WO2024017014A1 - 一种用于燃料电池的非均一膜电极组件及燃料电池 - Google Patents

一种用于燃料电池的非均一膜电极组件及燃料电池 Download PDF

Info

Publication number
WO2024017014A1
WO2024017014A1 PCT/CN2023/104470 CN2023104470W WO2024017014A1 WO 2024017014 A1 WO2024017014 A1 WO 2024017014A1 CN 2023104470 W CN2023104470 W CN 2023104470W WO 2024017014 A1 WO2024017014 A1 WO 2024017014A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
flow channel
cathode
anode
membrane electrode
Prior art date
Application number
PCT/CN2023/104470
Other languages
English (en)
French (fr)
Inventor
黄佳斯
徐达
Original Assignee
华氢新能源(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华氢新能源(无锡)有限公司 filed Critical 华氢新能源(无锡)有限公司
Publication of WO2024017014A1 publication Critical patent/WO2024017014A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Embodiments of the present application relate to the technical field of fuel cells, such as a non-uniform membrane electrode assembly for a fuel cell and a fuel cell.
  • a fuel cell is a power generation device that directly converts the chemical energy of fuel into electrical energy. Its principle is an electrochemical device, and its composition is the same as that of a general battery. Its single cell is composed of two positive and negative electrodes (the negative electrode is the fuel electrode and the positive electrode is the oxidant electrode) and an electrolyte. The difference is that the active materials of general batteries are stored inside the battery, therefore, the battery capacity is limited.
  • the positive and negative electrodes of the fuel cell do not themselves contain active substances, but are just catalytic conversion elements. Therefore, the fuel cell is truly an energy conversion machine that converts chemical energy into electrical energy. When the battery is working, fuel and oxidant are supplied from the outside and react. In principle, as long as the reactants are continuously input and the reaction products are continuously eliminated, the fuel cell can continuously generate electricity.
  • the basic structure of a fuel cell consists of an ion exchange membrane, a catalyst, a diffusion layer and a current plate.
  • the ion exchange membrane loaded with catalyst is called a membrane electrode and has a decisive influence on the performance of the fuel cell.
  • Fuel cell membrane electrodes are currently mainly of uniform thickness. This is caused by two reasons: on the one hand, the coating processes used in membrane electrode production (slits, spraying, wire rods, wire mesh, etc.) are mostly suitable for uniform thickness. Coating application; on the other hand, in order to be suitable for flow channels of various sizes and structures, the membrane electrode has not optimized the structure for different flow channels. Therefore, for a universal product, there is no need to design non-uniform patterns for membrane electrodes.
  • CN2886819 discloses a cathode flow channel structure for a fuel cell, which is applied to a fuel cell, and the fuel cell includes at least one membrane electrode group.
  • the cathode flow channel structure includes a plurality of trench structures, and the plurality of trench structures are arranged above the cathodes of the membrane electrode group. At the same time, the trench structures are evenly distributed to cover the cathodes of all membrane electrode groups. .
  • the ends of all trench structures located at the same end are arranged to form at least one curved surface, and the curved surface is used as an inlet for the cathode fuel.
  • CN113782763A discloses a new gas flow channel structure for a proton exchange membrane fuel cell bipolar plate.
  • the proton exchange membrane fuel cell bipolar plate mainly includes an anode plate and a cathode plate.
  • the gas flow channel structure is a concave cross-sectional shape.
  • the quadrilateral flow guide columns are arranged in a staggered fish scale shape.
  • the guide column triangles near the entrance of the flow channel point to the direction of gas inflow, and a row of guide column triangles near the outlet of the flow channel.
  • the wings point in the direction of gas outflow, and the main gas flow channel is a corrugated flow channel formed by staggered guide pillars. There are gap flow channels between the corrugated flow channels.
  • CN113224344A discloses a fuel cell device, which at least includes: one or more membrane electrode groups, wherein the membrane electrode group at least includes: an anode electrode, a proton exchange membrane and a cathode electrode; more than one double-sided flow channel plate, It is installed on one side of the membrane electrode group.
  • the double-sided flow channel plate at least includes: a plate body with at least one flow channel structure, wherein the placement positions of the flow channel structures correspond to the placement positions of the membrane electrode groups; more than one flow channel structure;
  • the conductive sheets are a conductive material and the conductive sheets respectively cover the flow channel structures of the plate body, and the conductive sheets are fixed to the plate body; and more than one current collector sheet is a conductive material. And the current collecting sheets cover the conductive sheets respectively, and the current collecting sheets are respectively fixed to the conductive sheets.
  • the embodiments of the present application provide a non-uniform membrane electrode assembly for a fuel cell and a fuel cell.
  • the present application increases the loading capacity of the catalyst on the surface of the membrane electrode assembly corresponding to the flow channel, and applies less or even no catalyst in the remaining areas. .
  • non-uniform membrane electrodes can achieve higher current density, and the current density can be increased by up to 30%, which has significant benefits in increasing the power density of fuel cells.
  • inventions of the present application provide a non-uniform membrane electrode assembly for a fuel cell.
  • the fuel cell includes a membrane electrode assembly and electrode plates located on both sides of the membrane electrode assembly. The electrode plates are close to A flow channel is provided on one side surface of the membrane electrode assembly, and ribs are formed between adjacent flow channels.
  • the non-uniform membrane electrode assembly includes a membrane electrode based on a proton exchange membrane and a membrane electrode located on the membrane electrode based on the proton exchange membrane.
  • the catalyst layer on both sides of the surface, and the catalyst layer on at least one side of the surface is divided into a flow channel catalyst area and a rib catalyst area, and the flow channel catalyst area and the rib catalyst area respectively correspond to the flow channel positions of the membrane electrode assembly. and the rib position, a catalyst layer is provided in the flow channel catalyst area, no catalyst layer is provided in the rib catalyst area or the catalyst loading of the catalyst layer is less than that of the catalyst layer in the flow channel catalyst area Catalyst loading.
  • this application provides a non-uniform membrane electrode assembly for fuel cells, which can be used to improve current density, thereby increasing energy density.
  • this application increases the loading amount of catalyst at the surface position of the membrane electrode assembly corresponding to the flow channel, and applies less or even no catalyst in the remaining areas. . Simulation calculation results show that compared with membrane electrodes with uniform catalyst loading and thickness, non-uniform membrane electrodes can obtain higher current densities.
  • the overall catalyst loading of these two membrane electrodes is the same, and both at low current densities , the high voltage region has almost overlapping voltage-current density curves. However, the maximum current density that can be achieved when the reactant concentration is exhausted is different.
  • the current density of a fuel cell made of the non-uniform membrane electrode assembly provided by this application can be increased by up to 30%, which is very important for the fuel cell. The increased power density delivers significant benefits.
  • the membrane electrode has an anode surface and a cathode surface.
  • the cathode surface is divided into a flow channel catalyst area and a rib catalyst area.
  • the entire surface of the anode surface is provided with an anode catalyst layer.
  • a cathode catalyst layer is provided in the flow channel catalyst area, and no cathode catalyst layer is provided in the rib catalyst area.
  • a cathode catalyst layer is provided in both the flow channel catalyst area and the rib catalyst area, and the cathode catalyst loading in the flow channel catalyst area is greater than the cathode catalyst loading in the rib catalyst area.
  • the loading of the cathode catalyst in the catalyst zone of the flow channel gradually decreases along the gas flow direction in the flow channel.
  • the flow channel has an inlet end and an outlet end.
  • the loading amount of the cathode catalyst near the inlet end of the flow channel in the cathode catalyst layer in the catalyst zone of the flow channel is denoted as M 1 .
  • the loading amount of the cathode catalyst in the cathode catalyst layer near the outlet end of the flow channel is recorded as M 2 , M 1 > M 2 .
  • M 1 is 1.3 to 5 times that of M 2 , for example, it can be 1.3 times, 1.5 times, 1.7 times, 1.9 times, 2 times, 2.2 times, 2.4 times, 2.6 times, 2.8 times, 3.0 times, 3.2 times, 3.4 times, 3.6 times, 3.8 times, 4.0 times, 4.2 times, 4.4 times, 4.6 times, 4.8 times or 5.0 times, but are not limited to the listed values, and other unlisted values within this value range are also applicable.
  • M 1 is 0.4 to 1 mg/cm 2 , for example, it can be 0.4 mg/cm 2 , 0.5 mg/cm 2 , 0.6 mg/cm 2 , 0.7 mg/cm 2 , 0.8 mg/cm 2 , or 0.9 mg/cm 2 or 1.0 mg/cm 2 , but it is not limited to the listed values, and other unlisted values within this value range are also applicable.
  • M 2 is 0.1 to 0.2 mg/cm 2 , for example, it can be 0.1 mg/cm 2 , 0.11 mg/cm 2 , 0.12 mg/cm 2 , 0.13 mg/cm 2 , 0.14 mg/cm 2 , 0.15 mg/cm 2 , 0.16mg/cm 2 , 0.17mg/cm 2 , 0.18mg/cm 2 , 0.19mg/cm 2 or 0.2mg/cm 2 , but it is not limited to the listed values, and other unlisted values within this numerical range are also applicable.
  • This application specifically limits the loading of the platinum catalyst. Within this range, the oxygen reduction ability of the membrane electrode cathode can be improved. If the loading of the platinum catalyst is too large, the thickness of the cathode catalyst layer will be too large and diffusion mass transfer will be affected. The resistance is large, which in turn affects the current density of the fuel cell; if the load capacity of the cathode catalyst layer is too small, the catalytic reduction activity of the cathode catalytic layer will be reduced, and it is also difficult to obtain a fuel cell with high current density.
  • the membrane electrode has an anode surface and a cathode surface.
  • the anode surface is divided into a flow channel catalyst area and a rib catalyst area.
  • the entire surface of the cathode surface is provided with a cathode catalyst layer.
  • an anode catalyst layer is provided in the flow channel catalyst area, and no anode catalyst layer is provided in the rib catalyst area.
  • an anode catalyst layer is provided in both the flow channel catalyst area and the rib catalyst area, and the anode catalyst loading in the flow channel catalyst area is greater than the anode catalyst loading in the rib catalyst area.
  • the anode catalyst loading in the flow channel catalyst zone gradually decreases along the gas flow direction in the flow channel.
  • the flow channel has an inlet end and an outlet end.
  • the anode catalyst loading in the anode catalyst layer in the flow channel catalyst zone near the inlet end of the flow channel is recorded as N 1 .
  • the loading amount of the anode catalyst in the anode catalyst layer near the outlet end of the flow channel is recorded as N 2 , N 1 is smaller than M 1 , and N 2 is smaller than M 2 .
  • N 1 is 10 to 30% of M 1 , for example, it can be 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28% or 30%;
  • N 2 is 10 to 30% of M 2 , for example, it can be 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28% or 30%, but not only Limited to the listed values, other unlisted values within this range are also applicable.
  • the concentrations of the reactants inside the flow channel (not in direct contact with the membrane electrode) and the reactants outside the flow channel (in direct contact with the membrane electrode) are different.
  • the reason is that the reactants have a diffusion phenomenon in the flow channel based on the air flow transportability. , and because the gas flow rate outside the flow channel is very low, there is only diffusion based on the concentration gradient, which results in the concentration of reactants outside the flow channel being lower than that inside the flow channel.
  • the concentrations of reactants inside and outside the flow channel are different.
  • the concentrations of reactants at the inlet and outlet of the flow channel are also different and there is a gradient change. Therefore, when a product is generated, the concentration gradient changes in the opposite direction, that is, in the flow channel
  • the product concentration is lower than the product concentration outside the flow channel, and the product concentration at the inlet is lower than the product concentration at the outlet.
  • differences in heat, mechanical pressure, flow rate, etc. will also affect the distribution of reactant or product concentration in the membrane electrode.
  • this application adjusts the distribution of the catalyst according to the distribution of reactant concentration on the surface of the membrane electrode, thereby designing a non-uniform membrane electrode. Specifically, the loading amount of the catalyst is increased in the flow channel, and the catalyst loading is increased in the flow channel. There is little or no catalyst layer outside the channel, the catalyst loading is increased at the inlet, and the catalyst loading is reduced at the outlet, so that the catalyst loading gradually decreases along the gas flow direction in the flow channel, forming a gradient change in the catalyst loading.
  • the purpose of this application is to adjust the distribution of the catalyst according to the distribution of reactant concentration on the surface of the membrane electrode. Therefore, it is not limited to the non-uniform distribution of the thickness and loading of the catalyst. It can also be a catalyst Non-uniformity in various aspects such as type and structure.
  • the membrane electrode has an anode surface and a cathode surface.
  • the anode surface is divided into an anode flow channel catalyst area and an anode rib catalyst area.
  • the cathode surface is divided into a cathode flow channel catalyst area. and cathode rib catalyst area.
  • an anode catalyst layer and a cathode catalyst layer are respectively provided in the anode flow channel catalyst area and the cathode flow channel catalyst area, and no catalyst is provided in the anode rib catalyst area and the cathode rib catalyst area. layer.
  • the entire surface of the anode surface and the entire surface of the cathode surface are respectively provided with an anode catalyst layer and a cathode catalyst layer; in the anode surface, the anode flow channel catalyst area
  • the anode catalyst loading capacity is greater than the anode catalyst loading capacity of the anode rib catalyst zone; in the cathode surface, the cathode catalyst loading capacity of the cathode flow channel catalyst zone is greater than the cathode catalyst loading of the cathode rib catalyst zone quantity.
  • the anode catalyst loading amount in the anode flow channel catalyst area gradually decreases along the gas flow direction in the flow channel
  • the cathode catalyst loading amount in the cathode flow channel catalyst area gradually decreases along the gas flow direction in the flow channel
  • an anode gas diffusion layer is also provided on the surface of the anode catalyst layer, and a cathode gas diffusion layer is also provided on the surface of the cathode catalyst layer.
  • the non-uniform membrane electrode assembly defined in this application has two-dimensional structural characteristics in terms of the arrangement of the catalyst layer, that is, whether there is a flow channel shape and whether there is a gradient change in catalyst loading, adding the anode surface and cathode surface
  • the anode surface of the membrane electrode is provided with an anode catalyst layer that matches the shape of the flow channel, and the cathode surface is provided with a cathode catalyst layer that matches the shape of the flow channel;
  • the cathode surface of the membrane electrode has a cathode catalyst layer with inlet and outlet gradient changes, and the anode surface has an anode catalyst layer with inlet and outlet gradient changes;
  • the cathode surface of the membrane electrode has a cathode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet, and the anode catalyst layer is provided on the entire anode surface;
  • Only the anode surface of the membrane electrode has an anode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet, and a cathode catalyst layer is provided on the entire cathode surface;
  • the cathode surface of the membrane electrode has a cathode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet, and the anode surface has an anode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the cathode surface of the membrane electrode has a cathode catalyst layer that matches the shape of the flow channel, and the anode surface of the electrode has an anode catalyst layer with gradient changes in the inlet and outlet;
  • the anode surface of the membrane electrode has an anode catalyst layer that matches the shape of the flow channel, and the cathode surface has a cathode catalyst layer with gradient changes in the inlet and outlet;
  • the cathode surface of the membrane electrode has a cathode catalyst layer that matches the shape of the flow channel, and the anode surface of the membrane electrode has an anode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the anode surface of the membrane electrode has an anode catalyst layer that matches the shape of the flow channel, and the cathode surface has a cathode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the cathode surface of the membrane electrode has a cathode catalyst layer with gradient changes in the inlet and outlet, and the anode surface has an anode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the anode surface of the membrane electrode has an anode catalyst layer with gradient changes in the inlet and outlet, and the cathode surface has a cathode catalyst layer that matches the shape of the flow channel and has a gradient change in the inlet and outlet.
  • the thickness of the anode gas diffusion layer is 100-300 ⁇ m, for example, it can be 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 280 ⁇ m or 300 ⁇ m, but is not limited to the listed values. Other values within this range that are not listed are also applicable.
  • the thickness of the cathode gas diffusion layer is 100-300 ⁇ m, for example, it can be 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 280 ⁇ m or 300 ⁇ m, but is not limited to the listed values. Other values within this range that are not listed are also applicable.
  • inventions of the present application provide a fuel cell.
  • the fuel cell includes a membrane electrode assembly and anode plates and cathode plates located on both sides of the membrane electrode assembly.
  • the membrane electrode assembly is a first The non-uniform membrane electrode assembly described in the aspect.
  • air inlets and hydrogen gas inlets penetrating the anode plate are respectively provided at two vertex corners of the same side of the anode plate.
  • the surfaces of the anode plate and the cathode plate each have a first diagonal angle and a second diagonal angle that intersect each other, and a line connecting the first diagonal angle of the anode plate and the cathode plate.
  • the first diagonal lines connecting the anode plates are parallel to each other, and the second diagonal lines connecting the anode plates and the cathode plate are parallel to each other.
  • a side surface of the anode plate close to the membrane electrode assembly is grooved to form an anode flow channel, and the inlet end and outlet end of the anode flow channel are respectively located on the anode plate.
  • the inlet end of the anode flow channel is connected with the hydrogen inlet, and hydrogen gas is introduced into the anode flow channel through the hydrogen inlet.
  • a hydrogen gas through hole is provided at a top corner of the membrane electrode assembly
  • a hydrogen gas outlet is provided at a top corner of the anode plate
  • the outlet end of the anode flow channel, the hydrogen gas through hole and the hydrogen gas outlet are arranged along the The flow direction of the hydrogen gas is aligned and penetrated in sequence, and the reacted hydrogen gas is discharged from the outlet end of the anode flow channel through the hydrogen gas through hole and the hydrogen gas outlet in sequence.
  • a side surface of the cathode plate close to the membrane electrode assembly is grooved to form a cathode flow channel, and the inlet end and outlet end of the cathode flow channel are respectively arranged on the cathode electrode.
  • the second diagonal corner of the board is grooved to form a cathode flow channel, and the inlet end and outlet end of the cathode flow channel are respectively arranged on the cathode electrode.
  • an air through hole is provided at a top corner of the membrane electrode assembly, and the air inlet, the air through hole and the inlet end of the cathode flow channel are aligned and connected in sequence along the air flow direction, toward the air inlet. Air is passed through the air through hole and enters the cathode flow channel from the inlet end of the cathode flow channel.
  • an air outlet penetrating the cathode plate is provided at a top corner of the cathode plate.
  • the air outlet corresponds to and is connected to the outlet end of the cathode flow channel.
  • the reacted air passes through the cathode flow channel.
  • the outlet end of the cathode flow channel is discharged from the air outlet.
  • the anode flow channel and the cathode flow channel independently include any one of serpentine flow channels, parallel flow channels, interdigitated flow channels, annular flow channels or tree-shaped flow channels.
  • One or at least two combinations include a combination of a serpentine flow channel and a parallel flow channel, a combination of a parallel flow channel and an inserted finger flow channel, a combination of an inserted finger flow channel and an annular flow channel, or The combination of annular flow channel and tree flow channel.
  • embodiments of the present application provide a non-uniform membrane electrode assembly for fuel cells, which can be used to increase current density and thereby Increase energy density.
  • the embodiment of the present application increases the loading amount of the catalyst at the surface position of the membrane electrode assembly corresponding to the flow channel, and applies less or even no coating on the remaining areas. Apply catalyst.
  • Figure 1 is a schematic structural diagram of a fuel cell provided for a specific embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the anode side of the membrane electrode assembly provided by a specific embodiment of the present application
  • Figure 3 is a schematic structural diagram of the cathode side of the membrane electrode assembly provided by a specific embodiment of the present application.
  • Figure 4 is an optical image and an X-ray fluorescence image of a membrane electrode assembly provided by a specific embodiment of the present application (a cathode catalyst layer is provided in the flow channel catalyst area, but there is no cathode catalyst layer in the rib catalyst area);
  • Figure 5 is an optical image and an X-ray fluorescence image of a membrane electrode assembly provided by a specific embodiment of the present application (the cathode catalyst loading in the flow channel catalyst area is greater than the cathode catalyst loading in the rib catalyst area);
  • Figure 6 is an X-ray fluorescence image of the finger flow channel and the tree flow channel catalyst area provided by the specific embodiment of the present application;
  • Figure 7 is a graph showing the relationship between current density and voltage provided in Example 2 and Comparative Example 1 of the present application;
  • Figure 8 is a graph showing the relationship between current density and voltage provided in Example 4 and Comparative Example 2 of the present application.
  • 1-cathode plate 11-cathode flow channel; 12-air outlet; 13-hydrogen outlet; 2-membrane electrode assembly; 21-anode catalyst layer; 22-cathode catalyst layer; 23-air hole; 24- Hydrogen gas through hole; 3-anode plate; 31-anode flow channel; 32-hydrogen gas inlet; 33-air inlet.
  • the present application provides a non-uniform membrane electrode assembly 2 for a fuel cell.
  • the fuel cell includes a membrane electrode assembly 2 and a membrane electrode located in the membrane electrode assembly. 2. Pole plates on both sides of the plate. A flow channel is provided on one side of the plate close to the membrane electrode assembly 2. Ribs are formed between adjacent flow channels.
  • the non-uniform membrane electrode assembly 2 includes a structure based on proton exchange.
  • the membrane electrode of the membrane and the catalyst layers located on both sides of the membrane electrode based on the proton exchange membrane, the catalyst layer on at least one side surface is divided into a flow channel catalyst area and a rib catalyst area, the flow channel catalyst area and the The rib catalyst area corresponds to the flow channel position and the rib position of the membrane electrode assembly 2 respectively.
  • a catalyst layer is provided in the flow channel catalyst area. There is no catalyst layer or a catalyst provided in the rib catalyst area.
  • the catalyst loading amount of the layer is less than the catalyst loading amount of the catalyst layer of the flow channel catalyst zone.
  • the present application provides a non-uniform membrane electrode assembly 2 for fuel cells, which can be used to increase the current density and thereby improve Energy Density.
  • this application increases the loading amount of catalyst at the surface position of the membrane electrode assembly 2 corresponding to the flow channel, and applies less or even no coating in the remaining areas.
  • Simulation calculation results show that compared with membrane electrodes with uniform catalyst loading and thickness, non-uniform membrane electrodes can obtain higher current densities.
  • the overall catalyst loading of these two membrane electrodes is the same, and both at low current densities , the high voltage region has almost overlapping voltage-current density curves. However, when the reactant concentration is exhausted, both can achieve The maximum current density is different. After using the non-uniform membrane electrode assembly 2 provided by the application to make a fuel cell, the current density can be increased by up to 30%, which has significant benefits in increasing the power density of the fuel cell.
  • the membrane electrode has an anode surface and a cathode surface, the cathode surface is divided into a flow channel catalyst area and a rib catalyst area, and an anode catalyst layer 21 is provided on the entire surface of the anode surface.
  • a cathode catalyst layer 22 is provided in the flow channel catalyst area, and there is no cathode catalyst layer 22 in the rib catalyst area.
  • Figure 4(a) is an optical image in which the cathode catalyst layer 22 is provided in the flow channel catalyst area, but the cathode catalyst layer 22 is not provided in the rib catalyst area.
  • Figure 4(b) is the corresponding X-ray fluorescence image. .
  • a cathode catalyst layer 22 is provided in both the flow channel catalyst area and the rib catalyst area, and the cathode catalyst loading in the flow channel catalyst area is greater than the cathode catalyst loading in the rib catalyst area.
  • Figure 5(a) is an optical image showing that the cathode catalyst loading amount in the flow channel catalyst area is greater than the cathode catalyst loading amount in the rib catalyst area
  • Figure 5(b) is the corresponding X-ray fluorescence image.
  • the loading amount of the cathode catalyst in the catalyst area of the flow channel gradually decreases along the gas flow direction in the flow channel.
  • the flow channel has an inlet end and an outlet end.
  • the loading amount of the cathode catalyst in the cathode catalyst layer 22 in the catalyst area of the flow channel near the inlet end of the flow channel is denoted as M 1 .
  • the loading amount of the cathode catalyst in the cathode catalyst layer 22 near the outlet end of the flow channel is recorded as M 2 , M 1 > M 2 .
  • M 1 is 1.3 to 5 times that of M 2 .
  • M 1 is 0.4 to 1 mg/cm 2 .
  • M 2 is 0.1 to 0.2 mg/cm 2 .
  • This application specifically limits the loading amount of the platinum catalyst. Within this range, the oxygen reducing ability of the membrane electrode cathode can be improved. If the loading amount of the platinum catalyst is too large, the thickness of the cathode catalyst layer 22 will be too large and the diffusion transmission will be reduced. The mass resistance is large, thereby affecting the current density of the fuel cell; if the load capacity of the cathode catalyst layer 22 is too small, the catalytic reduction activity of the cathode catalyst layer 22 will be reduced, and it will also be difficult to obtain high electricity. Flow density fuel cell.
  • the membrane electrode has an anode surface and a cathode surface, the anode surface is divided into a flow channel catalyst area and a rib catalyst area, and a cathode catalyst layer 22 is provided on the entire surface of the cathode surface.
  • an anode catalyst layer 21 is provided in the flow channel catalyst area, but no anode catalyst layer 21 is provided in the rib catalyst area.
  • the optical image and X-ray fluorescence image of the distribution of the anode catalyst 21 are similar to FIG. 4(a) and FIG. 4(b) respectively, and therefore will not be described again here.
  • an anode catalyst layer 21 is provided in both the flow channel catalyst area and the rib catalyst area, and the anode catalyst loading in the flow channel catalyst area is greater than the anode catalyst loading in the rib catalyst area.
  • the optical image and X-ray fluorescence image of the distribution of the anode catalyst 21 are similar to FIG. 5(a) and FIG. 5(b) respectively, and therefore will not be described again here.
  • the loading amount of the anode catalyst in the catalyst area of the flow channel gradually decreases along the gas flow direction in the flow channel.
  • the flow channel has an inlet end and an outlet end.
  • the anode catalyst loading amount in the anode catalyst layer 21 in the flow channel catalyst area near the inlet end of the flow channel is denoted as N 1 .
  • the loading amount of the anode catalyst in the anode catalyst layer 21 near the outlet end of the flow channel is recorded as N 2 , N 1 is smaller than M 1 , and N 2 is smaller than M 2 .
  • N 1 is 10 to 30% of M 1 .
  • the concentrations of the reactants inside the flow channel (not in direct contact with the membrane electrode) and the reactants outside the flow channel (in direct contact with the membrane electrode) are different.
  • the reason is that the reactants have a diffusion phenomenon in the flow channel based on the air flow transportability. , and because the gas flow rate outside the flow channel is very low, there is only diffusion based on the concentration gradient, which results in the concentration of reactants outside the flow channel being lower than that inside the flow channel.
  • the concentrations of reactants inside and outside the flow channel are different.
  • the concentration of reactants at the inlet and outlet of the flow channel is also different.
  • Different and there is a gradient change that is, in the case of product generation, the concentration gradient change is opposite, that is, the product concentration in the flow channel is lower than the product concentration outside the flow channel, and the product concentration at the inlet is lower than the product concentration at the outlet.
  • the concentration gradient change is opposite, that is, the product concentration in the flow channel is lower than the product concentration outside the flow channel, and the product concentration at the inlet is lower than the product concentration at the outlet.
  • this application adjusts the distribution of the catalyst according to the distribution of reactant concentration on the surface of the membrane electrode, thereby designing a non-uniform membrane electrode. Specifically, the loading amount of the catalyst is increased in the flow channel, and the catalyst loading is increased in the flow channel. There is little or no catalyst layer outside the channel, the catalyst loading is increased at the inlet, and the catalyst loading is reduced at the outlet, so that the catalyst loading gradually decreases along the gas flow direction in the flow channel, forming a gradient change in the catalyst loading.
  • the purpose of this application is to adjust the distribution of the catalyst according to the distribution of reactant concentration on the surface of the membrane electrode. Therefore, it is not limited to the non-uniform distribution of the thickness and loading of the catalyst. It can also be a catalyst Non-uniformity in various aspects such as type and structure.
  • the membrane electrode has an anode surface and a cathode surface.
  • the anode surface is divided into an anode flow channel 31 catalyst area and an anode rib catalyst area.
  • the cathode surface is divided into a cathode flow channel 11 catalyst area and a cathode rib catalyst area. district.
  • an anode catalyst layer 21 and a cathode catalyst layer 22 are respectively provided in the anode flow channel 31 catalyst area and the cathode flow channel 11 catalyst area, and in the anode rib catalyst area and the cathode rib catalyst area No catalyst layer is provided.
  • the entire surface of the anode surface and the entire surface of the cathode surface are respectively provided with an anode catalyst layer 21 and a cathode catalyst layer 22; in the anode surface, the anode catalyst in the catalyst area of the anode flow channel 31 is loaded The amount is greater than the anode catalyst loading amount of the anode rib catalyst area; in the cathode surface, the cathode catalyst loading amount of the cathode flow channel 11 catalyst area is greater than the cathode catalyst loading amount of the cathode rib catalyst area.
  • the loading amount of the anode catalyst in the catalyst area of the anode flow channel 31 gradually decreases along the gas flow direction in the flow channel
  • the loading amount of the cathode catalyst in the catalyst area of the cathode flow channel 11 gradually decreases along the gas flow direction in the flow channel.
  • an anode gas diffusion layer is also provided on the surface of the anode catalyst layer 21
  • a cathode gas diffusion layer is also provided on the surface of the cathode catalyst layer 22 .
  • the non-uniform membrane electrode assembly 2 defined in this application has two-dimensional structural features in terms of the arrangement of the catalyst layer, that is, whether there is a flow channel shape and whether there is a gradient change in catalyst loading, adding the anode surface and cathode After two surface parameters, there are four combinations: (1) whether there is a flow channel shape on the anode surface; (2) whether there is a gradient change in catalyst loading on the anode surface; (3) whether there is a flow channel shape on the cathode surface; (4) ) There is a gradient change in the catalyst loading on the cathode surface.
  • the anode surface of the membrane electrode is provided with an anode catalyst layer 21 that matches the shape of the flow channel, and the cathode surface is provided with a cathode catalyst layer 22 that matches the shape of the flow channel;
  • the cathode surface of the membrane electrode has a cathode catalyst layer 22 with inlet and outlet gradient changes, and the anode surface has an anode catalyst layer 21 with inlet and outlet gradient changes;
  • the cathode surface of the membrane electrode has a cathode catalyst layer 22 that matches the shape of the flow channel and has a gradient change in the inlet and outlet, and the anode surface has an anode catalyst layer 21 that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the cathode surface of the membrane electrode has a cathode catalyst layer 22 that matches the shape of the flow channel, and the anode surface of the electrode has an anode catalyst layer 21 with gradient changes in the inlet and outlet;
  • the anode surface of the membrane electrode has an anode catalyst layer 21 that matches the shape of the flow channel, and the cathode surface
  • the surface has a cathode catalyst layer 22 with gradient changes at the inlet and outlet;
  • the cathode surface of the membrane electrode has a cathode catalyst layer 22 that matches the shape of the flow channel, and the anode surface of the membrane electrode has an anode catalyst layer 21 that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the anode surface of the membrane electrode has an anode catalyst layer 21 that matches the shape of the flow channel, and the cathode surface has a cathode catalyst layer 22 that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the cathode surface of the membrane electrode has a cathode catalyst layer 22 with a gradient change in the inlet and outlet, and the anode surface has an anode catalyst layer 21 that matches the shape of the flow channel and has a gradient change in the inlet and outlet;
  • the anode surface of the membrane electrode has an anode catalyst layer 21 with a gradient change in the inlet and outlet, and the cathode surface has a cathode catalyst layer 22 that matches the shape of the flow channel and has a gradient change in the inlet and outlet.
  • the thickness of the anode gas diffusion layer is 100-300 ⁇ m.
  • the thickness of the cathode gas diffusion layer is 100-300 ⁇ m.
  • the present application provides a fuel cell.
  • the fuel cell includes a membrane electrode assembly 2 and anode plates 3 and cathodes located on both sides of the membrane electrode assembly 2.
  • Plate 1 the membrane electrode assembly 2 is the non-uniform membrane electrode assembly 2 described in the first aspect.
  • an air inlet 33 and a hydrogen gas inlet 32 penetrating the anode plate 3 are respectively provided at the two vertex corners of the anode plate 3 on the same side;
  • the surfaces of the anode plate 3 and the cathode plate 1 both have first diagonal angles and second diagonal angles that intersect each other, and the line connecting the first diagonal angle of the anode plate 3 and the The first diagonal line connecting the cathode plate 1 is parallel to each other, and the second diagonal line connecting the anode plate 3 and the second diagonal line connecting the cathode plate 1 are parallel to each other.
  • anode flow channel 31 a side surface of the anode plate 3 close to the membrane electrode assembly 2 is grooved to form an anode flow channel 31.
  • the inlet end and outlet end of the anode flow channel 31 are respectively located at the third end of the anode plate 3. At a pair of corners, the inlet end of the anode flow channel 31 is connected with the hydrogen inlet 32, and hydrogen gas is introduced into the anode flow channel 31 through the hydrogen inlet 32;
  • a hydrogen gas through hole 24 is provided at a top corner of the membrane electrode assembly 2
  • a hydrogen gas outlet 13 is provided at a top corner of the anode plate 3
  • the outlet end of the anode flow channel 31 and the hydrogen gas through hole 24 are provided at a top corner of the anode plate 3.
  • the hole 24 and the hydrogen outlet 13 are aligned and connected in sequence along the hydrogen flow direction. The reacted hydrogen passes through the hydrogen through hole 24 and the hydrogen outlet 13 from the outlet end of the anode flow channel 31 and is discharged.
  • a side surface of the cathode plate 1 close to the membrane electrode assembly 2 is grooved to form a cathode flow channel 11.
  • the inlet end and outlet end of the cathode flow channel 11 are respectively provided on the cathode plate 1. No. Two opposite corners.
  • an air through hole 23 is provided at a top corner of the membrane electrode assembly 2, and the air inlet 33, the air through hole 23 and the inlet end of the cathode flow channel 11 are aligned and connected in sequence along the air flow direction. Air is introduced into the air inlet 33 , and the air enters the cathode flow channel 11 from the inlet end of the cathode flow channel 11 through the air through hole 23 .
  • an air outlet 12 penetrating the cathode plate 1 is provided at a top corner of the cathode plate 1.
  • the air outlet 12 corresponds to and is connected to the position of the outlet end of the cathode flow channel 11. After the reaction, The air is discharged from the air outlet 12 through the outlet end of the cathode flow channel 11 .
  • anode flow channel 31 and the cathode flow channel 11 independently include any one or at least two of serpentine flow channels, parallel flow channels, interdigitated flow channels, annular flow channels or tree-shaped flow channels. The combination.
  • Figure 6(a) is an X-ray fluorescence image of the finger flow channel catalyst area
  • Figure 6(b) is an X-ray fluorescence image of the tree type flow channel catalyst area
  • Figure 6(a) and Figure 6( The dark area in b) has no catalyst and the light area has catalyst.
  • This embodiment provides a fuel cell with a non-uniform membrane electrode.
  • the fuel cell adopts the solution (15) provided by the above-mentioned specific embodiments, that is, the anode surface of the membrane electrode has an anode catalyst layer 21 with gradient changes in the inlet and outlet, and the cathode The surface has a cathode catalyst layer 22 that matches the shape of the flow channel and has gradient changes in the inlet and outlet.
  • the anode catalyst includes graphite and metal platinum supported on the graphite surface.
  • the loading capacity of the graphite-supported platinum catalyst is 0.12 mg/cm 2 ;
  • the cathode catalyst includes graphite and metal platinum supported on the graphite surface.
  • the loading capacity of the graphite-supported platinum catalyst is 0.4 mg/cm 2 ;
  • This embodiment provides a fuel cell with a non-uniform membrane electrode.
  • the fuel cell adopts the solution (15) provided by the above-mentioned specific embodiments, that is, the anode surface of the membrane electrode has an anode catalyst layer 21 with gradient changes in the inlet and outlet, and the cathode The surface has a shape that matches the flow channel and there is a gradient change at the inlet and outlet.
  • cathode catalyst layer 22 in:
  • the anode catalyst includes mesoporous carbon and metal iridium supported on the surface of the mesoporous carbon.
  • the loading capacity of the iridium catalyst supported on the mesoporous carbon is 0.06 mg/cm 2 .
  • the loading capacity of the mesoporous carbon-supported iridium catalyst is 0.015 mg/cm 2 .
  • the cathode catalyst includes mesoporous carbon and metal platinum supported on the surface of the mesoporous carbon.
  • the loading capacity of the platinum catalyst supported on the mesoporous carbon is 0.6 mg/cm 2 ; close to the cathode flow In the cathode catalyst layer 22 at the outlet end of channel 11, the loading capacity of the mesoporous carbon-supported platinum catalyst is 0.15 mg/cm 2 .
  • This embodiment provides a fuel cell with a non-uniform membrane electrode.
  • the fuel cell adopts the solution (15) provided by the above-mentioned specific embodiments, that is, the anode surface of the membrane electrode has an anode catalyst layer 21 with gradient changes in the inlet and outlet, and the cathode The surface has a cathode catalyst layer 22 that matches the shape of the flow channel and has gradient changes in the inlet and outlet.
  • the anode catalyst includes carbon nanotubes and metal ruthenium supported on the surface of the carbon nanotubes.
  • the loading capacity of the ruthenium catalyst supported on the carbon nanotubes is 0.2 mg/cm 2 .
  • the loading capacity of the carbon nanotube-supported ruthenium catalyst is 0.04 mg/cm 2 .
  • the cathode catalyst includes carbon nanotubes and metal platinum supported on the surface of the carbon nanotubes.
  • the loading capacity of the platinum catalyst supported by the carbon nanotubes is 1 mg/cm 2 ; near the cathode flow channel 11
  • the loading capacity of the carbon nanotube-supported platinum catalyst is 0.2 mg/cm 2 .
  • This embodiment provides a fuel cell with a non-uniform membrane electrode.
  • the fuel cell adopts the solution (1) provided by the above specific embodiments, that is, only the cathode surface of the membrane electrode has a cathode catalyst layer 22 that matches the shape of the flow channel.
  • the anode catalyst layer 21 is provided on the entire anode surface. in:
  • the anode catalyst includes graphite and metal platinum supported on the graphite surface, and the loading capacity of the graphite-supported platinum catalyst is 0.08 mg/cm 2 .
  • the cathode catalyst includes graphite and metal platinum supported on the graphite surface, and the loading capacity of the graphite-supported platinum catalyst is 0.25 mg/cm 2 .
  • This comparative example provides a fuel cell with a uniform membrane electrode. Its structure is similar to the structure of the fuel cell provided in the specific embodiments of the present application. The only difference is that the thickness of the catalyst layer on the surface of the membrane electrode is uniform everywhere, and the loading capacity of the catalyst Uniform everywhere. specifically:
  • the thickness of the anode catalyst layer 21 is 30 ⁇ m everywhere, and the thickness of the cathode catalyst layer 22 is 40 ⁇ m everywhere.
  • the thickness of the anode gas diffusion layer is 250 ⁇ m everywhere, and the thickness of the cathode gas diffusion layer is 200 ⁇ m everywhere.
  • the total loading amount of the anode catalyst in the anode catalyst layer 21 is the same as the total loading amount of the anode catalyst in Embodiment 2, and the total loading amount of the cathode catalyst in the cathode catalyst layer 22 is the same as the total loading amount of the cathode catalyst in Embodiment 2.
  • This comparative example provides a fuel cell with a uniform membrane electrode. Its structure is similar to the structure of the fuel cell provided in the specific embodiments of the present application. The only difference is that neither the anode surface nor the anode surface of the membrane electrode is provided with a flow channel.
  • the total loading amount of the anode catalyst in the anode catalyst layer 21 is the same as the total loading amount of the anode catalyst in Embodiment 4, and the total loading amount of the cathode catalyst in the cathode catalyst layer 22 is the same as the total loading amount of the cathode catalyst in Embodiment 4.
  • Example 4 has a higher voltage; at the same voltage, Example 4 can achieve a higher current density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

本文公布一种用于燃料电池的非均一膜电极组件及燃料电池,所述非均一膜电极组件包括基于质子交换膜的膜电极和位于所述基于质子交换膜的膜电极两侧表面的催化剂层,至少一侧表面的催化剂层分为流道催化剂区和肋板催化剂区,所述流道催化剂区和所述肋板催化剂区分别对应所述膜电极组件的流道位置和所述肋板位置,所述流道催化剂区内设置有催化剂层,所述肋板催化剂区内不设置催化剂层或者设置的催化剂层的催化剂负载量小于所述流道催化剂区的催化剂层的催化剂负载量。与催化剂负载量和厚度均一的膜电极相比,非均一的膜电极可以获得更高的电流密度,电流密度最高可提升30%,这对燃料电池的功率密度提升发挥了显著益处。

Description

一种用于燃料电池的非均一膜电极组件及燃料电池 技术领域
本申请实施例涉及燃料电池技术领域,例如一种用于燃料电池的非均一膜电极组件及燃料电池。
背景技术
燃料电池是将燃料具有的化学能直接变为电能的发电装置,其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。
燃料电池的基本结构由离子交换膜,催化剂,扩散层以及电流极板组成,负载有催化剂的离子交换膜被称为膜电极,对燃料电池的性能有决定性的影响。燃料电池膜电极目前以均一厚度为主,这是由两方面原因导致的:一方面,膜电极生产使用的涂敷工艺(狭缝、喷涂、线棒、丝网等)大多适用于均一厚度的涂料涂敷;另一方面,膜电极为了适用于各种大小和结构不同的流道,并没有针对不同的流道进行结构的优化。因此对于一个普适化的产品,没有必要对膜电极进行非均一图案设计。
CN2886819公开了一种用于燃料电池的阴极流道结构,应用于燃料电池,且该燃料电池至少包括一个以上的膜电极组。阴极流道结构包括多条渠沟结构,且所述多条渠沟结构设置于所述膜电极组的阴极的上方,同时,所述渠沟结构均匀地分布而涵盖到所有膜电极组的阴极。位于相同一端的全部渠沟结构的末端排列呈至少一个以上的曲面,且所述曲面用来作为阴极燃料的入口。
CN113782763A公开了一种用于质子交换膜燃料电池双极板的新型气体流道结构,所述质子交换膜燃料电池双极板主要包括阳极板和阴极板,气体流道结构均为截面形状是凹四边形的导流柱呈鱼鳞状交错排列方式构成,靠近流道入口处的导流柱三角翼指向气体流入方向,靠近流道出口处的一列导流柱三角 翼指向气体流出方向,气体主体流道是由导流柱交错排列形成波纹状的波纹状流道,波纹状流道之间存在间隙流道。
CN113224344A公开了一种燃料电池装置,至少包括:一个以上的膜电极组,其中该膜电极组系至少包含:一阳极电极、一质子交换膜及一阴极电极;一个以上的双面流道板,系设置于该膜电极组的一侧。其中,该双面流道板系至少包含:一板体,系具有至少一个以上的流道结构,其中该些流道结构的设置位置,系对应配合该些膜电极组的设置位置;一个以上的导电片,系一导电材料且该些导电片分别覆盖住该板体的该些流道结构,且该些导电片系固定于该板体;以及一个以上的集电片,系一导电材料且该些集电片分别覆盖住该些导电片,且该些集电片系分别固定于该些导电片。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种用于燃料电池的非均一膜电极组件及燃料电池,本申请在流道对应的膜电极组件的表面增大催化剂的负载量,在其余区域少涂甚至不涂敷催化剂。与催化剂负载量和厚度均一的膜电极相比,非均一的膜电极可以获得更高的电流密度,电流密度最高可提升30%,这对燃料电池的功率密度提升发挥了显著益处。
第一方面,本申请实施例提供了一种用于燃料电池的非均一膜电极组件,所述燃料电池包括膜电极组件和位于所述膜电极组件两侧表面的极板,所述极板靠近所述膜电极组件的一侧表面开设有流道,相邻流道之间形成肋板,所述非均一膜电极组件包括基于质子交换膜的膜电极和位于所述基于质子交换膜的膜电极两侧表面的催化剂层,至少一侧表面的催化剂层分为流道催化剂区和肋板催化剂区,所述流道催化剂区和所述肋板催化剂区分别对应所述膜电极组件的流道位置和所述肋板位置,所述流道催化剂区内设置有催化剂层,所述肋板催化剂区内不设置催化剂层或者设置的催化剂层的催化剂负载量小于所述流道催化剂区的催化剂层的催化剂负载量。
由于反应物浓度的差异,催化剂在极板不同位置的使用效率不同,针对这种情况,本申请提供了一种用于燃料电池的非均一膜电极组件,可以用来提高 电流密度,进而提升能量密度。针对流道内的反应物浓度要高于流道外的反应物浓度的情况,本申请在流道对应的膜电极组件的表面位置处增大催化剂的负载量,在其余区域少涂甚至不涂敷催化剂。经过模拟计算结果表明,与催化剂负载量和厚度均一的膜电极相比,非均一的膜电极可以获得更高的电流密度,这两种膜电极的整体催化剂载量相同,两者在低电流密度、高电压区域有着几乎重合的电压-电流密度曲线。但两者在反应物浓度耗尽的情况下,可以达到的最高电流密度不同,采用本申请提供的非均一膜电极组件制成燃料电池后的电流密度最高可提升30%,这对燃料电池的功率密度提升发挥了显著益处。
作为本申请一种优选的技术方案,所述膜电极具有阳极表面和阴极表面,所述阴极表面分为流道催化剂区和肋板催化剂区,所述阳极表面的整个表面设置有阳极催化剂层。
优选地,所述流道催化剂区内设置有阴极催化剂层,所述肋板催化剂区内不设置阴极催化剂层。
优选地,所述流道催化剂区和所述肋板催化剂区内均设置有阴极催化剂层,所述流道催化剂区内的阴极催化剂负载量大于所述肋板催化剂区内的阴极催化剂负载量。
优选地,所述流道催化剂区内的阴极催化剂负载量沿流道内的气体流向逐渐减小。
优选地,所述流道具有入口端和出口端,所述流道催化剂区内的阴极催化剂层中靠近所述流道入口端的阴极催化剂负载量记为M1,所述流道催化剂区内的阴极催化剂层中靠近所述流道出口端的阴极催化剂负载量记为M2,M1>M2
优选地,M1为M2的1.3~5倍,例如可以是1.3倍、1.5倍、1.7倍、1.9倍、2倍、2.2倍、2.4倍、2.6倍、2.8倍、3.0倍、3.2倍、3.4倍、3.6倍、3.8倍、4.0倍、4.2倍、4.4倍、4.6倍、4.8倍或5.0倍,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,M1为0.4~1mg/cm2,例如可以是0.4mg/cm2、0.5mg/cm2、0.6mg/cm2、0.7mg/cm2、0.8mg/cm2、0.9mg/cm2或1.0mg/cm2,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
M2为0.1~0.2mg/cm2,例如可以是0.1mg/cm2、0.11mg/cm2、0.12mg/cm2、0.13mg/cm2、0.14mg/cm2、0.15mg/cm2、0.16mg/cm2、0.17mg/cm2、0.18mg/cm2、 0.19mg/cm2或0.2mg/cm2,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请对铂催化剂的负载量进行了特殊限定,在此范围内可以提高膜电极阴极对氧气的还原能力,如果铂催化剂的负载量过大,会导致阴极催化剂层的厚度过大,扩散传质阻力大,进而影响燃料电池的电流密度;如果阴极催化剂层的负载量过小,会降低阴极催化层的催化还原活性,同样难以获得高电流密度的燃料电池。
作为本申请一种优选的技术方案,所述膜电极具有阳极表面和阴极表面,所述阳极表面分为流道催化剂区和肋板催化剂区,所述阴极表面的整个表面设置有阴极催化剂层。
优选地,所述流道催化剂区内设置有阳极催化剂层,所述肋板催化剂区内不设置阳极催化剂层。
优选地,所述流道催化剂区和所述肋板催化剂区内均设置有阳极催化剂层,所述流道催化剂区内的阳极催化剂负载量大于所述肋板催化剂区内的阳极催化剂负载量。
优选地,所述流道催化剂区内的阳极催化剂负载量沿流道内的气体流向逐渐减小。
优选地,所述流道具有入口端和出口端,所述流道催化剂区内的阳极催化剂层中靠近所述流道入口端的阳极催化剂负载量记为N1,所述流道催化剂区内的阳极催化剂层中靠近所述流道出口端的阳极催化剂负载量记为N2,N1小于M1,N2小于M2
优选地,N1为M1的10~30%,例如可以是10%、12%、14%、16%、18%、20%、22%、24%、26%、28%或30%;N2为M2的10~30%,例如可以是10%、12%、14%、16%、18%、20%、22%、24%、26%、28%或30%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在燃料电池领域大多是针对均一的膜电极进行流道的优化,目前尚未提出非均一膜电极这一概念,但通过模拟分析和实测结果可以看出,非均一的膜电极设计会带来性能的大幅提升,这是因为催化剂的使用率在膜电极的各个部分存在差别,可以看到反应物浓度的不同展现在两个方面:第一方面,反应物(氢气和空气)在进口处和出口处的浓度不同,由于反应物在通过膜电极的过程中 被消耗,其浓度由进口到出口形成浓度梯度。第二方面,流道内(不与膜电极直接接触)的反应物与流道外(与膜电极直接接触)的反应物的浓度不同,原因在于,反应物在流道内存在基于气流传送性的扩散现象,而在流道之外由于气体流速很低,只有基于浓度梯度的扩散,这就导致了流道外的反应物浓度要低于流道内的。
综上,流道内外的反应物浓度不同,同时,流道进出口处的反应物浓度也不同且存在梯度变化,即因此,在生成产物的情况下,浓度梯度的变化则相反,即流道内的产物浓度低于流道外的产物浓度,进口的产物浓度低于出口的产物浓度。当然除了上述原因导致反应物浓度分布不均之外,由于热、机械压力、流速等方面的差异,也会影响反应物或产物的浓度在膜电极的分布情况。
对于催化剂均一的膜电极而言,不同浓度的反应物会导致不同区域内的催化剂的使用效率不同。例如,流道内反应物浓度更高,相对地,流道内的催化剂的使用效率就会高于流道外的催化剂使用效率;进口处的反应物浓度更高,相对地,进口处的催化剂的使用效率就会高于出口处。本申请为了提高催化剂使用效率,根据反应物浓度在膜电极表面的分布情况调整催化剂的分布情况,从而设计了一种非均一的膜电极,具体地,在流道内提高催化剂的负载量,在流道外少设置或不设置催化剂层,在进口处提高催化剂的负载量,在出口处降低催化剂的负载量,使得催化剂负载量沿流道内的气体流向逐渐减小,形成催化剂负载量的梯度变化。
当然,可以理解的是,本申请的宗旨在于根据反应物浓度在膜电极表面的分布情况调整催化剂的分布情况,因此不局限于催化剂在厚度上和负载量上的非均一分布,也可以是催化剂种类和结构等各方面的非均一。
作为本申请一种优选的技术方案,所述膜电极具有阳极表面和阴极表面,所述阳极表面分为阳极流道催化剂区和阳极肋板催化剂区,所述阴极表面分为阴极流道催化剂区和阴极肋板催化剂区。
优选地,所述阳极流道催化剂区和所述阴极流道催化剂区内分别设置有阳极催化剂层和阴极催化剂层,所述阳极肋板催化剂区和所述阴极肋板催化剂区内均不设置催化剂层。
优选地,所述阳极表面的整个表面以及所述阴极表面的整个表面分别设置有阳极催化剂层和阴极催化剂层;在所述阳极表面中,所述阳极流道催化剂区 的阳极催化剂负载量大于所述阳极肋板催化剂区的阳极催化剂负载量;在所述阴极表面中,所述阴极流道催化剂区的阴极催化剂负载量大于所述阴极肋板催化剂区的阴极催化剂负载量。
优选地,所述阳极流道催化剂区内的阳极催化剂负载量沿流道内的气体流向逐渐减小,所述阴极流道催化剂区内的阴极催化剂负载量沿流道内的气体流向逐渐减小。
作为本申请一种优选的技术方案,所述阳极催化剂层表面还设置有阳极气体扩散层,所述阴极催化剂层表面还设置有阴极气体扩散层。
需要特别强调的是,本申请限定的非均一膜电极组件在催化剂层的设置方面存在两个维度的结构特征,即有无流道形状和有无催化剂负载量梯度变化,加入阳极表面和阴极表面两项参数后,共存在四种组合情况:(1)阳极表面有无流道形状;(2)阳极表面有无催化剂负载量梯度变化;(3)阴极表面有无流道形状;(4)阴极表面有无催化剂负载量梯度变化。对以上四种组合进行排列组合可以得到本申请限定的如下15种具体的膜电极组件结构:
(1)仅膜电极的阴极表面有与流道形状相匹配的阴极催化剂层,阳极表面整面均设置阳极催化剂层;
(2)仅膜电极的阳极表面有与流道形状相匹配的阳极催化剂层,阴极表面整面均设置阴极催化剂层;
(3)膜电极的阳极表面设置有与流道形状相匹配的阳极催化剂层,阴极表面设置有与流道形状相匹配的阴极催化剂层;
(4)仅膜电极的阴极表面具有进出口存在梯度变化的阴极催化剂层,阳极表面整面均设置阳极催化剂层;
(5)仅膜电极的阳极表面具有进出口存在梯度变化的阳极催化剂层,阴极表面整面均设置阴极催化剂层;
(6)膜电极的阴极表面具有进出口梯度变化的阴极催化剂层,阳极表面具有进出口梯度变化的阳极催化剂层;
(7)仅膜电极的阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层,阳极表面整面均设置阳极催化剂层;
(8)仅膜电极的阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层,阴极表面整面均设置阴极催化剂层;
(9)膜电极的阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层,阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层;
(10)膜电极的阴极表面有与流道形状相匹配的阴极催化剂层,电极的阳极表面具有进出口存在梯度变化的阳极催化剂层;
(11)膜电极的阳极表面有与流道形状相匹配的阳极催化剂层,阴极表面具有进出口存在梯度变化的阴极催化剂层;
(12)膜电极的阴极表面有与流道形状相匹配的阴极催化剂层,膜电极的阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层;
(13)膜电极的阳极表面有与流道形状相匹配的阳极催化剂层,阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层;
(14)膜电极的阴极表面具有进出口存在梯度变化的阴极催化剂层,阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层;
(15)膜电极的阳极表面具有进出口存在梯度变化的阳极催化剂层,阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层。
优选地,所述阳极气体扩散层的厚度为100~300μm,例如可以是100μm、120μm、140μm、160μm、180μm、200μm、220μm、240μm、260μm、280μm或300μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述阴极气体扩散层的厚度为100~300μm,例如可以是100μm、120μm、140μm、160μm、180μm、200μm、220μm、240μm、260μm、280μm或300μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第二方面,本申请实施例提供了一种燃料电池,所述燃料电池包括膜电极组件和位于所述膜电极组件两侧表面的阳极极板和阴极极板,所述膜电极组件为第一方面所述的非均一膜电极组件。
作为本申请一种优选的技术方案,所述阳极极板位于同一边的两顶角处分别开设有贯穿所述阳极极板的空气入口和氢气入口。
优选地,所述阳极极板和所述阴极极板的表面均具有相互交叉的第一对角和第二对角,所述阳极极板的第一对角的连线与所述阴极极板的第一对角的连线相互平行,所述阳极极板的第二对角的连线与所述阴极极板的第二对角的连线相互平行。
作为本申请一种优选的技术方案,所述阳极极板靠近所述膜电极组件的一侧表面开槽形成阳极流道,所述阳极流道的入口端和出口端分别位于所述阳极极板的第一对角处,所述阳极流道的入口端与所述氢气入口连通,通过所述氢气入口向阳极流道内通入氢气。
优选地,所述膜电极组件的一顶角处开设有氢气通孔,所述阳极极板的一顶角处开设有氢气出口,所述阳极流道的出口端、氢气通孔和氢气出口沿氢气流向依次对齐贯通,反应后的氢气由阳极流道的出口端依次穿过所述氢气通孔和所述氢气出口后排出。
作为本申请一种优选的技术方案,所述阴极极板靠近所述膜电极组件的一侧表面开槽形成阴极流道,所述阴极流道的入口端和出口端分别设置于所述阴极极板的第二对角处。
优选地,所述膜电极组件的一顶角处开设有空气通孔,所述空气入口、所述空气通孔与所述阴极流道的入口端沿空气流向依次对齐贯通,向所述空气入口内通入空气,空气穿过所述空气通孔由所述阴极流道的入口端进入所述阴极流道。
优选地,所述阴极极板的一顶角处开设有贯穿所述阴极极板的空气出口,所述空气出口与所述阴极流道的出口端的位置对应且连通,反应后的空气经所述阴极流道的出口端由所述空气出口排出。
作为本申请一种优选的技术方案,所述阳极流道和所述阴极流道分别独立地包括蛇形流道、平行流道、插指流道、环形流道或树型流道中的任意一种或至少两种的组合,典型但非限制性的组合包括蛇形流道与平行流道的组合,平行流道与插指流道的组合,插指流道与环形流道的组合,或环形流道与树型流道的组合。
与相关技术相比,本申请实施例的有益效果为:
由于反应物浓度的差异,催化剂在极板不同位置的使用效率不同,针对这种情况,本申请实施例提供了一种用于燃料电池的非均一膜电极组件,可以用来提高电流密度,进而提升能量密度。针对流道内的反应物浓度要高于流道外的反应物浓度的情况,本申请实施例在流道对应的膜电极组件的表面位置处增大催化剂的负载量,在其余区域少涂甚至不涂敷催化剂。经过模拟计算结果表明,与催化剂负载量和厚度均一的膜电极相比,非均一的膜电极可以获得更高 的电流密度,这两种膜电极的整体催化剂载量相同,两者在低电流密度、高电压区域有着几乎重合的电压-电流密度曲线。但两者在反应物浓度耗尽的情况下,可以达到的最高电流密度不同,采用本申请提供的非均一膜电极组件制成燃料电池后的电流密度最高可提升30%,这对燃料电池的功率密度提升发挥了显著益处。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是为本申请一个具体实施方式提供的燃料电池的结构示意图;
图2为本申请一个具体实施方式提供的膜电极组件的阳极侧的结构示意图;
图3为本申请一个具体实施方式提供的膜电极组件的阴极侧的结构示意图;
图4为本申请一个具体实施方式提供的膜电极组件的光学图像及X射线荧光图像(流道催化剂区内设置有阴极催化剂层,而肋板催化剂区内不设置阴极催化剂层);
图5为本申请一个具体实施方式提供的膜电极组件的光学图像及X射线荧光图像(流道催化剂区内的阴极催化剂负载量大于肋板催化剂区内的阴极催化剂负载量);
图6为本申请具体实施方式提供的插指流道和树型流道催化剂区的X射线荧光图像;
图7为本申请实施例2和对比例1提供的电流密度和电压的关系曲线图;
图8为本申请实施例4和对比例2提供的电流密度和电压的关系曲线图。
其中,1-阴极极板;11-阴极流道;12-空气出口;13-氢气出口;2-膜电极组件;21-阳极催化剂层;22-阴极催化剂层;23-空气通孔;24-氢气通孔;3-阳极极板;31-阳极流道;32-氢气入口;33-空气入口。
具体实施方式
需要理解的是,在本申请的描述中,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指 示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
下面通过具体实施方式来进一步说明本申请的技术方案。
在一个具体实施方式中,本申请提供了一种用于燃料电池的非均一膜电极组件2,如图2和图3所示,所述燃料电池包括膜电极组件2和位于所述膜电极组件2两侧表面的极板,所述极板靠近所述膜电极组件2的一侧表面开设有流道,相邻流道之间形成肋板,所述非均一膜电极组件2包括基于质子交换膜的膜电极和位于所述基于质子交换膜的膜电极两侧表面的催化剂层,至少一侧表面的催化剂层分为流道催化剂区和肋板催化剂区,所述流道催化剂区和所述肋板催化剂区分别对应所述膜电极组件2的流道位置和所述肋板位置,所述流道催化剂区内设置有催化剂层,所述肋板催化剂区内不设置催化剂层或者设置的催化剂层的催化剂负载量小于所述流道催化剂区的催化剂层的催化剂负载量。
由于反应物浓度的差异,催化剂在极板不同位置的使用效率不同,针对这种情况,本申请提供了一种用于燃料电池的非均一膜电极组件2,可以用来提高电流密度,进而提升能量密度。针对流道内的反应物浓度要高于流道外的反应物浓度的情况,本申请在流道对应的膜电极组件2的表面位置处增大催化剂的负载量,在其余区域少涂甚至不涂敷催化剂。经过模拟计算结果表明,与催化剂负载量和厚度均一的膜电极相比,非均一的膜电极可以获得更高的电流密度,这两种膜电极的整体催化剂载量相同,两者在低电流密度、高电压区域有着几乎重合的电压-电流密度曲线。但两者在反应物浓度耗尽的情况下,可以达到的 最高电流密度不同,采用本申请提供的非均一膜电极组件2制成燃料电池后的电流密度最高可提升30%,这对燃料电池的功率密度提升发挥了显著益处。
进一步地,所述膜电极具有阳极表面和阴极表面,所述阴极表面分为流道催化剂区和肋板催化剂区,所述阳极表面的整个表面设置有阳极催化剂层21。
进一步地,所述流道催化剂区内设置有阴极催化剂层22,所述肋板催化剂区内不设置阴极催化剂层22。
示例性地,图4(a)为流道催化剂区内设置有阴极催化剂层22,而肋板催化剂区内不设置阴极催化剂层22的光学图像,图4(b)为对应的X射线荧光图像。
在图4(a)中,黑色区域有催化剂,而亮灰色区域无催化剂;在图4(b)中,深色区域无催化剂,而浅色区域有催化剂。
进一步地,所述流道催化剂区和所述肋板催化剂区内均设置有阴极催化剂层22,所述流道催化剂区内的阴极催化剂负载量大于所述肋板催化剂区内的阴极催化剂负载量。
示例性地,图5(a)为流道催化剂区内的阴极催化剂负载量大于肋板催化剂区内的阴极催化剂负载量的光学图像,图5(b)为对应的X射线荧光图像。
在图5(a)中,亮灰色区域有较多催化剂,而暗灰色区域有较少催化剂;在图5(b)中,深色区域有较少催化剂,而浅色区域有较多催化剂。
进一步地,所述流道催化剂区内的阴极催化剂负载量沿流道内的气体流向逐渐减小。
进一步地,所述流道具有入口端和出口端,所述流道催化剂区内的阴极催化剂层22中靠近所述流道入口端的阴极催化剂负载量记为M1,所述流道催化剂区内的阴极催化剂层22中靠近所述流道出口端的阴极催化剂负载量记为M2,M1>M2
进一步地,M1为M2的1.3~5倍。
进一步地,M1为0.4~1mg/cm2
M2为0.1~0.2mg/cm2
本申请对铂催化剂的负载量进行了特殊限定,在此范围内可以提高膜电极阴极对氧气的还原能力,如果铂催化剂的负载量过大,会导致阴极催化剂层22的厚度过大,扩散传质阻力大,进而影响燃料电池的电流密度;如果阴极催化剂层22的负载量过小,会降低阴极催化层的催化还原活性,同样难以获得高电 流密度的燃料电池。
进一步地,所述膜电极具有阳极表面和阴极表面,所述阳极表面分为流道催化剂区和肋板催化剂区,所述阴极表面的整个表面设置有阴极催化剂层22。
进一步地,所述流道催化剂区内设置有阳极催化剂层21,所述肋板催化剂区内不设置阳极催化剂层21。
示例性地,上述阳极催化剂21分布的光学图像和X射线荧光图像分别对应地与图4(a)和图4(b)相类似,故在此不做赘述。
进一步地,所述流道催化剂区和所述肋板催化剂区内均设置有阳极催化剂层21,所述流道催化剂区内的阳极催化剂负载量大于所述肋板催化剂区内的阳极催化剂负载量。
示例性地,上述阳极催化剂21分布的光学图像和X射线荧光图像分别对应地与图5(a)和图5(b)相类似,故在此不做赘述。
进一步地,所述流道催化剂区内的阳极催化剂负载量沿流道内的气体流向逐渐减小。
进一步地,所述流道具有入口端和出口端,所述流道催化剂区内的阳极催化剂层21中靠近所述流道入口端的阳极催化剂负载量记为N1,所述流道催化剂区内的阳极催化剂层21中靠近所述流道出口端的阳极催化剂负载量记为N2,N1小于M1,N2小于M2
进一步地,N1为M1的10~30%。
在燃料电池领域大多是针对均一的膜电极进行流道的优化,目前尚未提出非均一膜电极这一概念,但通过模拟分析和实测结果可以看出,非均一的膜电极设计会带来性能的大幅提升,这是因为催化剂的使用率在膜电极的各个部分存在差别,可以看到反应物浓度的不同展现在两个方面:第一方面,反应物(氢气和空气)在进口处和出口处的浓度不同,由于反应物在通过膜电极的过程中被消耗,其浓度由进口到出口形成浓度梯度。第二方面,流道内(不与膜电极直接接触)的反应物与流道外(与膜电极直接接触)的反应物的浓度不同,原因在于,反应物在流道内存在基于气流传送性的扩散现象,而在流道之外由于气体流速很低,只有基于浓度梯度的扩散,这就导致了流道外的反应物浓度要低于流道内的。
综上,流道内外的反应物浓度不同,同时,流道进出口处的反应物浓度也 不同且存在梯度变化,即因此,在生成产物的情况下,浓度梯度的变化则相反,即流道内的产物浓度低于流道外的产物浓度,进口的产物浓度低于出口的产物浓度。当然除了上述原因导致反应物浓度分布不均之外,由于热、机械压力、流速等方面的差异,也会影响反应物或产物的浓度在膜电极的分布情况。
对于催化剂均一的膜电极而言,不同浓度的反应物会导致不同区域内的催化剂的使用效率不同。例如,流道内反应物浓度更高,相对地,流道内的催化剂的使用效率就会高于流道外的催化剂使用效率;进口处的反应物浓度更高,相对地,进口处的催化剂的使用效率就会高于出口处。本申请为了提高催化剂使用效率,根据反应物浓度在膜电极表面的分布情况调整催化剂的分布情况,从而设计了一种非均一的膜电极,具体地,在流道内提高催化剂的负载量,在流道外少设置或不设置催化剂层,在进口处提高催化剂的负载量,在出口处降低催化剂的负载量,使得催化剂负载量沿流道内的气体流向逐渐减小,形成催化剂负载量的梯度变化。
当然,可以理解的是,本申请的宗旨在于根据反应物浓度在膜电极表面的分布情况调整催化剂的分布情况,因此不局限于催化剂在厚度上和负载量上的非均一分布,也可以是催化剂种类和结构等各方面的非均一。
进一步地,所述膜电极具有阳极表面和阴极表面,所述阳极表面分为阳极流道31催化剂区和阳极肋板催化剂区,所述阴极表面分为阴极流道11催化剂区和阴极肋板催化剂区。
进一步地,所述阳极流道31催化剂区和所述阴极流道11催化剂区内分别设置有阳极催化剂层21和阴极催化剂层22,所述阳极肋板催化剂区和所述阴极肋板催化剂区内均不设置催化剂层。
进一步地,所述阳极表面的整个表面以及所述阴极表面的整个表面分别设置有阳极催化剂层21和阴极催化剂层22;在所述阳极表面中,所述阳极流道31催化剂区的阳极催化剂负载量大于所述阳极肋板催化剂区的阳极催化剂负载量;在所述阴极表面中,所述阴极流道11催化剂区的阴极催化剂负载量大于所述阴极肋板催化剂区的阴极催化剂负载量。
进一步地,所述阳极流道31催化剂区内的阳极催化剂负载量沿流道内的气体流向逐渐减小,所述阴极流道11催化剂区内的阴极催化剂负载量沿流道内的气体流向逐渐减小。
进一步地,所述阳极催化剂层21表面还设置有阳极气体扩散层,所述阴极催化剂层22表面还设置有阴极气体扩散层。
需要特别强调的是,本申请限定的非均一膜电极组件2在催化剂层的设置方面存在两个维度的结构特征,即有无流道形状和有无催化剂负载量梯度变化,加入阳极表面和阴极表面两项参数后,共存在四种组合情况:(1)阳极表面有无流道形状;(2)阳极表面有无催化剂负载量梯度变化;(3)阴极表面有无流道形状;(4)阴极表面有无催化剂负载量梯度变化。对以上四种组合进行排列组合可以得到本申请限定的如下15种具体的膜电极组件2结构:
(1)仅膜电极的阴极表面有与流道形状相匹配的阴极催化剂层22,阳极表面整面均设置阳极催化剂层21;
(2)仅膜电极的阳极表面有与流道形状相匹配的阳极催化剂层21,阴极表面整面均设置阴极催化剂层22;
(3)膜电极的阳极表面设置有与流道形状相匹配的阳极催化剂层21,阴极表面设置有与流道形状相匹配的阴极催化剂层22;
(4)仅膜电极的阴极表面具有进出口存在梯度变化的阴极催化剂层22,阳极表面整面均设置阳极催化剂层21;
(5)仅膜电极的阳极表面具有进出口存在梯度变化的阳极催化剂层21,阴极表面整面均设置阴极催化剂层22;
(6)膜电极的阴极表面具有进出口梯度变化的阴极催化剂层22,阳极表面具有进出口梯度变化的阳极催化剂层21;
(7)仅膜电极的阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层22,阳极表面整面均设置阳极催化剂层21;
(8)仅膜电极的阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层21,阴极表面整面均设置阴极催化剂层22;
(9)膜电极的阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层22,阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层21;
(10)膜电极的阴极表面有与流道形状相匹配的阴极催化剂层22,电极的阳极表面具有进出口存在梯度变化的阳极催化剂层21;
(11)膜电极的阳极表面有与流道形状相匹配的阳极催化剂层21,阴极表 面具有进出口存在梯度变化的阴极催化剂层22;
(12)膜电极的阴极表面有与流道形状相匹配的阴极催化剂层22,膜电极的阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层21;
(13)膜电极的阳极表面有与流道形状相匹配的阳极催化剂层21,阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层22;
(14)膜电极的阴极表面具有进出口存在梯度变化的阴极催化剂层22,阳极表面具有与流道形状相匹配且进出口存在梯度变化的阳极催化剂层21;
(15)膜电极的阳极表面具有进出口存在梯度变化的阳极催化剂层21,阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层22。
进一步地,所述阳极气体扩散层的厚度为100~300μm。
进一步地,所述阴极气体扩散层的厚度为100~300μm。
在另一个具体实施方式中,本申请提供了一种燃料电池,如图1所示,所述燃料电池包括膜电极组件2和位于所述膜电极组件2两侧表面的阳极极板3和阴极极板1,所述膜电极组件2为第一方面所述的非均一膜电极组件2。
进一步地,所述阳极极板3位于同一边的两顶角处分别开设有贯穿所述阳极极板3的空气入口33和氢气入口32;
进一步地,所述阳极极板3和所述阴极极板1的表面均具有相互交叉的第一对角和第二对角,所述阳极极板3的第一对角的连线与所述阴极极板1的第一对角的连线相互平行,所述阳极极板3的第二对角的连线与所述阴极极板1的第二对角的连线相互平行。
进一步地,所述阳极极板3靠近所述膜电极组件2的一侧表面开槽形成阳极流道31,所述阳极流道31的入口端和出口端分别位于所述阳极极板3的第一对角处,所述阳极流道31的入口端与所述氢气入口32连通,通过所述氢气入口32向阳极流道31内通入氢气;
进一步地,所述膜电极组件2的一顶角处开设有氢气通孔24,所述阳极极板3的一顶角处开设有氢气出口13,所述阳极流道31的出口端、氢气通孔24和氢气出口13沿氢气流向依次对齐贯通,反应后的氢气由阳极流道31的出口端依次穿过所述氢气通孔24和所述氢气出口13后排出。
进一步地,所述阴极极板1靠近所述膜电极组件2的一侧表面开槽形成阴极流道11,所述阴极流道11的入口端和出口端分别设置于所述阴极极板1的第 二对角处。
进一步地,所述膜电极组件2的一顶角处开设有空气通孔23,所述空气入口33、所述空气通孔23与所述阴极流道11的入口端沿空气流向依次对齐贯通,向所述空气入口33内通入空气,空气穿过所述空气通孔23由所述阴极流道11的入口端进入所述阴极流道11。
进一步地,所述阴极极板1的一顶角处开设有贯穿所述阴极极板1的空气出口12,所述空气出口12与所述阴极流道11的出口端的位置对应且连通,反应后的空气经所述阴极流道11的出口端由所述空气出口12排出。
进一步地,所述阳极流道31和所述阴极流道11分别独立地包括蛇形流道、平行流道、插指流道、环形流道或树型流道中的任意一种或至少两种的组合。
示例性地,图6(a)为插指流道催化剂区的X射线荧光图像,图6(b)为树型流道催化剂区的X射线荧光图像,且图6(a)和图6(b)中的深色区域无催化剂,浅色区域有催化剂。
实施例1
本实施例提供了一种具有非均一膜电极的燃料电池,采用上述具体实施方式提供的方案(15)的燃料电池,即膜电极的阳极表面具有进出口存在梯度变化的阳极催化剂层21,阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层22。其中:
阳极催化剂包括石墨和负载于石墨表面的金属铂,靠近阳极流道31入口端的阳极催化剂层21中,石墨负载的铂催化剂的载量为0.12mg/cm2;靠近阳极流道31出口端的阳极催化剂层21中,石墨负载的铂催化剂的载量为0.03mg/cm2
阴极催化剂包括石墨和负载于石墨表面的金属铂,靠近阴极流道11入口端的阴极催化剂层22中,石墨负载的铂催化剂的载量为0.4mg/cm2;靠近阴极流道11出口端的阴极催化剂层22中,石墨负载的铂催化剂的载量为0.1mg/cm2
实施例2
本实施例提供了一种具有非均一膜电极的燃料电池,采用上述具体实施方式提供的方案(15)的燃料电池,即膜电极的阳极表面具有进出口存在梯度变化的阳极催化剂层21,阴极表面具有与流道形状相匹配且进出口存在梯度变化 的阴极催化剂层22。其中:
阳极催化剂包括介孔碳和负载于介孔碳表面的金属铱,靠近阳极流道31入口端的阳极催化剂层21中,介孔碳负载的铱催化剂的载量为0.06mg/cm2。靠近阳极流道31出口端的阳极催化剂层21中,介孔碳负载的铱催化剂的载量为0.015mg/cm2
阴极催化剂包括介孔碳和负载于介孔碳表面的金属铂,靠近阴极流道11入口端的阴极催化剂层22中,介孔碳负载的铂催化剂的载量为0.6mg/cm2;靠近阴极流道11出口端的阴极催化剂层22中,介孔碳负载的铂催化剂的载量为0.15mg/cm2
在不同电压下,对实施例2中的燃料电池的电流密度进行模拟,得到如图7所示的计算结果图。
实施例3
本实施例提供了一种具有非均一膜电极的燃料电池,采用上述具体实施方式提供的方案(15)的燃料电池,即膜电极的阳极表面具有进出口存在梯度变化的阳极催化剂层21,阴极表面具有与流道形状相匹配且进出口存在梯度变化的阴极催化剂层22。其中:
阳极催化剂包括碳纳米管和负载于碳纳米管表面的金属钌,靠近阳极流道31入口端的阳极催化剂层21中,碳纳米管负载的钌催化剂的载量为0.2mg/cm2。靠近阳极流道31出口端的阳极催化剂层21中,碳纳米管负载的钌催化剂的载量为0.04mg/cm2
阴极催化剂包括碳纳米管和负载于碳纳米管表面的金属铂,靠近阴极流道11入口端的阴极催化剂层22中,碳纳米管负载的铂催化剂的载量为1mg/cm2;靠近阴极流道11出口端的阴极催化剂层22中,碳纳米管负载的铂催化剂的载量为0.2mg/cm2
实施例4
本实施例提供了一种具有非均一膜电极的燃料电池,采用上述具体实施方式提供的方案(1)的燃料电池,即仅膜电极的阴极表面有与流道形状相匹配的阴极催化剂层22,阳极表面整面均设置阳极催化剂层21。其中:
阳极催化剂包括石墨和负载于石墨表面的金属铂,且石墨负载的铂催化剂的载量为0.08mg/cm2
阴极催化剂包括石墨和负载于石墨表面的金属铂,且石墨负载的铂催化剂的载量为0.25mg/cm2
在不同电压下,对实施例4中的燃料电池的电流密度进行测试,得到如图8所示的测试结果图。
对比例1
本对比例提供了一种具有均一膜电极的燃料电池,其结构与本申请具体实施方式提供的燃料电池的结构类似,区别仅在于,膜电极表面的催化剂层厚度各处均一,催化剂的负载量各处均一。具体地:
阳极催化剂层21的厚度各处均为30μm,阴极催化剂层22的厚度各处均为40μm。
阳极气体扩散层的厚度各处均为250μm,阴极气体扩散层的厚度各处均为200μm。
阳极催化剂层21中阳极催化剂的总负载量与实施例2中阳极催化剂的总负载量相同,阴极催化剂层22中阴极催化剂的总负载量与实施例2中阴极催化剂的总负载量相同。
在不同电压下,对对比例1中的燃料电池的电流密度进行模拟,得到如图7所示的计算结果图。
由图7可以看出,实施例2和对比例1中的膜电极的整体催化剂载量相同,在电压-电流密度曲线中,低电流密度区域和高电压区域几乎重合,但两者在反应物浓度耗尽的情况下,可以到达的最高电流密度不同,相比于对比例1,实施例2中的电流密提高了30%。
对比例2
本对比例提供了一种具有均一膜电极的燃料电池,其结构与本申请具体实施方式提供的燃料电池的结构类似,区别仅在于,膜电极的阳极表面和阳极表面均未设置流道。
阳极催化剂层21中阳极催化剂的总负载量与实施例4中阳极催化剂的总负载量相同,阴极催化剂层22中阴极催化剂的总负载量与实施例4中阴极催化剂的总负载量相同。
在不同电压下,对对比例2中的燃料电池的电流密度进行测试,得到如图8 所示的测试结果图。
由图8可以看出,相较于对比例2,在相同的电流密度下,实施例4具有更高的电压;在相同的电压下,实施例4可取得更高的电流密度。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种用于燃料电池的非均一膜电极组件,所述燃料电池包括膜电极组件和位于所述膜电极组件两侧表面的极板,所述极板靠近所述膜电极组件的一侧表面开设有流道,相邻流道之间形成肋板,其中,所述非均一膜电极组件包括基于质子交换膜的膜电极和位于所述基于质子交换膜的膜电极两侧表面的催化剂层,至少一侧表面的催化剂层分为流道催化剂区和肋板催化剂区,所述流道催化剂区和所述肋板催化剂区分别对应所述膜电极组件的流道位置和所述肋板位置,所述流道催化剂区内设置有催化剂层,所述肋板催化剂区内不设置催化剂层或者设置的催化剂层的催化剂负载量小于所述流道催化剂区的催化剂层的催化剂负载量。
  2. 根据权利要求1所述的用于燃料电池的非均一膜电极组件,其中,所述膜电极具有阳极表面和阴极表面,所述阴极表面分为流道催化剂区和肋板催化剂区,所述阳极表面的整个表面设置有阳极催化剂层。
  3. 根据权利要求1或2所述的用于燃料电池的非均一膜电极组件,其中,所述流道催化剂区内设置有阴极催化剂层,所述肋板催化剂区内不设置阴极催化剂层。
  4. 根据权利要求1-3任一项所述的用于燃料电池的非均一膜电极组件,其中,所述流道催化剂区和所述肋板催化剂区内均设置有阴极催化剂层,所述流道催化剂区内的阴极催化剂负载量大于所述肋板催化剂区内的阴极催化剂负载量。
  5. 根据权利要求1-4任一项所述的用于燃料电池的非均一膜电极组件,其中,所述流道催化剂区内的阴极催化剂负载量沿流道内的气体流向逐渐减小;
    优选地,所述流道具有入口端和出口端,所述流道催化剂区内的阴极催化剂层中靠近所述流道入口端的阴极催化剂负载量记为M1,所述流道催化剂区内的阴极催化剂层中靠近所述流道出口端的阴极催化剂负载量记为M2,M1>M2
    优选地,M1为M2的1.3~5倍;
    优选地,M1为0.4~1mg/cm2,M2为0.1~0.2mg/cm2
  6. 根据权利要求1所述的用于燃料电池的非均一膜电极组件,其中,所述膜电极具有阳极表面和阴极表面,所述阳极表面分为流道催化剂区和肋板催化剂区,所述阴极表面的整个表面设置有阴极催化剂层;
    优选地,所述流道催化剂区内设置有阳极催化剂层,所述肋板催化剂区内 不设置阳极催化剂层;
    优选地,所述流道催化剂区和所述肋板催化剂区内均设置有阳极催化剂层,所述流道催化剂区内的阳极催化剂负载量大于所述肋板催化剂区内的阳极催化剂负载量;
    优选地,所述流道催化剂区内的阳极催化剂负载量沿流道内的气体流向逐渐减小;
    优选地,所述流道具有入口端和出口端,所述流道催化剂区内的阳极催化剂层中靠近所述流道入口端的阳极催化剂负载量记为N1,所述流道催化剂区内的阳极催化剂层中靠近所述流道出口端的阳极催化剂负载量记为N2,N1小于M1,N2小于M2
    优选地,N1为M1的10~30%,N2为M2的10~30%。
  7. 根据权利要求1所述的用于燃料电池的非均一膜电极组件,其中,所述膜电极具有阳极表面和阴极表面,所述阳极表面分为阳极流道催化剂区和阳极肋板催化剂区,所述阴极表面分为阴极流道催化剂区和阴极肋板催化剂区;
    优选地,所述阳极流道催化剂区和所述阴极流道催化剂区内分别设置有阳极催化剂层和阴极催化剂层,所述阳极肋板催化剂区和所述阴极肋板催化剂区内均不设置催化剂层;
    优选地,所述阳极表面的整个表面以及所述阴极表面的整个表面分别设置有阳极催化剂层和阴极催化剂层;在所述阳极表面中,所述阳极流道催化剂区的阳极催化剂负载量大于所述阳极肋板催化剂区的阳极催化剂负载量;在所述阴极表面中,所述阴极流道催化剂区的阴极催化剂负载量大于所述阴极肋板催化剂区的阴极催化剂负载量;
    优选地,所述阳极流道催化剂区内的阳极催化剂负载量沿流道内的气体流向逐渐减小,所述阴极流道催化剂区内的阴极催化剂负载量沿流道内的气体流向逐渐减小。
  8. 根据权利要求1-7任一项所述的用于燃料电池的非均一膜电极组件,其中,所述阳极催化剂层表面还设置有阳极气体扩散层,所述阴极催化剂层表面还设置有阴极气体扩散层;
    优选地,所述阳极气体扩散层的厚度为100~300μm;
    优选地,所述阴极气体扩散层的厚度为100~300μm。
  9. 一种燃料电池,其中,所述燃料电池包括膜电极组件和位于所述膜电极组件两侧表面的阳极极板和阴极极板,所述膜电极组件为权利要求1-8任一项所述的非均一膜电极组件。
  10. 根据权利要求9所述的燃料电池,其中,所述阳极极板位于同一边的两顶角处分别开设有贯穿所述阳极极板的空气入口和氢气入口。
  11. 根据权利要求9或10所述的燃料电池,其中,所述阳极极板和所述阴极极板的表面均具有相互交叉的第一对角和第二对角,所述阳极极板的第一对角的连线与所述阴极极板的第一对角的连线相互平行,所述阳极极板的第二对角的连线与所述阴极极板的第二对角的连线相互平行。
  12. 根据权利要求9-11任一项所述的燃料电池,其中,所述阳极极板靠近所述膜电极组件的一侧表面开槽形成阳极流道,所述阳极流道的入口端和出口端分别位于所述阳极极板的第一对角处,所述阳极流道的入口端与所述氢气入口连通,通过所述氢气入口向阳极流道内通入氢气。
  13. 根据权利要求9-12任一项所述的燃料电池,其中,所述膜电极组件的一顶角处开设有氢气通孔,所述阳极极板的一顶角处开设有氢气出口,所述阳极流道的出口端、氢气通孔和氢气出口沿氢气流向依次对齐贯通,反应后的氢气由阳极流道的出口端依次穿过所述氢气通孔和所述氢气出口后排出。
  14. 根据权利要求9-13任一项所述的燃料电池,其中,所述阴极极板靠近所述膜电极组件的一侧表面开槽形成阴极流道,所述阴极流道的入口端和出口端分别设置于所述阴极极板的第二对角处;
    优选地,所述膜电极组件的一顶角处开设有空气通孔,所述空气入口、所述空气通孔与所述阴极流道的入口端沿空气流向依次对齐贯通,向所述空气入口内通入空气,空气穿过所述空气通孔由所述阴极流道的入口端进入所述阴极流道;
    优选地,所述阴极极板的一顶角处开设有贯穿所述阴极极板的空气出口,所述空气出口与所述阴极流道的出口端的位置对应且连通,反应后的空气经所述阴极流道的出口端由所述空气出口排出。
  15. 根据权利要求9-14任一项所述的燃料电池,其中,所述阳极流道和所述阴极流道分别独立地包括蛇形流道、平行流道、插指流道、环形流道或树型流道中的任意一种或至少两种的组合。
PCT/CN2023/104470 2022-07-18 2023-06-30 一种用于燃料电池的非均一膜电极组件及燃料电池 WO2024017014A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210841586.9 2022-07-18
CN202210841586 2022-07-18
CN202310742887.0A CN116722152A (zh) 2022-07-18 2023-06-21 一种用于燃料电池的非均一膜电极组件及燃料电池
CN202310742887.0 2023-06-21

Publications (1)

Publication Number Publication Date
WO2024017014A1 true WO2024017014A1 (zh) 2024-01-25

Family

ID=87864450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104470 WO2024017014A1 (zh) 2022-07-18 2023-06-30 一种用于燃料电池的非均一膜电极组件及燃料电池

Country Status (2)

Country Link
CN (1) CN116722152A (zh)
WO (1) WO2024017014A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118016926A (zh) * 2024-04-08 2024-05-10 北京氢璞创能科技有限公司 一种空气冷却燃料电池的阴极封闭式结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317492A (ja) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd 燃料電池、電極−電解質膜接合体、触媒層付き電極基材、それらの製造方法及び転写シート
CN1875514A (zh) * 2003-11-03 2006-12-06 通用汽车公司 基于流场几何结构的可变催化剂担载
CN106099122A (zh) * 2016-07-12 2016-11-09 中国东方电气集团有限公司 电极催化层、其制备方法及其应用
CN215008293U (zh) * 2021-06-30 2021-12-03 中自环保科技股份有限公司 膜电极组件、燃料电池单元、燃料电池电堆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191963A (en) * 1981-05-20 1982-11-25 Sanyo Electric Co Ltd Matrix-type fuel cell
JP4064265B2 (ja) * 2003-03-10 2008-03-19 本田技研工業株式会社 燃料電池
US7790304B2 (en) * 2005-09-13 2010-09-07 3M Innovative Properties Company Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
CN111463442A (zh) * 2020-04-13 2020-07-28 上海电气集团股份有限公司 催化剂层、燃料电池膜电极及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875514A (zh) * 2003-11-03 2006-12-06 通用汽车公司 基于流场几何结构的可变催化剂担载
JP2005317492A (ja) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd 燃料電池、電極−電解質膜接合体、触媒層付き電極基材、それらの製造方法及び転写シート
CN106099122A (zh) * 2016-07-12 2016-11-09 中国东方电气集团有限公司 电极催化层、其制备方法及其应用
CN215008293U (zh) * 2021-06-30 2021-12-03 中自环保科技股份有限公司 膜电极组件、燃料电池单元、燃料电池电堆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118016926A (zh) * 2024-04-08 2024-05-10 北京氢璞创能科技有限公司 一种空气冷却燃料电池的阴极封闭式结构
CN118016926B (zh) * 2024-04-08 2024-06-07 北京氢璞创能科技有限公司 一种空气冷却燃料电池的阴极封闭式结构

Also Published As

Publication number Publication date
CN116722152A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
JP5197995B2 (ja) 燃料電池
WO2024017014A1 (zh) 一种用于燃料电池的非均一膜电极组件及燃料电池
US20080166622A1 (en) Seal gasket-integrated membrane-electrode assembly and fuel cell
JP7304524B2 (ja) 燃料電池のカソード触媒層および燃料電池
ES2706386T3 (es) Conjunto para pilas de combustible reversibles
JP5261412B2 (ja) 燃料電池用mea及びこれを含む燃料電池スタック
US7572538B2 (en) Fuel cell
US20150180075A1 (en) Stacked structure fur fuel cell
US20230106823A1 (en) Tubular polymer electrolyte membrane fuel cell stack
CN115513486B (zh) 一种单极板、双极板、电堆及燃料电池
JPS63119166A (ja) 燃料電池
US7691516B2 (en) Fuel cell system and stack used therein
WO2021220960A1 (ja) レドックスフロー電池
TWI699037B (zh) 電極分隔板結構及其應用之燃料電池
US9147890B2 (en) Fuel cell with embedded flow field
JPH04322062A (ja) 燃料電池のセパレータおよびそれを用いた燃料電池
JP5665900B2 (ja) 燃料電池用セパレータ
JP3619826B2 (ja) 燃料電池用電極及び燃料電池
JP3102052B2 (ja) 固体電解質型燃料電池
KR20240006345A (ko) 연료전지용 분리판 모듈 및 이를 포함하는 연료전지용 단위셀
JP3479774B2 (ja) 燃料電池用セパレータ
JP2023119145A (ja) 集電体-電気化学反応単セル複合体、および、電気化学反応セルスタック
JP2004303666A (ja) 支持膜式固体酸化物形燃料電池
KR20060022017A (ko) 연료 전지 시스템, 이에 사용되는 스택 및 세퍼레이터
JPS61126771A (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842079

Country of ref document: EP

Kind code of ref document: A1