WO2024014091A1 - 銅合金板材および絞り加工部品 - Google Patents

銅合金板材および絞り加工部品 Download PDF

Info

Publication number
WO2024014091A1
WO2024014091A1 PCT/JP2023/016415 JP2023016415W WO2024014091A1 WO 2024014091 A1 WO2024014091 A1 WO 2024014091A1 JP 2023016415 W JP2023016415 W JP 2023016415W WO 2024014091 A1 WO2024014091 A1 WO 2024014091A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
less
mass
alloy plate
plate material
Prior art date
Application number
PCT/JP2023/016415
Other languages
English (en)
French (fr)
Inventor
俊太 秋谷
紳悟 川田
司 高澤
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2023555792A priority Critical patent/JP7445096B1/ja
Publication of WO2024014091A1 publication Critical patent/WO2024014091A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present disclosure relates to copper alloy plate materials and drawn parts.
  • Patent Document 1 describes a copper alloy that reduces residual stress and improves etching characteristics by controlling the KAM value of a Cu-Cr-Sn-Zn alloy and the orientation density of ⁇ -fiber within a predetermined range. board is listed.
  • Patent Document 1 does not mention the drawability of the copper alloy plate. Further, in Patent Document 1, while an upper limit of the maximum value of the ⁇ -fiber orientation density is specified, a lower limit of the maximum value of the ⁇ -fiber orientation density is not specified. In addition, in Patent Document 1, a process for increasing the average value of the orientation density of ⁇ -fiber is not performed during the production of the copper alloy plate, and furthermore, a solution treatment is performed. For these reasons, the average value of the orientation density of ⁇ -fiber is estimated to be low, and therefore the drawability is considered to be low. Further, in Patent Document 1, since tension leveling is performed during manufacture of the copper alloy plate, the KAM value is low and the mechanical strength is also low.
  • An object of the present disclosure is to provide a copper alloy sheet material that has excellent drawing workability and sufficient mechanical strength and electrical conductivity, and a drawn part using the copper alloy sheet material.
  • [1] It has an alloy composition containing 0.10% by mass or more and 1.00% by mass or less of Cr, with the balance being Cu and unavoidable impurities, and has a ⁇ -fiber ( ⁇ 2 45° ⁇ 90°) is 6.0 or more and 10.0 or less, the tensile strength in the rolling direction is 420 MPa or more and 700 MPa or less, and the electrical conductivity is 65% IACS or more and 90% IACS or less, Copper alloy plate material.
  • the alloy composition further contains a total of 0.10% by mass or more and 1.00% by mass or less of one or more elements selected from the group consisting of Mg, Sn, Zn, Fe, Si, and Zr.
  • the copper alloy plate material according to any one of [1] to [4] above.
  • FIG. 1 is an example of a crystal orientation distribution diagram of a copper alloy sheet material measured by EBSD and obtained from grain orientation distribution function analysis.
  • copper can be produced by having a predetermined alloy composition, by performing a process to increase the orientation density of ⁇ -fiber, and by controlling the average value of the orientation density of ⁇ -fiber to a high value.
  • alloy plate materials have excellent drawability as well as sufficient mechanical strength and electrical conductivity, and have completed the present disclosure based on this knowledge.
  • the copper alloy plate material of the above embodiment has an alloy composition containing 0.10% by mass or more and 1.00% by mass or less of Cr, with the balance being Cu and unavoidable impurities.
  • Cr chromium
  • Cr is an element necessary to increase the strength of the copper alloy plate material, and it is necessary to contain Cr from 0.10% by mass to 1.00% by mass.
  • the Cr content is 0.10% by mass or more, the mechanical strength of the copper alloy plate increases.
  • the Cr content is 1.00% by mass or less, the formation of a coarse second phase is suppressed, and therefore drawing workability is improved.
  • the coarse second phase tends to become a starting point for cracks during drawing. Therefore, the lower limit of the Cr content is 0.10% by mass or more, preferably 0.20% by mass or more, and more preferably 0.30% by mass or more.
  • the upper limit of the Cr content is 1.00% by mass or less, preferably 0.80% by mass or less, and more preferably 0.70% by mass or less.
  • the alloy composition of the copper alloy plate further contains a total of 0.10% by mass or more and 1.00% by mass or less of one or more elements selected from the group consisting of Mg, Sn, Zn, Fe, Si, and Zr. be able to. That is, in addition to Cr, which is an essential basic component, the copper alloy sheet material further contains one or more types selected from the group consisting of Mg, Sn, Zn, Fe, Si, and Zr as an optional subcomponent.
  • the total content of the components can be 0.10% by mass or more and 1.00% by mass or less.
  • Mg magnesium
  • the stress relaxation properties of the copper alloy plate material can be improved.
  • the Mg content is 0.30% by mass or less, the decrease in electrical conductivity of the copper alloy plate material can be suppressed. Therefore, the lower limit of the Mg content is preferably 0.10% by mass or more, and the upper limit of the Mg content is preferably 0.30% by mass or less.
  • the content of Sn (tin) is 0.10% by mass or more, the stress relaxation properties of the copper alloy plate material can be improved.
  • the Sn content is 0.30% by mass or less, a decrease in the electrical conductivity of the copper alloy plate material can be suppressed. Therefore, the lower limit of the Sn content is preferably 0.10% by mass or more, and the upper limit of the Sn content is preferably 0.30% by mass or less.
  • ⁇ Zn 0.10% by mass or more and 0.50% by mass or less>
  • the content of Zn (zinc) is 0.10% by mass or more, the adhesion and migration characteristics of Sn plating can be improved.
  • the Zn content is 0.50% by mass or less, the decrease in electrical conductivity of the copper alloy plate material can be suppressed. Therefore, the lower limit of the Zn content is preferably 0.10% by mass or more, and the upper limit of the Zn content is preferably 0.50% by mass or less.
  • the content of Fe (iron) is 0.05% by mass or more, grain growth after dynamic recrystallization during hot rolling can be suppressed, and roughening of the surface of the drawn part can be suppressed.
  • the Fe content is 0.30% by mass or less, the formation of coarse Fe-containing crystallized substances during casting is suppressed, so drawing workability is improved. Coarse Fe-containing crystallized substances tend to become starting points for cracks during drawing. Therefore, the lower limit of the Fe content is preferably 0.05% by mass or more, and the upper limit of the Fe content is preferably 0.30% by mass or less.
  • Si 0.02 mass% or more and 0.40 mass% or less>
  • Si silicon
  • the content of Si (silicon) is 0.02% by mass or more, a Si compound is formed with other additive elements such as Mg and Cr, and the strength of the copper alloy plate increases.
  • the Si content is 0.40% by mass or less, a decrease in thermal conductivity of the copper alloy plate material can be suppressed, and sufficient heat dissipation performance can be obtained. Therefore, the lower limit of the Si content is preferably 0.02% by mass, and the upper limit of the Si content is preferably 0.40% by mass.
  • ⁇ Zr 0.05% by mass or more and 0.30% by mass or less>
  • the content of Zr zirconium
  • the Zr content is 0.30% by mass or less, the formation of coarse Zr-containing crystallized substances during casting is suppressed, so drawing workability is improved. Coarse Zr-containing crystallized substances tend to become starting points for cracks during drawing. Therefore, the lower limit of the Zr content is preferably 0.05% by mass or more, and the upper limit of the Zr content is preferably 0.30% by mass or less.
  • Unavoidable impurities refer to impurities that are unavoidably mixed in during the manufacturing process. Since the content of unavoidable impurities can be a factor that affects the properties of the copper alloy plate material, it is preferable that the content of unavoidable impurities is small. Examples of unavoidable impurities include nonmetallic elements such as S (sulfur), C (carbon), and O (oxygen), and elements such as Sb (antimony).
  • the upper limit of the content of unavoidable impurities is preferably 500 ppm or less for each of the above elements, and preferably 2000 ppm or less for the total of the above elements.
  • the tensile strength of the copper alloy plate material in the direction parallel to rolling (hereinafter also simply referred to as tensile strength) is 420 MPa or more and 700 MPa or less.
  • tensile strength is 420 MPa or more, the strength can be improved. Therefore, the copper alloy plate material is suitable for module cases, connectors, etc. that require high strength.
  • the higher the tensile strength of the copper alloy plate material the better.
  • the tensile strength of the copper alloy plate material is 420 MPa or more, preferably 500 MPa or more, and more preferably 600 MPa or more.
  • the tensile strength of the copper alloy plate material is, for example, 700 MPa or less.
  • the tensile strength of the copper alloy sheet material can be measured in accordance with JIS Z 2241:2011 by performing a tensile test on the copper alloy sheet material in the direction parallel to rolling using a No. 13B test piece.
  • the electrical conductivity of the copper alloy plate material is 65% IACS or more and 90% IACS or less.
  • the conductivity of the copper alloy plate material is 65% IACS or higher, Joule heat during energization can be reduced. Furthermore, electromagnetic wave shielding properties can be improved.
  • Thermal conductivity can be calculated from electrical conductivity using the Wiedemann-Franz law, and as long as the temperature is constant, there is a proportional relationship with electrical conductivity regardless of the type of metal. As is known, when the electrical conductivity of the copper alloy plate increases, the heat dissipation of the copper alloy plate can be improved.
  • the copper alloy plate material when the conductivity of the copper alloy plate material is 65% IACS or more, the copper alloy plate material is suitable for connectors that conduct high current and module cases that require high electromagnetic shielding properties and thermal conductivity. Further, the upper limit value of the electrical conductivity of the copper alloy plate material is, for example, 90% IACS or less.
  • the electrical conductivity of a copper alloy plate material can be measured by a four-terminal method.
  • the average value of the orientation density of ⁇ -fiber in the copper alloy plate material is within the above range, the uniformity of the shape of the drawn part can be improved. If the average value of the orientation density of ⁇ -fiber is less than 6.0, the peak height of the undulations (furbs, flanges) of the drawn part will decrease, and as a result, it will be difficult to form a bridge during progressive pressing. .
  • the average value of the orientation density of ⁇ -fiber in the copper alloy plate is 6.0 or more and 10.0 or less, preferably 7.0 or more and 10.0 or less. Below, it is more preferably 8.0 or more and 10.0 or less.
  • the maximum value of the orientation density of ⁇ -fiber in the copper alloy plate material is 9.0 or more, the degree of orientation of specific crystal orientations belonging to ⁇ -fiber becomes high, and the uniformity of the shape of the drawn product tends to be high. .
  • the orientation density is also expressed as a crystal orientation distribution function (ODF), and is used to quantitatively analyze the abundance ratio and dispersion state of crystal orientations in a texture.
  • ODF crystal orientation distribution function
  • Orientation density is based on measurement data of three or more types of positive pole figures such as (100) positive pole figure, (110) positive pole figure, (111) positive pole figure, etc., according to EBSD and X-ray diffraction measurement results. Calculated by crystal orientation distribution analysis method using series expansion method.
  • the lower limit is preferably 0.5° or more, more preferably 0.6° or more, and even more preferably The upper limit is preferably 2.0° or less, more preferably 1.9° or less, and still more preferably 1.8° or less.
  • the average KAM value of the copper alloy plate material is 0.5° or more and 2.0° or less, the corner radius during drawing and material strength are well balanced. Specifically, when the average KAM value of the copper alloy plate material is 0.5° or more, the material strength improves. Further, when the average KAM value of the copper alloy plate material is 2.0° or less, it becomes easy to reduce the corner radius during drawing.
  • the KAM (Kernel Average Misorientation) value is the average value of crystal orientation differences between a measurement point and all of its adjacent measurement points.
  • the KAM value has a correlation with the dislocation density and corresponds to the amount of lattice strain in the crystal.
  • the EBSD (Electron BackScatter Diffraction) method is used to analyze the orientation density of ⁇ -fiber.
  • the EBSD method is a crystal orientation analysis technique that utilizes backscattered electron Kikuchi ray diffraction produced when a copper alloy plate sample is irradiated with an electron beam in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the measurement area is a mirror-finished surface parallel to the rolling direction of the copper alloy plate (main surface of the copper alloy plate) by electrolytic polishing, the measurement area is 500 ⁇ m x 500 ⁇ m (250,000 ⁇ m 2 ), and the scan step is a fine
  • EBSD measurement is performed at 0.2 ⁇ m.
  • the measurement surface may be a cross section parallel to the rolling direction.
  • a measurement of 500 ⁇ m ⁇ plate thickness is performed.
  • ⁇ -fiber and KAM values can be obtained through analysis.
  • the source of the electron beam is a field emission electron gun of a field emission scanning electron microscope.
  • the diameter of the probe during measurement is approximately 0.015 ⁇ m.
  • OIM Analysis 7 (trade name) manufactured by TSL Solutions Co., Ltd. is used as the analysis software.
  • the information obtained in the analysis of crystal grains by EBSD includes information from the surface to a depth of several tens of nanometers, where the electron beam penetrates the copper alloy plate material.
  • a misorientation of 5° or more is defined as a grain boundary, and measurement points with a reliability index CI value of 0.1 or more and crystal grains consisting of 2 pixels or more are subject to analysis, and the Tolerance angle is set to 10°. shall be.
  • equivalent orientations are included in the analysis of the area ratio of crystal orientations.
  • FIG. 1 is an example of a crystal orientation distribution diagram of a copper alloy sheet material measured by EBSD and obtained from crystal orientation distribution function (ODF) analysis.
  • the crystal orientation distribution diagram of the copper alloy sheet material shown in Fig. 1 has three directions: the direction RD parallel to the rolling direction, the sheet width direction TD, and the normal direction ND to the rolling surface, which are two orthogonal directions within the rolling surface. It is expressed in Euler angles, and the azimuth rotation of the RD axis is ⁇ , the azimuth rotation of the ND axis is ⁇ 1 , and the azimuth rotation of the TD axis is ⁇ 2 .
  • the average value of the ODF intensity when the crystal orientation is expressed in Euler angle based on a randomly oriented sample in the range of ⁇ 2 from 45 to 90 degrees is the average value of the orientation density of ⁇ -fiber measured by the EBSD method. shall be.
  • the maximum value of ODF intensity when the crystal orientation is expressed in Euler angle and the range of ⁇ 2 is 45 to 90 degrees with reference to a randomly oriented sample is calculated as the orientation density of ⁇ -fiber measured by the EBSD method. Maximum value.
  • the average value of the KAM values of all analysis target points in the measurement area is set as the average KAM value measured by the EBSD method.
  • the area ratio (hereinafter referred to as The area ratio within 10°) is preferably 10% or less, more preferably 8% or less.
  • the area ratio of measurement points having an angular difference of 10° or less from the plate surface normal is preferably 10% or less, more preferably 8% or less.
  • the copper alloy sheet material of the embodiment has excellent drawing workability, mechanical strength, and heat dissipation properties, and is therefore suitable as a copper alloy sheet material for drawing.
  • Drawn parts made from copper alloy sheet material for drawing before drawing that is, drawn parts using copper alloy sheet material, are used for connectors, lead frames, relays, switches, etc. for electronic devices.
  • it is suitably used for connector hold-downs and shells that require high heat dissipation, camera module cases, battery cases, shield cases, and vibration device cases.
  • the ingot having the above alloy composition obtained by melt casting [Step 1] is subjected to reheating [Step 2], hot rolling [Step 3], warm rolling [Step 4], cooling [Step 5],
  • the copper alloy sheet material of the above embodiment can be manufactured by sequentially performing cold rolling [Step 6], aging heat treatment [Step 7], cold rolling [Step 8], and low-temperature annealing [Step 9]. Solution treatment and tension leveling are not performed. Further, reheating [Step 2], hot rolling [Step 3], warm rolling [Step 4], and cooling [Step 5] are performed continuously.
  • the surface oxide film generated by the consecutive steps of reheating [Step 2], hot rolling [Step 3], warm rolling [Step 4], and cooling [Step 5] is removed before cold rolling [Step 6]. It may be removed by performing appropriate chamfering.
  • a copper alloy ingot having the above alloy composition is obtained by melting and casting the alloy components.
  • melting is performed in the atmosphere using a high frequency melting furnace.
  • the types of alloy components, casting conditions, etc. are set as appropriate.
  • Reheating [Step 2], hot rolling [Step 3], warm rolling [Step 4], and cooling [Step 5] are performed by holding the copper alloy ingot at a predetermined temperature for a predetermined time in a reheating furnace to make it homogeneous.
  • Reheating [Step 2] to perform heat treatment to make the product change Hot rolling to perform hot rolling with dynamic recrystallization immediately after heat treatment [Step 3], Warm rolling without dynamic recrystallization after hot rolling It consists of four consecutive elementary steps, consisting of warm rolling [Step 4] and cooling immediately after warm rolling [Step 5].
  • the copper alloy ingot is heat treated at a temperature range of 990°C or higher and 1050°C or lower for 1 hour or more and 10 hours or less.
  • the heat treatment temperature is less than 990° C.
  • the material temperature in warm rolling [Step 4] tends to become low, and the desired effect in warm rolling [Step 4] cannot be obtained.
  • the heat treatment temperature exceeds 1050°C, grain boundaries become weak and cracks are likely to occur during hot rolling [Step 3].
  • Hot rolling with dynamic recrystallization is performed.
  • Hot rolling may be performed under conditions involving dynamic recrystallization. For example, hot rolling is performed between the reheating temperature and 750°C so that the processing rate calculated from the thickness before rolling starts and the thickness after the pass completed before reaching 750°C is 50% or more. . If dynamic recrystallization does not occur sufficiently, a non-uniform structure tends to occur.
  • the material temperature during hot rolling can be measured with a radiation thermometer.
  • Hot rolling [Step 3] is followed by warm rolling [Step 4], and rolling is continued under conditions that do not involve dynamic recrystallization.
  • warm rolling [Step 4] the material temperature is between 700°C and 500°C, and the processing rate calculated from the thickness before the pass reaching 700°C and the thickness after the pass reaching 500°C is 50% or more.
  • Warm rolling is performed so that The material temperature during warm rolling can be measured with a radiation thermometer. Under these conditions, rotation of the crystal can be promoted, the orientation density of ⁇ -fiber can be increased, and drawing workability can be improved. If rolling is performed at a temperature higher than 700° C., dynamic recrystallization may occur, and there is no effect of improving the orientation density of ⁇ -fiber. If rolling continues to a temperature below 500°C, precipitates tend to grow coarsely, impairing material strength and the shape uniformity of drawn parts. There is a tendency to Furthermore, when the processing rate is less than 50%, the orientation density of ⁇ -fiber decreases.
  • cooling [Step 5] is performed.
  • the product is cooled to room temperature by water cooling or oil cooling.
  • the cooling rate is, for example, 50° C./s or more.
  • the cooling start temperature is 500 to 550°C.
  • cold rolling [Step 6] is performed.
  • Conditions for cold rolling [Step 6] can be appropriately selected depending on the thickness of the final product as long as the processing rate is 90% or more and the average processing rate of each pass processing rate is 20% or more.
  • the processing rate is less than 90%, the orientation density of ⁇ -fiber decreases.
  • the average processing rate is less than 20%, shear deformation of the plate surface increases and the orientation density of ⁇ -fiber decreases.
  • the upper limit of the average processing rate is not particularly set, but it is about 70% in industrial cold rolling mills.
  • a continuous two-step heat treatment is performed. After the first stage heat treatment, the temperature is lowered and a second stage heat treatment is performed, followed by cooling to room temperature. In the first stage heat treatment, the temperature is maintained at 400° C. or higher and 550° C. or lower for 0.5 hours or more and 4 hours or less. In the second stage heat treatment, the temperature is maintained at 150°C or higher and 250°C or lower for 0.5 to 4 hours. The heating rate is 50 to 200°C/h, and the cooling rate is 100 to 200°C/h. Regarding the first stage heat treatment, if the temperature is low or the time is short, the precipitation of the Cr compound is insufficient and the conductivity decreases.
  • the precipitates tend to become coarse and the strength is impaired.
  • the second stage heat treatment if the temperature is low or the time is short, the strain will be excessive and the average KAM value will be excessive even after the tempering in the low temperature annealing [Step 9].
  • the second stage heat treatment if the temperature is high or the time is long, the precipitates tend to become coarse and the strength is impaired.
  • Step 8 Cold rolling [Step 8] is performed at a processing rate of 5% or more and 50% or less. If the processing rate is less than 5%, the strength is insufficient. Furthermore, if the processing rate is more than 50%, the strain will be excessive even after the tempering in the low temperature annealing [Step 9], and the average KAM value will be excessive.
  • Step 9 heat treatment is performed at a temperature of 200 to 400°C for 10 seconds to 30 minutes, and then cooled to room temperature.
  • the heating rate and cooling rate are 1 to 100°C/s. If the heat treatment temperature is low or the heat treatment time is short, strain will be excessive and the average KAM value will be excessive. If the heat treatment temperature is high or the heat treatment time is long, the precipitates become coarse and the strength is impaired.
  • the copper alloy sheet material by having a predetermined alloy composition and controlling the average value of the orientation density of ⁇ -fiber to be high, the copper alloy sheet material has excellent drawing workability and sufficient mechanical strength. It can have strength and conductivity.
  • each alloy component is melted in the atmosphere in a high-frequency melting furnace, and cast in a metal mold to obtain the alloy composition shown in Table 1, unavoidable impurities, and plate thickness shown in Table 2.
  • a plate having the following properties was obtained.
  • reheating [Step 2] is a heat treatment in a temperature range of 990°C or more and 1050°C or less for 1 hour or more and up to 10 hours, hot rolling [Step 3], warm rolling [Step 4] under the conditions shown in Table 2, and Cooling [Step 5] was performed continuously.
  • surface cutting was performed under the conditions shown in Table 2 to remove the surface oxide film.
  • cold rolling [Step 6] was performed under the conditions shown in Table 2.
  • aging heat treatment [Step 7] was performed under the conditions shown in Table 2.
  • cold rolling [Step 8] was performed under the conditions shown in Table 2.
  • heat treatment is performed at a heating rate of 1 to 100°C/s and a temperature of 200 to 400°C held for 10 seconds to 30 minutes, followed by low-temperature annealing [Step 9 ] By doing so, a copper alloy plate material having the final plate thickness shown in Table 2 was obtained.
  • the measurement area was a mirror-finished surface parallel to the rolling direction of the copper alloy sheet materials obtained in the above examples and comparative examples by electrolytic polishing, the measurement area was 500 ⁇ m x 500 ⁇ m, and the scan step was 0.
  • EBSD measurement was performed with the thickness set at .2 ⁇ m.
  • the source of the electron beam was a field emission electron gun of a field emission scanning electron microscope.
  • the probe diameter during measurement was approximately 0.015 ⁇ m.
  • OIM Analysis 7 (trade name) manufactured by TSL Solutions Co., Ltd. was used as the analysis software.
  • a misorientation of 5° or more is defined as a grain boundary, and measurement points with a reliability index CI value of 0.1 or more and crystal grains consisting of 2 pixels or more are subject to analysis, and the Tolerance angle is set to 10°. And so.
  • equivalent orientations were included in the analysis of the area ratio of crystal orientations.
  • the average value of the ODF intensity when the crystal orientation is expressed in Euler angle based on a randomly oriented sample in the range of ⁇ 2 from 45 to 90 degrees is the average value of the orientation density of ⁇ -fiber measured by the EBSD method. And so.
  • the maximum value of ODF intensity when the crystal orientation is expressed in Euler angle and the range of ⁇ 2 is 45 to 90 degrees with reference to a randomly oriented sample is calculated as the orientation density of ⁇ -fiber measured by the EBSD method. The maximum value was set. Further, the average value of the KAM values of all analysis target points in the measurement area was taken as the average KAM value measured by the EBSD method.
  • the area ratio of measurement points where the angle difference between the normal to the (100) plane of the crystal and the normal to the plate surface of the copper alloy plate is 10° or less, which occupies the measurement area, is calculated as the area within 10° measured by the EBSD method. percentage.
  • the evaluation of the punch tip R it was ranked according to the following criteria. ⁇ : If the minimum tip R that the copper alloy sheet material can be squeezed without breaking is 0.50 mm, ⁇ : The minimum tip R that the copper alloy sheet material can squeeze without breaking is 0.75 mm. The case where the minimum tip R that could be squeezed without breaking was 1.00 mm was rated as ⁇ , and the case where the copper alloy plate material was broken at any of the above tips R was graded as ⁇ . When the copper alloy plate material was broken at any of the tips R mentioned above, the following evaluation regarding the shape of the drawn part was not performed.
  • the evaluation of the height difference between the peak and valley of the undulation was ranked according to the following criteria. ⁇ if the average height difference (average peak height - average valley height) is 1.00 or more and 1.25 mm or less; ⁇ if the average height difference is 0.75 mm or more and less than 1.00 mm; A value of 0.25 mm or more and less than 0.75 mm was rated as ⁇ , and a value of average height difference other than the above was rated as ⁇ .
  • the standard deviation of the height of the undulation apex was ranked according to the following criteria. ⁇ if the standard deviation of the height of the crest of the undulation is 0.1 mm or less, ⁇ if the standard deviation of the height of the crest of the undulation exceeds 0.1 and 0.2 mm or less, and ⁇ if the standard deviation of the height of the crest of the undulation is 0. A value exceeding 2 mm was marked as x.
  • a case in which there is no x in both the evaluation of the punch tip R and the average value of the peak height of the undulations is considered a pass, and a case in which at least one of these evaluations is x is considered a failure.
  • Examples 1 to 4, 6, 8 to 9, and 11 had low average KAM values and particularly good evaluation of punch tip R.
  • the processing rate of cold rolling [Step 8] is lower than in these Examples, lower than the preferable range (0.5° or more) of the average KAM value considering strength, and the strength is slightly lower. It became lower.
  • the average value of the orientation density of ⁇ -fiber is particularly preferable, and the evaluation of the average value and standard deviation of the peak height of waviness for drawn parts are both good. there were.
  • the cooling start temperature in the cooling [Step 5] performed after warm rolling [Step 4] was lower than in other Examples, and the accumulation of the (100) plane on the plate surface was higher. Compared to these Examples, the evaluations of the average value and standard deviation of the peak height of waviness were both slightly lower.
  • Example 12 the Cr content was lower among the Examples, and the strength was lower, but the electrical conductivity was the highest.
  • Example 21 the Cr content and amount of subcomponents were high, and the strength was the highest, but the electrical conductivity was low.
  • Comparative Example 1 the processing rate of warm rolling [Step 4] was low, the average value of the orientation density of ⁇ -fiber was low, and the evaluation of the average value of the peak height of waviness was poor. Furthermore, in Comparative Example 2, the cooling start temperature in cooling [Step 5] was high, the average value of the orientation density of ⁇ -fiber was low, and the average value of the peak height of waviness was evaluated poorly. Further, in Comparative Example 3, the processing rate of cold rolling [Step 6] was low, the average value of the orientation density of ⁇ -fiber was low, and the evaluation of the average value of the peak height of waviness was poor.
  • the first stage heat treatment temperature in the aging heat treatment [Step 7] was low, and the electrical conductivity was low. Furthermore, in Comparative Example 5, the heat treatment temperature in the first stage of the aging heat treatment [Step 7] was high, and the strength was low. Further, in Comparative Example 6, the second stage heat treatment temperature in the aging heat treatment [Step 7] was high, and the strength was low. Furthermore, in Comparative Example 7, the average processing rate of each pass processing rate in cold rolling [Step 6] was low, the average value of the orientation density of ⁇ -fiber was low, and the evaluation of the average value of the peak height of waviness was poor. Ta.
  • Comparative Example 8 the processing rate of cold rolling [Step 8] was low, and the strength was low. Furthermore, in Comparative Example 9, the Cr content was low and the strength was low. Further, in Comparative Example 10, warm rolling [Step 4] was not performed, the average value of the orientation density of ⁇ -fiber was low, and the average value of the peak height of waviness was evaluated poorly. Further, in Comparative Example 11, the Cr content was high, the conductivity was low, drawing work was not possible, and the punch tip R was evaluated poorly. Therefore, evaluation regarding the shape of drawn parts has not been conducted yet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

銅合金板材は、Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、EBSD法により測定されるβ-fiber(Φ=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、圧延平行方向の引張強さは420MPa以上700MPa以下であり、導電率は65%IACS以上90%IACS以下である。

Description

銅合金板材および絞り加工部品
 本開示は、銅合金板材および絞り加工部品に関する。
 近年、各分野における高性能化に伴い、絞り加工を施す部材には、高い絞り加工性が要求されている。
 例えば、特許文献1には、Cu-Cr-Sn-Zn系合金のKAM値とβ-fiberの方位密度とを所定範囲に制御することで、残留応力を低減してエッチング特性を改善した銅合金板が記載されている。
 しかしながら、特許文献1には、銅合金板の絞り加工性について言及されていない。また、特許文献1では、β-fiberの方位密度の最大値の上限が規定されている一方で、β-fiberの方位密度の最大値の下限は規定されていない。それに加えて、特許文献1では、銅合金板の製造中に、β-fiberの方位密度の平均値を高めるための工程が施されておらず、さらには溶体化処理が行われる。こうした理由から、β-fiberの方位密度の平均値は低いと推定されることから、絞り加工性は低いと考えられる。また、特許文献1では、銅合金板の製造中にテンションレベリングを行っていることから、KAM値が低く、機械的強度も低い。
特開2013-194246号公報
 本開示の目的は、優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有する銅合金板材、および銅合金板材を用いた絞り加工部品を提供することである。
[1] Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、EBSD法により測定されるβ-fiber(Φ=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、圧延平行方向の引張強さは420MPa以上700MPa以下であり、導電率は65%IACS以上90%IACS以下である、銅合金板材。
[2] 前記β-fiberの方位密度の最大値は、9.0以上である、上記[1]に記載の銅合金板材。
[3] EBSD法により測定される平均KAM値は、0.5°以上2.0°以下である、上記[1]または[2]に記載の銅合金板材。
[4] EBSD法により測定される、(100)面の法線と前記銅合金板材の板面法線とのなす角度が10°以内である原子面を有する領域の面積率は、10%以下である、上記[1]~[3]のいずれか1つに記載の銅合金板材。
[5] 前記合金組成は、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の元素を合計で0.10質量%以上1.00質量%以下含有する、上記[1]~[4]のいずれか1つに記載の銅合金板材。
[6] 前記銅合金板材が絞り加工用銅合金板材である、上記[1]~[5]のいずれか1つに記載の銅合金板材。
[7] 上記[1]~[6]のいずれか1つに記載の銅合金板材を用いた絞り加工部品。
 本開示によれば、優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有する銅合金板材、および銅合金板材を用いた絞り加工部品を提供することができる。
図1は、EBSDにより測定し、結晶粒方位分布関数解析から得られた銅合金板材の結晶方位分布図の一例である。
 以下、実施形態を詳細に説明する。
 本発明者らは、鋭意研究を重ねた結果、所定の合金組成を有し、β-fiberの方位密度を高める工程を行ってβ-fiberの方位密度の平均値を高く制御することで、銅合金板材が優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有することを見出し、かかる知見に基づき本開示を完成させるに至った。
 実施形態の銅合金板材は、Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、EBSD法により測定されるβ-fiber(Φ=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、圧延平行方向の引張強さは420MPa以上700MPa以下であり、導電率は65%IACS以上90%IACS以下である。
 まず、銅合金板材の合金組成について説明する。
 上記実施形態の銅合金板材は、Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有する。
<Cr:0.10質量%以上1.00質量%以下>
 Cr(クロム)は、銅合金板材の強度を高めるために必要な元素であり、Crを0.10質量%以上1.00質量%以下含有することが必要である。Crの含有量が0.10質量%以上であると、銅合金板材の機械的強度が増加する。また、Crの含有量が1.00質量%以下であると、粗大な第二相の生成が抑制されるため、絞り加工性が向上する。粗大な第二相は、絞り加工時にクラックの起点になりやすい。このため、Crの含有量の下限値は、0.10質量%以上、好ましくは0.20質量%以上、より好ましくは0.30質量%以上である。また、Crの含有量の上限値は、1.00質量%以下、好ましくは0.80質量%以下、より好ましくは0.70質量%以下である。
<銅合金板材の副成分:0.10質量%以上1.00質量%以下>
 銅合金板材の合金組成は、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の元素を合計で0.10質量%以上1.00質量%以下含有することができる。すなわち、銅合金板材は、必須の基本成分であるCrに加えて、任意成分である副成分として、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の成分を合計で0.10質量%以上1.00質量%以下含有することができる。
<Mg:0.10質量%以上0.30質量%以下>
 Mg(マグネシウム)の含有量が0.10質量%以上であると、銅合金板材の耐応力緩和特性を向上できる。Mgの含有量が0.30質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Mgの含有量の下限値は0.10質量%以上であることが好ましく、Mgの含有量の上限値は0.30質量%以下であることが好ましい。
<Sn:0.10質量%以上0.30質量%以下>
 Sn(スズ)の含有量が0.10質量%以上であると、銅合金板材の耐応力緩和特性を向上できる。Snの含有量が0.30質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Snの含有量の下限値は0.10質量%以上であることが好ましく、Snの含有量の上限値は0.30質量%以下であることが好ましい。
<Zn:0.10質量%以上0.50質量%以下>
 Zn(亜鉛)の含有量が0.10質量%以上であると、Snめっきの密着性やマイグレーション特性を改善できる。Znの含有量が0.50質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Znの含有量の下限値は0.10質量%以上であることが好ましく、Znの含有量の上限値は0.50質量%以下であることが好ましい。
<Fe:0.05質量%以上0.30質量%以下>
 Fe(鉄)の含有量が0.05質量%以上であると、熱間圧延中の動的再結晶後の粒成長を抑制し、絞り加工部品の肌荒れを抑制できる。Feの含有量が0.30質量%以下であると、鋳造時における粗大なFe含有晶出物の生成が抑制されるため、絞り加工性が向上する。粗大なFe含有晶出物は、絞り加工時にクラックの起点になりやすい。このため、Feの含有量の下限値は0.05質量%以上であることが好ましく、Feの含有量の上限値は0.30質量%以下であることが好ましい。
<Si:0.02質量%以上0.40質量%以下>
 Si(ケイ素)の含有量が0.02質量%以上であると、他の添加元素、例えば、MgやCrとSi化合物を形成し、銅合金板材の強度が増加する。Siの含有量が0.40質量%以下であると、銅合金板材の熱伝導率の低下を抑制でき、十分な放熱性が得られる。このため、Siの含有量の下限値は、好ましくは0.02質量%であり、Siの含有量の上限値は、好ましくは0.40質量%である。
<Zr:0.05質量%以上0.30質量%以下>
 Zr(ジルコニウム)の含有量が0.05質量%以上であると、熱間圧延中の動的再結晶後の粒成長を抑制し、絞り加工部品の肌荒れを抑制できる。Zrの含有量が0.30質量%以下であると、鋳造時における粗大なZr含有晶出物の生成が抑制されるため、絞り加工性が向上する。粗大なZr含有晶出物は、絞り加工時にクラックの起点になりやすい。このため、Zrの含有量の下限値は0.05質量%以上であることが好ましく、Zrの含有量の上限値は0.30質量%以下であることが好ましい。
<残部:Cuおよび不可避不純物>
 上述した成分以外の残部は、Cu(銅)および不可避不純物である。不可避不純物は、製造工程上、不可避的に混入してしまう含有レベルの不純物を意味する。不可避不純物の含有量によっては銅合金板材の特性に影響を及ぼす要因になりうるため、不可避不純物の含有量は少ないことが好ましい。不可避不純物としては、例えば、S(硫黄)、C(炭素)、O(酸素)などの非金属元素、およびSb(アンチモン)などの元素が挙げられる。なお、不可避不純物の含有量の上限値は、上記元素毎に500ppm以下であることが好ましく、上記元素の合計で2000ppm以下であることが好ましい。
 次に、銅合金板材の引張強さについて説明する。
 銅合金板材の圧延平行方向の引張強さ(以下、単に引張強さともいう)は、420MPa以上700MPa以下である。銅合金板材の引張強さが420MPa以上であると、強度を向上できる。そのため、銅合金板材は、高い強度が要求されるモジュールケースやコネクタ等に好適である。このように、銅合金板材の引張強さは大きいほど好ましい。例えば、銅合金板材の引張強さは、420MPa以上、好ましくは500MPa以上、より好ましくは600MPa以上である。また、銅合金板材の引張強さは、例えば700MPa以下である。
 銅合金板材の引張強さは、JIS Z 2241:2011に準拠し、13B号試験片を用いて、銅合金板材に対して圧延平行方向に引張試験を行うことによって測定することができる。
 次に、銅合金板材の導電率について説明する。
 銅合金板材の導電率は、65%IACS以上90%IACS以下である。銅合金板材の導電率が65%IACS以上であると、通電時のジュール熱を低減できる。また、電磁波シールド性を向上できる。熱伝導率は、ウィーデマン・フランツの法則(Wiedemann-Franz law)によって、導電率から算出することができ、温度が一定であれば、金属の種類によらず、導電率と比例関係にあることが知られていることから、銅合金板材の導電率が増加すると、銅合金板材の放熱性を向上できる。そのため、銅合金板材の導電率が65%IACS以上であると、銅合金板材は、高い電流を通電するコネクタや、高い電磁波シールド性や熱伝導率が要求されるモジュールケースに好適である。また、銅合金板材の導電率の上限値は、例えば90%IACS以下である。
 銅合金板材の導電率は、4端子法により測定することができる。
 次に、銅合金板材のβ-fiberの方位密度について説明する。
 銅合金板材について、EBSD法により測定されるβ-fiber(Φ=45°~90°)の方位密度の平均値(以下、単にβ-fiberの方位密度の平均値ともいう)は6.0以上10.0以下である。銅合金板材におけるβ-fiberの方位密度の平均値が上記範囲内であると、絞り加工部品の形状の均一性を高くできる。β-fiberの方位密度の平均値が6.0未満であると、絞り加工部品のうねり(みみ、フランジ)の頂点高さが低下し、その結果、順送プレス時のブリッジが形成しづらくなる。また、β-fiberの方位密度の平均値が10.0超であると、銅合金板材の機械的特性の異方性が強くなるため、銅合金板材を絞り加工する際にプレス設計の制約になるという問題がある。上記理由や絞り加工部品の形状を均一にする観点から、銅合金板材のβ-fiberの方位密度の平均値は、6.0以上10.0以下であり、好ましくは7.0以上10.0以下、より好ましくは8.0以上10.0以下である。
 また、銅合金板材において、EBSD法により測定されるβ-fiber(Φ=45°~90°)の方位密度の最大値(以下、単にβ-fiberの方位密度の最大値ともいう)は、好ましくは9.0以上である。銅合金板材のβ-fiberの方位密度の最大値が9.0以上であると、β-fiberに属する特定の結晶方位の配向度が高くなり、絞り加工品の形状の均一性が高くなりやすい。
 方位密度とは、結晶粒方位分布関数(ODF:crystal orientation distribution function)とも表され、集合組織の結晶方位の存在比率および分散状態を定量的に解析する際に用いる。方位密度は、EBSDおよびX線回折測定結果により、(100)正極点図、(110)正極点図、(111)正極点図などの3種類以上の正極点図の測定データを基にして、級数展開法による結晶方位分布解析法により算出される。
 次に、銅合金板材の平均KAM値について説明する。
 銅合金板材における、EBSD法により測定される平均KAM値(以下、単に平均KAM値ともいう)について、下限値は、好ましくは0.5°以上、より好ましくは0.6°以上、さらに好ましくは0.7°以上であり、上限値は、好ましくは2.0°以下、より好ましくは1.9°以下、さらに好ましくは1.8°以下である。銅合金板材の平均KAM値が0.5°以上2.0°以下であると、絞り加工時のコーナーRと材料強度とのバランスが良好になる。具体的には、銅合金板材の平均KAM値が0.5°以上であると、材料強度が向上する。また、銅合金板材の平均KAM値が2.0°以下であると、絞り加工時のコーナーRを小さくすることが容易になる。
 KAM(Kernel Average Misorientation)値とは、測定点とその隣接する全ての測定点との間の結晶方位差の平均値である。KAM値は、転位密度と相関があり、結晶の格子歪量に対応するものである。
 EBSD測定による結晶方位の測定および解析において、β-fiberの方位密度の解析にはEBSD(Electron  BackScatter  Diffraction)法を用いる。EBSD法とは、走査型電子顕微鏡(SEM)内で試料である銅合金板材に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。測定部分は、銅合金板材の圧延方向に平行な面(銅合金板材の主面)を電解研磨で鏡面仕上げした面とし、測定領域は500μm×500μm(250000μm)とし、スキャンステップは、微細な結晶粒を測定するため、0.2μmとして、EBSD測定を行う。なお、測定面は、圧延方向に平行な断面でも構わない。その場合は、機械研磨、コロイダルシリカでバフ研磨して面出しを行ったのち、500μm×板厚分の測定を行う。EBSD測定結果から、解析にてβ-fiber、KAM値を得ることができる。電子線は、電界放射型走査型電子顕微鏡の電界放出型電子銃を発生源とする。測定時のプローブ径は、約0.015μmとする。解析ソフトには、(株)TSLソリューションズ社製のOIM Analysis7(商品名)を用いる。EBSDによる結晶粒の解析において得られる情報は、電子線が銅合金板材に侵入する、表面から数10nmの深さまでの情報を含んでいる。また、解析では5°以上の方位差を結晶粒界と定義し、信頼性指数CI値が0.1以上の測定点および2ピクセル以上からなる結晶粒を解析の対象とし、Tolerance angleを10°とする。また、結晶方位の面積率の解析には、等価な方位を含める。
 図1は、EBSDにより測定し、結晶粒方位分布関数(ODF:crystal orientation distribution function)解析から得られた銅合金板材の結晶方位分布図の一例である。図1に示す銅合金板材の結晶方位分布図は、圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示し、RD軸の方位回転をΦ、ND軸の方位回転をΦ、TD軸の方位回転をΦとする。
 結晶方位をオイラー角表示した際のΦの範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の平均値を、EBSD法により測定されるβ-fiberの方位密度の平均値とする。また、結晶方位をオイラー角表示した際のΦの範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の最大値を、EBSD法により測定されるβ-fiberの方位密度の最大値とする。
 また、測定領域における全解析対象点のKAM値の平均値を、EBSD法により測定される平均KAM値とする。
 また、EBSD法により測定される、(100)面の法線と銅合金板材の板面(主面)法線とのなす角度が10°以内である原子面を有する領域の面積率(以下、単に10°以内の面積率)は、好ましくは10%以下、より好ましくは8%以下である。すなわち、EBSD法の結晶方位解析において、銅合金板材の板面法線方向に向く原子面の集積に関して、全測定点(測定領域)に占める、結晶の(100)面の法線と銅合金板材の板面法線との角度差10°以下の測定点の面積率は、好ましくは10%以下、より好ましくは8%以下である。上記面積率が10%以下であると、絞り加工部品の形状の均一性(うねりの均一性)を向上できる。また、円筒型の絞り加工部品の縁のうねりにおける頂点高さの標準偏差を小さくできる。その結果、順送プレス時のブリッジの長さのばらつきを抑制でき、位置決め性が向上する、破断に起因する歩留まりが向上するなどの効果を得られる。
 実施形態の銅合金板材は、絞り加工性、機械的強度、放熱性に優れているため、絞り加工用銅合金板材として好適である。絞り加工前の銅合金板材である絞り加工用銅合金板材に絞り加工を施した絞り加工部品、すなわち銅合金板材を用いた絞り加工部品は、電子機器用のコネクタ、リードフレーム、リレー、スイッチ、ソケット、シールドケース、シールドキャン、カメラモジュール、液晶や有機ELディスプレイの放熱部品、バッテリー、MEMSマイク等のMEMSデバイスのケース、自動車車載用のコネクタなどに好適に用いられる。そのなかでも、高い放熱性が要求されるコネクタのホールドダウンやシェル、カメラモジュールケース、バッテリーケース、シールドケース、振動デバイスのケースに好適に用いられる。
 次に、上記実施形態の銅合金板材を製造する方法の一例について説明する。溶解鋳造[工程1]して得られる上記合金組成を有する鋳塊に対して、再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]、冷間圧延[工程6]、時効熱処理[工程7]、 冷間圧延[工程8]、低温焼鈍[工程9]を順次行い、上記実施形態の銅合金板材を製造できる。溶体化処理およびテンションレベリングは行わない。また、再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]は連続的に行う。再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]の連続工程により発生した表面酸化膜は、冷間圧延[工程6]を実施する前に適宜面削を行うことで除去してもよい。
 溶解鋳造[工程1]では、合金成分を溶解し、鋳造することによって、上記合金組成を有する銅合金鋳塊を得る。例えば、溶解は高周波溶解炉を用いて大気下で行う。合金成分の種類、鋳造条件などは適宜設定される。
 再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]は、再熱炉で銅合金鋳塊を所定の温度で所定の時間保持して均質化する熱処理を行う再熱[工程2]、熱処理直後に動的再結晶を伴う熱間圧延を行う熱間圧延[工程3]、熱間圧延後に動的再結晶を伴わない温間圧延を行う温間圧延[工程4]、温間圧延直後に冷却する冷却[工程5]から構成される、4つの連続した素工程から構成される。
 再熱[工程2]では、銅合金鋳塊を990℃以上1050℃以下の温度範囲で1時間以上10時間以内熱処理する。熱処理温度が990℃未満である場合、温間圧延[工程4]における材料温度が低くなりやすく、温間圧延[工程4]での所望の効果が得られない。熱処理温度が1050℃超である場合、結晶粒界が弱くなり、熱間圧延[工程3]時にクラックが発生しやすい。
 再熱[工程2]直後に、動的再結晶を伴う熱間圧延[工程3]を行う。熱間圧延[工程3]は、動的再結晶を伴う条件で行えばよい。例えば、再熱温度から750℃までの間に、圧延開始前の厚さと750℃到達までに完了したパス後の厚さとから計算した加工率が50%以上となるように、熱間圧延を行う。動的再結晶が十分に発生しない場合、不均一な組織になりやすい。熱間圧延中の材料温度は、放射温度計で測定することができる。
 熱間圧延[工程3]に続いて温間圧延[工程4]を行い、動的再結晶を伴わない条件で圧延を継続する。温間圧延[工程4]では、材料温度が700℃から500℃の間で、700℃に到達するパス前の厚さと500℃に到達するパス後の厚さとから計算した加工率が50%以上となるように温間圧延を行う。温間圧延中の材料温度は、放射温度計で測定することができる。この条件により、結晶の回転を促進させて、β-fiberの方位密度を高めて、絞り加工性を向上することができる。700℃より高い温度で圧延を行うと、動的再結晶が生じる可能性があり、β-fiberの方位密度を向上させる効果はない。500℃未満の温度まで圧延を継続すると、析出物が粗大に成長しやすくなるため、材料強度を損なうことと、絞り加工部品の形状均一性を損なう(100)面が最終的に板面に配向する傾向とがある。また、加工率が50%未満である場合、β-fiberの方位密度が低下する。
 温間圧延[工程4]後には、冷却[工程5]を行う。冷却[工程5]では、水冷や油冷により室温まで冷却する。冷却速度は、例えば50℃/s以上である。冷却開始温度は、500~550℃とする。
 再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]の連続工程の後には、冷間圧延[工程6]を行う。冷間圧延[工程6]は、90%以上の加工率、かつ各パス加工率の平均加工率が20%以上であれば、最終製品板厚に応じて条件を適宜選択できる。加工率が90%未満である場合、β-fiberの方位密度が低下する。また、平均加工率が20%未満である場合、板表面のせん断変形が多くなり、β-fiberの方位密度が低下する。また、平均加工率の上限は、特に設定されるものではないが、工業的な冷間圧延機では70%程度である。
 時効熱処理[工程7]では、連続した二段階の熱処理を行う。第一段階の熱処理後、降温して第二段階の熱処理を行い、その後に室温まで冷却する。第一段階の熱処理は、400℃以上550℃以下で0.5時間以上4時間以内保持する。第二段階の熱処理は、150℃以上250℃以下で0.5時以上4時間以内保持する。昇温速度は50~200℃/h、冷却速度は100~200℃/hである。第一段階の熱処理について、温度が低いもしくは時間が短い場合、Cr化合物の析出が不十分であり、導電率が低下する。第一段階の熱処理について、温度が高いもしくは時間が長い場合、析出物が粗大化しやすく、強度を損なう。また、第二段階の熱処理について、温度が低いもしくは時間が短い場合、歪が過剰となり、低温焼鈍[工程9]での調質を経ても、平均KAM値が過大となる。第二段階の熱処理について、温度が高いもしくは時間が長い場合、析出物が粗大化しやすく、強度を損なう。
 冷間圧延[工程8]は、加工率5%以上50%以下で行う。加工率が5%未満である場合、強度が不十分である。また、加工率が50%超である場合、低温焼鈍[工程9]での調質を経ても歪が過剰となり、平均KAM値が過大となる。
 低温焼鈍[工程9]では、温度200~400℃で10秒から30分保持する熱処理を行い、その後に室温まで冷却する。昇温速度および冷却速度は、1~100℃/sである。熱処理の温度が低いもしくは熱処理の時間が短い場合、歪が過剰となり、平均KAM値が過大となる。熱処理の温度が高いもしくは熱処理の時間が長い場合、析出物が粗大化し、強度を損なう。
 以上説明した実施形態によれば、所定の合金組成を有し、β-fiberの方位密度の平均値を高く制御することで、銅合金板材は優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有することができる。
 以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。
 次に、実施例および比較例について説明するが、本開示はこれら実施例に限定されるものではない。
(実施例1~23および比較例1~11)
 溶解鋳造[工程1]にて、高周波溶解炉により、大気下で各合金成分を溶解し、金型モールドで鋳造して、表1に示す合金組成、不可避不純物、および表2に示す板厚を有する板材を得た。続いて、990℃以上1050℃以下の温度範囲で1時間以上10時間以内熱処理する再熱[工程2]、表2に示す条件で熱間圧延[工程3]、温間圧延[工程4]および冷却[工程5]を連続して行った。続いて、表2に示す条件で面削を行って、表面酸化膜を除去した。続いて、表2に示す条件で冷間圧延[工程6]を行った。続いて、表2に示す条件で時効熱処理[工程7]を行った。続いて、表2に示す条件で冷間圧延[工程8]を行った。続いて、昇温速度1~100℃/s、温度200~400℃で10秒から30分保持する熱処理を行い、その後に冷却速度1~100℃/sで室温まで冷却する低温焼鈍[工程9]を行うことで、表2に示す最終板厚を有する銅合金板材を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[測定および評価]
 上記実施例および比較例で得られた銅合金板材について、下記の測定および評価を行った。結果を表3に示す。
[1] EBSD法により測定されるβ-fiberの方位密度の平均値、β-fiberの方位密度の最大値、平均KAM値、および(100)面の法線と銅合金板材の板面法線とのなす角度が10°以内である原子面を有する領域の面積率(10°以内の面積率)
 EBSD解析として、測定部分は、上記実施例および比較例で得られた銅合金板材の圧延方向に平行な面を電解研磨で鏡面仕上げした面とし、測定領域は500μm×500μmとし、スキャンステップは0.2μmとして、EBSD測定を行った。電子線は、電界放射型走査型電子顕微鏡の電界放出型電子銃を発生源とした。測定時のプローブ径は、約0.015μmとした。解析ソフトには、(株)TSLソリューションズ社製のOIM  Analysis7(商品名)を用いた。また、解析では5°以上の方位差を結晶粒界と定義し、信頼性指数CI値が0.1以上の測定点および2ピクセル以上からなる結晶粒を解析の対象とし、Tolerance angleを10°とした。また、結晶方位の面積率の解析には、等価な方位を含めた。
 結晶方位をオイラー角表示した際のΦの範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の平均値を、EBSD法により測定されるβ-fiberの方位密度の平均値とした。また、結晶方位をオイラー角表示した際のΦの範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の最大値を、EBSD法により測定されるβ-fiberの方位密度の最大値とした。また、測定領域における全解析対象点のKAM値の平均値を、EBSD法により測定される平均KAM値とした。また、測定領域に占める結晶の(100)面の法線と銅合金板材の板面法線との角度差10°以下の測定点の面積率を、EBSD法により測定される10°以内の面積率とした。
[2] 引張強さ
 JIS Z 2241:2011に準拠し、13B号試験片を用いて、上記実施例および比較例で得られた銅合金板材に対して圧延平行方向に引張試験を行った。2つの銅合金板材の測定値(N=2)を平均することで、銅合金板材の圧延平行方向の引張強さを算出した。
[3] 導電率
 上記実施例および比較例で得られた銅合金板材に対して、4端子法により導電率測定を行った。2つの銅合金板材の測定値(N=2)を平均することで、銅合金板材の導電率を算出した。
[4] 絞り加工試験
 板厚0.3mmの銅合金板材から直径61mmのブランクをプレス打ち抜きで作り、ブランクを直径33mmのパンチで絞り加工を行った。パンチの先端Rは、0.50mm、0.75mm、1.00mmとした。絞り加工は、潤滑油(R303P)を銅合金板材に塗布して行った。
 パンチ先端Rの評価について、以下の基準に沿ってランク付けした。銅合金板材が破断することなく絞れた最小の先端Rが0.50mmの場合を◎、銅合金板材が破断することなく絞れた最小の先端Rが0.75mmの場合を○、銅合金板材が破断することなく絞れた最小の先端Rが1.00mmの場合を△、上記いずれの先端Rでも銅合金板材が破断した場合を×とした。そして、上記いずれの先端Rでも銅合金板材が破断した場合、絞り加工部品の形状に関する以下の評価は行わなかった。
 また、うねりの頂点と谷の高低差の評価(うねりの頂点高さの平均値)について、以下の基準に沿ってランク付けした。高低差の平均(頂点高さの平均-谷高さの平均)が1.00以上1.25mm以下を◎、高低差の平均が0.75mm以上1.00mm未満を○、高低差の平均が0.25mm以上0.75mm未満を△、高低差の平均が上記以外を×とした。
 また、うねりの頂点の高さの標準偏差について、以下の基準に沿ってランク付けした。うねりの頂点の高さの標準偏差が0.1mm以下を◎、うねりの頂点の高さの標準偏差が0.1超0.2mm以下を○、うねりの頂点の高さの標準偏差が0.2mm超を×とした。
 パンチ先端Rの評価およびうねりの頂点高さの平均値の評価のどちらも×がないものを合格とし、これら評価のうちの少なくとも1つが×であるものを不合格とする。
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、実施例1~23では、Cr含有率、β-fiberの方位密度の平均値、引張強さ、導電率がそれぞれ所定範囲内に制御されていたため、絞り加工性、機械的強度および導電率がいずれも良好であった。
 そのなかでも、実施例1~4、6、8~9、11は、平均KAM値が低く、パンチ先端Rの評価が特に良好であった。ただし、実施例11~12では、冷間圧延[工程8]の加工率がこれら実施例よりも低く、強度を加味した平均KAM値の好ましい範囲(0.5°以上)より低く、強度はやや低めになった。
 また、実施例3~8、10、12~23は、β-fiberの方位密度の平均値が特に好ましく、絞り加工部品に対するうねりの頂点高さの平均値および標準偏差の評価がどちらも良好であった。また、実施例9は、温間圧延[工程4]後に行われた冷却[工程5]の冷却開始温度が他の実施例よりも低く、(100)面の板面への集積が高めになり、これら実施例に比べて、うねりの頂点高さの平均値および標準偏差の評価がいずれもやや低下した。
 実施例12では、実施例のなかでもCr含有量が少なく、強度は低めであったが、導電率が最も高かった。一方、実施例21では、Cr含有量および副成分量が多く、強度は最も高かったが、導電率が低めであった。
 一方、比較例1では、温間圧延[工程4]の加工率が低く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例2では、冷却[工程5]の冷却開始温度が高く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例3では、冷間圧延[工程6]の加工率が低く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例4では、時効熱処理[工程7]における第一段階の熱処理温度が低く、導電率が低かった。また、比較例5では、時効熱処理[工程7]における第一段階の熱処理温度が高く、強度が低かった。また、比較例6では、時効熱処理[工程7]における第二段階の熱処理温度が高く、強度が低かった。また、比較例7では、冷間圧延[工程6]における各パス加工率の平均加工率が低く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例8では、冷間圧延[工程8]の加工率が低く、強度が低かった。また、比較例9では、Cr含有量が少なく、強度が低かった。また、比較例10では、温間圧延[工程4]を行わず、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例11では、Cr含有量が多く、導電率が低く、絞り加工もできず、パンチ先端Rの評価が悪かった。そのため、絞り加工部品の形状に関する評価は未実施であった。

Claims (7)

  1.  Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、
     EBSD法により測定されるβ-fiber(Φ=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、
     圧延平行方向の引張強さは420MPa以上700MPa以下であり、
     導電率は65%IACS以上90%IACS以下である、銅合金板材。
  2.  前記β-fiberの方位密度の最大値は、9.0以上である、請求項1に記載の銅合金板材。
  3.  EBSD法により測定される平均KAM値は、0.5°以上2.0°以下である、請求項1に記載の銅合金板材。
  4.  EBSD法により測定される、(100)面の法線と前記銅合金板材の板面法線とのなす角度が10°以内である原子面を有する領域の面積率は、10%以下である、請求項1に記載の銅合金板材。
  5.  前記合金組成は、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の元素を合計で0.10質量%以上1.00質量%以下含有する、請求項1に記載の銅合金板材。
  6.  前記銅合金板材が絞り加工用銅合金板材である、請求項1に記載の銅合金板材。
  7.  請求項1~6のいずれか1項に記載の銅合金板材を用いた絞り加工部品。
PCT/JP2023/016415 2022-07-13 2023-04-26 銅合金板材および絞り加工部品 WO2024014091A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023555792A JP7445096B1 (ja) 2022-07-13 2023-04-26 銅合金板材および絞り加工部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112739 2022-07-13
JP2022-112739 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014091A1 true WO2024014091A1 (ja) 2024-01-18

Family

ID=89536439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016415 WO2024014091A1 (ja) 2022-07-13 2023-04-26 銅合金板材および絞り加工部品

Country Status (3)

Country Link
JP (1) JP7445096B1 (ja)
TW (1) TW202403787A (ja)
WO (1) WO2024014091A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031841A1 (ja) * 2011-08-29 2013-03-07 古河電気工業株式会社 銅合金材料およびその製造方法
JP2013194246A (ja) * 2012-03-15 2013-09-30 Mitsubishi Shindoh Co Ltd 残留応力の少ないリードフレーム用Cu−Cr−Sn系銅合金板
WO2019176838A1 (ja) * 2018-03-13 2019-09-19 古河電気工業株式会社 銅合金板材およびその製造方法ならびに電気電子機器用放熱部品およびシールドケース
JP2021110015A (ja) * 2020-01-14 2021-08-02 古河電気工業株式会社 銅合金板材およびその製造方法、ならびに電気・電子部品用部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031841A1 (ja) * 2011-08-29 2013-03-07 古河電気工業株式会社 銅合金材料およびその製造方法
JP2013194246A (ja) * 2012-03-15 2013-09-30 Mitsubishi Shindoh Co Ltd 残留応力の少ないリードフレーム用Cu−Cr−Sn系銅合金板
WO2019176838A1 (ja) * 2018-03-13 2019-09-19 古河電気工業株式会社 銅合金板材およびその製造方法ならびに電気電子機器用放熱部品およびシールドケース
JP2021110015A (ja) * 2020-01-14 2021-08-02 古河電気工業株式会社 銅合金板材およびその製造方法、ならびに電気・電子部品用部材

Also Published As

Publication number Publication date
JP7445096B1 (ja) 2024-03-06
TW202403787A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
TWI433939B (zh) Cu-Mg-P系銅合金條材料及其製造方法
JP6678757B2 (ja) 銅板付き絶縁基板用銅板材及びその製造方法
WO2019244842A1 (ja) 抵抗器用抵抗材料およびその製造方法並びに抵抗器
JP6162910B2 (ja) 銅合金板材およびその製造方法
WO2015182776A1 (ja) 銅合金板材、銅合金板材からなるコネクタ、および銅合金板材の製造方法
KR20120104548A (ko) 구리합금판재
TWI752208B (zh) Cu-Co-Si系銅合金板材及製造方法和使用該板材的零件
JP2018016823A (ja) 放熱部材用銅合金板材およびその製造方法
WO2020121775A1 (ja) 銅合金板材およびその製造方法ならびに絞り加工品、電気・電子部品用部材、電磁波シールド材および放熱部品
JP4556841B2 (ja) 曲げ加工性に優れる高強度銅合金材およびその製造方法
KR102349545B1 (ko) 구리 합금 선봉재 및 그 제조 방법
JP6182372B2 (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
CN111971406B (zh) 铜合金板材和铜合金板材的制造方法以及使用铜合金板材的连接器
JP7445096B1 (ja) 銅合金板材および絞り加工部品
JP6190646B2 (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
JP6345290B1 (ja) プレス加工後の寸法精度を改善した銅合金条
JP6146964B2 (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
WO2013058083A1 (ja) コルソン合金及びその製造方法
WO2021145043A1 (ja) 銅合金板材およびその製造方法、ならびに電気・電子部品用部材
KR20220155977A (ko) 구리 합금 판재 및 그 제조 방법
JP6370692B2 (ja) Cu−Zr系銅合金板及びその製造方法
KR102499442B1 (ko) 구리 합금 판재 및 그 제조 방법
JP4987155B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP6162512B2 (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
TWI529255B (zh) Cu-Ni-Si合金及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839269

Country of ref document: EP

Kind code of ref document: A1