WO2024016644A1 - 一种高热安全性的高镍三元正极材料及其制备方法以及应用 - Google Patents

一种高热安全性的高镍三元正极材料及其制备方法以及应用 Download PDF

Info

Publication number
WO2024016644A1
WO2024016644A1 PCT/CN2023/076050 CN2023076050W WO2024016644A1 WO 2024016644 A1 WO2024016644 A1 WO 2024016644A1 CN 2023076050 W CN2023076050 W CN 2023076050W WO 2024016644 A1 WO2024016644 A1 WO 2024016644A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel ternary
cathode material
ternary cathode
thermal conductivity
nickel
Prior art date
Application number
PCT/CN2023/076050
Other languages
English (en)
French (fr)
Inventor
王碧武
黄晓笑
于建
孙辉
Original Assignee
宁波容百新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波容百新能源科技股份有限公司 filed Critical 宁波容百新能源科技股份有限公司
Publication of WO2024016644A1 publication Critical patent/WO2024016644A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and specifically relates to a high thermal safety high-nickel ternary positive electrode material and its preparation method and application.
  • cathode materials one of the main raw materials for batteries, have also attracted everyone's attention, the most prominent of which is ternary cathode materials.
  • the main application of these materials is power energy batteries.
  • spontaneous combustion of new energy vehicles has frequently occurred, and the safety of new energy vehicles has been pushed to the forefront.
  • how to ensure the thermal safety of batteries has become an urgent problem for various manufacturers and research institutions.
  • the technical problem to be solved by the present invention is to provide a high thermal safety high-nickel ternary cathode material and its preparation method and application.
  • the thermal conductivity of the high-nickel ternary cathode material provided by the present invention is The body is reduced while having better thermal safety, and has good electrical properties.
  • the invention provides a high nickel ternary cathode material with high thermal safety.
  • the chemical formula of the high nickel ternary cathode material is:
  • M is a doping element, selected from one or more of Sr, Ti, Al, Zr, Y, Ba, Mg, and Mo,
  • Q is a coating element, selected from one or two types of Sr and Ti,
  • is the thermal safety coefficient of the high-nickel ternary cathode material
  • is the sectional porosity of the high-nickel ternary cathode material
  • D104 is the parameter in the XRD test of the high-nickel ternary cathode material
  • K is the thermal conductivity of high-nickel ternary cathode material.
  • it includes a core and a cladding layer, and the thermal conductivity of the cladding layer is ⁇ 0.2W/(m ⁇ K).
  • the invention also provides a method for preparing the above-mentioned high-nickel ternary cathode material, which includes the following steps:
  • the lithium source is selected from LiOH;
  • the compound containing M element is selected from one of Al(OH) 3 , Al 2 O 3 , SrO, TiO 2 , ZrO 2 , Zr(OH) 4 , Y 2 O 3 , BaCO 3 , MgO, and MoO 3 or more;
  • the compound containing Q element is selected from TiO 2 , SrO, SrTiO 3 .
  • the sintering temperature is 740°C to 820°C and the sintering time is 10 to 15 hours.
  • the sintering temperature is 350-500°C and the sintering time is 8-12 hours.
  • the invention also provides a lithium-ion battery, including the above-mentioned high-nickel ternary cathode material.
  • the present invention provides a high-nickel ternary cathode material with high thermal safety.
  • the important factors affecting the thermal safety of the high-nickel ternary cathode material provided by the present invention are identified by measuring its thermal conductivity K, D104 value in XRD, and porosity ⁇ . At the same time, by controlling these parameters and Corresponding materials that satisfy the relationship shown in Formula I were prepared for verification.
  • the high-nickel ternary cathode material was improved by coating with a coating material with low thermal conductivity, and the thermal conductivity results of the material after coating were tested. It shows that as the coating amount of the coating material increases, the thermal conductivity of the ternary cathode material decreases as a whole and has better thermal safety.
  • Figure 1 is the cross-sectional pore distribution diagram of sample A
  • Figure 2 is the cross-sectional pore distribution diagram of sample B
  • Figure 3 is the cross-sectional pore distribution diagram of sample C
  • Figure 4 is the cross-sectional pore distribution diagram of sample D
  • Figure 5 is the cross-sectional pore distribution diagram of sample E
  • Figure 6 is the surface SEM image of sample F
  • Figure 7 is the surface SEM image of sample G
  • Figure 8 is the surface SEM image of sample H
  • Figure 9 is the surface SEM image of sample I
  • Figure 10 is a comparison chart of DSC data of samples A to E;
  • Figure 11 is a comparison chart of DSC data of samples A, F, G and H;
  • Figure 12 is the DSC data chart of sample I.
  • the invention provides a high nickel ternary cathode material with high thermal safety.
  • the high nickel ternary cathode material The chemical formula of the material is:
  • M is a doping element, selected from one or more of Sr, Ti, Al, Zr, Y, Ba, Mg, and Mo,
  • Q is a coating element, selected from one or two types of Sr and Ti,
  • is the thermal safety coefficient of the high-nickel ternary cathode material
  • is the cross-sectional porosity of the high-nickel ternary cathode material
  • D104 is the parameter in the XRD test of the high-nickel ternary cathode material
  • K is the thermal conductivity of high-nickel ternary cathode material.
  • the chemical formula of the high-nickel ternary cathode material is:
  • M is a doping element, selected from one or more types of Sr, Ti, Al, Zr, Y, Ba, Mg, and Mo, preferably Al, Mo, Sr, and Zr.
  • Q is a coating element, selected from one or two types of Sr and Ti, preferably two types of Sr and Ti.
  • the high-nickel ternary cathode material includes a core and a cladding layer
  • the chemical formula of the core is LiN a Co b Mn c M d O 2
  • the coating layer is an oxide containing Q element, and the thermal conductivity of the coating layer is ⁇ 0.2W/(m ⁇ K).
  • the present invention can reduce the overall thermal conductivity of ternary materials by coating materials with low thermal conductivity.
  • the high-nickel ternary cathode material satisfies the relationship shown in Formula I:
  • is the thermal safety coefficient of the high-nickel ternary cathode material; in the present invention, the ⁇ value is controlled between 0.73 and 14.00.
  • the ⁇ value is controlled between 0.73 and 14.00.
  • the high-nickel ternary cathode material has higher thermal safety.
  • the ⁇ value is controlled between 1.07 and 14.00.
  • the high-nickel ternary cathode material has higher thermal safety.
  • the ⁇ value is controlled between 1.45 and 13.13, which is better Selected, the ⁇ value is controlled between 7.74 and 13.13.
  • is the cross-sectional porosity of the high-nickel ternary cathode material.
  • High porosity can reduce the overall thermal conductivity of the high-nickel ternary cathode material, and can delay the inward transfer of heat generated by side reactions on the surface of the material. It can effectively improve the stability of the internal structure of the material and inhibit the occurrence of internal side reactions, thereby improving the thermal safety of the material.
  • 1% ⁇ 5% preferably, ⁇ is 1%, 2%, 3%, 4%, 5%, or any value between 1% and 5%.
  • D104 is a parameter in the XRD test of high-nickel ternary cathode materials. Increasing the crystal packet parameter D104 will reduce the phonon thermal conductivity of the material. In the present invention, 45 ⁇ D104 ⁇ 70, preferably, D104 is 45, 50, 55, 60, 65, 70, or any value between 45 and 70.
  • K is the thermal conductivity of the high-nickel ternary cathode material, 0.1W/(m ⁇ K) ⁇ K ⁇ 0.6W/(m ⁇ K), preferably, K is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, Or any value between 0.1 ⁇ 0.6W/(m ⁇ K).
  • the high-nickel ternary cathode material provided by the present invention has low thermal conductivity. When the material reacts with the electrolyte, the heat release will be delayed accordingly, slowing down the occurrence of side reactions.
  • the invention also provides a method for preparing the above-mentioned high-nickel ternary cathode material, which includes the following steps:
  • the ternary hydroxide precursor Ni a Co b Mn c (OH) 2 , a lithium source and a compound containing M element are first mixed to obtain a mixture.
  • the lithium source is selected from LiOH;
  • the compound containing M element is selected from one of Al(OH) 3 , Al 2 O 3 , SrO, TiO 2 , ZrO 2 , Zr(OH) 4 , Y 2 O 3 , BaCO 3 , MgO, and MoO 3 or more;
  • the molar ratio of the ternary hydroxide precursor Ni a Co b Mn c (OH) 2 to the lithium source is 1:1.04;
  • the molar ratio of the ternary hydroxide precursor Ni a Co b Mn c (OH) 2 to the compound containing M element is 1:d, where d ⁇ 0.1, preferably 0.01 to 0.04.
  • the present invention has no special limitation on the mixing method, and any mixing method known to those skilled in the art will suffice.
  • the mixture is sintered under oxygen atmosphere to obtain a sintered product.
  • the sintering temperature is 740°C to 820°C, preferably 740, 760, 780, 800, 820, or any value between 740°C and 820°C
  • the time is 10 to 15 hours, preferably 10, 11 , 12, 13, 14, 15, or any value between 10 and 15 hours.
  • the sintered product is cooled, crushed and sieved, then washed and dried, mixed with a compound containing Q element, and sintered in an oxygen atmosphere to obtain a high-nickel ternary cathode material.
  • the compound containing Q element is selected from TiO 2 , SrO, SrTiO 3 .
  • the sintering temperature is 350-500°C, preferably 350, 400, 450, 500, or any value between 350-500°C, and the time is 8-12 hours, preferably 8, 9, 10, 11, 12 , or any value between 8 and 12 hours.
  • the invention also provides a lithium-ion battery, including the above-mentioned high-nickel ternary cathode material.
  • the high-nickel ternary cathode material provided by the present invention has a higher DSC peak temperature, thereby having high thermal safety.
  • the thermal safety performance in the present invention is characterized based on the peak value of the DSC test.
  • the important factors affecting the thermal safety of the high-nickel ternary cathode material provided by the present invention are identified by measuring its thermal conductivity K, D104 value in XRD, and porosity ⁇ . At the same time, by controlling these parameters and Corresponding materials that satisfy the relationship shown in Formula I were prepared for verification.
  • the high-nickel ternary cathode material was improved by coating with a coating material with low thermal conductivity, and the thermal conductivity results of the material after coating were tested. It shows that as the coating amount of the coating material increases, the thermal conductivity of the ternary cathode material decreases as a whole and has better thermal safety.
  • Sample A is LiNi 0.908 Co 0.048 Mn 0.029 M 0.015 O 2 , M is Al, where ⁇ , D104, K and ⁇ are 1%, 45, 0.62, 0.73 respectively.
  • the uniformly mixed materials are sintered at 740°C for 15 hours in an oxygen atmosphere, cooled, crushed and screened.
  • Sample B is LiNi 0.908 Co 0.048 Mn 0.029 M 0.015 O 2 , M is Sr, where ⁇ , D104, K and ⁇ are 2%, 60, 0.41, 2.93 respectively.
  • the uniformly mixed materials are sintered at 780°C for 15 hours in an oxygen atmosphere, cooled, crushed and screened.
  • Sample C is LiNi 0.908 Co 0.048 Mn 0.029 M 0.015 O 2 , M is Zr, where ⁇ , D104, K and ⁇ are 3%, 70, 0.16 and 13.13 respectively.
  • the uniformly mixed materials are sintered at 820°C for 15 hours in an oxygen atmosphere, cooled, crushed and screened.
  • Sample D is LiNi 0.908 Co 0.048 Mn 0.029 M 0.015 O 2
  • M is Y, where ⁇ , D104, K and ⁇ are 4%, 60, 0.31, 7.74 respectively.
  • the uniformly mixed materials are sintered at 780°C for 15 hours in an oxygen atmosphere, cooled, crushed and screened.
  • Sample E is LiNi 0.908 Co 0.048 Mn 0.029 M 0.015 O 2 , M is Mo, where ⁇ , D104, K and ⁇ are 3%, 70, 0.25 and 8.4 respectively.
  • the uniformly mixed materials are sintered at 800°C for 15 hours in an oxygen atmosphere, cooled, crushed and screened.
  • sample F LiNi 0.9075 Co 0.048 Mn 0.029 M 0.015 Q 0.0005 O2, M is Al, Q is Sr, where ⁇ , D104, K and ⁇ are 1%, 45, 0.53, 0.85 respectively.
  • Sample A was washed with water at a water-to-material ratio of 1:1, centrifuged at 140°C and dried for 12 hours, then uniformly mixed with 1000 ppm SrO, and then sintered at 500°C for 12 hours under an oxygen atmosphere to obtain sample F.
  • sample G LiNi 0.9065 Co 0.048 Mn 0.029 M 0.015 Q 0.0015 O 2 , M is Al, Q is Ti, among which ⁇ , D104, K and ⁇ are 1%, 45, 0.42, and 1.07 respectively.
  • Sample A was washed with water at a water-to-material ratio of 1:1, centrifuged at 140°C and dried for 12 hours, then uniformly mixed with 3000 ppm TiO 2 , and then sintered at 500°C for 12 hours under an oxygen atmosphere to obtain sample G.
  • sample H LiNi 0.9055 Co 0.048 Mn 0.029 M 0.015 Q 0.0025 O 2 , M is Al, Q is Sr and Ti, where ⁇ and D104 , K and ⁇ are 1%, 45, 0.31 and 1.45 respectively.
  • Preparation method Wash sample A with water at a water-to-material ratio of 1:1, centrifuge at 140°C and dry for 12 hours, then mix evenly with 5000ppm SrTiO 3 , and then sinter at 500°C for 12 hours under an oxygen atmosphere to obtain sample H.
  • Sample I is LiNi 0.92 Co 0.05 Mn 0.03 O 2 , where ⁇ , D104, K and ⁇ are 1%, 40, 0.86 and 0.47 respectively.
  • the uniformly mixed materials are sintered at 740°C for 15 hours in an oxygen atmosphere, cooled, crushed and screened.
  • test methods are as follows:
  • Porosity test Use an ion grinding instrument to obtain a smooth surface section of the sample for SEM testing, and then obtain the porosity through software processing.
  • Samples A, B, C, D, and E have crystal packet parameters D104 with different porosity ⁇ and thermal conductivity K.
  • the increase in D104 increases the interlayer spacing of the transition metal layer of the material, and at the same time, the space of the Li layer is compressed, allowing Li ion transmission. is restricted and reduces the ion thermal conductivity.
  • the increase in lattice spacing will reduce the phonon thermal conductivity and lead to a decrease in the overall thermal conductivity; the higher the porosity between the primary particles present in the secondary ball, the more heat will diffuse from the material surface to
  • the internal obstruction reduces the overall thermal conductivity and inhibits the spread of thermal deterioration from the outside of the material to the inside.
  • Figures 1 to 5 show the cross-sectional pore distribution diagrams of samples A-E respectively.
  • Sample FH is the material of sample A coated with 1000ppm, 3000ppm, and 5000ppm Q coating agent respectively.
  • the Q coating material By coating the Q coating material with low thermal conductivity and changing the coating amount, the overall thermal conductivity of the material can be reduced, thus making The reduced thermal conductivity of the material makes the interior of the secondary ball less affected by external thermal reactions.
  • the coating layer has a certain isolation effect on the material and the electrolyte, which can effectively suppress side reactions on the material surface and reduce heat release and collapse of the material structure. This improves the thermal safety of the material.
  • Figures 6 to 9 are respectively the surface SEM images of sample FI
  • Figures 10 to 12 are DSC data comparison charts of different materials. In Figure 10, the samples from left to right according to the peak position are A, B, D, E and C; in Figure 11, the samples from left to right according to the peak position are A, F, G, H.
  • Figure 12 is the sample DSC data plot of I.
  • Table 1 shows the ⁇ , D104, K, ⁇ and corresponding DSC peaks corresponding to materials A to I.
  • the DSC peak temperature When ⁇ is lower than 0.73, the DSC peak temperature will be lower than 213°C, and the thermal safety of high-nickel ternary cathode materials is poor.
  • the ⁇ value ⁇ 1.07 the DSC peak temperature is ⁇ 221°C, which has better thermal safety performance.
  • the ⁇ value ⁇ 7.74 the DSC peak temperature is ⁇ 233°C, which has very excellent thermal safety performance.
  • the ⁇ value 13.13 , DSC peak temperature is as high as 240°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种高热安全性的高镍三元正极材料。本发明提供的高镍三元正极材料通过测量其热导率K、XRD中的D104值,以及孔隙率α识别出影响三元正极材料热安全性的重要因素,同时通过控制这几个参数并满足式I所示关系式分别制备了相应的材料进行验证,另外通过包覆具有低热导率的包覆材料对高镍三元正极材料进行改善,并且测试该材料包覆后的热导率结果表明随着包覆材料的包覆量的增加,该三元正极材料的热导率整体降低同时具有更好的热安全性。

Description

一种高热安全性的高镍三元正极材料及其制备方法以及应用
本申请要求于2022年07月18日提交中国专利局、申请号为202210841386.3、发明名称为“一种高热安全性的高镍三元正极材料及其制备方法以及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于锂离子电池技术领域,具体涉及一种高热安全性的高镍三元正极材料及其制备方法以及应用。
背景技术
随着新能源电动车的普及,以及国家对于新能源行业的大力支持,作为电池主要的原材料之一的正极材料也受到了大家的关注,其中最突出的是三元正极材料。这些材料最主要的应用是动力能源电池,然而近些年来频频出现新能源汽车的自燃现象,由此新能源汽车的安全性被推倒了风口浪尖。面对这样的局面,如何保证电池的热安全性成了各个厂商及研究机构亟待解决的问题,目前从电池层面已经有了一些新的突破,而在正极三元材料方面却鲜有成果,现有专利CN108550802A中通过掺入少量的Y3+离子、La3+离子代替部分Ni3+位,利用Y3+/La3+离子的电化学惰性使得材料在充放电过程中减少体积变化,增加结构稳定性,提高热安全性。专利CN112811403A中则是通过Mg/Ti共掺杂提高材料的晶体结构稳定性,同时结合Li3PO4的包覆实现了掺杂和包覆的分层分布,Li3PO4包覆层可以增强表面稳定性,有助于降低电化学阻抗和电解液副反应,进而提高高镍三元正极材料热稳定性。
现有工艺技术中大都通过掺杂电化学惰性物质来增强材料的结构的稳定性,包覆具有稳定特性的物质来隔绝三元正及材料和HF的接触,抑制材料的分解和金属溶出带来的热量释放。然而掺杂这类电化学惰性物质对于材料本身电子电导率和反应的活性有很大的影响,不利于材料的电化学性能,同时这种多元素掺杂及多步骤包覆工艺增加了成本和加工工艺的复杂度。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种高热安全性的高镍三元正极材料及其制备方法以及应用,本发明提供的高镍三元正极材料的热导率整 体降低同时具有更好的热安全性,并且具有良好的电学性能。
本发明提供了一种高热安全性的高镍三元正极材料,所述高镍三元正极材料的化学式为:
LiNiaCobMncMdQeO2
其中,0.8<a<0.95,b<0.2,c<0.2,d<0.1,a+b+c+d+e=1,
M为掺杂元素,选自Sr、Ti、Al、Zr、Y、Ba、Mg、Mo中的一种或者多种,
Q为包覆元素,选自Sr和Ti中的一种或两种,
所述高镍三元正极材料满足式I所示的关系式:
γ=α*D104/K式I
式I中,0.73≤γ≤14.00,γ为高镍三元正极材料的热安全系数,α为高镍三元正极材料的剖面孔隙率,D104为高镍三元正极材料XRD测试中的参数,K为高镍三元正极材料的热导率。
优选的,45≤D104≤70。
优选的,1%≤α≤5%。
优选的,0.1W/(m·K)≤K≤0.6W/(m·K)。
优选的,包括核芯以及包覆层,所述包覆层的热导系数≤0.2W/(m·K)。
本发明还提供了一种上述高镍三元正极材料的制备方法,包括以下步骤:
A)将三元氢氧化物前驱体NiaCobMnc(OH)2、锂源以及与含有M元素的化合物混合后在氧气气氛条件下进行烧结,得到烧结产物;
B)将所述烧结产物水洗烘干后与含有Q元素的化合物混合,在氧气气氛条件下烧结,得到高镍三元正极材料。
优选的,所述锂源选自LiOH;
所述含有M元素的化合物选自Al(OH)3、Al2O3、SrO、TiO2、ZrO2、Zr(OH)4、Y2O3、BaCO3、MgO、MoO3中的一种或多种;
所述含有Q元素的化合物选自TiO2、SrO、SrTiO3
优选的,步骤A)中,所述烧结的温度为740℃~820℃,时间为10~15小时。
优选的,步骤B)中,所述烧结的温度为350~500℃,时间为8~12小时。
本发明还提供了一种锂离子电池,包括上述高镍三元正极材料。
与现有技术相比,本发明提供了一种高热安全性的高镍三元正极材料,所述高镍三元正极材料的化学式为:LiNiaCobMncMdQeO2,其中,0.8<a<0.95,b<0.2,c<0.2,d<0.1,a+b+c+d+e=1,M为掺杂元素,选自Sr、Ti、Al、Zr、Y、Ba、Mg、Mo中的一种或者多种,Q为包覆元素,选自Sr和Ti中的一种或两种,所述高镍三元正极材料满足式I所示的关系式:γ=α*D104/K式I;式I中,0.73≤γ≤14.00,γ为高镍三元正极材料的热安全系数,α为高镍三元正极材料的剖面孔隙率,D104为高镍三元正极材料XRD测试中的参数,K为高镍三元正极材料的热导率。本发明提供的高镍三元正极材料通过测量其热导率K、XRD中的D104值,以及孔隙率α识别出影响三元正极材料热安全性的重要因素,同时通过控制这几个参数并满足式I所示关系式分别制备了相应的材料进行验证,另外通过包覆具有低热导率的包覆材料对高镍三元正极材料进行改善,并且测试该材料包覆后的热导率结果表明随着包覆材料的包覆量的增加,该三元正极材料的热导率整体降低同时具有更好的热安全性。
附图说明
图1为样品A的剖面孔隙分布图;
图2为样品B的剖面孔隙分布图;
图3为样品C的剖面孔隙分布图;
图4为样品D的剖面孔隙分布图;
图5为样品E的剖面孔隙分布图;
图6为样品F的表面SEM图;
图7为样品G的表面SEM图;
图8为样品H的表面SEM图;
图9为样品I的表面SEM图;
图10为样品A~E的DSC数据对比图;
图11为样品A、F、G和H的DSC数据对比图;
图12为样品I的DSC数据图。
具体实施方式
本发明提供了一种高热安全性的高镍三元正极材料,所述高镍三元正极材 料的化学式为:
LiNiaCobMncMdQeO2
其中,0.8<a<0.95,b<0.2,c<0.2,d<0.1,a+b+c+d+e=1,
M为掺杂元素,选自Sr、Ti、Al、Zr、Y、Ba、Mg、Mo中的一种或者多种,
Q为包覆元素,选自Sr和Ti中的一种或两种,
所述高镍三元正极材料满足式I所示的关系式:
γ=α*D104/K式I
式I中,0.73≤γ≤14.00,γ为高镍三元正极材料的热安全系数,α为高镍三元正极材料的剖面孔隙率,D104为高镍三元正极材料XRD测试中的参数,K为高镍三元正极材料的热导率。
在本发明中,所述高镍三元正极材料的化学式为:
LiNiaCobMncMdQeO2
其中,0.8<a<0.95,b<0.2,c<0.2,d<0.1,a+b+c=d+e=1。并且,b、c、d不为零。
M为掺杂元素,选自Sr、Ti、Al、Zr、Y、Ba、Mg、Mo中的一种或者多种,优选为Al、Mo、Sr、Zr。
Q为包覆元素,选自Sr和Ti中的一种或两种,优选为Sr和Ti两种。
在本发明中,所述高镍三元正极材料包括核芯以及包覆层,
其中,所述核芯的化学式为LiNiaCobMncMdO2
所述包覆层为含有Q元素的氧化物,所述包覆层的热导系数≤0.2W/(m·K)。本发明通过包覆具有低热导率的材料可以降低三元材料的整体热导率。
在本发明中,所述高镍三元正极材料满足式I所示的关系式:
γ=α*D104/K式I
式I中,γ为高镍三元正极材料的热安全系数;在本发明中,γ值控制在0.73到14.00之间,当γ低于0.73时,DSC峰值温度会低于213℃,高镍三元正极材料的热安全性较差。γ值在0.73到14.00之间时,高镍三元正极材料具有较高的热安全性,优选的,γ值控制在1.07到14.00之间,高镍三元正极材料具有更高的热安全性,进一步优选的,γ值控制在1.45到13.13之间,更优 选的,γ值控制在7.74到13.13之间。
α为高镍三元正极材料的剖面孔隙率,高的孔隙率能够整体降低高镍三元正极材料的热导率,对由材料表面副反应产生的热量能够起到延缓向内传递的作用,能够有效提高材料内部结构的稳定性和抑制内部副反应的发生从而提高材料的热安全性。在本发明中,1%≤α≤5%,优选的,α为1%、2%、3%、4%、5%,或1%~5%之间的任意值。
D104为高镍三元正极材料XRD测试中的参数,晶包的晶包参数D104增加会降低材料的声子热导率。在本发明中,45≤D104≤70,优选的,D104为45、50、55、60、65、70,或45~70之间的任意值。
K为高镍三元正极材料的热导率,0.1W/(m·K)≤K≤0.6W/(m·K),优选的,K为0.1、0.2、0.3、0.4、0.5、0.6,或0.1~0.6W/(m·K)之间的任意值。
本发明提供的高镍三元正极材料具有低的热导率,当材料和电解液发生反应时的热释放会相应延后,缓减副反应的发生。
本发明还提供了一种上述高镍三元正极材料的制备方法,包括以下步骤:
A)将三元氢氧化物前驱体NiaCobMnc(OH)2、锂源以及与含有M元素的化合物混合后在氧气气氛条件下进行烧结,得到烧结产物;
B)将所述烧结产物水洗烘干后与含有Q元素的化合物混合,在氧气气氛条件下烧结,得到高镍三元正极材料。
本发明首先将三元氢氧化物前驱体NiaCobMnc(OH)2、锂源以及与含有M元素的化合物混合,得到混合物。
其中,所述锂源选自LiOH;
所述含有M元素的化合物选自Al(OH)3、Al2O3、SrO、TiO2、ZrO2、Zr(OH)4、Y2O3、BaCO3、MgO、MoO3中的一种或多种;
三元氢氧化物前驱体NiaCobMnc(OH)2与锂源的摩尔比为1:1.04;
三元氢氧化物前驱体NiaCobMnc(OH)2与含有M元素的化合物的摩尔比为1:d,其中,d<0.1,优选为0.01~0.04。
本发明对所述混合的方式并没有特殊限制,本领域技术人员公知的混合方法即可。
然后,将所述混合物在氧气气氛条件下烧结,得到烧结产物。
其中,所述烧结的温度为740℃~820℃,优选为740、760、780、800、820,或740℃~820℃之间的任意值,时间为10~15小时,优选为10、11、12、13、14、15,或10~15小时之间的任意值。
接着,将所述烧结产物进行冷却、破碎和过筛,然后水洗和烘干,再与含有Q元素的化合物混合,在氧气气氛条件下烧结,得到高镍三元正极材料。
其中,所述含有Q元素的化合物选自TiO2、SrO、SrTiO3
所述烧结的温度为350~500℃,优选为350、400、450、500,或350~500℃之间的任意值,时间为8~12小时,优选为8、9、10、11、12,或8~12小时之间的任意值。
本发明还提供了一种锂离子电池,包括上述高镍三元正极材料。
本发明提供的高镍三元正极材料具有较高的DSC峰值温度,从而具有高的热安全性,本发明中的热安全性性能的表征以DSC测试的峰值为判定依据。
本发明提供的高镍三元正极材料通过测量其热导率K、XRD中的D104值,以及孔隙率α识别出影响三元正极材料热安全性的重要因素,同时通过控制这几个参数并满足式I所示关系式分别制备了相应的材料进行验证,另外通过包覆具有低热导率的包覆材料对高镍三元正极材料进行改善,并且测试该材料包覆后的热导率结果表明随着包覆材料的包覆量的增加,该三元正极材料的热导率整体降低同时具有更好的热安全性。
为了进一步理解本发明,下面结合实施例对本发明提供的高热安全性的高镍三元正极材料及其制备方法以及应用进行说明,本发明的保护范围不受以下实施例的限制。
实施例
1)样品A为LiNi0.908Co0.048Mn0.029M0.015O2,M为Al,其中α、D104、K以及γ分别为1%,45,0.62,0.73。
制备方法:
①将氢氧化物Ni0.92Co0.05Mn0.03(OH)2,和LiOH按照摩尔比1:1.04以及摩尔占比为0.015的添加剂Al(OH)3进行混合;
②将均匀混合后的材料在氧气气氛下进行740℃下进行烧结15h、冷却、破碎过筛。
2)样品B为LiNi0.908Co0.048Mn0.029M0.015O2,M为Sr,其中α、D104、K以及γ分别为2%,60,0.41,2.93。
制备方法:
①将氢氧化物Ni0.92Co0.05Mn0.03(OH)2和LiOH按照摩尔比1:1.04以及摩尔占比为0.015的添加剂SrO进行混合;
②将均匀混合后的材料在氧气气氛下进行780℃下进行烧结15h、冷却、破碎过筛。
3)样品C为LiNi0.908Co0.048Mn0.029M0.015O2,M为Zr,其中α、D104、K以及γ分别为3%,70,0.16,13.13。
制备方法:
①将氢氧化物Ni0.92Co0.05Mn0.03(OH)2和LiOH按照摩尔比1:1.04以及摩尔占比为0.015的添加剂ZrO2进行混合;
②将均匀混合后的材料在氧气气氛下进行820℃下进行烧结15h、冷却、破碎过筛。
4)样品D为LiNi0.908Co0.048Mn0.029M0.015O2,M为Y,其中α、D104、K以及γ分别为4%,60,0.31,7.74。
制备方法:
①将氢氧化物Ni0.92Co0.05Mn0.03(OH)2和LiOH按照摩尔比1:1.04以及摩尔占比为0.015的添加剂Y2O3进行混合;
②将均匀混合后的材料在氧气气氛下进行780℃下进行烧结15h、冷却、破碎过筛。
5)样品E为LiNi0.908Co0.048Mn0.029M0.015O2,M为Mo,其中α、D104、K以及γ分别为3%,70,0.25,8.4。
制备方法:
①将氢氧化物Ni0.92Co0.05Mn0.03(OH)2和LiOH按照摩尔比1:1.04以及摩尔占比为0.015的添加剂MoO3进行混合;
②将均匀混合后的材料在氧气气氛下进行800℃下进行烧结15h、冷却、破碎过筛。
6)在样品A的基础上进行1000ppm的Q包覆剂的包覆,得到样品F为 LiNi0.9075Co0.048Mn0.029M0.015Q0.0005O2,M为Al、Q为Sr,其中α、D104、K以及γ分别为1%,45,0.53,0.85。
制备方法:将样品A进行1:1的水料比进行水洗后离心140℃烘干12h,随后和1000ppm的SrO进行均匀混合,接着在氧气气氛下500℃进行烧结12h得到样品F。
7)在样品A的基础上进行3000ppm的Q包覆剂的包覆,得到样品G为LiNi0.9065Co0.048Mn0.029M0.015Q0.0015O2,M为Al、Q为Ti,其中α、D104、K以及γ分别为1%,45,0.42,1.07。
制备方法:将样品A进行1:1的水料比进行水洗后离心140℃烘干12h,随后和3000ppm的TiO2进行均匀混合,接着在氧气气氛下500℃进行烧结12h得到样品G。
8)在样品A的基础上进行5000ppm的Q包覆剂的包覆,得到样品H为LiNi0.9055Co0.048Mn0.029M0.015Q0.0025O2,M为Al、Q为Sr和Ti,其中α、D104、K以及γ分别为1%,45,0.31,1.45。
制备方法:将样品A进行1:1的水料比进行水洗后离心140℃烘干12h,随后和5000ppm的SrTiO3进行均匀混合,接着在氧气气氛下500℃进行烧结12h得到样品H。
对比例
1)样品I为LiNi0.92Co0.05Mn0.03O2,其中α、D104、K以及γ分别为1%,40,0.86,0.47。
制备方法:
①将氢氧化物Ni0.92Co0.05Mn0.03(OH)2和LiOH按照摩尔比1:1.04进行混合;
②将均匀混合后的材料在氧气气氛下进行740℃下进行烧结15h、冷却、破碎过筛。
对上述得到的样品A~I进行性能测试,测试方法如下:
1、DSC测试:
①将正极材料和乙炔黑按照质量比98:2分散在溶有浓度为5%的PVDF的NMP溶液中搅拌20min,其中,正极材料的浓度为60%。
②将得到的浆液均匀涂布在铝箔中在真空干燥箱上110℃烘干4小时。
③将干燥后的极片裁成直径15mm的圆片,在手套箱按照正极壳、极片、电解液(EC/DMC/EMC体积比1:1,LiPF6浓度是1mol/L)、隔膜(CelgardPP/PE/PP三层复合膜)、锂片、电解液、泡沫镍、负极壳进行组装封口,得到电池。
④得到的电池进行静置24小时后采用0.1C的电流进行充电。
⑤将充好后的电池在手套箱中进行拆解,得到的极片进行NMP清洗烘干处理后进行DSC测试。在手套箱中取2~3mg的正极片放置于坩埚底部,滴入1.7mg的1mol/L的LiPF6溶液(溶剂包括体积比为1:1的EC和DMC),使所述LiPF6溶液均匀分布在极片表面,将坩埚在专用模具内进行封口处理;将密封好的坩埚放入差示扫描热量仪中,通入氮气,以10℃/min的升温速率进行测试,最高温度设定为350℃。
2、热导率测试:使用激光热导仪LFA(德国耐驰)
3、孔隙率测试:通过将样品使用离子研磨仪器得到表面平整的剖面进行SEM测试通过软件处理后得到孔隙率。
样品A、B、C、D、E具有不同孔隙率α的晶包参数D104以及热导率K,D104的增加使得材料过渡金属层的层间距增加,同时Li层的空间被压缩使得Li离子传输受到限制,降低离子热导率,另外晶格间距增加会使得声子热导率降低导致整体热导率降低;二次球中存在的一次颗粒间的孔隙率越高使得热量从材料表面扩散到内部受到阻碍使得整体热导率降低抑制了由材料外部热恶化向内部蔓延。图1~5分别为样品A-E的剖面孔隙分布图。
样品F-H分别为样品A包覆1000ppm、3000ppm、5000ppm的Q包覆剂的材料,通过包覆热导率低的Q包覆材料以及改变包覆量能够使得材料整体的热导率降低,从而使得材料热传导性能降低使得由二次球内部受到外部热反应的影响变小,另外包覆层对于材料和电解液有一定的隔绝作用,可以有效抑制材料表面的副反应减少热量释放和材料结构的坍塌从而提升材料的热安全性。图6~9分别为样品F-I的表面SEM图,图10~12为不同材料的DSC数据对比图。图10中,按照峰值位置自左往右样品依次为A、B、D、E和C;图11中,按照峰值位置自左往右样品依次为A、F、G、H,图12为样品I的DSC数据图。
表1为材料A~I对应的α、D104、K、γ以及对应的DSC峰值。
表1
当γ低于0.73时,DSC峰值温度会低于213℃,高镍三元正极材料的热安全性较差。当γ值≥1.07时,DSC峰值温度≥221℃,具有更加优异的热安全性能,当γ值≥7.74时,DSC峰值温度≥233℃,具有非常优异的热安全性能,当γ值=13.13时,DSC峰值温度高达240℃。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高热安全性的高镍三元正极材料,其特征在于,所述高镍三元正极材料的化学式为:
    LiNiaCobMncMdQeO2
    其中,0.8<a<0.95,b<0.2,c<0.2,d<0.1,a+b+c+d+e=1,
    M为掺杂元素,选自Sr、Ti、Al、Zr、Y、Ba、Mg、Mo中的一种或者多种,
    Q为包覆元素,选自Sr和Ti中的一种或两种,
    所述高镍三元正极材料满足式I所示的关系式:
    γ=α*D104/K  式I
    式I中,0.73≤γ≤14.00,γ为高镍三元正极材料的热安全系数,α为高镍三元正极材料的剖面孔隙率,D104为高镍三元正极材料XRD测试中的参数,K为高镍三元正极材料的热导率。
  2. 根据权利要求1所述的高镍三元正极材料,其特征在于,45≤D104≤70。
  3. 根据权利要求1所述的高镍三元正极材料,其特征在于,1%≤α≤5%。
  4. 根据权利要求1所述的高镍三元正极材料,其特征在于,0.1W/(m·K)≤K≤0.6W/(m·K)。
  5. 根据权利要求1所述的高镍三元正极材料,其特征在于,包括核芯以及包覆层,所述包覆层的热导系数≤0.2W/(m·K)。
  6. 一种如权利要求1~5任意一项所述的高镍三元正极材料的制备方法,其特征在于,包括以下步骤:
    A)将三元氢氧化物前驱体NiaCobMnc(OH)2、锂源以及与含有M元素的化合物混合后在氧气气氛条件下进行烧结,得到烧结产物;
    B)将所述烧结产物水洗烘干后与含有Q元素的化合物混合,在氧气气氛条件下烧结,得到高镍三元正极材料。
  7. 根据权利要求6所述的制备方法,其特征在于,所述锂源选自LiOH;
    所述含有M元素的化合物选自Al(OH)3、Al2O3、SrO、TiO2、ZrO2、Zr(OH)4、 Y2O3、BaCO3、MgO、MoO3中的一种或多种;
    所述含有Q元素的化合物选自TiO2、SrO、SrTiO3
  8. 根据权利要求6所述的制备方法,其特征在于,步骤A)中,所述烧结的温度为740℃~820℃,时间为10~15小时。
  9. 根据权利要求6所述的制备方法,其特征在于,步骤B)中,所述烧结的温度为350~500℃,时间为8~12小时。
  10. 一种锂离子电池,其特征在于,包括权利要求1~5任意一项所述的高镍三元正极材料或者权利要求6~9任意一项所述制备方法制备得到的高镍三元正极材料。
PCT/CN2023/076050 2022-07-18 2023-02-15 一种高热安全性的高镍三元正极材料及其制备方法以及应用 WO2024016644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210841386.3 2022-07-18
CN202210841386.3A CN115172697A (zh) 2022-07-18 2022-07-18 一种高热安全性的高镍三元正极材料及其制备方法以及应用

Publications (1)

Publication Number Publication Date
WO2024016644A1 true WO2024016644A1 (zh) 2024-01-25

Family

ID=83494808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076050 WO2024016644A1 (zh) 2022-07-18 2023-02-15 一种高热安全性的高镍三元正极材料及其制备方法以及应用

Country Status (2)

Country Link
CN (1) CN115172697A (zh)
WO (1) WO2024016644A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747839A (zh) * 2024-02-19 2024-03-22 深圳澳睿新能源科技有限公司 高镍三元正极活性材料及其制备方法、锂离子电池
CN118239535A (zh) * 2024-05-20 2024-06-25 天津国安盟固利新材料科技股份有限公司 一种高镍多晶正极材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172697A (zh) * 2022-07-18 2022-10-11 宁波容百新能源科技股份有限公司 一种高热安全性的高镍三元正极材料及其制备方法以及应用
CN115472817A (zh) * 2022-08-26 2022-12-13 天津巴莫科技有限责任公司 三元正极材料及其制备方法、正极极片、二次电池和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244397A (zh) * 2018-11-28 2020-06-05 天津国安盟固利新材料科技股份有限公司 一种高镍三元正极材料及其制备方法
CN111463411A (zh) * 2019-01-18 2020-07-28 天津国安盟固利新材料科技股份有限公司 一种单晶形貌的高镍三元正极材料及其制备方法
CN112103496A (zh) * 2020-11-10 2020-12-18 湖南长远锂科股份有限公司 一种高镍三元正极材料及其制备方法
US20210126242A1 (en) * 2018-12-29 2021-04-29 Contemporary Amperex Technology Co., Limited High-compacted-density positive electrode material and electrochemical energy storage apparatus
CN114400316A (zh) * 2022-02-28 2022-04-26 宁波容百新能源科技股份有限公司 一种具有热安全性的高镍锂离子电池正极材料及其制备方法
CN115172697A (zh) * 2022-07-18 2022-10-11 宁波容百新能源科技股份有限公司 一种高热安全性的高镍三元正极材料及其制备方法以及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244397A (zh) * 2018-11-28 2020-06-05 天津国安盟固利新材料科技股份有限公司 一种高镍三元正极材料及其制备方法
US20210126242A1 (en) * 2018-12-29 2021-04-29 Contemporary Amperex Technology Co., Limited High-compacted-density positive electrode material and electrochemical energy storage apparatus
CN111463411A (zh) * 2019-01-18 2020-07-28 天津国安盟固利新材料科技股份有限公司 一种单晶形貌的高镍三元正极材料及其制备方法
CN112103496A (zh) * 2020-11-10 2020-12-18 湖南长远锂科股份有限公司 一种高镍三元正极材料及其制备方法
CN114400316A (zh) * 2022-02-28 2022-04-26 宁波容百新能源科技股份有限公司 一种具有热安全性的高镍锂离子电池正极材料及其制备方法
CN115172697A (zh) * 2022-07-18 2022-10-11 宁波容百新能源科技股份有限公司 一种高热安全性的高镍三元正极材料及其制备方法以及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747839A (zh) * 2024-02-19 2024-03-22 深圳澳睿新能源科技有限公司 高镍三元正极活性材料及其制备方法、锂离子电池
CN118239535A (zh) * 2024-05-20 2024-06-25 天津国安盟固利新材料科技股份有限公司 一种高镍多晶正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115172697A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024016644A1 (zh) 一种高热安全性的高镍三元正极材料及其制备方法以及应用
US10741838B2 (en) Positive-electrode active material powder, positive electrode containing positive-electrode active material powder, and secondary battery
KR20190065963A (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2018090956A1 (zh) 高电压锂电池正极材料、电池及制法和应用
WO2023179245A1 (zh) 一种高镍三元正极材料及其制备方法和应用
JP2009117261A (ja) リチウム二次電池用正極活物質材料並びにそれを用いた正極及びリチウム二次電池
WO2023155930A1 (zh) 锂离子电池正极材料及其制备方法
CN110890525B (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
CN112103492B (zh) 一种改性锂离子电池三元正极材料及其制备方法与应用
KR20180053411A (ko) 충전식 배터리용 리튬 전이금속 산화물 캐소드 재료를 위한 전구체
US20240162421A1 (en) Positive electrode material and preparation method therefor, positive electrode plate, and battery
WO2024109201A1 (zh) 改性三元材料及其制备方法与应用、锂离子电池
KR20230150863A (ko) 리튬 이온 배터리 및 동력 차량
JP2021513193A (ja) 正極活物質及びリチウムイオン電池
CN114497527A (zh) 一种富锂锰基正极材料及其制备方法和锂离子电池
CN114249357B (zh) 一种表面改性高镍三元正极材料及其干法制备工艺
CN116387510A (zh) 一种正极活性材料、二次电池及用电装置
CN117645323A (zh) 一种正极材料及其制备方法和应用
CN115810757B (zh) 一种正极活性材料及含有该正极活性材料的锂离子电池
CN116914083A (zh) 一种电池及用电设备
CN117855400A (zh) 一种低产气长循环单晶三元正极材料及其制备方法
CN117525386B (zh) 高镍正极材料及其制备方法和应用
JP7135040B2 (ja) 正極活物質およびその製造方法、ならびにリチウムイオン二次電池
WO2023184563A1 (zh) 镍钴锰酸锂材料及其制备方法、正极材料和锂离子电池
US20230187626A1 (en) Cathode Material for a Lithium Ion Battery and Preparation Method and Application Thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841722

Country of ref document: EP

Kind code of ref document: A1