WO2024014643A1 - 세포 독성이 향상된 면역세포 제조방법 - Google Patents

세포 독성이 향상된 면역세포 제조방법 Download PDF

Info

Publication number
WO2024014643A1
WO2024014643A1 PCT/KR2023/002414 KR2023002414W WO2024014643A1 WO 2024014643 A1 WO2024014643 A1 WO 2024014643A1 KR 2023002414 W KR2023002414 W KR 2023002414W WO 2024014643 A1 WO2024014643 A1 WO 2024014643A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
human immunoglobulin
aldesleukin
plasma
cells
Prior art date
Application number
PCT/KR2023/002414
Other languages
English (en)
French (fr)
Inventor
문귀영
Original Assignee
주식회사 노보셀바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230011635A external-priority patent/KR20240008233A/ko
Application filed by 주식회사 노보셀바이오 filed Critical 주식회사 노보셀바이오
Publication of WO2024014643A1 publication Critical patent/WO2024014643A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for producing immune cells with improved cytotoxicity.
  • lymphocytes Natural Killer cells
  • NK immune cells are activated and cultured using animal-derived antibody reagents.
  • animal-derived antibody reagents In order to create a cell therapy product that can be administered to humans, animal-derived antibody reagents must be excluded. Since most antibody reagents are products that can be used only for research purposes and are not suitable for use in the production of cell therapy for administration to humans, there has been a continuous demand to date.
  • the present inventors completed the present invention by confirming that better efficacy can be achieved by activating NK cells using medicines produced in a GMP facility.
  • One aspect of the present invention is the process of (a) adding any one or more of Aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma to lymphocytes and culturing them once to Repeat 7 times; (b) In the process of culturing any one or more of the above repeated steps, Panobinostat, Trichostatin A, valproic acid, sodium butyrate, and SAHA (suberoylanilide hydroxamic acid) ) further adding any one or more of; and (c) harvesting the cultured lymphocytes.
  • the purpose is to provide a method for producing immune cells with improved cytotoxicity.
  • Another aspect of the present invention is (a) in the culture of lymphocytes, 1 adding any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, 2 panobinostat, trichostatin A, adding at least one of valproic acid, sodium butyrate, and SAHA; and (b) harvesting the lymphocytes cultured in step (a).
  • the purpose is to provide a method for producing immune cells with improved cytotoxicity.
  • One aspect of the present invention is the process of (a) adding any one or more of Aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma to lymphocytes and culturing them once to Repeat 7 times; (b) In the process of culturing any one or more of the above repeated steps, Panobinostat, Trichostatin A, valproic acid, sodium butyrate, and SAHA (suberoylanilide hydroxamic acid) ) further adding any one or more of the following; and (c) harvesting the cultured lymphocytes.
  • step (a) may involve adding at least one of anti-CD56 antibody and human immunoglobulin and at least one of aldesleukin, IL-15, IL-18, and plasma. .
  • 0.5 to 5 ⁇ l of the anti-CD56 antibody and 5 to 500 ⁇ l of human immunoglobulin may be added.
  • the valproic acid may be added at a concentration of 50 to 5000 uM.
  • Another aspect of the present invention is (a) adding any one or more of the following to the culture of lymphocytes; and 1 adding any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Addition of any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA; (b) harvesting the lymphocytes cultured in step (a); providing a method for producing immune cells with improved cytotoxicity, including:
  • step (a) there may be a method for producing immune cells with improved cytotoxicity, further comprising step (a-1) in which one or more of the following is added to lymphocytes; 1 Addition of any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Add one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • step (a-1) there may be a method for producing immune cells with improved cytotoxicity, further comprising step (a-2) in which one or more of the following is added to lymphocytes; 1 Addition of any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Add one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • step (a-2) there may be a method for producing immune cells with improved cytotoxicity, further comprising step (a-3) in which one or more of the following is added to lymphocytes; 1 Addition of any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Add one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • step (a-3) there may be a method for producing immune cells with improved cytotoxicity, further comprising step (a-4) in which one or more of the following is added to lymphocytes; 1 Addition of any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Add one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • step (a-4) there may be a method for producing immune cells with improved cytotoxicity, further comprising step (a-5) in which one or more of the following is added to lymphocytes; 1 Addition of any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Add one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are added to at least one of anti-CD56 antibody and human immunoglobulin. It may be processing any one or more of aldesleukin, IL-15, IL-18, and plasma.
  • 0.5 to 5 ⁇ l of the anti-CD56 antibody and 5 to 500 ⁇ l of human immunoglobulin may be added.
  • the valproic acid may be added at a concentration of 50 to 5000 uM.
  • the production method of the present invention can provide immune cells with improved cytotoxicity.
  • Figures 1 to 4 show the results of confirming the ratio of NK and NKT cells produced by the production method according to an embodiment of the present invention.
  • Figures 5 and 6 show the results of confirming the receptor expression level of NK cells produced by the production method according to one embodiment of the present invention.
  • Figures 7 to 12 show the results of tests to confirm the toxicity of NK cells produced by the production method according to one embodiment of the present invention against cancer cells.
  • Figures 13 to 16 show the results of a test to confirm the secretion amount of Interferon gamma (IFN-r) from NK cells produced by the production method according to an embodiment of the present invention.
  • IFN-r Interferon gamma
  • One aspect of the present invention is the process of (a) adding any one or more of Aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma to lymphocytes and culturing them once to Repeat 7 times; (b) In the process of culturing any one or more of the above repeated steps, Panobinostat, Trichostatin A, valproic acid, sodium butyrate) and SAHA (suberoylanilide hydroxamic acid) Adding one or more of acid); and (c) harvesting the cultured lymphocytes. It provides a method for producing immune cells with improved cytotoxicity.
  • the repeating step is a step of repeating the treatment of lymphocytes with one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma 1 to 7 times.
  • Repetition of the above steps means repetition of processing of any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma.
  • the preparations processed in the repeated steps are processed in each step. may be different from each other.
  • the human immunoglobulin is not coated on the flask, but is treated directly on the lymphocytes during the culture process. do. This can simplify the process and shorten the time required for coating.
  • 'lymphocytes are the central cells that constitute the immune system and have the characteristics of adaptive immunity, antigen specificity, receptor diversity, memory, and self-non-self distinction. They play a central role in adaptive immunity by recognizing antigens presented by different types of white blood cells after phagocytosing foreign substances and secreting cytokines and antibodies through them.
  • the lymphocytes may include NK cells.
  • the lymphocytes may be obtained by centrifugation after separation from peripheral blood, or may be prepared by suspending them in a buffer solution, etc. for additional procedures.
  • the treatment of any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma is performed with one or more of anti-CD56 antibody and human immunoglobulin. Any one or more of aldesleukin, IL-15, IL-18, and plasma may be added. According to one embodiment of the present invention, it can be confirmed that the survival rate and cytotoxicity of NK cells are significantly improved through this treatment.
  • the amount of anti-CD56 antibody used may be 0.5 to 5 ⁇ l for the anti-CD56 antibody, and preferably 5 to 500 ⁇ l for human immunoglobulin, more preferably 5 to 50 ⁇ l. You can. If treated outside the above content range, the cells are not activated or the cells die, making it impossible to obtain the improved cytotoxicity or cell viability effects that are intended to be achieved in the present invention.
  • the step further comprising treatment with any one or more of the panobinostat, trichostatin A, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid (SAHA) is repeated.
  • steps 1 to 1 of further treating with one or more of the histone deacetylase (HDAC) inhibitors panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA is repeated.
  • HDAC histone deacetylase
  • the above-mentioned lymphocytes are treated with panobinostat, trichotate between repetitions or after 1 to 7 repetitions of treatment of any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma.
  • panobinostat trichotate between repetitions or after 1 to 7 repetitions of treatment of any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma.
  • the lymphocytes are additionally processed after processing one or more of antibodies, human immunoglobulins, and plasma, any of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulins, and plasma are added to the lymphocytes. It may be processed 1 to 7 times at any point between or after one or more treatment repetitions. When additional processing is repeated, the additionally processed preparations may be the same or different at each step.
  • the valproic acid may be treated at a concentration of 50 to 5000 uM. If treated outside the above content range, the effect of improved cytotoxicity or cell viability desired in the present invention cannot be obtained. According to one embodiment, when valproic acid is less than 50 uM, cytotoxicity or cell viability effects do not occur, and when valproic acid is more than 5000 uM, cell proliferation does not occur.
  • Another aspect of the present invention is (a) in the culture of lymphocytes, 1 adding any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, 2 panobinostat, trichostatin A, adding at least one of valproic acid, sodium butyrate, and SAHA; and (b) harvesting the lymphocytes cultured in step (a). It provides a method for producing immune cells with improved cytotoxicity.
  • lymphocytes are treated with any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or aldesleukin, IL-15, IL-18, anti -It may be processing any two or more of CD56 antibody, human immunoglobulin, and plasma, and further processing any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • it may further include a step (a-1) in which any one or more of the following treatments are performed on the treated lymphocytes after step (a) but before step (b); 1 Addition of any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Addition of one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • step (a-1) the lymphocytes treated in step (a) are treated with one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or panobinostat. , trichostatin A, valproic acid, sodium butyrate, and SAHA may be further treated, or all of these treatments may be performed.
  • aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma may be further processed with any one or more of anti-CD56 antibody, human immunoglobulin, and plasma, or may be treated with any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA, (a )
  • any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are treated, and any of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA is treated.
  • any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma is further processed, followed by panobinostat, trichostatin A, valproic acid, It may be processing any one or more of sodium butyrate and SAHA.
  • a step (a-2) in which any one or more of the following treatments are performed on the treated lymphocytes after step (a-1) and before step b) may be further included; 1 Addition of any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; 2 Addition of one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • step (a-2) the lymphocytes treated in step (a-1) are treated with any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or It may be further treated with one or more of vinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA, or all of these treatments may be performed.
  • aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma may be further processed with any two or more of anti-CD56 antibody, human immunoglobulin, and plasma, or any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA, a -If any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA were treated in step 2), aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin and plasma may be further processed and treated with any one or more of panobinostat, trichostatin A, valproic acid, and sodium butyrate.
  • One embodiment of the present invention may further include a step (a-3) in which any one or more of the following treatments are performed on the treated lymphocytes after step (a-2) and before step (b); Treatment with any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; Treatment with any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • the lymphocytes treated in step (a-2) are treated with one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or It may be further treated with one or more of vinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA, or all of these treatments may be performed.
  • aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are treated in step (a-2), aldesleukin, IL-15, It may be further processed with any one or more of IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA,
  • step (a-2) any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are treated, followed by panobinostat, trichostatin A, valproic acid, and sodium butyrate.
  • aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are further processed, panobinostat, trichostatin A, It may be processing any one or more of valproic acid, sodium butyrate, and SAHA.
  • One embodiment of the present invention may further include a step (a-4) in which any one or more of the following treatments are performed on the treated lymphocytes after step (a-3) and before step (b); Treatment with any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; Treatment with any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • step (a-4) the lymphocytes treated in step (a-3) are treated with any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or It may be further treated with one or more of vinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA, or all of these treatments may be performed.
  • aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma aldesleukin, IL-15, It may be further treated with any two or more of IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA, If any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA is treated in step (a-3), aldesleukin, IL-15, IL-18, anti-CD56 antibody, human Any one or more of immunoglobulins and plasma may be further processed and any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA may be processed.
  • a step (a-5) of subjecting the treated lymphocytes to one or more of the following treatments after step (a-4) and before step (b) may be further included; Treatment with any one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma; Treatment with any one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA.
  • the lymphocytes treated in step (a-4) are treated with one or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or It may be further treated with one or more of vinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA, or all of these treatments may be performed.
  • aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are treated in step (a-4), aldesleukin, IL-15, It may be further processed with any one or more of IL-18, anti-CD56 antibody, human immunoglobulin, and plasma, or one or more of panobinostat, trichostatin A, valproic acid, sodium butyrate, and SAHA,
  • step (a-4) any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are treated, followed by panobinostat, trichostatin A, valproic acid, and sodium butyrate.
  • aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma are further processed, panobinostat, trichostatin A, It may be processing any one or more of valproic acid, sodium butyrate, and SAHA.
  • the treatment of any two or more of aldesleukin, IL-15, IL-18, anti-CD56 antibody, human immunoglobulin, and plasma is performed with any one or more of anti-CD56 antibody and human immunoglobulin. It may be processing any one or more of aldesleukin, IL-15, IL-18, and plasma. Specifically, the main ingredient may be one or both of anti-CD56 antibody and human immunoglobulin, while also treating one or more of aldesleukin, IL-15, IL-18, and plasma. According to one embodiment of the present invention, this treatment can improve the viability and cytotoxicity of NK cells.
  • the amount of anti-CD56 antibody used may be 0.5 to 5 ⁇ l, and the amount of human immunoglobulin used may be preferably 5 to 500 ⁇ l, more preferably 5 to 50 ⁇ l.
  • the valproic acid may be treated at a concentration of 50 to 5000 uM.
  • cells in the step of harvesting cultured lymphocytes, cells can be obtained by a known method, and specifically, only the desired lymphocytes can be separated and harvested through centrifugation. Immune cells produced through this manufacturing method have significantly improved cytotoxicity compared to conventional methods and can be used as various cell therapeutic agents.
  • immune cells containing NK cells with improved cytotoxicity were prepared through a total of 9 steps as follows.
  • Lymphocytes were isolated from human peripheral blood. Specifically, 60 ml to 90 ml of human peripheral blood was collected using a heparinized 10 ml vacuum collection tube (BD Vacutainer TM). Afterwards, 15 ml of Ficoll-Paque Plus (endotoxin tested, density 1.077 g/ml, GE Healthcare, USA) solution was added to a 50 ml lymphocyte separation tube (Leuco sep, Greiner Bio-One, Swiss), and 2,000 By centrifugation at rpm, the solution settled to the bottom of the glass membrane in the tube.
  • BD Vacutainer TM heparinized 10 ml vacuum collection tube
  • Ficoll-Paque Plus endotoxin tested, density 1.077 g/ml, GE Healthcare, USA
  • the collected blood was transferred to a separation tube and centrifuged at 2,500 to 3,500 rpm for 12 to 25 minutes to separate the red blood cells and granulocytes into the lower layer and the monocyte layer (lymphocyte layer), platelets, and plasma into the upper layer. Afterwards, the upper layer of plasma was inactivated in a 56°C water bath for 30 minutes.
  • the lymphocyte layer was collected with a sterilized pipette, collected in a 15 ml tube, and then centrifuged to remove the supernatant. Lymphocytes from which the supernatant was removed were suspended in 10 ml of buffer solution (PBS) and washed. The cell count of a portion of the suspension was measured using a hemocytometer, and then centrifuged again to collect only lymphocytes. The total number of harvested lymphocytes was measured to be 38 x 10 6 .
  • the lymphocytes isolated in the first step were suspended in culture medium (KBM 502) and cultured using two 25T flasks (Flask A, Flask B) (hereinafter, culture in Flask A is referred to as culture method A and Flask B). Culture is referred to as culture method B). 50 to 300 ⁇ l of Aldesleukin, IL-18, and human immunoglobulin were added to the cell suspension in Flask A and Flask B, respectively, and then incubated in a 37°C 5% CO 2 incubator for 1 to 2 days. Immune cells were cultured. Antibodies and plasma in this step were added to the suspension on the day the culture began.
  • the cultured cells were transferred to a 75T flask and the immune cells were cultured in an incubator at 37°C and 5% CO 2 for 2 to 3 days.
  • 50 to 300 ⁇ l of aldesleukin, IL-18, and human immunoglobulin were added to the cell suspension in Flask A and Flask B, respectively, and then immunized in a 75T Flask for 1 to 2 days at 37°C in a 5% CO 2 incubator.
  • Cells were cultured.
  • Antibodies and plasma in this step were added to the suspension on the day the culture began.
  • New medium was added to each suspension of Flask A and Flask B in the fourth step, where immune cells were cultured, and then aldesleukin, IL-18, and human immunoglobulin were added in the same manner as in the fourth step. .
  • the cultured cells were transferred to a 175T flask and the immune cells were cultured in an incubator at 37°C and 5% CO 2 for 2 to 3 days.
  • 50 to 300 ⁇ l of aldesleukin, IL-18, and human immunoglobulin were added to the cell suspension in Flask A and Flask B, respectively, and Panobinostat, Trichostatin A, One or more of valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid (SAHA) was treated to a concentration of 100 to 500 uM.
  • SAHA suberoylanilide hydroxamic acid
  • Step 7 Addition/non-addition of NK cell activating substance
  • the cell suspensions cultured in Flask A and Flask B in step 7 were transferred to 1,000 ml CO 2 permeable bags (Bag A, Bag B), respectively, and incubated in an incubator at 37°C and 5% CO 2 for 7 to 10 days. Immune cells were cultured. Plasma in this step was added on the 7th day of culture. Also, at this time, at least one of Panobinostat, Trichostatin A, valproic acid, sodium butyrate, and SAHA (suberoylanilide hydroxamic acid) was added to Bag B. .
  • the cell suspensions according to culture method A and culture method B contained in the CO 2 permeable bag were transferred to a centrifuge tube and then centrifuged at 2,500 rpm to harvest the cells. The supernatant was discarded, the pellet containing cells was washed twice with 250 ml of sterile saline solution, and the cells were harvested by centrifugation. The harvested cells were injected into a 100 ml pack of sterile physiological saline for injection to complete the production of immune cells containing NK cells with improved cytotoxicity.
  • NK and NKT In order to confirm the cell ratio of NK and NKT according to the present invention, 1x10 6 /ml of non-treated NK cells cultured for 14 days with Valproic acid, Trichostatin A, SAHA, and Panobinostat were taken, and CD3-APC, CD56-FITC, 0.5 ul of CD16-PE-Cy7 was added and the cells were stained for 30 minutes at room temperature, shielded from light. After the staining was completed, the cells were centrifuged at 1,200 rpm at 4°C for 3 minutes to remove the supernatant. The cells were suspended in PBS and the ratio of NK and NKT cells was observed using flow cytometry.
  • the Trichostatin A treated group increased the NK cell ratio by 3% and the NKT cell ratio by 1.4% compared to the untreated group, and the NK cell ratio of the SAHA treated group increased by 1.4% compared to the untreated group. It was observed that the NKT cell ratio was significantly increased to 11.6% and 2.9%.
  • panobinostat-treated group was found to have a significantly increased NK cell rate of 11.6% and NKT cell rate of 1.32% compared to the non-treated group.
  • NK cells proliferated by adding Valproic acid, Trichostatin A, SAHA, and Panobinostat could increase the ratio of NK and NKT cells compared to the control group.
  • NK cells cultured for 14 days were taken and analyzed for CD3-APC, CD56-FITC, and CD16-PE.
  • -Cy7, NKG2D-PE, and DNAM-1-Percp-Cy5.5 were added in 0.5 ul each, blocked from light, and the cells were stained for 30 minutes at room temperature. After staining was completed, the cells were centrifuged at 1,200 rpm at 4°C for 3 minutes to remove the supernatant. The cells were suspended in PBS and the expression levels of DNAM-1 and NKG2D were confirmed by flow cytometry.
  • Lung cancer cells A549), breast cancer cells (MDA-MB231), blood cancer cells (K562), epidermal cancer cells (A431), pancreatic cancer cells (Panc-1), and liver cancer cells (SK-Hep1) stained with Calcein-AM.
  • % FBS in phenol red free RPMI media was homogenized and dispensed into a v-bottom 96 well plate at 1x10 4 /well.
  • the cultured NK cells were added at 40 or 100 times the number of cancer cells, and the NK cells and cancer cells were co-cultured in an incubator at 37°C with 5% CO 2 for 6 hours.
  • the blood cancer cell line (K562) increased by 44%
  • the lung cancer cell line (A549) increased by 26%
  • the breast cancer cell line (MDA-MB231) increased by 44% compared to the untreated group.
  • 17% increased cytotoxicity was observed in the liver cancer cell line (SK-Hep1).
  • the SAHA-treated group had 46% more cells in the blood cancer cell line (K562), 26% more cells in the lung cancer cell line (A549), and breast cancer cell line (MDA) than the untreated group. Increased cytotoxicity of 18% was observed in the epidermal cancer cell line (A431), 39% in the epidermal cancer cell line (A431), and 74% in the pancreatic cancer cell line (Panc-1).
  • the lung cancer cell line (A549) increased by 33%
  • the breast cancer cell line (MDA-MB231) increased by 24%
  • the liver cancer cell line (SK-Hep1) increased by 18% compared to the non-treated group. % increased cytotoxicity was observed.
  • NK cells cultured with Valproic acid, Trichostatin A, SAHA, and Panobinostat increase cytotoxicity against most solid cancers and blood cancers compared to the control group.
  • Experiment example 4 Test to confirm the secretion amount of Interferon gamma (IFN-r) from NK cells
  • NK cells and cancer cells cultured for 14 days were co-cultured in 96 wells for 6 hours.
  • the method for measuring IFN-r followed the instructions of the Human IFN-gamma quantikine ELISA Kit from RnD Systems.
  • NK cells cultured with Valproic acid, Trichostatn A, SAHA, and Panobinostat had a cytotoxic effect on most solid cancer and blood cancer cells when compared to the control group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 세포 독성이 향상된 면역세포 제조방법에 관한 것으로, 상기 제조방법은 세포 독성이 향상된 면역세포를 제공할 수 있고, 개선된 세포 독성을 이용하여 다양한 세포치료제로 활용이 가능하다.

Description

세포 독성이 향상된 면역세포 제조방법
본 발명은 세포 독성이 향상된 면역세포 제조방법에 관한 것이다.
인간에게서 면역계 이상과 불균형이 초래될 경우 염증반응에 취약해지거나 암과 같은 난치성 질병이 발생한다. 면역력이 저하되면 바이러스 감염이나 세균의 침투에 방어하는 능력이 약해지며 이로 인해 건강을 잃을 수 있다. 또한 과도한 스트레스에 노출될 경우에도 면역력이 약해지고 특히 암 세포 발생과 같은 정상세포의 손상과 변이가 일어날 수 있다. 인체는 이러한 변화에 대항하기 위해 매일 면역세포 (림프구)를 생성하여 방어체계를 구축하는데 이때 대표적인 림프구가 자연 살해세포 (Natural Killer cell, NK cell)이다.
일반적으로 NK 면역세포는 동물 유래 항체 시약을 사용하여 활성화시켜 배양한다. 그러나 사람에게 투여 가능한 세포 치료제를 만들기 위하여 동물 유래 항체 시약을 제외하여야 한다. 대부분의 항체 시약은 연구용으로만 사용가능한 제품이라 사람에게 투여하는 세포 치료제 생산에 사용하기는 적합 하지 않아 현재까지 지속적인 요구가 있어 왔다.
이에 본 발명자들은 GMP 시설에서 생산된 의약품을 사용하여 NK 세포를 활성화시켜 더 나은 효능을 가질 수 있다는 것을 확인함으로써 본 발명을 완성하였다.
본 발명의 일 양상은 (a) 림프구에 알데스류킨(Aldesleukin), IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 첨가하여 배양하는 과정을 1회 내지 7회 반복하는 단계; (b) 상기 반복하는 단계 중 어느 하나 이상의 배양하는 과정에서 파노비노스타트(Panobinostat), 트리코스타틴 A(Trichostatin A), 발프로산(valproic acid), 소듐 부티레이트(sodium butyrate) 및 SAHA(suberoylanilide hydroxamic acid) 중 어느 하나 이상을 더 첨가하는 단계; 및 (c) 상기 배양된 림프구를 수확하는 단계를 포함하는 세포 독성이 향상된 면역세포 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 양상은 (a) 림프구의 배양에서 ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가, ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 첨가 중 어느 하나 이상의 첨가가 이루어지는 단계; 및 (b) 상기 (a) 단계에서 배양된 림프구를 수확하는 단계를 포함하는 세포 독성이 향상된 면역세포 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 (a) 림프구에 알데스류킨(Aldesleukin), IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 첨가하여 배양하는 과정을 1회 내지 7회 반복하는 단계; (b) 상기 반복하는 단계 중 어느 하나 이상의 배양하는 과정에서 파노비노스타트(Panobinostat), 트리코스타틴 A(Trichostatin A), 발프로산(valproic acid), 소듐 부티레이트(sodium butyrate) 및 SAHA(suberoylanilide hydroxamic acid) 중 어느 하나 이상을 더 첨가하는 단계; 및 (c) 상기 배양된 림프구를 수확하는 단계;를 포함하는 세포 독성이 향상된 면역세포 제조방법을 제공한다.
본 발명의 일 구체예로, 상기 (a) 단계는 anti-CD56 항체 및 인간 면역글로불린 중 어느 하나 이상과 알데스류킨, IL-15, IL-18 및 혈장 중 어느 하나 이상을 첨가하는 것일 수 있다.
본 발명의 일 구체예로, 상기 anti-CD56 항체는 0.5 내지 5 ㎕, 인간 면역글로불린은 5 내지 500 ㎕ 첨가하는 것일 수 있다.
본 발명의 일 구체예로, 상기 발프로산은 50 내지 5000 uM 농도로 첨가되는 것일 수 있다.
본 발명의 다른 일 양상은 (a) 림프구의 배양에서 하기 중 어느 하나 이상의 첨가가 이루어지는 단계; 및 ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 첨가; (b) 상기 (a) 단계에서 배양된 림프구를 수확하는 단계;를 포함하는 세포 독성이 향상된 면역세포 제조방법을 제공한다..
본 발명의 일 구체예로, 상기 (a) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-1) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법일 수 있다; ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
본 발명의 일 구체예로, 상기 (a-1) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-2) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법일 수 있다; ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
본 발명의 일 구체예로, 상기 (a-2) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-3) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법일 수 있다; ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
본 발명의 일 구체예로, 상기 (a-3) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-4) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법일 수 있다; ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
본 발명의 일 구체예로, 상기 (a-4) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-5) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법일 수 있다; ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
본 발명의 일 구체예로, 상기 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가는 anti-CD56 항체 및 인간 면역글로불린 중 어느 하나 이상과 알데스류킨, IL-15, IL-18 및 혈장 중 어느 하나 이상을 처리하는 것일 수 있다.
본 발명의 일 구체예로, 상기 anti-CD56 항체는 0.5 내지 5 ㎕, 인간 면역글로불린은 5 내지 500 ㎕ 첨가하는 것일 수 있다.
본 발명의 일 구체예로, 상기 발프로산은 50 내지 5000 uM 농도로 첨가되는 것일 수 있다.
본 발명의 제조방법은 세포 독성이 개선된 면역세포를 제공할 수 있다.
도 1 내지 도 4는 본 발명의 일 구체예에 따른 제조 방법에 의해 제조된 NK, NKT 세포비율을 확인한 결과이다.
도 5 및 도 6은 본 발명의 일 구체예에 따른 제조 방법에 의해 제조된 NK 세포의 수용체 발현량을 확인한 결과이다.
도 7 내지 도 12는 암세포에 대한 본 발명의 일 구체예에 따른 제조 방법에 의해 제조된 NK 세포의 독성 확인 시험 결과를 나타낸 것이다.
도 13 내지 도 16은 본 발명의 일 구체예에 따른 제조 방법에 의해 제조된 NK 세포의 Interferon gamma (IFN-r) 분비량 확인 시험결과를 나타낸 것이다.
본 발명의 일 양상은 (a) 림프구에 알데스류킨(Aldesleukin), IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 첨가하여 배양하는 과정을 1회 내지 7회 반복하는 단계; (b) 상기 반복하는 단계 중 어느 하나 이상의 배양하는 과정에서 파노비노스타트(Panobinostat), 트리코스타틴 A(Trichostatin A), 발프로산(valproic acid), 소듐 부티레이트(sodium butyrate) ) 및 SAHA(suberoylanilide hydroxamic acid) 중 어느 하나 이상을 더 첨가하는 단계; 및 (c) 상기 배양된 림프구를 수확하는 단계를 포함하는 세포 독성이 향상된 면역세포 제조방법을 제공한다.
본 발명에서 상기 반복하는 단계는 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상의 처리를 1 내지 7회 반복하는 단계이다. 상기 단계의 반복은 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상의 처리의 반복을 의미하는 것으로, 반복되는 단계에서 처리되는 제제는 각 단계에서 서로 상이할 수 있다.
상기 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상의 처리에 있어서, 인간 면역글로불린은 플라스크에 코팅하지 않고, 배양 과정에서 직접적으로 림프구에 처리하게 된다. 이로 인하여 공정을 단순화시킬 수 있으며, 코팅하는데 걸리는 시간을 단축시킬 수 있다.
본 명세서에서 '림프구'는 면역계를 구성하는 중심 세포로서 적응 면역과 항원 특이성, 수용체의 다양성, 기억, 자기 비자기 구분이라는 특징을 갖는다. 이들은 다른 종류의 백혈구가 외부 물질을 포식한 후 제시하는 항원을 인지하여, 이를 통해 사이토카인과 항체를 분비함으로써 적응 면역에 있어서 중추적인 역할을 담당한다. 상기 림프구는 NK 세포를 포함하는 것일 수 있다.
본 발명에서 상기 림프구는 말초혈액으로부터 분리된 이후에 원심분리를 통해 분리, 수득된 것일 수 있고, 추가적인 절차를 위해 완충액 등에 현탁되어 준비되는 것일 수 있다.
본 발명의 일 구체예로, 상기 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상의 처리는 anti-CD56 항체 및 인간 면역글로불린 중 어느 하나 이상과 알데스류킨, IL-15, IL-18 및 혈장 중 어느 하나 이상을 첨가하는 것일 수 있다. 본 발명의 일 구체예에 따르면, 이러한 처리를 통해 NK 세포의 생존율과 세포 독성이 현저하게 향상됨을 확인할 수 있다.
본 발명의 일 구체예로, 상기 anti-CD56 항체의 사용량은 anti-CD56 항체는 0.5 내지 5 ㎕일 수 있으며, 인간 면역글로불린은 바람직하게는 5 내지 500 ㎕, 더욱 바람직하게는 5 내지 50 ㎕일 수 있다. 상기 함량 범위 외로 처리하는 경우에는 세포가 활성화되지 않거나, 세포가 사멸하여 본 발명에서 수득하고자 하는 향상된 세포 독성 또는 세포 생존능의 효과를 획득할 수 없다.
상기 파노비노스타트(Panobinostat), 트리코스타틴 A(Trichostatin A), 발프로산(valproic acid), 소듐 부티레이트(sodium butyrate) 및 SAHA(suberoylanilide hydroxamic acid) 중 어느 하나 이상의 처리를 더 포함하는 단계는 상기 반복되는 처리 중 어느 하나의 처리 이후에 히스톤 디아세틸라아제(Histone deacetylase, HDAC) 저해제인 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA중 어느 하나 이상을 더 처리하는 단계를 1 내지 7회 더 포함하는 단계이다. 구체적으로, 전술한 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상의 처리의 반복 사이 또는 1 내지 7회 반복 이후에 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리하는 것을 의미하고, 상기 추가적인 처리의 횟수는 제한이 없으나, 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상의 처리 이후에 추가적으로 처리되는 것인 점을 고려할 때 상기 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상의 처리 반복 사이의 임의의 지점 또는 반복 이후에 1 내지 7회 처리되는 것일 수 있다. 추가적인 처리가 반복될 경우 추가로 처리되는 제제는 각 단계별로 동일하거나 상이할 수도 있다.
본 발명의 일 구체예로, 상기 발프로산은 50 내지 5000 uM 농도로 처리되는 것일 수 있다. 상기 함량 범위 외로 처리하는 경우에는 본 발명에서 수득하고자 하는 향상된 세포 독성 또는 세포 생존능의 효과를 획득할 수 없다. 일 구체예에 따르면, 발프로산이 50 uM 미만인 경우에는 세포 독성 또는 세포 생존능의 효과가 발생하지 않으며, 5000 uM 이상인 경우에는 세포 증식이 일어나지 않는다.
본 발명의 다른 양상은 (a) 림프구의 배양에서 ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가, ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 첨가 중 어느 하나 이상의 첨가가 이루어지는 단계; 및 (b) 상기 (a) 단계에서 배양된 림프구를 수확하는 단계를 포함하는 세포 독성이 향상된 면역세포 제조방법을 제공한다.
상기 a) 단계는 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리하거나, 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리하고, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리하는 것일 수 있다.
본 발명의 일 구체예로, 상기 (a) 단계 이후, (b) 단계 전 상기 처리된 림프구에 하기 중 어느 하나 이상의 처리가 이루어지는 (a-1) 단계를 더 포함하는 것일 수 있다; ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 첨가.
상기 (a-1) 단계는 (a) 단계에서 처리된 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리하거나 이들 처리가 모두 이루어지는 것일 수 있다. 구체적으로는 (a) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리한 경우라면, 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있으며, (a) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리한 경우라면 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있다.
본 발명의 일 구체예로, 상기 (a-1) 단계 이후 b) 단계 전 상기 처리된 림프구에 하기 중 어느 하나 이상의 처리가 이루어지는 (a-2) 단계를 더 포함할 수 있다; ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가; ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 첨가.
상기 (a-2) 단계는 (a-1) 단계에서 처리된 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리하거나 이들 처리가 모두 이루어지는 것일 수 있다. 구체적으로는 a-2) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 처리한 경우라면, 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 더 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있으며, a-2) 단계에서 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상이 처리된 경우라면 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 중 어느 하나 이상을 처리하는 것일 수 있다.
본 발명의 일 구체예로 상기 (a-2) 단계 이후 (b) 단계 전 상기 처리된 림프구에 하기 중 어느 하나 이상의 처리가 이루어지는 (a-3) 단계를 더 포함할 수 있다; 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 처리; 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리.
상기 (a-3) 단계는 (a-2) 단계에서 처리된 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리하거나 이들 처리가 모두 이루어지는 것일 수 있다. 구체적으로는 (a-2) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리한 경우라면, 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있으며, (a-2) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리 하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리한 경우라면 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있다.
본 발명의 일 구체예로 상기 (a-3) 단계 이후 (b) 단계 전 상기 처리된 림프구에 하기 중 어느 하나 이상의 처리가 이루어지는 (a-4) 단계를 더 포함할 수 있다; 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리; 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리.
상기 (a-4) 단계는 (a-3) 단계에서 처리된 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리하거나 이들 처리가 모두 이루어지는 것일 수 있다. 구체적으로는 (a-3) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 처리한 경우라면, 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 더 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있으며, (a-3) 단계에서 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상이 처리된 경우라면 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있다.
본 발명의 일 구체예로, 상기 (a-4) 단계 이후 (b) 단계 전 상기 처리된 림프구에 하기 중 어느 하나 이상의 처리가 이루어지는 (a-5) 단계를 더 포함할 수 있다; 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 처리; 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리.
상기 (a-5) 단계는 (a-4) 단계에서 처리된 림프구에 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리하거나 이들 처리가 모두 이루어지는 것일 수 있다. 구체적으로는 (a-4) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리한 경우라면, 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하거나, 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있으며, (a-4) 단계에서 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 처리 하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 더 처리한 경우라면 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 더 처리하고 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 처리하는 것일 수 있다.
본 발명의 일 구체예로, 상기 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상의 처리는 anti-CD56 항체 및 인간 면역글로불린 중 어느 하나 이상과 알데스류킨, IL-15, IL-18 및 혈장 중 어느 하나 이상을 처리하는 것일 수 있다. 구체적으로, 주요 성분으로 anti-CD56 항체 및 인간 면역글로불린 중 어느 하나 또는 이들 두 가지 모두를 처리하면서도 알데스류킨, IL-15, IL-18 및 혈장 중 어느 하나 이상을 처리하는 것일 수 있다. 본 발명의 일 구체예에 따르면, 이러한 처리는 NK 세포의 생존성과 세포 독성을 향상시킬 수 있다.
본 발명의 일 구체예로 상기 anti-CD56 항체의 사용량은 0.5 내지 5 ㎕이고, 인간 면역글로불린의 사용량은 바람직하게는 5 내지 500 ㎕, 더욱 바람직하게는 5 내지 50 ㎕일 수 있다. 본 발명의 일 구체예로, 상기 발프로산은 50 내지 5000 uM 농도로 처리되는 것일 수 있다.
본 발명에서, 배양된 림프구를 수확하는 단계는 공지의 방법으로 세포를 수득할 수 있으며, 구체적으로 원심분리를 통해 목적하는 림프구만을 분리, 수확할 수 있다. 이러한 제조방법을 통해 제조된 면역세포는 종래의 방법에 비해 세포 독성이 현저히 향상되어 다양한 세포치료제로 활용할 수 있다.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예: 세포 독성이 향상된 NK 세포를 포함하는 면역세포 제조
서로 다른 3명의 혈액 샘플을 사용하여 하기와 같이 총 9단계의 과정을 통하여 세포 독성이 향상된 NK 세포를 포함하는 면역세포를 제조하였다.
(1) 제 1 단계 - 림프구의 분리
사람의 말초혈액에서 림프구를 분리하였다. 구체적으로, 사람의 말초혈액을 헤파린 처리된 10 ㎖ 진공 채혈관(BD Vacutainer TM)을 이용하여 60 ㎖ ~ 90 ㎖ 채혈하였다. 이후, 50 ㎖ 림프구 분리튜브(Leuco sep, Greiner Bio-One, Swiss)에 피콜-파크 플러스 (Ficoll-Paque Plus; endotoxin tested, 밀도 1.077g/㎖, GE Healthcare, USA) 용액을 15 ㎖ 넣고, 2,000 rpm에서 원심분리하여 용액을 튜브 내의 글래스 멤브레인(glass membrane)의 아래로 침강시켰다. 채혈한 혈액은 분리 튜브에 옮기고, 2,500 ~ 3,500 rpm에서 12 내지 25분 동안 원심분리하여 적혈구 및 과립구층은 하층으로, 단핵구층(림프구층), 혈소판 및 혈장은 상층으로 분리하였다. 이후, 상층의 혈장은 56℃수조에서 30분 동안 불활성화(inactivation)시켰다. 림프구층은 멸균된 피펫으로 채취하여 15 ㎖ 튜브(tube)에 수집한 후, 원심분리하여 상층액을 제거하였다. 상층액이 제거된 림프구는 완충용액(PBS) 10 ㎖로 현탁하여 세정(washing)하였다. 현탁액의 일부는 혈구계산판(hemocytometer)을 사용하여 세포수를 측정하였고, 다시 원심분리하여 림프구만을 수집하였다. 수확된 림프구의 세포수는 총 38 x 106 개 로 측정되었다.
(2) 제 2 단계 - 면역세포 배양(25T 플라스크)
제 1 단계에서 분리된 림프구를 배양액(KBM 502)에 현탁시킨 후, 2개의 25T 플라스크(Flask A, Flask B)를 사용하여 배양하였다(이하, Flask A에서의 배양을 배양법 A, Flask B에서의 배양을 배양법 B라 한다). Flask A 및 Flask B 에 각각 세포 현탁액에 알데스류킨(Aldesleukin), IL-18, 인간 면역글로불린(human immunoglobulin)을 50 내지 300 ㎕ 만큼 투입한 후, 1 내지 2일 동안 37℃ 5% CO2 인큐베이터에서 면역세포를 배양하였다. 본 단계에서의 항체 및 혈장은 배양 시작 당일 현탁액에 투입하였다.
(3) 제 3 단계 - NK 세포 활성화 물질의 첨가/미첨가
면역세포가 배양되고 있는 제 2 단계에서의 Flask A 와 Flask B의 각각의 현탁액에 새로운 배지를 투입하여 현탁시킨 후, 알데스류킨, IL-18, 인간 면역글로불린을 제 2단계와 동일하게 첨가하였다.
(4) 제 4 단계 - 면역세포 배양(75T 플라스크)
제 3 단계에서 배양된 세포를 75T 플라스크로 옮겨 2 ~ 3일 동안 37℃ 5% CO2 인큐베이터에서 면역세포를 배양하였다. 이때, Flask A 및 Flask B에 각각 세포 현탁액에 알데스류킨, IL-18, 인간 면역글로불린을 50 내지 300 ㎕ 만큼 투입한 후, 75T Flask에서 1 내지 2일 동안 37℃ 5% CO2 인큐베이터에서 면역세포를 배양하였다. 본 단계에서의 항체 및 혈장은 배양 시작 당일 현탁액에 투입하였다.
(5) 제 5 단계 - NK 세포 활성화 물질의 첨가/미첨가
면역세포가 배양되고 있는 제 4 단계에서의 Flask A 와 Flask B의 각각의 현탁액에 새로운 배지를 투입하여 현탁시킨 후, 알데스류킨, IL-18, 인간 면역글로불린을 제 4 단계와 동일하게 첨가하였다.
(6) 제 6 단계 - 면역세포 배양(175T 플라스크)
제 5 단계에서 배양된 세포를 175T 플라스크로 옮겨 2 ~ 3일 동안 37℃ 5% CO2 인큐베이터에서 면역세포를 배양하였다. 이때, Flask A 및 Flask B에 각각 세포 현탁액에 알데스류킨, IL-18, 인간 면역글로불린을 50 내지 300 ㎕ 만큼 투입하였고, Flask B 에는 파노비노스타트(Panobinostat), 트리코스타틴 A(Trichostatin A), 발프로산(valproic acid), 소듐 부티레이트(sodium butyrate) 및 SAHA(suberoylanilide hydroxamic acid) 중 어느 하나 이상을 100 내지 500 uM가 되도록 처리하였다.
(7) 제 7 단계 - NK 세포 활성화 물질의 첨가/미첨가
면역세포가 배양되고 있는 제 6 단계에서의 Flask A 와 Flask B의 각각의 현탁액에 새로운 배지를 투입하여 현탁시킨 후, 제 6 단계와 동일하게 Flask A 에는 알데스류킨, IL-18, 인간 면역글로불린을, Flask B에는 알데스류킨, IL-18, 인간 면역글로불린 및 발프로산을 첨가하였다.
(8) 제 8 단계 - 면역세포 배양(CO 2 투과 백)
제 7 단계의 Flask A, Flask B에서 배양된 세포 현탁액을 각각 1,000 ㎖의 CO2 투과 백(bag) (Bag A, Bag B)에 옮긴 후, 7 ~ 10일 동안 37℃ 5% CO2 인큐베이터에서 면역세포를 배양하였다. 본 단계에서의 혈장은 배양 7일차에 투입하였다. 또한, 이때, Bag B 에는 파노비노스타트(Panobinostat), 트리코스타틴 A(Trichostatin A), 발프로산(valproic acid), 소듐 부티레이트(sodium butyrate) 및 SAHA(suberoylanilide hydroxamic acid) 중 어느 하나 이상을 첨가하였다.
(9) 제 9 단계 - 면역세포 수확
제 8 단계에서 CO2 투과 백에 들어있는 배양법 A, 배양법 B에 따른 세포 현탁액을 원심분리 튜브에 옮긴 후, 2,500 rpm에서 원심분리하여 세포를 수확하였다. 상층액은 버리고, 세포가 포함된 펠릿은 멸균 생리식염수 250 ㎖로 2회 세척한 후 원심분리하여 세포를 수확하였다. 수확한 세포는 주사용 멸균 생리식염수 100 ㎖ 팩에 주입하여 세포 독성이 향상된 NK 세포를 포함하는 면역세포 제조를 완성하였다.
실험예 1: NK, NKT 세포비율 확인 시험
본 발명에 따른 NK와 NKT의 세포비율을 확인하기 위하여, non-treated, Valproic acid, Trichostatin A, SAHA, Panobinostat를 넣고 14일간 배양한 NK세포 1x106/ml을 취하여 CD3-APC, CD56-FITC, CD16-PE-Cy7을 0.5 ul씩 넣고 차광하여 상온에서 30분간 세포를 염색하였다. 염색이 완료된 세포는 4℃ 1,200 rpm에서 3분간 원심분리하여 상층액을 제거한 후 세포에 PBS를 넣어 현탁한 후 flow cytometry로 NK와 NKT의 세포 비율을 관찰하였다.
그 결과 도1, 도2에서 확인되는 바와 같이, Valproic acid 처리군이 비처리군에 비해 NK세포 비율이 4 %, NKT세포 비율이 2.8 % 로 유의성 있게 증가되는 것으로 확인되었다.
또한 도3, 도4에서 확인되는 바와 같이, Trichostatin A 처리군은 비처리군에 비해 NK 세포 비율이 3 %, NKT 세포비율이 1.4 % 증가되었으며, SAHA 처리군은 비처리군에 비해 NK 세포비율이 11.6 %, NKT 세포 비율이 2.9 %로 유의하게 증가되는 것으로 관찰되었다.
Panobinostat 처리군은 비처리군에 비해 NK 세포비율이 11.6 %, NKT 세포비율이 1.32 %로 유의하게 증가되는 것으로 확인되었다.
위 결과를 토대로 Valproic acid, Trichostatin A, SAHA, Panobinostat를 첨가하여 증식시킨 NK 세포는 대조군 보다 NK와 NKT세포의 비율을 증가시킬 수 있다는 것이 확인되었다.
실험예 2: 활성화된 수용체의 발현량 확인 시험
non-treated, Valproic acid, Trichostatin A, SAHA, Panobinostat 처리군에서 활성화된 NK 수용체의 발현량을 확인하기 위하여 14일간 배양한 NK 세포 1x106/ml을 취하여 CD3-APC, CD56-FITC, CD16-PE-Cy7, NKG2D-PE, DNAM-1-Percp-Cy5.5를 0.5 ul씩 넣고 차광하여 상온에서 30분간 세포를 염색하였다. 염색이 완료된 세포는 4℃ 1,200 rpm에서 3분간 원심분리하여 상층액을 제거한 후 세포에 PBS를 넣어 현탁한 후 flow cytometry로 DNAM-1과 NKG2D의 발현량을 확인하였다.
그 결과 도 5와 같이 14일간 배양된 NK 세포의 DNAM-1수용체는 Trichostatin A 처리군에서 1.2배, SAHA 처리군에서 1.3배, Panobinostat 처리군에서 1.14배로 유의하게 증가됨이 확인되었다.
또한 도 6과 같이 14일간 배양된 NK 세포의 NKG2D 수용체는 SAHA처리 군에서 1.3배, Panobinostat 처리군에서 약 1.2배로 유의하게 증가됨이 확인되었다.
이러한 결과를 통해 Valproic acid, Trichostatin A, SAHA, Panobinostat를 첨가하여 증식시킨 NK 세포는 활성화 수용체가 대조군보다 증가되어 있음으로, 위 시약을 넣어 배양시킨 NK 세포는 증가된 Cytotoxicity를 나타낼 수 있다는 것을 알 수 있다.
실험예 3: 암세포에 대한 NK 세포 독성 확인 시험
Calcein-AM으로 염색한 폐암세포 (A549), 유방암세포 (MDA-MB231), 혈액암 세포 (K562), 표피암세포 (A431), 췌장암세포 (Panc-1), 간암세포 (SK-Hep1)를 2 % FBS in phenol red free RPMI media에 균질화 하여 v-bottom 96 well plate에 1x104/well이 되도록 분주하였다. 상기 배양한 NK 세포들을 암세포수의 40배 혹은 100배씩 넣어주고 6시간 동안 NK세포와 암세포를 5% CO2, 37℃ 배양기에서 공배양 하였다.
공배양이 완료된 세포는 4 ℃ 1,000rpm에서 3분간 원심분리하고, 상등액 100 ul를 채취하여 96 well black plate로 옮겼다. Fluorescence spectrophotometer를 이용하여 488 nm excitation, 528 emission에서 형광값을 측정하고, 다음의 계산 식을 이용하여 세포 독성을 산출하였다.
Cytotoxicity (%) =
Figure PCTKR2023002414-appb-img-000001
x 100
Experimental (i) = experimental - culture media background, Target Spontaneous (ii) = Target cell spontaneous calcein-am release - culture media background, Target Maximum (iii) = 0.25% triton x-100을 처리한 target cell의 calcein am release - culture media background.
그 결과 도 7 내지 도 10, 도 12에서 확인되는 바와 같이 Valproic acid처리 군에서 비처리군과 비교하였을 때, 혈액암세포주 (K562)에서 57%, 췌장암 세포주 (Panc-1)에서 37 %, 표피암세포주 (A431)에서 42 %의 증가된 cytotoxicity가 관찰되었다.
도 7, 도 8, 도 9, 도 11에서 확인되는 바와 같이 Trichostatin A 처리군에서는 비처리군 보다 혈액암 세포주(K562)에서 44 %, 폐암세포주 (A549)에서 26 %, 유방암세포주 (MDA-MB231)에서 14 %, 간암세포주 (SK-Hep1)에서 17 %의 증가된 cytotoxicity가 관찰되었다.
도 7, 도 8, 도 9, 도 10, 도 12에서 확인되는 바와 같이 SAHA 처리군에서는 비처리군 보다 혈액암 세포주(K562)에서 46 %, 폐암세포주 (A549)에서 26 %, 유방암세포주 (MDA-MB231)에서 18 %, 표피암세포주 (A431)에서 39 %, 췌장암 세포주 (Panc-1)에서 74 %의 증가된 cytotoxicity가 관찰되었다.
도 8, 도 9, 도 11에서 확인되는 바와 같이 Panobinostat 처리군에서는 비처리군 보다 폐암세포주 (A549)에서 33 %, 유방암세포주 (MDA-MB231)에서 24 %, 간암 세포주 (SK-Hep1)에서 18 %의 증가된 cytotoxicity가 관찰되었다.
위 결과를 토대로 Valproic acid, Trichostatin A, SAHA, Panobinostat를 첨가하여 배양시킨 NK 세포는 대조군과 비교하였을 때, 대부분의 고형암과 혈액암에 대한 세포독성을 증가시킨 다는 것을 알 수 있다.
실험예 4: NK 세포의 Interferon gamma (IFN-r) 분비량 확인 시험
본 발명의 일 구체예에 따른 제조 방법에 의해 제조된 NK 세포와 암세포의 공배양시 NK 세포에서 분비되는 INF-r의 분비량을 확인하기 위하여 none-treated, Valproic acid, Trichostatin A, SAHA, Panobinostat를 넣고 14일간 배양한 NK 세포와 암세포를 96 well에서 6시간 동안 공배양하였다.
구체적으로, 6시간의 공배양 완료 후 96 well을 4 ℃ 1,000 rpm에서 3분간 원심분리하여 상층액을 취하여 INF-r 분비량을 측정하였다.
IFN-r 측정방법은 RnD systems사의 Human IFN-gamma quantikine ELISA Kit의 사용법 그대로 따랐다.
그 결과 도 13과 같이 폐암세포주인 A549와 NK 세포의 공배양시 NK세포의 IFN-r 분비량은 대조군보다 Valproic acid 처리군에서 42배, Trichostatin A처리군은 8.3배, SAHA처리군은 43.1배, Panobinostat 처리군은 14.5배로 유의하게 증가됨을 알 수 있다.
도 14와 같이 유방암 세포주인 MDA-MB231과 NK 세포의 공배양시 NK세포의 IFN-r 분비량은 대조군보다 Trichostatin A처리군에서 1.4배, SAHA처리군은 1.4배, Panobinostat 처리군은 1.3배로 유의하게 증가됨을 알 수 있다.
도 15와 같이 혈액암 세포주인 K562와 NK 세포의 공배양시 NK세포의 IFN-r 분비량은 대조군보다 Valproic acid 처리군에서 2배, Trichostatin A처리군에서 3.3배, SAHA처리군은 2.8배로 유의하게 증가됨을 알 수 있다.
도 16과 같이 표피암 세포주인 A431과 NK 세포의 공배양시 NK세포의 IFN-r 분비량은 대조군보다 Valproic acid 처리군에서 9.5배, Trichostatin A처리군에서 13.2배, SAHA처리군은 20.8배로 유의하게 증가됨을 알 수 있다.
위 결과를 토대로 Valproic acid, Trichostatn A, SAHA, Panobinostat를 첨가하여 배양한 NK 세포는 대조군과 비교하였을 때, 대부분의 고형암과 혈액암 세포에 대한 세포독성 효과가 있다는 것이 확인되었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (13)

  1. (a) 림프구에 알데스류킨(Aldesleukin), IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 첨가하여 배양하는 과정을 1회 내지 7회 반복하는 단계;
    (b) 상기 반복하는 단계 중 어느 하나 이상의 배양하는 과정에서 파노비노스타트(Panobinostat), 트리코스타틴 A(Trichostatin A), 발프로산(valproic acid), 소듐 부티레이트(sodium butyrate) 및 SAHA(suberoylanilide hydroxamic acid) 중 어느 하나 이상을 더 첨가하는 단계; 및
    (c) 상기 배양된 림프구를 수확하는 단계;
    를 포함하는 세포 독성이 향상된 면역세포 제조방법.
  2. 제1항에 있어서,
    상기 (a) 단계는 anti-CD56 항체 및 인간 면역글로불린 중 어느 하나 이상과 알데스류킨, IL-15, IL-18 및 혈장 중 어느 하나 이상을 첨가하는 것인 제조방법.
  3. 제1항에 있어서,
    상기 anti-CD56 항체는 0.5 내지 5 ㎕, 인간 면역글로불린은 5 내지 500 ㎕ 첨가하는 것인 제조방법.
  4. 제1항에 있어서,
    상기 발프로산은 50 내지 5000 uM 농도로 첨가되는 것인 제조방법.
  5. (a) 림프구의 배양에서 하기 중 어느 하나 이상의 첨가가 이루어지는 단계; 및
    ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가;
    ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트 및 SAHA 중 어느 하나 이상을 첨가;
    (b) 상기 (a) 단계에서 배양된 림프구를 수확하는 단계;
    를 포함하는 세포 독성이 향상된 면역세포 제조방법.
  6. 제5항에 있어서,
    상기 (a) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-1) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법;
    ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 하나 이상을 첨가;
    ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
  7. 제6항에 있어서,
    상기 (a-1) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-2) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법;
    ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가;
    ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
  8. 제7항에 있어서,
    상기 (a-2) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-3) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법;
    ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가;
    ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
  9. 제8항에 있어서,
    상기 (a-3) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-4) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법;
    ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가;
    ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
  10. 제9항에 있어서,
    상기 (a-4) 단계 이후, 림프구에 하기 중 어느 하나 이상의 첨가가 이루어지는 (a-5) 단계를 더 포함하는 세포 독성이 향상된 면역세포 제조방법;
    ① 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가;
    ② 파노비노스타트, 트리코스타틴 A, 발프로산, 소듐 부티레이트, SAHA 중 어느 하나 이상을 첨가.
  11. 제5항, 제7항 및 제9항 중 어느 한 항에 있어서,
    상기 알데스류킨, IL-15, IL-18, anti-CD56 항체, 인간 면역글로불린 및 혈장 중 어느 2 이상을 첨가는 anti-CD56 항체 및 인간 면역글로불린 중 어느 하나 이상과 알데스류킨, IL-15, IL-18 및 혈장 중 어느 하나 이상을 처리하는 것인 제조방법.
  12. 제5항, 제7항 및 제9항 중 어느 한 항에 있어서,
    상기 anti-CD56 항체는 0.5 내지 5 ㎕, 인간 면역글로불린은 5 내지 500 ㎕ 첨가하는 것인 제조방법.
  13. 제5항, 제7항 및 제9항 중 어느 한 항에 있어서,
    상기 발프로산은 50 내지 5000 uM 농도로 첨가되는 것인 제조방법.
PCT/KR2023/002414 2022-07-11 2023-02-20 세포 독성이 향상된 면역세포 제조방법 WO2024014643A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0085308 2022-07-11
KR20220085308 2022-07-11
KR1020230011635A KR20240008233A (ko) 2022-07-11 2023-01-30 세포 독성이 향상된 면역세포 제조방법
KR10-2023-0011635 2023-01-30

Publications (1)

Publication Number Publication Date
WO2024014643A1 true WO2024014643A1 (ko) 2024-01-18

Family

ID=89536789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002414 WO2024014643A1 (ko) 2022-07-11 2023-02-20 세포 독성이 향상된 면역세포 제조방법

Country Status (1)

Country Link
WO (1) WO2024014643A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170007692A (ko) * 2015-07-10 2017-01-19 고려대학교 산학협력단 자연 살해세포의 대량증식 방법 및 배양용 조성물
KR20190060412A (ko) * 2017-11-24 2019-06-03 의료법인 성광의료재단 Nk 배양용 조성물 및 이를 이용하여 nk 세포를 배양하는 방법
KR20190131239A (ko) * 2018-05-16 2019-11-26 고려대학교 산학협력단 Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법
KR20200061240A (ko) * 2018-11-23 2020-06-02 차의과학대학교 산학협력단 자연살해세포의 활성 증진용 조성물 및 이의 용도
KR20220036287A (ko) * 2020-09-15 2022-03-22 주식회사 티에스바이오 고순도 및 고효율의 자연살해세포 제조방법 및 이의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170007692A (ko) * 2015-07-10 2017-01-19 고려대학교 산학협력단 자연 살해세포의 대량증식 방법 및 배양용 조성물
KR20190060412A (ko) * 2017-11-24 2019-06-03 의료법인 성광의료재단 Nk 배양용 조성물 및 이를 이용하여 nk 세포를 배양하는 방법
KR20190131239A (ko) * 2018-05-16 2019-11-26 고려대학교 산학협력단 Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법
KR20200061240A (ko) * 2018-11-23 2020-06-02 차의과학대학교 산학협력단 자연살해세포의 활성 증진용 조성물 및 이의 용도
KR20220036287A (ko) * 2020-09-15 2022-03-22 주식회사 티에스바이오 고순도 및 고효율의 자연살해세포 제조방법 및 이의 용도

Similar Documents

Publication Publication Date Title
WO2010013947A2 (ko) 자연살해세포의 증식방법
KR101643165B1 (ko) 말초혈액단핵구 유래 자연 살해세포의 유도 및 증식 방법
WO2010047475A2 (ko) 제대혈로부터 효율적인 자연살해세포의 증식 및 분화 방법
WO2022102887A1 (ko) Nk 세포의 대량증식 배양방법
WO2012108586A1 (ko) 활성화된 자연살해 세포를 포함하는 림프구의 제조방법 및 이를 포함하는 약학 조성물
US11944672B2 (en) Therapeutic vaccine for treatment of diabetes type 1 in children, application of the cell sorter and the method of multiplying Treg cells to produce therapeutic vaccine for treatment of diabetes type 1
WO2017014561A1 (ko) 제대혈 cd34 양성 세포에서 골수유래억제세포로의 분화 유도 및 증식 방법, 및 상기 골수유래억제세포의 용도
EP1233058B1 (en) Method of proliferating natural killer cells
WO2013168876A1 (ko) 이식 후 면역 상태를 모니터링 하는 키트 및 이를 이용한 면역 상태의 모니터링 방법
WO2020185056A2 (ko) 타가면역세포배양방법, 그 방법으로 얻어진 면역세포배양액 및 이를 포함하는 면역세포치료제
KR102126783B1 (ko) 항결핵 nk세포 대량 증식방법
WO2017188790A1 (ko) 저산소 조건을 이용한 면역세포의 증식 배양 방법
WO2024014643A1 (ko) 세포 독성이 향상된 면역세포 제조방법
Orozco et al. Differences in adhesion, phagocytosis and virulence of clones from Entamoeba histolytica, strain HM1: IMSS
WO2013168978A1 (ko) 말초혈액단핵구 유래 자연 살해세포의 유도 및 증식 방법
WO2021060638A1 (ko) 말초혈액단핵구 유래 조절 t 세포 배양용 조성물 및 이를 이용한 조절 t 세포 배양방법
WO2020231205A1 (ko) 자연 살해 세포의 배양용 조성물 및 이를 이용한 방법
WO2017074118A1 (ko) Foxp3를 발현하는 수지상 세포를 포함하는 면역 조절용 약학적 조성물
WO2017069512A1 (ko) 바이러스 항원 특이적인 t 세포의 유도 및 증식 방법
WO2017164659A2 (ko) 천연물 소재의 면역증강 검사법 및 상기 검사법을 활용한 맞춤형 식단 제공방법
WO2023216799A1 (zh) 一种人nkt细胞系及其应用
WO2012050269A1 (ko) 결핵균의 rv0351 단백질을 포함하는 수지상 세포의 성숙화 촉진용 조성물
WO2019103436A2 (ko) Nk 세포 배양용 조성물 및 이를 이용하여 nk 세포를 배양하는 방법
WO2019231243A1 (ko) Ox40l을 발현하는 배양보조세포 및 이를 이용한 자연살해세포 배양 방법
WO2022060056A1 (ko) 고순도 및 고효율의 자연살해세포 제조방법 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839737

Country of ref document: EP

Kind code of ref document: A1