WO2024012162A1 - Procédé de fabrication pour batterie ibc de type p - Google Patents

Procédé de fabrication pour batterie ibc de type p Download PDF

Info

Publication number
WO2024012162A1
WO2024012162A1 PCT/CN2023/101137 CN2023101137W WO2024012162A1 WO 2024012162 A1 WO2024012162 A1 WO 2024012162A1 CN 2023101137 W CN2023101137 W CN 2023101137W WO 2024012162 A1 WO2024012162 A1 WO 2024012162A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
silicon substrate
type doped
manufacturing
Prior art date
Application number
PCT/CN2023/101137
Other languages
English (en)
Chinese (zh)
Inventor
张博
屈小勇
刘大伟
高嘉庆
张婷
Original Assignee
青海黄河上游水电开发有限责任公司西宁太阳能电力分公司
青海黄河上游水电开发有限责任公司西安太阳能电力分公司
青海黄河上游水电开发有限责任公司
国家电投集团黄河上游水电开发有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司, 青海黄河上游水电开发有限责任公司西安太阳能电力分公司, 青海黄河上游水电开发有限责任公司, 国家电投集团黄河上游水电开发有限责任公司 filed Critical 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司
Publication of WO2024012162A1 publication Critical patent/WO2024012162A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of photovoltaic power generation, and in particular, to a method for manufacturing a P-type IBC battery.
  • a solar cell is a device that converts the sun's light energy into electrical energy. Solar cells use the photovoltaic principle to generate carriers, and then use electrodes to extract the carriers, thereby facilitating the efficient use of electrical energy.
  • the IBC cell is one of the photovoltaic cells with the highest conversion efficiency at present.
  • the cell is based on monocrystalline silicon.
  • the p-n junction and metal electrode are located on the back of the cell. There is no metal electrode on the front to block light, so it can achieve very high short-circuit current and conversion efficiency.
  • IBC batteries can be divided into N-type IBC and P-type IBC batteries according to the matrix type. P-type IBC is increasingly favored by the industry due to its simple process and low cost.
  • the present invention provides a method for manufacturing a P-type IBC battery.
  • the manufacturing method includes:
  • etch the N-type doped layer and the first SiO 2 layer sequentially to expose a partial area of one side surface of the P-type silicon substrate;
  • Electrodes are respectively formed on the N-type doped layer and the P-type doped layer.
  • the phosphorus doping of the first intrinsic polysilicon layer includes:
  • the phosphosilicate glass formed during the doping process is cleaned by HF solution.
  • the boron doping of the second intrinsic polysilicon layer includes:
  • a laser doping process is used to diffuse the boron particles of the borosilicate glass layer into the second intrinsic polysilicon layer.
  • the width of the laser spot of the laser doping process is 10um ⁇ 300um, and the laser power is 20W ⁇ 80W.
  • the pulse width is 0.5us ⁇ 2us, and the laser frequency is ⁇ 20KHz;
  • the borosilicate glass layer and the borosilicate glass formed during the doping process are cleaned by HF solution.
  • the method includes:
  • the P-type silicon substrate after texturing is annealed and oxidized
  • a back silicon nitride layer and a front silicon nitride layer are formed.
  • the temperature of the annealing and oxidation is 850°C to 950°C
  • the duration is 10min to 30min
  • the oxygen introduction amount is ⁇ 8000sccm.
  • the mask layer is a silicon nitride film with a thickness of 50 nm to 70 nm.
  • the process includes:
  • a tunnel oxide layer is provided between the P-type silicon substrate, the N-type doped layer and the P-type doped layer, thereby improving the performance of the P-type IBC battery. photoelectric conversion efficiency.
  • Figure 1 is a flow chart of a manufacturing method of a P-type IBC battery according to an embodiment of the present invention.
  • This embodiment provides a method for manufacturing a P-type IBC battery, including:
  • Step S1 Sequentially layer and form a first SiO 2 layer and a first intrinsic polysilicon layer on one side surface of the P-type silicon substrate.
  • Step S2 Perform phosphorus doping on the first intrinsic polysilicon layer to form an N-type doped layer.
  • Step S3 Form a mask layer on the N-type doped layer, and pattern and groove the mask layer.
  • the mask layer is a silicon nitride film with a thickness of 50 nm to 70 nm.
  • Step S4 Use the mask layer as a mask to sequentially etch the N-type doped layer and the first SiO 2 layer to expose a partial area of one side surface of the P-type silicon substrate.
  • Step S5 Sequentially stack a second SiO 2 layer and a second intrinsic polysilicon layer on the partial area.
  • Step S6 Doping the second intrinsic polysilicon layer with boron to form a P-type doped layer.
  • Step S7 Form electrodes on the N-type doped layer and the P-type doped layer respectively.
  • doping the first intrinsic polysilicon layer with phosphorus includes: diffusing phosphorus impurities in an environment of 850°C to 900°C for 20 minutes. The phosphosilicate glass formed during the doping process is then washed with HF solution.
  • boron doping the second intrinsic polysilicon layer includes:
  • a borosilicate glass layer is deposited on the second intrinsic polysilicon layer.
  • a laser doping process is then used to diffuse the boron particles of the borosilicate glass layer into the second intrinsic polysilicon layer.
  • the laser spot width of the laser doping process is 10um ⁇ 300um
  • the laser power is 20W ⁇ 80W
  • the pulse width It is 0.5us ⁇ 2us
  • the laser frequency is ⁇ 20KHz.
  • the borosilicate glass layer and the borosilicate glass formed during the doping process are then cleaned by HF solution.
  • the method includes:
  • the P-type silicon substrate is put into a KOH solution with a mass concentration of 5% to 20% to be etched for 10s to 300s, and then cleaned with pure water.
  • the cleaned P-type silicon substrate is then placed into a KOH solution with a volume concentration of 1% to 3% for texturing for 7 to 10 minutes.
  • the texturized P-type silicon substrate is annealed and oxidized.
  • a back silicon nitride layer and a front silicon nitride layer are then formed.
  • the temperature of the annealing and oxidation is 850°C to 950°C
  • the duration is 10min to 30min
  • the oxygen introduction amount is ⁇ 8000sccm.
  • the process includes:
  • the P-type silicon substrate is put into a H 2 O 2 solution with a volume concentration of 0.2% to 1% to clean the surface of oil stains. Then, the P-type silicon substrate is put into a NaOH solution with a mass concentration of 5% to 20% for neutralization, and the metal ions and oxide layer are cleaned. Then wash and dry.
  • a tunnel oxide layer is provided between the P-type silicon substrate, the N-type doped layer and the P-type doped layer, thereby improving the P-type IBC The photoelectric conversion efficiency of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne un procédé de fabrication pour une batterie IBC de type P. Le procédé de fabrication consiste à : former séquentiellement une première couche de SiO2 et une première couche de silicium polycristallin intrinsèque d'une manière empilée sur une surface latérale d'un substrat de silicium de type P ; réaliser un dopage au phosphore sur la première couche de silicium polycristallin intrinsèque pour former une couche dopée de type N ; former une couche de masque sur la couche dopée de type N, et réaliser un rainurage modélisé sur la couche de masque ; graver séquentiellement la couche dopée de type N et la première couche de SiO2 en prenant la couche de masque en tant que masque, de façon à exposer une région partielle de la surface latérale du substrat de silicium de type P ; former séquentiellement une seconde couche de SiO2 et une seconde couche de silicium polycristallin intrinsèque d'une manière empilée dans la région partielle ; effectuer un dopage au bore sur la seconde couche de silicium polycristallin intrinsèque pour former une couche dopée de type P ; et former respectivement des électrodes sur la couche dopée de type N et la couche dopée de type P. Au moyen de la présente invention, l'efficacité de conversion photoélectrique d'une batterie IBC de type P est améliorée.
PCT/CN2023/101137 2022-07-15 2023-06-19 Procédé de fabrication pour batterie ibc de type p WO2024012162A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210854522.2 2022-07-15
CN202210854522.2A CN115207136A (zh) 2022-07-15 2022-07-15 一种p型ibc电池的制作方法

Publications (1)

Publication Number Publication Date
WO2024012162A1 true WO2024012162A1 (fr) 2024-01-18

Family

ID=83583253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101137 WO2024012162A1 (fr) 2022-07-15 2023-06-19 Procédé de fabrication pour batterie ibc de type p

Country Status (2)

Country Link
CN (1) CN115207136A (fr)
WO (1) WO2024012162A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117855345A (zh) * 2024-03-04 2024-04-09 国电投新能源科技有限公司 背接触异质结太阳电池的制备方法及异质结太阳电池
CN118538833A (zh) * 2024-07-23 2024-08-23 常州亿晶光电科技有限公司 一种n型tbc双poly电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207136A (zh) * 2022-07-15 2022-10-18 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 一种p型ibc电池的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921626A (zh) * 2021-09-30 2022-01-11 泰州隆基乐叶光伏科技有限公司 一种背接触电池的制作方法
CN113921625A (zh) * 2021-09-30 2022-01-11 泰州隆基乐叶光伏科技有限公司 一种背接触电池及其制作方法
CN114695593A (zh) * 2020-12-30 2022-07-01 苏州阿特斯阳光电力科技有限公司 背接触电池的制备方法及背接触电池
CN115207136A (zh) * 2022-07-15 2022-10-18 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 一种p型ibc电池的制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210926046U (zh) * 2019-10-29 2020-07-03 苏州阿特斯阳光电力科技有限公司 太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695593A (zh) * 2020-12-30 2022-07-01 苏州阿特斯阳光电力科技有限公司 背接触电池的制备方法及背接触电池
CN113921626A (zh) * 2021-09-30 2022-01-11 泰州隆基乐叶光伏科技有限公司 一种背接触电池的制作方法
CN113921625A (zh) * 2021-09-30 2022-01-11 泰州隆基乐叶光伏科技有限公司 一种背接触电池及其制作方法
CN115207136A (zh) * 2022-07-15 2022-10-18 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 一种p型ibc电池的制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117855345A (zh) * 2024-03-04 2024-04-09 国电投新能源科技有限公司 背接触异质结太阳电池的制备方法及异质结太阳电池
CN117855345B (zh) * 2024-03-04 2024-05-31 国电投新能源科技有限公司 背接触异质结太阳电池的制备方法及异质结太阳电池
CN118538833A (zh) * 2024-07-23 2024-08-23 常州亿晶光电科技有限公司 一种n型tbc双poly电池及其制备方法

Also Published As

Publication number Publication date
CN115207136A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN115312633B (zh) 一种无掩膜层联合钝化背接触电池及其制备方法
WO2024012162A1 (fr) Procédé de fabrication pour batterie ibc de type p
CN115621333B (zh) 双面隧穿氧化硅钝化的背接触太阳能电池及其制备方法
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
WO2023050822A1 (fr) Procédé de fabrication d'une cellule à contact arrière
CN111540794A (zh) 一种p型钝化接触太阳能电池及其制作方法
CN113644142A (zh) 一种具有钝化接触的太阳能电池及其制备方法
CN115458612B (zh) 一种太阳电池及其制备方法
WO2024066207A1 (fr) Cellule solaire et son procédé de fabrication
JP2013165160A (ja) 太陽電池の製造方法及び太陽電池
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
CN111341880A (zh) 太阳能电池的制造方法
CN115084314A (zh) 一种TOPCon钝化接触结构的IBC太阳能电池制备方法
CN210349847U (zh) 一种p型隧穿氧化物钝化接触太阳能电池
CN113948611A (zh) 一种p型ibc电池及其制备方法、组件、光伏系统
CN112133774A (zh) 一种背结背接触太阳能电池及其制作方法
CN216597603U (zh) 一种提升绝缘隔离效果的背接触异质结太阳能电池
WO2022156101A1 (fr) Structure de passivation d'empilement de photopiles et son procédé de préparation
CN118231516A (zh) 一种双面poly选择性钝化接触电池制备方法
CN113224210A (zh) 一种p型ibc电池的制备方法
CN117457797A (zh) TOPCon电池结构的制备方法及应用
CN114725225A (zh) 一种高效p型ibc电池及其制备方法
CN103367526B (zh) 一种背面局部接触硅太阳电池的制造方法
CN116581197A (zh) 一种复合双面钝化接触太阳能电池的制备方法
CN108682701B (zh) 太阳能电池及其制作工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838656

Country of ref document: EP

Kind code of ref document: A1