WO2024016480A1 - 光电玻璃显示屏及工艺 - Google Patents

光电玻璃显示屏及工艺 Download PDF

Info

Publication number
WO2024016480A1
WO2024016480A1 PCT/CN2022/123285 CN2022123285W WO2024016480A1 WO 2024016480 A1 WO2024016480 A1 WO 2024016480A1 CN 2022123285 W CN2022123285 W CN 2022123285W WO 2024016480 A1 WO2024016480 A1 WO 2024016480A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
bare crystal
bare
display screen
Prior art date
Application number
PCT/CN2022/123285
Other languages
English (en)
French (fr)
Inventor
周伟
Original Assignee
武汉恩倍思科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉恩倍思科技有限公司 filed Critical 武汉恩倍思科技有限公司
Publication of WO2024016480A1 publication Critical patent/WO2024016480A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels

Definitions

  • the invention relates to a glass curtain wall display screen, and in particular to a photoelectric glass display screen and a process.
  • the buildings in the market are lightweight, and high-rise buildings are mainly made of glass curtain walls.
  • Conventional outdoor large screens can no longer adapt to lightweight glass curtain walls. This practical situation has given rise to the birth of transparent screen products.
  • Conventional transparent screens are divided into front-emitting, side-emitting and photoelectric glass.
  • the main working principle is to mount independent components such as light-emitting lamp beads, driver ICs, and plug-in horns on the PCB board, and drive the light through an external power supply.
  • PCB board materials are all conventional FR4, which is opaque fiberglass board.
  • Front-emitting and side-emitting transparent screens are economical, easy to produce and install, and the technology is mature. However, the light transmittance is low.
  • Each lamp bead is welded on the front or side on a thin circuit board, just like a blind is installed on the inside of the glass, blocking the light. This reduces the line of sight and reduces the transparency of the large screen.
  • optoelectronic glass products are packaged independent lamp beads, and the driver IC passes ITO (on the basis of soda-lime-based or silicon-boron-based substrate glass, a layer of indium tin oxide is plated using various methods such as sputtering and evaporation) Welded to the glass plate, the light is driven by a control circuit.
  • ITO on the basis of soda-lime-based or silicon-boron-based substrate glass, a layer of indium tin oxide is plated using various methods such as sputtering and evaporation
  • the lamp beads have large particles. Due to the use of ITO circuits, ITO itself has a large impedance, is prone to heat, and has serious current attenuation. As a result, the distance between lamp beads designed on the photoelectric glass must be relatively large, otherwise the circuit will overheat. Therefore, the current photoelectric glass display screen has thick pixels and low definition. Generally, the spacing between lamp beads is more than 8 to 10 mm. At close range,
  • the main purpose of the present invention is to provide a photoelectric glass display screen and a process that can greatly improve the transmittance and uniformly emit light.
  • An optoelectronic glass display screen including a glass substrate on which a seed layer and a copper film layer are sequentially formed, a circuit is printed on the copper film layer, and a plurality of light-emitting display units are welded on the circuit to form a light-emitting array;
  • Each light-emitting display unit includes a driver chip and a group of bare crystal chips.
  • Each group of bare crystal chips includes any one, two or three types of red, green, and blue bare crystal light-emitting chips arranged in a vertical or horizontal pattern;
  • a driver chip connects one or more groups of bare chips;
  • Each light-emitting display unit is covered with a layer of semicircular colloid, and the light-emitting angle of each bare crystal light-emitting chip covered with the colloid is greater than or equal to 160°.
  • the bare crystal chip and the bare crystal are welded on the customized pad through wire pulls.
  • the distance between adjacent light-emitting display units is less than or equal to 5 mm.
  • the seed layer is a nano-thin layer of copper film.
  • the surface glue uses a mixed colloid of modified epoxy resin and graphite diffusion powder.
  • the colloid process adopts a single-point compression molding process, and the colloid forms a water drop-shaped smooth lens.
  • the invention also provides a manufacturing process for a photoelectric glass display screen, which includes the following steps:
  • each light-emitting display unit includes a driver chip and a set of bare crystal chips.
  • Each set of bare crystal chips includes any one, two or two of red, green, and blue.
  • Three types of bare crystal light-emitting chips are arranged in a vertical or horizontal pattern; one driver chip is connected to one or more groups of bare crystal chips;
  • each luminescent display unit Covers each luminescent display unit with a layer of semicircular colloid.
  • the luminous angle of each bare crystal luminescent chip after covering the colloid is greater than or equal to 160°;
  • step S2 is specifically: the copper foil line width in the circuit is about 50 ⁇ 200um.
  • the specific width is determined based on requirements such as point spacing, brightness, etc., and based on a summarized algorithm, which not only meets current needs, but also achieves maximum transparency.
  • step S3 is specifically: use a vacuum suction nozzle to suck the bare crystal light-emitting chip and place it in the corresponding position, pass the glass substrate through 12 temperature zone nitrogen reflow soldering, and reinforce and weld the bare crystal light-emitting chip.
  • the X/Y coordinate positioning method is used to fix them at the exact position; the suction nozzles are used in groups of N to extract N bare crystal light-emitting chips at one time.
  • the beneficial effects produced by the present invention are: by printing the circuit on the glass substrate and directly welding the bare crystal to the circuit, the present invention improves the transmittance of the entire display screen.
  • each group of bare crystal light-emitting chips is arranged in a vertical or horizontal shape, and is covered with a layer of colloid to form a lens, so that the light-emitting angle of each bare crystal chip is greater than or equal to 160°, which can cover missing angles and mix colors into When white or a single color is used, the light output is more uniform and delicate.
  • Figure 1 is a schematic structural diagram of a light-emitting display unit of a photovoltaic glass display screen according to an embodiment of the present invention
  • Figure 2 is a physical schematic diagram of a light-emitting display unit according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a light-emitting display unit according to an embodiment of the basic invention.
  • Figure 4 is a schematic diagram of the luminescence curve of the die according to the embodiment of the present invention.
  • Figure 5 is a schematic diagram of the pad according to the embodiment of the present invention.
  • Figure 6 is a second schematic diagram of the bonding pad according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a driver IC according to an embodiment of the present invention.
  • Figure 8 is a process flow diagram of a photovoltaic glass display screen according to an embodiment of the present invention.
  • the optoelectronic glass display screen of the embodiment of the present invention includes a glass substrate, on which a seed layer and a copper film layer are sequentially formed, a circuit is printed on the copper film layer, and a plurality of light-emitting display units are welded on the circuit to form a light-emitting array;
  • each light-emitting display unit includes a driver chip and a set of bare crystal chips.
  • Each set of bare crystal chips includes three kinds of red, green, and blue bare crystal light-emitting chips or one to three single-color bare crystal light-emitting chips.
  • one driver chip can be connected to one or more groups of bare crystal chips;
  • Each light-emitting display unit is covered with a layer of semicircular colloid, and the light-emitting angle of each bare crystal light-emitting chip covered with the colloid is greater than or equal to 160°. If the bare crystal emits light directly in the air, it will be easily oxidized. Colloidal technology is used to isolate the bare crystal from the air, which not only ensures the life of the light-emitting LED bare crystal, but also improves the luminous angle of each bare crystal.
  • Each light-emitting display unit contains RGB three-color light-emitting die chips, or one to three single-color light-emitting die chips, which can form white light or a single color or a single or mixed color formed by multiple mixed-color die chips.
  • the dot matrix arranged in a vertical font or a straight font can cover missing angles and is beneficial to the overall light emission. When the color is mixed into white, the light output is more uniform and delicate, which can form good white light and colored light effects. It can also contain only a single color bare crystal light-emitting chip to emit a single color.
  • 1 is a functional driver IC (arranged on the same side or the opposite side of the bare chip); 2 is a special metal wire (gold wire is used); 3 is a green light-emitting bare chip (arranged in a line or a font); 4 is a blue light-emitting bare crystal chip (arranged in a single letter or a "C" shape); 5 is a red light-emitting bare crystal chip (arranged in a single letter or a "C” shape); 6 is a customized design pad (conducive to red, green and blue light emitting Chip layout and driver IC layout).
  • the three-color light-emitting bare crystal chips 3, 4, and 5 are arranged in a glyph shape as a whole.
  • the red, green, and blue bare crystal light-emitting chips are arranged in a vertical or horizontal shape, and the driver IC is arranged on one side of the bare crystal light-emitting chip.
  • the driver IC can be wire-welded to the bare crystal using special equipment on a customized On the design pad, a connection is established through a metal wire (pure gold or alloy) to complete the connection between signals.
  • Each group or groups of bare crystal chips can be equipped with a driver IC (as shown in Figure 7).
  • the layout is more compact, which effectively avoids the risk of line crossing and wiring procedures during the wiring process, thus speeding up the overall product development. Processing speed and stability of finished products.
  • Each light-emitting display unit is a combination of a bare chip and a driver IC, as shown in Figure 3.
  • the luminescence curve of the bare chip is shown in Figure 4.
  • the volume size of the bare crystal light-emitting chip is (200 ⁇ 25) ⁇ (100 ⁇ 25)um 2 and the thickness is (90 ⁇ 15)um. In the future, the bare crystal may be smaller.
  • the size of conventional lamp beads is 2 ⁇ 2mm 2 ; the driver IC is on the same side as the bare chip or placed on the back.
  • Conventional lamp beads are large in size, have a luminous angle within 140 degrees, and have average light output (severe scattering of internal colloids).
  • This invention is an integrated drive product. Customized fixtures can be used for colloiding.
  • Special formula glue is used, which is transparent and capable. Stable attachment.
  • the overall shape is stable and forms a semicircular shape after molding.
  • the luminous angle can reach 160 degrees under the action of colloid. Under a high-power microscope, the colloid accuracy is less than 0.03mg; the colloid completely covers the overall driver IC and the red, green and blue luminescent chips, and under gravity Under the action, the overall coverage is uniform, and the subsequent light emission effect is consistent, as shown in Figure 4.
  • the manufacturing process of the photoelectric glass display screen according to the embodiment of the present invention includes the following steps:
  • each light-emitting display unit includes a driver chip and a group of bare crystal chips.
  • Each group of bare crystal chips includes three types of red, green, and blue bare crystal light-emitting chips or One to three single-color bare crystal light-emitting chips, arranged in a vertical or horizontal pattern; a driver chip connects one or more groups of bare crystal chips;
  • each luminescent display unit Covers each luminescent display unit with a layer of colloid.
  • the luminous angle of each bare crystal luminescent chip after covering the colloid is greater than or equal to 160°;
  • the invention uses glass material, so that the non-chip parts of the circuit are almost transparent, thereby greatly improving the transparency of the display screen.
  • the specific step S2 is: cover the steel mesh on the glass substrate, print solder on both sides (place the RGB wafer on one side, and place the driver IC on the other side). Control the melting point temperature of the solder within 180°C, scrape it flat with a scraper, and remove the solder paste. Apply evenly to the pads on the glass substrate. In this step, the solder printing accuracy can reach ⁇ 0.02mm, and the repeatable positioning accuracy is ⁇ 0.008mm.
  • the steel mesh is a hollow abrasive tool for the glass substrate pad. Its main function is to attach to the PCB surface and block the non-pad parts. After the tin brushing is completed, the steel mesh is removed.
  • the present invention minimizes the line width of the printed circuit while meeting the current requirements of the circuit.
  • the width of the copper foil lines in the circuit of the embodiment of the present invention can be 10um-10000um, but based on the following formula, the line width can be designed to be about 50-200um, which greatly improves the transparency.
  • the width of the photoelectric glass circuit is related to the pixel spacing and current, and the current is related to brightness.
  • the specific copper foil line width can be obtained based on the point spacing, brightness and other requirements, and based on the summarized algorithm, which can not only meet the current needs, but also obtain the maximum transparency.
  • Table 1 The specific formulas and data are shown in Table 1 below:
  • Table 1 Relationship between circuit copper foil line width and current under different copper foil thicknesses
  • the current I is the maximum current value, which directly affects the width of the copper foil and thus the permeability.
  • the present invention accurately calculates the maximum current value of each design through a formula, instead of using a unified value like the designs in the prior art.
  • the calculation function form of current is as follows:
  • I f(L,X,J), where L refers to brightness (brightness of bare crystal transparent photoelectric glass),
  • the current I is directly proportional to the brightness L and the size of the wafer J, and inversely proportional to the pixel X.
  • S is the cross-sectional area of copper cladding in square mil
  • K is the correction coefficient
  • K is 0.024 when the copper is clad in the inner layer
  • K is 0.048 when the outer layer is clad
  • T is the maximum temperature rise
  • I is the maximum allowable current.
  • the unit is A, adjusted according to different point spacing (pixels).
  • the thickness of the copper foil of the PCB board in the circuit of the embodiment of the present invention may be about 50um.
  • E is the pixel spacing adjustment constant. When the pixel spacing is less than 2mm, E is 1.1. When the pixel spacing is equal to 2mm, E is 1. When the pixel spacing is greater than or equal to 2mm, E is 0.9.
  • the width of the copper foil is 142um.
  • the reliability, stability and ultra-high permeability of photoelectric glass products are usually maintained.
  • the etched line copper foil is wide.
  • the calculated width range is usually around 50-200um, which is 1/5 to 1/5 of the conventional 1mm width. 20, which is much less than 1mm, greatly improving the permeability.
  • the pads are shown in Figures 5 and 6.
  • the soldering pad is designed on a substrate made of glass material.
  • the connected bare crystal light-emitting chip and driver IC are also directly welded to the circuit of the glass substrate.
  • Pure gold wire or alloy wire is used to connect the P/N electrode of the light-emitting chip and the glass substrate circuit. The electrodes are connected and then welded together to ensure the connection integrity of the circuit of the light-emitting chip.
  • a seed layer and a copper film layer are sequentially formed on a glass substrate.
  • the seed layer is a nano-thin layer of copper film as a base layer; and the copper film layer is used as a conductive layer.
  • the copper film layer can be made by mixing and stripping copper, copper-nickel alloy, copper-titanium alloy, copper-molybdenum alloy, copper-chromium alloy, etc. according to a certain comparison.
  • the stripping force is mechanically pulled at 1.5 ⁇ 2.5KG square centimeter.
  • the conductivity of the copper film is more than 10 times that of the ITO film. In a series circuit, the impedance during current transmission is small, the voltage drops, and the power consumption is small.
  • the present invention upgrades the glass composite metal adhesion process through the above process, and embeds the circuit on the glass substrate material, and the circuit will not pull off the metal pad during the wiring and welding process, and the glass itself is a colorless and transparent material, thus Achieved transparent display of microelectronic bare crystals.
  • the bare crystal technology is combined with the special process of the glass substrate.
  • the bare crystal and driver IC are first placed on the glass substrate, then wired, welded, and finally colloided, thereby realizing tiny transparent products.
  • the colloid is a mixed glue of modified epoxy resin and graphite diffusion powder mixed according to the required color temperature. It is applied to the light-emitting display unit with a thickness of about 150um and is self-leveling when placed horizontally.
  • the modified epoxy resin and graphite diffusion powder are mixed at a ratio of 1:1 to 1:10 to make a colloid, and the corresponding proportions are determined according to different color requirements.
  • the colloid process adopts a single-point compression molding process.
  • the integrated point is cast on the top of the crystal, and then under the compression mold, it is formed into a water-drop-shaped smooth lens, which is conducive to light extraction and light efficiency without loss.
  • the side is cut off along the prefabricated line, and the tolerance is controlled at ⁇ 0.1mm.
  • the point spacing of products using photoelectric glass lamp beads is often designed to be above 8 mm, while the bare crystal technology solution can make the spacing between light-emitting display units below 5 mm or even 2 mm. For example, it is easy to design around 2 mm. As a result, the pixels of the display screen can reach 2 mm or less. Under the premise of maintaining a certain degree of transparency, the entire photoelectric glass display will present a clear display of 2K, 4K, 8K or higher high-definition images.
  • Step S3 is specifically: use a vacuum suction nozzle to suck the bare crystal light-emitting chip and place it in the corresponding position, pass the glass substrate through 12 temperature zone nitrogen reflow soldering, and reinforce and weld the bare crystal light-emitting chip.
  • the X/Y coordinate positioning method is used to fix them at the exact position; the suction nozzles are used in groups of N to extract N bare crystal light-emitting chips at one time.
  • the nozzle accuracy is ⁇ 20um. In the same way, fix the driver IC in the same way.
  • the present invention solves the pain point of low transmittance of photoelectric glass. It uses ⁇ m-level RGB bare crystals and directly welds the bare crystals to the glass. Since the bare crystals are several times smaller than the lamp beads, the transparency of the photoelectric glass decreases. greatly improved.
  • the invention adopts nanometer immersion gold coating technology to make the circuit impedance small, and the pixel spacing can be less than 5 mm, such as about 2 mm or less. At the same time, the transmittance is retained and the image is high-definition, meeting the requirements of commercial display applications. category.
  • the RGB bare crystals are arranged in a straight or vertical shape, and colloidal technology is used to isolate the bare crystals from the air, which not only ensures the life of the light-emitting LED bare crystals, but also improves the emission angle of the bare crystals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

一种光电玻璃显示屏,包括玻璃基板,其上依次形成种子层和铜膜层,在铜膜层上印刷电路,在电路上焊接多个发光显示单元,形成发光阵列;每个发光显示单元包括驱动芯片和一组裸晶芯片,每组裸晶芯片包括红、绿、蓝三种裸晶发光芯片,呈品字型或者一字型排列;也可以只含单一种颜色裸晶发光芯片;一个驱动芯片连接一组或者多组裸晶芯片;每个发光显示单元上覆盖一层半圆形胶体,覆盖胶体后的每个裸晶发光芯片的发光角度大于等于160°。通过在玻璃基板上印刷电路,将裸晶芯片直接焊接在电路上,提高了整个显示屏的通透率。

Description

光电玻璃显示屏及工艺 技术领域
本发明涉及玻璃幕墙显示屏,尤其涉及一种光电玻璃显示屏及工艺。
背景技术
目前市场楼宇轻量化,高层楼宇主要以玻璃幕墙为主,常规的户外大屏幕已经无法适应轻量化的玻璃幕墙,在这一实际情况下,催生了透明屏产品的诞生。常规的透明屏分为正发光、侧发光和光电玻璃。主要的工作原理都是市将发光灯珠、驱动IC、接插牛角座等独立器件贴装在PCB板上,通过外接电源来驱动发光。PCB板材料都是常规的FR4,为不透明的玻纤板。
正发光和侧发光的透明屏经济实惠,便于生产安装,技术成熟,但是通透光率底,一颗颗灯珠正面焊接或侧焊在细条电路板上,犹如玻璃内侧安装了百叶窗帘,遮挡了视线,降低了大屏的通透率。
目前光电玻璃产品是将封装好的独立灯珠,驱动IC通过ITO(在钠钙基或硅硼基基片玻璃的基础上,利用溅射、蒸发等多种方法镀上一层氧化铟锡)的方式焊接在玻璃板上,通过控制电路来驱动发光。但是缺点也很明显,灯珠颗粒大,由于采用ITO电路,ITO本身阻抗大,容易发热,电流衰减严重,导致光电玻璃上设计的灯珠间距必须比较大,不然电路会过热。因此目前的光电玻璃显示屏像素粗,清晰度低。一般灯珠之间间距在8到10毫米以上。近距离看,不能显示高清的图像,只能做一些视觉效果。
以上常用的技术与产品都没能进行大规模的市场推广,急需一种透明度高,但是图像又要高清,稳定性高的产品来迅速补齐市场需求。
发明内容
本发明主要目的在于提供一种可大大提高通透率且发光均匀的光电玻璃显示屏及工艺。
本发明所采用的技术方案是:
提供一种光电玻璃显示屏,包括玻璃基板,其上依次形成种子层和铜膜层,在铜膜层上印刷电路,在该电路上焊接多个发光显示单元,形成发光阵列;
每个发光显示单元包括驱动芯片和一组裸晶芯片,每组裸晶芯片包括红、绿、蓝任意一种、两种或者三种裸晶发光芯片,呈品字型或者一字型排列;一个驱动芯片连接一组或者多组裸晶芯片;
每个发光显示单元上覆盖一层半圆形胶体,覆盖胶体后的每个裸晶发光芯片的发光角度大于等于160°。
接上述技术方案,裸晶芯片与裸晶通过拉线焊接在定制化的焊盘上。
接上述技术方案,相邻发光显示单元的间距小于等于5mm。
接上述技术方案,种子层为铜膜纳米薄层。
接上述技术方案,表面胶水采用改性环氧树脂和石墨扩散粉混合胶体。
接上述技术方案,胶体工艺采用单点压模工艺,胶体形成水滴型光滑透镜。
本发明还提供一种光电玻璃显示屏的制作工艺,包括以下步骤:
S1、在玻璃基板上依次形成种子层和铜膜层;
S2、在铜膜层上印刷电路;
S3、在该电路上焊接多个发光显示单元,形成发光阵列;每个发光显示单元包括驱动芯片和一组裸晶芯片,每组裸晶芯片包括红、绿、蓝任意一种、两种或者三种裸晶发光芯片,呈品字型或者一字型排列;一个驱动芯片连接一组或者多组裸晶芯片;
S4、在每个发光显示单元上覆盖一层半圆形胶体,覆盖胶体后的每个裸晶发光芯片的发光角度大于等于160°;
S5、切割,形成成品并进行测试,合格后包装。
接上述技术方案,其中步骤S2具体为:电路中铜箔线条宽为50~200um左 右。具体宽度,依据点间距,亮度等要求,根据总结的算法而得,既满足电流需要,又获得最大限度的通透度。
接上述技术方案,其中步骤S3具体为:用真空吸取的吸嘴吸取裸晶发光芯片放置在相应位置上,将玻璃基板过12温区氮气回流焊,将裸晶发光芯片加固焊接。
接上述技术方案,取裸晶发光芯片时,采用X/Y坐标定位方式,将其固定于准确位置;吸嘴采用N个一组,一次提取N个裸晶发光芯片。
本发明产生的有益效果是:本发明通过在玻璃基板上印刷电路,将裸晶直接焊接在电路上,提高了整个显示屏的通透率。
进一步地,每组裸晶发光芯片,呈品字型或者一字型排列,且覆盖一层胶体,形成透镜,使得每个裸晶芯片的发光角度大于等于160°,可以覆盖遗漏角度,混色成白色或者单一颜色时出光更加均匀细腻。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例光电玻璃显示屏发光显示单元的结构示意图;
图2是本发明实施例发光显示单元的实物示意图;
图3是基本发明实施例的发光显示单元的示意图;
图4是本发明实施例裸晶的发光曲线示意图
图5是本发明实施例焊盘示意图一;
图6是本发明实施例焊盘示意图二;
图7是本发明实施例驱动IC的示意图;
图8是本发明实施例光电玻璃显示屏的工艺流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明实施例的光电玻璃显示屏,包括玻璃基板,其上依次形成种子层和铜膜层,在铜膜层上印刷电路,在该电路上焊接多个发光显示单元,形成发光阵列;
如图1所示,每个发光显示单元包括驱动芯片和一组裸晶芯片,每组裸晶芯片包括红、绿、蓝三种裸晶发光芯片或者一个到三个单色裸晶发光芯片,呈品字型或者一字型排列;一个驱动芯片可连接一组或者多组裸晶芯片;
每个发光显示单元上覆盖一层半圆形胶体,覆盖胶体后的每个裸晶发光芯片的发光角度大于等于160°。如果裸晶直接在空气中发光,容易氧化。采用胶体的技术,将裸晶与空气隔离,既保证了发光LED裸晶的寿命,又可以提高每个裸晶的发光角度。
每个发光显示单元含RGB三色发光裸晶芯片,或者一到三个单色发光裸晶芯片,可以形成白光或者单一颜色或者其他多种混合颜色的裸晶芯片形成的单一或者混合颜色。呈品字型或者一字型排列的点阵方式,可以覆盖遗漏角度,利于整体出光性。混色成白色时出光更加均匀细腻,可以形成良好白光和彩色光效。也可以只含单一种颜色裸晶发光芯片,发出单一颜色。
图1中,①为功能驱动IC(排布在裸晶同一面或反面);②特殊化金属导线(采用金打线)③为绿色发光裸晶芯片(一字或品字型排布);④为蓝色发光裸晶芯片(一字或品字型排布);⑤为红色发光裸晶芯片(一字或品字型排布);⑥为定制化设计焊盘(利于红绿蓝发光芯片排布及驱动IC排布)。该实施例中③,④,⑤三色发光裸晶芯片整体组成品字形排布。
如图2所示,红、绿、蓝裸晶发光芯片进行品字型或者一字型,驱动IC排布在裸晶发光芯片一侧,驱动IC可与裸晶用特殊设备拉线焊接在定制化的设计焊盘上,通过金属导线(纯金或合金)建立连线,完成信号间的连通。每一组或几组裸晶芯片可配备一个驱动IC(如图7所示),布局更加紧凑,在打线过 程中有效了避免了线路交叉风险及打线的程序,从而加快了整体产品的加工速度及成品产品的稳定性。
每个发光显示单元均为裸晶和驱动IC二合一,如图3所示,裸晶的发光曲线如图4所示。本发明中,裸晶发光芯片体积大小为(200±25)×(100±25)um 2,厚度为(90±15)um,未来裸晶可能更小。而常规灯珠大小2×2mm 2;驱动IC与裸晶同一面或者放在背面。常规灯珠体积较大,发光角度在140度以内,出光效果一般(内部胶体的散射严重),本发明为一体化驱动产品,可采用定制治具来进行胶体,选用特殊配方胶水,透明且能附着稳固。整体造型稳定,成型后形成半圆造型,发光角度在胶体作用下可达到160度,在高倍显微镜下,胶体精度要小于0.03mg;胶体把整体驱动IC和红绿蓝发光芯片全部覆盖住,在重力作用下,整体覆盖均匀,后续出光效果一致,如图4所示。
如图8所示,本发明实施例的光电玻璃显示屏的制作工艺包括以下步骤:
S1、在玻璃基板上依次形成种子层和铜膜层;
S2、在铜膜层上印刷电路;
S3、在该电路上焊接多个发光显示单元,形成发光阵列;每个发光显示单元包括驱动芯片和一组裸晶芯片,每组裸晶芯片包括红、绿、蓝三种裸晶发光芯片或者一个到三个单色裸晶发光芯片,呈品字型或者一字型排列;一个驱动芯片连接一组或者多组裸晶芯片;
S4、在每个发光显示单元上覆盖一层胶体胶体,覆盖胶体后的每个裸晶发光芯片的发光角度大于等于160°;
S5、切割,形成成品并进行测试,合格后包装。
本发明采用玻璃材料,使得电路非芯片部分几乎都是透明通透的,从而大大提高了显示屏的通透度。
其中步骤S2具体为:将钢网覆盖于玻璃基板上,双面印上焊锡(一面放置RGB晶圆,一面放置驱动IC),焊锡熔点温度控制在180℃以内,用刮刀刮平,将锡膏均匀涂抹到玻璃基板的焊盘上。该步骤中,焊锡的印刷精度可达± 0.02mm,重复定位精度±0.008mm。其中钢网是玻璃基板焊盘的镂空磨具,主要功能是附着在PCB表面,遮档非焊盘部分,刷锡完成之后,移除钢网。
为了提高光电玻璃显示屏的通透度,本发明尽量减少印刷电路的线宽,同时又需要满足电路的电流要求。
本发明实施例电路中铜箔线条宽度可以为10um-10000um,但是基于如下的公式,可以将线路宽度设计为50~200um左右,极大提高了通透度。光电玻璃线路宽度与像素间距、电流有关,而电流与亮度有关。具体铜箔线条宽度可依据点间距,亮度等要求,根据总结的算法而得,既满足电流需要,又获得最大限度的通透度。具体公式与数据如下表1所示:
表1:不同铜箔厚度下的电路铜箔线条宽度与电流关系表
Figure PCTCN2022123285-appb-000001
计算铜箔截面积S公式如下:
Figure PCTCN2022123285-appb-000002
其中电流I是电流最大值,直接会影响铜箔宽度,从而影响通透度。
为了达到最大限度的通透度,本发明通过公式准确计算出每一个设计的电流最大值,而不是像一般现有技术中的设计那样,都使用一个统一值。电流的计算函数形式如下:
I=f(L,X,J),其中L指亮度(裸晶透明光电玻璃亮度),X指像素(像素点间距),J指晶元面积;
该电流I的函数中:
当亮度L和像素X保持不变时,晶元J越大,电流I越大;
当亮度L和晶元J大小保持不变时候,像素X越大,电流I越小;
当像素X和晶元J大小保持不变时,亮度L越高,电流I越大;
即电流I与亮度L和晶元J大小成正比,与像素X成反比。
公式中S为覆铜截面积,单位为平方mil,K为修正系数,覆铜在内层时K取值0.024,在外层时K取值0.048,T为最大温升,I为允许的最大电流,单位为A,根据不同点间距(像素)有所调整。
本发明实施例电路中PCB板的铜箔厚度可以为50um左右。
计算宽度W的公式:W=E*S/d;
E为像素点间距调整常数,像素间距小于2mm时E为1.1,等于2mm时E为1,大于等于2mm时E为0.9。
d为铜箔的厚度,假设本发明实施例电路中像素为2mm,d取50um,即d=0.05/0.0254=1.968mil。假设容许最大温升T为20℃,电流I为1A情况下:
根据公式,
Figure PCTCN2022123285-appb-000003
线宽W=E*S/d=1.0*7.12/1.968=5.024mil=142um。
计算得出,该设计情况下,铜箔宽度为142um。
本发明中,通常保持光电玻璃产品的可靠稳定性及超高的通透性,蚀刻线铜箔宽,计算出的宽度范围常在50~200um左右,是常规1mm宽的1/5到1/20,远小于1mm,大大提高了通透性。
焊盘如图5、6所示。焊盘设计在加工玻璃材质的基板上,连接的裸晶发光芯片和驱动IC也直接焊到了玻璃基板的电路上,采用纯金线或合金线将发光芯片的P/N极和玻璃基板电路上的电极连接,然后焊接在一起,保证了发光芯片的电路的连接完整性。
本发明在玻璃基板上依次形成种子层和铜膜层,种子层为铜膜纳米薄层,作为基层;铜膜层作为导电层。铜膜层可采用铜、铜镍合金、铜钛合金、铜钼合金、铜铬合金等按一定比较进行混合脱膜进行制作,脱膜力度在1.5~2.5KG平方厘米进行机械拉扯。铜膜电导率是ITO膜的电导率的10倍以上,串联电路下,电流传输过程阻抗小,压降低,功耗小。本发明通过上述工艺升级了玻璃复合金属粘黏工艺,将电路做到玻璃基板材料上,并在打线与焊接过程中线路不会拉扯掉金属焊盘,而玻璃本身是无色透明材质,从而实现了微电子裸晶透明化显示。
裸晶技术结合玻璃基板的特殊工艺,先将裸晶和驱动IC放置在玻璃基板上,然后拉线,焊接,最后胶体,从而现实微小透明化产品。胶体是将改性环氧树脂和石墨扩散粉按照所需色温调和的混合胶水,敷盖于发光显示单元上,厚度大约在150um,水平放置自流平。本发明实施例中改性环氧树脂和石墨扩散粉按照1:1~1:10混合制作胶体,按照不同的颜色需求,取对应比例。胶体工艺采用的单点压模工艺,一体式点投在晶体顶部,后续在压模下,成水滴型光滑透镜,利于出光及光效无损。胶体步骤完成后,可用烤箱加温固化,然后正面切割胶体,保留胶面厚度略高于裸晶发光芯片的厚度,一般选择高出5~15um。侧面沿预制线切除,公差控制在±0.1mm。
采用光电玻璃灯珠的产品点间距往往设计在8毫米以上,而采用裸晶技术方案可以使发光显示单元间的间距在5mm甚至2mm以下,比如很容易设计在2mm 左右。从而使显示屏的像素达到2毫米或更小,在保有一定通透度的前提下,整个光电玻璃显示屏会呈现2K,4K,8K或更高的高清画面的清晰显示。
其中步骤S3具体为:用真空吸取的吸嘴吸取裸晶发光芯片放置在相应位置上,将玻璃基板过12温区氮气回流焊,将裸晶发光芯片加固焊接。
进一步地,取裸晶发光芯片时,采用X/Y坐标定位方式,将其固定于准确位置;吸嘴采用N个一组,一次提取N个裸晶发光芯片。吸嘴精度为±20um。同理,相同方法固定驱动IC。
综上,本发明解决了光电玻璃通透率低的痛点,采用μm级RGB裸晶,将裸晶直接焊接在玻璃上,由于裸晶比灯珠要小好几倍,使得光电玻璃在通透度上大大提升。本发明采用纳米的沉金镀膜技术,使得电路阻抗小,像素间距可以做到5毫米以下,比如2毫米左右或更小,同时还保留了通透率,图像高清,达到了商显应用需求的范畴。RGB裸晶成一字型或者品字形排列,且采用胶体技术,将裸晶与空气隔离,既保证了发光LED裸晶的寿命,又提升了裸晶的发射角度。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种光电玻璃显示屏,其特征在于,包括玻璃基板,其上依次形成种子层和铜膜层,在铜膜层上印刷电路,在该电路上焊接多个发光显示单元,形成发光阵列;
    每个发光显示单元包括驱动芯片和一组裸晶芯片,每组裸晶芯片包括红、绿、蓝中任意一种、两种或者三种裸晶发光芯片,呈品字型或者一字型排列;一个驱动芯片连接一组或者多组裸晶芯片;
    每个发光显示单元上覆盖一层胶体,覆盖胶体后的每个裸晶发光芯片的发光角度大于等于160°。
  2. 根据权利要求1所述的光电玻璃显示屏,其特征在于,裸晶芯片与裸晶通过拉线焊接在定制化的焊盘上。
  3. 根据权利要求1所述的光电玻璃显示屏,其特征在于,相邻发光显示单元的间距小于等于5mm。
  4. 根据权利要求1所述的光电玻璃显示屏,其特征在于,种子层为铜膜纳米薄层。
  5. 根据权利要求1所述的光电玻璃显示屏,其特征在于,胶体采用改性环氧树脂和石墨扩散粉混合胶体。
  6. 根据权利要求5所述的光电玻璃显示屏,其特征在于,胶体工艺采用单点压模工艺,胶体形成水滴型光滑透镜。
  7. 一种光电玻璃显示屏的制作工艺,其特征在于,包括以下步骤:
    S1、在玻璃基板上依次形成种子层和铜膜层;
    S2、在铜膜层上印刷电路;
    S3、在该电路上焊接多个发光显示单元,形成发光阵列;每个发光显示单元包括驱动芯片和一组裸晶芯片,每组裸晶芯片包括红、绿、蓝中任意一种、两种或者三种裸晶发光芯片,呈品字型或者一字型排列;一个驱动芯片连接一 组或者多组裸晶芯片;
    S4、在每个发光显示单元上覆盖一层半圆形胶体,覆盖胶体后的每个裸晶发光芯片的发光角度大于等于160°;
    S5、切割,形成成品并进行测试,合格后包装。
  8. 根据权利要求7所述的光电玻璃显示屏的制作工艺,其特征在于,其中步骤S2具体为:电路中铜箔线条宽为50~200um。
  9. 根据权利要求7所述的光电玻璃显示屏的制作工艺,其特征在于,其中步骤S3具体为:用真空吸取的吸嘴吸取裸晶发光芯片放置在相应位置上,将玻璃基板过12温区氮气回流焊,将裸晶发光芯片加固焊接。
  10. 根据权利要求9所述的光电玻璃显示屏的制作工艺,其特征在于,取裸晶发光芯片时,采用X/Y坐标定位方式,将其固定于准确位置;吸嘴采用N个一组,一次提取N个裸晶发光芯片。
PCT/CN2022/123285 2022-07-18 2022-09-30 光电玻璃显示屏及工艺 WO2024016480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210838906.5A CN115249440B (zh) 2022-07-18 2022-07-18 光电玻璃显示屏及工艺
CN202210838906.5 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024016480A1 true WO2024016480A1 (zh) 2024-01-25

Family

ID=83699509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123285 WO2024016480A1 (zh) 2022-07-18 2022-09-30 光电玻璃显示屏及工艺

Country Status (2)

Country Link
CN (1) CN115249440B (zh)
WO (1) WO2024016480A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141557A (ja) * 2000-10-30 2002-05-17 Kojima Press Co Ltd 封止樹脂に光拡散素子を混入したled
JP2007005091A (ja) * 2005-06-22 2007-01-11 Mitsubishi Rayon Co Ltd 線状発光素子アレイ
CN104217659A (zh) * 2014-09-29 2014-12-17 广东威创视讯科技股份有限公司 新型led显示屏
CN105698137A (zh) * 2016-01-29 2016-06-22 中山昂帕微电子技术有限公司 一种含裸晶系统级封装led照明驱动电源组件及制造工艺
CN206649840U (zh) * 2017-02-14 2017-11-17 武汉恩倍思科技有限公司 高密的led发光芯片直发光的无灯珠显示屏
CN210628304U (zh) * 2019-10-09 2020-05-26 深圳韦侨顺光电有限公司 基于芯片堆叠的集成封装led显示面板
CN216775107U (zh) * 2021-12-01 2022-06-17 武汉恩倍思科技有限公司 基于金属膜层电路的玻璃晶膜屏

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963288A (zh) * 2009-07-24 2011-02-02 柏友照明科技股份有限公司 可提高发光效率及控制出光角度的发光结构及其制作方法
TWI426594B (zh) * 2010-02-08 2014-02-11 能夠提高演色性之混光式發光二極體封裝結構
CN103247749A (zh) * 2012-02-06 2013-08-14 东莞柏泽光电科技有限公司 多芯片封装结构及其制造方法
CN106782130B (zh) * 2017-02-21 2020-07-17 深圳市晶台股份有限公司 一种高透明度led显示屏
CN111162063A (zh) * 2018-11-08 2020-05-15 佛山市国星光电股份有限公司 一种led器件、显示屏及其封装工艺
CN109931568A (zh) * 2019-04-15 2019-06-25 广西丰奥能源科技有限责任公司 一种集成式太阳能灯及制作方法
CN212277196U (zh) * 2020-04-23 2021-01-01 深圳韦侨顺光电有限公司 集成封装led显示面板
CN212486874U (zh) * 2020-07-30 2021-02-05 清能德创电气技术(北京)有限公司 一种pcb板
CN112040642A (zh) * 2020-08-07 2020-12-04 上海德朗能电子科技有限公司 一种可起到保险丝功能的pcb连接板
CN114158199A (zh) * 2021-12-31 2022-03-08 中科长城海洋信息系统有限公司长沙分公司 一种支持多功能槽的大功耗vpx背板及其设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141557A (ja) * 2000-10-30 2002-05-17 Kojima Press Co Ltd 封止樹脂に光拡散素子を混入したled
JP2007005091A (ja) * 2005-06-22 2007-01-11 Mitsubishi Rayon Co Ltd 線状発光素子アレイ
CN104217659A (zh) * 2014-09-29 2014-12-17 广东威创视讯科技股份有限公司 新型led显示屏
CN105698137A (zh) * 2016-01-29 2016-06-22 中山昂帕微电子技术有限公司 一种含裸晶系统级封装led照明驱动电源组件及制造工艺
CN206649840U (zh) * 2017-02-14 2017-11-17 武汉恩倍思科技有限公司 高密的led发光芯片直发光的无灯珠显示屏
CN210628304U (zh) * 2019-10-09 2020-05-26 深圳韦侨顺光电有限公司 基于芯片堆叠的集成封装led显示面板
CN216775107U (zh) * 2021-12-01 2022-06-17 武汉恩倍思科技有限公司 基于金属膜层电路的玻璃晶膜屏

Also Published As

Publication number Publication date
CN115249440B (zh) 2023-08-25
CN115249440A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CN108807356B (zh) 一种四合一mini-LED模组、显示屏及制造方法
CN110018593B (zh) 板上芯片封装基板及其制作方法、显示装置、电子设备
EP3582262B1 (en) Four-in-one mini-led module, display screen and manufacturing method
CN208045002U (zh) 高对比度集成封装显示模组结构
CN208240676U (zh) 一种四合一mini-LED模组及其显示屏
CN101350160B (zh) 发光二极管显示屏及其封装方法
WO2023040370A1 (zh) Led芯片、led芯片制备方法和封装方法
US20220310873A1 (en) Display device and manufacturing method thereof
CN207852729U (zh) 一种倒装cob双色温led光源
CN111781772A (zh) Led背光源、led背光模组及制备方法
CN203433761U (zh) 一种led发光显示板
CN103594463B (zh) 晶圆倒置式集成led显示封装模块
WO2024016480A1 (zh) 光电玻璃显示屏及工艺
EP4016649A1 (en) Light-emitting device and manufacturing method, and display screen and lighting equipment comprising said light-emitting device
CN109473412B (zh) 一种倒装led发光芯片固晶结构及其固晶方法
CN207068918U (zh) 一种芯片级cob模组
CN1516088A (zh) Led点矩阵显示器的模块装置
TWI404241B (zh) 發光二極體及其封裝方法
CN106653807A (zh) 贴片式oled显示单元器件、显示屏及其制作方法
CN110634414A (zh) 一种透明显示模组及其制造方法
CN214848669U (zh) 一种高对比度的led显示器件及模组
CN219457652U (zh) 一种全彩led封装结构
CN117119709B (zh) 一种MiniLED高清显示屏线路板的制作工艺
TWI824948B (zh) 晶圓級發光二極體晶粒的無載板封裝方法
CN213459783U (zh) 双连体发光二极管封装结构及显示屏模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951744

Country of ref document: EP

Kind code of ref document: A1