WO2024016879A1 - 一种坩埚熔制机以及坩埚熔制方法 - Google Patents

一种坩埚熔制机以及坩埚熔制方法 Download PDF

Info

Publication number
WO2024016879A1
WO2024016879A1 PCT/CN2023/098937 CN2023098937W WO2024016879A1 WO 2024016879 A1 WO2024016879 A1 WO 2024016879A1 CN 2023098937 W CN2023098937 W CN 2023098937W WO 2024016879 A1 WO2024016879 A1 WO 2024016879A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting
crucible
cooling jacket
mold water
module
Prior art date
Application number
PCT/CN2023/098937
Other languages
English (en)
French (fr)
Inventor
朱永刚
李侨
白锋
张伟建
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024016879A1 publication Critical patent/WO2024016879A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould

Definitions

  • the present application belongs to the technical field of crucible preparation, and specifically relates to a crucible melting machine and a crucible melting method.
  • Monocrystalline silicon wafers are usually obtained by slicing monocrystalline silicon rods, which can be grown and drawn from silicon materials.
  • a crucible is usually used to contain the silicon material, and a heater is used to heat the silicon material in the crucible into silicon liquid, so that the single crystal silicon rod can be grown in the silicon liquid in the crucible. Therefore, the quality and life of the crucible will affect the quality and drawing efficiency of single crystal silicon rods.
  • the main influencing factors on the quality and life of the crucible are the impurities and bubbles in the inner layer of the crucible, and the generation of impurities and bubbles mainly comes from its production equipment and production methods.
  • the existing melting equipment melts the crucible, it is completely in an open environment. Metal dust and air moisture in the air will be reacted or vaporized by the high temperature of the arc and enter the inner layer of the crucible, resulting in impurities after the crucible is melted. and bubbles.
  • the proportion of impurities and bubbles is on the rise, which affects the life of the crucible and leads to human and machine safety risks in the crystal pulling process.
  • This application aims to provide a crucible melting machine and a crucible melting method to solve the problem that impurities and bubbles are prone to exist on the inner wall of the crucible during the existing crucible melting process.
  • this application discloses a crucible melting machine.
  • the crucible melting machine specifically includes include:
  • a first shell, a sand upper position is provided outside the first shell, and a melting position is provided inside the first shell;
  • a melting module is connected to the first housing;
  • the mold water-cooling jacket can enter and exit the first shell, and switch between the upper sand position and the melting position, wherein, in the upper sand position, the mold water-cooling jacket can A crucible body is formed, and at the melting position, the mold water-cooling jacket can be sealingly connected to the melting module;
  • a vacuum device the vacuum device is connected to the melting module, and the vacuum device is used to perform a vacuuming operation on the melting module and the mold water-cooling jacket.
  • the melting module includes: a second shell, a graphite electrode and a first heat shield; wherein,
  • a receiving cavity is provided in the second housing, and the vacuum device is connected to the second housing;
  • the first heat shield is disposed on a side of the second shell close to the mold water cooling jacket.
  • a seal is disposed on the first heat shield. The seal is used to communicate with the mold water cooling jacket.
  • the graphite electrode is arranged in the second shell and extends at least partially into the water-cooling jacket of the mold.
  • the graphite electrode is used to melt the crucible blank in the water-cooling jacket of the module into a crucible.
  • the sealing member includes: a first part and a second part that are relatively rotatable, wherein the first part is fixedly connected to the first heat shield, and the connection between the second part and the mold water-cooling jacket is sealed connection.
  • both the first part and the second part are ring-shaped metal parts.
  • the second housing is provided with an air inlet and an air outlet,
  • the vacuum device is connected to the air outlet to perform a vacuuming operation on the accommodation cavity in the second housing.
  • the crucible melting machine further includes an inert gas device connected to the air inlet to pass into the accommodation cavity in the second housing through the air inlet.
  • Inert gas the gas outlet is used to discharge the inert gas in the accommodation cavity.
  • the air inlet is disposed at an end of the second housing away from the first heat shield, and the air outlet is disposed close to the first heat shield.
  • the melting module may further include: an electrode lifting mechanism, the electrode lifting mechanism is connected to the graphite electrode, and the electrode lifting mechanism is used to drive the graphite electrode to lift, so that the graphite The electrode can descend and at least extend into the mold water-cooling jacket to burn the crucible body in the mold water-cooling jacket, or the graphite electrode can be raised to escape from the mold water-cooling jacket.
  • an electrode lifting mechanism the electrode lifting mechanism is connected to the graphite electrode, and the electrode lifting mechanism is used to drive the graphite electrode to lift, so that the graphite The electrode can descend and at least extend into the mold water-cooling jacket to burn the crucible body in the mold water-cooling jacket, or the graphite electrode can be raised to escape from the mold water-cooling jacket.
  • the first lifting mechanism drives the melting module to descend, so that the melting module can Sealing connection with the mold water-cooling jacket.
  • the crucible melting machine further includes an exhaust system, which is used to cool down the outside of the melting module and the mold water-cooling jacket and to remove dust from the soundproof room.
  • this application also discloses a crucible melting method for use in any of the above crucible melting machines.
  • the crucible melting method includes:
  • the graphite electrode of the melting module is controlled to arc to melt the crucible body in the water-cooling jacket of the mold into a crucible.
  • the vacuum device is controlled to continuously perform a vacuuming operation.
  • the method before using a vacuum device to perform a vacuuming operation on the melting module and the mold water-cooling jacket, the method further includes:
  • an inert gas device is used to continuously pass inert gas into the melting module and the mold water-cooling jacket.
  • the vacuum device can perform a vacuuming operation on the melting module and the mold water-cooling jacket to take away the melt.
  • the impurities in the mold set and the mold water-cooling jacket are controlled, and a good vacuum degree is maintained in the melting module set and the mold water-cooling jacket.
  • the formation of impurities and bubbles on the inner wall of the crucible in the water-cooling jacket of the mold can be avoided, and the quality and life of the crucible can be improved.
  • the proportion of impurities and bubbles in the crucible can be greatly reduced. , improve the quality and life of the crucible, thereby benefiting the human and machine safety of the crystal pulling process.
  • Figure 1 is a schematic structural diagram of a crucible melting machine according to the embodiment of the present application.
  • Figure 2 is one of the structural schematic diagrams of the crucible melting machine shown in Figure 1 from another angle;
  • Figure 3 is a detailed structural diagram of position A of the crucible melting machine shown in Figure 2;
  • Figure 4 is one of the structural schematic diagrams of the crucible melting machine shown in Figure 1 with the second housing removed;
  • Figure 5 is the second structural schematic diagram of the crucible melting machine shown in Figure 2 with the second housing removed;
  • Figure 6 is a schematic diagram of the internal structure of the melting module of the crucible melting machine shown in Figure 2;
  • Figure 7 is a step flow chart of a crucible melting method according to the embodiment of the present application.
  • the embodiment of the present application provides a crucible melting machine, which can melt the crucible.
  • the crucible melting machine described in the embodiment of the present application is used for crucible melting, the formation of impurities and bubbles on the inner wall of the crucible can be avoided, thereby improving the quality and life of the crucible.
  • it can greatly reduce the cost of melting.
  • the ratio of impurities to bubbles in the crucible improves the quality and life of the crucible, thereby benefiting the human and machine safety of the crystal pulling process.
  • FIG. 1 a schematic structural diagram of a crucible melting machine according to an embodiment of the present application is shown.
  • FIG. 2 a schematic structural diagram of the crucible melting machine shown in FIG. 1 from another angle is shown.
  • FIG. 3 shows a detailed structural diagram of position A of the crucible melting machine shown in FIG. 2.
  • FIG. 4 a second structural diagram of the crucible melting machine shown in FIG. 1 with the second shell removed is shown.
  • the crucible melting machine described in the embodiment of the present application may include: a first housing 10, a sand upper position is provided outside the first housing 10, and a melting position is provided inside the first housing 10; Module 11, the melting module 11 is connected in the first shell 10; the mold water cooling jacket 12, the mold water cooling jacket 12 can enter and exit the first shell 10, and is at the upper sand position shown in Figure 2 and Figure 4 Switch between melting positions, wherein, in the upper sand position, the mold water-cooling jacket 12 can form a crucible body, and in the melting position, the mold water-cooling jacket 12 can be sealingly connected with the melting module 11; and vacuum device (not shown), the vacuum The device is connected to the melting module 11 , and the vacuum device can be used to perform vacuuming operations on the melting module 11 and the mold water-cooling jacket 12 .
  • the vacuum device can perform a vacuuming operation on the melting module 11 and the mold water cooling jacket 12 to take away the melting module 11 and impurities in the mold water-cooling jacket 12, and maintain a good vacuum degree in the melting module 11 and the mold water-cooling jacket 12. In this way, the formation of impurities and bubbles on the inner wall of the crucible in the mold water-cooling jacket 12 can be avoided, thereby improving the quality and life of the crucible. Especially when used for melting large-sized crucibles, it can greatly reduce the proportion of impurities and bubbles in the crucible, improve the quality and life of the crucible, and thus benefit the human and machine safety of the crystal pulling process.
  • the first housing 10 can be used as the outer housing of the crucible melting machine to form a relatively sealed environment. On the one hand, it can prevent external dust and impurities from entering the first housing 10 and affecting the melting environment of the crucible. , on the other hand, it can also prevent the heat and noise generated during the crucible melting process from entering the open environment outside the first housing 10, and reduce the impact of the crucible melting process on the external environment.
  • the first housing 10 may be made of metal, bricks, or other materials.
  • the embodiment of the present application may not limit the specific material of the first housing 10 .
  • an upper sand position may be provided outside the first housing 10 .
  • the mold water-cooling jacket 12 moves to the upper sand position shown in Figure 2, the mold water-cooling jacket 12 can rotate around the axis.
  • the staff can add materials to the mold water-cooling jacket 12, such as quartz granules, etc.
  • the uniformity of feeding can be improved.
  • a crucible embryo is formed on the inner wall of the mold water-cooling jacket 12.
  • a melting position may be provided inside the first housing 10 .
  • the melting module 11 can be sealingly connected with the mold water-cooling jacket 12 .
  • the vacuum device can be used to perform a vacuuming operation on the melting module 11 and the mold water-cooling jacket 12 to remove impurities inside the melting module 11 and the mold water-cooling jacket 12 .
  • the vacuum device performs a vacuuming operation on the inside of the melting module 11 and the mold water-cooling jacket 12 to take away impurities and waste gas inside the melting module 11 and the mold water-cooling jacket 12 .
  • the vacuum device is controlled to continuously perform a vacuuming operation to take away impurities and waste gas generated during the melting process, avoid impurities and bubbles from forming on the inner wall of the crucible in the mold water-cooling jacket 12, and lift the crucible. quality and longevity.
  • the crucible melting machine may also include: a rotary carriage 13 connected to the mold water-cooling jacket 12 , and the rotary carriage 13 may be used to drive the mold water-cooling jacket 12 in and out of the first housing 10 .
  • the rotary carriage 13 can drive the mold water-cooling jacket 12 to move, so that the mold water-cooling jacket 12 can move from the melting position inside the first shell 10 to the upper sand position outside the first shell 10, or from the first shell 10 to the upper sand position outside the first shell 10.
  • the upper sand position outside the first housing 10 moves to the melting position inside the first housing 10 .
  • the crucible melting machine may also include a soundproof room 14.
  • the soundproof room 14 is provided in the first housing 10, and the soundproof room 14 is provided with a soundproof door 141; the crucible melting machine
  • the machine also includes a second lifting mechanism 15, which is connected to the soundproof door 141.
  • the second lifting mechanism 15 can be used to drive the soundproof door 141 to lift, so that the mold water cooling jacket 12 can enter and exit the soundproof room 14 through the soundproof door 141.
  • a soundproof room 14 can be provided on the inner wall of the first housing 10 .
  • the soundproof room 14 can be made of materials with sound-absorbing functions.
  • a soundproof door 141 may be provided in the soundproof room 14, and the mold water-cooling jacket 12 can enter and exit the soundproof room 14 through the soundproof door 141.
  • the crucible melting machine also includes a second lifting mechanism 15.
  • the second lifting mechanism 15 is connected to the sound insulation door 141.
  • the second lifting mechanism 15 is used to drive the sound insulation door 141 to lift to facilitate the mold water cooling jacket 12 Enter and exit the soundproof room 14 through the soundproof door 141.
  • the second lifting mechanism 15 can be used to control the soundproof door 141 to rise.
  • the second lifting mechanism 15 can be used to control the soundproof door 141 to descend to form a relatively sealed soundproof environment.
  • the second lifting mechanism 15 may include a hoist, an elevator, etc., in the embodiment of the present application
  • the specific form of the second lifting mechanism 15 may not be limited.
  • the melting module 11 may specifically include: a second shell 111, Graphite electrode 112 and first heat shield 113; wherein, a receiving cavity is provided in the second housing 111, and the vacuum device is connected to the second housing 111; the first heat shield 113 is provided close to the second housing 111 On one side of the mold water-cooling jacket 12, a seal 114 is provided on the first heat shield 113.
  • the seal 114 can be used for sealing connection with the mold water-cooling jacket 12; the graphite electrode 112 is disposed in the second shell 111 and at least partially Extending into the mold water-cooling jacket 12, the graphite electrode 112 can be used to melt the crucible blank in the mold water-cooling jacket 12 into a crucible.
  • the accommodation cavity in the second housing 111 can be used to accommodate the graphite electrode 112 and related electronic components, and the second housing 111 can be used to form a relatively sealed environment.
  • the accommodation cavity in the second shell 111 can be connected with the inner wall of the crucible body in the mold water-cooling jacket 12.
  • the vacuum device can perform vacuuming operations on the second shell 111 and the mold water-cooling jacket 12, thereby reducing impurities and particles on the inner wall of the crucible in the mold water-cooling jacket 12. bubble.
  • the graphite electrode 112 can release a great deal of heat when arcing, and the crucible body in the mold water-cooling jacket 12 can be melted into a crucible.
  • FIG. 6 a schematic diagram of the internal structure of the melting module of the crucible melting machine shown in FIG. 2 is shown.
  • a crucible embryo 20 can be formed on the inner wall of the mold water cooling jacket 12 .
  • the graphite electrode 112 can at least partially extend into the interior of the crucible body 20 to melt the crucible body 20 into a crucible, and the second shell 111 can be connected with the crucible body 20.
  • the interior of the crucible body 20 is connected to form a relatively sealed environment.
  • the vacuum device can be communicated with the air outlet 1112 of the second housing 111 to perform a vacuuming operation on the interior of the second housing 111 and the inner cavity of the crucible body 20, so that the impurities inside the crucible body 20 can be removed from the air. It is discharged to the outside of the second shell 111 in the direction shown by the arrow in FIG. 6 to reduce impurities and bubbles on the inner wall of the crucible body 20 in the mold water-cooling jacket 12 .
  • the second shell 111 and the crucible body in the mold water-cooling jacket 12 20 forms a relatively sealed vacuum chamber, which can prevent impurities in the first housing 10 from being introduced into the second housing 111 and causing negative effects.
  • the sealing member 114 is sealingly connected between the second housing 111 and the mold water-cooling jacket 12, the vacuum degree inside the mold water-cooling jacket 12 can be maintained more uniformly, and impurities are not easily introduced.
  • the seal 114 is provided on the first heat shield 113, when it is necessary to melt the crucible body in the mold water-cooling jacket 12, the mold water-cooling jacket 12 can be sealingly connected to the seal 114 to realize the mold water-cooling jacket. 12 and the sealed connection between the melting module 11.
  • the first heat shield 113 is placed close to the mold water-cooling jacket 12 to achieve heat insulation between the mold water-cooling jacket 12 and the melting module 11 to avoid the huge heat generated by the crucible body in the mold water-cooling jacket 12 during the melting process. It causes damage to the electronic components above the melting module 11 and improves the safety and service life of the melting module 11 .
  • the second housing 111 can be made of metal materials such as iron and steel, so that the second housing 111 has better strength.
  • the first heat shield 113 can be made of foam, glass fiber, asbestos and other heat insulating materials. The embodiment of the present application does not limit the specific materials of the second housing 111 and the first heat shield 113 .
  • the seal 114 may specifically include: a first part 1141 and a second part 1142 that are relatively rotatable, wherein the first part 1141 is fixedly connected to the first heat shield 113 , and the second part 1142 is connected to the mold water cooling jacket 12 sealed connection.
  • the second part 1142 can rotate together with the mold water-cooling jacket 12 to realize crucible melting through the rotation of the mold water-cooling jacket 12, while the first part 1141 can be fixed to the first heat shield 113 Keep it in a non-rotating state.
  • the seal 114 is arranged into a relatively rotatable first part 1141 and a second part 1142, and the first part 1141 is fixedly connected to the first heat shield 113, and the second part 1142 is connected to the mold water cooling jacket 12
  • the sealing connection between them can keep the mold water cooling jacket 12 in a state of sealing connection with the melting module 11 during the rotation process.
  • both the first part 1141 and the second part 1142 may be ring-shaped metal parts to match the shape of the mold water-cooling jacket 12 to achieve a sealed connection between the second part 1142 and the mold water-cooling jacket 12 .
  • first part 1141 and the second part 1142 are both ring-shaped metal parts, it is also beneficial to achieve relative rotation between the two parts, which is beneficial to increasing the service life of the first part 1141 and the second part 1142.
  • the second housing 111 is provided with an air inlet 1111 and an air outlet 1112 .
  • the vacuum device is connected to the air outlet 1112 to perform a vacuuming operation on the accommodation cavity in the second housing 111 .
  • the air inlet 1111 can be used to introduce gas into the second housing 111
  • the air outlet 1112 can be used to discharge the gas in the second housing 111.
  • the vacuum device may include a vacuum pump and a vacuum pipe connected to the vacuum pump.
  • the vacuum pipe may be connected to the air outlet 1112 so that the vacuum pump can extract the gas inside the second shell 111 and the mold water cooling jacket 12 from the air outlet 1112. and impurities to ensure the vacuum inside the second housing 111 and the mold water-cooling jacket 12 .
  • the crucible melting machine further includes an inert gas device (not shown in the figure), the inert gas device is connected to the air inlet 1111, so as to pass through the air inlet 1111 to the second housing 111. Inert gas is introduced into the cavity, and the gas outlet 1112 can be used to discharge the inert gas in the accommodation cavity.
  • the inert gas device before opening the melting module 11 to melt the crucible body on the inner wall of the mold water-cooling jacket 12 into a crucible, the inert gas device can be controlled to flow from the air inlet 1111 to the inside of the second shell 111 Inert gas is used to replace the air in the second shell 111 and the mold water cooling jacket 12.
  • the replaced air can be discharged through the air outlet 1112 to form an inert gas environment inside the second shell 111 and the mold water cooling jacket 12.
  • the inert gas device can be controlled to repeatedly introduce inert gas into the second housing 111 to achieve the purpose of repeatedly replacing the gas inside the second housing 111 . Impurities and waste gas generated during the melting process are taken away by the flowing gas, thereby preventing impurities and bubbles from forming on the inner wall of the crucible in the mold water-cooling jacket 12, thereby improving the quality and safety of the crucible. life.
  • a medium can also be provided for the arc generated by the graphite electrode 112, which is beneficial to the arc starting of the graphite electrode 112.
  • the inert gas device and the vacuum device can be used together, that is, after the inert gas device supplies the inert gas from the air inlet 1111 into the second shell 111 and the mold water cooling jacket 12,
  • the vacuum device can extract the gas inside the second shell 111 and the mold water-cooling jacket 12 from the gas outlet 1112 to repeatedly replace the gas in the second shell 111 and the mold water-cooling jacket 12, and take away the melting material through the flowing gas.
  • the impurities and waste gas generated during the process purify the internal environment of the mold water-cooling jacket 12, avoid the formation of impurities and bubbles on the inner wall of the crucible in the mold water-cooling jacket 12, and improve the quality and life of the crucible.
  • the inert gas device may include a blowing pump that can blow out inert gas and a pipeline.
  • the pipeline can be connected to the air inlet 1111 on the second housing 111.
  • the inert gas blown out by the blowing pump can pass through the The pipe and air inlet 1111 enter the interior of the second housing 111 .
  • the inert gas may include but is not limited to any one of argon and helium, and the embodiments of this application may not limit the specific content of the inert gas.
  • the air inlet 1111 is disposed at an end of the second housing 111 away from the first heat shield 113, and the air outlet 1112 is disposed close to the first heat shield 113, so that the inert gas entering from the air inlet 1111 passes through the first heat shield 113. After sufficient circulation in the second housing 111, it is discharged through the air outlet 1112 to fully take away the impurities inside the second housing 111 and the mold water-cooling jacket 12.
  • the air inlet 1111 may be provided on the top of the second housing 111
  • the air outlet 1112 may be provided close to the first heat shield 113 on the top of the second housing 111 .
  • the inert gas after the inert gas enters from the air inlet 1111 at the top of the second housing 111, it can fully circulate inside the second housing 111 and then be discharged from the air outlet 1112 at the bottom.
  • the efficiency of the inert gas in taking away impurities is relatively high. high.
  • an electrode control assembly 115 is also provided in the second housing 111 .
  • the electrode control assembly 115 is connected to the graphite electrode 112 for controlling the opening or closing of the graphite electrode 112 .
  • the electrode control assembly 115 is located away from the first heat shield 113 .
  • the electrode control component 115 can control the lifting control and opening and closing control of the graphite electrode 112 according to process requirements to control the graphite electrode 112 to release high-temperature arc pairs.
  • the crucible embryo body is burned, and the crucible embryo body is melted into a crucible.
  • a second heat shield 116 is also provided in the second housing 111.
  • the second heat shield 116 is located between the graphite electrode 112 and the electrode control assembly 115 to realize the graphite electrode 112 and the electrode control assembly 115.
  • the heat insulation between them prevents the heat released by the graphite electrode 112 from causing damage to the electrode control assembly 115, improves the safety and service life of the electrode control assembly 115, and thereby improves the safety and service life of the entire melting module 11.
  • the second heat shield 116 can be made of foam, glass fiber, asbestos or other heat insulating materials.
  • the embodiment of the present application does not limit the specific material of the second heat shield 116 .
  • the melting module 11 may also include: an electrode lifting mechanism 117, which is connected to the graphite electrode 112.
  • the electrode lifting mechanism 117 may be used to drive the graphite electrode 112 to lift, so that the graphite electrode 112 can land and at least Reach into the mold water-cooling jacket 12 to burn the crucible body in the mold water-cooling jacket 12, or make the graphite electrode 112 rise to escape from the mold water-cooling jacket 12.
  • the crucible melting machine may also include a first lifting mechanism 16.
  • the first lifting mechanism 16 is disposed in the first housing 10 and connected to the melting module 11.
  • the first lifting mechanism 16 can be Then, the melting module 11 is driven to rise and fall, so that the melting module 11 and the mold water-cooling jacket 12 are sealedly connected, or the sealed connection between the melting module 11 and the mold water-cooling jacket 12 is released.
  • the first lifting mechanism 16 may include a hoist, an elevator, etc., and the embodiment of the present application may not limit the specific form of the first lifting mechanism 16 .
  • the first lifting mechanism 16 can be used to drive the melting module 11 down, so that the melting module 11 can be connected to the melting position.
  • the mold water-cooling jacket 12 is sealed and connected.
  • the seal 114 on the melting module 11 can be separated from the mold water-cooling jacket 12, and then the first lifting mechanism 16 is used to drive the melting module 11 up to release the melting module 11 from the mold. Sealed connection between water cooling jackets 12.
  • the rotary crane 13 is used to move the mold water-cooling jacket 12 from the melting position to the upper sand position.
  • the mold water-cooling jacket 12 can be poured clockwise to 90 degrees.
  • the operator can separate the crucible and the mold water-cooling jacket 12 to complete the process. Describe the unloading of the crucible.
  • the crucible melting machine can also be equipped with an exhaust system.
  • the exhaust system can be turned on throughout the entire process to cool down the outside of the melting module 11 and the mold water-cooling jacket 12 and to remove dust from the soundproof room 14 .
  • the crucible melting machine described in the embodiments of the present application can at least include the following advantages:
  • the vacuum device can perform a vacuuming operation on the melting module and the mold water-cooling jacket to take away the melt.
  • the impurities in the mold set and the mold water-cooling jacket are controlled, and a good vacuum degree is maintained in the melting module set and the mold water-cooling jacket.
  • the formation of impurities and bubbles on the inner wall of the crucible in the water-cooling jacket of the mold can be avoided, and the quality and life of the crucible can be improved.
  • the proportion of impurities and bubbles in the crucible can be greatly reduced. , improve the quality and life of the crucible, thereby benefiting the human and machine safety of the crystal pulling process.
  • the crucible melting method can be used in the crucible melting machine described in any of the above embodiments.
  • the crucible The melting method may specifically include the following steps:
  • Step 601 Move the mold water-cooling jacket to the upper sand position outside the first shell, and add quartz raw material into the mold water-cooling jacket to form a crucible embryo in the mold water-cooling jacket.
  • an upper sand level may be provided on the outside of the first shell 10 of the crucible melting.
  • the mold water-cooling jacket 12 moves to the upper sand position shown in Figure 2, the mold water-cooling jacket 12 can rotate around the axis.
  • the staff can add materials to the mold water-cooling jacket 12, such as quartz granules, etc.
  • the uniformity of feeding can be improved.
  • Adding ingredients in the process, by using the crucible molding part and cooperating with the rotation of the mold water-cooling jacket 12, the crucible embryo can be formed on the inner wall of the mold water-cooling jacket 12.
  • Step 602 Move the mold water-cooling jacket to the melting position in the first housing, and sealingly connect the melting module and the mold water-cooling jacket.
  • a melting position may also be provided inside the first housing 10 .
  • the melting module 11 can be sealingly connected with the mold water-cooling jacket 12 .
  • Step 603 Use a vacuum device to perform a vacuuming operation on the melting module and the mold water-cooling jacket.
  • a vacuum device can be used to perform a vacuuming operation on the melting module 11 and the mold water-cooling jacket 12 to remove the melting module 11 and impurities inside the mold water cooling jacket 12. Then, before opening the melting module 11 to melt the crucible body on the inner wall of the mold water-cooling jacket 12 into a crucible, the vacuum device can be controlled to perform a vacuuming operation on the inside of the melting module 11 and the mold water-cooling jacket 12, so as to The impurities and waste gas inside the melting module 11 and the mold water-cooling jacket 12 are taken away.
  • Step 604 Control the arcing of the graphite electrode of the melting module to melt the crucible body in the water-cooling jacket of the mold into a crucible.
  • the vacuum device is controlled to continuously perform vacuuming. operation.
  • the crucible body in the water-cooling jacket 12 of the mold can be melted into a crucible.
  • the vacuum device can be controlled to continuously perform a vacuuming operation to take away impurities and waste gas generated during the melting process, avoid impurities and bubbles from forming on the inner wall of the crucible in the mold water-cooling jacket 12, and lift the crucible. quality and longevity.
  • a vacuum device before using a vacuum device to evacuate the melting module 11 and the mold water-cooling jacket 12, it also includes: using an inert gas device to pass inert gas into the melting module 11 and the mold water-cooling jacket 12. gas.
  • the crucible melting machine may further include an inert gas device. Opening the melt Before the mold making group 11 melts the crucible body on the inner wall of the mold water cooling jacket 12 into a crucible, the inert gas device can be controlled to pass inert gas into the inside of the melting mold group 11 to replace the melting mold group 11 and the melting mold group 11 with the inert gas.
  • the replaced air in the mold water-cooling jacket 12 can be discharged through the air outlet 1112, forming an inert gas environment inside the melting module 11 and the mold water-cooling jacket 12.
  • an inert gas device is used to continuously pass inert gas into the melting module 11 and the mold water-cooling jacket 12 .
  • the inert gas device can be controlled to repeatedly introduce inert gas into the melting module 11 to achieve the purpose of repeatedly replacing the gas inside the melting module 11.
  • the gas takes away impurities and waste gas generated during the melting process, preventing impurities and bubbles from forming on the inner wall of the crucible in the mold water-cooling jacket 12, and improving the quality and life of the crucible.
  • a medium can also be provided for the arc generated by the graphite electrode 112, which is beneficial to the arc starting of the graphite electrode 112.
  • the inert gas device and the vacuum device can be used together, that is, after the inert gas device introduces inert gas from the melting module 11 and the mold water cooling jacket 12, the vacuum device can The gas inside the melting module 11 and the mold water-cooling jacket 12 is extracted from the gas outlet 1112 to repeatedly replace the gas in the melting module 11 and the mold water-cooling jacket 12, and the impurities generated during the melting process are taken away by the flowing gas. and exhaust gas, to achieve purification of the internal environment of the mold water-cooling jacket 12, to avoid the formation of impurities and bubbles on the inner wall of the crucible in the mold water-cooling jacket 12, and to improve the quality and life of the crucible.
  • the vacuum device can perform a vacuuming operation on the melting module and the mold water-cooling jacket to bring Remove the impurities in the melting module and the mold water-cooling jacket, and maintain a good vacuum degree in the melting module and the mold water-cooling jacket.
  • the formation of impurities and bubbles on the inner wall of the crucible in the water-cooling jacket of the mold can be avoided, and the quality and life of the crucible can be improved.
  • the proportion of impurities and bubbles in the crucible can be greatly reduced. , improve the quality and life of the crucible, thereby benefiting the human and machine safety of the crystal pulling process.
  • the device embodiments described above are merely illustrative in that they are illustrated as separate components.
  • the units may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the invention may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.

Abstract

本申请实施例提供了一种坩埚熔制机以及坩埚熔制方法。所述坩埚熔制机具体包括:第一壳体,所述第一壳体外设置有上沙位,所述第一壳体内设置有熔制位;熔制模组,所述熔制模组连接于所述第一壳体内;模具水冷套,所述模具水冷套可进出所述第一壳体,并在所述上沙位和所述熔制位之间切换,其中,在所述上沙位,所述模具水冷套可形成坩埚胚体,在所述熔制位,所述模具水冷套可与所述熔制模组密封连接;以及真空装置,所述真空装置与所述熔制模组连接,所述真空装置用于对所述熔制模组和所述模具水冷套内执行抽真空的操作。

Description

一种坩埚熔制机以及坩埚熔制方法
本申请要求在2022年07月20日提交中国专利局、申请号为202210852009.X、发明名称为“一种坩埚熔制机以及坩埚熔制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于坩埚制备技术领域,具体涉及一种坩埚熔制机以及坩埚熔制方法。
背景技术
单晶硅片通常由单晶硅棒进行切片处理得到,单晶硅棒则可以由硅料生长拉制而成。在单晶硅棒拉制的过程中,通常需要采用坩埚来容纳硅料,并采用加热器将坩埚内的硅料加热成硅液,以在坩埚的硅液中进行单晶硅棒的生长,因此,坩埚的品质和寿命会影响到单晶硅棒的品质和拉制效率。
目前,坩埚的品质和寿命的主要影响因素为熔覆其内层的杂质与气泡,而杂质与气泡的产生主要来源于其生产装备以及生产方式。现有的熔制设备在熔制坩埚时,完全处于开放式环境下,空气中的金属粉尘以及空气水分等会被电弧高温反应或气化,进入坩埚内层,从而造成坩埚熔制后的杂质和气泡。而且,随着大尺寸坩埚的上线,杂质和气泡的比例呈上升趋势,更是影响坩埚寿命,从而导致拉晶工艺的人机安全风险。
发明内容
本申请旨在提供一种坩埚熔制机以及坩埚熔制方法,以解决现有坩埚熔制过程中坩埚内壁容易存在杂质和气泡的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请公开了一种坩埚熔制机,所述坩埚熔制机具体包 括:
第一壳体,所述第一壳体外设置有上沙位,所述第一壳体内设置有熔制位;
熔制模组,所述熔制模组连接于所述第一壳体内;
模具水冷套,所述模具水冷套可进出所述第一壳体,并在所述上沙位和所述熔制位之间切换,其中,在所述上沙位,所述模具水冷套可形成坩埚胚体,在所述熔制位,所述模具水冷套可与所述熔制模组密封连接;
以及真空装置,所述真空装置与所述熔制模组连接,所述真空装置用于对所述熔制模组和所述模具水冷套内执行抽真空的操作。
可选地,所述熔制模组包括:第二壳体、石墨电极以及第一遮热板;其中,
所述第二壳体内设置有容纳腔,所述真空装置与所述第二壳体连接;
所述第一遮热板设置于所述第二壳体靠近于所述模具水冷套的一侧,所述第一遮热板上设置有密封件,所述密封件用于与所述模具水冷套密封连接;
所述石墨电极设置于所述第二壳体内并至少部分伸入所述模具水冷套内,所述石墨电极用于将所述模组水冷套内的坩埚坯体熔制成坩埚。
可选地,所述密封件包括:可相对转动的第一部分和第二部分,其中,所述第一部分固定连接于所述第一遮热板,所述第二部分与所述模具水冷套之间密封连接。
可选地,所述第一部分和所述第二部分皆为环状金属件。
可选地,所述第二壳体上设置有进气口和出气口,
所述真空装置和所述出气口连接,以对所述第二壳体内的容纳腔执行抽真空的操作。
可选地,所述坩埚熔制机还包括惰性气体装置,所述惰性气体装置与所述进气口连接,以通过所述进气孔向所述第二壳体内的容纳腔通入 惰性气体,所述出气口用于将所述容纳腔内的惰性气体排出。
可选地,所述进气口设置于所述第二壳体远离所述第一遮热板的一端,所述出气口靠近所述第一遮热板设置。
可选地,所述熔制模组还可以包括:电极升降机构,所述电极升降机构与所述石墨电极连接,所述电极升降机构用于,驱动所述石墨电极升降,以使得所述石墨电极可以降落并至少伸入所述模具水冷套内,对所述模具水冷套内的所述坩埚胚体进行灼烧,或者,使得所述石墨电极上升以从所述模具水冷套内脱出。
可选地,在所述模具水冷套从所述上沙位运动到所述熔制位的情况下,所述第一升降机构驱动所述熔制模组下降,以便于所述熔制模组与所述模具水冷套密封连接。
可选地,所述坩埚熔制机还包括:排风系统,所述排风系统用于对所述熔制模组和所述模具水冷套的外部进行降温以及对隔音房内进行除尘。
第二方面,本申请还公开了一种坩埚熔制方法,用于上述任一项所述的坩埚熔制机,所述坩埚熔制方法包括:
将模具水冷套移动至第一壳体外的上沙位,并向所述模具水冷套内加入石英原料,以在所述模具水冷套内形成坩埚胚体;
将所述模具水冷套移动至所述第一壳体内的熔制位,并将熔制模组与所述模具水冷套密封连接;
采用真空装置对所述熔制模组和所述模具水冷套内执行抽真空的操作;
控制所述熔制模组的石墨电极起弧,以将所述模具水冷套内的坩埚胚体熔制成坩埚,其中,在熔制过程中,控制所述真空装置持续执行抽真空的操作。
可选地,所述采用真空装置对所述熔制模组和所述模具水冷套内执行抽真空的操作之前,还包括:
采用惰性气体装置向所述熔制模组和所述模具水冷套内通入惰性气 体。
可选地,在熔制过程中,控制所述真空装置持续执行抽真空的操作的同时,采用惰性气体装置向所述熔制模组和所述模具水冷套内持续通入惰性气体。
本申请实施例中,由于所述坩埚熔制机内设置有真空装置,所述真空装置可以对所述熔制模组和所述模具水冷套内执行抽真空的操作,以带走所述熔制模组和所述模具水冷套内的杂质,并使得所述熔制模组和所述模具水冷套内保持较好的真空度。这样,就可以避免所述模具水冷套内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命,尤其在用于大尺寸坩埚熔制时,能够极大的降低坩埚中的杂质和气泡的比例,提升坩埚的品质和寿命,从而,有利于拉晶工艺的人机安全。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例所述的一种坩埚熔制机的结构示意图;
图2是图1所示的坩埚熔制机另一角度的结构示意图之一;
图3是图2所示的坩埚熔制机A位置的详细结构示意图;
图4是图1所示的坩埚熔制机去除了第二壳体的结构示意图之一;
图5是图2所示的坩埚熔制机去除了第二壳体的结构示意图之二;
图6是图2所示的坩埚熔制机的熔制模组的内部结构示意图;
图7是本申请实施例所述的一种坩埚熔制方法的步骤流程图;
附图标记:10-第一壳体,11-熔制模组,111-第二壳体,1111-进气口,1112-出气口,112-石墨电极,113-第一遮热板,114-密封件,1141-第一部分,1142-第二部分,115-电极控制组件,116-第二遮热板,117-电极升降机构,12-模具水冷套,13-回转航车,14-隔音房,141-隔音门,15-第二升降机构,16-第一升降机构,20-坩埚胚体。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例提供了一种坩埚熔制机,所述坩埚熔制机可以进行坩埚的熔制。采用本申请实施例所述的坩埚熔制机进行坩埚熔制时,可以避免坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命,尤其在用于大尺寸坩埚熔制时,能够极大的降低坩埚中的杂质和气泡的比例,提升坩埚的品质和寿命,从而,有利于拉晶工艺的人机安全。
参照图1,示出了本申请实施例所述的一种坩埚熔制机的结构示意图,参照图2,示出了图1所示的坩埚熔制机另一角度的结构示意图之一,参照图3,示出了图2所示的坩埚熔制机A位置的详细结构示意图,参照图4,示出了图1所示的坩埚熔制机去除了第二壳体的结构示意图之二。
具体的,本申请实施例所述的坩埚熔制机具体可以包括:第一壳体10,第一壳体10外设置有上沙位,第一壳体10内设置有熔制位;熔制模组11,熔制模组11连接于第一壳体10内;模具水冷套12,模具水冷套12可进出第一壳体10,并在图2所示的上沙位和图4所示的熔制位之间切换,其中,在所述上沙位,模具水冷套12可形成坩埚胚体,在所述熔制位,模具水冷套12可与熔制模组11密封连接;以及真空装置(图中未示出),所述真空 装置与熔制模组11连接,所述真空装置可以用于对熔制模组11和模具水冷套12内执行抽真空的操作。
本申请实施例中,由于所述坩埚熔制机内设置有真空装置,所述真空装置可以对熔制模组11和模具水冷套12内执行抽真空的操作,以带走熔制模组11和模具水冷套12内的杂质,并使得熔制模组11和模具水冷套12内保持较好的真空度。这样,就可以避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命。尤其在用于大尺寸坩埚熔制时,能够极大的降低坩埚中的杂质和气泡的比例,提升坩埚的品质和寿命,从而,有利于拉晶工艺的人机安全。
具体的,第一壳体10可以作为所述坩埚熔制机的外壳体,形成相对密封的环境,一方面,可以避免外界的灰尘杂质进入第一壳体10内对坩埚的熔制环境造成影响,另一方面,还可以避免坩埚熔制过程中产生的热量和噪音进入第一壳体10外部的开放式环境,降低坩埚熔制过程对外界环境造成的影响。
示例的,第一壳体10可以采用金属、砖瓦等材质制成,本申请实施例对于第一壳体10的具体材质可以不做限定。
具体的,第一壳体10外部可以设置有上沙位。在模具水冷套12运动至图2所示的上沙位的情况下,模具水冷套12可以绕着轴心旋转,同时,工作人员可以向模具水冷套12内加料,例如,石英颗粒料等,通过调整模具水冷套12的角度,可以提高加料的均匀性。在加料的过程中,通过采用坩埚成型件,并配合模具水冷套12的旋转,在模具水冷套12的内壁形成坩埚胚体。
具体的,第一壳体10内部还可以设置有熔制位。在模具水冷套12运动至图4所示的熔制位的情况下,熔制模组11可以与模具水冷套12密封连接。此时,可以采用所述真空装置对熔制模组11和模具水冷套12内执行抽真空的操作,以去除熔制模组11和模具水冷套12内部的杂质。然后,在开启熔制模组11将模具水冷套12内壁的坩埚胚体熔制成坩埚之前,可以控制所述 真空装置对熔制模组11和模具水冷套12内部执行抽真空的操作,以带走熔制模组11和模具水冷套12内部的杂质和废气。并且,在熔制的过程中,控制所述真空装置持续执行抽真空的操作,以带走熔制过程中产生的杂质和废气,避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命。
可选地,所述坩埚熔制机还可以包括:回转航车13,回转航车13与模具水冷套12连接,回转航车13可以用于驱动模具水冷套12进出第一壳体10。具体的,回转航车13可以带动模具水冷套12运动,以使得模具水冷套12可以从第一壳体10内的熔制位运动至第一壳体10外的上沙位,或者,从第一壳体10外的上沙位运动至第一壳体10内的熔制位。
在本申请的一些可选实施例中,所述坩埚熔制机还可以包括隔音房14,隔音房14设置于第一壳体10内,隔音房14设置有隔音门141;所述坩埚熔制机还包括第二升降机构15,第二升降机构15与隔音门141连接,第二升降机构15可以用于驱动隔音门141升降,以便于模具水冷套12从隔音门141进出隔音房14。
在实际应用中,所述坩熔制机在进行坩埚熔制的过程中产生的噪音较大,为了减小噪音对外界环境造成的影响,可以在第一壳体10的内壁设置隔音房14。具体的,隔音房14可以采用具有吸音功能材料制成。隔音房14内可以设置有隔音门141,模具水冷套12可以通过隔音门141进出隔音房14。
如图1所示,所述坩埚熔制机还包括第二升降机构15,第二升降机构15与隔音门141连接,第二升降机构15用于驱动隔音门141升降,以便于模具水冷套12从隔音门141进出隔音房14。在模具水冷套12需要进出隔音房14的情况下,可以使用第二升降机构15控制隔音门141升起。在坩埚熔制的过程中,可以使用第二升降机构15控制隔音门141降落,以形成相对密封的隔音环境。
示例的,第二升降机构15可以包括卷扬机、升降机等,本申请实施例 对于第二升降机构15的具体形式可以不做限定。
参照图5,示出了图2所示的坩埚熔制机去除了第二壳体的结构示意图,如图2,图5所示,熔制模组11具体可以包括:第二壳体111、石墨电极112以及第一遮热板113;其中,第二壳体111内设置有容纳腔,所述真空装置与第二壳体111连接;第一遮热板113设置于第二壳体111靠近于模具水冷套12的一侧,第一遮热板113上设置有密封件114,密封件114可以用于与模具水冷套12密封连接;石墨电极112设置于第二壳体111内并至少部分伸入模具水冷套12内,石墨电极112可以用于将模具水冷套12内的坩埚坯体熔制成坩埚。
在具体的应用中,第二壳体111内的容纳腔可以用于容纳石墨电极112以及相关的电子元器件,第二壳体111可以用于形成一个相对密封的环境。这样,在模具水冷套12与熔制模组11密封连接的情况下,第二壳体111内的容纳腔可以与模具水冷套12内的坩埚胚体的内壁连通,在第二壳体111内和模具水冷套12内形成相对密封的真空环境,以便于所述真空装置对第二壳体111和模具水冷套12内部执行抽真空的操作,减少模具水冷套12内的坩埚内壁上的杂质和气泡。石墨电极112在起弧的情况下可以释放出极大的热量,将模具水冷套12内的坩埚胚体熔制成坩埚。
参照图6,示出了图2所示的坩埚熔制机的熔制模组的内部结构示意图,如图6所示,模具水冷套12的内壁上可以形成坩埚胚体20。在模具水冷套12与熔制模组11密封连接的情况下,石墨电极112可以至少部分伸入坩埚胚体20的内部,以将坩埚胚体20熔制成坩埚,第二壳体111可以与坩埚胚体20的内部连通,形成相对密封的环境。所述真空装置可以与第二壳体111的出气口1112连通,以对第二壳体111的内部和坩埚坯体20的内腔执行抽真空的操作,以便于坩埚坯体20内部的杂质沿着图6中箭头所示的方向排出至第二壳体111的外部,减少模具水冷套12内的坩埚胚体20内壁上的杂质和气泡。
本申请实施例中,通过将第二壳体111和模具水冷套12内的坩埚胚体 20形成一个相对密封的真空腔体,可以避免将第一壳体10内的杂质引入到第二壳体111内造成负面效果。而且,由于密封件114密封连接在第二壳体111和模具水冷套12之间,可以使得模具水冷套12内部的真空度保持的更均匀,且不容易引入杂质。
具体的,由于第一遮热板113上设置有密封件114,在需要熔制模具水冷套12内的坩埚坯体时,可以将模具水冷套12密封连接于密封件114,以实现模具水冷套12与熔制模组11之间的密封连接。第一遮热板113靠近模具水冷套12设置,以实现模具水冷套12与熔制模组11之间的隔热,避免模具水冷套12内的坩埚胚体在熔制过程中产生的巨大热量对熔制模组11上方的电子元器件造成损坏,提高熔制模组11的使用安全和使用寿命。
示例地,第二壳体111可以采用铁、钢等金属材料制成,以使得第二壳体111具备较好的强度。第一遮热板113则可以采用是泡棉、玻璃纤维、石棉等隔热材料制成,本申请实施例对于第二壳体111和第一遮热板113的具体材质不做限定。
如图3所示,密封件114具体可以包括:可相对转动的第一部分1141和第二部分1142,其中,第一部分1141固定连接于第一遮热板113,第二部分1142与模具水冷套12之间密封连接。这样,在坩埚熔制的过程中,第二部分1142可以跟随模具水冷套12一起转动,以通过模具水冷套12的回转实现坩埚熔制,而第一部分1141则可以固定于第一遮热板113上保持不转动的状态。
本申请实施例中,通过将密封件114设置成可相对转动的第一部分1141和第二部分1142,并将第一部分1141固定连接于第一遮热板113,第二部分1142与模具水冷套12之间密封连接,可以使得模具水冷套12在转动的过程中一直保持与熔制模组11密封连接的状态。这样,可以便于所述真空装置在坩埚熔制的过程中持续执行抽真空的操作,以带走熔制过程中产生的杂质和废气,避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命。
可选地,第一部分1141和第二部分1142可以皆为环状金属件,以与模具水冷套12的形状匹配,实现第二部分1142与模具水冷套12之间的密封连接。而且,在第一部分1141和第二部分1142皆为环状金属件的情况下,还有利于实现二者之间的相对转动,有利于提高第一部分1141和第二部分1142的使用寿命。
如图2所示,第二壳体111上设置有进气口1111和出气口1112,所述真空装置和出气口1112连接,以对第二壳体111内的容纳腔执行抽真空的操作。在具体的应用中,进气口1111可以用于向第二壳体111内通入气体,出气口1112可以用于将第二壳体111内的气体排出。通过在第二壳体111上设置进气口1111和出气口1112,可以实现第二壳体111内部以及模具水冷套12内部的气体循环,便于将坩埚熔制过程中产生的杂质和废气带出,以避免在坩埚的内壁形成杂质和气泡,提高所述坩埚的熔制质量。
具体的,所述真空装置可以包括真空泵以及与真空泵连接的真空管道,所述真空管道可以与出气口1112连接,以便于真空泵从出气口1112抽取第二壳体111以及模具水冷套12内部的气体和杂质,确保第二壳体111和模具水冷套12内部的真空度。
可选地,所述坩埚熔制机还包括惰性气体装置(图中未示出),所述惰性气体装置与进气口1111连接,以通过进气口1111向第二壳体111内的容纳腔通入惰性气体,出气口1112可以用于将所述容纳腔内的惰性气体排出。在具体的应用中,在开启熔制模组11将模具水冷套12内壁的坩埚胚体熔制成坩埚之前,可以控制所述惰性气体装置从进气口1111向第二壳体111内部通入惰性气体,以使用惰性气体置换第二壳体111和模具水冷套12内的空气,置换出来的空气可以通过出气口1112排出,在第二壳体111和模具水冷套12内部形成惰性气体环境。并且,在坩埚熔制的过程中,可以控制所述惰性气体装置反复向第二壳体111内通入惰性气体,达到重复置换第二壳体111内部气体的目的。通过流动的气体带走熔制过程中产生的杂质和废气,避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和 寿命。而且,通过对第二壳体111和模具水冷套12内的气体进行置换,还可以为石墨电极112产生的电弧提供介质,有利于石墨电极112的起弧。
在实际应用中,所述惰性气体装置和所述真空装置可以配合使用,即,在所述惰性气体装置从进气口1111向第二壳体111和模具水冷套12内通入惰性气体之后,所述真空装置可以将第二壳体111和模具水冷套12内部的气体从出气口1112抽出,以重复置换第二壳体111和模具水冷套12内的气体,通过流动的气体带走熔制过程中产生的杂质和废气,实现模具水冷套12内部环境的净化,避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命。
示例的,所述惰性气体装置可以包括可以吹出惰性气体的吹气泵以及管道,所述管道可以与第二壳体111上的进气口1111连接,所述吹气泵吹出的惰性气体可以通过所述管道和进气口1111进入第二壳体111内部。所述惰性气体可以包括但不局限于氩气、氦气中的任意一种,本申请实施例对于所述惰性气体的具体内容可以不做限定。
可选地,进气口1111设置于第二壳体111远离第一遮热板113的一端,出气口1112靠近第一遮热板113设置,以使得从进气口1111进入的惰性气体在第二壳体111内充分的流通后再经出气口1112排出,充分的带走第二壳体111和模具水冷套12内部的杂质。
示例的,如图2所示,进气口1111可以设置在第二壳体111的顶部,出气口1112则可以靠近第二壳体111顶部的第一遮热板113设置。这样,所述惰性气体从第二壳体111顶部的进气口1111进入后可以在第二壳体111内部充分的流通后从底部的出气口1112排出,所述惰性气体带走杂质的效率较高。
可选地,第二壳体111内还设置有电极控制组件115,电极控制组件115与石墨电极112连接,用于控制石墨电极112开启或者关闭,电极控制组件115远离第一遮热板113设置。电极控制组件115可以根据工艺需求控制石墨电极112的升降控制和开闭控制,以控制石墨电极112放出高温的电弧对 所述坩埚胚体进行灼烧,将所述坩埚胚体熔制成坩埚。
如图5所示,第二壳体111内还设置有第二遮热板116,第二遮热板116位于石墨电极112与电极控制组件115之间,以实现石墨电极112与电极控制组件115之间的隔热,避免石墨电极112释放出的热量对电极控制组件115造成损坏,提高电极控制组件115的使用安全和使用寿命,从而,提升整个熔制模组11的使用安全和使用寿命。
示例地,第二遮热板116则可以采用是泡棉、玻璃纤维、石棉等隔热材料制成,本申请实施例对于第二遮热板116的具体材质不做限定。
可选地,熔制模组11还可以包括:电极升降机构117,电极升降机构与石墨电极112连接,电极升降机构117可以用于,驱动石墨电极112升降,以使得石墨电极112可以降落并至少伸入模具水冷套12内,对模具水冷套12内的坩埚胚体进行灼烧,或者,使得石墨电极112上升以从模具水冷套12内脱出。
本申请实施例中,所述坩埚熔制机还可以包括第一升降机构16,第一升降模机构设置于第一壳体10内且与熔制模组11连接,第一升降机构16可以用于,驱动熔制模组11升降,以使熔制模组11与模具水冷套12密封连接,或者,解除熔制模组11与模具水冷套12之间的密封连接。
示例的,第一升降机构16可以包括卷扬机、升降机等,本申请实施例对于第一升降机构16的具体形式可以不做限定。
在实际应用中,在模具水冷套12从所述上沙位运动到所述熔制位的情况下,可以使用第一升降机构16驱动熔制模组11下降,以便于熔制模组11与模具水冷套12密封连接。在坩埚熔制完成之后,可以将熔制模组11上的密封件114与模具水冷套12分离,再使用第一升降机构16驱动熔制模组11上升,以解除熔制模组11与模具水冷套12之间的密封连接。最后,再使用回转航车13将模具水冷套12从所述熔制位移动至所述上沙位。同时,在所述上沙位,可以将模具水冷套12顺时针倾倒至90度,待所述坩埚温度降至100摄氏度左右时,操作人员可以将所述坩埚和模具水冷套12分离,完成所 述坩埚的下料。
可选地,所述坩埚熔制机还可以设置排风系统。在坩埚熔制的过程中,可以全程开启所述排风系统,以对熔制模组11和模具水冷套12的外部进行降温以及对隔音房14内进行除尘。
实验数据表明,通过在坩埚熔制前和坩埚熔制过程中,采用真空装置和惰性气体装置对熔制模组11和模具水冷套12内进行通惰性气体以及抽真空的操作,可以完成杂质置换,避免过早通气以及真空反抽对砂型粗坯形状的影响,同时产生的坩埚杂质含量降低30%以上。同时全程惰性气体保护,减少坩埚气泡含量,提高坩埚在拉晶过程中的拉晶品质。
综上,本申请实施例所述的坩埚熔制机至少可以包括以下优点:
本申请实施例中,由于所述坩埚熔制机内设置有真空装置,所述真空装置可以对所述熔制模组和所述模具水冷套内执行抽真空的操作,以带走所述熔制模组和所述模具水冷套内的杂质,并使得所述熔制模组和所述模具水冷套内保持较好的真空度。这样,就可以避免所述模具水冷套内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命,尤其在用于大尺寸坩埚熔制时,能够极大的降低坩埚中的杂质和气泡的比例,提升坩埚的品质和寿命,从而,有利于拉晶工艺的人机安全。
参照图7,示出了本申请实施例所述的一种坩埚熔制方法的步骤流程图,所述坩埚熔制方法可以用于上述任一实施例所述的坩埚熔制机,所述坩埚熔制方法具体可以包括步骤:
步骤601:将模具水冷套移动至第一壳体外的上沙位,并向所述模具水冷套内加入石英原料,以在所述模具水冷套内形成坩埚胚体。
本申请实施例中,所述坩埚熔制的第一壳体10外部可以设置有上沙位。在模具水冷套12运动至图2所示的上沙位的情况下,模具水冷套12可以绕着轴心旋转,同时,工作人员可以向模具水冷套12内加料,例如,石英颗粒料等,通过调整模具水冷套12的角度,可以提高加料的均匀性。在加料 的过程中,通过采用坩埚成型件,并配合模具水冷套12的旋转,可以在模具水冷套12的内壁形成坩埚胚体。
步骤602:将所述模具水冷套移动至所述第一壳体内的熔制位,并将熔制模组与所述模具水冷套密封连接。
本申请实施例中,第一壳体10内部还可以设置有熔制位。在模具水冷套12运动至图4所示的熔制位的情况下,熔制模组11可以与模具水冷套12密封连接。
步骤603:采用真空装置对所述熔制模组和所述模具水冷套内执行抽真空的操作。
本申请实施例中,在熔制模组11与模具水冷套12密封连接之后,可以采用真空装置对熔制模组11和模具水冷套12内执行抽真空的操作,以去除熔制模组11和模具水冷套12内部的杂质。然后,在开启熔制模组11将模具水冷套12内壁的坩埚胚体熔制成坩埚之前,可以控制所述真空装置对熔制模组11和模具水冷套12内部执行抽真空的操作,以带走熔制模组11和模具水冷套12内部的杂质和废气。
步骤604:控制所述熔制模组的石墨电极起弧,以将所述模具水冷套内的坩埚胚体熔制成坩埚,其中,在熔制过程中,控制所述真空装置持续执行抽真空的操作。
本申请实施例中,通过控制熔制模组11的石墨电极112起弧,可以将模具水冷套12内的坩埚胚体熔制成坩埚。在坩埚熔制的过程中,可以控制所述真空装置持续执行抽真空的操作,以带走熔制过程中产生的杂质和废气,避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命。
可选地,所述采用真空装置对熔制模组11和模具水冷套12内执行抽真空的操作之前,还包括:采用惰性气体装置向熔制模组11和模具水冷套12内通入惰性气体。
本申请实施例中,所述坩埚熔制机还可以包括惰性气体装置。在开启熔 制模组11将模具水冷套12内壁的坩埚胚体熔制成坩埚之前,可以控制所述惰性气体装置向熔制模组11内部通入惰性气体,以使用惰性气体置换熔制模组11和模具水冷套12内的空气,置换出来的空气可以通过出气口1112排出,在熔制模组11和模具水冷套12内部形成惰性气体环境。
可选地,在熔制过程中,控制所述真空装置持续执行抽真空的操作的同时,采用惰性气体装置向熔制模组11和模具水冷套12内持续通入惰性气体。
本申请实施例中,在坩埚熔制的过程中,可以控制所述惰性气体装置反复向熔制模组11内通入惰性气体,达到重复置换熔制模组11内部气体的目的,通过流动的气体带走熔制过程中产生的杂质和废气,避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命。而且,通过对熔制模组11和模具水冷套12内的气体进行置换,还可以为石墨电极112产生的电弧提供介质,有利于石墨电极112的起弧。
在实际应用中,所述惰性气体装置和所述真空装置可以配合使用,即,在所述惰性气体装置从熔制模组11和模具水冷套12内通入惰性气体之后,所述真空装置可以将熔制模组11和模具水冷套12内部的气体从出气口1112抽出,以重复置换熔制模组11和模具水冷套12内的气体,通过流动的气体带走熔制过程中产生的杂质和废气,实现模具水冷套12内部环境的净化,避免模具水冷套12内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命。
本申请实施例中,由于所述坩埚熔制机内设置有真空装置,所述真空装置所述真空装置可以对所述熔制模组和所述模具水冷套内执行抽真空的操作,以带走所述熔制模组和模具水冷套内的杂质,并使得所述熔制模组和所述模具水冷套内保持较好的真空度。这样,就可以避免所述模具水冷套内的坩埚内壁形成杂质和气泡,提升坩埚的品质和寿命,尤其在用于大尺寸坩埚熔制时,能够极大的降低坩埚中的杂质和气泡的比例,提升坩埚的品质和寿命,从而,有利于拉晶工艺的人机安全。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明 的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种坩埚熔制机,其特征在于,所述坩埚熔制机具体包括:
    第一壳体,所述第一壳体外设置有上沙位,所述第一壳体内设置有熔制位;
    熔制模组,所述熔制模组连接于所述第一壳体内;
    模具水冷套,所述模具水冷套可进出所述第一壳体,并在所述上沙位和所述熔制位之间切换,其中,在所述上沙位,所述模具水冷套可形成坩埚胚体,在所述熔制位,所述模具水冷套可与所述熔制模组密封连接;
    以及真空装置,所述真空装置与所述熔制模组连接,所述真空装置用于对所述熔制模组和所述模具水冷套内执行抽真空的操作。
  2. 根据权利要求1所述的坩埚熔制机,其特征在于,所述熔制模组包括:第二壳体、石墨电极以及第一遮热板;其中,
    所述第二壳体内设置有容纳腔,所述真空装置与所述第二壳体连接;
    所述第一遮热板设置于所述第二壳体靠近于所述模具水冷套的一侧,所述第一遮热板上设置有密封件,所述密封件用于与所述模具水冷套密封连接;
    所述石墨电极设置于所述第二壳体内并至少部分伸入所述模具水冷套内,所述石墨电极用于将所述模组水冷套内的坩埚坯体熔制成坩埚。
  3. 根据权利要求2所述的坩埚熔制机,其特征在于,所述密封件包括:可相对转动的第一部分和第二部分,其中,所述第一部分固定连接于所述第一遮热板,所述第二部分与所述模具水冷套之间密封连接。
  4. 根据权利要求3所述的坩埚熔制机,其特征在于,所述第一部分和所述第二部分皆为环状金属件。
  5. 根据权利要求2所述的坩埚熔制机,其特征在于,所述第二壳体上设置有进气口和出气口,
    所述真空装置和所述出气口连接,以对所述第二壳体内的容纳腔执 行抽真空的操作。
  6. 根据权利要求5所述的坩埚熔制机,其特征在于,所述坩埚熔制机还包括惰性气体装置,所述惰性气体装置与所述进气口连接,以通过所述进气孔向所述第二壳体内的容纳腔通入惰性气体,所述出气口用于将所述容纳腔内的惰性气体排出。
  7. 根据权利要求5所述的坩埚熔制机,其特征在于,所述进气口设置于所述第二壳体远离所述第一遮热板的一端,所述出气口靠近所述第一遮热板设置。
  8. 根据权利要求2所述的坩埚熔制机,其特征在于,所述熔制模组还可以包括:电极升降机构,所述电极升降机构与所述石墨电极连接,所述电极升降机构用于,驱动所述石墨电极升降,以使得所述石墨电极可以降落并至少伸入所述模具水冷套内,对所述模具水冷套内的所述坩埚胚体进行灼烧,或者,使得所述石墨电极上升以从所述模具水冷套内脱出。
  9. 根据权利要求8所述的坩埚熔制机,其特征在于,在所述模具水冷套从所述上沙位运动到所述熔制位的情况下,所述第一升降机构驱动所述熔制模组下降,以便于所述熔制模组与所述模具水冷套密封连接。
  10. 根据权利要求1所述的坩埚熔制机,其特征在于,所述坩埚熔制机还包括:排风系统,所述排风系统用于对所述熔制模组和所述模具水冷套的外部进行降温以及对隔音房内进行除尘。
  11. 一种坩埚熔制方法,用于权利要求1至10中任一项所述的坩埚熔制机,其特征在于,所述坩埚熔制方法包括:
    将模具水冷套移动至第一壳体外的上沙位,并向所述模具水冷套内加入石英原料,以在所述模具水冷套内形成坩埚胚体;
    将所述模具水冷套移动至所述第一壳体内的熔制位,并将熔制模组与所述模具水冷套密封连接;
    采用真空装置对所述熔制模组和所述模具水冷套内执行抽真空的操作;
    控制所述熔制模组的石墨电极起弧,以将所述模具水冷套内的坩埚胚体熔制成坩埚,其中,在熔制过程中,控制所述真空装置持续执行抽真空的操作。
  12. 根据权利要求11所述的坩埚熔制方法,其特征在于,所述采用真空装置对所述熔制模组和所述模具水冷套内执行抽真空的操作之前,还包括:
    采用惰性气体装置向所述熔制模组和所述模具水冷套内通入惰性气体。
  13. 根据权利要求11所述的坩埚熔制方法,其特征在于,在熔制过程中,控制所述真空装置持续执行抽真空的操作的同时,采用惰性气体装置向所述熔制模组和所述模具水冷套内持续通入惰性气体。
PCT/CN2023/098937 2022-07-20 2023-06-07 一种坩埚熔制机以及坩埚熔制方法 WO2024016879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210852009.XA CN115286221A (zh) 2022-07-20 2022-07-20 一种坩埚熔制机以及坩埚熔制方法
CN202210852009.X 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024016879A1 true WO2024016879A1 (zh) 2024-01-25

Family

ID=83823433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098937 WO2024016879A1 (zh) 2022-07-20 2023-06-07 一种坩埚熔制机以及坩埚熔制方法

Country Status (2)

Country Link
CN (1) CN115286221A (zh)
WO (1) WO2024016879A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286221A (zh) * 2022-07-20 2022-11-04 隆基绿能科技股份有限公司 一种坩埚熔制机以及坩埚熔制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632686A (en) * 1986-02-24 1986-12-30 Gte Products Corporation Method of manufacturing quartz glass crucibles with low bubble content
CN101570389A (zh) * 2009-06-10 2009-11-04 黄洁 26英寸厚壁深腔石英坩埚、其生产方法及设备
CN111620553A (zh) * 2020-05-29 2020-09-04 锦州万得机械装备有限公司 石英坩埚熔制设备电极控制机构
CN113772930A (zh) * 2021-09-16 2021-12-10 宁夏盾源聚芯半导体科技股份有限公司 石英坩埚制备装置及降低石英坩埚中脱羟的方法
CN115286221A (zh) * 2022-07-20 2022-11-04 隆基绿能科技股份有限公司 一种坩埚熔制机以及坩埚熔制方法
CN218596264U (zh) * 2022-07-20 2023-03-10 隆基绿能科技股份有限公司 一种坩埚熔制机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632686A (en) * 1986-02-24 1986-12-30 Gte Products Corporation Method of manufacturing quartz glass crucibles with low bubble content
CN101570389A (zh) * 2009-06-10 2009-11-04 黄洁 26英寸厚壁深腔石英坩埚、其生产方法及设备
CN111620553A (zh) * 2020-05-29 2020-09-04 锦州万得机械装备有限公司 石英坩埚熔制设备电极控制机构
CN113772930A (zh) * 2021-09-16 2021-12-10 宁夏盾源聚芯半导体科技股份有限公司 石英坩埚制备装置及降低石英坩埚中脱羟的方法
CN115286221A (zh) * 2022-07-20 2022-11-04 隆基绿能科技股份有限公司 一种坩埚熔制机以及坩埚熔制方法
CN218596264U (zh) * 2022-07-20 2023-03-10 隆基绿能科技股份有限公司 一种坩埚熔制机

Also Published As

Publication number Publication date
CN115286221A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024016879A1 (zh) 一种坩埚熔制机以及坩埚熔制方法
CN108726850B (zh) 压力控制玻璃熔炼装置及方法
TWI230696B (en) A method of producing silica glass crucible
JPWO2009017068A1 (ja) 石英ガラスルツボの製造方法および製造装置
JP5367715B2 (ja) 溶解炉
JP4815003B2 (ja) シリコン結晶成長用ルツボ、シリコン結晶成長用ルツボ製造方法、及びシリコン結晶成長方法
WO2009118993A1 (ja) 単結晶製造装置及び単結晶の製造方法
WO2010061560A1 (ja) 結晶成長装置及び結晶成長方法
CN109719278A (zh) 搅动式真空细晶铸造炉及其使用方法
CN218596264U (zh) 一种坩埚熔制机
CN111977940A (zh) 多功能石英玻璃连熔炉
JP3625636B2 (ja) シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP5453446B2 (ja) シリコン又はシリコン合金溶解炉
CN1221674C (zh) 在含砷金精矿中提取黄金的方法
CN1233860C (zh) 真空无污染提取砷的方法及其系统
CN106555224A (zh) 一种单晶硅的生产方法和生产设备
CN112624122A (zh) 一种真空微波精炼工业硅制备6n多晶硅的方法及装置
CN113772930B (zh) 石英坩埚制备装置及降低石英坩埚中脱羟的方法
JP2001233629A (ja) 石英ガラスるつぼの製造方法
WO2004080904A1 (en) A cooling method for prolonging service life of glass tank furnace and decreasing glass defect
JP5377692B2 (ja) シリコン加工装置およびその使用方法
CN213687809U (zh) 一种悬浮熔炼设备的吹氩搅拌器
CN106679419A (zh) 变频感应化铝炉
JP3596241B2 (ja) ガラス物品の製造方法及び装置
JP2569647B2 (ja) 真空誘導溶解炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841946

Country of ref document: EP

Kind code of ref document: A1