WO2024013999A1 - インバータ制御装置 - Google Patents
インバータ制御装置 Download PDFInfo
- Publication number
- WO2024013999A1 WO2024013999A1 PCT/JP2022/027933 JP2022027933W WO2024013999A1 WO 2024013999 A1 WO2024013999 A1 WO 2024013999A1 JP 2022027933 W JP2022027933 W JP 2022027933W WO 2024013999 A1 WO2024013999 A1 WO 2024013999A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- control device
- temperature sensing
- temperature
- inverter control
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 83
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 102100039435 C-X-C motif chemokine 17 Human genes 0.000 description 3
- 101000889048 Homo sapiens C-X-C motif chemokine 17 Proteins 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 101100489717 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND2 gene Proteins 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the present invention relates to an inverter control device.
- Temperature detection using a temperature sensing element such as a temperature sensing diode is provided with a temperature detection circuit that outputs a detection signal detected by the temperature sensing element to a control unit such as a microcomputer.
- a control unit such as a microcomputer that monitors temperature detection information is installed on the low voltage side.
- a plurality of thermosensors are provided corresponding to the temperature sensing elements.
- temperature-sensitive diodes are provided corresponding to switching elements of an inverter to detect the temperature thereof, and corresponding to each temperature-sensitive diode, a voltage detection circuit, a pulse signal output circuit, a photocoupler, etc. are provided. A temperature detection circuit is provided.
- An inverter control device includes a plurality of temperature sensing elements provided corresponding to a plurality of switching elements, a temperature detection circuit that receives a detection signal from the temperature sensing element and outputs temperature detection information, and a temperature detection circuit that outputs temperature detection information by receiving a detection signal from the temperature sensing element.
- a control unit that calculates the temperature of the switching element based on information; and a switching circuit that switches the detection signals from the plurality of temperature sensing elements and outputs the detected signals to the temperature detection circuit;
- a switching circuit is operated to select the detection signal to be output from the temperature sensing element to the temperature detection circuit.
- the configuration of the inverter control device can be simplified.
- FIG. 1 is a circuit configuration diagram of an inverter control device in a first embodiment.
- FIGS. 2(a) to 2(f) are timing charts showing the first switching of the temperature sensing element.
- FIGS. 3(a) to 3(f) are timing charts showing the second switching of the temperature sensing element.
- FIG. 4 is a circuit configuration diagram of an inverter control device in the second embodiment.
- FIGS. 5(a) to 5(e) are timing charts showing switching of temperature sensing elements in the second embodiment.
- FIG. 6 is a circuit configuration diagram of an inverter control device in the third embodiment.
- FIGS. 7A to 7H are timing charts showing switching of the ground potential supply elements in the third embodiment.
- FIG. 1 is a circuit configuration diagram of an inverter control device 100 according to a first embodiment of the present invention.
- the inverter control device 100 is connected to the power module 200 and drives and controls the power module 200.
- the power module 200 includes a U-phase power module 200U, a V-phase power module 200V, and a W-phase power module 200W.
- the U-phase power module 200U includes switching elements 200E corresponding to the upper arm and lower arm, respectively. Each switching element 200E consists of an IGBT 200I and a diode 200D. A temperature sensing element T1 is provided corresponding to the switching element 200E of the upper arm or the lower arm.
- the U-phase power module 200U includes an upper arm switching element 200E, a lower arm switching element 200E, and a temperature sensing element T1 built into one package and sealed with a resin member.
- the V-phase power module 200V includes an upper arm switching element 200E, a lower arm switching element 200E, and a temperature sensing element T2 in one package.
- the W-phase power module 200W includes an upper arm switching element 200E, a lower arm switching element 200E, and a temperature sensing element T3 in one package.
- the switching element 200E is a power semiconductor device such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in addition to an IGBT (Insulated Gate Bipolar Transistor), and the diode 200D is provided as necessary.
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- IGBT Insulated Gate Bipolar Transistor
- the power module 200 will be explained using a 2-in-1 structure in which an upper arm and a lower arm are integrated into one module, but a plurality of upper arms and lower arms are integrated into one module. It is also possible to use other structures such as a
- a U-phase power module 200U, a V-phase power module 200V, and a W-phase power module 200W are connected to a three-phase bridge circuit to form an inverter. Then, by inputting a drive signal to the gate terminal of the IGBT 200I, the switching element 200E is controlled on and off, and the DC voltage input between the positive electrode side and the negative electrode side of the power module 200 is converted into AC power. The converted AC power is applied to the windings of each phase of the motor (not shown) from the connecting end of the upper arm and the lower arm to drive the motor.
- the inverter control device 100 includes a control section 110, a switching circuit 120, a temperature detection circuit 130, and a drive circuit 140.
- the inverter control device 100 is electrically separated into a high voltage side HV and a low voltage side LV on the substrate.
- the high voltage side HV of the inverter control device 100 is connected to the power module 200 via a connecting portion 100C such as a connector.
- a control unit 110 is arranged on the low voltage side LV of the inverter control device 100.
- the switching circuit 120, the temperature detection circuit 130, and the drive circuit 140 are internally electrically separated into a high voltage side HV and a low voltage side LV, and mutual electric signals are exchanged via an insulating element.
- the control unit 110 is a microcomputer or a CPU (Central Processing Unit), and generates a drive signal for driving the power module 200 in response to a torque command input from a higher-level control device (not shown). Further, the control unit 110 detects the temperature of the power module 200 in order to detect the state of the power module 200. When detecting the temperature, the control unit 110 outputs command signals DO1, DO2, and DO3 to the switching circuit 120 (described later), operates the switching circuit 120, and detects the temperature from the temperature sensing elements T1, T2, and T3, which will be described later. A detection signal to be output to the circuit 130 is selected. Then, the temperature of the switching element 200E is calculated based on the temperature detection information input from the temperature detection circuit 130 to the input terminal PI.
- a microcomputer or a CPU Central Processing Unit
- the switching circuit 120 switches the detection signals from the temperature sensing elements T1, T2, and T3 to be detected according to the command signals DO1, DO2, and DO3. Specifically, by switching the current path of the current supplied to the temperature sensing elements T1, T2, T3 to be detected in accordance with the command signals DO1, DO2, DO3, the current flow from the temperature sensing elements T1, T2, T3 is controlled. Switch the detection signal.
- Command signals DO1, DO2, and DO3 output from the control unit 110 are each input to the insulation element 121A.
- the insulating element 121A is, for example, a photocoupler formed by sealing a light emitting element and a light receiving element in one package.
- the ground on the light emitting element side is connected to the ground GND2 of the low voltage side LV, and the ground on the light receiving element side is connected to the ground GND1 of the high voltage side HV.
- the voltage VCC1 of the high voltage side HV is supplied to the output lines L1, L2, and L3 to the switching elements S1, S2, and S3 on the light receiving element side via the resistor 123C.
- the switching elements S1, S2, and S3 are turned on when voltage VCC1 is supplied to their gate sides, and turned off when not supplied.
- Each switching element S1, S2, S3 is connected in parallel with each temperature sensing element T1, T2, T3 provided in each phase of the power module 200.
- the temperature sensing elements T1, T2, and T3 provided in each phase of the power module 200 are connected in series to the current path, and a constant current is applied to one end of the series connection from the terminal IN of the temperature detection circuit 130 through an offset resistor. Supplied via R1. The other end of the series connection is connected to the terminal GND of the temperature detection circuit 130 via an offset resistor R2. The terminal GND is connected to the ground GND1 of the high voltage side HV.
- the temperature detection circuit 130 detects the voltage between the terminal IN and the terminal GND as a detection signal from the temperature sensing elements T1, T2, and T3, and converts the detected voltage into a duty wave corresponding to the voltage.
- the temperature detection information is output from the OUT terminal to the control unit 110 as temperature detection information.
- the purpose of the offset resistors R1 and R2 is to provide an offset to the voltage between the terminal IN and the terminal GND to adjust the voltage to be within the input voltage specification range of the temperature detection circuit 130.
- the control unit 110 converts the duty wave output from the temperature detection circuit 130 into voltage, and calculates the temperature by referring to the voltage-temperature characteristics of the temperature sensing elements T1, T2, and T3 stored in advance. Note that although the temperature detection circuit 130 will be described as an example in which a duty wave is output as temperature detection information, information in other formats that can be decoded by the control unit 110 may be used.
- the drive circuit 140 turns on and off the switching element 200E in the power module 200 based on the drive signal from the control unit 110.
- FIGS. 2(a) to 2(f) are timing charts showing the first switching of the temperature sensing elements T1, T2, and T3.
- 2(a) to 2(c) are timing charts of command signals DO1, DO2, and DO3
- FIG. 2(d) to FIG. 2(f) are timing charts of switching elements S1, S2, and S3.
- the control unit 110 controls one of the temperature sensing elements T1, T2, and T3 of the U-phase power module 200U, the V-phase power module 200V, and the W-phase power module 200W. It outputs command signals DO1, DO2, and DO3 for sequentially selecting.
- the switching circuit 120 operates according to the command signals DO1, DO2, DO3, and the switching elements S1, S2, S3 are turned on/off as shown in FIGS. 2(d) to 2(f).
- the temperature sensing element T1 becomes operational.
- the temperature detection circuit 130 detects the voltage between the terminal IN and the terminal GND, that is, (voltage of the temperature sensing element T1 + voltage of the offset resistor R1 + voltage of the offset resistor R2), and converts the detected voltage into that voltage. It is converted into a corresponding duty wave and outputted to the control unit 110 from the OUT terminal.
- the control unit 110 converts the duty wave detected at this timing into a voltage, and calculates the temperature by referring to the voltage-temperature characteristic of the temperature sensing element T1.
- This temperature is defined as the detected temperature of the U-phase power module 200U.
- the temperature of the V-phase power module 200V is determined when the switching element S2 is off and the switching elements S1 and S3 are on, and the temperature of the V-phase power module 200V is determined when the switching element S3 is off and the switching elements S1 and S2 are on. Calculate the temperature of the W-phase power module 200W.
- the temperature of the power module 200 of each phase can be detected while switching the switching elements S1, S2, and S3.
- 130 enables temperature detection for three phases, and compared to a case where temperature detection circuits 130 are provided for three phases, the configuration of the inverter control device 100 can be simplified and the cost for the configuration can be reduced.
- the switching circuit 120 switches the temperature sensing elements T1, T2, and T3.
- the life of the temperature sensing elements T1, T2, T3 is extended, and the reliability of the temperature sensing elements T1, T2, T3 and, by extension, the reliability of temperature detection is improved. can be done. Furthermore, when the temperature detection circuit 130 is provided for three phases, current is supplied to the temperature sensing elements T1, T2, and T3 for each phase, but in this embodiment, the supplied current is commonly used. Therefore, it is possible to eliminate variations in current between phases and improve the accuracy of temperature detection.
- FIGS. 3(a) to 3(f) are timing charts showing the second switching of the temperature sensing elements T1, T2, and T3.
- 3(a) to 3(c) are timing charts of the command signals DO1, DO2, and DO3
- FIG. 3(d) to FIG. 3(f) are timing charts of the switching elements S1, S2, and S3.
- the control unit 110 controls two-phase temperature sensing elements T1, T2, and T3 of a U-phase power module 200U, a V-phase power module 200V, and a W-phase power module 200W. It outputs command signals DO1, DO2, and DO3 for sequentially selecting.
- the switching circuit 120 operates according to the command signals DO1, DO2, DO3, and the switching elements S1, S2, S3 are turned on/off as shown in FIGS. 3(d) to 3(f).
- the switching elements S1 and S2 are turned off and the switching element S3 is turned on. At this timing, current is supplied to the temperature sensing elements T1 and T2 of the U-phase power module 200U and the V-phase power module 200V, and no current is supplied to the temperature sensing element T3 of the W-phase power module 200W.
- the temperature detection circuit 130 detects the voltage between the terminal IN and the terminal GND, that is, (voltage of the temperature sensing elements T1 and T2 connected in series + voltage of the offset resistor R1 + voltage of the offset resistor R2). ) is detected. Then, the detected voltage is converted into a duty wave according to the voltage and outputted to the control section 110 from the OUT terminal.
- the control unit 110 converts the duty wave detected at this timing into a voltage, and calculates the temperature by referring to the voltage-temperature characteristics of the temperature sensing elements T1 and T2. Then, from this temperature, the average detected temperature of the U-phase power module 200U and the V-phase power module 200V is calculated.
- the average detected temperature of the V-phase power module 200V and the W-phase power module 200W, and the average detected temperature of the W-phase power module 200W and the U-phase power module 200U are calculated in the same way.
- the configuration of the inverter control device 100 is improved compared to the case where the temperature detection circuit 130 is provided for three phases. It can be simplified and the cost of configuration can be reduced. Furthermore, the period of current flowing through the temperature sensing elements T1, T2, and T3 is shortened by two-thirds due to switching by the switching circuit 120, thereby extending the life of the temperature sensing elements T1, T2, and T3, and improving reliability. be able to. Furthermore, since the supplied current is used in common, it is possible to eliminate variations in the current for each phase and improve the accuracy of temperature detection.
- the temperature detection circuit 130 outputs duty waves corresponding to equations (1), (2), and (3) to the control unit 110.
- the control unit 110 converts this duty wave into a voltage, adds the voltages of each phase, and obtains a value A expressed by the following equation (4).
- A Vf(U)+Vf(V)+Vf(W)+6IR...(4)
- the voltage between the terminal IN and the terminal GND of the temperature detection circuit 130 is expressed by the following equations (5), (6), and (7) in each of the two phases.
- the temperature detection circuit 130 outputs duty waves corresponding to equations (5), (6), and (7) to the control unit 110.
- the control unit 110 converts this duty wave into a voltage, adds the voltages of each phase, and obtains a value B expressed by the following equation (8).
- B 2Vf(U)+2Vf(V)+2Vf(W)+6IR...(8)
- the control unit 110 repeats the first switching and the second switching of the temperature sensing elements T1, T2, and T3 at predetermined time intervals.
- the voltage of the offset resistor is excluded, and Vf(U), Vf(V), and Vf(W) are obtained.
- the temperature is calculated by referring to the voltage-temperature characteristics of the temperature sensing elements T1, T2, and T3.
- the voltage-temperature characteristics of the temperature-sensitive elements T1, T2, and T3 in this case are voltage-temperature characteristics that do not include the voltage of the offset resistance, and are not affected by fluctuations in the offset resistance.
- the voltage IR of the offset resistors R1 and R2 may be determined by appropriately performing a third switching for selecting all phases of the temperature sensing elements T1, T2, and T3 for a predetermined period of time.
- the value C shown by the following equation (10) is determined.
- C Vf(U)+Vf(V)+Vf(W)+2IR...(10)
- FIG. 4 is a circuit configuration diagram of an inverter control device 100 according to a second embodiment of the present invention.
- the control unit 110 outputs the command signals DO1, DO2, and DO3 to the switching circuit 120 from three signal lines when detecting the temperature, but in the second embodiment, the command signals DO1, DO2, and DO3 are output to the switching circuit 120 through two signal lines. The difference is that command signals DO1 and DO2 are output from signal lines.
- the same parts as in FIG. 1 are given the same reference numerals and their explanation will be simplified.
- command signals DO1 and DO2 are input to the logic circuit 124.
- the logic circuit 124 is a decoder circuit logically configured with OR gates, NOT gates, etc., and outputs signals to three output lines L1, L2, and L3 according to a combination of two input command signals DO1 and DO2.
- Output lines L1, L2, and L3 are connected to the gate sides of switching elements S1, S2, and S3, respectively.
- the command signals DO1 and DO2 exemplify a case where the temperature sensing elements T1, T2, and T3 are turned on/off by first switching.
- FIGS. 5(a) to 5(e) are timing charts showing switching of temperature sensing elements T1, T2, and T3 in the second embodiment.
- 5(a) to 5(b) show command signals DO1 and DO2
- FIGS. 5(c) to 5(e) show timing charts of switching elements S1, S2, and S3.
- one of the switching elements S1, S2, and S3 is turned off and the other two are turned on.
- the switching elements S1, S2, and S3 are turned on/off by combining two command signals DO1 and DO2.
- the number of output terminals of the control unit 110 composed of a microcomputer or the like is reduced, and the number of insulation elements 121A is reduced. This also makes it possible to simplify the configuration and reduce costs.
- FIG. 6 is a circuit configuration diagram of an inverter control device 100 according to a third embodiment of the present invention.
- the temperature detection circuit 130 detects the voltage between the terminal IN and the terminal GND, and the ground potential of the high voltage side HV is used for the terminal GND.
- the terminal GND uses the potential on the ground side of the power module corresponding to the switching element that is turned off.
- FIGS. 1 and 2 are given the same reference numerals, and the explanation thereof will be simplified.
- the terminal GND of the temperature detection circuit 130 is connected to the grounds GND_UN, GND_VN, and GND_WN via ground potential supply elements G1, G2, and G3, respectively.
- Grounds GND_UN, GND_VN, and GND_WN are potentials on the ground side (negative side) of the U-phase power module 200U, V-phase power module 200V, and W-phase power module 200W, respectively.
- a load such as a motor driven by alternating current is connected to the output side of the power module 200, and the potential on the ground side (negative side) of the power module 200 is used.
- the outputs of the output lines L1, L2, and L3 from the logic circuit 124 are input to the gate sides of the ground potential supply elements G1, G2, and G3 via NOT gates. Note that in the first embodiment shown in FIG. 1, the logic circuit 124 is not used, but when applying the third embodiment to the first embodiment, the outputs of the output lines L1, L2, and L3 are It is sufficient to input it to the gate side of the ground potential supply elements G1, G2, and G3 via the knot gate.
- the switching elements S1, S2, S3 to which the voltage VCC1 is not supplied to the gate side of the switching elements S1, S2, S3 from the output lines L1, L2, L3 are turned off. Then, the voltages of the temperature sensing elements T1, T2, T3 corresponding to the switching elements S1, S2, S3 which are turned off are detected. In this case, the ground potential supply elements G1, G2, and G3 corresponding to the switching elements S1, S2, and S3 that are turned off are turned on, and the corresponding grounds GND_UN, GND_VN, and GND_WN are connected.
- FIGS. 7(a) to 7(h) are timing charts showing switching of the ground potential supply elements G1, G2, and G3 in the third embodiment.
- 7(a) to 7(b) show the command signals DO1 and DO2
- FIGS. 7(c) to 7(e) show the timing charts of the switching elements S1, S2, and S3.
- FIG. 7(h) show timing charts of the ground potential supply elements G1, G2, and G3.
- FIGS. 7(a) to 7(e) are similar to FIGS. 5(a) to 5(e) shown in the second embodiment, and the switching element S1, according to the command signals DO1, DO2, Turn on/off S2 and S3. Then, as shown in FIGS. 7(f) to 7(h), the ground potential supply elements G1, G2, and G3 corresponding to the switching elements S1, S2, and S3 that have been turned off are turned on.
- the present embodiment in addition to achieving the same effects as those described in the first embodiment and the second embodiment, it is possible to suppress the influence of potential fluctuations on the output side of the power module 200, and improve temperature detection. Improves accuracy.
- the inverter control device 100 receives detection signals from the plurality of temperature sensing elements T1, T2, T3 provided corresponding to the plurality of switching elements 200E, and the temperature sensing elements T1, T2, T3 to provide temperature detection information. a temperature detection circuit 130 that outputs the temperature, a control unit 110 that calculates the temperature of the switching element 200E based on the temperature detection information, and a control unit 110 that switches the detection signals from the plurality of temperature sensing elements T1, T2, and T3 to the temperature detection circuit 130.
- the control unit 110 operates the switching circuit 120 to select a detection signal to be output from the temperature sensing elements T1, T2, and T3 to the temperature detection circuit 130. This allows the configuration of the inverter control device to be simplified.
- the present invention can be implemented by modifying the first to third embodiments described above as follows. (1) In each embodiment, an example was shown in which the switching circuit 120, the temperature detection circuit 130, and the drive circuit 140 were individually provided, but some of these circuits may be incorporated into the same IC circuit. For example, the switching circuit 120, the temperature detection circuit 130, and the drive circuit 140 may be incorporated into the same IC circuit.
- the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention, as long as they do not impair the characteristics of the present invention. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and several modification.
- 100... Inverter control device 100C... Connection section, 110... Control section, 120... Switching circuit, 121A... Insulation element, 130... Temperature detection circuit, 140... Drive circuit , 200...Power module, 200U...U-phase power module, 200V...V-phase power module, 200W...W-phase power module, 200E...Switching element, 200I...IGBT, 200D... ...Diode, T1, T2, T3...Temperature sensing element, S1, S2, S3...Switching element, R1, R2...Offset resistor, DO1, DO2, DO3...Command signal, HV ...High voltage side, LV...Low voltage side.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
複数のスイッチング素子に対応して設けられた複数の感温素子と、前記感温素子より検出信号を受けて温度検出情報を出力する温度検出回路と、前記温度検出情報に基づいて前記スイッチング素子の温度を算出する制御部と、前記複数の前記感温素子からの前記検出信号を切り替えて前記温度検出回路へ出力する切替回路とを備え、前記制御部は、前記切替回路を動作させて、前記感温素子より前記温度検出回路へ出力する前記検出信号を選択するインバータ制御装置。
Description
本発明は、インバータ制御装置に関する。
感温ダイオード等の感温素子を用いた温度検出には、感温素子で検出された検出信号をマイコンなどの制御部へ出力する温度検出回路が設けられている。例えば、インバータでは、感温素子は高圧側に設置され、温度検出情報をモニタするマイコンなどの制御部は低圧側に設置されるが、両者を絶縁素子により分離する回路を含む温度検出回路を複数の感温素子に対応して複数個設けている。
特許文献1には、インバータのスイッチング素子に対応して、その温度を検出する感温ダイオードが設けられ、感温ダイオードのそれぞれに対応して、電圧検出回路、パルス信号出力回路、フォトカプラ等により構成される温度検出回路が設けられている。
特許文献1に記載の装置では、複数の感温素子に対応して複数の温度検出回路が必要となり、インバータ制御装置の構成が複雑になっていた。
本発明によるインバータ制御装置は、複数のスイッチング素子に対応して設けられた複数の感温素子と、前記感温素子より検出信号を受けて温度検出情報を出力する温度検出回路と、前記温度検出情報に基づいて前記スイッチング素子の温度を算出する制御部と、前記複数の前記感温素子からの前記検出信号を切り替えて前記温度検出回路へ出力する切替回路とを備え、前記制御部は、前記切替回路を動作させて、前記感温素子より前記温度検出回路へ出力する前記検出信号を選択する。
本発明によれば、インバータ制御装置の構成を簡略化できる。
以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
[第1の実施形態]
図1は、本発明の第1の実施形態におけるインバータ制御装置100の回路構成図である。
図1は、本発明の第1の実施形態におけるインバータ制御装置100の回路構成図である。
インバータ制御装置100は、パワーモジュール200に接続され、パワーモジュール200を駆動制御する。
パワーモジュール200は、U相パワーモジュール200U、V相パワーモジュール200V、W相パワーモジュール200Wを備える。
パワーモジュール200は、U相パワーモジュール200U、V相パワーモジュール200V、W相パワーモジュール200Wを備える。
U相パワーモジュール200Uは、上アームおよび下アームにそれぞれ対応するスイッチング素子200Eを備えている。各スイッチング素子200EはIGBT200Iとダイオード200Dよりなる。上アームまたは下アームのスイッチング素子200Eに対応して感温素子T1が設けられている。そして、U相パワーモジュール200Uは、上アームのスイッチング素子200Eと下アームスイッチング素子200Eと感温素子T1とを一つのパッケージに内蔵して樹脂部材により封止されている。V相パワーモジュール200Vも同様に、上アームのスイッチング素子200Eと下アームスイッチング素子200Eと感温素子T2とを一つのパッケージに内蔵している。W相パワーモジュール200Wも同様に、上アームのスイッチング素子200Eと下アームスイッチング素子200Eと感温素子T3とを一つのパッケージに内蔵している。
なお、スイッチング素子200Eは、IGBT(Insulated Gate Bipolar Transistor)の他に、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのパワー半導体デバイスであり、ダイオード200Dは必要に応じて設けられる。そして、パワーモジュール200は、上アームと下アームの2つを1つのモジュールに一体化した構造である2in1構造を例に説明するが、複数の上アーム及び下アームを、1つのモジュールに一体化した構造などその他の構造であってもよい。
U相パワーモジュール200U、V相パワーモジュール200V、W相パワーモジュール200Wは、三相ブリッジ回路に接続されて、インバータを構成する。そして、IGBT200Iのゲート端子に駆動信号を入力することによりスイッチング素子200Eをオンオフ制御し、パワーモジュール200の正極側と負極側の間に入力された直流電圧を交流電力に変換する。変換した交流電力は、上アームと下アームの接続端より図示省略したモータの各相の巻線へ通電することにより、モータを駆動する。
インバータ制御装置100は、制御部110、切替回路120、温度検出回路130、駆動回路140を備える。
インバータ制御装置100は、基板上において高電圧側HVと低電圧側LVに電気的に分離される。インバータ制御装置100の高電圧側HVはコネクタなどの接続部100Cを介してパワーモジュール200に接続される。インバータ制御装置100の低電圧側LVには制御部110が配置される。切替回路120、温度検出回路130、駆動回路140は、その内部において高電圧側HVと低電圧側LVに電気的に分離され、互いの電気信号は絶縁素子を介して授受される。
制御部110は、マイコンあるいはCPU(Central Processing Unit)であり、図示省略した上位の制御装置より入力されるトルク指令に応じて、パワーモジュール200を駆動するための駆動信号を生成する。また、制御部110は、パワーモジュール200の状態を検知するために、パワーモジュール200の温度を検出する。温度を検出する際に、制御部110は、指令信号DO1、DO2、DO3を後述の切替回路120へ出力して、切替回路120を動作させ、感温素子T1、T2、T3より後述の温度検出回路130へ出力する検出信号を選択する。そして、温度検出回路130より入力端PIへ入力された温度検出情報に基づいてスイッチング素子200Eの温度を算出する。
切替回路120は、指令信号DO1、DO2、DO3に応じて検出対象の感温素子T1、T2、T3からの検出信号を切り替える。具体的には、指令信号DO1、DO2、DO3に応じて、検出対象の感温素子T1、T2、T3へ供給される電流の電流経路を切り替えることにより、感温素子T1、T2、T3からの検出信号を切り替える。
制御部110より出力される指令信号DO1、DO2、DO3は、それぞれ絶縁素子121Aへ入力される。絶縁素子121Aは、例えば、発光素子と受光素子を1つのパッケージに封止してなるフォトカプラである。発光素子側のグランドは低電圧側LVのグランドGND2に、受光素子側のグランドは高電圧側HVのグランドGND1に接続される。受光素子側の切替用素子S1、S2、S3への出力線L1、L2、L3には高電圧側HVの電圧VCC1が抵抗123Cを介して供給されている。切替用素子S1、S2、S3は、そのゲート側に電圧VCC1が供給されるとオンし、供給されないとオフする。各切替用素子S1、S2、S3は、パワーモジュール200の各相に設けられた各感温素子T1、T2、T3と並列に接続される。
パワーモジュール200の各相に設けられた感温素子T1、T2、T3は、電流経路に直列に接続され、直列接続された一端には、温度検出回路130の端子INより一定の電流がオフセット抵抗R1を介して供給される。直列接続された他端は、オフセット抵抗R2を介し温度検出回路130の端子GNDへ接続される。端子GNDは、高電圧側HVのグランドGND1に接続されている。
温度検出回路130は、端子INと端子GNDとの間の電圧を感温素子T1、T2、T3からの検出信号として検出し、検出した電圧をその電圧に応じたデューティ(Duty)波に変換してOUT端子より制御部110へ温度検出情報として出力する。オフセット抵抗R1、R2は、端子INと端子GNDとの間の電圧にオフセットを設けて温度検出回路130の入力電圧仕様の範囲内となるように調整するためである。制御部110は、温度検出回路130から出力されたデューティ波を電圧に換算し、予め内部に保存されている感温素子T1、T2、T3の電圧温度特性を参照して温度を算出する。なお、温度検出回路130は、温度検出情報としてデューティ波を出力する例で説明するが、制御部110が解読できるその他の形式の情報であってもよい。
駆動回路140は、制御部110からの駆動信号に基づいて、パワーモジュール200内のスイッチング素子200Eをオンオフ駆動する。
図2(a)~図2(f)は、感温素子T1、T2、T3の第1切替を示すタイミングチャートである。図2(a)~図2(c)は、指令信号DO1、DO2、DO3を、図2(d)~図2(f)は、切替用素子S1、S2、S3のタイミングチャートである。
図2(a)~図2(c)に示すように、制御部110は、U相パワーモジュール200U、V相パワーモジュール200V、W相パワーモジュール200Wの感温素子T1、T2、T3の一つを順次選択するための指令信号DO1、DO2、DO3を出力する。この指令信号DO1、DO2、DO3に応じて、切替回路120が動作し、図2(d)~図2(f)に示すように、切替用素子S1、S2、S3がオン/オフする。
例えば、切替用素子S1がオフ、切替用素子S2、S3がオンのタイミングでは、U相パワーモジュール200Uの感温素子T1にのみ電流が供給される結果、このタイミングでは、U相パワーモジュール200Uの感温素子T1が動作状態となる。温度検出回路130は、端子INと端子GNDとの間の電圧、すなわち、(感温素子T1の電圧+オフセット抵抗R1の電圧+オフセット抵抗R2の電圧)を検出し、検出した電圧をその電圧に応じたデューティ波に変換してOUT端子より制御部110へ出力する。制御部110は、このタイミングで検出したデューティ波を電圧に換算し、感温素子T1の電圧温度特性を参照して温度を算出する。この温度をU相パワーモジュール200Uの検出温度とする。また、同様に、切替用素子S2がオフ、切替用素子S1、S3がオンのタイミングでV相パワーモジュール200Vの温度を、切替用素子S3がオフ、切替用素子S1、S2がオンのタイミングでW相パワーモジュール200Wの温度を算出する。
本実施形態の感温素子T1、T2、T3の第1切替によれば、切替用素子S1、S2、S3を切替えながら各相のパワーモジュール200の温度を検出できるので、1個の温度検出回路130で3相分の温度検出が可能となり、温度検出回路130を3相分備えた場合と比較して、インバータ制御装置100の構成を簡略化でき、構成にかかるコストを削減できる。また、温度検出回路130を3相分備えた場合は、感温素子T1、T2、T3に常に電流が流れるが、本実施形態では、切替回路120による切替により感温素子T1、T2、T3に流れる電流の期間が3分の1に短縮されるので、感温素子T1、T2、T3の寿命を延ばし、感温素子T1、T2、T3の信頼性、延いては温度検出の信頼性を向上させることができる。さらに、温度検出回路130を3相分備えた場合は、感温素子T1、T2、T3にそれぞれ相毎に電流が供給されるが、本実施形態では、供給された電流を共通に用いているので、相毎の電流のばらつきを無くし、温度検出の精度を向上させることができる。
図3(a)~図3(f)は、感温素子T1、T2、T3の第2切替を示すタイミングチャートである。図3(a)~図3(c)は、指令信号DO1、DO2、DO3を、図3(d)~図3(f)は、切替用素子S1、S2、S3のタイミングチャートである。
図3(a)~図3(c)に示すように、制御部110は、U相パワーモジュール200U、V相パワーモジュール200V、W相パワーモジュール200Wの感温素子T1、T2、T3の2相を順次選択するための指令信号DO1、DO2、DO3を出力する。この指令信号DO1、DO2、DO3に応じて、切替回路120が動作し、図3(d)~図3(f)に示すように、切替用素子S1、S2、S3がオン/オフする。
例えば、U相パワーモジュール200UとV相パワーモジュール200Vの感温素子T1、T2を選択する場合は、切替用素子S1、S2がオフし、切替用素子S3がオンする。このタイミングでは、U相パワーモジュール200UとV相パワーモジュール200Vの感温素子T1、T2に電流が供給され、W相パワーモジュール200Wの感温素子T3には電流は供給されない。
この結果、このタイミングでは、温度検出回路130は、端子INと端子GNDとの間の電圧、すなわち、(直列された感温素子T1、T2の電圧+オフセット抵抗R1の電圧+オフセット抵抗R2の電圧)を検出する。そして、検出した電圧をその電圧に応じたデューティ波に変換してOUT端子より制御部110へ出力する。制御部110は、このタイミングで検出したデューティ波を電圧に換算し、感温素子T1、T2の電圧温度特性を参照して、温度を算出する。そして、この温度よりU相パワーモジュール200UとV相パワーモジュール200Vの平均の検出温度を算出する。V相パワーモジュール200VとW相パワーモジュール200Wの平均の検出温度、W相パワーモジュール200WとU相パワーモジュール200Uの平均の検出温度も同様に算出する。
本実施形態の感温素子T1、T2、T3の第2切替によれば、第1切替と同様に、温度検出回路130を3相分備えた場合と比較して、インバータ制御装置100の構成を簡略化でき、構成にかかるコストを削減できる。また、切替回路120による切替により感温素子T1、T2、T3に流れる電流の期間が3分の2に短縮されるので、感温素子T1、T2、T3の寿命を延ばし、信頼性を向上させることができる。さらに、供給された電流を共通に用いているので、相毎の電流のばらつきを無くし、温度検出の精度を向上させることができる。
次に、感温素子T1、T2、T3の第1切替と第2切替を組み合わせて用いる例について説明する。以下の説明では、感温素子T1、T2、T3に供給される電流値をI、オフセット抵抗R1およびオフセット抵抗R2の抵抗値をRとする。
第1切替において、U相の感温素子T1の電圧Vf(U)、V相の感温素子T2の電圧Vf(V)、W相の感温素子T3の電圧Vf(W)とすれば、温度検出回路130の端子INと端子GNDとの間の電圧は、各相において、以下の式(1)、(2)、(3)で表される。
Vf(U)+2IR ・・・(1)
Vf(V)+2IR ・・・(2)
Vf(W)+2IR ・・・(3)
Vf(U)+2IR ・・・(1)
Vf(V)+2IR ・・・(2)
Vf(W)+2IR ・・・(3)
温度検出回路130は、式(1)、(2)、(3)に相当するデューティ波を制御部110へ出力する。制御部110は、このデューティ波を電圧に換算し、各相の電圧を加算して以下の式(4)で示す値Aを求める。
A=Vf(U)+Vf(V)+Vf(W)+6IR ・・・(4)
A=Vf(U)+Vf(V)+Vf(W)+6IR ・・・(4)
一方、第2切替において、温度検出回路130の端子INと端子GNDとの間の電圧は、各2相において、以下の式(5)、(6)、(7)で表される。
Vf(U)+Vf(V)+2IR ・・・(5)
Vf(V)+Vf(W)+2IR ・・・(6)
Vf(W)+Vf(U)+2IR ・・・(7)
Vf(U)+Vf(V)+2IR ・・・(5)
Vf(V)+Vf(W)+2IR ・・・(6)
Vf(W)+Vf(U)+2IR ・・・(7)
温度検出回路130は、式(5)、(6)、(7)に相当するデューティ波を制御部110へ出力する。制御部110は、このデューティ波を電圧に換算し、各相の電圧を加算して以下の式(8)で示す値Bを求める。
B=2Vf(U)+2Vf(V)+2Vf(W)+6IR ・・・(8)
B=2Vf(U)+2Vf(V)+2Vf(W)+6IR ・・・(8)
制御部110は、感温素子T1、T2、T3の第1切替と第2切替を所定時間ごとに繰り返す。あるいは、通常は第1切替を実行し、以下のオフセット抵抗R1、R2の電圧IRを求める必要が生じた場合に、第2切替を所定時間のみ実行する。そして、得られた値A、値Bを以下の式(9)に当て嵌めてオフセット抵抗R1、R2の電圧IRを求める。
IR=(2*A-B)/6 ・・・(9)
IR=(2*A-B)/6 ・・・(9)
そして、式(1)、(2)、(3)で求めた電圧より2IRを減算することにより、オフセット抵抗の電圧分を除外して、Vf(U)、Vf(V)、Vf(W)を求め、感温素子T1、T2、T3の電圧温度特性を参照して温度を算出する。この場合の感温素子T1、T2、T3の電圧温度特性は、オフセット抵抗の電圧分を含まない電圧温度特性であり、オフセット抵抗の変動等の影響を受けない。
なお、感温素子T1、T2、T3の全相を選択する第3切替を所定時間適宜行って、オフセット抵抗R1、R2の電圧IRを求めてもよい。この場合は、以下の式(10)で示す値Cを求める。
C=Vf(U)+Vf(V)+Vf(W)+2IR ・・・(10)
C=Vf(U)+Vf(V)+Vf(W)+2IR ・・・(10)
そして、得られた値Cと式(4)で得られた値Aを以下の式(11)に当て嵌めてオフセット抵抗R1、R2の電圧IRを求める。
IR=(A-C)/4 ・・・(11)
IR=(A-C)/4 ・・・(11)
本実施形態のオフセット抵抗の電圧分を除外する例によれば、第1切替、第2切替と同様の効果を奏する他に、オフセット抵抗による影響を排除して、精度の高い温度検出が可能になる。
[第2の実施形態]
図4は、本発明の第2の実施形態におけるインバータ制御装置100の回路構成図である。第1の実施形態では、制御部110は、温度を検出する際に、3本の信号線から指令信号DO1、DO2、DO3を切替回路120へ出力したが、第2の実施形態では2本の信号線から指令信号DO1、DO2を出力する点が相違する。図1と同一箇所には同一の符号を付してその説明を簡略に行う。
図4は、本発明の第2の実施形態におけるインバータ制御装置100の回路構成図である。第1の実施形態では、制御部110は、温度を検出する際に、3本の信号線から指令信号DO1、DO2、DO3を切替回路120へ出力したが、第2の実施形態では2本の信号線から指令信号DO1、DO2を出力する点が相違する。図1と同一箇所には同一の符号を付してその説明を簡略に行う。
図4に示すように、指令信号DO1、DO2は論理回路124へ入力される。論理回路124は、オアゲートやノットゲートなどによって論理構成されるデコーダ回路であり、2入力の指令信号DO1、DO2の組み合わせに応じて、3本の出力線L1、L2、L3へ信号を出力する。出力線L1、L2、L3は、それぞれ切替用素子S1、S2、S3のゲート側に接続される。指令信号DO1、DO2は、感温素子T1、T2、T3を第1切替でオン/オフする場合を例示する。
図5(a)~図5(e)は、第2の実施形態における感温素子T1、T2、T3の切替を示すタイミングチャートである。図5(a)~図5(b)は、指令信号DO1、DO2を、図5(c)~図5(e)は、切替用素子S1、S2、S3のタイミングチャートを示す。
例えば、第1切替では、図5(c)~図5(e)に示すように、切替用素子S1、S2、S3のいずれか1つがオフにされ、他の2つがオンにされる。切替用素子S1、S2、S3のオン/オフは、2つの指令信号DO1、DO2を組み合わせることにより行われる。
本実施形態によれば、第1の実施形態の第1切替で述べたと同様の効果を奏する他に、マイコン等で構成される制御部110の出力端子の数を低減し、絶縁素子121Aの数も低減することができ、構成の簡略化およびコストの削減が可能となる。
[第3の実施形態]
図6は、本発明の第3の実施形態におけるインバータ制御装置100の回路構成図である。第1の実施形態、第2の実施形態では、温度検出回路130は、端子INと端子GNDとの間の電圧を検出するが、端子GNDは高電圧側HVのグランドの電位を用いた。本実施形態では、端子GNDはオフされた切替用素子に対応するパワーモジュールのグランド側の電位を用いる。図1、図2と同一箇所には同一の符号を付してその説明を簡略に行う。
図6は、本発明の第3の実施形態におけるインバータ制御装置100の回路構成図である。第1の実施形態、第2の実施形態では、温度検出回路130は、端子INと端子GNDとの間の電圧を検出するが、端子GNDは高電圧側HVのグランドの電位を用いた。本実施形態では、端子GNDはオフされた切替用素子に対応するパワーモジュールのグランド側の電位を用いる。図1、図2と同一箇所には同一の符号を付してその説明を簡略に行う。
図6に示すように、温度検出回路130の端子GNDには、グランド電位供給素子G1、G2、G3を介して、それぞれグランドGND_UN、GND_VN、GND_WNに接続されている。グランドGND_UN、GND_VN、GND_WNは、それぞれU相パワーモジュール200U、V相パワーモジュール200V、W相パワーモジュール200Wのグランド側(負極側)の電位である。パワーモジュール200の出力側には交流電流により駆動されるモータなどの負荷が接続されるが、パワーモジュール200のグランド側(負極側)の電位を用いる。
グランド電位供給素子G1、G2、G3のゲート側には、論理回路124からの出力線L1、L2、L3の出力がノットゲートを介して入力される。なお、図1に示す第1の実施形態では、論理回路124を用いていないが、第1の実施形態に第3の実施形態を適用する場合には、出力線L1、L2、L3の出力をノットゲートを介してグランド電位供給素子G1、G2、G3のゲート側に入力すればよい。
出力線L1、L2、L3より切替用素子S1、S2、S3のゲート側に電圧VCC1が供給されていない切替用素子S1、S2、S3はオフにされる。そして、オフにされている切替用素子S1、S2、S3に対応する感温素子T1、T2、T3の電圧が検出される。この場合、オフにされている切替用素子S1、S2、S3に対応するグランド電位供給素子G1、G2、G3がオンされて、対応するグランドGND_UN、GND_VN、GND_WNが接続される。
図7(a)~図7(h)は、第3の実施形態におけるグランド電位供給素子G1、G2、G3の切替を示すタイミングチャートである。図7(a)~図7(b)は、指令信号DO1、DO2を、図7(c)~図7(e)は、切替用素子S1、S2、S3のタイミングチャートを、図7(f)~図7(h)は、グランド電位供給素子G1、G2、G3のタイミングチャートを示す。
図7(a)~図7(e)は、第2の実施形態で示した図5(a)~図5(e)と同様であり、指令信号DO1、DO2に応じて切替用素子S1、S2、S3をオン/オフする。そして、図7(f)~図7(h)に示すように、オフにされている切替用素子S1、S2、S3に対応するグランド電位供給素子G1、G2、G3がオンされる。
本実施形態によれば、第1の実施形態および第2の実施形態で述べたと同様の効果を奏する他に、パワーモジュール200の出力側における電位の変動の影響を抑えることができ、温度検出の精度が向上する。
以上説明した実施形態によれば、次の作用効果が得られる。
(1)インバータ制御装置100は、複数のスイッチング素子200Eに対応して設けられた複数の感温素子T1、T2、T3と、感温素子T1、T2、T3より検出信号を受けて温度検出情報を出力する温度検出回路130と、温度検出情報に基づいてスイッチング素子200Eの温度を算出する制御部110と、複数の感温素子T1、T2、T3からの検出信号を切り替えて温度検出回路130へ出力する切替回路120とを備え、制御部110は、切替回路120を動作させて、感温素子T1、T2、T3より温度検出回路130へ出力する検出信号を選択する。これによりインバータ制御装置の構成を簡略化できる。
(1)インバータ制御装置100は、複数のスイッチング素子200Eに対応して設けられた複数の感温素子T1、T2、T3と、感温素子T1、T2、T3より検出信号を受けて温度検出情報を出力する温度検出回路130と、温度検出情報に基づいてスイッチング素子200Eの温度を算出する制御部110と、複数の感温素子T1、T2、T3からの検出信号を切り替えて温度検出回路130へ出力する切替回路120とを備え、制御部110は、切替回路120を動作させて、感温素子T1、T2、T3より温度検出回路130へ出力する検出信号を選択する。これによりインバータ制御装置の構成を簡略化できる。
(変形例)
本発明は、以上説明した第1の実施形態~第3の実施形態を次のように変形して実施することができる。
(1)各実施形態では、切替回路120、温度検出回路130、駆動回路140を個々に設けた例を示したが、これらの回路の幾つかを同一のIC回路内に組み込んでもよい。例えば、切替回路120、温度検出回路130、駆動回路140を同一のIC回路内に組み込んでもよい。
本発明は、以上説明した第1の実施形態~第3の実施形態を次のように変形して実施することができる。
(1)各実施形態では、切替回路120、温度検出回路130、駆動回路140を個々に設けた例を示したが、これらの回路の幾つかを同一のIC回路内に組み込んでもよい。例えば、切替回路120、温度検出回路130、駆動回路140を同一のIC回路内に組み込んでもよい。
本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
100・・・インバータ制御装置、100C・・・接続部、110・・・制御部、120・・・切替回路、121A・・・絶縁素子、130・・・温度検出回路、140・・・駆動回路、200・・・パワーモジュール、200U・・・U相パワーモジュール、200V・・・V相パワーモジュール、200W・・・W相パワーモジュール、200E・・・スイッチング素子、200I・・・IGBT、200D・・・ダイオード、T1、T2、T3・・・感温素子、S1、S2、S3・・・切替用素子、R1、R2・・・オフセット抵抗、DO1、DO2、DO3・・・指令信号、HV・・・高電圧側、LV・・・低電圧側。
Claims (9)
- 複数のスイッチング素子に対応して設けられた複数の感温素子と、
前記感温素子より検出信号を受けて温度検出情報を出力する温度検出回路と、
前記温度検出情報に基づいて前記スイッチング素子の温度を算出する制御部と、
前記複数の前記感温素子からの前記検出信号を切り替えて前記温度検出回路へ出力する切替回路とを備え、
前記制御部は、前記切替回路を動作させて、前記感温素子より前記温度検出回路へ出力する前記検出信号を選択するインバータ制御装置。 - 請求項1に記載のインバータ制御装置において、
前記複数の前記感温素子は、電流が供給される電流経路に接続され、
前記切替回路は、前記複数の前記感温素子への前記電流経路を切り替えて、前記感温素子への前記電流の供給を選択することにより前記検出信号を切り替えるインバータ制御装置。 - 請求項2に記載のインバータ制御装置において、
前記切替回路は、前記感温素子と並列接続された切替用素子を備え、
前記制御部は、前記切替用素子を制御して前記電流経路を切り替えるインバータ制御装置。 - 請求項3に記載のインバータ制御装置において、
前記複数の感温素子は、前記電流経路において直列に接続され、
前記切替回路は、前記切替用素子がオンされた場合に、対応する前記感温素子への前記電流の供給を停止し、前記切替用素子がオフされた場合に、対応する前記感温素子への前記電流の供給を行い、
前記制御部は、前記切替用素子をオンオフ制御して、前記検出信号を選択するインバータ制御装置。 - 請求項4に記載のインバータ制御装置において、
前記複数のスイッチング素子の各々は、3相分のパワーモジュールの各相にそれぞれ封止され、
前記電流経路のグランド側の電位として、前記オフされた前記切替用素子に対応する前記パワーモジュールのグランド側の電位を供給するインバータ制御装置。 - 請求項5に記載のインバータ制御装置において、
前記電流経路の前記グランド側の前記電位を切り替えるグランド電位供給素子を備えるインバータ制御装置。 - 請求項3から請求項6までの何れか一項に記載のインバータ制御装置において、
前記感温素子には、オフセット抵抗を介して前記電流が供給され、
前記制御部は、前記オフセット抵抗を含む前記感温素子の各々にかかる電圧と前記オフセット抵抗を含む前記感温素子の複数分にかかる電圧とに基づいて、前記オフセット抵抗にかかる抵抗電圧を求め、前記抵抗電圧を除外して前記感温素子の各々にかかる電圧に基づいて前記複数のスイッチング素子の温度を算出するインバータ制御装置。 - 請求項3から請求項6までの何れか一項に記載のインバータ制御装置において、
前記制御部は、前記検出信号の出力を切り替える指令信号を前記切替回路へ出力し、
前記切替回路は、前記指令信号の組み合わせにより前記切替用素子をオンオフする論理回路を含むインバータ制御装置。 - 請求項3から請求項6までの何れか一項に記載のインバータ制御装置において、
前記複数のスイッチング素子を駆動する駆動回路を備えるインバータ制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/027933 WO2024013999A1 (ja) | 2022-07-15 | 2022-07-15 | インバータ制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/027933 WO2024013999A1 (ja) | 2022-07-15 | 2022-07-15 | インバータ制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024013999A1 true WO2024013999A1 (ja) | 2024-01-18 |
Family
ID=89536332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027933 WO2024013999A1 (ja) | 2022-07-15 | 2022-07-15 | インバータ制御装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024013999A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6382377A (ja) * | 1986-09-26 | 1988-04-13 | Hitachi Electronics Eng Co Ltd | 電流測定回路 |
JP2001169401A (ja) * | 1999-12-02 | 2001-06-22 | Honda Motor Co Ltd | 電気自動車の制御装置 |
JP2007228775A (ja) * | 2006-02-27 | 2007-09-06 | Denso Corp | インバータ装置及びインバータ回路の駆動制御方法 |
JP2008032507A (ja) * | 2006-07-28 | 2008-02-14 | Fujitsu Hitachi Plasma Display Ltd | フラットパネルディスプレイ装置 |
JP2012010457A (ja) * | 2010-06-23 | 2012-01-12 | Denso Corp | 過熱保護装置および過熱保護方法 |
JP2013096840A (ja) * | 2011-11-01 | 2013-05-20 | Mitsubishi Electric Corp | 温度検出回路及び温度検出装置 |
JP2013250175A (ja) * | 2012-06-01 | 2013-12-12 | Denso Corp | 温度検出装置 |
JP2020125933A (ja) * | 2019-02-01 | 2020-08-20 | 株式会社ケーヒン | 温度検出装置、異常検出装置及び電力変換装置 |
-
2022
- 2022-07-15 WO PCT/JP2022/027933 patent/WO2024013999A1/ja unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6382377A (ja) * | 1986-09-26 | 1988-04-13 | Hitachi Electronics Eng Co Ltd | 電流測定回路 |
JP2001169401A (ja) * | 1999-12-02 | 2001-06-22 | Honda Motor Co Ltd | 電気自動車の制御装置 |
JP2007228775A (ja) * | 2006-02-27 | 2007-09-06 | Denso Corp | インバータ装置及びインバータ回路の駆動制御方法 |
JP2008032507A (ja) * | 2006-07-28 | 2008-02-14 | Fujitsu Hitachi Plasma Display Ltd | フラットパネルディスプレイ装置 |
JP2012010457A (ja) * | 2010-06-23 | 2012-01-12 | Denso Corp | 過熱保護装置および過熱保護方法 |
JP2013096840A (ja) * | 2011-11-01 | 2013-05-20 | Mitsubishi Electric Corp | 温度検出回路及び温度検出装置 |
JP2013250175A (ja) * | 2012-06-01 | 2013-12-12 | Denso Corp | 温度検出装置 |
JP2020125933A (ja) * | 2019-02-01 | 2020-08-20 | 株式会社ケーヒン | 温度検出装置、異常検出装置及び電力変換装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4002893B2 (ja) | 単一リードフレームのhブリッジ | |
JP3681374B2 (ja) | 電流検出装置及びそれを用いたpwmインバータ | |
US9166499B2 (en) | Electronic circuit operating based on isolated switching power source | |
US6498738B1 (en) | Reverse level shift circuit and power semiconductor device | |
JP4002894B2 (ja) | 単一リードフレームを含むhブリッジ | |
JP5267616B2 (ja) | 駆動制御装置 | |
US11133753B2 (en) | Power control circuit | |
US9240739B2 (en) | Driving system for driving switching element | |
US20130242438A1 (en) | Driver for switching element and control system for rotary machine using the same | |
US20200049569A1 (en) | Power Semiconductor Circuit and Method for Determining a Temperature of a Power Semiconductor Component | |
US20240283439A1 (en) | Switch driving device | |
CN112242831A (zh) | 栅极驱动器电路和检测逆变器支路中的短路事件的方法 | |
JPWO2019038957A1 (ja) | 制御回路および電力変換装置 | |
TWI774775B (zh) | 半導體裝置及電源模組 | |
US20070001742A1 (en) | Driving circuit for switching elements | |
JP2009075957A (ja) | 電源回路および半導体装置 | |
US20140084967A1 (en) | Drive circuit for switching element | |
JP5534076B2 (ja) | 駆動制御装置 | |
CN102420554B (zh) | 电动机 | |
CN108684213B (zh) | 半导体模块、在半导体模块中使用的开关元件的选定方法以及开关元件的芯片设计方法 | |
WO2024013999A1 (ja) | インバータ制御装置 | |
JP2019092292A (ja) | 電力変換装置 | |
CN111865128A (zh) | 具有集成浪涌电压限制元件的功率模块和功率电路 | |
JP4862319B2 (ja) | 保護回路を備えた半導体装置 | |
US6208541B1 (en) | PWM inverter apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22951205 Country of ref document: EP Kind code of ref document: A1 |