WO2024012049A1 - 轴承润滑系统以及旋转设备 - Google Patents

轴承润滑系统以及旋转设备 Download PDF

Info

Publication number
WO2024012049A1
WO2024012049A1 PCT/CN2023/095319 CN2023095319W WO2024012049A1 WO 2024012049 A1 WO2024012049 A1 WO 2024012049A1 CN 2023095319 W CN2023095319 W CN 2023095319W WO 2024012049 A1 WO2024012049 A1 WO 2024012049A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil tank
bearing
level
lubricating
pipeline
Prior art date
Application number
PCT/CN2023/095319
Other languages
English (en)
French (fr)
Inventor
郑小康
铎林
黄智欣
何伟
何晓华
骆林
刘健俊
曾玉好
徐林
Original Assignee
东方电气集团东方电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方电气集团东方电机有限公司 filed Critical 东方电气集团东方电机有限公司
Publication of WO2024012049A1 publication Critical patent/WO2024012049A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems

Definitions

  • This application relates to the technical field of bearing lubrication, and specifically to a bearing lubrication system and rotating equipment.
  • the generator motor has a shaft with a sliding rotor extending out from the shaft surface.
  • the guide bearing and thrust bearing are in contact with the sliding rotor.
  • the guide bearing is in contact with the side of the sliding rotor to limit the radial movement of the shaft.
  • the thrust bearing is in contact with the bottom surface of the sliding rotor to limit the axial movement of the sliding rotor.
  • the guide bearing, sliding rotor and thrust bearing are all immersed in the oil tank to reduce the temperatures of the guide bearing, sliding rotor and thrust bearing.
  • the applicant has proposed a guide bearing oil supply device with a high-level oil tank (Chinese Patent Publication No. CN204239129U), which lubricates the guide bearings by spraying through the high-level oil tank and the oil injection branch pipe, without the need to move the sliding rotor Both the bearing and the bearing are immersed in the lubricating medium, thereby reducing the liquid level of the lubricating medium in the oil tank, which is beneficial to reducing the foam and oil mist generated in the oil tank.
  • This application provides a bearing lubrication system and rotating equipment, aiming to solve the current technical problem of foam and oil mist in the bearing lubricating oil tank of large rotating equipment.
  • this application provides a bearing lubrication system, including:
  • Lubricating oil tank lubricating oil tank encloses bearing
  • the horizontal height of the high-level oil tank relative to the bearing is higher than the horizontal height of the lubricating oil tank relative to the bearing;
  • the horizontal height of the low-level oil tank relative to the bearing is lower than the horizontal height of the lubricating oil tank relative to the bearing;
  • Circulation pump the inlet of the circulation pump is connected to the low-level oil tank through a pipeline, and the outlet of the circulation pump is connected to the high-level oil tank through a pipeline;
  • the high-level oil tank is connected to the lubricating oil tank through a pipeline, and the lubricating oil tank is connected to the low-level oil tank through a pipeline.
  • the liquid levels of the lubricating medium in the high-level oil tank and the low-level oil tank are greater than the preset level, and the lubricating medium in the lubricating oil tank is The liquid level is close to or equal to 0.
  • the high-level oil tank is filled with lubricating medium.
  • the volume of the lower fuel tank is greater than the volume of the upper fuel tank.
  • the high-level fuel tank has a first inlet and a first outlet
  • the first inlet is located on the side of the high-level fuel tank away from the low-level fuel tank or on the side of the high-level fuel tank, and the first outlet is located on the side of the high-level fuel tank adjacent to the low-level fuel tank;
  • the outlet of the circulation pump is connected to the first inlet of the high-level oil tank through a pipeline, and the first outlet of the high-level oil tank is connected to the lubricating oil tank through a pipeline.
  • the low tank has a second inlet and a second outlet
  • the second inlet is located on the side of the low-level fuel tank adjacent to the high-level fuel tank, and the second outlet is located on the back of the low-level fuel tank. The side away from the high-mounted fuel tank;
  • the inlet of the circulation pump is connected to the second outlet of the low-level oil tank through a pipeline, and the second inlet of the low-level oil tank is connected to the lubricating oil tank through a pipeline.
  • the high-level fuel tank includes a first high-level fuel tank and a second high-level fuel tank;
  • the first high-level oil tank is filled with lubricating medium, and the volume of the second high-level oil tank is greater than the volume of the lubricating medium in it.
  • the volume of the second high-level fuel tank is greater than the volume of the first high-level fuel tank.
  • the outlet of the circulation pump is connected to the first high-level oil tank through a first pipeline, and is connected to the second high-level oil tank through a second pipeline;
  • the first high-level oil tank is connected to the lubricating oil tank through a third pipeline, and the second high-level oil tank is connected to the lubricating oil tank through a fourth pipeline;
  • a first valve is provided on the second pipeline, and a second valve is provided on the fourth pipeline.
  • the first valve and the second valve are in a normally closed state.
  • the bearing lubrication system further includes a cooler
  • the cooler is installed between the circulation pump and the low oil tank;
  • the cooler is installed between the circulation pump and the high-level oil tank.
  • the shaft includes a shaft body and a sliding rotor connected to the shaft body;
  • the bearing includes a plurality of guide bearing pads, the plurality of guide bearing pads are arranged in an annular array at intervals and are in contact with the surface of the sliding rotor away from the shaft body, and a first oil supply pipe is provided between adjacent guide bearing pads; and/or
  • the bearing includes a plurality of thrust bearing pads.
  • the plurality of thrust bearing pads are arranged in an annular array at intervals and are in contact with the surface of the sliding rotor facing the low oil tank.
  • a second oil supply pipe is provided between adjacent thrust bearing pads.
  • the lubricating oil tank has an annular inner baffle wall, an annular outer baffle wall, and an annular bottom wall connected between the annular inner baffle wall and the annular outer baffle wall;
  • the sliding rotor extends toward the low oil tank, and the sliding rotor is spaced apart from the surface of the shaft body to form an annular cavity;
  • the annular inner baffle wall is located at the annular cavity, the annular outer baffle wall is located on the side of the sliding rotor away from the shaft body, and the annular bottom wall is located on the side of the sliding rotor adjacent to the low oil tank.
  • the bearing includes a first bearing and a second bearing, the first bearing cooperates with one end of the shaft, and the second bearing cooperates with the other end of the shaft;
  • the lubricating oil tank includes a first lubricating oil tank surrounding the first bearing and a second lubricating oil tank surrounding the second bearing.
  • the first lubricating oil tank is connected to the high-level oil tank through a pipeline, and the first lubricating oil tank is connected to the low-level oil tank through a pipeline;
  • the second lubricating oil tank is connected to the high-level oil tank through a pipeline, and the second lubricating oil tank is connected to the low-level oil tank through a pipeline.
  • the first lubricating oil tank is connected to the high-level oil tank through a pipeline
  • the second lubricating oil tank is connected to the first lubricating oil tank through a pipeline
  • the first lubricating oil tank is connected to the lower oil tank through a pipeline; and/or
  • the second lubricating oil tank is connected to the lower oil tank through a pipeline.
  • the present application provides a rotating equipment, including the bearing lubrication system as described in the first aspect.
  • This application sets up a high-level oil tank and a low-level oil tank connected to the lubricating oil tank, and uses a circulating pump to make the lubricating medium reach the high-level oil tank from the low-level oil tank. Since the horizontal height of the high-level oil tank relative to the bearing is higher than the horizontal height of the lubricating oil tank relative to the bearing, and The horizontal height of the low-level oil tank relative to the bearing is lower than the horizontal height of the lubricating oil tank relative to the bearing.
  • the lubricating medium flows from the high-level oil tank to the lubricating oil tank under the influence of gravity for spray lubrication, and the lubricating medium in the lubricating oil tank also flows to the low-level oil tank under the influence of gravity.
  • the liquid level of the lubricating medium in the high-level oil tank and the low-level oil tank is greater than the preset level, and the liquid level of the lubricating medium in the lubricating oil tank is close to or equal to 0, thereby achieving a zero liquid level in the lubricating oil tank, so it can Avoid foam and oil mist in the lubricating oil tank caused by the rotation of the shaft relative to the bearing.
  • the height of the lubricating oil tank can be reduced, thereby reducing the distance between the center line of the bearing and the rotor shaft, ultimately achieving the purpose of shortening the shaft length and increasing the critical speed of the shaft system.
  • Figure 1 is a structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 2 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the shaft, bearing and lubricating oil tank provided in the embodiment of the present application;
  • Figure 4 is a schematic structural diagram of the high-level fuel tank provided in the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of the low-level fuel tank provided in the embodiment of the present application.
  • Figure 6 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 7 is a schematic layout diagram of the first oil supply pipe provided in the embodiment of the present application.
  • Figure 8 is a schematic layout diagram of the second oil supply pipe provided in the embodiment of the present application.
  • Figure 9 is a schematic layout diagram of the first oil supply pipe and the second oil supply pipe provided in the embodiment of the present application.
  • Figure 10 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 11 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 12 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 13 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 14 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 15 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • Figure 16 is another structural schematic diagram of the bearing lubrication system provided in the embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • Embodiments of the present application provide a bearing lubrication system and rotating equipment, which are described in detail below.
  • Figure 1 shows a schematic structural diagram of a bearing lubrication system in an embodiment of the present application, wherein the bearing lubrication system includes:
  • Bearing 20 cooperates with shaft 10;
  • the lubricating oil tank 30 encloses the bearing 20;
  • the high-level oil tank 40 has a higher horizontal height relative to the bearing 20 than the lubricating oil tank 30 relative to The horizontal height of the bearing 20;
  • Low oil tank 50 the horizontal height of the low oil tank 50 relative to the bearing 20 is lower than the horizontal height of the lubricating oil tank 30 relative to the bearing 20;
  • Circulation pump 60 the inlet of the circulation pump 60 is connected to the low-level oil tank 50 through a pipeline, and the outlet of the circulation pump 60 is connected to the high-level oil tank 40 through a pipeline;
  • the high-level oil tank 40 is connected to the lubricating oil tank 30 through a pipeline, and the lubricating oil tank 30 is connected to the low-level oil tank 50 through a pipeline.
  • the liquid level of the lubricating medium in the high-level oil tank 40 and the low-level oil tank 50 is greater than the preset liquid level.
  • the liquid level of the lubricating medium in the lubricating oil tank 30 is close to or equal to 0.
  • the shaft 10 refers to the rotating shaft of any large-scale rotating equipment, such as the rotating shaft of a generator motor, a water pump turbine, a wind turbine, etc.
  • the shaft 10 carries some rotating parts.
  • a generator motor as an example, a rotor 80 is installed on the shaft 10 and a stator 90 is arranged around the rotor. The rotor 80 cuts the magnetic field lines of the stator 90 to generate electricity.
  • FIG. 2 shows another structural schematic diagram of the bearing lubrication system in the embodiment of the present application.
  • the shaft 10 includes a shaft body 11 and a sliding rotor 12 connected to the shaft body 11. , the sliding rotor 12 is used to contact the bearing 20, thereby limiting the radial movement and axial movement of the shaft 10.
  • the shaft 10 may be arranged vertically or horizontally, such as the rotation shaft of a horizontal generator or a vertical generator. It is understood that the shaft 10 can also be arranged at an angle.
  • the bearing 20 cooperates with the shaft 10 and serves to limit the radial movement and axial movement of the shaft 10 .
  • the bearing 20 includes a plurality of guide bearings 21 , and a plurality of guide bearings 21 .
  • the tiles 21 are arranged in an annular array at intervals and are in contact with the surface of the sliding rotor 12 away from the shaft body 11; and/or the bearing 20 includes a plurality of thrust bearing tiles 23, and the plurality of thrust bearing tiles 23 are arranged in an annular array at intervals and are in contact with the sliding rotor 12 toward the low oil tank. 50% surface contact.
  • the guide bearing bush 21 limits the radial movement of the shaft 10
  • the thrust bearing bush 23 limits the axial movement of the shaft 10 , thereby achieving the purpose of the bearing 20 limiting the radial movement and axial movement of the shaft 10 .
  • the bearing 20 may also include other structures, such as bearing seats, insulating plates, etc.
  • the lubricating oil tank 30 is used to enclose the bearing 20 so that the lubricating medium lubricating the bearing 20 can be collected by the lubricating oil tank 30 and returned to the lower oil tank 50 .
  • the shaft 10 includes a shaft body 11 and a sliding rotor 12 connected to the shaft body 11
  • Figure 3 shows is a structural schematic diagram of the shaft 10, the bearing 20 and the lubricating oil tank 30 in the embodiment of the present application, in which the sliding rotor 12 extends toward the low oil tank 50, and the sliding rotor 12 is spaced apart from the surface of the shaft body 11 to form an annular cavity 13.
  • the lubricating oil tank 30 has an annular inner baffle wall 31, an annular outer baffle wall 32, and an annular bottom wall 33 connected between the annular inner baffle wall 31 and the annular outer baffle wall 32.
  • the annular inner baffle wall 31 is located at the annular cavity 13
  • the annular outer baffle wall 32 is located on the side of the sliding rotor 12 away from the shaft body 11
  • the annular bottom wall 33 is located on the side of the sliding rotor 12 adjacent to the low oil tank 50 , that is, the annular inner baffle wall 31 and the annular outer baffle arm of the lubricating oil tank 30
  • the annular bottom wall 33 forms an annular chamber enclosed by the sliding rotor 12 and the bearing 20, so that the lubricating oil tank 30 encloses the bearing 20 and achieves the purpose of collecting lubricating medium.
  • the lubricating oil tank 30 may also have an annular top wall 34 that connects the annular inner baffle wall 31 and the upper part of the annular outer baffle arm, so that the entire lubricating oil tank 30 forms a sealed annular chamber.
  • the high-level oil tank 40 is used to supply the lubricating medium stored therein to the lubricating oil tank 30 so that the lubricating oil tank 30 can achieve spray lubrication.
  • Figure 4 shows a schematic diagram of the high-level fuel tank 40 in the embodiment of the present application.
  • the high-level fuel tank 40 has a first inlet 41 and a first outlet 42.
  • the first inlet 41 is located at
  • the high-level oil tank 40 is on the side away from the low-level oil tank 50 or located on the side of the high-level oil tank 40.
  • the outlet of the circulation pump 60 is connected to the first inlet 41 of the high-level oil tank 40 through a pipeline, so that the lubricating medium enters from the top or side of the high-level oil tank 40;
  • the first outlet 42 is located on the side of the high oil tank 40 adjacent to the low oil tank 50.
  • the first outlet 42 of the high oil tank 40 is connected to the lubricating oil tank 30 through a pipeline, so that all the lubricating medium in the high oil tank 40 can be delivered to the lubricating oil tank. 30 for lubrication, so that continuous lubrication can be performed while the shaft 10 stops rotating when the system shuts down abnormally.
  • the low-level oil tank 50 is used to collect the lubricating medium flowing back from the lubricating oil tank 30 so as to continue delivering it to the high-level oil tank 40 .
  • FIG. 5 shows a schematic diagram of the low-level fuel tank 50 in the embodiment of the present application.
  • the low-level fuel tank 50 has a second inlet 51 and a second outlet 52 .
  • the second inlet 51 is located on the side of the low oil tank 50 adjacent to the high oil tank 40.
  • the second inlet 51 of the low oil tank 50 is connected to the lubricating oil tank 30 through a pipeline, so that the lubricating medium in the lubricating oil tank 30 can flow back to the low oil tank 50 through the pipeline; and
  • the second outlet 52 is located on the side of the low oil tank 50 away from the high oil tank 40.
  • the inlet of the circulation pump 60 is connected to the second outlet 52 of the low oil tank 50 through a pipeline, so that the circulation pump 60 can suck the lubricating medium in the low oil tank 50.
  • the second outlet 52 is located at the bottom of the low-level oil tank 50 to prevent the circulation pump 60 from emptying.
  • the circulation pump 60 is used to pump the lubricating medium from the low-level oil tank 50 to the high-level oil tank 40 so that the lubricating medium circulates for lubrication.
  • the circulation pump 60 may be a vane pump or a reciprocating pump.
  • the liquid level of the lubricating medium in the high-level oil tank 40 and the low-level oil tank 50 is greater than the preset liquid level, and the liquid level of the lubricating medium in the lubricating oil tank 30 is close to or equal to 0.
  • the liquid level of the lubricating medium in the high-level oil tank 40 is The lubricating medium can continue to lubricate the bearing 20 when the shaft 10 stops rotating due to the influence of gravity when the unit is shut down abnormally.
  • the lubricating medium in the low-level oil tank 50 can prevent the circulation pump 60 from being sucked out. phenomenon; in addition, since the liquid level of the lubricating medium in the lubricating oil tank 30 is close to or equal to 0, foam and oil mist phenomena generated in the lubricating oil tank 30 due to the rotation of the shaft 10 relative to the bearing 20 can be avoided.
  • This application sets up a high-level oil tank 40 and a low-level oil tank 50 connected to the lubricating oil tank 30, and uses the circulation pump 60 to make the lubricating medium reach the high-level oil tank 40 from the low-level oil tank 50. Since the horizontal height of the high-level oil tank 40 relative to the bearing 20 is higher than that of the lubricating oil tank 30 relative to the horizontal height of the bearing 20, and the horizontal height of the low oil tank 50 relative to the bearing 20 is lower than the horizontal height of the lubricating oil tank 30 relative to the bearing 20, so the lubricating medium flows from the high oil tank 40 to the lubricating oil tank 30 for spraying due to the influence of gravity.
  • Lubrication, and the lubricating medium in the lubricating oil tank 30 is also affected by gravity and flows to the low-level oil tank 50.
  • the liquid levels of the lubricating medium in the high-level oil tank 40 and the low-level oil tank 50 are greater than the preset level, and the lubricating oil tank 30
  • the liquid level of the internal lubricating medium is close to or equal to 0, thereby achieving a zero liquid level in the lubricating oil tank 30 . Therefore, foam and oil mist phenomena generated in the lubricating oil tank 30 due to the rotation of the shaft 10 relative to the bearing 20 can be avoided.
  • the height of the lubricating oil tank 30 can be reduced, thereby reducing the centerline distance between the bearing 20 and the shaft 10 , ultimately shortening the length of the shaft 10 and improving the shaft system. critical speed purpose.
  • the preset liquid levels corresponding to the high oil tank 40 and the low oil tank 50 can be the same.
  • the preset liquid levels corresponding to the high oil tank 40 and the low oil tank 50 are both 50cm;
  • the liquid levels may also be different.
  • the preset liquid level corresponding to the high-level oil tank 40 is 80 cm, while the preset liquid level corresponding to the low-level oil tank 50 is both 50 cm.
  • the high-level oil tank 40 is filled with lubricating medium. Since the high-level oil tank 40 is filled with lubricating medium, all the lubricating medium pumped by the circulating pump 60 flows through the high-level oil tank 40 . Enters the lubricating oil tank 30, so the flow pumped by the circulating pump 60 is the lubricating medium entering The flow rate into the lubricating oil tank 30 is controlled, thereby making the flow rate of the lubricating medium into the lubricating oil tank 30 controllable, thereby improving the controllability of the bearing lubrication system.
  • the volume of the low-level oil tank 50 is greater than the volume of the high-level oil tank 40 . Since in the initial non-start-up state, there is no lubricating medium in the high-level oil tank 40 and only the low-level oil tank 50 has lubricating medium, so that the volume of the low-level oil tank 50 is larger than the volume of the high-level oil tank 40 , the circulating pump 60 fills the high-level oil tank 40 with lubricating medium. After the medium is removed, the low-level oil tank 50 still has a certain level of lubricating medium, thereby ensuring that the entire system can continue to circulate.
  • the high-level oil tank 40 needs to be filled with lubricating medium in order to control the flow of lubricating medium into the lubricating oil tank 30 through the circulation pump 60, and because the lubricating medium in the high-level oil tank 40 can play a role in shutdown lubrication protection when the machine is abnormally shut down, Therefore, the volume of the high-level oil tank 40 needs to be as large as possible to fully lubricate the bearing 20 during abnormal shutdown. This will cause the high-level oil tank 40 to be filled with lubricating medium for a long time, thereby prolonging the startup time of large-scale rotating equipment. In view of this phenomenon, this application For further improvements, see the following:
  • Figure 6 shows a schematic structural diagram of the bearing lubrication system in the embodiment of the present application, in which the high-level oil tank 40 includes a first high-level oil tank 410 and a second high-level oil tank 420.
  • the first high-level oil tank 410 is filled with lubricating medium, and the volume of the second high-level oil tank 420 is greater than the volume of the lubricating medium therein.
  • the circulation pump 60 can directly pump the lubricating medium into the first high-level oil tank 410, and the flow rate of the lubricating medium flowing out of the first high-level oil tank 410 is the circulation pump. 60 pumping flow rate, thereby making the flow rate of the lubricating medium entering the lubricating oil tank 30 controllable; and when a sudden abnormal shutdown occurs, the bearing 20 can be inspected sequentially through the lubricating medium in the first high-level oil tank 410 and the second high-level oil tank 420 lubrication, thereby ensuring that the entire system can continue to be lubricated under abnormal shutdown conditions.
  • the first high-level oil tank 410 can be reduced in size. 410 in volume, thereby shortening the time for the first high-level oil tank 410 to be filled with lubricating medium, and ultimately achieving the purpose of shortening the startup time of large rotating equipment.
  • the volume of the second high-level fuel tank 420 is greater than the volume of the first high-level fuel tank 410, so that the volume of the first high-level fuel tank 410 can be further reduced, and the first high-level fuel tank 410 can be further shortened. The time when the oil tank 410 is filled with lubricating medium.
  • the outlet of the circulation pump 60 is connected to the first high-level oil tank 410 through the first pipeline 430, and is connected to the second high-level oil tank 420 through the second pipeline 440.
  • the first high-level oil tank 410 is connected through the third high-level oil tank 410.
  • the pipeline 450 is connected to the lubricating oil tank 30
  • the second high-level oil tank 420 is connected to the lubricating oil tank 30 through the fourth pipeline 460 .
  • the first high-level oil tank 410 and the second high-level oil tank 420 are connected in parallel in the lubrication circuit.
  • the second pipeline 440 is provided with a first valve 470
  • the fourth pipeline 460 is provided with a second valve 480.
  • the first valve 470 and the second valve 480 are in a normally closed state.
  • the valve 470 and the second valve 480 can enable only the first high-level fuel tank 410 to be used under normal working conditions, and under abnormal shutdown conditions, the second valve 480 can be opened to simultaneously use the first high-level fuel tank 410 and the second high-level fuel tank.
  • the lubricating medium in 420 lubricates the bearing 20; and when the lubricating medium in the second high-level oil tank 420 needs to be replenished, the first valve 470 can be opened, and the lubricating medium is transported to the second high-level oil tank 420 through the circulation pump 60.
  • valves can also be provided on other pipelines of the bearing lubrication system, for example, valves can be provided on the pipeline between the first high-level oil tank 410 and the lubricating oil tank 30; and for example, between the low-level oil tank 50 and the lubricating oil tank 30. Valve is installed on the pipeline.
  • the bearing lubrication system also includes a cooler 70.
  • the cooler 70 can reduce the temperature of the lubricating medium flowing out through the lubricating oil tank 30.
  • the cooler 70 can be a tubular heat exchanger. heat exchanger, plate heat exchanger, etc.
  • the cooler 70 may be disposed between the circulation pump 60 and the low oil tank 50 .
  • the cooler 70 may be disposed between the circulation pump 60 and the high-level oil tank 40 .
  • cooler 70 can also be provided between the high-level oil tank 40 and the lubricating oil tank 30 ; or, the cooler 70 can also be provided between the lubricating oil tank 30 and the low-level oil tank 50 .
  • Figure 7 shows a schematic layout diagram of the first oil supply pipe 22 in the embodiment of the present application.
  • a first oil supply pipe 22 is provided between adjacent guide bearing pads 21.
  • the lubricating medium in the first oil supply pipe 22 comes from the high oil tank 40 and is supplied to the guide bearing.
  • the tiles 21 provide lubricating medium, realize spray oil supply between tiles, and ensure the lubrication effect of the guide bearing tiles 21.
  • FIG. 8 shows a schematic layout diagram of the second oil supply pipe 24 in the embodiment of the present application.
  • a second oil supply pipe 24 is provided between adjacent thrust bearing pads 23, and the lubricating medium of the second oil supply pipe 24 comes from the high oil tank 40.
  • the lubricating medium is provided to the thrust bearing pad 23 to realize spray oil supply between the pads and ensure the lubrication effect of the thrust bearing pad 23.
  • the first oil supply pipe 22 and the second oil supply pipe 22 can also be provided at the same time.
  • Figure 9 shows a schematic layout diagram of the first oil supply pipe 22 and the second oil supply pipe 24 in the embodiment of the present application.
  • the first oil supply pipe is provided in the adjacent guide bearing bush 21.
  • pipe 22, and a second oil supply pipe 24 is provided in the adjacent thrust bearing pad 23 to guide the bearing pad 21 and the thrust bearing pad 23 for lubrication at the same time.
  • FIG. 10 shows another structural schematic diagram of the bearing lubrication system in the embodiment of the present application, in which the bearing 20 includes a first bearing 210 and a second bearing 220 .
  • the bearing 210 cooperates with one end of the shaft 10
  • the second bearing 220 cooperates with the other end of the shaft 10, thereby limiting the radial movement and axial movement of the shaft 10 from both ends.
  • the first bearing 210 may be an upper guide bearing
  • the second bearing 220 may be composed of a thrust bearing and a lower guide bearing.
  • the first bearing 210 at the upper end of the shaft 10 is an upper guide bearing
  • the second bearing 220 at the lower end of the shaft 10 is composed of a lower guide bearing and a thrust bearing.
  • the first bearing 210 may be composed of a thrust bearing and an upper guide bearing
  • the second bearing 220 may be a lower guide bearing.
  • Figure 11 shows another structural schematic diagram of the bearing lubrication system in the embodiment of the present application.
  • the first bearing 210 at the upper end of the shaft 10 is composed of a thrust bearing and an upper guide bearing
  • the first bearing 210 at the lower end of the shaft 10 is composed of a thrust bearing and an upper guide bearing
  • the second bearing 220 is a lower guide bearing.
  • the lubricating oil tank 30 includes a first lubricating oil tank surrounding the first bearing 210 .
  • the oil tank 310 and the second lubricating oil tank 320 surrounding the second bearing 220 are used to collect the lubricating medium flowing through the first bearing 210 and the lubricating medium flowing through the second bearing 220 respectively.
  • the first lubricating oil tank 310 and the second lubricating oil tank 320 may At the same time, it is connected to the high-level oil tank 40 and the low-level oil tank 50 forms a parallel structure, so as to lubricate the first bearing 210 and the second bearing 220 at the same time.
  • the first lubricating oil tank 310 and the second lubricating oil tank 320 may At the same time, it is connected to the high-level oil tank 40 and the low-level oil tank 50 forms a parallel structure, so as to lubricate the first bearing 210 and the second bearing 220 at the same time.
  • the high-level oil tank 40 and the low-level oil tank 50 are connected to the first lubricating oil tank 310 , and the high-level oil tank 40 and the low-level oil tank 50 are connected to the second lubricating oil tank 320 , that is to say, the third A lubricating oil tank 310 and a second lubricating oil tank 320 form a parallel lubricating medium flow path.
  • the high-level oil tank 40 can only supply oil to the first lubricating oil tank 310.
  • Fig. 12 shows another structural schematic diagram of the bearing lubrication system in the embodiment of the present application.
  • the first lubricating oil tank 310 passes through the pipeline. It is connected to the high-level oil tank 40, and the first lubricating oil tank 310 is connected to the low-level oil tank 50 through a pipeline; alternatively, the high-level oil tank 40 can only supply oil to the second lubricating oil tank 320.
  • Figure 13 shows an embodiment of the present application.
  • FIG. 3 Another structural schematic diagram of the middle bearing lubrication system, the second lubricating oil tank 320 is connected to the high-level oil tank 40 through a pipeline, and the second lubricating oil tank 320 is connected to the low-level oil tank 50 through a pipeline.
  • the first lubricating oil tank 310 is connected to the high-level oil tank 40 through a pipeline
  • the second lubricating oil tank 320 is connected to the high-level oil tank 40 through a pipeline.
  • the pipeline is connected to the first lubricating oil tank 310; the first lubricating oil tank 310 is connected to the low-level oil tank 50 through the pipeline; and/or the second lubricating oil tank 320 is connected to the low-level oil tank 50 through the pipeline, that is to say, the first lubricating oil tank 310 is connected to the second lubricating oil tank 50.
  • the oil tanks 320 are connected in series in order to form a single lubricating medium circulation circuit.
  • Figure 14 shows another structural schematic diagram of the bearing lubrication system in the embodiment of the present application, in which the high oil tank 40 only lubricates the upper guide bearing at the upper end of the shaft 10 and the lower guide bearing at the bottom; for another example, refer to Figure 15, Figure 15 shows Another structural schematic diagram of the bearing lubrication system in the embodiment of the present application is shown, in which the high-level oil tank 40 simultaneously lubricates the upper guide bearing and the thrust bearing at the upper end of the shaft 10; for another example, refer to Figure 16, which shows the present application Another structural schematic diagram of the bearing lubrication system in the embodiment, in which the high-level oil tank 40 lubricates the upper guide bearing at the upper end of the shaft 10 at the same time.
  • the present application provides a rotating equipment.
  • the rotating equipment includes the rotating equipment described in any of the above embodiments.
  • Bearing lubrication system for example, the rotating equipment can be a generator motor, a water pump turbine, a wind turbine, etc. Since the rotating equipment in the embodiment of the present application includes the bearing lubrication system in the above embodiment, it has all the beneficial effects of the bearing lubrication system in the above embodiment, which will not be described again here.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,””approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical fields and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximations, in specific embodiments, such numerical values are set as accurately as feasible.

Abstract

本申请提供一种轴承润滑系统以及旋转设备,轴承润滑系统包括轴、轴承、润滑油箱、高位油箱、低位油箱以及循环泵,在循环泵运转过程中,高位油箱和低位油箱内润滑介质的液位大于预设液位,且润滑油箱内润滑介质的液位接近或等于0。本申请通过设置与润滑油箱连接的高位油箱以及低位油箱,并利用循环泵使润滑介质从低位油箱到达高位油箱,使润滑油箱内润滑介质的液位接近或等于0,进而实现了润滑油箱零液位,因此可以避免润滑油箱因轴相对于轴承的转动而产生的泡沫以及油雾现象。

Description

轴承润滑系统以及旋转设备
本申请要求于2022年07月15日提交中国专利局、申请号为202210836845.9、发明名称为“轴承润滑系统以及旋转设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轴承润滑技术领域,具体涉及一种轴承润滑系统以及旋转设备。
背景技术
目前,对于大型旋转设备而言,由于其旋转过程产生大量热量,因此需要使轴承浸泡在油箱内以降低轴承温度。
以抽水蓄能大型旋转设备发电电动机为例,发电电动机具有轴,轴表面外伸有滑转子,导轴承和推力轴承与滑转子接触,其中导轴承与滑转子侧面接触以限制轴径向移动,推力轴承与滑转子底面接触以限制滑转子轴向移动,导轴承、滑转子、推力轴承均浸泡在油箱内,以降低导轴承、滑转子以及推力轴承的温度。
然而,由于轴承浸泡在油箱内,滑转子相对轴承的转动同时对油箱内的润滑介质产生搅动作用,从而使得油箱内产生泡沫以及油雾现象,油雾溢出油箱附着在发电机上可能导致短路现象,影响发电电动机的安全稳定运行。
对此,申请人曾提出一种带高位油箱的导轴承瓦供油装置(中国专利公开号CN204239129U),其通过高位油箱以及喷油支管以喷淋的方式对导轴承进行润滑,无需将滑转子与轴承均浸泡在润滑介质内,从而降低了油箱内润滑介质的液位,有利于减轻油箱产生的泡沫以及油雾现象。
虽然此种方案可以减轻轴承的泡沫以及油雾现象,但油箱内还是必须存在一定液位的润滑介质,以避免泵吸入空气的现象。由于油箱内存在一定液位的润滑介质,因此油箱内还是会产生的泡沫以及油雾现象,并不能完全避免泡沫 以及油雾现象。
技术问题内容
本申请提供一种轴承润滑系统以及旋转设备,旨在解决目前大型旋转设备轴承润滑油箱内存在泡沫以及油雾的技术问题。
发明内容
第一方面,本申请提供一种轴承润滑系统,包括:
轴;
轴承,轴承与轴配合;
润滑油箱,润滑油箱围合轴承;
高位油箱,高位油箱相对于轴承的水平高度高于润滑油箱相对于轴承的水平高度;
低位油箱,低位油箱相对于轴承的水平高度低于润滑油箱相对于轴承的水平高度;
循环泵,循环泵的入口通过管线与低位油箱连接,循环泵的出口通过管线与高位油箱连接;
其中,高位油箱通过管线与润滑油箱连接,润滑油箱通过管线与低位油箱连接,在循环泵运转过程中,高位油箱和低位油箱内润滑介质的液位大于预设液位,且润滑油箱内润滑介质的液位接近或等于0。
在一些实施例中,在循环泵运转过程中,高位油箱内充满润滑介质。
在一些实施例中,低位油箱的容积大于高位油箱的容积。
在一些实施例中,高位油箱具有第一入口以及第一出口;
第一入口位于高位油箱背离低位油箱的一侧或高位油箱侧面,第一出口位于高位油箱相邻于低位油箱的一侧;
循环泵的出口通过管线与高位油箱的第一入口连接,高位油箱的第一出口通过管线与润滑油箱连接。
在一些实施例中,低位油箱具有第二入口以及第二出口;
第二入口位于低位油箱相邻于高位油箱的一侧,第二出口位于低位油箱背 离高位油箱的一侧;
循环泵的入口通过管线与低位油箱的第二出口连接,低位油箱的第二入口通过管线与润滑油箱连接。
在一些实施例中,高位油箱包括第一高位油箱以及第二高位油箱;
在循环泵运转过程中,第一高位油箱内充满润滑介质,第二高位油箱的容积大于其内润滑介质的体积。
在一些实施例中,第二高位油箱的容积大于第一高位油箱的容积。
在一些实施例中,循环泵的出口通过第一管线与第一高位油箱连接,并通过第二管线与第二高位油箱连接;
第一高位油箱通过第三管线与润滑油箱连接,第二高位油箱通过第四管线与润滑油箱连接;
其中,第二管线上设置有第一阀门,第四管线上设置有第二阀门,在循环泵运转过程中,第一阀门和第二阀门为常闭状态。
在一些实施例中,轴承润滑系统还包括冷却器;
冷却器设置于循环泵与低位油箱之间;或
冷却器设置于循环泵与高位油箱之间。
在一些实施例中,轴包括轴身以及连接于轴身上的滑转子;
轴承包括多个导轴承瓦,多个导轴承瓦环形阵列间隔布置且与滑转子背离轴身的表面接触,相邻的导轴承瓦之间设有第一供油管;和/或
轴承包括多个推力轴承瓦,多个推力轴承瓦环形阵列间隔布置且与滑转子朝向低位油箱的表面接触,相邻的推力轴承瓦之间设有第二供油管。
在一些实施例中,润滑油箱具有环形内挡壁、环形外挡壁,以及连接于环形内挡壁与环形外挡壁之间的环形底壁;
滑转子向低位油箱延伸,且滑转子与轴身表面间隔设置形成环形空腔;
环形内挡壁位于环形空腔处,环形外挡壁位于滑转子背离轴身的一侧,环形底壁位于滑转子相邻于低位油箱的一侧。
在一些实施例中,轴承包括第一轴承以及第二轴承,第一轴承与轴的一端配合,第二轴承与轴的另外一端配合;
润滑油箱包括围合第一轴承的第一润滑油箱以及围合第二轴承的第二润滑油箱。
在一些实施例中,第一润滑油箱通过管线与高位油箱连接,且第一润滑油箱通过管线与低位油箱连接;和/或
第二润滑油箱通过管线与高位油箱连接,且第二润滑油箱通过管线与低位油箱连接。
在一些实施例中,第一润滑油箱通过管线与高位油箱连接,第二润滑油箱通过管线与第一润滑油箱连接;
第一润滑油箱通过管线与低位油箱连接;和/或
第二润滑油箱通过管线与低位油箱连接。
第二方面,本申请提供一种旋转设备,包括如第一方面所述的轴承润滑系统。
本申请通过设置与润滑油箱连接的高位油箱以及低位油箱,并利用循环泵使润滑介质从低位油箱到达高位油箱,由于高位油箱相对于轴承的水平高度高于润滑油箱相对于轴承的水平高度,且低位油箱相对于轴承的水平高度低于润滑油箱相对于轴承的水平高度,因此润滑介质受重力影响从高位油箱流向润滑油箱进行喷淋润滑,而润滑油箱内的润滑介质也受到重力影响流向低位油箱,在循环泵运转过程中,高位油箱和低位油箱内润滑介质的液位大于预设液位,而润滑油箱内润滑介质的液位接近或等于0,进而实现了润滑油箱零液位,因此可以避免润滑油箱因轴相对于轴承的转动而产生的泡沫以及油雾现象。
此外,由于润滑油箱内润滑介质的液位接近或等于0,因此可以减小润滑油箱的高度,进而降低轴承与转子轴中心线距离,最终可以达到缩短轴长度并提升轴系临界转速的目的。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例中提供的轴承润滑系统的一种结构示意图;
图2是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图3是本申请实施例中提供的轴、轴承以及润滑油箱处的一种结构示意图;
图4是本申请实施例中提供的高位油箱的一种结构示意图;
图5是本申请实施例中提供的低位油箱的一种结构示意图;
图6是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图7是本申请实施例中提供的第一供油管的一种布置示意图;
图8是本申请实施例中提供的第二供油管的一种布置示意图;
图9是本申请实施例中提供的第一供油管与第二供油管的一种布置示意图;
图10是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图11是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图12是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图13是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图14是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图15是本申请实施例中提供的轴承润滑系统的另一种结构示意图;
图16是本申请实施例中提供的轴承润滑系统的另一种结构示意图。
其中,10轴,11轴身,12滑转子,13环形空腔;
20轴承,21导轴承瓦,22第一供油管,23推力轴承瓦,24第二供油管,210第一轴承,220第二轴承;
30润滑油箱,31环形内挡壁,32环形外挡壁,33环形顶壁,34环形顶壁,310第一润滑油箱,320第二润滑油箱;
40高位油箱,41第一入口,42第二出口,410第一高位油箱,420第二高位油箱,430第一管线,440第二管线,450第三管线,460第四管线,470第一阀门,480第二阀门;
50低位油箱,51第二入口,52第二出口,60循环泵,70冷却器,80转子,90定子。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
本申请实施例提供一种轴承润滑系统以及旋转设备,以下分别进行详细说明。
首先,参阅图1,图1示出了本申请实施例中轴承润滑系统的一种结构示意图,其中,轴承润滑系统包括:
轴10;
轴承20,轴承20与轴10配合;
润滑油箱30,润滑油箱30围合轴承20;
高位油箱40,高位油箱40相对于轴承20的水平高度高于润滑油箱30相对于 轴承20的水平高度;
低位油箱50,低位油箱50相对于轴承20的水平高度低于润滑油箱30相对于轴承20的水平高度;
循环泵60,循环泵60的入口通过管线与低位油箱50连接,循环泵60的出口通过管线与高位油箱40连接;
其中,高位油箱40通过管线与润滑油箱30连接,润滑油箱30通过管线与低位油箱50连接,在循环泵60运转过程中,高位油箱40和低位油箱50内润滑介质的液位大于预设液位,且润滑油箱30内润滑介质的液位接近或等于0。
具体的,轴10是指任意大型旋转设备的转动轴,例如发电电动机、水泵水轮机、风力发电机等的转动轴。一般地,轴10上承载有部分转动件,以发电电动机为例,轴10上安装有转子80,转子周围布置有定子90,通过转子80切割定子90的磁场线,从而进行发电。
在本申请的一些实施例中,参阅图2,图2示出了本申请实施例中轴承润滑系统的另一种结构示意图,轴10包括轴身11以及连接于轴身11上的滑转子12,滑转子12用于与轴承20接触,从而实现轴10径向移动和轴向移动的限制。
在本申请的一些实施例中,轴10可以竖直布置或者水平布置,例如卧式发电机或立式发电机的转动轴。可以理解地,轴10还可以倾斜布置。
轴承20与轴10配合并用于限制轴10的径向移动和轴向移动。在本申请的一些实施例中,例如对于轴10包括轴身11以及连接于轴身11上的滑转子12的实施例,参阅图2,轴承20包括多个导轴承瓦21,多个导轴承瓦21环形阵列间隔布置且与滑转子12背离轴身11的表面接触;和/或轴承20包括多个推力轴承瓦23,多个推力轴承瓦23环形阵列间隔布置且与滑转子12朝向低位油箱50的表面接触。其中,导轴承瓦21限制轴10径向移动,推力轴承瓦23限制轴10轴向移动,从而实现轴承20限制轴10径向移动和轴向移动的目的。可以理解地,轴承20还可以包括其他结构,例如轴承座、绝缘板等。
润滑油箱30用于围合轴承20,以使得润滑轴承20的润滑介质可以被润滑油箱30收集从而返回低位油箱50。在本申请的一些实施例中,例如对于轴10包括轴身11以及连接于轴身11上的滑转子12的实施例,参阅图2以及图3,图3示出 了本申请实施例中轴10、轴承20以及润滑油箱30处的一种结构示意图,其中,滑转子12向低位油箱50延伸,且滑转子12与轴身11表面间隔设置形成环形空腔13,润滑油箱30具有环形内挡壁31、环形外挡壁32,以及连接于环形内挡壁31与环形外挡壁32之间的环形底壁33,环形内挡壁31位于环形空腔13处,环形外挡壁32位于滑转子12背离轴身11的一侧,环形底壁33位于滑转子12相邻于低位油箱50的一侧,即润滑油箱30的环形内挡壁31、环形外挡臂以及环形底壁33围合形成了环形腔室,滑转子12与轴承20位于该环形腔室内,从而实现润滑油箱30围合轴承20并达到收集润滑介质的目的。
可以理解地,润滑油箱30还可以具有环形顶壁34,该环形顶壁34连接环形内挡壁31、环形外挡臂的上部,从而使得整个润滑油箱30形成密闭的环形腔室。
高位油箱40用于将其存储的润滑介质供应给润滑油箱30,以使得润滑油箱30实现喷淋润滑。在本申请的一些实施例中,参阅图4,图4示出了本申请实施例中高位油箱40的一种示意图,高位油箱40具有第一入口41以及第一出口42,第一入口41位于高位油箱40背离低位油箱50的一侧或位于所述高位油箱40侧面,循环泵60的出口通过管线与高位油箱40的第一入口41连接,从而润滑介质从高位油箱40的顶部或侧面进入;而第一出口42位于高位油箱40相邻于低位油箱50的一侧,高位油箱40的第一出口42通过管线与润滑油箱30连接,从而使得高位油箱40内的润滑介质可以全部输送给润滑油箱30进行润滑,以达到在系统异常停机时在轴10停止旋转的过程中可以进行持续的润滑。
低位油箱50用于收集从润滑油箱30处回流的润滑介质,以便于继续输送给高位油箱40。在本申请的一些实施例中,参阅图5,图5示出了本申请实施例中低位油箱50的一种示意图,其中,低位油箱50具有第二入口51以及第二出口52,第二入口51位于低位油箱50相邻于高位油箱40的一侧,低位油箱50的第二入口51通过管线与润滑油箱30连接,以便于润滑油箱30内的润滑介质通过管线回流至低位油箱50内;而第二出口52位于低位油箱50背离高位油箱40的一侧,循环泵60的入口通过管线与低位油箱50的第二出口52连接,以便于循环泵60吸入低位油箱50内的润滑介质,同时由于低位油箱50内始终具有一定量的润滑介质,因此第二出口52位于低位油箱50的底部可以避免循环泵60吸空现象。
循环泵60用于将润滑介质从低位油箱50泵送至高位油箱40处,以使润滑介质进行循环润滑。示例性地,循环泵60可以为叶片泵或者往复泵。在本申请循环泵60运转过程中,高位油箱40和低位油箱50内润滑介质的液位大于预设液位,且润滑油箱30内润滑介质的液位接近或等于0,其中高位油箱40内的润滑介质可以在机组异常关机时,高位油箱40内的润滑介质受重力影响可以持续对轴10停止旋转过程中的轴承20进行润滑;而低位油箱50内的润滑介质,可以避免循环泵60吸空现象;此外,由于润滑油箱30内润滑介质的液位接近或等于0,因此可以避免润滑油箱30因轴10相对于轴承20的转动而产生的泡沫以及油雾现象。
本申请通过设置与润滑油箱30连接的高位油箱40以及低位油箱50,并利用循环泵60使润滑介质从低位油箱50到达高位油箱40,由于高位油箱40相对于轴承20的水平高度高于润滑油箱30相对于轴承20的水平高度,且低位油箱50相对于轴承20的水平高度低于润滑油箱30相对于轴承20的水平高度,因此润滑介质受重力影响从高位油箱40流向润滑油箱30进行喷淋润滑,而润滑油箱30内的润滑介质也受到重力影响流向低位油箱50,在循环泵60运转过程中,高位油箱40和低位油箱50内润滑介质的液位大于预设液位,而润滑油箱30内润滑介质的液位接近或等于0,进而实现了润滑油箱30零液位,因此可以避免润滑油箱30因轴10相对于轴承20的转动而产生的泡沫以及油雾现象。
此外,由于润滑油箱30内润滑介质的液位接近或等于0,因此可以减小润滑油箱30的高度,进而降低轴承20与轴10的中心线距离,最终可以达到缩短轴10长度并提升轴系临界转速的目的。
需要说明的是,高位油箱40和低位油箱50对应的预设液位可以相同,例如高位油箱40和低位油箱50对应的预设液位均为50cm;高位油箱40和低位油箱50对应的预设液位也可以不相同,例如高位油箱40对应的预设液位为80cm,而低位油箱50对应的预设液位均为50cm。
在本申请的一些实施例中,在循环泵60运转过程中,高位油箱40内充满润滑介质,由于高位油箱40内充满润滑介质,那么循环泵60泵送润滑介质流经高位油箱40后则全部进入润滑油箱30,因此循环泵60泵送的流量即为润滑介质进 入润滑油箱30的流量,从而使得进入润滑油箱30内的润滑介质流量可控,提高了轴承润滑系统的可控性。
在本申请的一些实施例中,例如对于高位油箱40内充满润滑介质的实施例,低位油箱50的容积大于高位油箱40的容积。由于在初始未开机的状态下,高位油箱40内无润滑介质,仅低位油箱50内具有润滑介质,使低位油箱50的容积大于高位油箱40的容积,在循环泵60将高位油箱40内充满润滑介质后,低位油箱50仍具有一定液位的润滑介质,从而保证整个系统可以持续进行循环。
进一步地,由于需要将高位油箱40充满润滑介质,以便于通过循环泵60控制润滑介质进入润滑油箱30的流量,又由于高位油箱40内润滑介质在异常关机时可以起到关机润滑保护的作用,因此高位油箱40的体积需要尽量大,以在异常关机时充分润滑轴承20,这将导致高位油箱40充满润滑介质的时间较长,从而延长大型旋转设备的启动时间,针对此种现象,本申请进一步进行改进,请参阅下述内容:
继续参阅图6,图6示出了本申请实施例中轴承润滑系统的一种结构示意图,其中,高位油箱40包括第一高位油箱410以及第二高位油箱420,在循环泵60运转过程中,第一高位油箱410内充满润滑介质,第二高位油箱420的容积大于其内润滑介质的体积。
需要说明的是,由于第一高位油箱410内充满润滑介质,因此循环泵60可以直接将润滑介质泵送入第一高位油箱410内,而流出第一高位油箱410的润滑介质流量即为循环泵60泵送的流量,进而使得进入润滑油箱30的润滑介质流量可控;而当突发异常停机时,则可以依次通过第一高位油箱410、第二高位油箱420内的润滑介质对轴承20进行润滑,从而保证整个系统在异常停机状态下可以持续进行润滑,同时,由于对于异常停机状态下的润滑介质分别由第一高位油箱410、第二高位油箱420提供,因此可以减小第一高位油箱410的体积,从而缩短第一高位油箱410充满润滑介质的时间,最终达到缩短大型旋转设备启动时间的目的。
在本申请的一些实施例中,第二高位油箱420的容积大于第一高位油箱410的容积,从而可以进一步减小第一高位油箱410的体积,进一步缩短第一高位 油箱410充满润滑介质的时间。
作为一种示例,继续参阅图6,循环泵60的出口通过第一管线430与第一高位油箱410连接,并通过第二管线440与第二高位油箱420连接,第一高位油箱410通过第三管线450与润滑油箱30连接,第二高位油箱420通过第四管线460与润滑油箱30连接。也就是说,在高位油箱40、润滑油箱30、低位油箱50、循环泵60依次连接并组成的润滑回路中,第一高位油箱410和第二高位油箱420在该润滑回路中并联,同时在第二管线440上设置有第一阀门470,在第四管线460上设置有第二阀门480,在循环泵60运转过程中,第一阀门470和第二阀门480为常闭状态,通过关闭第一阀门470以及第二阀门480,即可使得正常工作状态下只利用第一高位油箱410,而在异常关机状态下,则可以打开第二阀门480,同时通过第一高位油箱410和第二高位油箱420内的润滑介质对轴承20进行润滑;而当需要补充第二高位油箱420内润滑介质时,则可以打开第一阀门470,通过循环泵60将润滑介质输送至第二高位油箱420内。
可以理解地,还可以在轴承润滑系统的其他管线处设置阀门,例如,在第一高位油箱410与润滑油箱30之间的管线上设置阀门;又例如,在低位油箱50与润滑油箱30之间的管线上设置阀门。
在本申请的一些实施例中,参阅图1,轴承润滑系统还包括冷却器70,冷却器70可以降低经润滑油箱30流出润滑介质的温度,示例性地,冷却器70可以为管式换热器、板式换热器等。在本申请的一些实施例中,冷却器70可以设置于循环泵60与低位油箱50之间。在本申请的另外一些实施例中,冷却器70可以设置于循环泵60与高位油箱40之间。
可以理解地,还可以在高位油箱40与润滑油箱30之间设置冷却器70;或者,还可以在润滑油箱30与低位油箱50之间设置冷却器70。
在本申请的一些实施例中,例如对于轴承20包括多个导轴承瓦21的实施例,参阅图7,图7示出了本申请实施例中第一供油管22的一种布置示意图,在多个导轴承瓦21环形阵列间隔布置的情况下,相邻的导轴承瓦21之间设有第一供油管22,第一供油管22的润滑介质来自高位油箱40,并向导轴承瓦21提供润滑介质,实现瓦间喷淋供油,保证导轴承瓦21的润滑效果。
在本申请的一些实施例中,例如对于轴承20包括多个推力轴承瓦23的实施例,参阅图8,图8示出了本申请实施例中第二供油管24的一种布置示意图,其中,在多个推力轴承瓦23环形阵列间隔布置且的情况下,相邻的推力轴承瓦23之间设有第二供油管24,第二供油管24的润滑介质来自高位油箱40,并向推力轴承瓦23提供润滑介质,实现瓦间喷淋供油,保证推力轴承瓦23的润滑效果。
可以理解地,对于本申请的一些实施例中,例如对于轴承20包括多个导轴承瓦21以及多个推力轴承瓦23的实施例,还可以同时设置第一供油管22和第二供油管24,例如参阅图9,图9示出了本申请实施例中第一供油管22、第二供油管24的一种布置示意图,在相邻的导轴承瓦21设置第一供油管22,并在相邻的推力轴承瓦23设置第二供油管24,以同时导轴承瓦21和推力轴承瓦23进行润滑。
在本申请的一些实施例中,参阅图10,图10示出了本申请实施例中轴承润滑系统的另一种结构示意图,其中,轴承20包括第一轴承210以及第二轴承220,第一轴承210与轴10的一端配合,第二轴承220与轴10的另外一端配合,从而从两端限制轴10的径向移动和轴向移动。
在本申请的一些实施例中,第一轴承210可以是上导轴承,第二轴承220可以由推力轴承与下导轴承组成。例如,参阅图10,轴10上端的第一轴承210为上导轴承,轴10下端的第二轴承220由下导轴承与推力轴承组成。
在本申请的一些实施例中,第一轴承210可以由推力轴承与上导轴承组成,第二轴承220可以是下导轴承。例如,参阅图11,图11示出了本申请实施例中轴承润滑系统的另一种结构示意图,其中,轴10上端的第一轴承210为由推力轴承与上导轴承组成,轴10下端的第二轴承220为下导轴承。
在本申请的一些实施例中,继续参阅图10以及图11,例如对于上述轴承20包括第一轴承210以及第二轴承220的实施例,润滑油箱30包括围合第一轴承210的第一润滑油箱310以及围合第二轴承220的第二润滑油箱320,以便于分别收集流经第一轴承210的润滑介质以及流经第二轴承220的润滑介质。
在本申请的一些实施例中,例如对于上述润滑油箱30包括第一润滑油箱310以及第二润滑油箱320的实施例,第一润滑油箱310与第二润滑油箱320可以 同时与高位油箱40连接、低位油箱50形成并联结构,以便于同时对第一轴承210和第二轴承220进行润滑。例如,继续参阅图10以及图11,在循环回路中,高位油箱40和低位油箱50与第一润滑油箱310连接,并且高位油箱40和低位油箱50与第二润滑油箱320连接,也就是说第一润滑油箱310和第二润滑油箱320形成并联的润滑介质流动路线。
可以理解地,高位油箱40可以仅向第一润滑油箱310供油,例如参阅图12,图12示出了本申请实施例中轴承润滑系统的另一种结构示意图,第一润滑油箱310通过管线与高位油箱40连接,且第一润滑油箱310通过管线与低位油箱50连接;或者,高位油箱40可以仅向第二润滑油箱320供油,例如参阅图13,图13示出了本申请实施例中轴承润滑系统的另一种结构示意图,第二润滑油箱320通过管线与高位油箱40连接,且第二润滑油箱320通过管线与低位油箱50连接。
在本申请的一些实施例中,例如对于上述润滑油箱30包括第一润滑油箱310以及第二润滑油箱320的实施例,第一润滑油箱310通过管线与高位油箱40连接,第二润滑油箱320通过管线与第一润滑油箱310连接;第一润滑油箱310通过管线与低位油箱50连接;和/或第二润滑油箱320通过管线与低位油箱50连接,也就是说第一润滑油箱310与第二润滑油箱320依次串联,以便于形成单一性的润滑介质循环回路。
值得注意的是,上述关于轴承润滑系统的内容旨在清楚说明本申请的实施例验证过程,本领域技术人员在本申请的指导下,可以做出等同的修改设计,例如参阅图14,图14示出了本申请实施例中轴承润滑系统的另外一种结构示意图,其中高位油箱40仅对轴10上端的上导轴承以及底部的下导轴承进行润滑;又例如,参阅图15,图15示出了本申请实施例中轴承润滑系统的另外一种结构示意图,其中高位油箱40同时对轴10上端的上导轴承以及推力轴承进行润滑;再例如,参阅图16,图16示出了本申请实施例中轴承润滑系统的另外一种结构示意图,其中高位油箱40同时对轴10上端的上导轴承进行润滑。
进一步地,为了更好的实施本申请实施例中的轴承润滑系统,在轴承润滑系统的基础上,本申请提供一种旋转设备,旋转设备包括上述任一实施例所述 的轴承润滑系统,示例性地,旋转设备可以为发电电动机、水泵水轮机、风力发电机等。由于本申请实施例中的旋转设备包含上述实施例中的轴承润滑系统,因此具备上述实施例中轴承润滑系统的全部有益效果,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对其他实施例的详细描述,此处不再赘述。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考,但与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
以上对本申请实施例所提供的一种轴承润滑系统以及旋转设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种轴承润滑系统,其中,包括:
    轴;
    轴承,所述轴承与所述轴配合;
    润滑油箱,所述润滑油箱围合所述轴承;
    高位油箱,所述高位油箱相对于所述轴承的水平高度高于所述润滑油箱相对于所述轴承的水平高度;
    低位油箱,所述低位油箱相对于所述轴承的水平高度低于所述润滑油箱相对于所述轴承的水平高度;
    循环泵,所述循环泵的入口通过管线与所述低位油箱连接,所述循环泵的出口通过管线与所述高位油箱连接;
    所述高位油箱通过管线与所述润滑油箱连接,所述润滑油箱通过管线与所述低位油箱连接,在所述循环泵运转过程中,所述高位油箱和所述低位油箱内润滑介质的液位大于预设液位,且所述润滑油箱内润滑介质的液位接近或等于0。
  2. 如权利要求1所述的轴承润滑系统,其中,在所述循环泵运转过程中,所述高位油箱内充满润滑介质。
  3. 如权利要求2所述的轴承润滑系统,其中,所述低位油箱的容积大于所述高位油箱的容积。
  4. 如权利要求1所述的轴承润滑系统,其中,所述高位油箱具有第一入口以及第一出口;
    所述第一入口位于所述高位油箱背离所述低位油箱的一侧,所述第一出口位于所述高位油箱相邻于所述低位油箱的一侧;
    所述循环泵的出口通过管线与所述第一入口连接,所述第一出口通过管线与所述润滑油箱连接。
  5. 如权利要求4所述的轴承润滑系统,其中,所述低位油箱具有第二入口以及第二出口;
    所述第二入口位于所述低位油箱相邻于所述高位油箱的一侧,所述第二出口位于所述低位油箱背离所述高位油箱的一侧;
    所述循环泵的入口通过管线与所述第二出口连接,所述第二入口通过管线与所述润滑油箱连接。
  6. 如权利要求1所述的轴承润滑系统,其中,所述高位油箱包括第一高位油箱以及第二高位油箱;
    在所述循环泵运转过程中,所述第一高位油箱内充满润滑介质,所述第二高位油箱的容积大于其内润滑介质的体积。
  7. 如权利要求6所述的轴承润滑系统,其中,所述第二高位油箱的容积大于所述第一高位油箱的容积。
  8. 如权利要求6所述的轴承润滑系统,其中,所述循环泵的出口通过第一管线与所述第一高位油箱连接,并通过第二管线与所述第二高位油箱连接;
    所述第一高位油箱通过第三管线与所述润滑油箱连接,所述第二高位油箱通过第四管线与所述润滑油箱连接;
    其中,所述第二管线上设置有第一阀门,所述第四管线上设置有第二阀门,在所述循环泵运转过程中,所述第一阀门和所述第二阀门为常闭状态。
  9. 如权利要求1所述的轴承润滑系统,其中,所述轴承润滑系统还包括冷却器;
    所述冷却器设置于所述循环泵与所述低位油箱之间。
  10. 如权利要求1所述的轴承润滑系统,其中,所述轴承润滑系统还包括冷却器,所述冷却器设置于所述循环泵与所述高位油箱之间。
  11. 如权利要求1所述的轴承润滑系统,其中,所述轴包括轴身以及连接于所述轴身上的滑转子;
    所述轴承包括多个导轴承瓦,所述多个导轴承瓦环形阵列间隔布置且与所述滑转子背离所述轴身的表面接触,相邻的所述导轴承瓦之间设有第一供油管。
  12. 如权利要求11所述的轴承润滑系统,其中,所述轴承还包括多个推力轴承瓦,所述多个推力轴承瓦环形阵列间隔布置且与所述滑转子朝向所述低位油箱的表面接触,相邻的所述推力轴承瓦之间设有第二供油管。
  13. 如权利要求11所述的轴承润滑系统,其中,所述润滑油箱具有环形内 挡壁、环形外挡壁,以及连接所述于所述环形内挡壁与所述环形外挡壁之间的环形底壁;
    所述滑转子向所述低位油箱延伸,且所述滑转子与所述轴身表面间隔设置形成环形空腔;
    所述环形内挡壁位于所述环形空腔处,所述环形外挡壁位于所述滑转子背离所述轴身的一侧,所述环形底壁位于所述滑转子相邻于所述低位油箱的一侧。
  14. 如权利要求1所述的轴承润滑系统,其中,所述轴承包括第一轴承以及第二轴承,所述第一轴承与所述轴的一端配合,所述第二轴承与所述轴的另外一端配合;
    所述润滑油箱包括围合所述第一轴承的第一润滑油箱以及围合所述第二轴承的第二润滑油箱。
  15. 如权利要求14所述的轴承润滑系统,其中,所述第一润滑油箱通过管线与所述高位油箱连接,且所述第一润滑油箱通过管线与所述低位油箱连接。
  16. 如权利要求14所述的轴承润滑系统,其中,所述第二润滑油箱通过管线与所述高位油箱连接,且所述第二润滑油箱通过管线与所述低位油箱连接。
  17. 如权利要求14所述的轴承润滑系统,其中,所述第一润滑油箱通过管线与所述高位油箱连接,所述第二润滑油箱通过管线与所述第一润滑油箱连接。
  18. 如权利要求14所述的轴承润滑系统,其中,所述第一润滑油箱通过管线与所述低位油箱连接。
  19. 如权利要求14所述的轴承润滑系统,其中,所述第二润滑油箱通过管线与所述低位油箱连接。
  20. 一种旋转设备,其中,包括如权利要求1至19任一项所述的轴承润滑系统。
PCT/CN2023/095319 2022-07-15 2023-05-19 轴承润滑系统以及旋转设备 WO2024012049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210836845.9 2022-07-15
CN202210836845.9A CN115163668A (zh) 2022-07-15 2022-07-15 轴承润滑系统以及旋转设备

Publications (1)

Publication Number Publication Date
WO2024012049A1 true WO2024012049A1 (zh) 2024-01-18

Family

ID=83494613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095319 WO2024012049A1 (zh) 2022-07-15 2023-05-19 轴承润滑系统以及旋转设备

Country Status (2)

Country Link
CN (1) CN115163668A (zh)
WO (1) WO2024012049A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163669B (zh) * 2022-07-15 2023-07-18 东方电气集团东方电机有限公司 轴承润滑系统运行方法、旋转设备以及计算机可读存储介质
CN115164080B (zh) * 2022-07-15 2024-04-05 东方电气集团东方电机有限公司 发电机及其启动方法、关机方法、计算机可读存储介质
CN115163668A (zh) * 2022-07-15 2022-10-11 东方电气集团东方电机有限公司 轴承润滑系统以及旋转设备
CN115523413A (zh) * 2022-10-18 2022-12-27 东方电气集团东方电机有限公司 润滑油循环系统以及发电电动机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917098A (ja) * 1982-07-15 1984-01-28 Fuji Electric Co Ltd 立形回転電機の軸受
CN102777756A (zh) * 2012-06-29 2012-11-14 东芝水电设备(杭州)有限公司 灯泡贯流机组润滑油液压系统及控制方法
CN106194289A (zh) * 2016-09-23 2016-12-07 岭东核电有限公司 一种汽轮机调节装置及其应用方法
CN115164080A (zh) * 2022-07-15 2022-10-11 东方电气集团东方电机有限公司 发电机及其启动方法、关机方法、计算机可读存储介质
CN115163668A (zh) * 2022-07-15 2022-10-11 东方电气集团东方电机有限公司 轴承润滑系统以及旋转设备
CN115163669A (zh) * 2022-07-15 2022-10-11 东方电气集团东方电机有限公司 轴承润滑系统运行方法、旋转设备以及计算机可读存储介质
CN217582902U (zh) * 2022-07-15 2022-10-14 东方电气集团东方电机有限公司 轴承润滑系统以及旋转设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917098A (ja) * 1982-07-15 1984-01-28 Fuji Electric Co Ltd 立形回転電機の軸受
CN102777756A (zh) * 2012-06-29 2012-11-14 东芝水电设备(杭州)有限公司 灯泡贯流机组润滑油液压系统及控制方法
CN106194289A (zh) * 2016-09-23 2016-12-07 岭东核电有限公司 一种汽轮机调节装置及其应用方法
CN115164080A (zh) * 2022-07-15 2022-10-11 东方电气集团东方电机有限公司 发电机及其启动方法、关机方法、计算机可读存储介质
CN115163668A (zh) * 2022-07-15 2022-10-11 东方电气集团东方电机有限公司 轴承润滑系统以及旋转设备
CN115163669A (zh) * 2022-07-15 2022-10-11 东方电气集团东方电机有限公司 轴承润滑系统运行方法、旋转设备以及计算机可读存储介质
CN217582902U (zh) * 2022-07-15 2022-10-14 东方电气集团东方电机有限公司 轴承润滑系统以及旋转设备

Also Published As

Publication number Publication date
CN115163668A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024012049A1 (zh) 轴承润滑系统以及旋转设备
CN217582902U (zh) 轴承润滑系统以及旋转设备
WO2024012050A1 (zh) 轴承润滑系统运行方法、旋转设备以及计算机可读存储介质
WO2024012051A1 (zh) 发电机及其启动方法、关机方法、计算机可读存储介质
CN103825404B (zh) 电机与变速器集成冷却系统
JPS624600B2 (zh)
US9897099B1 (en) Impeller for liquid sealed pump
BR112019019244A2 (pt) sistema de lubrificação para um trem de acionamento de uma turbina eólica
CN211624557U (zh) 一种防堵石油管道
CN209129874U (zh) 一种高温长轴熔盐泵
CN109436280B (zh) 一种舱柜节能系统热交换箱及船舶燃油预热系统
US4455099A (en) Bearing lubricating system for electric rotary machine
CN209943181U (zh) 压缩机供油系统
WO2023098171A1 (zh) 一种高转速电机的储油机构和高转速电机
CN204239129U (zh) 一种带高位油箱的导轴承瓦供油装置
CN204099110U (zh) 一种带高位油箱的推力瓦供油装置
JP5271928B2 (ja) 循環ポンプ
CN203641072U (zh) 立式液下泵轴承保护装置
CN209622450U (zh) 一种用于轴承试验台的高温润滑装置
CN107575282A (zh) 发动机油底壳、电子控制单元、发动机及汽车
CN210152964U (zh) 一种风机轴承箱
CN115875585A (zh) 润滑系统以及旋转设备
CN219454440U (zh) 一种冷热一体机平衡水箱
CN109139485A (zh) 一种高温长轴熔盐泵
CN214617096U (zh) 一种屏蔽泵注液清洗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838543

Country of ref document: EP

Kind code of ref document: A1