge verändert werden, was zu einer unerwünschten, vorauseilenden Korngrenzenoxidation führen kann, welche wiederrum Beschichtungs- und/oder Oberflächenfehler hervorrufen kann. Aufgrund der verstärkt ablaufenden Zunderbildung kann sich die Bildung der Korngrenzenoxidation ebenfalls schneller vollziehen und darüber hinaus auch tiefer in das Substrat eindringen.
Eine Wärmebehandlung eines Stahls in einer Wasserdampfatmosphäre kann auch zu einer höheren Entkohlungstiefe führen, was bedeutet, dass die Eigenschaften des Zwischen- oder Endprodukts ebenfalls, insbesondere nachteilig, beeinflusst werden bzw. sind. Dies kann sich beispielsweise dadurch äußern, dass die mechanischen Kennwerte außerhalb des Anforderungsbereichs liegen und darüber hinaus zu schlechteren Oberflächeneigenschaften oder Magnetik führen können. Eine Dekarbonisierung im Anwendungsfall der Wärmebehandlung von Metallen in direkt beheizten Öfen, insbesondere von Stählen, wäre somit nicht nur ein einfacher Wechsel von fossilen zu nicht-fossilen Brennstoffen, sondern würde auch eine komplexe Beeinflussung der Produktparameter beinhalten.
Aus der EP 2 762 599 Al und der EP 3 109 338 Al ist beispielsweise bekannt, DFF-Öfen in Schmelztauchbeschichtungslinien für Stahl-Kaltbänder zu verwenden. Des Weiteren ist aus der DE 10 2011 053 698 B3 beispielsweise bekannt, DFF-Öfen zur Austenitisierung in Warmumformungslinien für presszuhärtende Stähle zu verwenden.
Aufgabe der vorliegenden Erfindung ist es, dieses Verfahren derart weiterzuentwickeln, welches den Einsatz fossiler Brennstoffe reduziert und die vorgenannten Nachteile nicht aufweist.
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Weiterführende Ausgestaltungen sind den Unteransprüchen beschrieben.
Die Lehre betrifft somit ein Verfahren zur Einstellung einer Ofenatmosphäre in einem direkt beheizten Wärmebehandlungsofen, wobei der Wärmebehandlungsofen über wenigstens einen Brenner verfügt, welcher mit einem Brenngas und einem sauerstoffhaltigen Gas betrieben wird, welche zu einem Verbrennungsgas verbrannt werden, wobei in Abhängigkeit von der Zusammensetzung des Brenngases und der Zusammensetzung des sauerstoffhaltigen Gases und deren Mischung das Verbrennungsgas eine definierte Zusammensetzung mit einem definierten Wasserdampfpartialdruck aufweist. Wesentlich für die Erfindung ist, dass Wasserstoff im Brenngas mit einem Anteil von mindestens 10 Vol.-% verwendet wird, und der Wärmebehandlungsofen zusätzlich mit einem wasserdampffreien und/oder wasserstofffreien Gas geflutet wird, wobei sich dadurch das wasserdampffreie und/oder wasserstofffreie Gas mit dem Verbrennungsgas mischt, derart, dass ein Wasserdampfpartialdruck der Mischung in der Ofenatmosphäre des Wärmebehandlungsofens kleiner als der definierte Wasserdampfpartialdruck des Verbrennungsgases bewirkt wird.
Eine Erhöhung des Wasserstoffs im Brenngas und somit respektive einer Erhöhung des Wasserdampfpartialdrucks im daraus resultierenden Verbrennungsgas muss dahingehend gegensteuert werden, dass das Verbrennungsgas durch gezielte Mischung mit einem wasserdampffreien und/oder wasserstofffreien Gas „verdünnt“ wird, um eine Ofenatmosphäre im Wärmebehandlungsofen einzustellen, welche einen geringeren Wasserdampfpartialdruck im Vergleich zum (reinen) Verbrennungsgas aufweist.
Insbesondere ist die Bestimmung respektive Erfassung des Wasserdampfpartialdrucks dem Fachmann geläufig.
Durch diese Maßnahme ist eine Ofenatmosphäre einstellbar, welche dem derzeit bekannten Niveau, mit Erdgas befeuerte Brenner, entsprechen kann. Der im Brenngas zum Einsatz kommende Wasserstoff kann beispielsweise in einer Wasserelektrolyse unter Verwendung regenerativer Energien, wie Wind, Wasser und Sonne, erzeugt und bereitgestellt werden. Auch der eventuell benötigte Sauerstoff kann ebenfalls mittels Elektrolyse durch erneuerbare Energien (Sonne, Wind, Wasser etc.) erzeugt und genutzt werden. Das wasserdampffreie und/oder wasserstofffreie Gas zur Mischung kann enthalten oder bestehen aus trockene Luft, Stickstoff (N2), Argon (Ar), Kohlenstoffdioxid (C02) oder eine Mischung daraus. Auch weitere Gase oder Mischungen aus Gasen, welche keinen Wasserstoff oder keine Wasserstoffverbindungen enthalten und für die Wärmebehandlung von Metallen geeignet sind, können entsprechend verwendet werden.
Das sauerstoffhaltige Gas für den Betrieb des Brenners kann Luft, beispielsweise Umgebungsluft, Sauerstoff oder eine Kombination aus Luft und Sauerstoff sein.
Insbesondere kann Wasserstoff im Brenngas mit einem Anteil von mindestens 20 Vol.-% enthalten sein.
Vorzugsweise kann Wasserstoff im Brenngas mit einem Anteil von mindestens 40 Vol.-% enthalten sein.
Bevorzugt kann Wasserstoff im Brenngas mit einem Anteil von mindestens 60 Vol.-% enthalten sein.
Besonders bevorzugt kann Wasserstoff im Brenngas mit einem Anteil von mindestens 80 Vol.- % enthalten sein.
Weiter bevorzugt kann Wasserstoff im Brenngas mit einem Anteil von mindestens 98 Vol.-% enthalten sein. Diese Ausgestaltung umfasst beispielsweise einen 100%-igen Einsatz von Wasserstoff, mit anderen Worten, das Brenngas besteht aus Wasserstoff, wobei Verunreinigungen im Brenngas bis zu 0,5 Vol.-%, insbesondere bis zu 0,2 Vol.-%, vorzugsweise weniger als 0,1 Vol.-% zugelassen werden, wobei Verunreinigungen technisch nicht oder nur mit hohem apparativem Aufwand vermieden werden können.
Wenn das Brenngas nicht vollständig aus Wasserstoff besteht, sind neben Wasserstoff weitere Anteile an Methan (CH4) und/oder Kohlenmonoxid (CO) enthalten, um 100 Vol.-% nebst Verunreinigungen, welche bis zu 0,5 Vol.-%, insbesondere bis zu 0,2 Vol.-%, vorzugsweise weniger als 0,1 Vol.-% zugelassen werden, zu ergeben. Insbesondere bei der Verwendung von Erdgas, können die Anteile an Methan variieren und damit auch weitere Bestandteile, wie zum Beispiel Ethan, Propan, Ethen und Butan einzeln oder kombiniert umfassen.
Um die Energie des Verbrennungsgases nicht negativ zu beeinflussen und/oder sogar zu erhöhen, kann es von Vorteil sein, wenn gemäß einer Ausgestaltung das wasserdampffreie und/oder wasserstofffreie Gas vor dem Fluten des Wärmebehandlungsofens und/oder des Brenners erwärmt wird. Um das Energieniveau des Verbrennungsgases im Wesentlichen beizubehalten, erfolgt die Erwärmung auf eine Temperatur, welche vorzugsweise der Temperatur des Verbrennungsgases +/- 300 °C entspricht. Die Temperatur kann somit einem Temperaturfenster zwischen minus und plus 300 °C bezogen auf die Temperatur des Verbrennungsgases entsprechen. Die Temperatur des Verbrennungsgases kann dabei über dem Fachmann bekannte Mittel erfasst werden. Das Vorwärmen des Brenngases und/oder des Oxidationsmittels kann zu einer Erhöhung der adiabaten Flammentemperatur führen.
Um das aus dem Wärmebehandlungsofen abgeführte Abgas wirtschaftlich nutzen zu können, kann es von Vorteil sein, einen Teil des Abgases oder vollständig zur Erwärmung des wasserstofffreien und/oder wasserdampffreien Gases zu verwenden. Auch in diesem Fall sind die Mittel zur Abgasnutzung respektive Wärmeübertragung dem Fachmann bekannt.
Alternativ oder zusätzlich zur Abgasnutzung kann die (zusätzliche) Erwärmung auch mit anderen Mitteln, beispielsweise elektrisch, durchgeführt werden, wenn insbesondere ein im Vergleich zur Abgastemperatur höheres Temperaturniveau benötigt wird.
Besonders bevorzugt wird der hier in Rede stehende Wärmebehandlungsofen für Stähle respektive Stahllegierungen in jeglicher Form, ob als Bramme, Platte, Blech, Band oder (vor-)geformtes Blechbauteil, verwendet. Die Temperatur für die Wärmebehandlung liegen im Wesentlichen zwischen 200 °C und 1350 °C, insbesondere zwischen 400 °C und 1260 °C, wobei sich diese Temperatur auf die Temperatur des Metalls, auf die es erwärmt werden soll, bezieht. Die Ofenatmosphärentemperatur bzw. Ofenraumtemperatur kann durchaus höher liegen.
Des Weiteren hat auch die Temperatur der Flamme des Brenners Einfluss auf die Temperatur der Ofenatmosphäre bzw. die Temperatur des Ofenraums. Die Verbrennungstemperatur mit Umgebungsluft und Erdgas liegt bei ca. 1970 °C und mit Umgebungsluft und Wasserstoff bei ca. 2130 °C und bei Verbrennung mit Sauerstoff und Erdgas bei ca. 2860 °C und mit Sauerstoff und Wasserstoff bei ca. 3080 °C liegt.
Des Weiteren spielt der Wassergehalt (Wasserdampf und somit Wasserdampfpartialdruck) in Ofenatmosphären zur Wärmebehandlung von Metallen eine entscheidende Rolle. Dadurch wird u. a. gesteuert, ob die Ofenatmosphäre reduzierend oder oxidierend auf Metalle wirkt. Eine gängige und dem Fachmann bekannte Methode zur Erfassung des Wassergehalts, ist die sogenannte Taupunktbestimmung. Der Taupunkt einer Ofenatmosphäre kann je nach Anwendung, speziell für Stähle, zwischen -70°C und +35°C liegen. Negative Taupunkte weisen in der Regel auf eine reduzierende Ofenatmosphäre hin.
Näher erläutert wird die Erfindung anhand der folgenden Ausführungsbeispiele in Verbindung mit der Zeichnung.
In Figur 1 wird die Erfindung am Beispiel einer schematisch dargestellten Illustration gezeigt. Ein direkt beheizter Wärmebehandlungsofen (1) verfügt über mindestens einen Brenner (2), welcher mit einem Brenngas (3) und einem sauerstoffhaltigen Gas (4) betrieben wird, welche zu einem Verbrennungsgas (10) im Wärmebehandlungsofen (1) verbrannt werden, wobei in Abhängigkeit von der Zusammensetzung des Brenngases (3) und der Zusammensetzung des sauerstoffhaltigen Gases (4) und deren Mischung das Verbrennungsgas (10) eine definierte Zusammensetzung mit einem definierten Wasserdampfpartialdruck aufweist. Da im Brenngas (3) Wasserstoff mit einem Anteil von mindestens 10 Vol.-% verwendet wird, wird der Wärmebehandlungsofen (1) zusätzlich mit einem wasserdampffreien und/oder wasserstofffreien Gas (5) geflutet, wobei sich dadurch das wasserdampffreie und/oder wasserstofffreie Gas (5) mit dem Verbrennungsgas (10) mischt, derart, dass ein Wasserdampfpartialdruck der Mischung in der Ofenatmosphäre (9) des Wärmebehandlungsofens (10) kleiner ist als der definierte Wasserdampfpartialdruck des Verbrennungsgases (10). Vor dem Fluten des Wärmebehandlungsofens (1) kann das wasserdampffreie und/oder wasserstofffreie Gas (5) erwärmt werden. Dabei kann ein Abgas (7) aus dem Wärmebehandlungsofen (1) abgeführt werden, welches zum Teil oder vollständig zur Erwärmung des wasserstofffreien Gases (5) mittels einem geeigneten Wärmeübertrager (6) genutzt werden kann. Alternativ oder zusätzlich kann das wasserdampffreie und/oder wasserstofffreie Gas (5), insbesondere zusätzlich, erwärmt werden, beispielsweise durch ein elektrische Heizeinrichtung (11), strichliniert dargestellt, mit welcher auch eine Temperaturerhöhung des wasserdampffreien und/oder wasserstofffreien Gases (5) oberhalb der Temperatur des Verbrennungsgases (10) möglich wäre. Mit der erfindungsgemäß eingestellten Ofenatmosphäre (9) ist eine Wärmebehandlung eines Metalls (8), beispielweise eines Stahls, vorzugsweise einer Stahllegierung, ohne Nachteile einer veränderten respektive andersartigen Zunderbildung auf der Oberfläche des Metalls/Stahls (8) trotz des Einsatzes nicht-fossiler Brennstoffe, wenn Wasserstoff mit Anteilen zwischen 10 und 100 Vol.-% im Brenngas (3) eingesetzt wird, möglich.
Figur 2 und 3 zeigen jeweils ein Diagramm, wenn als Brennstoff Erdgas, wobei von ca. 99 Vol.- % Methan ausgegangen wird, mit einem Anteil zwischen 0 und 100 Vol.-% Wasserstoff eingesetzt wird (Abszisse). Links bedeutet, kein Wasserstoff und 100 Vol.-% Erdgas, rechts hingegen, kein Erdgas und 100 Vol.-% Wasserstoff im Brenngas. Als sauerstoffhaltiges Gas für den Brenner wurde zum einen Umgebungsluft (Figur 2) und zum anderen Sauerstoff (Figur 3) vorgesehen, bei der Berechnung mit einer Luftzahl von 1,1 berücksichtigt.
In Abhängigkeit von der Zusammensetzung des Brenngases sind auch die Bestandteile des Verbrennungsgases (linke Ordinate) im Diagramm dargestellt. Auf der rechten Ordinate kann in Abhängigkeit von der Zusammensetzung des Brenngases das erzeugte Verbrennungsgasvolumen in m3 pro m3 eingesetztem Brenngas bestimmt werden.
Die in Figur 2 und 3 gezeigten Ergebnisse sind numerisch ermittelt worden und zeigen die Einflussnahme von nicht-fossilen Brennstoffen, wie Wasserstoff im Brenngas, auf die Zusammensetzung des Verbrennungsgases.
Überraschend ist, bei einer Verwendung von Umgebungsluft als sauerstoffhaltigem Gas für die Verbrennung, dass erst mit einem Wasserstoffanteil von mindestens 35 Vol.% im Brenngas eine Absenkung des CO2-Gehalts im Verbrennungsgas möglich ist, s. Figur 2. Des Weiteren zeigt Figur 2 deutlich, dass ein Brenngas bestehend aus 100 Vol.-% Wasserstoff ein Verbrennungsgasvolumen von 2,5 m3 pro eingesetztem m3 Brenngas(=Wasserstoff) nicht unterschreiten kann. Hingegen zeigt Figur 3, bei einer Verwendung von Sauerstoff als sauerstoffhaltiges Gas für die Verbrennung bei 100 % Wasserstoff als Brenngas, dass das Volumen des Verbrennungsgases dem eingesetzten Volumen des Brenngases im Wesentlichen 1 zu 1 entspricht. Auch ist eine Reduktion des CO2-Gehalts im Verbrennungsgas bereits bei geringeren Wasserstoffanteilen (kleiner 35 Vol.-%) im Brenngas zu erkennen.
Ab einem Wasserstoffanteil von 60 % beginnt der Wasserdampfpartialdruck (Fig. 1) signifikant zu steigen. In Figur 2 ist bei einer Verbrennung von Wasserstoff mit Sauerstoff das Verhältnis extremer. Mit zunehmendem Volumenanteil von Wasserstoff im Brenngas nimmt der Wasserdampfpartialdruck in letzter Konseguenz bei einer Verwendung von 100 Vol.-% Wasserstoff im Brenngas maximal zu. Wenn ohne „Verdünnung“ der Ofenatmosphäre 100 Vol. -% Wasserstoff verbrannt wird, so wirkt sich das negativ auf die Produkteigenschaften des Metalls aus, sodass der Wasserdampfanteil der Ofenatmosphäre durch Hinzugabe von beispielsweise Luft entsprechend abgesenkt werden kann, beispielsweise 20 Vol.-%. Dies würde zu einer Verbesserung der Weiterverarbeitungseigenschaften führen. Ein „Verdünnen“ beispielsweise mit nicht vorgewärmter Luft hätte einen Temperaturfall zur Folge, womit dem Metall womöglich notwendige Erwärmungsenergie entzogen werden würde.

Claims

Patentansprüche
1. Verfahren zur Einstellung einer Ofenatmosphäre in einem direkt beheizten Wärmebehandlungsofen, wobei der Wärmebehandlungsofen über wenigstens einen Brenner verfügt, welcher mit einem Brenngas und einem sauerstoffhaltigen Gas betrieben wird, welche zu einem Verbrennungsgas verbrannt werden, wobei in Abhängigkeit von der Zusammensetzung des Brenngases und der Zusammensetzung des sauerstoffhaltigen Gases und deren Mischung das Verbrennungsgas eine definierte Zusammensetzung mit einem definierten Wasserdampfpartialdruck aufweist, dadurch gekennzeichnet, dass
- Wasserstoff im Brenngas mit einem Anteil von mindestens 10 Vol.-% verwendet wird, und
- der Wärmebehandlungsofen zusätzlich mit einem wasserdampffreien und/oder wasserstofffreien Gas geflutet wird, wobei sich dadurch das wasserdampffreie und/oder wasserstofffreie Gas mit dem Verbrennungsgas mischt, derart, dass ein Wasserdampfpartialdruck der Mischung in der Ofenatmosphäre des Wärmebehandlungsofens kleiner als der definierte Wasserdampfpartialdruck des Verbrennungsgases bewirkt wird.
2. Verfahren nach Anspruch 1, wobei Wasserstoff im Brenngas mit einem Anteil von mindestens 20 Vol.-% enthalten ist.
3. Verfahren nach Anspruch 1, wobei Wasserstoff im Brenngas mit einem Anteil von mindestens 40 Vol.-% enthalten ist.
4. Verfahren nach Anspruch 1, wobei Wasserstoff im Brenngas mit einem Anteil von mindestens 60 Vol.-% enthalten ist.
5. Verfahren nach Anspruch 1, wobei Wasserstoff im Brenngas mit einem Anteil von mindestens 80 Vol.-% enthalten ist.
6. Verfahren nach Anspruch 1, wobei Wasserstoff im Brenngas mit einem Anteil von mindestens 98 Vol.-% enthalten ist. Verfahren nach einem der vorgenannten Ansprüche, wobei das wasserdampffreie und/oder wasserstofffreie Gas vor dem Fluten des Wärmebehandlungsofens erwärmt wird. Verfahren nach Anspruch 7, wobei die Erwärmung auf eine Temperatur erfolgt, welche der Temperatur des Verbrennungsgases +/- 300 °C entspricht. Verfahren nach einem der Ansprüche 7 oder 8, wobei ein Abgas aus dem Wärmebehandlungsofen abgeführt wird, welches zum Teil oder vollständig zur Erwärmung des wasserdampffreien und/oder wasserstofffreien Gases verwendet wird.
PCT/DE2023/100535 2022-07-21 2023-07-20 Verfahren zur einstellung einer ofenatmosphäre in einem wärmebehandlungsofen WO2024017440A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022118249.5A DE102022118249A1 (de) 2022-07-21 2022-07-21 Verfahren zur Einstellung einer Ofenatmosphäre in einem Wärmebehandlungsofen
DE102022118249.5 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024017440A1 true WO2024017440A1 (de) 2024-01-25

Family

ID=87550903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/100535 WO2024017440A1 (de) 2022-07-21 2023-07-20 Verfahren zur einstellung einer ofenatmosphäre in einem wärmebehandlungsofen

Country Status (2)

Country Link
DE (1) DE102022118249A1 (de)
WO (1) WO2024017440A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052921A (en) * 1990-09-21 1991-10-01 Southern California Gas Company Method and apparatus for reducing NOx emissions in industrial thermal processes
DE102011053698B3 (de) 2011-09-16 2013-01-17 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von Struktur- und Chassisbauteilen durch Warmformen und Erwärmungsstation
EP2762599A1 (de) 2011-09-26 2014-08-06 JFE Steel Corporation Legiertes feuerverzinktes stahlblech mit hervorragender korrosionsbeständigkeit nach dem beschichten
EP3109338A1 (de) 2014-02-18 2016-12-28 JFE Steel Corporation Hochfeste feuerverzinkte stahlplatte und verfahren zur herstellung davon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1598825A (en) 1977-03-11 1981-09-23 Boc Ltd Gaseous mixture for use in heat treatment of metals
EP2796570A1 (de) 2013-04-25 2014-10-29 Linde Aktiengesellschaft Verfahren zur Regelung einer Taupunkttemperatur eines Wärmebehandlungsofens
JP5799997B2 (ja) 2013-09-12 2015-10-28 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052921A (en) * 1990-09-21 1991-10-01 Southern California Gas Company Method and apparatus for reducing NOx emissions in industrial thermal processes
DE102011053698B3 (de) 2011-09-16 2013-01-17 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von Struktur- und Chassisbauteilen durch Warmformen und Erwärmungsstation
EP2762599A1 (de) 2011-09-26 2014-08-06 JFE Steel Corporation Legiertes feuerverzinktes stahlblech mit hervorragender korrosionsbeständigkeit nach dem beschichten
EP3109338A1 (de) 2014-02-18 2016-12-28 JFE Steel Corporation Hochfeste feuerverzinkte stahlplatte und verfahren zur herstellung davon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ASM Handbook. 10th ed.", 1 January 1991, article PAUL JOHNSON ET AL: "Furnace atmospheres", pages: 542 - 567, XP055711737 *

Also Published As

Publication number Publication date
DE102022118249A1 (de) 2024-02-01

Similar Documents

Publication Publication Date Title
EP1816219A1 (de) Verfahren zur Wärmebehandlung von Stahlbändern mittels direkter Flammenbeheizung
DE102019217631B4 (de) Verfahren zur Direktreduktion von Eisenerz
DE2824171A1 (de) Verfahren zum aufkohlen von stahl
DE3204632C2 (de)
WO2024017440A1 (de) Verfahren zur einstellung einer ofenatmosphäre in einem wärmebehandlungsofen
EP0655512B1 (de) Verfahren zur Herstellung einheitlicher Oxidationsschichten auf metallischen Werkstücken und Vorrichtung zur Durchführung des Verfahrens
DE1508407B1 (de) Verfahren zum Erwaermen von Stahlkoerpern vor ihrerWarmverformung
EP1160349B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
WO2019137698A1 (de) Bauteil zum kontaktieren von wasserstoff
DE3139622A1 (de) Verfahren zur gasaufkohlung von stahl
DE3630833A1 (de) Verfahren und vorrichtung zur waermebehandlung metallischer werkstuecke
DE102010032919B4 (de) Verfahren und Vorrichtung zum Befeuchten eines brennbaren Gases
DE881953C (de) Verfahren zum Blankgluehen von Metallen
EP1673483B1 (de) Verfahren zur wärmebehandlungen von eisenwerkstoffen
DE632935C (de) Verfahren und Einrichtung zur Oberflaechenkohlung von Eisen und Stahl
AT362809B (de) Verwendung eines brenngas-stickstoff-gemisches zur speisung eines der eingangstuer eines gluehofens zur waermebehandlung von werkstuecken zugeordneten brennerrohres
DE3500935A1 (de) Bauteil mit auf gegenueberliegenden seiten eines metallischen gebildes aufgebrachter korrosionsbestaendiger oxidischer beschichtung
DE2022253A1 (de) Verfahren und Vorrichtung zur Erzeugung von Schutzatmosphaere,insbesondere fuer Huettenoefen
DE954607C (de) Verfahren zum Entkohlen der Oberflaechenschichten von Werkstuecken aus Eisen oder Stahl
DE2419997C2 (de) Verfahren und Einrichtung zur Erzeugung härtbarer bzw. verschleißfester Oberflächenschichten von Stahlteilen in einem Glühofen
EP0779937B1 (de) Verfahren zum einsatzhärten von höhermolybdänlegierten sinterstählen
WO1994029491A1 (de) Verfahren und vorrichtung zum wärmebehandeln von werkstücken
DE2009699A1 (de) Verbundmetallmaterial und Verfahren zu seiner Herstellung
DE10162702C1 (de) Verfahren zur Vermeidung von Klebern und Kratzern beim Rekristallisationsglühen von Kaltband
DE662473C (de) Verfahren zur Erzeugung von gefaerbtem und gehaertetem Bandstahl, insbesondere zur Herstellung von Rasierklingen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23748700

Country of ref document: EP

Kind code of ref document: A1