WO2024016136A1 - Trp或trp组的相位因子和幅度因子发送/接收方法及其装置 - Google Patents

Trp或trp组的相位因子和幅度因子发送/接收方法及其装置 Download PDF

Info

Publication number
WO2024016136A1
WO2024016136A1 PCT/CN2022/106341 CN2022106341W WO2024016136A1 WO 2024016136 A1 WO2024016136 A1 WO 2024016136A1 CN 2022106341 W CN2022106341 W CN 2022106341W WO 2024016136 A1 WO2024016136 A1 WO 2024016136A1
Authority
WO
WIPO (PCT)
Prior art keywords
factor
trp
amplitude
phase
sub
Prior art date
Application number
PCT/CN2022/106341
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002406.6A priority Critical patent/CN117730487A/zh
Priority to PCT/CN2022/106341 priority patent/WO2024016136A1/zh
Publication of WO2024016136A1 publication Critical patent/WO2024016136A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present application relates to the field of communication technology, and in particular to a method and device for transmitting/receiving phase factors and amplitude factors of a TRP or TRP group.
  • Multi-point cooperative transmission refers to multiple transmission reception points (Muplti Transmission Reception Point, mTRP)/multi-panel (Panel) providing data services for one user.
  • mTRP Transmission Reception Point
  • Panel multi-panel
  • the base station determines the downlink transmission precoding of the terminal device based on the codebook, it needs to know the amplitude factor a n and/or the phase factor p n of the TRP or TRP group.
  • Embodiments of the present application provide a method and device for transmitting/receiving phase factors and amplitude factors of a TRP or a TRP group, and can incorporate at least one of the phase factors and amplitude factors of a TRP or a TRP group into a TRP or a TRP group.
  • the combined coefficient matrix is sent to the network device, which can reduce the signaling overhead occupied when the terminal device directly feeds back the phase factor and amplitude factor to the network device.
  • embodiments of the present application provide a method for transmitting phase factors and amplitude factors of a TRP or TRP group.
  • the method includes:
  • At least one of the phase factors and amplitude factors of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group, and the TRP group includes at least one TRP.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group can be incorporated into the combined coefficient matrix of the TRP or TRP group and sent to the network device, which can reduce the direct feedback of phase factors from the terminal device to the network device. and amplitude factor.
  • the network device can be enabled to understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • embodiments of the present application provide another method for receiving phase factors and amplitude factors of a TRP or TRP group.
  • the method includes:
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • embodiments of the present application provide another communication device that has some or all of the functions of the network device in the method example described in the second aspect.
  • the functions of the communication device may have some of the functions in this application.
  • the functions in all embodiments may also be used to implement any one embodiment of the present application independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a chip system, which includes at least one processor and an interface for supporting network equipment to implement the functions involved in the second aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic diagram of a coordinated multi-point transmission provided by an embodiment of the present application.
  • Figure 1a is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 3 is a schematic flow chart of another method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of another method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of another method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • FIG. 6 is a schematic flowchart of another method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 7 is a schematic flowchart of another method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 8 is a schematic flow chart of another method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 9 is a schematic flowchart of another method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • Figure 10 is a schematic flowchart of a method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 11 is a schematic flow chart of another phase factor and amplitude factor receiving method for a TRP or TRP group provided by an embodiment of the present application;
  • Figure 12 is a schematic flow chart of another method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 13 is a schematic flow chart of another method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 14 is a schematic flow chart of another method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 15 is a schematic flowchart of another method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 16 is a schematic flowchart of another method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application;
  • Figure 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as “when” or “when” or “in response to determining”. For the purposes of brevity and ease of understanding, this article is characterizing When referring to a size relationship, the terms used are “greater than” or “less than”, “higher than” or “lower than”.
  • Multipoint cooperative transmission technology can be roughly divided into two types: coherent transmission (Coherent Joint Transmission, CJT) and non-coherent transmission (InCoherent Joint Transmission, NCJT).
  • CJT coherent transmission
  • NCJT InCoherent Joint Transmission
  • CJT means that each data stream will be mapped to the m-TRP/Panel participating in the collaboration through a weighted vector.
  • CJT is equivalent to splicing multiple sub-arrays into a higher-dimensional virtual array to obtain higher shaping or precoding gains.
  • Figure 1 shows the scenario where three TRPs serve UE through CJT.
  • the channels from UE to each TRP are represented as H 1 , H 2 and H 3 respectively.
  • this channel can be combined into a higher-dimensional channel, that is, Then calculate the UE's downlink data transmission precoding according to H.
  • the following optional codebook structure can be used to calculate the user's downlink data transmission precoding.
  • a n and p n respectively represent the phase and amplitude factors corresponding to the nth TRP.
  • W 1,n represents the time domain (SD) basis vector corresponding to the nth TRP, represents the combination coefficient corresponding to n TRPs
  • W f,n represents the corresponding frequency domain (Frequency FD) basis vector of the nth TRP
  • W SF,n represents the combination of SD and FD basis vectors corresponding to the nth TRP
  • W f represents the FD basis vector corresponding to N TRPs.
  • each coefficient in the combined coefficient can be expressed as the product of two elements, as shown in the following formula:
  • r 0 and r 1 represent the reference amplitudes of the first polarization direction and the second polarization direction respectively, represents the combined coefficient matrix
  • the differential coefficient in the l-th row and m-column in the p-th polarization direction, the differential coefficient can be represented by the corresponding differential amplitude and differential phase.
  • Figure 1a is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to a network device and a terminal device.
  • the number and form of devices shown in Figure 1a are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1a includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • side-link transmission modes there are 4 side-link transmission modes.
  • Side link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (device-to-device, D2D) communication.
  • Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications.
  • resource allocation is scheduled by the network device 101.
  • the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources.
  • a terminal device with better signal or higher reliability can be used as the terminal device 102 .
  • the first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
  • any embodiment of the present application provides a phase factor and amplitude factor sending/receiving method for a TRP or a TRP group, which can be executed alone, or in combination with possible implementation methods in other embodiments, or in combination. Any technical solutions in related technologies are executed together.
  • Figure 2 is a schematic flowchart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor sending method is performed by the terminal device.
  • the method may include but is not limited to the following steps:
  • the TRP group may include one or more TRPs.
  • the terminal device can correspond to one or more TRP groups.
  • the phase factor and amplitude factor of each TRP or TRP group need to be reported to the network device so that the network device can determine the terminal based on the codebook and the amplitude factor and phase factor of the TPR group.
  • Downlink transmission precoding of the device
  • the terminal device may implicitly report the phase factor and/or amplitude factor corresponding to the TRP or TPR group to the network device.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group. That is, at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group, and is sent to the network device through the combined coefficient matrix of the TRP or TRP group.
  • a TRP group corresponds to a combination coefficient matrix, that is to say, each TRP or TRP group corresponds to its own combination coefficient matrix.
  • the terminal device incorporates at least one of the phase factors and amplitude factors of the TRP or TRP group into the combined coefficient matrix of the TRP or TRP group, and may use a wideband (Wide Band, WB) and/or sub- Sent to the network device in Sub-Band (SB) mode.
  • WB Wideband
  • SB Sub-Band
  • the terminal device can incorporate the first factor of the phase factor and amplitude factor of the TRP or TRP group into the combined coefficient matrix of the TRP or TRP group, and can send it to the network in a broadband manner or a sub-band manner. equipment. Further, the terminal device may send the TRP or the second factor of the phase factor and amplitude factor of the TRP group to the network device in a broadband manner or a sub-band manner.
  • the second factor can be sent to the network device alone in a broadband mode or a sub-band mode; for another example, the second factor can be combined with other parameters, and the combined result is sent to the network device in a broadband mode or a sub-band mode.
  • the first factor may be a phase factor and the second factor may be an amplitude factor; or the first factor may be an amplitude factor and the second factor may be a phase factor.
  • the terminal device can incorporate the phase factor and amplitude factor of the TRP or TRP group into the combined coefficient matrix of the TRP or TRP group. Further, the terminal device can send the signal to the terminal in a broadband mode or a sub-band mode. Internet equipment.
  • At least one factor among the phase factor and the amplitude factor of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group.
  • At least one factor of the phase factor and amplitude factor of the TRP or TRP group can be incorporated into the combined coefficient matrix of the TRP or TRP group and sent to the network device, which can reduce the time required for the terminal device to directly feed back the phase factor and amplitude factor to the network device.
  • the occupied signaling overhead can be enabled to understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 3 is a schematic flow chart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor transmission method of the TRP or TRP group is performed by the terminal device.
  • the method may include but is not limited to the following steps:
  • S301 Multiply at least one of the phase factors and amplitude factors of the TRP or TRP group with the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • phase factor and the amplitude factor are multiplied by the combined coefficient matrix and quantized.
  • amplitude factors can be quantized independently.
  • phase factors can be independently quantized.
  • the first factor of the phase factor and the amplitude factor, and the broadband factor part of the second factor of the phase factor and the amplitude factor are multiplied with the combined coefficient matrix and quantized.
  • the subband factor portions of the second factor can be independently quantized.
  • the first factor is the amplitude factor
  • the second factor is the phase factor.
  • the phase factor includes a broadband phase factor and a sub-band phase factor.
  • the amplitude factor and broadband phase factor can be multiplied by the combined coefficient matrix and quantized, and the sub-band phase factor can be quantized.
  • the first factor is the phase factor
  • the second factor is the amplitude factor.
  • the amplitude factor includes a broadband amplitude factor and a sub-band amplitude factor.
  • the phase factor and the broadband amplitude factor can be multiplied by the combined coefficient matrix and quantized.
  • the subband amplitude factors are quantized independently.
  • the combination coefficient matrix may be a subband combination coefficient matrix.
  • the quantization results may be sent to the network device in a broadband manner and/or a sub-band manner.
  • the quantization results corresponding to the phase factor and the amplitude factor are sent to the network device in a broadband manner.
  • the quantized results obtained by multiplying and quantizing the phase factors and amplitude factors corresponding to the combined coefficient matrix can be sent to the network device in a broadband manner.
  • the quantization result corresponding to the first factor among the phase factor and the amplitude factor is sent to the network device in a broadband manner, and further, the quantization result corresponding to the second factor among the phase factor and the amplitude factor is sent through the subband. sent to the network device.
  • the quantized result after product operation and quantization of the phase factor and the combination coefficient matrix can be sent to the network device through broadband, and the quantization result or independent quantization result after the product operation and quantization of the amplitude factor and the combination coefficient matrix can be sent through the sub-network device. sent to the network device.
  • the phase factor, the broadband amplitude factor and the combined coefficient matrix can be multiplied and quantized, and the quantized result can be sent to the network device through the broadband method, and the quantized result of the sub-band amplitude factor can be sent to the network device through the sub-band method.
  • the quantized result after the product operation of the amplitude factor, the broadband phase factor and the combined coefficient matrix can be sent to the network device through the broadband method, and the quantized result of the sub-band phase factor can be sent to the network device through the sub-band method.
  • the phase factor includes a sub-band phase factor and a broadband phase factor
  • the amplitude factor includes a sub-band amplitude factor and a broadband amplitude factor.
  • the sub-band phase factor and sub-band amplitude factor can be multiplied and quantized with the sub-band combination coefficient matrix, and the quantized result is sent to the network device in a sub-band manner. Further, the independent quantization results of the broadband phase factor and the broadband amplitude factor can be sent to the network device in a broadband manner.
  • the quantization results corresponding to the phase factor and the amplitude factor are sent to the network device in a sub-band manner.
  • the quantized results obtained by multiplying the phase factor and amplitude factor with the combined coefficient matrix can be sent to the network device in a sub-band manner.
  • the quantization result obtained by multiplying the sub-band phase factor and sub-band amplitude factor with the sub-band combination coefficient is sent to the network device in a sub-band manner.
  • At least one factor among the phase factor and the amplitude factor of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group.
  • At least one factor of the phase factor and amplitude factor of the TRP or TRP group can be incorporated into the combined coefficient matrix of the TRP or TRP group and sent to the network device, which can reduce the time required for the terminal device to directly feed back the phase factor and amplitude factor to the network device.
  • the occupied signaling overhead can be enabled to understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 4 is a schematic flow chart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor sending method is performed by the terminal device.
  • the method may include but is not limited to the following steps:
  • S401 Multiply at least one of the phase factors and amplitude factors of the TRP or TRP group with the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the product of the phase factor and the amplitude factor is determined, and the product is multiplied by the combination coefficient in the combination coefficient matrix and quantized.
  • the phase factor and amplitude factor are After multiplying, we get Quantify again, yes
  • the amplitude and phase of each coefficient in are quantized separately, or the second type (Type II) codebook in the existing protocol is used to combine the coefficients By differential means in the polarization direction Quantify.
  • two TRPs namely the first TRP and the second TRP, serve an edge UE through the CJT.
  • the UE uses the calculation method of the existing Type II codebook to obtain the respective values of the two TRPs based on the downlink channel from the two TRPs to the UE.
  • the combined coefficient matrix is:
  • first TRP and the second TRP are two independent TRPs, and the first TRP and the second TRP do not belong to a TRP group.
  • phase factor and amplitude factor corresponding to the first TRP are p 1 and a 1 respectively; the phase factor and amplitude factor corresponding to the second TRP are p 2 and a 2 respectively.
  • phase factor and amplitude factor are multiplied by the combined coefficient matrix as follows:
  • the reference amplitudes s 0,1 , s 1,1 , s 0,2 and s 1,2 are quantized using a bits, while the amplitude and phase of the differential coefficient are quantized using b bits and c bits respectively.
  • the terminal device may multiply the amplitude factor of the TRP or TRP group by the reference amplitude in the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the terminal device may multiply the phase factor of the TRP or TRP group with the differential coefficient in the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the terminal device may multiply the amplitude factor of the TRP or TRP group by the reference amplitude in the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the terminal device may perform independent quantization by multiplying the phase factor of the TRP or TRP group by the differential coefficient in the combined coefficient matrix of the TRP or TRP group.
  • the amplitude factor of the TRP group is related to
  • the reference amplitudes of are multiplied and then quantized, that is, a 1 r 0,1 , a 1 r 1,1 and a 2 r 0,2 , a 2 r 1,2 are quantized by a bits, and the amplitudes of other differential coefficients are b bits Quantify.
  • the phase factors p 1 and p 2 are multiplied by the phase of the differential coefficient and then quantized by c bits.
  • the phase factor is quantized by d bits
  • the phase of the differential coefficient is quantized by e bits.
  • the amplitude factors a 1 and a 2 are quantized by a bits.
  • the first TRP and the second TRP are two independent TRPs, and the first TRP and the second TRP do not belong to a TRP group.
  • the phase factor and amplitude factor corresponding to the first TRP are p 1 and a 1 respectively
  • the phase factor and amplitude factor corresponding to the second TRP are p 2 and a 2 respectively.
  • the amplitude factors a 1 and a 2 and the phase factors p 1 and p 2 can be normalized to obtain:
  • phase factor and amplitude factor corresponding to the first TRP are 1, the phase factor and amplitude factor corresponding to the first TRP are wirelessly reported.
  • the quantized result obtained by multiplying the phase factor and the amplitude factor with the combined coefficient matrix can be sent to the network device in a broadband manner.
  • At least one factor among the phase factor and the amplitude factor of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group.
  • At least one factor of the phase factor and amplitude factor of the TRP or TRP group can be incorporated into the combined coefficient matrix of the TRP or TRP group and sent to the network device, which can reduce the time required for the terminal device to directly feed back the phase factor and amplitude factor to the network device.
  • the occupied signaling overhead Furthermore, the network device can be enabled to understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission. Please refer to Figure 5.
  • FIG. 5 is a schematic flowchart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor sending method is performed by the terminal device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • S501 Multiply the amplitude factor of the TRP or TRP group and the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • S502 Multiply the broadband phase factor of the TRP or TRP group and the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the phase factor includes a broadband phase factor and a sub-band phase factor.
  • the terminal device can perform a product operation on the broadband phase factor and the differential coefficient in the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the terminal device can directly quantize the sub-band phase factors independently.
  • the subband phase factor can be quantized directly using n bits.
  • the terminal device can process the sub-band phase factors through the sub-band combination coefficient matrix and then quantize them.
  • the terminal device determines the subband combination coefficient matrix corresponding to the TRP group, and multiplies the subband phase factor by the subband combination coefficient matrix to obtain the first subband combination coefficient matrix.
  • the terminal device can compress and quantize the first sub-band combination coefficient matrix based on the frequency domain basis vector. That is to say, the terminal device multiplies the FD basis vector W f with the first sub-band combination coefficient matrix to obtain the compressed The first subband combination coefficient matrix after Further, the terminal device can quantize the compressed first subband combination coefficient matrix through set bits.
  • S504 Send the quantization result to the network device in a broadband manner and/or a sub-band manner.
  • the quantization result corresponding to the amplitude factor and the quantization result corresponding to the broadband phase factor are sent to the network device in a broadband manner, and the quantization result of the subband phase factor is sent to the network device in a subband manner. That is to say, the terminal equipment quantizes the product of the amplitude factor and the TRP or TRP group's combined coefficient, and sends the quantized result of the product of the broadband phase factor and the TRP or TRP group's combined coefficient to the network through broadband. equipment.
  • the quantization result corresponding to the amplitude factor is sent to the network device in a broadband manner
  • the quantization result corresponding to the phase factor is sent to the network device in a subband manner.
  • the quantization results of the phase factors include the quantization results of the broadband phase factors and the quantization results of the sub-band phase factors.
  • the terminal device can send the quantized result of the broadband phase factor and the quantized result of the sub-band phase factor to the network device in a sub-band manner.
  • two TRPs serve an edge UE through CJT.
  • the UE uses the calculation method of the existing Type II codebook to obtain the combined coefficient matrix of each of the two TRPs according to the downlink channel from the two TRPs to the UE, as in the above embodiment. of and
  • the terminal device can multiply the amplitude factor of the TRP or TRP group with the reference amplitude in the combination coefficient matrix of the TRP or TRP group and perform quantization.
  • the terminal device can multiply the amplitude factor of the TRP or TRP group with the reference amplitude in the combination coefficient matrix of the TRP or TRP group and perform quantization.
  • the phase factor of a TRP or TRP group may include a WB phase factor and a SB phase factor.
  • the WB phase factor may be multiplied by the differential coefficients in the combined coefficient matrix of the TRP or TRP group and quantized.
  • WB phase factor may be multiplied by the differential coefficients in the combined coefficient matrix of the TRP or TRP group and quantized.
  • the number of subbands is N 3 .
  • the band phase factors are p l,n,0 and p l,n,1 , where the subscripts 0 and 1 represent the first polarization direction and the second polarization direction respectively.
  • the SB phase factor of each subband is reported through x bits.
  • the subband phase factor of TRP is p l,n
  • the subband combination coefficient S corresponding to the TRP is expressed as:
  • the second sub-band combination coefficient matrix T Multiplying each sub-band phase factor p l,n by the sub-band combination coefficient S, the second sub-band combination coefficient matrix T can be obtained:
  • T is compressed and quantized by the M frequency domain basis vectors of the TRP or TRP group, and then sent to the network device in a broadband mode or a sub-band mode.
  • At least one factor among the phase factor and the amplitude factor of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group.
  • At least one factor of the phase factor and amplitude factor of the TRP or TRP group can be incorporated into the combined coefficient matrix of the TRP or TRP group and sent to the network device, which can reduce the time required for the terminal device to directly feed back the phase factor and amplitude factor to the network device.
  • the occupied signaling overhead can be enabled to understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • FIG. 6 is a schematic flowchart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor sending method is performed by the terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • S601 Multiply the phase factor of the TRP or TRP group and the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • S602 Multiply the broadband amplitude factor of the TRP or TRP group and the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the amplitude factor includes a broadband amplitude factor and a sub-band amplitude factor.
  • the terminal device can perform a product operation on the broadband amplitude factor and the reference amplitude in the combined coefficient matrix of the TRP or TRP group and perform quantization.
  • the terminal device can directly quantize the subband amplitude factors independently.
  • the subband amplitude factors can be quantized directly using n bits.
  • the terminal device can process the subband amplitude factors through the subband combination coefficient matrix and then quantize them.
  • the terminal device determines the subband combination coefficient matrix corresponding to the TRP group, and further multiplies the subband amplitude factor with the subband combination coefficient matrix to obtain a second subband combination coefficient matrix, based on the frequency domain corresponding to the TRP group.
  • the basis vector compresses and quantizes the second sub-band combination coefficient matrix. That is to say, the terminal device multiplies the FD basis vector W f with the second sub-band combination coefficient matrix to obtain the compressed second sub-band combination coefficient matrix. . Further, the terminal device can quantize the compressed second subband combination coefficient matrix through the set bits.
  • S604 Send the quantization result to the network device in a broadband manner and/or a sub-band manner.
  • the quantization result corresponding to the phase factor and the quantization result corresponding to the broadband amplitude factor are sent to the network device in a broadband manner, and the quantization result of the subband amplitude factor is sent to the network device in a subband manner. That is to say, the terminal device sends the quantized result of the product operation and quantization of the phase factor and the combination coefficient, and the quantization result of the product operation and quantization of the broadband amplitude factor and the combination coefficient, both to the network device in a broadband manner.
  • the quantization result corresponding to the phase factor is sent to the network device in a broadband manner
  • the quantization result corresponding to the amplitude factor is sent to the network device in a subband manner.
  • the quantization results of the amplitude factors include the quantization results of the broadband amplitude factors and the quantization results of the sub-band amplitude factors.
  • the terminal device can send the quantized result of the broadband phase factor and the quantized result of the sub-band phase factor to the network device in a sub-band manner.
  • At least one factor among the phase factor and the amplitude factor of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group can be incorporated into the combined coefficient matrix of the TRP or TRP group and sent to the network device, which can reduce the time required for the terminal device to directly feed back the phase factor and amplitude factor to the network device. signaling overhead.
  • the network device can be enabled to understand the TRP status of the terminal device, and thereby determine the precoding used for downlink transmission.
  • FIG. 7 is a schematic flowchart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor sending method is performed by the terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • S701 Multiply the subband amplitude factors and subband phase factors of the TRP or TRP group with the subband combination coefficient matrix of the TRP or TRP group to obtain a third subband combination coefficient matrix.
  • S702 Compress and quantize the third subband combination coefficient matrix based on the frequency domain basis vector of the TRP or TRP group.
  • the terminal device compresses the third sub-band combination coefficient matrix through the FD basis vector W f corresponding to the TRP group, and quantizes the compressed third sub-band combination coefficient matrix. That is to say, the compressed third sub-band combination coefficient matrix is obtained by multiplying the FD basis vector W f and the third sub-band combination coefficient matrix. The compressed third subband combination coefficient matrix is quantized by the set bits.
  • S703 Send the quantization result to the network device in a sub-band manner.
  • the terminal device may send the quantized results of the sub-band phase factors and the quantized results of the sub-band amplitude factors to the network device in a sub-band manner.
  • At least one factor among the phase factor and the amplitude factor of the TRP or TRP group is sent to the network device through the combined coefficient matrix of the TRP or TRP group.
  • At least one factor of the phase factor and amplitude factor of the TRP or TRP group can be incorporated into the combined coefficient matrix of the TRP or TRP group and sent to the network device, which can reduce the time required for the terminal device to directly feed back the phase factor and amplitude factor to the network device.
  • the occupied signaling overhead can be enabled to understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • FIG. 8 is a schematic flowchart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor sending method is performed by the terminal device. As shown in Figure 8, the method may include but is not limited to the following steps:
  • S801 independently quantify the phase factor and amplitude factor of the TRP or TRP group.
  • the same or different numbers of bits can be used to quantize the phase factor and amplitude factor of the TRP or TRP group respectively.
  • n bits can be used to quantize the phase factor
  • m bits can be used to quantize the amplitude factor.
  • the amplitude factor may include a broadband amplitude factor and a sub-band phase factor
  • the phase factor may include a broadband amplitude factor and a sub-band phase factor.
  • the terminal device can independently quantize the sub-band phase factor and the sub-band amplitude factor; and/or the terminal device can independently quantize the broadband phase factor and the broadband amplitude factor.
  • S802 Send the independent quantization results of the phase factor and the amplitude factor to the network device in a broadband manner and/or a sub-band manner.
  • the terminal device can send the independent quantization results of the phase factor and the amplitude factor to the network device in a broadband manner.
  • the terminal device can send the independent quantization results of the phase factor and the amplitude factor to the network device in a sub-band manner.
  • the terminal device can send the independent quantization result of the first factor among the phase factor and the amplitude factor to the network device in a broadband manner, and send the independent quantization result of the second factor among the phase factor and the amplitude factor in a sub-band manner. Sent to network device.
  • the terminal device can send the quantization results in the broadband phase factor and the broadband amplitude factor to the network device in a broadband manner. Further, the terminal device can send the quantized results of the sub-band phase factor and the sub-band amplitude factor to the network device in a sub-band manner.
  • the phase factor and amplitude factor of the TRP or TRP group are sent to the network device, so that the network device can understand the TRP situation of the terminal device and thereby determine the precoding for downlink transmission.
  • FIG. 9 is a schematic flowchart of a method for transmitting phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor sending method is performed by the terminal device. As shown in Figure 9, the method may include but is not limited to the following steps:
  • S901 independently quantify the phase factor and amplitude factor of the TRP or TRP group.
  • step S901 For a detailed introduction to step S901, please refer to the relevant content records in the above embodiments, and will not be described again here.
  • S902 Combine the independent quantization result of at least one factor among the phase factor and the amplitude factor with other parameters, and send the combined quantization result to the network device.
  • the other parameters may be reference amplitudes and/or differential coefficients in the combined coefficient matrix of the TRP or TRP group.
  • the independent quantization results corresponding to the phase factor and the amplitude factor can be combined with other parameters to obtain a combined quantization result.
  • the independent quantization result of the first factor among the phase factor and the amplitude factor can be combined with other parameters to obtain a combined quantization result.
  • the independent quantization result of at least one sub-band factor among the sub-band phase factor and the sub-band amplitude factor can be combined with other parameters to obtain a combined quantization result.
  • the independent quantization result of at least one broadband factor among the broadband phase factor and the broadband amplitude factor can be combined with other parameters to obtain a combined quantization result.
  • S903 Send the quantization result to the network device through the broadband method and/or the sub-band method.
  • the terminal device can send the independent quantization results of the phase factor and the amplitude factor to the network device in a broadband manner.
  • the terminal device can send the independent quantization results of the phase factor and the amplitude factor to the network device in a sub-band manner.
  • the terminal device can send the independent quantization result of the first factor among the phase factor and the amplitude factor to the network device in a broadband manner, and send the independent quantization result of the second factor among the phase factor and the amplitude factor in a sub-band manner. Sent to network device.
  • the terminal device can send the quantized results of the broadband phase factor and the broadband amplitude factor to the network device in a broadband manner; and send the quantized results of the sub-band phase factor and sub-band amplitude factor to the network device in a sub-band manner.
  • the terminal device can send the combined quantization result to the network device through the broadband or subband.
  • the combined quantization result can be sent to the network device in a sub-band manner, and the phase factor can be sent to the network device in a broadband manner. and the independent quantification result of the second factor in the amplitude factor.
  • the first factor may be a phase factor and the second factor may be an amplitude factor, or the first factor may be an amplitude factor and the second factor may be a phase factor.
  • the independent quantization result of at least one of the sub-band phase factors and sub-band amplitude factors can be combined with other parameters
  • the combined quantization result can be sent to the network device in a sub-band manner, and in a broadband manner Send independent quantized results of wideband phase factors and wideband amplitude factors to network devices.
  • the independent quantization result of at least one of the broadband phase factor and the broadband amplitude factor can be combined with other parameters
  • the combined quantization result can be sent to the network device in a broadband manner, and to the network in a subband manner.
  • the device sends independent quantized results of subband phase factors and subband amplitude factors.
  • the phase factor and amplitude factor of the TRP or TRP group are sent to the network device, so that the network device can understand the TRP situation of the terminal device and thereby determine the precoding for downlink transmission.
  • the normalized sum of the amplitude factors and phase factors of the terminal equipment corresponding to all TRPs or TRP groups is 1.
  • the terminal device may indicate to the network device at least one TRP or TRP group for which phase factors and/or amplitude factors do not need to be reported through indication information.
  • the indication information can occupy N bits.
  • TRPs or TRP groups that do not need to report phase factors and/or amplitude factors to the network device can also be pre-configured by the network device or predefined by the terminal device.
  • a TRP or TRP group that does not need to report phase factors and/or amplitude factors to the network device can be After normalization is completed the phase factor and/or amplitude factor is 1.
  • FIG. 10 is a schematic flowchart of a method for receiving phase factors and amplitude factors of a TRP or TRP group according to an embodiment of the present application.
  • the phase factor and amplitude factor reception method is performed by the network device. As shown in Figure 10, the method may include but is not limited to the following steps:
  • the TRP group includes one or more TRPs.
  • the network device In order to realize the transmission of downlink data, the network device needs to obtain the amplitude factor and phase factor of the TRP or TRP group of the terminal device, and then determine the downlink transmission precoding of the terminal device based on the codebook and the amplitude factor and phase factor of the TPR group.
  • the network device may receive the phase factor and/or amplitude factor of the TPR group reported implicitly by the terminal device.
  • the terminal device sends at least one of the phase factors and amplitude factors of the TRP or TRP group to the network device through the combined coefficient matrix of the TRP or TRP group. That is to say, the terminal device incorporates at least one of the phase factor and the amplitude factor into the combined coefficient matrix, and the network device can receive the combined coefficient matrix that incorporates at least one of the phase factor and the amplitude factor reported by the terminal device. , to determine the phase factor and/or amplitude factor of the TRP or TRP group based on the received combined coefficient matrix of the TRP or TRP group.
  • the network device receives the TRP or the combined coefficient matrix of the TRP group sent by the terminal device in a broadband manner and/or a subband manner, and the TRP or the combined coefficient matrix of the TRP group carries the phase factor and amplitude factor of the TRP or TRP group. at least one factor in .
  • the terminal device can incorporate the first factor of the phase factor and amplitude factor of the TRP or TRP group into the combined coefficient matrix of the TRP or TRP group, and can send it to the network in a broadband manner or a sub-band manner. equipment.
  • the network device may receive the TRP or the combined coefficient matrix of the TRP group carrying the first factor in a broadband or sub-band manner.
  • the first factor may be a phase factor and the second factor may be an amplitude factor; or the first factor may be an amplitude factor and the second factor may be a phase factor.
  • the terminal device can incorporate the phase factors and amplitude factors of the TRP or TRP group into the combined coefficient matrix of the TRP or TRP group, and can send them to the network device in a broadband mode or a sub-band mode.
  • the network device may receive the combined coefficient matrix of the TRP or TRP group carrying the two factors in a broadband manner or a sub-band manner.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device through the combined coefficient matrix of the TRP or TRP group is received.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group and reported to the network device, which can reduce the direct feedback phase factor and The signaling overhead occupied by the amplitude factor.
  • the network device can understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 11 is a schematic flow chart of a method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor reception method is performed by the network device. As shown in Figure 11, the method may include but is not limited to the following steps:
  • the terminal device can perform a product operation on the phase factor and amplitude factor of the TRP or TRP group and the combined coefficient matrix and perform quantization.
  • the terminal device can perform a product operation on the phase factor of the TRP or TRP group and the combined coefficient matrix and perform quantization. Further, the amplitude factors of a TRP or TRP group can be quantified independently.
  • the terminal device can perform a product operation on the amplitude factor of the TRP or TRP group and the combined coefficient matrix and perform quantization.
  • the phase factors of TRPs or groups of TRPs can be independently quantized.
  • the terminal device may perform a product operation on the first factor of the phase factor and the amplitude factor and the broadband factor part of the second factor of the phase factor and the amplitude factor with the combined coefficient matrix and perform quantization.
  • the subband factor portions of the second factor can be independently quantized.
  • the terminal device can perform a product operation on the sub-band factor part of the phase factor and amplitude factor with the combined coefficient matrix and perform quantization.
  • the broadband factor part of the phase factor and the amplitude factor can be independently quantized.
  • the combination coefficient matrix may be a subband combination coefficient matrix.
  • the network device may receive the quantization result corresponding to at least one of the phase factor and the amplitude factor sent by the terminal device in a broadband manner and/or a sub-band manner.
  • the network device can receive the quantized result of the phase factor in a broadband manner, and receive the quantized result corresponding to the amplitude factor in a broadband manner.
  • the network device may receive the quantized result of the phase factor sent by the terminal device in a broadband manner, and receive the quantized result corresponding to the amplitude factor sent by the terminal device in a broadband manner.
  • the network device may receive the quantization result corresponding to the first factor among the phase factor and the amplitude factor sent by the terminal device in a broadband manner, and receive the quantization result corresponding to the second factor among the phase factor and the amplitude factor in a sub-band manner.
  • the network device may receive the quantized result of the phase factor sent by the terminal device in a sub-band manner, and receive the quantized result corresponding to the amplitude factor sent by the terminal device in a sub-band manner.
  • S1102 Determine the phase factor and amplitude factor of the TRP or TRP group according to the quantization result.
  • the network device can perform reverse quantization to determine the phase factor and/or amplitude factor of the TRP or TRP group.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device through the combined coefficient matrix of the TRP or TRP group is received.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group and reported to the network device, which can reduce the direct feedback phase factor and The signaling overhead occupied by the amplitude factor.
  • the network device can understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 12 is a schematic flowchart of a method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor reception method is performed by the network device.
  • the method may include but is not limited to the following steps:
  • the phase factor includes a broadband phase factor and a sub-band phase factor.
  • the quantization result of the amplitude factor is obtained by multiplying the amplitude factor and the TRP or the combined coefficient matrix of the TRP group and quantizing the result.
  • the specific process please refer to the records of relevant content in the above embodiments, which will not be described again here.
  • the quantization result of the broadband phase factor is obtained by multiplying the broadband phase factor and the TRP or the combined coefficient matrix of the TRP group and performing quantization.
  • the relevant content records in the above embodiments please refer to the relevant content records in the above embodiments, which will not be described again here.
  • the network device may receive the quantized result of the amplitude factor and the quantized result of the broadband phase factor sent by the terminal device in a broadband manner.
  • S1202 Receive the quantized result of the sub-band phase factor sent by the terminal device in a sub-band manner.
  • the quantization result of the sub-band phase factor can be the result of direct quantization by the terminal device.
  • the quantization result of the sub-band phase factor can be obtained by multiplying the sub-band phase factor and the sub-band combination coefficient matrix of the TRP or TRP group, and performing compression and quantization based on the frequency domain basis vector of the TRP or TRP group.
  • the process please refer to the records of relevant contents in the above embodiments and will not be described again here.
  • the network device may receive the quantized result of the sub-band phase factor sent by the terminal device in a sub-band manner.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device through the combined coefficient matrix of the TRP or TRP group is received.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group and reported to the network device, which can reduce the direct feedback phase factor and The signaling overhead occupied by the amplitude factor.
  • the network device can understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 13 is a schematic flowchart of a method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor reception method of the TRP or TRP group is performed by the network device.
  • the method may include but is not limited to the following steps:
  • the phase factor includes a broadband phase factor and a sub-band phase factor.
  • the quantization result of the amplitude factor is obtained by multiplying the amplitude factor and the TRP or the combined coefficient matrix of the TRP group and quantizing the result.
  • the specific process please refer to the records of relevant content in the above embodiments, which will not be described again here.
  • the network device may receive the quantized result of the amplitude factor sent by the terminal device in a broadband manner.
  • S1302 Receive the quantization result corresponding to the phase factor sent by the terminal device in a sub-band manner.
  • the quantization results of the phase factors include the quantization results of the broadband phase factors and the quantization results of the sub-band phase factors.
  • the quantization result of the broadband phase factor is obtained by multiplying the broadband phase factor and the TRP or the combined coefficient matrix of the TRP group and performing quantization.
  • the relevant content records in the above embodiments please refer to the relevant content records in the above embodiments, which will not be described again here.
  • the quantization result of the sub-band phase factor can be the result of direct quantization by the terminal device, or the quantization result of the sub-band phase factor can be the multiplication of the sub-band phase factor and the sub-band combination coefficient matrix of the TRP or TRP group, and based on The frequency domain basis vectors of the TRP or TRP group are obtained by compression and quantization.
  • the quantization result of the sub-band phase factor can be the result of direct quantization by the terminal device, or the quantization result of the sub-band phase factor can be the multiplication of the sub-band phase factor and the sub-band combination coefficient matrix of the TRP or TRP group, and based on The frequency domain basis vectors of the TRP or TRP group are obtained by compression and quantization.
  • the network device may receive the quantized result of the phase factor sent by the terminal device in a sub-band manner, that is, receive the quantized result of the broadband phase factor and the quantized result of the sub-band phase factor sent by the terminal device in a sub-band manner.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device through the combined coefficient matrix of the TRP or TRP group is received.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group and reported to the network device, which can reduce the direct feedback phase factor and The signaling overhead occupied by the amplitude factor.
  • the network device can understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 14 is a schematic flowchart of a method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor reception method is performed by the network device.
  • the method may include but is not limited to the following steps:
  • the amplitude factor includes a broadband amplitude factor and a sub-band amplitude factor.
  • the quantized result of the phase factor is obtained by multiplying the amplitude factor and the TRP or the combined coefficient matrix of the TRP group and quantizing the result.
  • the relevant records in the above embodiments which will not be described again here.
  • the quantization result of the broadband amplitude factor is obtained by multiplying the broadband phase factor and the TRP or the combined coefficient matrix of the TRP group and quantizing the result.
  • the relevant records in the above embodiments which will not be described again here.
  • the network device may receive the quantized result of the phase factor and the quantized result of the broadband amplitude factor sent by the terminal device in a broadband manner.
  • S1402 Receive the quantization result of the sub-band amplitude factor sent by the terminal device in a sub-band manner.
  • the quantization result of the subband amplitude factor may be a result of direct quantization by the terminal device.
  • the quantization result of the sub-band amplitude factor can be obtained by multiplying the sub-band amplitude factor and the sub-band combination coefficient matrix of the TRP or TRP group, and performing compression and quantization based on the frequency domain basis vector of the TRP or TRP group.
  • the process please refer to the records of relevant contents in the above embodiments and will not be described again here.
  • the network device may receive the quantized result of the subband amplitude factor sent by the terminal device in a subband manner.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device through the combined coefficient matrix of the TRP or TRP group is received.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group and reported to the network device, which can reduce the direct feedback phase factor and The signaling overhead occupied by the amplitude factor.
  • the network device can understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 15 is a schematic flowchart of a method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor reception method of the TRP or TRP group is performed by the network device.
  • the method may include but is not limited to the following steps:
  • S1501 Receive the quantization result corresponding to the phase factor sent by the terminal device in a broadband manner.
  • the amplitude factor includes a broadband amplitude factor and a sub-band amplitude factor.
  • the quantized result of the phase factor is obtained by multiplying the amplitude factor and the TRP or the combined coefficient matrix of the TRP group and quantizing the result.
  • the relevant records in the above embodiments which will not be described again here.
  • the network device may receive the quantized result of the phase factor sent by the terminal device in a broadband manner.
  • S1502 Receive the quantization result corresponding to the amplitude factor sent by the terminal device in a sub-band manner.
  • the quantization results of the amplitude factors include the quantization results of the broadband amplitude factors and the quantization results of the sub-band amplitude factors.
  • the quantization result of the broadband amplitude factor is obtained by multiplying the broadband phase factor and the TRP or the combined coefficient matrix of the TRP group and quantizing the result.
  • the relevant records in the above embodiments which will not be described again here.
  • the quantization result of the subband amplitude factor may be a result of direct quantization by the terminal device.
  • the quantization result of the sub-band amplitude factor can be obtained by multiplying the sub-band amplitude factor and the sub-band combination coefficient matrix of the TRP or TRP group, and compressing and quantizing it based on the frequency domain basis vector of the TRP or TRP group.
  • the network device may receive the quantized result of the amplitude factor sent by the terminal device in a sub-band manner, that is, receive the quantized result of the wideband amplitude factor and the quantized result of the sub-band amplitude factor sent by the terminal device in a sub-band manner.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device through the combined coefficient matrix of the TRP or TRP group is received.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group and reported to the network device, which can reduce the direct feedback phase factor and The signaling overhead occupied by the amplitude factor.
  • the network device can understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Figure 16 is a schematic flowchart of a method for receiving phase factors and amplitude factors of a TRP or TRP group provided by an embodiment of the present application.
  • the phase factor and amplitude factor reception method is performed by the network device.
  • the method may include but is not limited to the following steps:
  • S1601 Receive the quantized results of the sub-band amplitude factor and sub-band phase factor sent by the terminal device in a sub-band manner.
  • the terminal device can multiply the subband amplitude factor and the subband phase factor, and multiply the product with the matrix coefficient in the subband combination coefficient matrix of the TRP or TRP group to obtain the third subband combination coefficient matrix, and The quantization result obtained by quantizing the frequency domain basis vector of TRP or TRP group.
  • the network device receives the quantized results of the sub-band amplitude factors and sub-band phase factors sent by the terminal device in a sub-band manner. That is to say, the network device receives the sub-band amplitude factors and sub-band phases of the TRP or TRP group in a sub-band manner. factor.
  • At least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device through the combined coefficient matrix of the TRP or TRP group is received.
  • at least one of the phase factors and amplitude factors of the TRP or TRP group is incorporated into the combined coefficient matrix of the TRP or TRP group and reported to the network device, which can reduce the direct feedback phase factor and The signaling overhead occupied by the amplitude factor.
  • the network device can understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • the terminal device can independently quantize the phase factor and amplitude factor of the TRP or TRP group.
  • the network device can receive the independent quantization result of at least one of the phase factor and the amplitude factor.
  • the other parameters may be reference amplitudes and/or differential coefficients in the combined coefficient matrix of the TRP or TRP group.
  • the network device receives the independent quantization results of the phase factor and the amplitude factor sent by the terminal device in a broadband manner and/or a sub-band manner.
  • the network device can receive the combined quantization result sent by the terminal device in a broadband or sub-band manner.
  • the network device may receive the combined quantization result sent by the terminal device in a broadband manner, and receive the combined quantization result from the terminal device in a subband manner.
  • Independent quantization of the second of the sent phase and amplitude factors may be a phase factor and the second factor may be an amplitude factor, or the first factor may be an amplitude factor and the second factor may be a phase factor.
  • the normalized sum of the amplitude factors and phase factors of all TRPs or TRP groups corresponding to the terminal equipment is 1.
  • TRP or TRP group of amplitude factors may indicate a TRP or TRP group without phase factors and/or amplitude factors that need to be reported.
  • the TRP or TRP group that does not need to report the phase factor and/or amplitude factor can also be configured by the network device to the terminal device.
  • the network device configures the configuration to the terminal device through the configuration information without reporting the phase factor and/or amplitude factor.
  • / or TRP or TRP group of amplitude factors For example, a TRP or TRP group that does not need to report phase factors and/or amplitude factors to the network device can be After normalization is completed the phase factor and/or amplitude factor is 1.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 17 is a schematic structural diagram of a communication device 170 provided by an embodiment of the present application.
  • the communication device 170 shown in FIG. 17 may include a transceiver module 1701 and a processing module 1702.
  • the transceiving module 1701 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1701 may implement the sending function and/or the receiving function.
  • the communication device 170 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 170 may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device 170 is a terminal device:
  • the transceiver module 1701 is configured to send at least one of the phase factors and amplitude factors of the TRP or TRP group to the network device through the combined coefficient matrix of the TRP or TRP group, and the TRP group includes at least one TRP.
  • the processing module 1702 is configured to perform a product operation on at least one of the phase factors and amplitude factors with the combined coefficient matrix and perform quantization;
  • the transceiving module 1701 is also used to send the quantization result to the network device.
  • the transceiving module 1701 is also configured to send the quantization result corresponding to at least one of the phase factor and the amplitude factor to the network device in a broadband manner and/or a sub-band manner.
  • the transceiver module 1701 is also configured to send the quantization results corresponding to the phase factor and the amplitude factor to the network device in a broadband manner.
  • the transceiver module 1701 is also configured to send the quantization result corresponding to the first factor among the phase factor and the amplitude factor to the network device in a broadband manner;
  • the quantization result corresponding to the second factor among the phase factor and the amplitude factor is sent to the network device in a sub-band manner.
  • the transceiver module 1701 is also configured to send the quantization results corresponding to the phase factor and the amplitude factor to the network device in a sub-band manner.
  • the processing module 1702 is also configured to determine the product of the phase factor and the amplitude factor, multiply the product with the combination coefficient in the combination coefficient matrix, and perform quantization.
  • the processing module 1702 is also configured to multiply the amplitude factor by the reference amplitude in the combination coefficient matrix and perform quantization; multiply the phase factor by the difference coefficient in the combination coefficient matrix and perform quantization. be quantified; or,
  • the processing module 1702 is also configured to multiply the amplitude factor by the reference amplitude in the combination coefficient matrix and perform quantization; and independently quantize the phase factor and the differential coefficient in the combination coefficient matrix.
  • the processing module 1702 is also configured to multiply the phase factor by the differential coefficient in the combined coefficient matrix and perform quantization; and independently quantize the amplitude factor.
  • the phase factor includes a broadband phase factor and a sub-band phase factor
  • the processing module 1702 is also configured to Multiply and quantize the amplitude factor, the broadband phase factor and the combined coefficient matrix, and independently quantize the sub-band phase factor
  • the transceiver module 1701 is also configured to send the quantization result corresponding to the amplitude factor and the quantization result corresponding to the broadband phase factor to the network device in a broadband manner, and to send the quantization result corresponding to the broadband phase factor to the network device in a subband manner.
  • the quantization result of the sub-band phase factor or, sending the quantization result corresponding to the amplitude factor to the network device in a broadband manner, and sending the quantization result corresponding to the phase factor to the network device in a sub-band manner.
  • the processing module 1702 is also configured to determine the sub-band combination coefficient matrix corresponding to the TRP group for the sub-band phase factor; multiply the sub-band phase factor by the sub-band combination coefficient matrix, A first subband combination coefficient matrix is obtained; the first subband combination coefficient matrix is compressed and quantized based on the frequency domain basis vector of the TRP or TRP group.
  • the processing module 1702 is also configured to Perform a product operation and quantization on the phase factor, the broadband amplitude factor and the combined coefficient matrix, and independently quantize the sub-band amplitude factors;
  • the transceiver module 1701 is also configured to send the quantization result corresponding to the phase factor and the quantization result corresponding to the broadband amplitude factor to the network device in a broadband manner, and to send the quantization result to the network device in a subband manner.
  • the quantization result of the sub-band phase factor or, sending the quantization result corresponding to the phase factor to the network device in a broadband manner, and sending the quantization result corresponding to the amplitude factor to the network device in a sub-band manner.
  • the processing module 1702 is also configured to determine the subband combination coefficient matrix corresponding to the TRP group for the subband amplitude factor;
  • the second subband combination coefficient matrix is compressed and quantized based on the frequency domain basis vector of the TRP or TRP group.
  • the processing module 1702 is also configured to perform a product operation on the sub-band amplitude factor and the sub-band phase factor with the sub-band combination coefficient matrix of the TRP or TRP group to obtain a third sub-band combination coefficient matrix; based on the The third subband combination coefficient matrix is compressed and quantized by the frequency domain basis vectors of the TRP or TRP group.
  • the terminal device there is at least one TRP or TRP group that does not need to report the phase factor and/or the amplitude factor.
  • the transceiver module 1701 is also configured to send indication information to the network device, where the indication information is used to indicate that the TRP or TRP group for which the phase factor and/or the amplitude factor does not need to be reported does not need to be reported.
  • the TRP or TRP group that does not need to report the phase factor and/or the amplitude factor is configured or predefined by a network device.
  • the communication device 70 is a network device:
  • the transceiver module 1701 is configured to receive at least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device based on the combined coefficient matrix of the TRP or TRP group, and the TRP group includes at least one TRP.
  • the transceiver module 1701 is also configured to receive a quantization result sent by the terminal device, wherein the quantization result is a product operation of at least one of the phase factor and the amplitude factor and the combined coefficient matrix. Obtained after quantification.
  • the transceiving module 1701 is also configured to receive the quantization result corresponding to at least one of the phase factor and the amplitude factor sent by the terminal device in a broadband manner and/or a sub-band manner.
  • the transceiver module 1701 is also configured to receive the quantization result of the phase factor sent by the terminal device in a broadband manner; and receive the quantization result corresponding to the amplitude factor sent by the terminal device in a broadband manner.
  • the transceiver module 1701 is also configured to receive the quantization result corresponding to the first factor of the phase factor and the amplitude factor sent by the terminal device in a broadband manner; and receive all the quantization results sent by the terminal device in a subband manner.
  • the quantization result corresponding to the second factor among the phase factor and amplitude factor is described.
  • the transceiver module 1701 is also configured to receive the quantization result of the phase factor sent by the terminal device in a sub-band manner; and receive the quantization result corresponding to the amplitude factor sent by the terminal device in a sub-band manner.
  • the processing module 1702 is configured to determine the phase factor and the amplitude factor according to the quantization result.
  • the phase factor includes a broadband phase factor and a sub-band phase factor
  • the transceiver module 1701 is also configured to Receive the quantized result of the amplitude factor and the quantized broadband phase factor sent by the terminal device in a broadband manner, and receive the quantized result of the sub-band phase factor sent by the terminal device in a sub-band manner; or, The quantization result corresponding to the amplitude factor sent by the terminal device is received in a broadband manner, and the quantization result corresponding to the phase factor sent by the terminal device is received in a subband manner.
  • the quantization result corresponding to the sub-band phase factor is multiplied by the sub-band phase factor and the sub-band combination coefficient matrix of the TRP or TRP group, and is based on the frequency domain basis vector of the TRP or TRP group. Obtained after compression and quantization.
  • the amplitude factor includes a broadband amplitude factor and a sub-band amplitude factor; the transceiver module 1701 is also used to receive in a broadband manner
  • the quantization result corresponding to the phase factor and the quantization result corresponding to the broadband amplitude factor sent by the terminal device, and receiving the quantization result of the sub-band amplitude factor sent by the terminal device in a sub-band manner; or, in a broadband manner Receive the quantization result corresponding to the phase factor sent by the terminal device, and receive the quantization result corresponding to the amplitude factor sent by the terminal device in a sub-band manner.
  • the quantization result corresponding to the sub-band amplitude factor is multiplied by the sub-band amplitude factor and the sub-band combination coefficient matrix of the TRP or TRP group, and is based on the frequency domain basis vector of the TRP or TRP group. Obtained after compression and quantization.
  • the transceiver module 1701 is also configured to receive the quantized result of the sub-band amplitude factor and the sub-band phase factor sent by the terminal device in a sub-band manner, and the quantized result of the sub-band amplitude factor and the sub-band phase factor is the
  • the subband amplitude factors and subband phase factors are multiplied by the subband combination coefficient matrix of the TRP or TRP group, and are quantized by compressing the frequency domain basis vectors of the TRP or TRP group and quantizing the results.
  • the transceiver module 1701 is also configured to receive indication information sent by the terminal device, where the indication information is used to indicate that there is no need to report the TRP or TRP group that does not need to report the phase factor and/or the amplitude factor. ;or,
  • the transceiver module 1701 is also configured to configure the TRP or TRP group for which the phase factor and/or the amplitude factor does not need to be reported to the terminal device.
  • At least one of the TRP of the TRP group or the phase factor and the amplitude factor of the TRP group is sent to the network device through the TRP of the TRP group or the combined coefficient matrix of the TRP group.
  • At least one factor of the TRP of the TRP group or the phase factor and the amplitude factor of the TRP group can be incorporated into the TRP of the TRP group or the combined coefficient matrix of the TRP group and sent to the network device, which can reduce the direct feedback of phase from the terminal device to the network device.
  • the network device can be enabled to understand the TRP status of the terminal device, and thereby determine the precoding used for downlink transmission.
  • FIG 18 is a schematic structural diagram of another communication device 180 provided by an embodiment of the present application.
  • the communication device 180 may be a network device, a terminal device (such as the first terminal device in the foregoing method embodiment), or a chip, chip system, or processor that supports the network device to implement the above method, or it may be Chips, chip systems, or processors that support terminal equipment implementing the above methods.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 180 may include one or more processors 1801.
  • the processor 1801 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 180 may also include one or more memories 1802, on which a computer program 1803 may be stored.
  • the processor 1801 executes the computer program 1803, so that the communication device 180 performs the steps described in the above method embodiments. method.
  • the memory 1802 may also store data.
  • the communication device 180 and the memory 1802 can be provided separately or integrated together.
  • the communication device 180 may also include a transceiver 1804 and an antenna 1805.
  • the transceiver 1804 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1804 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 180 may also include one or more interface circuits 1806.
  • the interface circuit 1806 is used to receive code instructions and transmit them to the processor 1801 .
  • the processor 1801 executes the code instructions to cause the communication device 180 to perform the method described in the above method embodiment.
  • the processor 1801 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1801 may store a computer program 1803, and the computer program 1803 runs on the processor 1801, causing the communication device 180 to perform the method described in the above method embodiment.
  • the computer program 1803 may be solidified in the processor 1801, in which case the processor 1801 may be implemented by hardware.
  • the communication device 180 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiment), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may be Not limited by Figure 18.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the chip 190 shown in FIG. 19 includes a processor 1901 and an interface 1902.
  • the number of processors 1901 may be one or more, and the number of interfaces 1902 may be multiple.
  • the chip is used to implement the functions of the terminal device in the embodiment of the present application (such as the first terminal device in the aforementioned method embodiment):
  • Interface 1902 configured to send at least one factor of the phase factor and amplitude factor of the TRP or TRP group to the network device through the combined coefficient matrix of the TRP or TRP group, and the TRP group includes at least one TRP.
  • the processor 1901 is configured to perform a product operation on at least one of the phase factors and amplitude factors with the combined coefficient matrix and perform quantization;
  • the interface 1902 is also used to send the quantification result to the network device.
  • the interface 1902 is also configured to send the quantization result corresponding to at least one of the phase factor and the amplitude factor to the network device in a broadband manner and/or a sub-band manner.
  • the interface 1902 is also used to send the quantization results corresponding to the phase factor and the amplitude factor to the network device in a broadband manner.
  • the interface 1902 is also configured to send the quantization result corresponding to the first factor among the phase factor and the amplitude factor to the network device in a broadband manner;
  • the quantization result corresponding to the second factor among the phase factor and the amplitude factor is sent to the network device in a sub-band manner.
  • the interface 1902 is also configured to send the quantization results corresponding to the phase factor and the amplitude factor to the network device in a sub-band manner.
  • the processor 1901 is also configured to determine the product of the phase factor and the amplitude factor, multiply the product with the combination coefficient in the combination coefficient matrix, and perform quantization.
  • the processor 1901 is also configured to multiply the amplitude factor by the reference amplitude in the combination coefficient matrix and perform quantization; multiply the phase factor by the difference coefficient in the combination coefficient matrix and perform quantization. be quantified; or,
  • the processor 1901 is also configured to multiply the amplitude factor by the reference amplitude in the combination coefficient matrix and perform quantization; and independently quantize the phase factor and the differential coefficient in the combination coefficient matrix.
  • the processor 1901 is also configured to multiply the phase factor by the differential coefficient in the combined coefficient matrix and perform quantization; and independently quantize the amplitude factor.
  • the phase factor when the first factor is the amplitude factor and the second factor is the phase factor, the phase factor includes a broadband phase factor and a sub-band phase factor; processor 1901 is also configured to Multiply and quantize the amplitude factor, the broadband phase factor and the combined coefficient matrix, and independently quantize the sub-band phase factor;
  • the interface 1902 is also configured to send the quantization result corresponding to the amplitude factor and the quantization result corresponding to the broadband phase factor to the network device in a broadband manner, and to send the quantization result corresponding to the broadband phase factor to the network device in a subband manner.
  • the quantization result of the sub-band phase factor or, sending the quantization result corresponding to the amplitude factor to the network device in a broadband manner, and sending the quantization result corresponding to the phase factor to the network device in a sub-band manner.
  • the processor 1901 is also configured to determine the sub-band combination coefficient matrix corresponding to the TRP group for the sub-band phase factor; multiply the sub-band phase factor by the sub-band combination coefficient matrix, A first subband combination coefficient matrix is obtained; the first subband combination coefficient matrix is compressed and quantized based on the frequency domain basis vector of the TRP or TRP group.
  • the amplitude factor includes a broadband amplitude factor and a sub-band amplitude factor
  • processor 1901 is also configured to Perform a product operation and quantization on the phase factor, the broadband amplitude factor and the combined coefficient matrix, and independently quantize the sub-band amplitude factors
  • the interface 1902 is also configured to send the quantization result corresponding to the phase factor and the quantization result corresponding to the broadband amplitude factor to the network device in a broadband manner, and to send the quantization results to the network device in a subband manner.
  • the quantization result of the sub-band phase factor is sent to the network device in a broadband manner
  • the quantization result of the amplitude factor is sent to the network device in a sub-band manner.
  • the processor 1901 is also configured to determine the subband combination coefficient matrix corresponding to the TRP group for the subband amplitude factor;
  • the second subband combination coefficient matrix is compressed and quantized based on the frequency domain basis vector of the TRP or TRP group.
  • the processor 1901 is also configured to perform a product operation on the sub-band amplitude factor and the sub-band phase factor with the sub-band combination coefficient matrix of the TRP or TRP group to obtain a third sub-band combination coefficient matrix; based on the The third subband combination coefficient matrix is compressed and quantized by the frequency domain basis vectors of the TRP or TRP group.
  • the terminal device there is at least one TRP or TRP group that does not need to report the phase factor and/or the amplitude factor.
  • the interface 1902 is also configured to send indication information to the network device, where the indication information is used to indicate that the TRP or TRP group for which the phase factor and/or the amplitude factor does not need to be reported does not need to be reported.
  • the TRP or TRP group that does not need to report the phase factor and/or the amplitude factor is configured or predefined by a network device.
  • Interface 1902 is configured to receive at least one of the phase factors and amplitude factors of the TRP or TRP group sent by the terminal device based on the combined coefficient matrix of the TRP or TRP group, and the TRP group includes at least one TRP.
  • the interface 1902 is also used to receive a quantization result sent by the terminal device, wherein the quantization result is a product operation of at least one of the phase factor and the amplitude factor and the combined coefficient matrix and perform obtained after quantification.
  • the interface 1902 is also configured to receive a quantization result corresponding to at least one of the phase factor and the amplitude factor sent by the terminal device in a broadband manner and/or a sub-band manner.
  • the interface 1902 is also configured to receive the quantization result of the phase factor sent by the terminal device in a broadband manner; and receive the quantization result corresponding to the amplitude factor sent by the terminal device in a broadband manner.
  • the interface 1902 is also configured to receive the quantization result corresponding to the first factor among the phase factor and the amplitude factor sent by the terminal device in a broadband manner; and receive the quantization result sent by the terminal device in a subband manner.
  • the interface 1902 is also configured to receive the quantization result of the phase factor sent by the terminal device in a sub-band manner; and receive the quantization result corresponding to the amplitude factor sent by the terminal device in a sub-band manner.
  • the processor 1902 is configured to determine the phase factor and the amplitude factor according to the quantization result.
  • the phase factor when the first factor is the amplitude factor and the second factor is the phase factor, the phase factor includes a broadband phase factor and a sub-band phase factor; the interface 1902 is also used to pass Receive the quantized result of the amplitude factor and the quantized broadband phase factor sent by the terminal device in a broadband manner, and receive the quantized result of the sub-band phase factor sent by the terminal device in a subband manner; or, by The quantization result corresponding to the amplitude factor sent by the terminal device is received in a broadband mode, and the quantization result corresponding to the phase factor sent by the terminal device is received in a subband mode.
  • the quantization result corresponding to the sub-band phase factor is multiplied by the sub-band phase factor and the sub-band combination coefficient matrix of the TRP or TRP group, and is based on the frequency domain basis vector of the TRP or TRP group. Obtained after compression and quantization.
  • the amplitude factor includes a broadband amplitude factor and a sub-band amplitude factor; the interface 1902 is also used to receive all the data in a broadband manner.
  • the quantization result corresponding to the phase factor and the quantization result corresponding to the broadband amplitude factor sent by the terminal device, and receiving the quantization result of the sub-band amplitude factor sent by the terminal device in a sub-band manner; or, receiving in a broadband manner The quantization result corresponding to the phase factor sent by the terminal device, and the quantization result corresponding to the amplitude factor sent by the terminal device is received in a sub-band manner.
  • the quantization result corresponding to the sub-band amplitude factor is multiplied by the sub-band amplitude factor and the sub-band combination coefficient matrix of the TRP or TRP group, and is based on the frequency domain basis vector of the TRP or TRP group. Obtained after compression and quantization.
  • the interface 1902 is also configured to receive the quantization result of the sub-band amplitude factor and the sub-band phase factor sent by the terminal device in a sub-band manner.
  • the quantization result of the sub-band amplitude factor and the sub-band phase factor is the sub-band amplitude factor.
  • the band amplitude factor and sub-band phase factor are multiplied by the sub-band combination coefficient matrix of the TRP or TRP group, and are quantized after compression by the frequency domain basis vector of the TRP or TRP group.
  • the interface 1902 is also configured to receive indication information sent by the terminal device, where the indication information is used to indicate that there is no need to report the TRP or TRP group for which the phase factor and/or the amplitude factor does not need to be reported; Alternatively, configure the TRP or TRP group that does not need to report the phase factor and/or the amplitude factor to the terminal device.
  • the chip 190 also includes a memory 1903, which is used to store necessary computer programs and data.
  • At least one of the TRP of the TRP group or the phase factor and the amplitude factor of the TRP group is sent to the network device through the TRP of the TRP group or the combined coefficient matrix of the TRP group.
  • At least one factor of the TRP of the TRP group or the phase factor and the amplitude factor of the TRP group can be incorporated into the TRP of the TRP group or the combined coefficient matrix of the TRP group and sent to the network device, which can reduce the direct feedback phase of the terminal device to the network device.
  • the network device can be enabled to understand the TRP status of the terminal device, and then determine the precoding used for downlink transmission.
  • Embodiments of the present application also provide a communication system that includes a communication device as a terminal device and a communication device as a network device in the embodiment of FIG. 17 , or the system includes a communication device as a terminal device in the embodiment of FIG. 18 devices and communication devices as network equipment.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种TRP或TRP组的相位因子和幅度因子发送/接收方法及其装置,可应用于通信领域,该方法包括:通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备确定出用于多个TRP进行下行传输的预编码。

Description

TRP或TRP组的相位因子和幅度因子发送/接收方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种TRP或TRP组的相位因子和幅度因子发送/接收方法及其装置。
背景技术
多点协作传输是指多个传输接收点(Muplti Transmission Reception Point,mTRP)/多面板(Panel)为一个用户提供数据服务。在多TPR的场景下,基站基于码本确定终端设备的下行传输预编码时,需要得知TRP或TRP组的幅度因子a n和/或相位因子p n
发明内容
本申请实施例提供一种TRP或TRP组的相位因子和幅度因子发送/接收方法及其装置,可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。
第一方面,本申请实施例提供一种TRP或TRP组的相位因子和幅度因子发送方法,该方法包括:
通过TRP或TRP组的组合系数矩阵,将所述TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备,所述TRP组中包括至少一个TRP。
本申请实施例中可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
第二方面,本申请实施例提供另一种TRP或TRP组的相位因子和幅度因子接收方法,该方法包括:
接收终端设备基于TRP或TRP组的组合系数矩阵发送的所述TRP或TRP组的相位因子和幅度因子中的至少一个因子,所述TRP组中包括至少一个TRP。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种多点协作传输的示意图
图1a是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图3是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图4是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图5是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图6是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图7是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图8是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图9是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图;
图10是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图;
图11是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图;
图12是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图;
图13是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图;
图14是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图;
图15是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图;
图16是本申请实施例提供的另一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图;
图17是本申请实施例提供的一种通信装置的结构示意图;
图18是本申请实施例提供的另一种通信装置的结构示意图;
图19是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出 项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
为了便于理解,首先介绍本申请涉及的术语。
多点协作传输技术大致可分为相干传输(Coherent Joint Transmission,CJT)和非相干传输(InCoherent Joint Transmission,NCJT)两种。所谓CJT是指每个数据流会通过加权向量映射到参与协作的m-TRP/Panel上。CJT相当于把多个子阵拼接称为一个更高维度的虚拟阵列,以获得更高的赋形或预编码增益。
图1给出了三个TRPs通过CJT为UE服务的场景,UE到各TRP的信道分别表示为H 1、H 2和H 3。在计算该UE的预编码可以把这个信道组合在一块视为一个更高维度的信道即
Figure PCTCN2022106341-appb-000001
然后根据H计算UE的下行数据传输预编码。
多个TRP进行CJT时可以采用以下可选的码本结构的用于计算用户的下行数据传输预编码。
Figure PCTCN2022106341-appb-000002
Figure PCTCN2022106341-appb-000003
Figure PCTCN2022106341-appb-000004
其中,a n和p n分别表示第n个TRP对应的相位与幅度因子。W 1,n表示第n个TRP对应的时域(Time domain,SD)基向量,
Figure PCTCN2022106341-appb-000005
表示n个TRP对应的组合系数,W f,n表示第n个TRP的对应频域(Frequency FD)基向量,W SF,n表示第n个TRP对应的SD和FD基向量的组合,
Figure PCTCN2022106341-appb-000006
表示N个TRP对应的组合系数,W f表示N个TRP对应的FD基向量。
对于Rel-16/17 Type II码本结构中的组合系数
Figure PCTCN2022106341-appb-000007
量化采用了极化方向上的差分方式以提升组合系数的量化精度。即组合系数中的每个系数可表示为两个元素的乘积,如下式所示:
Figure PCTCN2022106341-appb-000008
式中r 0和r 1分别表示第一极化方向和第二极化方向的参考幅度,
Figure PCTCN2022106341-appb-000009
表示组合系数矩阵
Figure PCTCN2022106341-appb-000010
中第p个极化方向上的第l行m列差分系数,差分系数可由相应的差分幅度和差分相位表示。
为了更好的理解本申请实施例公开的一种TRP或TRP组的相位因子和幅度因子发送/接收方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1a,图1a为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1a所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1a所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在侧链路通信中,存在4种侧链路传输模式。侧链路传输模式1和侧链路传输模式2用于终端设备直通(device-to-device,D2D)通信。侧链路传输模式3和侧链路传输模式4用于V2X通信。当采用侧链路传输模式3时,资源分配由网络设备101调度。具体的,网络设备101可以将资源分配信息发送给终端设备102,然后由该终端设备102向另一终端设备分配资源,以使得该另一终端设备可以通过分配到的资源向网络设备101发送信息。在V2X通信中,可以将信号较好或者可靠性较高的终端设备作为终端设备102。本申请实施例中提及的第一终端设备可以指该终端设备102,第二终端设备可以指该另一终端设备。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新 业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请中任一个实施例提供TRP或TRP组的相位因子和幅度因子发送/接收方法可以单独执行,或是结合其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
下面结合附图对本申请所提供的TRP或TRP组的相位因子和幅度因子发送/接收方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该相位因子和幅度因子发送方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
S201,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。
其中,TRP组可以包括一个或多个TRP。
终端设备可以对应一个或者多个TRP组,每个TRP或TRP组的相位因子和幅度因子,需要上报给网络设备,以使得网络设备可以基于码本和TPR组的幅度因子和相位因子,确定终端设备的下行传输预编码。
可选地,终端设备可以隐式地向网络设备上报TRP或TPR组对应的相位因子和/或幅度因子。在一些实现中,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。即将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入该TRP或TRP组的组合系数矩阵中,通过该TRP或TRP组的组合系数矩阵发送给网络设备。需要说明的是,一个TRP组对应一个组合系数矩阵,也就是说每个TRP或TRP组分别对应有各自的组合系数矩阵。可选地,终端设备将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入该TRP或TRP组的组合系数矩阵中,并可以通过宽带(Wide Band,WB)和/或子带(Sub-Band,SB)方式发送给网络设备。
在一种实现中,终端设备可以将TRP或TRP组的相位因子和幅度因子中的第一因子,并入TRP或TRP组的组合系数矩阵中,并可以通过宽带方式或子带方式发送给网络设备。进一步地,终端设备可以将TRP或TRP组的相位因子和幅度因子中的第二因子,通过宽带方式或子带方式发送给网络设备。例如,可以通过宽带方式或子带方式将第二因子单独发送给网络设备;再例如可以将第二因子与其他参数组合,将组合结果通过宽带方式或子带方式发送给网络设备。其中,第一因子可以为相位因子,第二因子可以为幅度因子;或者,第一因子可以为幅度因子,第二因子可以为相位因子。
在另一种实现中,终端设备可以将TRP或TRP组的相位因子和幅度因子,均并入TRP或TRP组的组合系数矩阵中,进一步地,终端设备可以通过宽带方式或子带方式发送给网络设备。
本申请实施例中,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中,发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图3,图3是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该TRP或TRP组的相位因子和幅度因子发送方法由终端设备执行。如图3所示,该方法可 以包括但不限于如下步骤:
S301,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,与TRP或TRP组的组合系数矩阵做乘积运算并进行量化。
可选地,将相位因子和幅度因子与组合系数矩阵做乘积运算并进行量化。
可选地,将相位因子与组合系数矩阵做乘积运算并进行量化。进一步地,可以对幅度因子进行独立量化。
可选地,将幅度因子与组合系数矩阵做乘积运算并进行量化。进一步地,可以对相位因子进行独立量化。
可选地,将相位因子和幅度因子中的第一因子,以及相位因子和幅度因子中的第二因子的宽带因子部分,与组合系数矩阵做乘积运算并进行量化。进一步地,可以对第二因子的子带因子部分进行独立量化。例如,第一因子为幅度因子,第二因子为相位因子,该相位因子包括宽带相位因子和子带相位因子,可以将幅度因子和宽带相位因子与组合系数矩阵做乘积运算并进行量化,而对子带相位因子进行独立量化。再例如,第一因子为相位因子,第二因子为幅度因子,该幅度因子包括宽带幅度因子和子带幅度因子,可以将相位因子和宽带幅度因子与组合系数矩阵做乘积运算并进行量化,而对子带幅度因子进行独立量化。
可选地,将相位因子和幅度因子中的子带因子部分,与组合系数矩阵做乘积运算并进行量化。进一步地,可以对相位因子和幅度因子中的宽带因子部分进行独立量化。需要说明的是,该组合系数矩阵可以为子带组合系数矩阵。
S302,向网络设备发送量化结果。
可选地,可以通过宽带方式和/或子带方式向网络设备发送量化结果。
可选地,将相位因子和幅度因子对应的量化结果,均通过宽带方式发送给网络设备。例如,可以将相位因子和幅度因子对应的与组合系数矩阵做乘积运算量化后的量化结果,均通过宽带方式发送给网络设备。
可选地,将相位因子和幅度因子中的第一因子对应的量化结果,通过宽带方式发送给网络设备,进一步地,将相位因子和幅度因子中的第二因子对应的量化结果,通过子带方式发送给网络设备。例如,可以将相位因子与组合系数矩阵做乘积运算量化后的量化结果,通过宽带方式发送给网络设备,并将幅度因子与组合系数矩阵做乘积运算量化后的量化结果或独立量化结果,通过子带方式发送给网络设备。再例如,可以将相位因子和宽带幅度因子与组合系数矩阵做乘积运算量化后的量化结果,通过宽带方式发送给网络设备,并将子带幅度因子的量化结果,通过子带方式发送给网络设备。又例如,可以将幅度因子和宽带相位因子与组合系数矩阵做乘积运算量化后的量化结果,通过宽带方式发送给网络设备,并将子带相位因子的量化结果,通过子带方式发送给网络设备。再例如,相位因子包括子带相位因子和宽带相位因子,幅度因子包括子带幅度因子和宽带幅度因子。本申请实施例中,可以将子带相位因子和子带幅度因子与子带组合系数矩阵做乘积运算并量化,将量化后的量化结果通过子带方式发送给网络设备。进一步地,可以将宽带相位因子和宽带幅度因子的独立量化结果,通过宽带方式发送给网络设备。
可选地,将相位因子和幅度因子对应的量化结果,均通过子带方式发送给网络设备。例如,可以将相位因子和幅度因子对应的与组合系数矩阵做乘积运算量化后的量化结果,均通过子带方式发送给网络 设备。再例如,将子带相位因子和子带幅度因子,与子带组合系数乘积运算量化后的量化结果,均通过子带方式发送给网络设备。
本申请实施例中,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中,发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图4,图4是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该相位因子和幅度因子发送方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
S401,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,与TRP或TRP组的组合系数矩阵做乘积运算并进行量化。
作为一种可能的实现方式,确定相位因子和幅度因子的乘积,并将乘积与组合系数矩阵中的组合系数相乘并进行量化。
本申请实施例中,相位因子和幅度因子与
Figure PCTCN2022106341-appb-000011
相乘后得到
Figure PCTCN2022106341-appb-000012
再量化,对
Figure PCTCN2022106341-appb-000013
中的每个系数的幅度和相位分别量化,或者采用现有协议中第二类(Type II)码本对组合系数
Figure PCTCN2022106341-appb-000014
通过极化方向上的差分方式对
Figure PCTCN2022106341-appb-000015
量化。
示例性说明,2个TRPs即第一TRP和第二TRP通过CJT为一个边缘UE服务,UE根据两个TRP到该UE的下行信道采用现有Type II码本的计算方法得到两个TRP各自的组合系数矩阵为:
Figure PCTCN2022106341-appb-000016
需要说明的是,第一TRP和第二TRP为两个独立的TRP,第一TRP和第二TRP不属于一个TRP组。
例如,第一TRP对应的相位因子和幅度因子分别为p 1、a 1;第二TRP各自对应的相位因子和幅度因子分别为p 2、a 2
可选地,相位因子和幅度因子与组合系数矩阵做乘积运算如下:
Figure PCTCN2022106341-appb-000017
Figure PCTCN2022106341-appb-000018
对相乘后的
Figure PCTCN2022106341-appb-000019
Figure PCTCN2022106341-appb-000020
中各系数对应的幅度和相位分别通过abits和b bits量化。
可选地,对上述的
Figure PCTCN2022106341-appb-000021
Figure PCTCN2022106341-appb-000022
做数学变换后可得如下所示:
Figure PCTCN2022106341-appb-000023
进一步地,对参考幅度s 0,1、s 1,1、s 0,2和s 1,2采用a bits量化,而差分系数的幅度和相位分别采用b bits和c bits量化。
作为另一种可能的实现方式,终端设备可以将TRP或TRP组的幅度因子与该TRP或TRP组的组合系数矩阵中的参考幅度相乘并进行量化。可选地,终端设备可以将TRP或TRP组的相位因子与该TRP或TRP组的组合系数矩阵中的差分系数相乘并进行量化
作为又一种可能的实现方式,终端设备可以将TRP或TRP组的幅度因子与该TRP或TRP组的组合系数矩阵中的参考幅度相乘并进行量化。可选地,终端设备可以将TRP或TRP组的相位因子与该TRP或TRP组的组合系数矩阵中的差分系数相乘分别进行独立量化。
示例性说明,TRP组的幅度因子与
Figure PCTCN2022106341-appb-000024
的参考幅度相乘后再量化,即对a 1r 0,1、a 1r 1,1和a 2r 0,2、a 2r 1,2采用a bits量化,其它差分系数的幅度b bits量化。相位因子p 1和p 2与差分系数的相位相乘后再通过c bits量化。可选地,相位因子采用d bits量化,差分系数的相位通过e bits量化。
可选地,幅度因子a 1和a 2通过a bits量化。
继续上述示例,第一TRP和第二TRP为两个独立的TRP,第一TRP和第二TRP不属于一个TRP组。其中,第一TRP对应的相位因子和幅度因子分别为p 1、a 1;第二TRP各自对应的相位因子和幅度因子分别为p 2、a 2
可选地,可以对幅度因子a 1、a 2和相位因子p 1、p 2进行归一化处理可得:
Figure PCTCN2022106341-appb-000025
需要说明的是,在第一TRP对应的相位因子和幅度因子为1的情况下,无线上报第一TRP对应的相位因子和幅度因子。
S402,通过宽带方式发送给网络设备。
本申请实施例中,可以将相位因子和幅度因子与组合系数矩阵做乘积运算量化后的量化结果,通过宽带方式发送给网络设备。
本申请实施例中,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中,发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。请参见图5,图5是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该相位因子和幅度因子发送方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
S501,将TRP或TRP组的幅度因子与TRP或TRP组的组合系数矩阵做乘积运算并进行量化。
可选地,将TRP或TRP组的幅度因子与TRP或TRP组的组合系数矩阵中参考幅度做乘积运算并进行量化。
S502,将TRP或TRP组的宽带相位因子与TRP或TRP组的组合系数矩阵做乘积运算并进行量化。
本申请实施例中,相位因子包括宽带相位因子和子带相位因子。可选地,终端设备可以将宽带相位因子与TRP或TRP组的组合系数矩阵中差分系数做乘积运算并进行量化。
S503,对子带相位因子进行量化。
可选地,终端设备可以对子带相位因子直接进行独立量化。例如,可以对子带相位因子直接使用n个bits进行量化。
可选地,终端设备可以通过子带组合系数矩阵,对子带相位因子进行处理后再量化。在一些实现中,终端设备确定TRP组对应的子带组合系数矩阵,并将子带相位因子与该子带组合系数矩阵相乘,得到第一子带组合系数矩阵。进一步地,终端设备可以基于频域基向量对第一子带组合系数矩阵进行压缩后量化,也就是说,终端设备通过FD基向量W f与第一子带组合系数矩阵进行相乘,得到压缩后的第一子带组合系数矩阵。进一步地,终端设备可以通过设定的bits对压缩后的第一子带组合系数矩阵进行量化。
S504,通过宽带方式和/或子带方式向网络设备发送量化结果。
可选地,通过宽带方式向网络设备发送幅度因子对应的量化结果和宽带相位因子对应的量化结果,并且通过子带方式向网络设备发送子带相位因子的量化结果。也就是说,终端设备将幅度因子与TRP或TRP组的组合系数乘积运算量化的量化结果,以及宽带相位因子与TRP或TRP组的组合系数乘积运算量化的量化结果,均通过宽带方式发送给网络设备。
可选地,通过宽带方式向网络设备发送幅度因子对应的量化结果,并通过子带方式向网络设备发送相位因子对应的量化结果。需要说明的是,相位因子的量化结果包括宽带相位因子的量化结果以及子带相位因子的量化结果。本申请实施例中,终端设备可以将宽带相位因子的量化结果和子带相位因子的量化结果,均通过子带方式发送给网络设备。
示例性说明,2个TRPs通过CJT为一个边缘UE服务,UE根据两个TRP到该UE的下行信道采用现有Type II码本的计算方法得到两个TRP各自的组合系数矩阵如上述实施例中的
Figure PCTCN2022106341-appb-000026
Figure PCTCN2022106341-appb-000027
其中,终端设备可以对TRP或TRP组的幅度因子与该TRP或TRP组的组合系数矩阵中参考幅度做乘积并进行量化,其实现方式可参见上述实施例中相关内容的记载,此处不再赘述。
TRP或TRP组的相位因子可以包括WB相位因子和SB相位因子,WB相位因子可以该TRP或TRP 组的组合系数矩阵中差分系数做乘积并进行量化,其实现方式可参见上述实施例中相关内容的记载,此处不再赘述。
假设子带个数为N 3,对于第l个TRP的第n个子带上报一个子带相位因子为p l,n,l=1,2,或者第l个TRP的第n个子带上报两个子带相位因子为p l,n,0和p l,n,1,其中下标0和1分别表示第一个极化方向和第二个极化方向。其中,每个子带的SB相位因子通过x bits上报。
例如,TRP的子带相位因子为p l,n,该TRP对应的子带组合系数S表示为:
Figure PCTCN2022106341-appb-000028
对各子带相位因子p l,n与该子带组合系数S相乘,可以得到第二子带组合系数矩阵T:
Figure PCTCN2022106341-appb-000029
进一步地,通过TRP或TRP组的M个频域基向量对T压缩后量化,在通过宽带方式或子带方式发送给网络设备。
本申请实施例中,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中,发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图6,图6是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该相位因子和幅度因子发送方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
S601,将TRP或TRP组的相位因子与TRP或TRP组的组合系数矩阵做乘积运算并进行量化。
可选地,将TRP或TRP组的相位因子与TRP或TRP组的组合系数矩阵中差分系数做乘积运算并进行量化。
S602,将TRP或TRP组的宽带幅度因子与TRP或TRP组的组合系数矩阵做乘积运算并进行量化。
本申请实施例中,幅度因子包括宽带幅度因子和子带幅度因子。可选地,终端设备可以将宽带幅度因子与TRP或TRP组的组合系数矩阵中参考幅度做乘积运算并进行量化。
S603,对子带幅度因子进行量化。
可选地,终端设备可以对子带幅度因子直接进行独立量化。例如,可以对子带幅度因子直接使用n个bits进行量化。
可选地,终端设备可以通过子带组合系数矩阵,对子带幅度因子进行处理后再量化。在一些实现中, 终端设备确定TRP组对应的子带组合系数矩阵,进一步地将子带幅度因子与该子带组合系数矩阵相乘,得到第二子带组合系数矩阵,基于TRP组对应频域基向量对第二子带组合系数矩阵进行压缩后量化,也就是说,终端设备通过FD基向量W f与第二子带组合系数矩阵进行相乘,得到压缩后的第二子带组合系数矩阵。进一步地,终端设备可以通过设定的bits对压缩后的第二子带组合系数矩阵进行量化。
S604,通过宽带方式和/或子带方式向网络设备发送量化结果。
可选地,通过宽带方式向网络设备发送相位因子对应的量化结果和宽带幅度因子对应的量化结果,并且通过子带方式向网络设备发送子带幅度因子的量化结果。也就是说,终端设备将相位因子与组合系数乘积运算量化的量化结果,以及宽带幅度因子与组合系数乘积运算量化的量化结果,均通过宽带方式发送给网络设备。
可选地,通过宽带方式向网络设备发送相位因子对应的量化结果,并通过子带方式向网络设备发送幅度因子对应的量化结果。需要说明的是,幅度因子的量化结果包括宽带幅度因子的量化结果以及子带幅度因子的量化结果。本申请实施例中,终端设备可以将宽带相位因子的量化结果和子带相位因子的量化结果,均通过子带方式发送给网络设备。
本申请实施例中,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图7,图7是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该相位因子和幅度因子发送方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
S701,将TRP或TRP组的子带幅度因子和子带相位因子与TRP或TRP组的子带组合系数矩阵做乘积运算,得到第三子带组合系数矩阵。
可选地,确定TRP或TRP组的子带幅度因子和子带相位因子的乘积,并将该乘积与TRP或TRP组的子带组合系数矩阵中的组合系数相乘,得到第三子带组合系数矩阵。
S702,基于TRP或TRP组的频域基向量对第三子带组合系数矩阵进行压缩后量化。
终端设备通过该TRP组对应的FD基向量W f,对第三子带组合系数矩阵进行压缩,对压缩后的第三子带组合系数矩阵进行量化。也就是说,通过FD基向量W f与第三子带组合系数矩阵进行相乘,得到压缩后的第三子带组合系数矩阵。在通过设定的bits对压缩后的第三子带组合系数矩阵进行量化。
S703,通过子带方式向网络设备发送量化结果。
本申请实施例中,终端设备可以将子带相位因子的量化结果和子带幅度因子的量化结果,均通过子带方式发送给网络设备。
本申请实施例中,通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中,发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图8,图8是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该相位因子和幅度因子发送方法由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
S801,独立量化TRP或TRP组的相位因子和幅度因子。
可选地,可以采用相同或不同的比特(bit)数,分别对TRP或TRP组的相位因子和幅度因子进行量化。例如,可以采用n个bit对相位因子进行量化,采用m个bit对幅度因子进行量化。
可选地,幅度因子可以包括宽带幅度因子和子带相位因子,相位因子可以包括宽带幅度因子和子带相位因子。本申请实施例中,终端设备可以对子带相位因子和子带幅因子分别进行独立量化;和/或,终端设备可以对宽带相位因子和宽带幅因子分别进行独立量化。
S802,通过宽带方式和/或子带方式向网络设备发送相位因子和幅度因子的独立量化结果。
可选地,终端设备可以将相位因子和幅度因子的独立量化结果,均为通过宽带方式向网络设备发送。
可选地,终端设备可以相位因子和幅度因子的独立量化结果,均通过子带方式向网络设备发送。
可选地,终端设备可以将相位因子和幅度因子中第一因子的独立量化结果,通过宽带方式向网络设备发送,并且将相位因子和幅度因子中第二因子的独立量化结果,通过子带方式向网络设备发送。
可选地,终端设备可以将宽带相位因子和宽带幅度因子中的量化结果,通过宽带方式向网络设备发送。进一步地,终端设备可以将子带相位因子和子带幅度因子的量化结果,通过子带方式向网络设备发送。
本申请实施例中,将TRP或TRP组的相位因子和幅度因子中发送给网络设备,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图9,图9是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子发送方法的流程示意图。该相位因子和幅度因子发送方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
S901,独立量化TRP或TRP组的相位因子和幅度因子。
关于步骤S901的具体介绍可参见上述实施例中相关内容的记载,此处不再赘述。
S902,将相位因子和幅度因子中至少一个因子的独立量化结果与其他参数合并,向网络设备发送合并量化结果。
可选地,其他参数可以为TRP或TRP组的组合系数矩阵中的参考幅度和/或差分系数。
可选地,可以将相位因子和幅度因子对应的独立量化结果,均与其他参数合并,得到合并量化结果。
可选地,可以将相位因子和幅度因子中的第一因子的独立量化结果,与其他参数合并,得到合并量化结果。
可选地,可以将子带相位因子和子带幅度因子中一个至少一个子带因子的独立量化结果,与其他参数合并,得到合并量化结果。
可选地,可以将宽带相位因子和宽带幅度因子中至少一个宽带因子的独立量化结果,与其他参数合并,得到合并量化结果。
S903,通过宽带方式和/或子带方式向网络设备发送量化结果。
可选地,终端设备可以将相位因子和幅度因子的独立量化结果,均为通过宽带方式向网络设备发送。
可选地,终端设备可以相位因子和幅度因子的独立量化结果,均通过子带方式向网络设备发送。
可选地,终端设备可以将相位因子和幅度因子中第一因子的独立量化结果,通过宽带方式向网络设备发送,并且将相位因子和幅度因子中第二因子的独立量化结果,通过子带方式向网络设备发送。
可选地,终端设备可以将宽带相位因子和宽带幅度因子中的量化结果,通过宽带方式向网络设备发送;并且将子带相位因子和子带幅度因子的量化结果,通过子带方式向网络设备发送。
可选地,在两个因子的独立量化结果均与其他参数合并的情况下,终端设备可以通过宽带或子带向网络设备发送合并量化结果。
可选地,在相位因子和幅度因子中第一因子的独立量化结果与其他参数合并的情况下,可以通过子带方式向网络设备发送该合并量化结果,并且通过宽带方式向网络设备发送相位因子和幅度因子中第二因子的独立量化结果。
例如,第一因子可以为相位因子,第二因子为幅度因子,或者,第一因子为幅度因子,第二因子为相位因子。
可选地,可以将子带相位因子和子带幅度因子中至少一个子带因子的独立量化结果与其他参数合并的情况下,可以通过子带方式向网络设备发送该合并量化结果,并且通过宽带方式向网络设备发送宽带相位因子和宽带幅度因子的独立量化结果。
可选地,可以将宽带相位因子和宽带幅度因子中至少一个宽带因子的独立量化结果与其他参数合并的情况下,可以通过宽带方式向网络设备发送该合并量化结果,并且通过子带方式向网络设备发送子带相位因子和子带幅度因子的独立量化结果。
本申请实施例中,将TRP或TRP组的相位因子和幅度因子中发送给网络设备,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
适用于上述任一实施例中,需要说明的是,终端设备对应所有TRP或TRP组的幅度因子和相位因子归一化后的和值为1,本申请实施例中,所有TRP或TRP组中存在至少一个TRP或TRP组对应的相位因子和/或幅度因子无需上报。可选地,终端设备可以通过指示信息,向网络设备指示无需上报相位因子和/或幅度因子的至少一个TRP或TRP组。其中,指示信息可以占用N个bits。例如,可以指示不上报WB相位因子和SB相位因子中的至少一个,或者指示不上报WB幅度因子和SB幅度因子中的至少一个。可选地,无需向网络设备上报相位因子和/或幅度因子的TRP或TRP组,也可以由网络设备预先配置,或者由终端设备预定义。例如,无需向网络设备上报相位因子和/或幅度因子的TRP或TRP组,可以为对
Figure PCTCN2022106341-appb-000030
完成归一化后相位因子和/或幅度因子为1。
请参见图10,图10是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图。该相位因子和幅度因子接收方法由网络设备执行。如图10所示,该方法可以包括但不限于如下步骤:
S1001,接收终端设备基于TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。
其中,TRP组中包括一个或多个TRP。
为了实现下行数据的传输,网络设备需要获取终端设备的TRP或TRP组的幅度因子和相位因子,进而可以基于码本和TPR组的幅度因子和相位因子,确定终端设备的下行传输预编码。
可选地,网络设备可以接收终端设备隐式地上报的TPR组的相位因子和/或幅度因子。在一些实现中,终端设备通过TRP或TRP组的组合系数矩阵,将TRP或TRP组的相位因子和幅度因子中的至少 一个因子发送给网络设备。也就是说,终端设备将相位因子和幅度因子中的至少一个因子,并入该组合系数矩阵中,网络设备可以接收终端设备上报的并入相位因子和幅度因子中的至少一个因子的组合系数矩阵,以基于该接收到的TRP或TRP组的组合系数矩阵确定TRP或TRP组的相位因子和/或幅度因子。
可选地,网络设备通过宽带方式和/或子带方式接收终端设备发送的TRP或TRP组的组合系数矩阵,该TRP或TRP组的组合系数矩阵中携带TRP或TRP组的相位因子和幅度因子中的至少一个因子。
在一种实现中,终端设备可以将TRP或TRP组的相位因子和幅度因子中的第一因子,并入TRP或TRP组的组合系数矩阵中,并可以通过宽带方式或子带方式发送给网络设备。相应地,网络设备可以通过宽带或子带方式接收携带第一因子的TRP或TRP组的组合系数矩阵。其中,第一因子可以为相位因子,第二因子可以为幅度因子;或者,第一因子可以为幅度因子,第二因子可以为相位因子。
在另一种实现中,终端设备可以将TRP或TRP组的相位因子和幅度因子,均并入TRP或TRP组的组合系数矩阵中,并可以通过宽带方式或子带方式发送给网络设备。相应地,网络设备可以通过宽带方式或子带方式接收携带两个因子的TRP或TRP组的组合系数矩阵。
本申请实施例中,接收终端设备通过TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。本申请中,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中上报给网络设备,可以降低网络设备接接收终端设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图11,图11是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图。该相位因子和幅度因子接收方法由网络设备执行。如图11所示,该方法可以包括但不限于如下步骤:
S1101,接收终端设备发送的量化结果,其中,量化结果为相位因子和幅度因子中的至少一个因子与该组合系数矩阵做乘积运算并量化后得到。
可选地,终端设备可以将TRP或TRP组的相位因子和幅度因子与组合系数矩阵做乘积运算并进行量化。
可选地,终端设备可以将TRP或TRP组的相位因子与组合系数矩阵做乘积运算并进行量化。进一步地,可以对TRP或TRP组的幅度因子进行独立量化。
可选地,终端设备可以将TRP或TRP组的幅度因子与组合系数矩阵做乘积运算并进行量化。进一步地,可以对TRP或TRP组的相位因子进行独立量化。
可选地,终端设备可以将相位因子和幅度因子中的第一因子,以及相位因子和幅度因子中的第二因子的宽带因子部分,与组合系数矩阵做乘积运算并进行量化。进一步地,可以对第二因子的子带因子部分进行独立量化。
可选地,终端设备可以将相位因子和幅度因子中的子带因子部分,与组合系数矩阵做乘积运算并进行量化。进一步地,可以对相位因子和幅度因子中的宽带因子部分进行独立量化。需要说明的是,该组合系数矩阵可以为子带组合系数矩阵。
可选地,网络设备可以通过宽带方式和/或子带方式接收所述终端设备发送的所述相位因子和幅度因子中的至少一个因子对应的量化结果。
可选地,网络设备可以通过宽带方式接收相位因子的量化结果,并通过宽带方式接收幅度因子对应 的量化结果。
可选地,网络设备可以通过宽带方式接收终端设备发送的相位因子的量化结果,并通过宽带方式接收终端设备发送的幅度因子对应的量化结果。
可选地,网络设备可以通过宽带方式接收终端设备发送的相位因子和幅度因子中的第一因子对应的量化结果,以及通过子带方式接收相位因子和幅度因子中的第二因子对应的量化结果。
可选地,网络设备可以通过子带方式接收终端设备发送的相位因子的量化结果,以及通过子带方式接收终端设备发送的幅度因子对应的量化结果。
S1102,根据量化结果,确定TRP或TRP组的相位因子和幅度因子。
可选地,网络设备在接收到相位因子和幅度因子中至少一个因子的量化结果后,可以进行反向量化,确定出TRP或TRP组的相位因子和/或幅度因子。
本申请实施例中,接收终端设备通过TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。本申请中,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中上报给网络设备,可以降低网络设备接接收终端设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图12,图12是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图。该相位因子和幅度因子接收方法由网络设备执行。在网络设备可以通过宽带方式和子带方式接收相位因子和幅度因子的场景下,如图12所示,该方法可以包括但不限于如下步骤:
S1201,通过宽带方式接收终端设备发送的幅度因子的量化结果和宽带相位因子量化结果。
本申请实施例中,相位因子包括宽带相位因子和子带相位因子。
其中,幅度因子的量化结果为幅度因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
宽带相位因子的量化结果为宽带相位因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过宽带方式接收终端设备发送的幅度因子的量化结果和宽带相位因子的量化结果。
S1202,通过子带方式接收终端设备发送的子带相位因子的量化结果。
可选地,子带相位因子的量化结果可以为终端设备直接量化的结果。
可选地,子带相位因子的量化结果可以为子带相位因子与TRP或TRP组的子带组合系数矩阵相乘,并基于TRP或TRP组的频域基向量进行压缩后量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过子带方式接收终端设备发送的子带相位因子的量化结果。
本申请实施例中,接收终端设备通过TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。本申请中,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中上报给网络设备,可以降低网络设备接接收终端设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图13,图13是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图。该TRP或TRP组的相位因子和幅度因子接收方法由网络设备执行。在网络设备可以通过宽带方式和子带方式接收相位因子和幅度因子的场景下,如图13所示,该方法可以包括但不限于如下步骤:
S1301,通过宽带方式接收终端设备发送的幅度因子对应的量化结果。
本申请实施例中,相位因子包括宽带相位因子和子带相位因子。
其中,幅度因子的量化结果为幅度因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过宽带方式接收终端设备发送的幅度因子的量化结果。
S1302,通过子带方式接收终端设备发送的相位因子对应的量化结果。
本申请实施例中,相位因子的量化结果包括宽带相位因子的量化结果和子带相位因子的量化结果。
宽带相位因子的量化结果为宽带相位因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,子带相位因子的量化结果可以为终端设备直接量化的结果,或者子带相位因子的量化结果可以为子带相位因子与TRP或TRP组的子带组合系数矩阵相乘,并基于TRP或TRP组的频域基向量进行压缩后量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过子带方式接收终端设备发送的相位因子的量化结果,也就是说,通过子带方式接收终端设备发送的宽带相位因子的量化结果和子带相位因子的量化结果。
本申请实施例中,接收终端设备通过TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。本申请中,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中上报给网络设备,可以降低网络设备接接收终端设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图14,图14是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图。该相位因子和幅度因子接收方法由网络设备执行。在网络设备可以通过宽带方式和子带方式接收相位因子和幅度因子的场景下,如图14所示,该方法可以包括但不限于如下步骤:
S1401,通过宽带方式接收终端设备发送的相位因子对应的量化结果和宽带幅度因子对应的量化结果。
本申请实施例中,幅度因子包括宽带幅度因子和子带幅度因子。
其中,相位因子的量化结果为幅度因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
宽带幅度因子的量化结果为宽带相位因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过宽带方式接收终端设备发送的相位因子的量化结果和宽带幅度因子的量化结果。
S1402,通过子带方式接收终端设备发送的子带幅度因子的量化结果。
可选地,子带幅度因子的量化结果可以为终端设备直接量化的结果。
可选地,子带幅度因子的量化结果可以为子带幅度因子与TRP或TRP组的子带组合系数矩阵相乘,并基于TRP或TRP组的频域基向量进行压缩后量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过子带方式接收终端设备发送的子带幅度因子的量化结果。
本申请实施例中,接收终端设备通过TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。本申请中,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中上报给网络设备,可以降低网络设备接接收终端设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图15,图15是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图。该TRP或TRP组的相位因子和幅度因子接收方法由网络设备执行。在网络设备可以通过宽带方式和子带方式接收相位因子和幅度因子的场景下,如图15所示,该方法可以包括但不限于如下步骤:
S1501,通过宽带方式接收终端设备发送的相位因子对应的量化结果。
本申请实施例中,幅度因子包括宽带幅度因子和子带幅度因子。
其中,相位因子的量化结果为幅度因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过宽带方式接收终端设备发送的相位因子的量化结果。
S1502,通过子带方式接收终端设备发送的幅度因子对应的量化结果。
本申请实施例中,幅度因子的量化结果包括宽带幅度因子的量化结果和子带幅度因子的量化结果。
宽带幅度因子的量化结果为宽带相位因子与TRP或TRP组的组合系数矩阵做乘积并进行量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,子带幅度因子的量化结果可以为终端设备直接量化的结果。或者,子带幅度因子的量化结果可以为子带幅度因子与TRP或TRP组的子带组合系数矩阵相乘,并基于TRP或TRP组的频域基向量进行压缩后量化得到的,具体过程可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以通过子带方式接收终端设备发送的幅度因子的量化结果,也就是说,通过子带方式接收终端设备发送的宽带幅度因子的量化结果和子带幅度因子的量化结果
本申请实施例中,接收终端设备通过TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。本申请中,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中上报给网络设备,可以降低网络设备接接收终端设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
请参见图16,图16是本申请实施例提供的一种TRP或TRP组的相位因子和幅度因子接收方法的流程示意图。该相位因子和幅度因子接收方法由网络设备执行。如图16所示,该方法可以包括但不限于如下步骤:
S1601,通过子带方式接收终端设备发送的子带幅度因子和子带相位因子的量化结果。
本申请实施例中,终端设备可以将子带幅度因子和子带相位因子相乘,将乘积与TRP或TRP组的 子带组合系数矩阵中矩阵系数相乘,得到第三子带组合系数矩阵,并通过TRP或TRP组的频域基向量压缩后量化得到的量化结果。
可选地,网络设备通过子带方式接收终端设备发送的子带幅度因子和子带相位因子的量化结果,也就是说,网络设备通过子带方式接收TRP或TRP组的子带幅度因子和子带相位因子。
本申请实施例中,接收终端设备通过TRP或TRP组的组合系数矩阵发送的TRP或TRP组的相位因子和幅度因子中的至少一个因子。本申请中,将TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP或TRP组的组合系数矩阵中上报给网络设备,可以降低网络设备接接收终端设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
本申请中,终端设备可以独立量化TRP或TRP组的相位因子和幅度因子,相应地,网络设备可以接收相位因子和幅度因子中至少一个因子的独立量化结果。或者,接收相位因子和幅度因子中至少一个因子的独立量化结果与其他参数合并后的合并量化结果。可选地,其他参数可以为TRP或TRP组的组合系数矩阵中的参考幅度和/或差分系数。
关于终端设备独立量化相位因子和幅度因子的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
关于终端设备将相位因子和幅度因子的独立量化结果与其他参数合并的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备通过宽带方式和/或子带方式接收终端设备发送的相位因子和幅度因子的独立量化结果。
可选地,在两个因子的独立量化结果均与其他参数合并的情况下,网络设备可以通过宽带或子带方式接收终端设备发送的合并量化结果。
可选地,在相位因子和幅度因子中第一因子的独立量化结果与其他参数合并的情况下,网络设备可以通过宽带方式接收终端设备发送的该合并量化结果,并且通过子带方式接收终端设备发送的相位因子和幅度因子中第二因子的独立量化结果。例如,第一因子可以为相位因子,第二因子为幅度因子,或者,第一因子为幅度因子,第二因子为相位因子。
需要说明的是,终端设备对应的所有TRP或TRP组的幅度因子和相位因子归一化后的和值为1,本申请实施例中,所有TRP或TRP组中存在至少一个无需上报相位因子和/或幅度因子的TRP或TRP组。可选地,网络设备可以接收终端设备的指示信息,该指示信息可以指示无需要上报的相位因子和/或幅度因子的TRP或TRP组。可选地,无需上报相位因子和/或幅度因子的TRP或TRP组,也可以有网络设备向终端设备配置,相应地,网络设备通过配置信息,向终端配置向终端设备配置无需上报相位因子和/或幅度因子的TRP或TRP组。例如,无需向网络设备上报相位因子和/或幅度因子的TRP或TRP组,可以为对
Figure PCTCN2022106341-appb-000031
完成归一化后相位因子和/或幅度因子为1。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图17,为本申请实施例提供的一种通信装置170的结构示意图。图17所示的通信装置170 可包括收发模块1701和处理模块1702。收发模块1701可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1701可以实现发送功能和/或接收功能。
通信装置170可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置170可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置170为终端设备:
收发模块1701,用于通过TRP或TRP组的组合系数矩阵,将所述TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备,所述TRP组中包括至少一个TRP。
可选地,处理模块1702,用于将所述相位因子和幅度因子中的至少一个因子,与所述组合系数矩阵做乘积运算并进行量化;
可选地,收发模块1701,还用于向所述网络设备发送量化结果。
可选地,收发模块1701,还用于将所述相位因子和幅度因子中的至少一个因子对应的量化结果,通过宽带方式和/或子带方式发送给所述网络设备。
可选地,收发模块1701,还用于将所述相位因子和幅度因子对应的量化结果,均通过宽带方式发送给所述网络设备。
可选地,收发模块1701,还用于将所述相位因子和幅度因子中的第一因子对应的量化结果,通过宽带方式发送给所述网络设备;
将所述相位因子和幅度因子中的第二因子对应的量化结果,通过子带方式发送给所述网络设备。
可选地,收发模块1701,还用于将所述相位因子和幅度因子对应的量化结果,均通过子带方式发送给所述网络设备。
可选地,处理模块1702,还用于确定所述相位因子和所述幅度因子的乘积,并将所述乘积与所述组合系数矩阵中的组合系数相乘并进行量化。
可选地,处理模块1702,还用于将所述幅度因子与所述组合系数矩阵中的参考幅度相乘并进行量化;将所述相位因子与所述组合系数矩阵中的差分系数相乘并进行量化;或者,
可选地,处理模块1702,还用于将所述幅度因子与所述组合系数矩阵中的参考幅度相乘并进行量化;独立量化所述相位因子和所述组合系数矩阵中的差分系数。
可选地,处理模块1702,还用于将所述相位因子与所述组合系数矩阵中的差分系数相乘并进行量化;独立量化所述幅度因子。
可选地,在所述第一因子为所述幅度因子,所述第二因子为所述相位因子的情况下,所述相位因子包括宽带相位因子和子带相位因子;处理模块1702,还用于对所述幅度因子和所述宽带相位因子与所述组合系数矩阵做乘积运算并进行量化,以及独立量化所述子带相位因子;
可选地,收发模块1701,还用于通过宽带方式向所述网络设备发送所述幅度因子对应的量化结果和所述宽带相位因子对应的量化结果,以及通过子带方式向所述网络设备发送所述子带相位因子的量化结果;或者,通过宽带方式向所述网络设备发送所述幅度因子对应的量化结果,以及通过子带方式向所述网络设备发送所述相位因子对应的量化结果。
可选地,处理模块1702,还用于针对所述子带相位因子,确定所述TRP组对应的子带组合系数矩阵;将所述子带相位因子与所述子带组合系数矩阵相乘,得到第一子带组合系数矩阵;基于所述TRP 或TRP组的频域基向量对所述第一子带组合系数矩阵进行压缩后量化。
可选地,在所述第一因子为所述相位因子,所述第二因子为所述幅度因子的情况下,所述幅度因子包括宽带幅度因子和子带幅度因子;处理模块1702,还用于对所述相位因子和所述宽带幅度因子与组合系数矩阵做乘积运算并进行量化,以及独立量化所述子带幅度因子;
可选地,收发模块1701,还用于通过宽带方式向所述网络设备发送所述相位因子对应的量化结果和所述宽带幅度因子对应的量化结果,以及通过子带方式向所述网络设备发送所述子带相位因子的量化结果;或者,通过宽带方式向所述网络设备发送所述相位因子对应的量化结果,以及通过子带方式向所述网络设备发送所述幅度因子对应的量化结果。
可选地,处理模块1702,还用于针对所述子带幅度因子,确定所述TRP组对应的子带组合系数矩阵;
将所述子带幅度因子与所述子带组合系数矩阵相乘,得到第二子带组合系数矩阵;
基于所述TRP或TRP组的频域基向量对所述第二子带组合系数矩阵进行压缩后量化。
可选地,处理模块1702,还用于将子带幅度因子和子带相位因子,与所述TRP或TRP组的子带组合系数矩阵做乘积运算,得到第三子带组合系数矩阵;基于所述TRP或TRP组的频域基向量对所述第三子带组合系数矩阵进行压缩后量化。
可选地,终端设备的所有TRP或TRP组中存在至少一个无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
可选地,收发模块1701,还用于向所述网络设备发送指示信息,所述指示信息用于指示无需上报所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
可选地,所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组由网络设备配置或者预定义。
通信装置70为网络设备:
收发模块1701,用于接收终端设备基于TRP或TRP组的组合系数矩阵发送的所述TRP或TRP组的相位因子和幅度因子中的至少一个因子,所述TRP组中包括至少一个TRP。
可选地,收发模块1701,还用于接收所述终端设备发送的量化结果,其中,所述量化结果为所述相位因子和幅度因子中的至少一个因子与所述组合系数矩阵做乘积运算并进行量化后得到。
可选地,收发模块1701,还用于通过宽带方式和/或子带方式接收所述终端设备发送的所述相位因子和幅度因子中的至少一个因子对应的量化结果。
可选地,收发模块1701,还用于通过宽带方式接收所述终端设备发送的相位因子的量化结果;通过宽带方式接收所述终端设备发送的幅度因子对应的量化结果。
可选地,收发模块1701,还用于通过宽带方式接收所述终端设备发送的所述相位因子和幅度因子中的第一因子对应的量化结果;通过子带方式接收所述终端设备发送的所述相位因子和幅度因子中的第二因子对应的量化结果。
可选地,收发模块1701,还用于通过子带方式接收所述终端设备发送的相位因子的量化结果;通过子带方式接收所述终端设备发送的幅度因子对应的量化结果。
可选地,处理模块1702,用于根据所述量化结果,确定所述相位因子和所述幅度因子。
可选地,在所述第一因子为所述幅度因子,所述第二因子为所述相位因子的情况下,所述相位因子包括宽带相位因子和子带相位因子;收发模块1701,还用于通过宽带方式接收所述终端设备发送的所述幅度因子的量化结果和所述宽带相位因子量化结果,以及通过子带方式接收所述终端设备发送的所述子带相位因子的量化结果;或者,通过宽带方式接收所述终端设备发送的所述幅度因子对应的量化结果,以及通过子带方式接收所述终端设备发送的所述相位因子对应的量化结果。
可选地,所述子带相位因子对应的量化结果由所述子带相位因子与所述TRP或TRP组的子带组合系数矩阵相乘,并基于所述TRP或TRP组的频域基向量进行压缩后量化得到。
在所述第一因子为所述相位因子,所述第二因子为所述幅度因子的情况下,所述幅度因子包括宽带幅度因子和子带幅度因子;收发模块1701,还用于通过宽带方式接收所述终端设备发送的所述相位因子对应的量化结果和所述宽带幅度因子对应的量化结果,以及通过子带方式接收所述终端设备发送的子带幅度因子的量化结果;或者,通过宽带方式接收所述终端设备发送的所述相位因子对应的量化结果,以及通过子带方式接收所述终端设备发送的所述幅度因子对应的量化结果。
可选地,所述子带幅度因子对应的量化结果由所述子带幅度因子与所述TRP或TRP组的子带组合系数矩阵相乘,并基于所述TRP或TRP组的频域基向量进行压缩后量化得到。
可选地,收发模块1701,还用于通过子带方式接收所述终端设备发送的子带幅度因子和子带相位因子的量化结果,所述子带幅度因子和子带相位因子的量化结果为所述子带幅度因子和子带相位因子与所述TRP或TRP组的子带组合系数矩阵相乘,并通过TRP或TRP组的频域基向量压缩后量化的量化结果。
可选地,收发模块1701,还用于接收所述终端设备发送的指示信息,所述指示信息用于指示无需上报所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组;或者,
可选地,收发模块1701,还用于向所述终端设备配置所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
本申请实施例中,通过TRP组的TRP或TRP组的组合系数矩阵,将TRP组的TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP组的TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP组的TRP或TRP组的组合系数矩阵中发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。请参见图18,图18是本申请实施例提供的另一种通信装置180的结构示意图。通信装置180可以是网络设备,也可以是终端设备(如前述方法实施例中的第一终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置180可以包括一个或多个处理器1801。处理器1801可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置180中还可以包括一个或多个存储器1802,其上可以存有计算机程序1803,处理器1801执行所述计算机程序1803,以使得通信装置180执行上述方法实施例中描述的方法。可选的, 所述存储器1802中还可以存储有数据。通信装置180和存储器1802可以单独设置,也可以集成在一起。
可选的,通信装置180还可以包括收发器1804、天线1805。收发器1804可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1804可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置180中还可以包括一个或多个接口电路1806。接口电路1806用于接收代码指令并传输至处理器1801。处理器1801运行所述代码指令以使通信装置180执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1801中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1801可以存有计算机程序1803,计算机程序1803在处理器1801上运行,可使得通信装置180执行上述方法实施例中描述的方法。计算机程序1803可能固化在处理器1801中,该种情况下,处理器1801可能由硬件实现。
在一种实现方式中,通信装置180可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图18的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图19所示的芯片的结构示意图。图19所示的芯片190包括处理器1901和接口1902。其中,处理器1901的数量可以是一个或多个,接口1902的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备(如前述方法实施例中的第一终端设备)的功能的情况:
接口1902,用于通过TRP或TRP组的组合系数矩阵,将所述TRP或TRP组的相位因子和幅度因 子中的至少一个因子发送给网络设备,所述TRP组中包括至少一个TRP。
可选地,处理器1901,用于将所述相位因子和幅度因子中的至少一个因子,与所述组合系数矩阵做乘积运算并进行量化;
可选地,接口1902,还用于向所述网络设备发送量化结果。
可选地,接口1902,还用于将所述相位因子和幅度因子中的至少一个因子对应的量化结果,通过宽带方式和/或子带方式发送给所述网络设备。
可选地,接口1902,还用于将所述相位因子和幅度因子对应的量化结果,均通过宽带方式发送给所述网络设备。
可选地,接口1902,还用于将所述相位因子和幅度因子中的第一因子对应的量化结果,通过宽带方式发送给所述网络设备;
将所述相位因子和幅度因子中的第二因子对应的量化结果,通过子带方式发送给所述网络设备。
可选地,接口1902,还用于将所述相位因子和幅度因子对应的量化结果,均通过子带方式发送给所述网络设备。
可选地,处理器1901,还用于确定所述相位因子和所述幅度因子的乘积,并将所述乘积与所述组合系数矩阵中的组合系数相乘并进行量化。
可选地,处理器1901,还用于将所述幅度因子与所述组合系数矩阵中的参考幅度相乘并进行量化;将所述相位因子与所述组合系数矩阵中的差分系数相乘并进行量化;或者,
可选地,处理器1901,还用于将所述幅度因子与所述组合系数矩阵中的参考幅度相乘并进行量化;独立量化所述相位因子和所述组合系数矩阵中的差分系数。
可选地,处理器1901,还用于将所述相位因子与所述组合系数矩阵中的差分系数相乘并进行量化;独立量化所述幅度因子。
可选地,在所述第一因子为所述幅度因子,所述第二因子为所述相位因子的情况下,所述相位因子包括宽带相位因子和子带相位因子;处理器1901,还用于对所述幅度因子和所述宽带相位因子与所述组合系数矩阵做乘积运算并进行量化,以及独立量化所述子带相位因子;
可选地,接口1902,还用于通过宽带方式向所述网络设备发送所述幅度因子对应的量化结果和所述宽带相位因子对应的量化结果,以及通过子带方式向所述网络设备发送所述子带相位因子的量化结果;或者,通过宽带方式向所述网络设备发送所述幅度因子对应的量化结果,以及通过子带方式向所述网络设备发送所述相位因子对应的量化结果。
可选地,处理器1901,还用于针对所述子带相位因子,确定所述TRP组对应的子带组合系数矩阵;将所述子带相位因子与所述子带组合系数矩阵相乘,得到第一子带组合系数矩阵;基于所述TRP或TRP组的频域基向量对所述第一子带组合系数矩阵进行压缩后量化。
可选地,在所述第一因子为所述相位因子,所述第二因子为所述幅度因子的情况下,所述幅度因子包括宽带幅度因子和子带幅度因子;处理器1901,还用于对所述相位因子和所述宽带幅度因子与组合系数矩阵做乘积运算并进行量化,以及独立量化所述子带幅度因子;
可选地,接口1902,还用于通过宽带方式向所述网络设备发送所述相位因子对应的量化结果和所述宽带幅度因子对应的量化结果,以及通过子带方式向所述网络设备发送所述子带相位因子的量化结果; 或者,通过宽带方式向所述网络设备发送所述相位因子对应的量化结果,以及通过子带方式向所述网络设备发送所述幅度因子对应的量化结果。
可选地,处理器1901,还用于针对所述子带幅度因子,确定所述TRP组对应的子带组合系数矩阵;
将所述子带幅度因子与所述子带组合系数矩阵相乘,得到第二子带组合系数矩阵;
基于所述TRP或TRP组的频域基向量对所述第二子带组合系数矩阵进行压缩后量化。
可选地,处理器1901,还用于将子带幅度因子和子带相位因子,与所述TRP或TRP组的子带组合系数矩阵做乘积运算,得到第三子带组合系数矩阵;基于所述TRP或TRP组的频域基向量对所述第三子带组合系数矩阵进行压缩后量化。
可选地,终端设备的所有TRP或TRP组中存在至少一个无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
可选地,接口1902,还用于向所述网络设备发送指示信息,所述指示信息用于指示无需上报所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
可选地,所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组由网络设备配置或者预定义。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1902,用于接收终端设备基于TRP或TRP组的组合系数矩阵发送的所述TRP或TRP组的相位因子和幅度因子中的至少一个因子,所述TRP组中包括至少一个TRP。
可选地,接口1902,还用于接收所述终端设备发送的量化结果,其中,所述量化结果为所述相位因子和幅度因子中的至少一个因子与所述组合系数矩阵做乘积运算并进行量化后得到。
可选地,接口1902,还用于通过宽带方式和/或子带方式接收所述终端设备发送的所述相位因子和幅度因子中的至少一个因子对应的量化结果。
可选地,接口1902,还用于通过宽带方式接收所述终端设备发送的相位因子的量化结果;通过宽带方式接收所述终端设备发送的幅度因子对应的量化结果。
可选地,接口1902,还用于通过宽带方式接收所述终端设备发送的所述相位因子和幅度因子中的第一因子对应的量化结果;通过子带方式接收所述终端设备发送的所述相位因子和幅度因子中的第二因子对应的量化结果。
可选地,接口1902,还用于通过子带方式接收所述终端设备发送的相位因子的量化结果;通过子带方式接收所述终端设备发送的幅度因子对应的量化结果。
可选地,处理器1902,用于根据所述量化结果,确定所述相位因子和所述幅度因子。
可选地,在所述第一因子为所述幅度因子,所述第二因子为所述相位因子的情况下,所述相位因子包括宽带相位因子和子带相位因子;接口1902,还用于通过宽带方式接收所述终端设备发送的所述幅度因子的量化结果和所述宽带相位因子量化结果,以及通过子带方式接收所述终端设备发送的所述子带相位因子的量化结果;或者,通过宽带方式接收所述终端设备发送的所述幅度因子对应的量化结果,以及通过子带方式接收所述终端设备发送的所述相位因子对应的量化结果。
可选地,所述子带相位因子对应的量化结果由所述子带相位因子与所述TRP或TRP组的子带组合系数矩阵相乘,并基于所述TRP或TRP组的频域基向量进行压缩后量化得到。
在所述第一因子为所述相位因子,所述第二因子为所述幅度因子的情况下,所述幅度因子包括宽带幅度因子和子带幅度因子;接口1902,还用于通过宽带方式接收所述终端设备发送的所述相位因子对应的量化结果和所述宽带幅度因子对应的量化结果,以及通过子带方式接收所述终端设备发送的子带幅度因子的量化结果;或者,通过宽带方式接收所述终端设备发送的所述相位因子对应的量化结果,以及通过子带方式接收所述终端设备发送的所述幅度因子对应的量化结果。
可选地,所述子带幅度因子对应的量化结果由所述子带幅度因子与所述TRP或TRP组的子带组合系数矩阵相乘,并基于所述TRP或TRP组的频域基向量进行压缩后量化得到。
可选地,接口1902,还用于通过子带方式接收所述终端设备发送的子带幅度因子和子带相位因子的量化结果,所述子带幅度因子和子带相位因子的量化结果为所述子带幅度因子和子带相位因子与所述TRP或TRP组的子带组合系数矩阵相乘,并通过TRP或TRP组的频域基向量压缩后量化的量化结果。
可选地,接口1902,还用于接收所述终端设备发送的指示信息,所述指示信息用于指示无需上报所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组;或者,向所述终端设备配置所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
可选的,芯片190还包括存储器1903,存储器1903用于存储必要的计算机程序和数据。
本申请实施例中,通过TRP组的TRP或TRP组的组合系数矩阵,将TRP组的TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备。可以将TRP组的TRP或TRP组的相位因子和幅度因子中的至少一个因子,并入TRP组的TRP或TRP组的组合系数矩阵中发送给网络设备,可以降低终端设备向网络设备直接反馈相位因子和幅度因子时占用的信令开销。进一步地,可以使得网络设备能够了解终端设备的TRP情况,进而确定出用于下行传输的预编码。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图17实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图18实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站 点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种TRP或TRP组的相位因子和幅度因子的发送方法,其特征在于,由终端设备执行,所述方法包括:
    通过TRP或TRP组的组合系数矩阵,将所述TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备,所述TRP组中包括至少一个TRP。
  2. 根据权利要求1所述的方法,其特征在于,所述通过TRP或TRP组的组合系数矩阵,将所述TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备,包括:
    将所述相位因子和幅度因子中的至少一个因子,与所述组合系数矩阵做乘积运算并进行量化;
    向所述网络设备发送量化结果。
  3. 根据权利要求2所述的方法,其特征在于,所述向所述网络设备发送量化结果,包括:
    将所述相位因子和幅度因子中的至少一个因子对应的量化结果,通过宽带方式和/或子带方式发送给所述网络设备。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    将所述相位因子和幅度因子对应的量化结果,均通过宽带方式发送给所述网络设备。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    将所述相位因子和幅度因子中的第一因子对应的量化结果,通过宽带方式发送给所述网络设备;
    将所述相位因子和幅度因子中的第二因子对应的量化结果,通过子带方式发送给所述网络设备。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    将所述相位因子和幅度因子对应的量化结果,均通过子带方式发送给所述网络设备。
  7. 根据权利要求2-5中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述相位因子和所述幅度因子的乘积,并将所述乘积与所述组合系数矩阵中的组合系数相乘并进行量化。
  8. 根据权利要求2-5中任一项所述的方法,其特征在于,所述方法还包括:
    将所述幅度因子与所述组合系数矩阵中的参考幅度相乘并进行量化;
    将所述相位因子与所述组合系数矩阵中的差分系数相乘并进行量化;
    或者,
    将所述幅度因子与所述组合系数矩阵中的参考幅度相乘并进行量化;
    独立量化所述相位因子和所述组合系数矩阵中的差分系数。
  9. 根据权利要求2-5中任一项所述的方法,其特征在于,所述方法还包括:
    将所述相位因子与所述组合系数矩阵中的差分系数相乘并进行量化;
    独立量化所述幅度因子。
  10. 根据权利要求5所述的方法,其特征在于,在所述第一因子为所述幅度因子,所述第二因子为所述相位因子的情况下,所述相位因子包括宽带相位因子和子带相位因子;
    所述对所述相位因子和幅度因子中的至少一个因子与所述组合系数矩阵做乘积运算并进行量化,包括:
    对所述幅度因子和所述宽带相位因子与所述组合系数矩阵做乘积运算并进行量化,以及独立量化所 述子带相位因子;
    所述通过宽带方式和/或子带方式向所述网络设备发送量化结果,包括:
    通过宽带方式向所述网络设备发送所述幅度因子对应的量化结果和所述宽带相位因子对应的量化结果,以及通过子带方式向所述网络设备发送所述子带相位因子的量化结果;或者,
    通过宽带方式向所述网络设备发送所述幅度因子对应的量化结果,以及通过子带方式向所述网络设备发送所述相位因子对应的量化结果。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    针对所述子带相位因子,确定所述TRP组对应的子带组合系数矩阵;
    将所述子带相位因子与所述子带组合系数矩阵相乘,得到第一子带组合系数矩阵;
    基于所述TRP或TRP组的频域基向量对所述第一子带组合系数矩阵进行压缩后量化。
  12. 根据权利要求5所述的方法,其特征在于,在所述第一因子为所述相位因子,所述第二因子为所述幅度因子的情况下,所述幅度因子包括宽带幅度因子和子带幅度因子;
    所述对所述相位因子和幅度因子中的至少一个因子与所述组合系数矩阵做乘积运算并进行量化,包括:
    对所述相位因子和所述宽带幅度因子与组合系数矩阵做乘积运算并进行量化,以及独立量化所述子带幅度因子;
    所述通过宽带方式和/或子带方式向所述网络设备发送量化结果,包括:
    通过宽带方式向所述网络设备发送所述相位因子对应的量化结果和所述宽带幅度因子对应的量化结果,以及通过子带方式向所述网络设备发送所述子带相位因子的量化结果;或者,
    通过宽带方式向所述网络设备发送所述相位因子对应的量化结果,以及通过子带方式向所述网络设备发送所述幅度因子对应的量化结果。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    针对所述子带幅度因子,确定所述TRP组对应的子带组合系数矩阵;
    将所述子带幅度因子与所述子带组合系数矩阵相乘,得到第二子带组合系数矩阵;
    基于所述TRP或TRP组的频域基向量对所述第二子带组合系数矩阵进行压缩后量化。
  14. 根据权利要求6所述的方法,其特征在于,所述对所述相位因子和幅度因子中的至少一个因子与所述组合系数矩阵做乘积运算并进行量化,包括:
    将子带幅度因子和子带相位因子,与所述TRP或TRP组的子带组合系数矩阵做乘积运算,得到第三子带组合系数矩阵;
    基于所述TRP或TRP组的频域基向量对所述第三子带组合系数矩阵进行压缩后量化。
  15. 根据权利要求1所述的方法,其特征在于,所述终端设备的所有TRP或TRP组中存在至少一个无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送指示信息,所述指示信息用于指示无需上报所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组;或者,
    所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组由网络设备配置或者预定义。
  17. 一种TRP或TRP组的相位因子和幅度因子的接收方法,其特征在于,由网络设备执行,所述方法包括:
    接收终端设备基于TRP或TRP组的组合系数矩阵发送的所述TRP或TRP组的相位因子和幅度因子中的至少一个因子,所述TRP组中包括至少一个TRP。
  18. 根据权利要求17所述的方法,其特征在于,所述接收终端设备基于TRP或TRP组的组合系数矩阵发送的所述TRP或TRP组的相位因子和幅度因子中的至少一个,包括:
    接收所述终端设备发送的量化结果,其中,所述量化结果为所述相位因子和幅度因子中的至少一个因子与所述组合系数矩阵做乘积运算并进行量化后得到。
  19. 根据权利要求18所述的方法,其特征在于,所述接收所述终端设备发送的量化结果,包括:
    通过宽带方式和/或子带方式接收所述终端设备发送的所述相位因子和幅度因子中的至少一个因子对应的量化结果。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    通过宽宽方式接收所述终端设备发送的相位因子的量化结果;
    通过宽带方式接收所述终端设备发送的幅度因子对应的量化结果。
  21. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    通过宽带方式接收所述终端设备发送的所述相位因子和幅度因子中的第一因子对应的量化结果;
    通过子带方式接收所述终端设备发送的所述相位因子和幅度因子中的第二因子对应的量化结果。
  22. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    通过子带方式接收所述终端设备发送的相位因子的量化结果;
    通过子带方式接收所述终端设备发送的幅度因子对应的量化结果。
  23. 根据权利要求18-22中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述量化结果,确定所述相位因子和所述幅度因子。
  24. 根据权利要求21所述的方法,其特征在于,在所述第一因子为所述幅度因子,所述第二因子为所述相位因子的情况下,所述相位因子包括宽带相位因子和子带相位因子;
    所述方法还包括:
    通过宽带方式接收所述终端设备发送的所述幅度因子的量化结果和所述宽带相位因子量化结果,以及通过子带方式接收所述终端设备发送的所述子带相位因子的量化结果;或者,
    通过宽带方式接收所述终端设备发送的所述幅度因子对应的量化结果,以及通过子带方式接收所述终端设备发送的所述相位因子对应的量化结果。
  25. 根据权利要求24所述的方法,其特征在于,所述子带相位因子对应的量化结果由所述子带相位因子与所述TRP或TRP组的子带组合系数矩阵相乘,并基于所述TRP或TRP组的频域基向量进行压缩后量化得到。
  26. 根据权利要求21所述的方法,其特征在于,在所述第一因子为所述相位因子,所述第二因子为所述幅度因子的情况下,所述幅度因子包括宽带幅度因子和子带幅度因子;
    所述方法还包括:
    通过宽带方式接收所述终端设备发送的所述相位因子对应的量化结果和所述宽带幅度因子对应的 量化结果,以及通过子带方式接收所述终端设备发送的子带幅度因子的量化结果;或者,
    通过宽带方式接收所述终端设备发送的所述相位因子对应的量化结果,以及通过子带方式接收所述终端设备发送的所述幅度因子对应的量化结果。
  27. 根据权利要求26所述的方法,其特征在于,所述子带幅度因子对应的量化结果由所述子带幅度因子与所述TRP或TRP组的子带组合系数矩阵相乘,并基于所述TRP或TRP组的频域基向量进行压缩后量化得到。
  28. 根据权利要求22所述的方法,其特征在于,所述接收所述终端设备发送的量化结果,方法还包括:
    通过子带方式接收所述终端设备发送的子带幅度因子和子带相位因子的量化结果,所述子带幅度因子和子带相位因子的量化结果为所述子带幅度因子和子带相位因子与所述TRP或TRP组的子带组合系数矩阵相乘,并通过TRP或TRP组的频域基向量压缩后量化的量化结果。
  29. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的指示信息,所述指示信息用于指示无需上报所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组;或者,
    向所述终端设备配置所述无需上报所述相位因子和/或所述幅度因子的TRP或TRP组。
  30. 一种通信装置,其特征在于,设置于终端设备,所述装置包括:
    收发模块,用于通过TRP或TRP组的组合系数矩阵,将所述TRP或TRP组的相位因子和幅度因子中的至少一个因子发送给网络设备,所述TRP组中包括至少一个TRP。
  31. 一种通信装置,其特征在于,设置于网络设备,所述装置包括:
    收发模块,用于接收终端设备基于TRP或TRP组的组合系数矩阵发送的所述TRP或TRP组的相位因子和幅度因子中的至少一个因子,所述TRP组中包括至少一个TRP。
  32. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至16中任一项所述的方法。
  33. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求17至29中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至16中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求17至29中任一项所述的方法。
  36. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至16中任一项所述的方法被实现。
  37. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求17至29中任一项所述的方法被实现。
PCT/CN2022/106341 2022-07-18 2022-07-18 Trp或trp组的相位因子和幅度因子发送/接收方法及其装置 WO2024016136A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002406.6A CN117730487A (zh) 2022-07-18 2022-07-18 Trp或trp组的相位因子和幅度因子发送/接收方法及其装置
PCT/CN2022/106341 WO2024016136A1 (zh) 2022-07-18 2022-07-18 Trp或trp组的相位因子和幅度因子发送/接收方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106341 WO2024016136A1 (zh) 2022-07-18 2022-07-18 Trp或trp组的相位因子和幅度因子发送/接收方法及其装置

Publications (1)

Publication Number Publication Date
WO2024016136A1 true WO2024016136A1 (zh) 2024-01-25

Family

ID=89616721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106341 WO2024016136A1 (zh) 2022-07-18 2022-07-18 Trp或trp组的相位因子和幅度因子发送/接收方法及其装置

Country Status (2)

Country Link
CN (1) CN117730487A (zh)
WO (1) WO2024016136A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888246A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 基于码本的信道状态信息反馈方法及设备
WO2020118728A1 (zh) * 2018-12-14 2020-06-18 华为技术有限公司 通信方法及装置
CN111416645A (zh) * 2019-01-08 2020-07-14 华为技术有限公司 预编码矩阵指示方法及相关设备
US20220029683A1 (en) * 2018-12-21 2022-01-27 Qualcomm Incorporated Beam-strength related type-ii channel state information coefficient feedback
CN114586312A (zh) * 2022-01-11 2022-06-03 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888246A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 基于码本的信道状态信息反馈方法及设备
WO2020118728A1 (zh) * 2018-12-14 2020-06-18 华为技术有限公司 通信方法及装置
US20220029683A1 (en) * 2018-12-21 2022-01-27 Qualcomm Incorporated Beam-strength related type-ii channel state information coefficient feedback
CN111416645A (zh) * 2019-01-08 2020-07-14 华为技术有限公司 预编码矩阵指示方法及相关设备
CN114586312A (zh) * 2022-01-11 2022-06-03 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117730487A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2024016136A1 (zh) Trp或trp组的相位因子和幅度因子发送/接收方法及其装置
WO2023201669A1 (zh) 一种pscch的发送/接收方法及其装置
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2024026647A1 (zh) 系数指示方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2024021129A1 (zh) 上行mimo传输8天线端口多天线面板的码字确定方法及其装置
WO2023240654A1 (zh) 一种部分天线相干传输码字的确定方法及其装置
WO2024082196A1 (zh) 一种基于ai模型的终端定位方法及装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
CN112054831A (zh) 信道状态信息的反馈方法及装置
WO2024041212A1 (zh) 一种通信方法和装置
WO2023201501A1 (zh) Mimo上行传输部分天线相干传输码字的确定方法及其装置
WO2024082195A1 (zh) 一种基于ai模型的终端定位方法及装置
WO2024021133A1 (zh) 指示方法、装置、设备及存储介质
WO2024045143A1 (zh) 一种轨道角动量oam的预编码矩阵确定方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023201503A1 (zh) Mimo上行传输预编码码本的确定方法及其装置
WO2023206566A1 (zh) 信息传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002406.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951415

Country of ref document: EP

Kind code of ref document: A1