WO2024012151A1 - 一种刀具测试系统及测试方法 - Google Patents

一种刀具测试系统及测试方法 Download PDF

Info

Publication number
WO2024012151A1
WO2024012151A1 PCT/CN2023/100683 CN2023100683W WO2024012151A1 WO 2024012151 A1 WO2024012151 A1 WO 2024012151A1 CN 2023100683 W CN2023100683 W CN 2023100683W WO 2024012151 A1 WO2024012151 A1 WO 2024012151A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
measurement
test
robot
assembly
Prior art date
Application number
PCT/CN2023/100683
Other languages
English (en)
French (fr)
Inventor
张雪梅
曾德标
赵长永
陈学振
岳玉亮
甘建
冯亮亮
代兵
程志
Original Assignee
成都飞机工业(集团)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都飞机工业(集团)有限责任公司 filed Critical 成都飞机工业(集团)有限责任公司
Publication of WO2024012151A1 publication Critical patent/WO2024012151A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0904Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1669Programme controls characterised by programming, planning systems for manipulators characterised by special application, e.g. multi-arm co-operation, assembly, grasping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention belongs to the technical field of tool measurement systems, and specifically relates to a tool testing system and a testing method.
  • the existing production line tool preparation mode requires 2 operators for outbound operations from the three-dimensional warehouse, 2 people for tool assembly and disassembly, and 2 people for tool measurement. Moreover, the existing measurement process does not realize fully automatic macro program measurement. Focusing on the measurement point requires manual operation, which takes a long time to measure. The accuracy relies on manual judgment and requires secondary calibration measurements. The implemented tool testing system can ensure high efficiency and high precision in the tool measurement process.
  • the assembly of the tool handle and the tool is manually read from the serial number marked on the tool handle and the tool drawing number on the tool to determine the accuracy and matching of the assembly and process requirements.
  • the engraved serial number on the tool handle is easy to wear, and the difference between tools with similar tool drawing numbers depends on manual judgment. Problems of "taking one's job to another" may easily occur during assembly and measurement, leading to major quality accidents.
  • the existing assembly and measurement mode has complicated and redundant steps.
  • the tool management system is separated from the tool assembly station. Workers manually judge the tool and tool holder according to the assembly tasks on the tool management system to meet the process requirements. After assembly, they enter The tool management system assembles tool assembly information, and the work efficiency is low.
  • German Zoller company can realize the entire assembly and measurement process without manual intervention and is completed with the assistance of robots. It is currently the leader in the world. But the cost is also extremely high.
  • Palak Company has implemented robot-assisted measurement functions at the 2021 Beijing Exhibition, but it has not been integrated with the assembly link and tool management system to form a test system.
  • Domestic manufacturers such as Foxconn have adopted the robot-assisted measurement mode. However, Foxconn has abandoned this mode due to low repeatability measurement accuracy caused by the on-site environment and tool handle problems. To sum up, the existing tool testing systems cannot meet the feasibility of running on the production line.
  • the purpose of the present invention is to provide a tool testing system and a testing method, aiming to solve the above problems.
  • a tool testing system including a tool management system, a tool test monitoring system, a tool presetting test system, an industrial control system, and a robot, which are connected in sequence.
  • the industrial control system is connected to the tool testing monitoring system and the robot respectively;
  • the tool management system uses After the tool outbound task is completed, a tool assembly task is established and sent to the tool test monitoring system;
  • the tool test monitoring system is used to establish a tool measurement form based on the tool holder car, and after receiving the tool holder car preparation signal Match the corresponding tool measurement form and send it to the tool presetting test system;
  • the tool presetting test system is used to measure according to the tool measurement form, and feed back the tool measurement results to the tool test monitoring system to update the tool measurement form, the Knives
  • the test monitoring system is used to send the final updated tool measurement form to the tool management system;
  • the industrial control system is used to receive the status information of the robot and send the robot task information to the robot for robot-assisted measurement.
  • the present invention further includes an MES system and a warehousing system.
  • the MES system is used to send the tool distribution task to the tool management system.
  • the tool management system is used to generate the tool assembly out of the warehouse according to the tool distribution task.
  • the task is sent to the warehousing system; the warehousing system is used to implement the tool outbound task.
  • the tool presetting test system is a fully automatic CNC drive, and the spindle can automatically focus.
  • a tool testing method using the above-mentioned system, includes the following steps:
  • Step S100 Select the working mode of the tool testing and monitoring system. If the manual mode is selected, the tool presetting and testing system is controlled to execute the tool testing and monitoring system to return to the reference point and calibrate the spindle datum point; if the automatic mode is selected, the tool presetting and testing system is controlled. Carry out self-test and feedback the readiness status, and control the robot through the industrial control system to conduct self-test and feed back the readiness status. At this time, the tool test monitoring system is in the ready state;
  • Step S200 After the tool, tool holder, and accessories are shipped out of the warehouse, a tool assembly task is generated in the tool management system.
  • the tool assembly task includes information on the assembly drawing, tool holder turning tool position number, tool holder turning number, and form number; when assembling When the number of tasks reaches the number of tool positions for the tool holder trolley, the tool management system pops up a prompt, and after the operator confirms immediate assembly, the pending assembly status is displayed;
  • Step S300 Create a tool measurement form in the tool test monitoring system, and the tool measurement form includes tool information, tool handle information, assembly serial number, nominal value, tool holder turning tool position number, measurement target position, and macro program name;
  • Step S400 After the tool assembly is completed, the tool management system sends the tool measurement task to the tool test monitoring system and updates the tool measurement form.
  • the updated tool measurement form is sent to the tool presetting test system, and the tool presetting test system loads The measurement form is sent to the measurement interface of the tool measurement software; after confirming that the tool presetting test system, tool turret car, and robot are in the ready state, the tool test monitoring system sends measurement instructions to the tool presetting test system, and the tool presetting test system feedbacks execution Request information for robot operation;
  • Step S500 The tool testing monitoring system controls the robot to perform tasks through the industrial control system
  • Step S600 The tool presetting test system sends the measurement results to the tool test monitoring system and deletes the local tool measurement form.
  • the tool test monitoring system sends the measurement results to the tool management system and deletes the local tool measurement form.
  • step S500 includes the following steps:
  • Step S501 Execute task one: load the tool holder to the spindle of the tool presetting test system and start automatic measurement: read the assembly serial number in the tool holder chip, match the assembly serial number in the measurement form, load the nominal value information; call Macro program measurement, after the measurement is completed and within the tolerance range, write the chip and write the measurement form results;
  • Step S502 Execute task 2: measurement error exceeds tolerance
  • Step S503 Perform task three: measure again, write the qualified result to the tool holder chip, and give an alarm if the measurement is out of tolerance;
  • Step S504 Execute task four: the robot runs to the manual intervention position, and the robot is placed in a ready state.
  • step S300 the tool measurement form is generated using the tool holder lathe ID combined with the current creation time and the assembler's job number, and is written into the tool turret lathe chip.
  • the present invention is suitable for fully automatic measurement of tools by a robot-assisted tool setter on a digital workshop production line, realizes tool testing with automatic information integration, effectively improves production efficiency, and has good practicability;
  • the present invention meets the needs of the development and construction of intelligent workshops: realizing machine replacement of automated workshop process operations and logistics processes. Compared with the existing technology, after using robots to replace human operations, only 1-2 people are needed to complete the tool assembly and measurement work on site, and can monitor the logistics process of tool delivery, loading, unloading, and measurement;
  • the tool handle information is written into the chip, the tool information is marked with a QR code, and the information is directly read by the chip reading and writing device and the QR code scanner, thus avoiding the occurrence of the problem of "taking one's job” and improving the processing quality. ;
  • the present invention realizes the visualization of the assembly process and the automated integration of assembly information, and has good practicality.
  • the process information in the tool management system is displayed in the tool management system according to the ERP instructions.
  • the RFID reader automatically reads the tool holder information in the chip and compares it with the tool holder in the process information.
  • the handle automatically corresponds.
  • the screen automatically pops up the specific process requirements of the assembly information and the placement position number of the assembled tool on the tool car.
  • the tool management system automatically sends the measurement task to the tool setter.
  • Figure 1 is a schematic structural diagram of the tool testing system
  • FIG. 2 is a functional block diagram of the present invention.
  • a tool testing system includes a tool management system, a tool test monitoring system, a tool presetting test system (tool setter), an industrial control system, a robot, an industrial IoT environment, and a safety system.
  • the tool management system After receiving the tool distribution tasks sent by the MES system according to the production process requirements, the tool management system generates the outbound tasks of "tool components" such as tools, tool handles, and accessories and sends them to the warehousing system; after the tool components are completed, the tool components are generated in the tool management system. Assembly task; the tool measurement form is established in the tool testing and monitoring system based on the tool holder car.
  • the tool components are automatically sent to the tool testing and monitoring system tool measurement form; the tool testing and monitoring system receives the industrial IoT environment
  • the tool holder car ready signal is read and the tool holder car chip information is read
  • the tool measurement form corresponding to the tool test monitoring system is matched and sent to the tool pre-processor.
  • Adjust the test system make judgments based on the status information of the robot fed back by the tool presetting test system and the industrial control system, and then send the robot task to the industrial control system for robot-assisted measurement.
  • the tool presetting test system feeds back the tool component measurement results to the tool tester. Monitor the tool measurement form of the system. After all tool component measurement tasks in the tool measurement form are completed, the measurement form information is returned to the tool management system, and the local tool measurement form is deleted at the same time.
  • the tool management system has the following functions:
  • tool component assembly tasks are automatically generated in the tool management system. Unfinished assembly task items are distinguished from completed assembly task items by color.
  • the tool measurement form is created in the tool test monitoring system with the tool holder car as the unit.
  • “Create measurement form” includes "create form number”, “read tool holder information”, “read tool information”, and “write assembly information”.
  • the tool measurement form number is generated by combining the tool turret lathe ID with the current creation time (year, month, day, hour, minute, and second) and the assembly worker's job number, and writes it into the tool turret lathe chip. After the measurement form is created, it will be displayed in the tool testing monitoring system, indicating that the tool component assembly can be carried out.
  • the "assembly interface" that pops up in the tool management system includes information such as tool component assembly drawing, tool post turning tool position number, tool post turning ID, tool measurement form number and other information.
  • the tool measurement form must include tool information, tool holder information, assembly serial number (generated by the tool management system after the tool assembly is assembled), tool diameter, length, R nominal value, tool holder turning tool position number, and measurement target. Position, measurement macro program name.
  • Embodiment 1 This embodiment is optimized on the basis of Embodiment 1 or 2.
  • the functions of the tool test monitoring system are as follows:
  • the tool test monitoring system includes working mode options, which can choose between manual mode and automatic mode.
  • Tool test in manual mode The trial monitoring system sends information to the industrial control system.
  • the industrial control system controls the robot system and disables it.
  • the safety light curtain in the manual operation position of the tool setter in the safety system takes effect and does not trigger an alarm.
  • the robot system is enabled, and the safety light curtain in the manual operation position of the tool setter is activated to trigger an alarm.
  • the tool testing monitoring system can independently control robot operations, including "robot single-step operation”, “robot return to origin”, and “robot to manual intervention position”.
  • the tool setter deletes the local tool measurement form after sending the measurement results to the tool test monitoring system, and the tool test monitoring system deletes the local tool measurement form after sending the measurement results to the tool management system.
  • the read-write head reads the measurement form number information in the chip of the tool holder and sends it to the tool setter. After receiving the measurement form number information, the tool setter automatically searches for the measurement form number under the local specified path, and loads the measurement form to the measurement interface of the tool measurement software after comparison. After the tool test monitoring system inquires whether the signals of the tool setter, robot, and tool turret are ready, it returns "can measure" information to the tool setter. After the tool setter confirms this status, it requests the tool test monitoring system to perform robot operations.
  • tool presetting test system tool setter
  • the tool setter is fully automatic CNC driven, and the spindle can automatically focus.
  • the tool setter can perform the actions of "setting the equipment to the safe position", “returning the equipment to the reference point”, “spindle reference point calibration”, “releasing the spindle tool”, “starting automatic measurement with one click", and can feedback "the equipment is at the "Safety position”, “Equipment return to reference point completed”, “Spindle reference point calibration completed”, “Spindle loosening tool position”, “Automatic measurement completed” information.
  • the system has pre-stored measurement macro programs for various types of tools, including tool measurement steps and methods.
  • the industrial control system consists of an industrial computer and a PLC:
  • the industrial control system processes the I/O signals of the tool presetting test system and the robot system.
  • the industrial control system issues four task categories to the robot according to the instructions of the tool test monitoring system: Task 1: Tool holder car to the tool setter, place the tool assembly from the tool holder car to the tool setter spindle; Task 2: Tool setter to the tool "set up the cart” and place the tool The component is loaded from the tool setter spindle and placed on the tool car; task three: take out the tool assembly from the tool setter spindle and then place it on the tool setter spindle”; task four: the robot runs to the manual intervention position.
  • Task 1 Tool holder car to the tool setter, place the tool assembly from the tool holder car to the tool setter spindle
  • Task 2 Tool setter to the tool "set up the cart” and place the tool The component is loaded from the tool setter spindle and placed on the tool car
  • task three take out the tool assembly from the tool setter spindle and then place it on the tool setter spindle”
  • task four the robot runs to the manual intervention position.
  • the main program of the robot includes robot self-test. When there is something in the end effector of the robot, the robot performs "Task 4", runs to the manual intervention position, and sends an alarm to the tool test monitoring system, and restarts after manual intervention. The main program of the robot, the robot is placed in the ready state.
  • the industrial IoT environment consists of tool carriages (RFID chip + ready signal), tool components with RFID chips (tools containing tool parameter QR codes + configuration RFID chips + tool handle serial number clear codes), RFID chips It consists of a reader/writer and a QR code scanner.
  • the safety system includes robot ready, tool setter ready, tool rest car ready, and safety device ready.
  • Tool setter ready The tool setter spindle has no tool, the tool setter spindle is locked and loosened, the tool setter is in the safe position, the tool setter spindle is in the tool change position, and the enable signal is returned.
  • Robot ready The robot is idle, the end-effector fingers have no knives, the end-effector fingers are open, and the robot is at the origin position.
  • Safety device ready protective door switch signal, tool setter manual operation position safety light curtain signal.
  • a tool testing method is carried out using the above system, as shown in Figure 2, including the following steps:
  • Start-up preparation Start the "tool management system”, "start the tool test monitoring system”, power on the tool setter, power on the PLC, power on the robot and run the robot main program.
  • the robot's main program includes robot self-test. When there is something in the robot's end effector, the robot will perform "Task 4", run to the manual intervention position, and send an alarm to the tool testing monitoring system. After manual intervention, the main program will be restarted and self-test After passing, the robot is placed in the ready state.
  • 2Select working mode Select "working mode" on the tool testing monitoring system.
  • “Working mode” is divided into two modes: manual and automatic.
  • manual mode When manual mode is selected, the tool test monitoring system sends a signal to the PLC, the PLC-controlled robot is disabled, and the safety light curtain in the manual operation position of the tool setter takes effect without alarming.
  • automatic mode the robot is enabled, and the safety light curtain in the manual operation position of the tool setter takes effect.
  • the operator selects the manual mode he enters the tool setter working area, performs the tool setter return to the reference point, and calibrate the spindle reference point. Select the automatic mode. After the tool setter completes the self-test, it will feedback the ready status.
  • the robot self-test If it does not have the ready status, it will feedback the alarm information. After the robot self-test is completed, it will feedback the ready status. If it does not have the ready status, it will feedback the alarm information. After the safety device self-test is completed, it is placed in the ready state. When the robot is ready, the tool setter is ready, and the safety device is ready, the tool The test system is placed in the ready state.
  • tool component assembly tasks are generated in the "Tool Management System”.
  • the system pops up a prompt "New assembly task, do you want to do it immediately?" "Assemble", the operator confirms the immediate assembly, and the selected task items will change color to white, indicating that they are to be assembled.
  • 4Create measurement form Create a form in the "Tool Test Monitoring System”.
  • "Create form” includes “create form number”, “read tool holder information”, “read tool information”, and “write assembly information”.
  • "Create Form” workflow After the trolley loaded with tool holders, tools and accessories arrives at the assembly station, and the tool holder trolley used to load the tool system arrives at the assembly station, the operator enters the "Create Form” column of the tool testing monitoring system. , click "Create Form Number”, use the read-write head to read the tool holder number in the chip of the tool holder car, such as "djc001", and then combine the current creation time (year, month, day, hour, minute and second) and assembly labor number to generate a form number.
  • the RFID read-write head After clicking "Read Tool Holder Information", the RFID read-write head reads the tool holder information in the RFID chip of the tool holder and matches the tool holder information field in the assembly task bar in the "Tool Management System", and the field changes color; then use 2D
  • the QR code on the end of the tool handle of the code scanning gun reads the tool information and matches the fields. Scan "Read tool information” to select this item and read it manually, or scan the tool and read it automatically.
  • 5Send measurement form After the tool holder information and tool information fields in the assembly task bar are matched at the same time, the "assembly interface” will pop up on the "Tool Management System” interface, including assembly drawings, tool turret turning tool position numbers, tool holder lathe numbers, Form number and other information.
  • the operator assembles the tool system according to the requirements of the assembly interface information, and places the tool system according to "the tool turret turning tool position number assigned by the tool test monitoring system", clicks "Assembly Complete", and the tool measurement task is automatically sent to the tool test monitoring system. in the measurement form created in the system.
  • the measurement form must include tool information, tool holder information, assembly serial number, (tool diameter, length, R) nominal value, tool holder turning tool position number, measurement target position, and macro program name.
  • the read-write head reads the measurement form number information in the chip of the tool holder and sends it to the tool setter. After receiving the measurement form number information, the tool setter automatically searches for the measurement form number under the local specified path, and loads the measurement form to the measurement interface of the tool measurement software after comparison. After the tool test monitoring system inquires whether the signals of the tool setter, robot, and tool turret are ready, it returns "can measure" information to the tool setter. After the tool setter confirms this status, it requests the tool test monitoring system to perform robot operations.
  • Execute the task (start robot-assisted measurement): The robot performs "Task 1: Tool holder turns to the tool setter", loads the tool holder to the spindle of the tool setter, and starts automatic measurement: The first step is to read the tool holder chip. Assembly serial number, match the assembly serial number in the measurement form, load nominal values and other information. The second step is to call the macro program for measurement. After the measurement is completed and within the tolerance range, write the chip and write the measurement form results. Step 3: After writing the chip, the tool setter is ready. The robot performs "Task 2: Tool setter to tool holder car”. If the measurement error is out of tolerance, perform "Task 3: Tool setter to tool setter” and measure again. If the measurement is passed, the result will be written to the tool holder chip. If it is not qualified, the "measurement out of tolerance” alarm will be reported. "Task 4": The robot runs to the manual intervention position.
  • the tool setter deletes the local measurement form after sending the measurement results to the tool testing monitoring system, and the monitoring system deletes the local measurement form after sending the measurement results to the tool management system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • General Factory Administration (AREA)

Abstract

一种刀具测试系统及测试方法,刀具测试系统包括刀具管理系统、刀具测试监控系统、刀具预调测试系统以及工控系统、机器人。刀具管理系统用于建立刀具装配任务并发送给刀具测试监控系统;刀具测试监控系统用于建立刀具测量表单并发送到刀具预调测试系统;刀具预调测试系统用于根据刀具测量表单进行测量,并反馈刀具测量结果给刀具测试监控系统,刀具测试监控系统将最终更新后的刀具测量表单发送给刀具管理系统;工控系统用于控制机器人进行机器人辅助测量。刀具测试系统及测试方法适用于数字化车间生产线上机器人辅助对刀仪全自动测量刀具,实现了信息自动集成的刀具测试,有效提高了生产效率,具有较好的实用性。

Description

一种刀具测试系统及测试方法 技术领域
本发明属于刀具测量系统的技术领域,具体涉及一种刀具测试系统及测试方法。
背景技术
现有生产线刀具准备模式需要的操作人员为立体库出库操作2人,刀具装配及拆卸2人,刀具测量2人。而且现有的测量过程未实现全自动宏程序测量,聚焦测量点需要手动,测量时间长,准确度依靠人工判断,且需要二次校对测量。实现后的刀具测试系统可刀具测量过程的高效,高精度。
现有的刀具组件装配模式,刀柄和刀具的装配由人工读取标刻在刀柄上的序列号以及刀具上的刀具图号来判断装配与工艺需求的准确性与匹配性。标刻的刀柄序列号易磨损,刀具图号相似的刀具的差别靠人工判断,装配及测量过程中易出现“张冠李戴”的问题,导致重大质量事故的发生。另一方面,现有的装配及测量模式步骤繁杂冗余,刀具管理系统与刀具装配工位分离,工人从刀具管理系统上根据装配任务人工判断刀具及刀柄符合工艺要求,组装后,再进入刀具管理系统进行刀具装配信息的组装,工作效率低下。
德国Zoller公司可实现装配、测量全流程无人工干预,由机器人辅助完成,目前在世界上领先。但其成本也极其高昂。帕莱克公司在2021年北京展会上已实现机器人辅助测量功能,但未与装配环节、刀具管理系统集成组合成测试系统。国内富士康等厂家采用了机器人辅助测量模式,然而,目前富士康由于现场环境及刀柄问题导致的重复测量精度不高的原因,放弃了此种模式。综上所述,现有的刀具测试系统均无法满足在生产线上运行的可行性。
发明内容
本发明的目的在于提供一种刀具测试系统及测试方法,旨在解决上述问题。
本发明主要通过以下技术方案实现:
一种刀具测试系统,包括依次连接的刀具管理系统、刀具测试监控系统、刀具预调测试系统以及工控系统、机器人,所述工控系统分别与刀具测试监控系统、机器人连接;所述刀具管理系统用于在刀具出库任务完成后建立刀具装配任务并发送给刀具测试监控系统;所述刀具测试监控系统用于建立以刀架车为单位的刀具测量表单,且在接收到刀架车准备信号后匹配对应的刀具测量表单并发送到刀具预调测试系统;所述刀具预调测试系统用于根据刀具测量表单进行测量,并反馈刀具测量结果给刀具测试监控系统,以更新刀具测量表单,所述刀具 测试监控系统用于将最终更新后的刀具测量表单发送给刀具管理系统;所述工控系统用于接收机器人的状态信息并发送机器人任务信息给机器人进行机器人辅助测量。
为了更好地实现本发明,进一步地,还包括MES系统、仓储系统,所述MES系统用于发送刀具配送任务给刀具管理系统,所述刀具管理系统用于根据刀具配送任务生成刀具组件出库任务,并发送给仓储系统;所述仓储系统用于实现刀具出库任务。
为了更好地实现本发明,进一步地,所述刀具预调测试系统为全自动CNC驱动,主轴可自动聚焦。
一种刀具测试方法,采用上述的系统进行,包括以下步骤:
步骤S100:选择刀具测试监控系统的工作模式,若选择手动模式,则控制刀具预调测试系统执行刀具测试监控系统回参考点,校准主轴基准点;若选择自动模式,则控制刀具预调测试系统进行自检并反馈准备状态,且通过工控系统控制机器人进行自检并反馈准备状态,此时刀具测试监控系统处于准备状态;
步骤S200:刀具、刀柄、附件出库后在刀具管理系统中生成刀具装配任务,所述刀具装配任务包括装配图、刀架车刀位号、刀架车号、表单号的信息;当装配任务数达到刀架小车刀位数量时,刀具管理系统弹出提示,并在操作工确认立即装配后,显示待装配状态;
步骤S300:在刀具测试监控系统中创建刀具测量表单,且刀具测量表单包括刀具信息、刀柄信息、装配流水号、标称值刀架车刀位号,测量目标位置,宏程序名;
步骤S400:当刀具装配完成后,刀具管理系统发送刀具测量任务到刀具测试监控系统并更新刀具测量表单,将更新后的刀具测量表单发送到刀具预调测试系统,所述刀具预调测试系统加载测量表单到刀具测量软件的测量界面;刀具测试监控系统在确认刀具预调测试系统、刀架车、机器人在准备状态后,发送测量指令给刀具预调测试系统,且刀具预调测试系统反馈执行机器人操作的请求信息;
步骤S500:刀具测试监控系统通过工控系统控制机器人执行任务;
步骤S600:刀具预调测试系统发送测量结果到刀具测试监控系统,并删除本地刀具测量表单,刀具测试监控系统发送测量结果到刀具管理系统并删除本地刀具测量表单。
为了更好地实现本发明,进一步地,所述步骤S500包括以下步骤:
步骤S501:执行任务一:将刀柄加载到刀具预调测试系统主轴,开始自动测量:读取刀柄芯片中的装配流水号,匹配测量表单中的装配流水号,加载标称值信息;调用宏程序测量,测量完成后且在公差范围内,写入芯片,写入测量表单结果;
步骤S502:执行任务二:测量误差超差;
步骤S503:执行任务三:再次测量,合格写结果到刀柄芯片,不合格报警反馈测量超差;
步骤S504:执行任务四:机器人运行至人工干预位置,机器人置于准备状态。
为了更好地实现本发明,进一步地,所述步骤S300中,刀具测量表单以刀架车ID结合当前创建时间、装配工人工号来生成,并写入刀架车芯片。
本发明的有益效果:
(1)本发明适用于数字化车间生产线上机器人辅助对刀仪全自动测量刀具,实现了信息自动集成的刀具测试,有效提高了生产效率,具有较好的实用性;
(2)本发明是智能化车间发展建设的需要:实现自动化车间工序操作与物流过程的机器换人。与现有技术相比,用机器人代替人的操作后,现场仅需1-2人来完成刀具装配及测量工作,并可监控刀具出库、装卸、测量的物流过程;
(3)本发明将刀柄信息写入芯片,刀具信息标刻二维码,由芯片读写装置及二维码扫描仪直接读取信息,避免了“张冠李戴”问题的发生,提高了加工质量;
(4)本发明实现了装配过程可视化,装配信息的自动化集成,具有较好的实用性。刀具管理系统中的工艺信息根据ERP指令显示在刀具管理系统中,装配人员将刀柄安装于装配基座上时,RFID读头自动读取芯片中的刀柄信息,并与工艺信息中的刀柄自动对应,装配人员用二维码扫描枪读取刀具信息后,完全匹配工艺信息后,屏幕自动弹出该装配信息的具体工艺要求以及装配后的刀具在刀具车上的放置位置号。装配完成后,刀具管理系统自动发送测量任务到对刀仪。
附图说明
图1为刀具测试系统的结构示意图;
图2为本发明的原理框图。
具体实施方式
实施例1:
一种刀具测试系统,如图1所示,包括刀具管理系统、刀具测试监控系统、刀具预调测试系统(对刀仪)、工控系统、机器人、工业物联环境、安全系统。刀具管理系统接收到MES系统根据生产工艺需求发送的刀具配送任务后产生刀具、刀柄、附件等“刀具组件”出库任务发送给仓储系统;刀具组件出库完成后在刀具管理系统产生刀具组件装配任务;刀具测量表单以刀架车为单位在刀具测试监控系统建立,刀具组件在刀具管理系统装配完成后自动发送到刀具测试监控系统刀具测量表单中;刀具测试监控系统收到工业物联环境中刀架车ready信号并读取刀架小车芯片信息后,匹配刀具测试监控系统对应的刀具测量表单发送到刀具预 调测试系统,并根据刀具预调测试系统及工控系统反馈的机器人的状态信息进行判断后发送机器人任务给工控系统进行机器人辅助测量,测量完成后刀具预调测试系统反馈刀具组件测量结果给刀具测试监控系统的刀具测量表单,刀具测量表单所有刀具组件测量任务完成后,返回测量表单信息给刀具管理系统,同时删除本地刀具测量表单。
实施例2:
本实施例是在实施例1的基础上进行优化,刀具管理系统具有以下功能:
1)刀具、刀柄、附件出库后在刀具管理系统中自动生成刀具组件装配任务,未完成的装配任务项与已完成的装配任务项用颜色区分。
2)刀具测量表单以刀架车为单位在刀具测试监控系统创建。“创建测量表单”包括“创建表单号”,“读取刀柄信息”,“读取刀具信息”、“写入装配信息”。
3)刀具测量表单号以刀架车ID结合当前创建时间(年月日时分秒)、装配工人工号来生成,并写入刀架车芯片。测量表单创建完成后即显示在刀具测试监控系统,表示可进行刀具组件装配工作。
4)用RFID读取器读出刀柄RFID芯片中的刀柄信息与刀具管理系统中装配任务项中的刀柄信息字段自动匹配后字段变色;用二维码扫描枪刀具柄部端头的二维码读取刀具信息自动匹配字段后变色。装配任务项都匹配后,刀具管理系统自动弹出刀具组件装配界面,装配工人根据工艺要求实时进行具组件装配,完成装配并点击“写入装配信息”后,装配流水号等信息写入刀柄芯片,同时该项刀具组件装配任务自动发送到刀具测试监控系统的测量表单中。
5)在刀具管理系统弹出的“装配界面”中包括刀具组件装配图,刀架车刀位号,刀架车ID、刀具测量表单号等信息。
6)刀具测量表单中必须包括刀具信息、刀柄信息、装配流水号(刀具组件装配完成后由刀具管理系统产生)、刀具直径、长度、R标称值、刀架车刀位号,测量目标位置,测量宏程序名。
7)在刀具管理系统可以选择“读取刀具组件信息”下拉菜单手动读取刀具组件信息,也可将刀具组件通过工业物联环境系统扫描后自动读取。
本实施例的其他部分与实施例1相同,故不再赘述。
实施例3:
本实施例是在实施例1或2的基础上进行优化,刀具测试监控系统功能如下:
1)刀具测试监控系统包括工作模式选项,可选择手动模式及自动模式。手动模式下刀具测 试监控系统发送信息给工控系统,工控系统控制机器人系统不使能,安全系统中的对刀仪人工操作位安全光幕生效不触发报警。自动模式下机器人系统使能,对刀仪人工操作位安全光幕生效能触发报警。
2)手动模式下由人工执行对刀仪回参考点,校准主轴基准点。自动模式下刀具预调测试系统进行自检完成将对刀仪置于ready状态,不具备对刀仪ready状态则发出报警信息提示人工干预。
3)刀具测试监控系统中可单独控制机器人操作,包括“机器人单步操作”、“机器人回原点”、“机器人至人工干预位”。
4)对刀仪发送测量结果到刀具测试监控系统后删除本地刀具测量表单,刀具测试监控系统发送测量结果到刀具管理系统后删除本地刀具测量表单。
5)还包括发送自动测量请求⑨:读写头读取刀架车芯片内的测量表单号信息发送给对刀仪。对刀仪收到测量表单号信息后,自动搜索本地指定路径下的测量表单号,比对后加载测量表单到刀具测量软件的测量界面。刀具测试监控系统询问对刀仪、机器人、刀架车信号是否ready后,返给对刀仪“可以测量”信息,对刀仪确认此状态后,向刀具测试监控系统请求执行机器人操作。
本实施例的其他部分与上述实施例1或2相同,故不再赘述。
实施例4:
本实施例是在实施例1-3任一个的基础上进行优化,刀具预调测试系统(对刀仪)功能如下:
1)对刀仪为全自动CNC驱动,主轴可自动聚焦。
2)对刀仪可执行“设备置安全位”、“设备回参考点”“主轴基准点校准”、“主轴松拉刀”、“一键启动自动测量”动作,并可反馈“设备已位于安全位”、“设备回参考点完成”“主轴基准点校准完成”、“主轴松拉刀刀位”、“自动测量完成”信息。
3)系统预存有各类刀具的测量宏程序,包含刀具测量步骤及方法。
本实施例的其他部分与上述实施例1-3任一个相同,故不再赘述。
实施例5:
本实施例是在实施例1-4任一个的基础上进行优化,工控系统由工控机及PLC组成:
1)工控系统处理刀具预调测试系统及机器人系统的I/O信号。
工控系统根据刀具测试监控系统的指令向机器人发出四种任务类别:任务一:刀架车到对刀仪,将刀具组件从刀架车放置到对刀仪主轴;任务二:对刀仪到刀架车”,将刀具 组件加载到从对刀仪主轴放置到刀具车;任务三:从对刀仪主轴取出刀具组件再放置到对刀仪主轴”;任务四:机器人运行至人工干预位置。
进一步地,机器人:机器人主程序中包含机器人自检,当机器人末端执行器有物,则机器人执行“任务四”,运行至人工干预位置,并发出报警到刀具测试监控系统,人工干预后重新启动机器人主程序,机器人置于ready状态。
进一步地,工业物联环境由刀架车(RFID芯片+ready信号)、带有RFID芯片的刀具组件(包含刀具参数二维码的刀具+配置RFID芯片+刀柄序列号明码)、RFID芯片读写器、二维码扫描枪组成。
进一步地,安全系统包括机器人ready、对刀仪ready、刀架车ready、安全装置ready。
1)对刀仪ready:对刀仪主轴无刀、对刀仪主轴锁紧松开、对刀仪在安全位,对刀仪主轴在换刀位,返回使能信号。
2)机器人ready:机器人闲,末端执行器手指无刀、末端执行器手指张开、机器人在原点位置。
3)刀架车ready:刀架车到位检测开关信号。
4)安全装置ready:防护门开关信号、对刀仪人工操作位安全光幕信号。
本实施例的其他部分与上述实施例1-4任一个相同,故不再赘述。
实施例6:
一种刀具测试方法,采用上述系统进行,如图2所示,包括以下步骤:
①开机准备:启动“刀具管理系统”、“启动刀具测试监控系统”、对刀仪上电、PLC上电、机器人上电并运行机器人主程序。机器人主程序中包含机器人自检,当机器人末端执行器有物,则机器人执行“任务四”,运行至人工干预位置,并发出报警到刀具测试监控系统,人工干预后重新启动主程序,自检通过后,机器人置于ready状态。
②选择工作模式:在刀具测试监控系统上选择“工作模式”。“工作模式”分为手动和自动两种模式。选择手动模式,刀具测试监控系统发送信号给PLC,PLC控制机器人不使能,对刀仪人工操作位安全光幕生效不报警。自动模式下机器人使能,对刀仪人工操作位安全光幕生效。操作工人选择手动模式后,进入对刀仪工作区域,执行对刀仪回参考点,校准主轴基准点。选择自动模式,对刀仪进行自检完成后反馈ready状态,不具备ready状态则反馈报警信息,机器人自检完成后反馈ready状态,不具备ready状态则反馈报警信息。安全装置自检完成后置于ready状态。机器人ready、对刀仪ready、安全装置ready,则刀具 测试系统置于ready状态。
③生成装配任务:刀具、刀柄、附件出库后在“刀具管理系统”中生成刀具组件装配任务,当装配任务数达到刀架小车刀位数量时,系统弹出提示“新装配任务,是否立即装配”,操作工确认立即装配,则选择的任务项都变色为白底,表明待装配。
④创建测量表单:在“刀具测试监控系统”创建表单。“创建表单”包括“创建表单号”,“读取刀柄信息”,“读取刀具信息”、“写入装配信息”。“创建表单”工作流程:装载有刀柄和刀具以及附件的小车达到装配工位以及用于装载刀具系统的刀架小车到达装配工位后,操作工进入刀具测试监控系统的“创建表单”栏,点击“创建表单号”,用读写头读取刀架小车芯片中的刀架车号,如“djc001”,再结合当前创建时间(年月日时分秒)、装配人工号,生成表单号“djc001-20211029163028-273154”,并写入刀架车芯片,写完后,监控屏幕中显示提示框“表单号创建完成”。点击“读取刀柄信息”后,RFID读写头读出刀柄RFID芯片中的刀柄信息与“刀具管理系统”中装配任务条中的刀柄信息字段匹配,字段变色;接着用二维码扫描枪刀具柄部端头的二维码读取刀具信息,并匹配字段。扫描“读取刀具信息”可以选择此项后手动读取,也可将刀具扫描后自动读取。
⑤发送测量表单:装配任务条中的刀柄信息和刀具信息字段同时匹配后,在“刀具管理系统”界面弹出“装配界面”,包括装配图,刀架车刀位号,刀架车号、表单号等信息。操作工依据装配界面信息的要求装配完成刀具系统,并按照“刀具测试监控系统分配的刀架车刀位号放置好刀具系统后”,点击“装配完成”,刀具测量任务自动发送到刀具测试监控系统中已创建的测量表单中。测量表单中必须包括刀具信息、刀柄信息、装配流水号、(刀具直径、长度、R)标称值刀架车刀位号,测量目标位置,宏程序名。
⑨发送自动测量请求:读写头读取刀架车芯片内的测量表单号信息发送给对刀仪。对刀仪收到测量表单号信息后,自动搜索本地指定路径下的测量表单号,比对后加载测量表单到刀具测量软件的测量界面。刀具测试监控系统询问对刀仪、机器人、刀架车信号是否ready后,返给对刀仪“可以测量”信息,对刀仪确认此状态后,向刀具测试监控系统请求执行机器人操作。
⑩执行任务(启动机器人辅助测量):机器人执行“任务一:刀架车到对刀仪”,将刀柄加载到对刀仪主轴,开始自动测量:第一步,读取刀柄芯片中的装配流水号,匹配测量表单中的装配流水号,加载标称值等信息。第二步,调用宏程序测量,测量完成后且在公差范围内,写入芯片,写入测量表单结果。第三步:写入芯片完成后,对刀仪ready,机器人执行“任务二对刀仪到刀架车”,测量误差超差,执行“任务三:对刀仪到对刀仪”,再次测 量,合格写结果到刀柄芯片,不合格报警“测量超差”。“任务四”:机器人运行至人工干预位置。
测量结束:对刀仪发送测量结果到刀具测试监控系统后删除本地测量表单,监控系统发送测量结果到刀具管理系统后删除本地测量表单。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (6)

  1. 一种刀具测试系统,其特征在于,包括依次连接的刀具管理系统、刀具测试监控系统、刀具预调测试系统以及工控系统、机器人,所述工控系统分别与刀具测试监控系统、机器人连接;所述刀具管理系统用于在刀具出库任务完成后建立刀具装配任务并发送给刀具测试监控系统;所述刀具测试监控系统用于建立以刀架车为单位的刀具测量表单,且在接收到刀架车准备信号后匹配对应的刀具测量表单并发送到刀具预调测试系统;所述刀具预调测试系统用于根据刀具测量表单进行测量,并反馈刀具测量结果给刀具测试监控系统,以更新刀具测量表单,所述刀具测试监控系统用于将最终更新后的刀具测量表单发送给刀具管理系统;所述工控系统用于接收机器人的状态信息并发送机器人任务信息给机器人进行机器人辅助测量。
  2. 根据权利要求1所述的一种刀具测试系统,其特征在于,还包括MES系统、仓储系统,所述MES系统用于发送刀具配送任务给刀具管理系统,所述刀具管理系统用于根据刀具配送任务生成刀具组件出库任务,并发送给仓储系统;所述仓储系统用于实现刀具出库任务。
  3. 根据权利要求1所述的一种刀具测试系统,其特征在于,所述刀具预调测试系统为全自动CNC驱动,主轴可自动聚焦。
  4. 一种刀具测试方法,采用权利要求1-3任一项所述的系统进行,其特征在于,包括以下步骤:
    步骤S100:选择刀具测试监控系统的工作模式,若选择手动模式,则控制刀具预调测试系统执行刀具测试监控系统回参考点,校准主轴基准点;若选择自动模式,则控制刀具预调测试系统进行自检并反馈准备状态,且通过工控系统控制机器人进行自检并反馈准备状态,此时刀具测试监控系统处于准备状态;
    步骤S200:刀具、刀柄、附件出库后在刀具管理系统中生成刀具装配任务,所述刀具装配任务包括装配图、刀架车刀位号、刀架车号、表单号的信息;当装配任务数达到刀架小车刀位数量时,刀具管理系统弹出提示,并在操作工确认立即装配后,显示待装配状态;
    步骤S300:在刀具测试监控系统中创建刀具测量表单,且刀具测量表单包括刀具信息、刀柄信息、装配流水号、标称值刀架车刀位号,测量目标位置,宏程序名;
    步骤S400:当刀具装配完成后,刀具管理系统发送刀具测量任务到刀具测试监控系统并更新刀具测量表单,将更新后的刀具测量表单发送到刀具预调测试系统,所述刀具预调测试系统加载测量表单到刀具测量软件的测量界面;刀具测试监控系统在确认刀具预调测试系统、刀架车、机器人在准备状态后,发送测量指令给刀具预调测试系统,且刀具预调测试系统反馈执行机器人操作的请求信息;
    步骤S500:刀具测试监控系统通过工控系统控制机器人执行任务;
    步骤S600:刀具预调测试系统发送测量结果到刀具测试监控系统,并删除本地刀具测量表单,刀具测试监控系统发送测量结果到刀具管理系统并删除本地刀具测量表单。
  5. 根据权利要求4所述的一种刀具测试方法,其特征在于,所述步骤S500包括以下步骤:
    步骤S501:执行任务一:将刀柄加载到刀具预调测试系统主轴,开始自动测量:读取刀柄芯片中的装配流水号,匹配测量表单中的装配流水号,加载标称值信息;调用宏程序测量,测量完成后且在公差范围内,写入芯片,写入测量表单结果;
    步骤S502:执行任务二:测量误差超差;
    步骤S503:执行任务三:再次测量,合格写结果到刀柄芯片,不合格报警反馈测量超差;
    步骤S504:执行任务四:机器人运行至人工干预位置,机器人置于准备状态。
  6. 根据权利要求4所述的一种刀具测试方法,其特征在于,所述步骤S300中,刀具测量表单以刀架车ID结合当前创建时间、装配工人工号来生成,并写入刀架车芯片。
PCT/CN2023/100683 2022-07-13 2023-06-16 一种刀具测试系统及测试方法 WO2024012151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210818057.7 2022-07-13
CN202210818057.7A CN114888543B (zh) 2022-07-13 2022-07-13 一种刀具测试系统及测试方法

Publications (1)

Publication Number Publication Date
WO2024012151A1 true WO2024012151A1 (zh) 2024-01-18

Family

ID=82730231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100683 WO2024012151A1 (zh) 2022-07-13 2023-06-16 一种刀具测试系统及测试方法

Country Status (2)

Country Link
CN (1) CN114888543B (zh)
WO (1) WO2024012151A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114888543B (zh) * 2022-07-13 2022-12-13 成都飞机工业(集团)有限责任公司 一种刀具测试系统及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238356A (ja) * 2007-03-28 2008-10-09 Brother Ind Ltd 工作機械、工作機械の工具マガジン制御プログラム及び工具マガジン制御プログラム記録媒体
CN103076764A (zh) * 2013-01-16 2013-05-01 同济大学 基于rfid技术的西门子840d数控系统动态刀具管理方法
CN104408554A (zh) * 2014-11-13 2015-03-11 重庆大学 基于二维码技术的fms刀具智能管理系统
CN112486108A (zh) * 2020-10-27 2021-03-12 成都飞机工业(集团)有限责任公司 一种基于rfid的数控制造现场刀具流转管控方法
CN113592244A (zh) * 2021-07-05 2021-11-02 广东利元亨智能装备股份有限公司 一种刀具配送管理方法及系统
CN114888543A (zh) * 2022-07-13 2022-08-12 成都飞机工业(集团)有限责任公司 一种刀具测试系统及测试方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008010264A1 (ja) * 2006-07-18 2009-12-10 三菱電機株式会社 数値制御装置
CN103616855B (zh) * 2013-11-01 2015-11-18 上海烟草机械有限责任公司 基于三维模拟组装的刀具管理系统及其管理方法
JP2016200928A (ja) * 2015-04-09 2016-12-01 ファナック株式会社 工作機械の管理システム
JP2016218550A (ja) * 2015-05-15 2016-12-22 ファナック株式会社 加工に使用する工具の取付け状態を確認する数値制御装置
CN205497074U (zh) * 2016-04-25 2016-08-24 哈尔滨理工大学 一种智能刀库管理系统
CN108008697A (zh) * 2017-12-22 2018-05-08 大连运明自动化技术有限公司 基于rfid芯片的刀具数据传输系统
CN108133244A (zh) * 2017-12-22 2018-06-08 大连运明自动化技术有限公司 刀具信息无纸化传输系统
CN110657745B (zh) * 2018-06-29 2021-10-01 富泰华精密电子(郑州)有限公司 装刀管理系统、装刀管理方法及存储设备
JP7051660B2 (ja) * 2018-10-17 2022-04-11 株式会社スギノマシン 工具管理方法および工具管理システム
US20200174444A1 (en) * 2018-11-30 2020-06-04 Lear Corporation Assembly line tool test carrier and method of using
JP7458018B2 (ja) * 2019-11-06 2024-03-29 パナソニックIpマネジメント株式会社 工具システム、工具管理方法及びプログラム
CN110991860B (zh) * 2019-11-28 2022-04-08 王解法 一种建立刀具调度模型的方法
CN111015321A (zh) * 2019-12-10 2020-04-17 首都航天机械有限公司 一种数控机床刀库刀具信息存储与调用方法
JP7199396B2 (ja) * 2020-03-12 2023-01-05 株式会社日研工作所 工具管理システム、ツールプリセッタ、および端末
CN113843645B (zh) * 2021-11-29 2022-03-01 沈阳机床(集团)有限责任公司 一种机器人刀库换刀控制方法及控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238356A (ja) * 2007-03-28 2008-10-09 Brother Ind Ltd 工作機械、工作機械の工具マガジン制御プログラム及び工具マガジン制御プログラム記録媒体
CN103076764A (zh) * 2013-01-16 2013-05-01 同济大学 基于rfid技术的西门子840d数控系统动态刀具管理方法
CN104408554A (zh) * 2014-11-13 2015-03-11 重庆大学 基于二维码技术的fms刀具智能管理系统
CN112486108A (zh) * 2020-10-27 2021-03-12 成都飞机工业(集团)有限责任公司 一种基于rfid的数控制造现场刀具流转管控方法
CN113592244A (zh) * 2021-07-05 2021-11-02 广东利元亨智能装备股份有限公司 一种刀具配送管理方法及系统
CN114888543A (zh) * 2022-07-13 2022-08-12 成都飞机工业(集团)有限责任公司 一种刀具测试系统及测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何正强 (HE, ZHENGQIANG): "应用于柔性生产线的中心刀库管理及配送系统研究 (Research on Central Tool Magazine Management and Distribution System of Flexible Production Line)", 中国优秀硕士学位论文全文数据库工程科技I辑 (CHINA MASTER’S THESES FULL-TEXT DATABASE, MEDICINE & PUBLIC HEALTH, ENGINEERING SCIENCE AND TECHNOLOGY I), no. 7, 15 July 2018 (2018-07-15) *

Also Published As

Publication number Publication date
CN114888543B (zh) 2022-12-13
CN114888543A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US4998206A (en) Automated method and apparatus for fabricating sheet metal parts and the like using multiple manufacturing stations
US9902024B2 (en) Method and device for repairing an aircraft and/or gas turbine component
CN108526622B (zh) Mes电极智能制造与检测系统、模具智能制造系统及模具制造方法
CN101204813B (zh) 用于执行机器人离线编程的装置、方法
WO2024012151A1 (zh) 一种刀具测试系统及测试方法
US8090557B2 (en) Quality assurance method when operating an industrial machine
CA1206232A (en) Point measuring process for preset robot
JP7455501B2 (ja) 製造偏差に応じた製造プランの動的修正
CN110109420B (zh) 一种云智能加工设备
Eversheim et al. Tool management: the present and the future
CN110989525B (zh) 一种基于fpga的产品智能装配生产线监控系统及方法
EP3221094B1 (de) Verfahren und system zur korrektur einer bearbeitungsbahn eines robotergeführten werkzeugs
US20210016440A1 (en) Semi-autonomous robot path planning
JP7247459B2 (ja) 生産管理システム
CN109143979A (zh) 数控设备的加工控制方法、系统、可读存储介质和设备
CN116372305A (zh) 一种可扩展的自动化涂钎料系统及方法
JPH1044074A (ja) マルチ作業方法及び装置
Brown Metrology Assisted Robotic Automation 2
EP0477430A1 (en) Off-line teaching method for industrial robot
US11487269B2 (en) System and method to derive and apply computer numerical control global offsets during part measurement on coordinate measuring machine
US5737218A (en) System with graphical interface for modifying position of programmable fixture devices
CN208374399U (zh) Mes电极智能制造与检测系统、模具智能制造系统
JPH0657377B2 (ja) Fmsにおける加工工具処理装置
KR940003090B1 (ko) 산업용 로보트의 오프-라인 교시방법
Hollingum Renishaw automate programming and machining to micron accuracy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838645

Country of ref document: EP

Kind code of ref document: A1