WO2024011776A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024011776A1
WO2024011776A1 PCT/CN2022/125058 CN2022125058W WO2024011776A1 WO 2024011776 A1 WO2024011776 A1 WO 2024011776A1 CN 2022125058 W CN2022125058 W CN 2022125058W WO 2024011776 A1 WO2024011776 A1 WO 2024011776A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel driving
display panel
light
driving unit
data signal
Prior art date
Application number
PCT/CN2022/125058
Other languages
English (en)
French (fr)
Inventor
马扬昭
代好
Original Assignee
武汉天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉天马微电子有限公司 filed Critical 武汉天马微电子有限公司
Publication of WO2024011776A1 publication Critical patent/WO2024011776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present application relates to the field of display technology, for example, to a display panel and a display device.
  • Display devices such as mobile phones and tablets often need to reserve space on the front for commonly used electronic photosensitive devices such as front cameras, infrared sensing devices, and fingerprint recognition devices.
  • these photosensitive devices are placed at the top of the front of the display device, forming a non-display area at the corresponding location, resulting in a reduction in the screen-to-body ratio of the device.
  • an optical component area can be set up in the display area of the display panel to accommodate the above-mentioned photosensitive device.
  • the optical component area is set in the display area of the display screen, and the camera is set below the screen and correspondingly set in the optical component area.
  • the optical component area can play a display role; when it is necessary to take photos or videos, the camera takes photos or videos through the optical component area, so that the optical component area can simultaneously realize the display and shooting functions.
  • how to improve the light transmittance of the optical component area and the overall display effect of the display panel has become one of the research trends.
  • This application provides a display panel and display device, aiming to improve the light transmittance and photosensitive performance of the product in the optical component area, and improve the overall display quality of the product.
  • This application provides a display panel, including:
  • a display area the display area includes a first display area and an optical component area
  • a light-emitting element includes a first light-emitting element and a second light-emitting element, the first light-emitting element is located in the first display area, and the second light-emitting element is located in the optical component area;
  • the first display area includes a plurality of pixel driving unit columns arranged along a first direction, the pixel driving unit column includes a first pixel driving unit column, and the first pixel driving unit column includes a plurality of first pixel driving circuits. , one of the first pixel driving circuits is electrically connected to one of the second light-emitting elements.
  • the present application provides a display device, including the display panel provided above.
  • Figure 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the arrangement of pixel driving circuits in a display panel provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of the connection between the second light-emitting element in the optical component area and the first pixel driving circuit in the first display area of a display panel provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the connection between the second light-emitting element in the optical component area and the first pixel driving circuit in the first display area of another display panel provided by an embodiment of the present application;
  • Figure 5 is a schematic diagram of the connection between the second light-emitting element in the optical component area and the first pixel driving circuit in the first display area of another display panel provided by an embodiment of the present application;
  • Figure 6 is a schematic diagram of a film layer of a display panel provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the connection between the second light-emitting element in the optical component area and the first pixel driving circuit in the first display area of another display panel provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of the connection between a pixel driving circuit and a data signal line in a first pixel driving unit column according to an embodiment of the present application
  • Figure 9 is a schematic diagram of the connection between the first pixel driving circuit and the data signal line in a display panel provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the connection between a first dummy pixel driving circuit and a data signal line provided by an embodiment of the present application;
  • Figure 11 is a schematic diagram of the arrangement of pixel driving circuits in another display panel provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the distribution of pixel driving unit columns around an optical component area provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of the connection between a second dummy pixel driving circuit and a data signal line provided by an embodiment of the present application;
  • Figure 14 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of a film layer between a first signal line and a first connection part or a second connection part provided by an embodiment of the present application;
  • Figure 19 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of the connection between at least two first pixel driving circuits and the same second light-emitting element in a display panel provided by an embodiment of the present application;
  • FIG. 23 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • any values should be construed as exemplary only. Accordingly, other examples of the exemplary embodiments may have different values.
  • the screen-to-body ratio of the display panel is increased and a narrow frame or frameless display effect is achieved.
  • the pixel driving circuit in the optical component area is usually used to drive the light-emitting element in the optical component area to emit light.
  • the pixel driving circuit usually includes electronic components such as transistors, when the pixel driving circuit is arranged in the optical component area, it will have a greater impact on the light transmittance of the optical component area and affect the photosensitive performance of the optical component area.
  • the present application provides a display panel, including: a display area, the display area includes a first display area and an optical component area; a light-emitting element, the light-emitting element includes a first light-emitting element and a second light-emitting element, the first light-emitting element The element is located in the first display area, and the second light-emitting element is located in the optical component area; the first display area includes a plurality (two or more) of pixel driving unit columns arranged along the first direction, The pixel driving unit column includes a first pixel driving unit column, and the first pixel driving unit column includes a plurality (two or more) of first pixel driving circuits, one of the first pixel driving circuits and one of the first pixel driving circuits.
  • the second light-emitting element is electrically connected.
  • the first pixel driving circuit connected to the second light-emitting element in the optical component area is arranged in the first display area to avoid occupying the space of the optical component area and effectively improve the light transmittance of the optical component area, thereby conducive to improving the optical component area. photosensitive properties.
  • the electrical connection method between the first pixel driving circuit and the second light-emitting element is also conducive to improving the driving performance of the second light-emitting element and improving the display effect of the optical component area in the display stage, which is conducive to improving the display panel and display device. overall display quality.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 1 shows a schematic arrangement of the first light-emitting element P1 and the second light-emitting element P2 on the display panel 100.
  • FIG. 2 is a schematic diagram of the arrangement of a pixel driving circuit in a display panel provided by an embodiment of the present application. It is a schematic diagram of the arrangement of the pixel driving circuit 20.
  • the first light-emitting element P1 and the second light-emitting element are not shown in Figure 2.
  • Figure 3 is a schematic diagram of the connection between the second light-emitting element in the optical component area of the display panel and the first pixel driving circuit in the first display area provided by the embodiment of the present application. To reflect the connection relationship between the two, Figure 3 is also The first light emitting element P1 and other pixel driving circuits in the first display area AA1 are not shown.
  • This embodiment provides a display panel 100, including:
  • the display area AA includes the first display area AA1 and the optical component area AA2; the light-emitting element P, the light-emitting element P includes the first light-emitting element P1 and the second light-emitting element P2, the first light-emitting element P1 is located in the first display area AA1 , the second light-emitting element P2 is located in the optical component area AA2; the first display area AA1 includes a plurality (two or more) of pixel driving unit columns 10 arranged along the first direction D1, and the pixel driving unit column 10 includes the first pixel The driving unit column 11 and the first pixel driving unit column 11 include a plurality (two or more) of first pixel driving circuits 21.
  • One first pixel driving circuit 21 is electrically connected to one second light-emitting element P2.
  • a first display area AA1 and an optical component area AA2 are provided.
  • the first display area AA1 at least partially surrounds the optical component area AA2.
  • Figures 1 and 2 take the first display area AA1 semi-surrounding the optical component area AA2 as an example.
  • the optical component area AA2 is configured to provide a camera, Infrared sensing devices, fingerprint recognition devices and other electronic photosensitive devices.
  • the first display area AA1 is provided with a first light-emitting element P1
  • the optical component area AA2 is provided with a second light-emitting element P2. In the display stage, both the optical component area AA2 and the first display area AA1 exert display functions.
  • the two light-emitting elements P2 are driven by the first pixel driving circuit 21 to emit light; in the light-sensing stage, the optical component area AA2 serves as a light-transmitting area to realize the light-sensing function. At this time, the second light-emitting element P2 of the optical component area AA2 does not need to emit light.
  • the optical component area AA2 is equipped with a camera, in the light sensing stage, the optical component area AA2 serves as a light-transmitting area to implement the picture shooting function.
  • the optical component area AA2 is integrated into the display area AA, which is beneficial to reducing the space of the non-display area of the display panel 100, thereby facilitating the realization of a narrow frame or frameless design of the display panel 100.
  • the first pixel driving circuit 21 configured to drive the second light-emitting element P2 in the optical component area AA2 to emit light is arranged in the first pixel driving unit column 11 in the first display area AA1, and the first pixel is not
  • the driving circuit 21 is disposed in the optical component area AA2, thereby avoiding the influence of the first pixel area driving circuit on the light transmittance of the optical component area AA2, thus helping to improve the photosensitive performance of the optical component area AA2 in the photosensitive stage.
  • the second light-emitting element P2 in the optical component area AA2 and the first pixel driving circuit 21 in the first display area AA1 use a first pixel driving circuit 21 to drive a second light-emitting element P2 to emit light.
  • this application is more conducive to improving the display effect of the optical component area AA2 in the display stage and reducing the distance between the optical component area AA2 and the first display area AA1.
  • the difference in display brightness is beneficial to improving the overall display effect of the display panel 100 and the display device and improving the display quality.
  • FIG. 2 only illustrates one position situation of the first pixel driving unit column 11, that is, only shows the solution in which the first pixel driving unit column 11 is located on both sides of the optical component area AA2 along the first direction D1.
  • the first pixel driving unit column 11 may also be located on at least one side of the optical component area AA2 along the second direction D2, which is not limited in this application.
  • FIG. 4 is a schematic diagram of the connection between the second light-emitting element in the optical component area and the first pixel driving circuit in the first display area of another display panel provided by an embodiment of the present application.
  • the first pixel driving unit column 11 where the first pixel driving circuit 21 is located is located on one side of the optical component area AA2 along the second direction.
  • the first pixel driving unit column 11 includes a plurality (two or more) of first pixel driving circuits 21 .
  • a feasible implementation is that the first pixel driving unit column 11 only includes the first pixel driving circuit 21 .
  • the display panel 100 provided in this embodiment may be a display panel using organic light-emitting diode (OLED) display technology, that is, a display panel.
  • OLED organic light-emitting diode
  • the basic structure of an OLED display panel usually includes an anode, a luminescent layer, and a cathode. When the power supply supplies an appropriate voltage, the holes in the anode and the electrons in the cathode combine in the light-emitting layer to produce bright light.
  • OLED display devices Compared with thin film field effect transistor liquid crystal displays, OLED display devices have the characteristics of high visibility and high brightness, and are more power-saving, lightweight, and thin.
  • the display panel 100 may also be a display panel using inorganic light-emitting diode display technology, such as a Micro LED display panel, or a Mini LED display panel, and so on.
  • Figures 1 and 2 only show the situation where the display panel 100 includes one optical component area AA2. In some other embodiments of the present application, two or more optical components can be provided on the display panel 100 as needed. Area AA2 is not limited in this application. The following description will only take the display panel 100 including one optical component area AA2 as an example. When the display panel 100 includes a plurality (two or more) optical component areas AA2 When doing so, you can refer to the embodiments of this application for execution. Figures 1 and 2 only show the situation where the first display area AA1 half surrounds the optical component area AA2. In some other embodiments of the present application, the first display area AA1 can also completely surround the optical component area AA2.
  • Figures 1 and 2 only show a relative positional relationship between the first display area AA1 and the optical component area AA2 in the display panel 100.
  • the optical component area AA2 can also be located on the display panel. This application does not limit other positions in 100; in addition, the rectangular shape of the optical component area AA2 in Figures 1 to 3 is only for illustration. In some other embodiments of the application, the optical component area AA2 also It can be embodied in other shapes such as circular, oval, etc., and the size of the optical component area AA2 can also be set according to actual needs, and this application is not limited.
  • FIG. 1 only shows a schematic arrangement of pixels in the first display area AA1 and the optical component area AA2.
  • Figure 5 takes the optical component area AA2 with a circular structure as an example for illustration, and the shape of the light-emitting elements included in the optical component area AA2 is also circular.
  • the light-emitting element in the first display area AA1 The shape of the element can be set to be the same as that of the optical component area AA2, or it can also be set to be different. This application does not limit this.
  • Figure 5 shows the third optical component area in another display panel provided by the embodiment of the present application. Schematic diagram of the connection between the two light-emitting elements and the first pixel driving circuit in the first display area.
  • FIG. 1 and FIG. 2 only show the shape of the display panel 100 of the present application, taking the rectangular-shaped display panel 100 as an example, and do not limit the actual shape of the display panel 100.
  • the display panel may also have other shapes, such as circles, ellipses, other non-rectangular shaped structures, and so on.
  • connection lead L0 between the first pixel driving circuit 21 and the second light-emitting element P2 is a straight line as an example.
  • the connecting lead L0 of the optical component area AA2 in order to avoid the diffraction phenomenon in the optical component area AA2 , can also be set in a curved shape.
  • the connection lead L0 of the optical component area AA2 in order to improve the light transmittance of the optical component area AA2, can also be set as a transparent lead.
  • FIG. 6 is a schematic diagram of the film layers of a display panel provided by an embodiment of the present application.
  • This embodiment shows a schematic diagram of the film layer distribution of the connecting leads of the optical component area AA2.
  • the display panel 100 includes a substrate 00, an array layer 01 disposed on the substrate 00, a light-emitting element layer 02 disposed on the side of the array layer 01 facing away from the substrate 00, and a light-emitting element layer 02 disposed on the side facing away from the substrate 00.
  • connection leads L0 are arranged in three different film layers, which is helpful to avoid the lack of space that may occur when the connection leads L0 are arranged in a single layer and the problem of affecting the light transmittance of the optical device area.
  • the embodiment in Figure 6 is only illustrative. In some other embodiments of the present application, the connecting lead L0 of the optical component area AA2 can also be provided in two different film layers, or in more than three different film layers. This application does not limit this.
  • Figure 7 shows a second light-emitting element in the optical component area and a first pixel driving circuit in the first display area of another display panel provided by an embodiment of the present application.
  • the first pixel driving unit column 11 also includes a plurality (two or more) of first dummy pixel driving circuits 22 .
  • the dummy pixel driving circuit mentioned in the embodiment of this application refers to a pixel driving circuit that is not connected to the light-emitting element under normal circumstances. In other words, under normal circumstances, the dummy pixel driving circuit does not have the function of driving the light-emitting element to emit light.
  • the structure of the dummy pixel driving circuit is the same or substantially the same as the structure of the pixel driving circuit in the display panel 100 that can drive the light-emitting element to emit light.
  • the first dummy pixel driving circuit 22 is multiplexed as a repair pixel driving circuit, that is, when the pixel driving circuit corresponding to the first light-emitting element P1 and/or the second light-emitting element P2 is in an abnormal working state, it is set to replace its work.
  • the first pixel driving unit column 11 is introduced into the first display area AA1, and the second light-emitting element P2 in the optical component area AA2 is driven to emit light through the first pixel driving circuit 21 in the first pixel driving unit column 11.
  • a first dummy pixel driving circuit 22 may also be introduced in the first pixel driving unit column 11 .
  • the pixel driving unit column 10 in the embodiment of the present application also includes other pixel driving unit columns. At least part of the pixel driving circuits in the other pixel driving unit columns are configured to drive the first display The first light emitting element P1 in the area AA1 emits light.
  • the plurality (two or more) pixel driving unit columns 10 can be manufactured using the same process.
  • the first dummy pixel driving circuit 22 is retained in the first pixel driving unit column 11, there is no need to remove the unnecessary pixel driving circuit after manufacturing the complete first pixel driving unit column 11, but as The first dummy pixel driving circuit 22 is sufficient, which is beneficial to simplifying the manufacturing process of the display panel 100 and improving the production efficiency of the display panel 100 .
  • the first pixel driving unit column 11 further includes a third pixel driving circuit, wherein the third pixel driving circuit is electrically connected to the first light-emitting element P1.
  • the first pixel driving circuits 21 and the first dummy pixel driving circuits 22 are arranged alternately.
  • the first pixel driving circuit 21 is a pixel driving circuit electrically connected to the second light-emitting element P2 in the optical component area AA2, while the first dummy pixel driving circuit 22 is not connected to any light-emitting element. pixel drive circuit.
  • the first pixel driving circuits 21 and the first dummy pixel driving circuits 22 are arranged alternately, that is, they are arranged alternately with the second light-emitting elements.
  • the pixel driving circuits electrically connected to P2 and the pixel driving circuits not electrically connected to the second light-emitting element P2 are arranged alternately.
  • the pixel driving circuits in the optical component area AA2 can be arranged according to the pixel arrangement structure of the optical component area AA2 and the first pixel driving unit column 11 According to the positional relationship of the pixel driving circuit in the first pixel driving unit column 11, a pixel driving circuit that is convenient for wiring is selected as the first pixel driving circuit 21 connected to the second light-emitting element P2, and the rest is not connected to the second light-emitting element P2.
  • the connected pixel driving circuit serves as the first dummy pixel driving circuit 22 to simplify the connection complexity between the first pixel driving circuit 21 and the second light-emitting element P2.
  • the first pixel driving circuit 21 and the first dummy pixel driving circuit 22 are limited, and the first pixel driving circuit is not limited. 21 and the first dummy pixel driving circuit 22.
  • the first one in the first pixel driving unit column 11 may also be the first dummy pixel driving circuit 22.
  • FIG. 5 only illustrates a first pixel driving circuit 21 and a first dummy pixel driving circuit 22 arranged alternately. In some other embodiments of the present application, there can also be a plurality of first pixel driving circuits.
  • first pixel driving circuit 21 and a first dummy pixel driving circuit 22 are alternately arranged, a first pixel driving circuit 21 and a plurality of first dummy pixel driving circuits 22 are alternately arranged, and a plurality of first pixel driving circuits 21 and a plurality of first dummy pixels are arranged alternately.
  • the driving circuits 22 are arranged alternately, and the embodiment of the present application does not limit this.
  • the first pixel driving circuit 21 and the first dummy pixel driving circuit 22 are respectively centrally provided.
  • the first pixel driving circuit 21 is a pixel driving circuit electrically connected to the second light-emitting element P2 in the optical component area AA2, while the first dummy pixel driving circuit 22 is not connected to any light-emitting element. pixel drive circuit.
  • the first pixel driving circuits 21 electrically connected to the second light-emitting element P2 are adjacent to each other. In other words, two adjacent first pixel driving circuits 21 are electrically connected to the second light-emitting element P2.
  • the first dummy pixel driving circuit 22 is not provided between the circuits 21; the first dummy pixel driving circuits 22 that are not electrically connected to the second light-emitting element P2 are adjacent to each other. In other words, the first dummy pixel driving circuit 22 between the two adjacent first dummy pixel driving circuits 22
  • the first pixel driving circuit 21 is not provided in the space.
  • a plurality (two or more) of pixel driving circuits adjacent to the optical component area AA2 in the first pixel driving unit column 11 are used as the first pixel driving circuit 21, and the remaining pixel driving circuits are used as the third pixel driving circuit.
  • a dummy pixel driving circuit 22, the first pixel driving circuit 21 and the first dummy pixel driving circuit 22 are equivalent to being centrally arranged respectively. This arrangement reduces the size of the first pixel driving circuit 21 and the second light-emitting element connected thereto. The length of the connecting leads between P2 is therefore conducive to simplifying the wiring complexity and improving the production efficiency of the display panel 100 .
  • the second light-emitting element P2 included in the optical component area AA2 and the connection relationship between the second light-emitting element P2 and the first pixel driving circuit 21 are only illustrative, and do not illustrate the optical components.
  • the number, shape and arrangement structure of the second light-emitting elements P2 actually included in the area AA2 are limited.
  • FIG. 8 is a schematic diagram of the connection between a pixel driving circuit and a data signal line in a first pixel driving unit column provided by an embodiment of the present application.
  • FIG. 9 is a first pixel driver in a display panel provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the connection between the first dummy pixel driving circuit and the data signal line provided by the embodiment of the present application. Please refer to Figures 8 to 10.
  • the first display area AA1 further includes a first dummy data signal line DL01 electrically connected to the first dummy pixel driving circuit 22, and the first dummy data signal line DL01 is electrically connected to the fixed voltage signal terminal.
  • the display panel 100 is usually provided with a plurality of data signal lines.
  • the pixel driving circuit that drives the light-emitting element to emit light is connected to the data signal line DL and is configured to obtain the data signal and ultimately generate a driving current or driving voltage that drives the light-emitting element to emit light.
  • multiple data signal lines are fabricated in the same process.
  • the data signal line connected to the first dummy pixel driving circuit 22 is the first dummy data line.
  • the signal line DL01 does not actually play the role of transmitting data signals to the first dummy pixel driving circuit 22; but the data signal lines connected to other pixel driving circuits that can actually play a driving role are truly capable of transmitting data signals. Data signal lines.
  • the embodiment of the present application retains the first dummy data signal line DL01 that does not play a role in data signal transmission. There is no need to introduce a process for removing this part of the data signal line. Therefore, it is conducive to simplifying the manufacturing process of the display panel 100 and improving the performance of the display panel 100 .
  • Productivity Considering that the connection between the pixel driving circuit and the data signal line in the display panel 100 is completed in the same process, this embodiment retains the connection between the first dummy data signal line DL01 and the first dummy pixel driving circuit 22. There is no need to introduce other manufacturing processes, so it is also helpful to improve the manufacturing efficiency of the display panel 100 .
  • the data signal lines in the display panel 100 are evenly arranged to improve the overall display uniformity of the display panel 100 and to avoid the uneven black state of the display panel 100 when the screen is turned off.
  • a pixel drive circuit with a structure of 7 transistors and 1 capacitor (7Transistor 1 Capacitor, 7T1C) is used as an example for illustration.
  • the structure of the pixel drive circuit in this application is not limited. , in some other embodiments of this application, the pixel driving circuit can also be embodied in other structures such as 8T1C.
  • the first pixel driving circuit 21 shown in FIG. 9 as an example, the first pixel driving circuit 21 includes a driving transistor T0, first to sixth transistors T1 to T6, and a storage capacitor C0.
  • the gate of the driving transistor T0 is connected to the first node N1, the first electrode is connected to the second node N2, and the second electrode is connected to the third node N3.
  • the second light-emitting element P2 is connected in series between the fourth node N4 and the second power terminal PVEE.
  • the first transistor T1 is connected in series between the first reset terminal Vref1 and the first node N1
  • the second transistor T2 is connected in series between the data signal line DL and the second node N2
  • the third transistor T3 is connected in series between the first node N1 and the third node N1.
  • the fourth transistor T4 is connected in series between the second reset terminal Vref2 and the fourth node N4
  • the fifth transistor T5 is connected in series between the first power supply terminal PVDD and the second node N2
  • the sixth transistor T6 is connected in series between the second reset terminal Vref2 and the fourth node N4.
  • the storage capacitor C0 is connected in series between the first power terminal PVDD and the first node N1.
  • the working stages of the first pixel driving circuit 21 include a first reset stage, a second reset stage, a data writing stage and a light-emitting stage.
  • the first transistor T1 responds to the first control terminal S1
  • the fourth transistor T4 is turned on in response to the turn-on level of the fourth control terminal S4. and transmits the reset signal of the second reset terminal Vref2 to the fourth node N4 to reset the anode of the second light-emitting element P2; during the data writing phase, the second transistor T2 responds to the conduction level of the second control terminal S2.
  • the third transistor T3 turns on in response to the turn-on level of the third control terminal S2, the data signal on the data signal line DL is transmitted to the second node N2, and the signal of the second node N2 is transmitted through the driving transistor T0 To the third node N3, the signal of the third node N3 is transmitted to the first node N1.
  • the fifth transistor T5 and the sixth transistor T6 are turned on in response to the signal from the light-emitting control signal terminal Emit, and the driving transistor T0 transmits the driving signal to the second light-emitting element P2 to drive the second light-emitting element P2 to emit light.
  • the first reset stage and the second reset stage can be performed at the same time or in a time-sharing manner, which is not limited in the embodiments of the present application.
  • the working process of the above pixel driving circuit is only an example, and does not limit the actual working process of the pixel driving circuit of the present application.
  • the structure of the first dummy pixel driving circuit 22 in the embodiment shown in FIG. 10 is the same as the structure of the first pixel driving circuit in FIG. 9 .
  • the pixel driving circuit is a pixel driving circuit that can actually perform a driving function
  • the pixel driving circuit will be electrically connected to the light-emitting element P on the display panel 100, and the pixel driving circuit will actually The data signal line DL capable of transmitting data signals is electrically connected;
  • the pixel driving circuit is a pixel driving circuit such as the first dummy pixel driving circuit 22 that does not play a driving role, for example, please refer to FIG.
  • the first dummy pixel driving circuit 22 will It is not electrically connected to the light-emitting element P on the display panel 100, and the first dummy data signal line DL01 connected to this part of the first dummy pixel driving circuit 22 does not also perform a data signal transmission function.
  • the first dummy data signal line DL01 is electrically connected to the fixed voltage signal terminal in the display panel 100, so that the first dummy data signal line DL01 receives the fixed voltage signal, thereby preventing the first dummy data signal line DL01 from floating.
  • static electricity may be introduced into the display panel 100 through the first dummy data signal line DL01 and affect the normal display of the display panel 100, which is beneficial to improving the overall anti-static capability of the display panel 100.
  • the fixed voltage terminal can be, for example, the first power terminal PVDD or the second power terminal PVEE in the display panel 100, or it can also be the first reset signal terminal Vref1 or the second reset signal terminal Vref2. This application will Not limited.
  • the density of light-emitting elements in the optical component area AA2 and the first display area AA1 is the same.
  • the density of the light-emitting elements P mentioned in the embodiments of this application is the same, which means that the number of the light-emitting elements P included in the same unit area is the same.
  • the shapes and arrangements of the light-emitting elements P in the first display area AA1 and the optical component area AA2 are the same. In this way, the light-emitting elements P can be uniformly arranged in the first display area AA1 and the optical component area AA2 of the display panel 100 . cloth.
  • the luminous brightness of the optical component area AA2 and the first display area AA1 will be consistent or tend to be consistent, thus effectively improving the display brightness uniformity of the display panel 100 having the optical component area AA2.
  • the total number of pixel driving circuits 20 included in the display panel 100 is greater than the total number of light-emitting elements P.
  • the pixel driving circuit 20 here includes not only a pixel driving circuit connected to the first light-emitting element P1 in the first display area AA1, a pixel driving circuit connected to the second light-emitting element P2 in the optical component area AA2, but also includes a dummy Pixel drive circuit.
  • the first pixel driving circuit 21 and the second light-emitting element P2 in the optical component area AA2 are arranged in one-to-one correspondence.
  • the first light-emitting element P1 in the first display area AA1 and The pixel driving circuits are also electrically connected in one-to-one correspondence.
  • the total number of pixel driving circuits included in the display panel 100 is limited to be greater than the total number of light-emitting elements.
  • the pixel driving circuits are all arranged in the first display area AA1 Therefore, in addition to the pixel driving circuit electrically connected to the first light-emitting element P1 and the second light-emitting element P2, the first display area AA1 is also provided with a dummy pixel driving circuit, that is, connected to the first light-emitting element P1 and the second light-emitting element P2.
  • the second light-emitting elements P2 are not connected to the pixel driving circuit.
  • the pixel driving circuit when the pixel driving circuit electrically connected to the second light-emitting element P2 is arranged in the first display area AA1, all the pixel driving circuits in the first display area AA1 are manufactured together, and The number of pixel driving circuits is greater than the number of light-emitting elements P.
  • the redundant pixel driving circuits are used as dummy pixel driving circuits, so there is no need to introduce
  • the process of removing the dummy pixel driving circuit is conducive to simplifying the manufacturing process of the display panel 100 and improving the production efficiency of the display panel 100 .
  • At least part of the first pixel driving circuit 21 in the first pixel driving unit column 11 intersects with the optical component area AA2 Stack.
  • At least part of the first pixel driving circuit 21 overlaps with the optical component area AA2 along the first direction D1, which means that at least part of the first pixel driving circuit 21 is located on one or both sides of the optical component area AA2 along the first direction D1, where This arrangement is beneficial to reducing the distance between the first pixel driving circuit 21 and the second light-emitting element P2 connected thereto.
  • the connecting wire L0 is used to electrically connect the first pixel driving circuit 21 and the second light-emitting element P2
  • the first pixel driving circuit 21 connected to the second light-emitting element P2 in the optical component area AA2 is disposed in the first display area AA1, it is equivalent to increasing the number of pixels in the first display area AA1.
  • the number of included pixel driving circuits 20 is to make room for the first pixel driving unit column 11 where the first pixel driving circuit 21 is located.
  • One way is to separate the portion adjacent to the optical component area AA2 along the first direction D1. The distance between the pixel area driving unit columns is compressed, and the newly added first pixel area driving unit column 11 is placed in the space vacated by the aforementioned compression. The pixel driving unit columns in other areas remain unchanged.
  • the first pixel driving unit column 11 is added to the first area A1, and the first pixel driving unit column 11 is not added to the second area A2.
  • the pixel driving column in the first area A1 The arrangement density is greater than the arrangement density of the pixel driving unit columns in the second area A2, that is, the distance between adjacent pixel driving unit columns in the first area A1 is smaller than the adjacent pixel driving unit columns in the second area A2 the distance between.
  • FIG. 11 is a schematic diagram of the arrangement of pixel driving circuits in another display panel provided by an embodiment of the present application.
  • This embodiment shows a plurality of pixel driving units when the first pixel driving unit column 11 is introduced into the first display area AA1 Another arrangement of column 10. Please refer to FIG. 11 .
  • the pixel driving unit columns 10 are evenly arranged in the first direction D1 .
  • the first pixel driving unit column 11 and other pixel driving unit columns can be evenly arranged in the first display area AA1, that is, along the first direction D1
  • the spacing between any two adjacent pixel driving unit columns 10 is the same. In this way, it is beneficial to improve the uniformity of the overall circuit arrangement in the first display area AA1 of the display panel 100, and is beneficial to reducing or avoiding pixel circuit errors. Uneven arrangement may cause uneven display brightness. Therefore, the uniform arrangement of the pixel driving unit columns 10 is beneficial to improving the overall display effect of the display panel 100 .
  • Figure 12 is a schematic diagram of the distribution of pixel driving unit columns around an optical component area provided by an embodiment of the present application. Please refer to Figures 11 and 12 for flexibility.
  • the display panel 100 also includes In the first non-display area NA1, the pixel driving unit column 10 includes a second pixel driving unit column 12, and the second pixel driving unit column 12 includes a plurality (two or more) of second dummy pixel driving circuits 32; along the second In the direction D2, the second pixel driving unit column 12 is located between the first non-display area NA1 and the optical component area AA2, and the second direction D2 intersects the first direction D1.
  • the embodiment shown in FIG. 11 shows a solution in which the first non-display area NA1 is the lower frame area of the display panel 100.
  • the first non-display area NA1 can also be the upper frame of the display panel 100.
  • the second pixel driving unit column 12 may also be located between the upper frame area and the optical component area AA2, or between the upper frame and the optical component area AA2 of the display panel 100, and between the lower frame and the optical component area of the display panel 100.
  • Second pixel driving unit columns 12 are disposed between areas AA2. This embodiment is only described using the example that the second pixel driving unit row 12 is located between the optical component area AA2 and the lower frame of the display panel 100 .
  • the first pixel driving unit rows 11 When the first pixel driving unit rows 11 are introduced on both sides of the optical component area AA2 along the first direction D1, in order to improve the overall distribution uniformity of the pixel driving unit rows 10 on the display panel 100, the first pixel driving unit rows 11 can also be introduced along the first direction D1 in the optical component area AA2.
  • the second pixel driving unit column 12 is introduced on one side or both sides of the two directions D2, where the second pixel driving unit column 12 includes a second dummy pixel driving circuit 32. In this way, when actually manufacturing the pixel driving unit row, the pixel driving unit row can be manufactured according to the specifications of uniform distribution of the entire pixel driving unit row.
  • the extra pixel driving unit row in the optical component area AA2 can be used as the second pixel driving unit row 12 without the need to introduce additional pixel driving unit rows.
  • the process removes this part of the redundant pixel driving unit rows, thereby ensuring the uniformity of the overall arrangement of the pixel driving unit rows and also conducive to simplifying the manufacturing process of the display panel 100 .
  • the first display area AA1 also includes a second dummy data signal line DL02 electrically connected to the second dummy pixel driving circuit 32 .
  • the second dummy data signal line DL02 is electrically connected to the fixed voltage signal terminal.
  • the data signal line connected to the second dummy pixel driving circuit 32 is the second dummy data line.
  • the signal line DL02 does not actually play the role of transmitting data signals to the second dummy pixel driving circuit 32; but the data signal line DL connected to other pixel driving circuits that can actually play a driving role is truly capable of transmitting data signals. data signal lines.
  • the embodiment of the present application retains the second dummy data signal line DL02 that does not play a role in data signal transmission. There is no need to introduce a process for removing this part of the data signal line.
  • this embodiment retains the connection between the second dummy data signal line DL02 and the second dummy pixel driving circuit 32. There is no need to introduce other manufacturing processes, so it is also beneficial to improve the manufacturing efficiency of the display panel 100 .
  • the second dummy pixel driving circuit 32 is multiplexed as a repair pixel driving circuit, that is, when the pixel driving circuit corresponding to the first light-emitting element P1 and/or the second light-emitting element P2 is in an abnormal working state, it is set to replace its work.
  • FIG. 13 is a schematic diagram of the connection between a second dummy pixel driving circuit and a data signal line provided by an embodiment of the present application.
  • the composition of the second dummy pixel driving circuit 32 is related to the first dummy pixel driving circuit 22 and the first pixel driving circuit 21 have the same structure, for example, a 7T1C structure, and the connection relationship can refer to the connection relationship between the transistors and capacitors in the first pixel driving circuit 21 in FIG. 9 , which will not be described again here.
  • the second dummy data signal line DL02 is electrically connected to the fixed voltage signal terminal in the display panel 100, so that the second dummy data signal line DL02 receives the fixed voltage signal to avoid static electricity when the second dummy data signal line DL02 floats.
  • the second dummy data signal line DL02 may be introduced into the display panel 100 and affect the normal display of the display panel 100 , which is beneficial to improving the overall anti-static capability of the display panel 100 .
  • the above-mentioned fixed voltage terminal can be, for example, the first power terminal PVDD or the second power terminal PVEE in the display panel 100, or it can also be the first reset signal terminal Vref1 or the second reset signal terminal Vref2. This application will Not limited.
  • FIG. 14 is a schematic structural diagram of another display panel provided by an embodiment of the present application. This embodiment shows the first light-emitting element P1 and the second light-emitting element P2 of the first display area AA1 and the optical component area AA2 in the display panel 100. , and shows part of the pixel driving circuits in the first display area AA1, but not all the pixel driving circuits in the first display area AA1.
  • the pixel driving unit column 10 also includes a third pixel driving unit column 13 located in the first display area AA1.
  • the third pixel driving unit column 13 includes a plurality (two and two or more) second pixel driving circuit 24, which is electrically connected to the first light-emitting element P1;
  • the third pixel driving unit column 13 includes a first sub-third pixel driving unit column 131, and the display panel 100 also Includes a first non-display area NA1, along the second direction D2, the first sub-third pixel driving unit column 131 is located between the first non-display area NA1 and the optical component area AA2, the second direction D2 intersects the first direction D1;
  • the first display area AA1 also includes a plurality of data signal lines DL.
  • the data signal lines DL include a first data signal line DL1 and a second data signal line DL2.
  • the first data signal line DL1 is electrically connected to the first pixel driving circuit 21.
  • the second data signal line DL2 is electrically connected to the second pixel driving circuit 24 in the first sub-third pixel driving unit column 131, and the first data signal line DL1 and the second data signal line DL2 are electrically connected.
  • the first pixel driving circuit 21 electrically connected to the second light-emitting element P2 in the optical component area AA2 is connected to the first data signal line DL1, and the first pixel driving circuit 21 connected to the first light-emitting element P1 is located
  • the second pixel driving circuit 24 in the first sub-third pixel driving unit column 131 is connected to the second data signal line DL2, and electrically connects the above-mentioned first data signal line DL1 and the second data signal line DL2.
  • the second light-emitting element P2 corresponding to the first data signal line DL1 and the first light-emitting element P1 corresponding to the second data signal line DL2 are located in the same pixel column.
  • the light-emitting element P transmits data signals through the same data signal line (here, the data signal line formed by connecting the first data signal line DL1 and the second data signal line DL2).
  • the data signal line obtains the data signal through the data signal terminal.
  • the first data signal line DL1 and the second data signal line DL2 are electrically connected through a first connection part 41 , and the first connection part 41 is located in the display area AA or the first non-display area. Display area NA1.
  • FIG. 14 shows that one end of the first data signal line DL1 away from the optical component area AA2 and one end of the second data signal line DL2 away from the optical component area AA2 pass through the first connection portion provided in the first non-display area NA1 41 electrical connection scheme, when the first connection part 41 is disposed in the first non-display area NA1, the first connection part 41 does not occupy the space of the display area AA, and therefore does not affect the aperture ratio of the display area AA.
  • the first connection part 41 when the first connection part 41 is disposed in the first non-display area NA1, the first connection part 41 may be disposed on the same layer as the first data signal line DL1 and/or the second data signal line DL2, or It can be arranged in a different layer from the first data signal line DL1 and the second data signal line DL2, which is not limited in this application.
  • the above-mentioned first connecting portion 41 can also be disposed in the display area AA.
  • FIG. 15 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • one end of the second data signal line DL2 close to the optical component area AA2 is electrically connected to the first data signal line DL1 through the first connection part 41.
  • the first connection part 41 is located in the display area AA, and a
  • the first connection portion 41 located in the display area AA and the first data signal line DL1 and the second data signal line DL2 are arranged in different layers to avoid the first data signal line DL1 and the second data signal line in the display area AA. Due to insufficient space on DL2, the connection between the two may be unreliable. If the film layer where the first data signal line DL1 and the second data signal line DL2 are located has enough space to provide the first connection portion 41, the first connection portion 41 can also be connected to the first data signal line DL1 and/or the second data signal line DL1.
  • the data signal line DL2 is arranged on the same layer.
  • the electrically connected first data signal line DL1 and the second data signal line DL2 can still share the same
  • the data signal is obtained through the data signal terminal, which does not increase the manufacturing complexity of the display panel 100 .
  • FIG. 16 is a schematic structural diagram of another display panel provided by an embodiment of the present application. This embodiment shows that the corresponding first data signal line DL1 and the second data signal line DL2 are connected through the first connection part 41 and the second data signal line DL2.
  • the connection part 42 is electrically connected.
  • the first data signal line DL1 and the second data signal line DL2 are electrically connected through the first connection part 41 in the first non-display area NA1, and in the display area AA The inside is connected through the second connection part 42.
  • Another method of electrically connecting the first data signal line DL1 corresponding to the second light-emitting element P2 in the optical component area AA2 and the second data signal line DL2 corresponding to the first light-emitting element P1 in the first display area AA1 The method is that the two are electrically connected through the first connection part 41 located in the first non-display area NA1, and are electrically connected through the second connection part 42 located in the display area AA.
  • One end of the second data signal line DL2 close to the optical component area AA2 is electrically connected through the second connection portion 42.
  • the second data signal line DL2 forms a parallel relationship with at least part of the line segments of the first data signal line DL1, thereby effectively reducing the
  • the impedance of the first data signal line DL1 and the second data signal line DL2 connected to each other is reduced, which is beneficial to reducing the pressure caused by excessive impedance when the data signal is transmitted on the first data signal line DL1 and the second data signal line DL2.
  • the drop is too large, so it is beneficial to improve the accuracy of the data signals transmitted on the first data signal line DL1 and the second data signal line DL2.
  • FIG. 17 is a schematic structural diagram of another display panel provided by an embodiment of the present application, illustrating the first signal line L1 in the display panel 100 .
  • Other signal lines in the first display area AA1 are not shown in FIG. 17 .
  • Figure 18 is a schematic diagram of a film layer between a first signal line and a first connection part or a second connection part provided by an embodiment of the present application. Please refer to Figures 17 and 18, and in conjunction with Figure 6, in an embodiment of the present application
  • the first display area AA1 includes a first signal line L1 extending along the first direction D1, and the second connection portion 42 overlaps the first signal line L1 in the thickness direction of the display panel 100.
  • the overall extension direction of the data signal lines in the embodiment of the present application is the second direction D2.
  • the display panel 100 is also provided with a second direction extending along the first direction D1.
  • the first signal line L1 is, for example, a scanning line, a reset signal line, etc.
  • the embodiment shown in FIG. 18 takes the first signal line L1 as a scanning line provided in the same layer as the gate of the driving transistor T0 as an example.
  • the embodiment shown in FIG. 18 is explained by taking the first connection part 41 or the second connection part 42 and the part of the connection lead L0 that connects the first pixel driving circuit 21 and the second light-emitting element P2 to be arranged in the same layer.
  • the second connection part 42 or the first connection part 42 is disposed in the thickness direction of the display panel 100.
  • the portion 41 overlaps the first signal line L1. This helps to avoid the uneven black state in the display area AA when the first connection portion 41 or the second connection portion 42 is introduced into the display area AA, which affects the screen. Display panel 100 usage experience effect.
  • the line width of the first connecting portion 41 and the second connecting portion 42 along the second direction D2 is less than or equal to the line width of the first signal line L1 along the second direction D2, and the first connecting portion 41 and the second connecting portion 42 are less than or equal to the line width of the first signal line L1 along the second direction D2.
  • the edge of the connecting portion 42 extending along the first direction D1 does not exceed the edge of the first signal line L1 extending along the first direction D1, which is more conducive to avoiding the black state unevenness phenomenon when the screen is turned off.
  • Figure 19 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • This embodiment shows another schematic diagram of the connection of the first data signal line DL1 and the second data signal line DL2, and shows the first
  • the display area AA1 surrounds the optical component area AA2, that is, the optical component area AA2 is provided with first light-emitting elements P1 on both sides along the first direction D1 and on both sides along the second direction D2.
  • FIG. 20 is a schematic structural diagram of another display panel provided by an embodiment of the present application. This embodiment shows a method of the second light-emitting element P2 and the first pixel driving circuit 21 when a row of pixel driving units is introduced into the display panel 100. Connection diagram.
  • the pixel driving unit column 10 also includes a third pixel driving unit column 13 located in the first display area AA1.
  • the third pixel driving unit column 13 includes a plurality (two or more).
  • the second pixel driving circuit 24 is electrically connected to the first light-emitting element P1; the first display area AA1 also includes a plurality (two or more) of pixel driving unit rows arranged along the second direction D2.
  • the pixel driving unit row includes a first pixel driving unit row H1 and a second pixel driving unit row H2.
  • the first pixel driving unit row H1 includes a plurality (two or more) of continuously arranged second pixel driving circuits 24,
  • the second pixel driving unit row H2 includes a plurality (two or more) of third dummy pixel driving circuits 33 arranged continuously.
  • the first pixel driving circuit 21 and the second light-emitting element P2 are electrically connected through the third connection part 43. In the thickness direction of the display panel 100, the third connection portion 43 overlaps the second pixel driving unit row H2.
  • this embodiment shows a solution of introducing pixel driving unit rows into the display panel 100 .
  • FIG. 20 only shows part of the pixel driving circuits in the display panel 100 , not all of the pixel driving circuits.
  • at least some of the pixel driving unit rows are provided with first pixel driving circuits 21 configured to be connected to the second light-emitting element P2, and at least part of the pixel driving unit rows are provided with first pixel driving circuits 21 that are configured to be connected to the first light-emitting element P1.
  • the pixel driving unit row in this embodiment includes a first pixel driving unit row H1 and a second pixel driving unit row H2, wherein the first pixel driving unit row H1 is provided with a second pixel driving unit row configured to drive the first light-emitting element P1 to emit light.
  • Pixel driving circuit 24 In one embodiment, at least part of the second pixel driving circuit 24 is continuously provided in the first pixel driving unit row H1. In one embodiment, at least part of the first pixel driving unit row H1 is also provided with a dummy pixel driver. circuit.
  • the second pixel driving unit row H2 is provided with a continuous third dummy pixel driving circuit 33.
  • the second pixel driving unit row H2 is also provided with a first pixel electrically connected to the second light-emitting element P2.
  • Drive circuit 21 introduces the second pixel driving unit row H2 to set up the first pixel driving circuit 21 connected to the second light-emitting element P2.
  • the pixel driving circuit is usually arranged in rows and columns. If the circuit is fabricated at the same time, when the first pixel driving circuit 21 is fabricated, the pixel driving circuit and the dummy pixel driving circuit connected to the first light-emitting element P1 will also be fabricated.
  • these pixel drive circuits are reserved as dummy pixel drive circuits, such as the third dummy pixel drive circuit 33 in the second pixel drive unit row H2, which is beneficial to simplifying the display. Manufacturing process of panel 100.
  • the third connection portion 43 when the third connection portion 43 is used to electrically connect the first pixel driving circuit 21 in the second pixel driving unit row H2 to the second light-emitting element P2, the third connection portion 43 is placed within the thickness of the display panel 100 The direction is set to overlap with the second pixel driving unit row H2, so that the third connection portion 43 does not occupy other original spaces in the display area AA, but only occupies the space where the newly added second pixel driving unit row H2 is located. Therefore, It will not affect other circuit structures in the display area AA.
  • the way of arranging the third connection part 43 in the second pixel driving unit row H2 is also conducive to simplifying the wiring process of the third connection part 43, so it is beneficial to Simplify the overall manufacturing process of the display panel 100 and improve production efficiency.
  • the third dummy pixel driving circuit 33 is multiplexed as a repair pixel driving circuit, that is, when the pixel driving circuit corresponding to the first light-emitting element P1 and/or the second light-emitting element P2 is in an abnormal working state, it is set to replace its work.
  • FIG. 21 is a schematic structural diagram of another display panel provided by an embodiment of the present application. Please refer to FIG. 21 .
  • rows of pixel driving units are evenly arranged in the second direction D2.
  • FIG. 21 shows a solution in which a plurality (two or more) pixel driving unit rows are introduced into the display panel 100 and the pixel driving unit rows are evenly arranged along the second direction D2.
  • the uniform arrangement of the pixel driving unit rows along the second direction D2 means that the spacing between any two adjacent pixel driving unit rows along the second direction D2 is equal. Adopting this arrangement is helpful to ensure the uniformity of the arrangement of the pixel driving circuits in the display panel 100, thereby helping to avoid uneven black states in the display area AA due to uneven arrangement of the pixel driving circuits in the screen-off state. phenomenon, affecting the user experience.
  • arranging the rows of pixel driving units evenly can also help simplify the manufacturing process of the pixel driving circuit and improve the overall production efficiency of the display panel 100 .
  • the relative positional relationship between the pixel driving circuit and the light-emitting element shown in the embodiments shown in FIG. 20 and FIG. 21 is only for illustration.
  • the pixel driving circuit and the light-emitting element P can be arranged in the thickness direction of the display panel 100, for example. It is embodied in the overlapping structure shown in Figure 21 to rationally utilize the space of the display area AA. When the two overlap, since the pixel driving circuit is located on the side of the light-emitting element P facing the substrate, it will not affect the light emission of the light-emitting element P.
  • Figure 22 is a schematic diagram of the connection between at least two first pixel driving circuits and the same second light-emitting element in a display panel provided by an embodiment of the present application.
  • the driving circuit 21 is electrically connected to the same second light-emitting element P2.
  • Using at least two first pixel driving circuits 21 to drive the same second light-emitting element P2 is beneficial to improving the driving capability of the second light-emitting element P2 and improving the light-emitting reliability of the second light-emitting element P2.
  • the other first pixel driving circuits 21 can also drive the second light-emitting element P2 normally, which is beneficial. The light-emitting reliability of the second light-emitting element P2 is ensured.
  • FIG. 22 only takes a solution in which one second light-emitting element P2 is connected to two first pixel driving circuits 21 as an example to illustrate, and does not limit the number of first pixel driving circuits 21 actually connected to the same second light-emitting element P2.
  • the number of first pixel driving circuits 21 connected to the same second light-emitting element P2 may be three or more.
  • FIG. 23 is a schematic structural diagram of a display device provided by an embodiment of this application.
  • the display device 200 includes the display panel 100 provided by any of the above embodiments of this application.
  • the display device 200 further includes a photosensitive element disposed in the optical component area AA2, such as a camera, an infrared sensing device, a fingerprint recognition device and other electronic photosensitive devices.
  • the display device 200 provided in the embodiment of the present application can be a computer, a television, a vehicle-mounted display device, or other display device with a display function, which is not limited by the present application.
  • the display device 200 provided by the embodiment of the present application has the effects of the display panel 100 provided by the embodiment of the present application. Reference may be made to the description of the display panel 100 in the above embodiment, which will not be described again in this embodiment.
  • the display panel and display device provided by this application at least achieve the following effects:
  • the display panel and display device provided by the embodiments of the present application are provided with a first display area and an optical component area.
  • the first display area at least partially surrounds the optical component area, and the optical component area is configured to provide a camera, Infrared sensing devices, fingerprint recognition devices and other electronic photosensitive devices.
  • the first display area is provided with a first light-emitting element, and the optical component area is provided with a second light-emitting element.
  • both the optical component area and the first display area perform display functions, and the second light-emitting element in the optical component area is composed of the first pixel
  • the driving circuit drives and emits light; in the light-sensing stage, the optical component area serves as a light-transmitting area to realize the light-sensing function. At this time, the second light-emitting element in the optical component area does not emit light.
  • the first pixel driving circuit configured to drive the second light-emitting element in the optical component area to emit light is arranged in the first pixel driving unit column in the first display area, and the first pixel driving circuit is not arranged In the optical component area, the influence of the first pixel area driving circuit on the light transmittance of the optical component area is avoided, which is beneficial to improving the photosensitive performance of the optical component area in the light sensing stage.
  • the second light-emitting element in the optical component area and the first pixel driving circuit in the first display area use one first pixel driving circuit to drive one second light-emitting element to emit light.
  • this application is more conducive to improving the display effect of the optical component area in the display stage and reducing the display brightness difference between the optical component area and the first display area, thus helping to improve the display
  • the overall display effect of the panel and display device improves the display quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种显示面板(100)及显示装置(200)。显示面板(100)包括:显示区(AA),显示区(AA)包括第一显示区(AA1)和光学部件区(AA2);发光元件(P),发光元件(P)包括第一发光元件(P1)和第二发光元件(P2),第一发光元件(P1)位于第一显示区(AA1),第二发光元件(P2)位于光学部件区(AA2);第一显示区(AA1)包括复数个沿第一方向排列的像素驱动单元列(10),像素驱动单元列(10)包括第一像素驱动单元列(11),第一像素驱动单元列(11)包括复数个第一像素驱动电路(21),一个第一像素驱动电路(21)与一个第二发光元件(P2)电连接。

Description

显示面板及显示装置
本申请要求在2022年07月13日提交中国专利局、申请号为202210824328.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,例如涉及一种显示面板及显示装置。
背景技术
手机、平板电脑等显示设备,往往正面需要为常用的前置摄像头、红外感测器件、指纹识别器件等电子感光器件预留空间。比如,这些感光器件设置在显示设备的正面顶部位置,在相应位置形成非显示区,导致设备的屏占比降低。
随着显示技术的发展,显示面板具有越来越高的屏占比,全面屏由于具有窄边框甚至无边框的显示效果,受到广泛关注。在相关技术中,为了提高屏占比,可在显示面板的显示区开设光学部件区来容置上述感光器件。例如,在显示屏幕的显示区设置光学部件区,将摄像头设置在屏幕的下方且对应设置在光学部件区。在正常显示时,光学部件区可以发挥显示作用;在需要拍照或拍视频时,摄像头通过该光学部件区进行照片或视频的拍摄,如此光学部件区可同步实现显示和拍摄的功能。现阶段,如何提升光学部件区的透光率以及显示面板的整体显示效果成为研究趋势之一。
发明内容
本申请提供了一种显示面板及显示装置,旨在提升产品在光学部件区的透光率及感光性能,并提升产品的整体显示品质。
本申请提供一种显示面板,包括:
显示区,所述显示区包括第一显示区和光学部件区;
发光元件,所述发光元件包括第一发光元件和第二发光元件,所述第一发光元件位于所述第一显示区,所述第二发光元件位于所述光学部件区;
所述第一显示区包括复数个沿第一方向排列的像素驱动单元列,所述像素驱动单元列包括第一像素驱动单元列,所述第一像素驱动单元列包括复数个第一像素驱动电路,一个所述第一像素驱动电路与一个所述第二发光元件电连接。
本申请提供一种显示装置,包括上述所提供的显示面板。
附图说明
图1为本申请实施例所提供的一种显示面板的结构示意图;
图2为本申请实施例所提供的一种显示面板中像素驱动电路的排布示意图;
图3为本申请实施例所提供的一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图;
图4为本申请实施例所提供的另一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图;
图5为本申请实施例所提供的另一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图;
图6为本申请实施例所提供的一种显示面板的膜层示意图;
图7为本申请实施例所提供的另一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图;
图8为本申请实施例所提供的一种第一像素驱动单元列中的像素驱动电路与数据信号线的连接示意图;
图9为本申请实施例所提供的一种显示面板中第一像素驱动电路与数据信号线的连接示意图;
图10为本申请实施例所提供的一种第一虚设像素驱动电路与数据信号线的连接示意图;
图11为本申请实施例所提供的另一种显示面板中像素驱动电路的排布示意图;
图12为本申请实施例所提供的一种光学部件区周围的像素驱动单元列的分布示意图;
图13为本申请实施例所提供的一种第二虚设像素驱动电路与数据信号线的连接示意图;
图14为本申请实施例所提供的另一种显示面板的结构示意图;
图15为本申请实施例所提供的另一种显示面板的结构示意图;
图16为本申请实施例所提供的另一种显示面板的结构示意图;
图17为本申请实施例所提供的另一种显示面板的结构示意图;
图18为本申请实施例所提供的一种第一信号线与第一连接部或第二连接部的膜层示意图;
图19为本申请实施例所提供的另一种显示面板的结构示意图;
图20为本申请实施例所提供的另一种显示面板的结构示意图;
图21为本申请实施例所提供的另一种显示面板的结构示意图;
图22为本申请实施例所提供的一种显示面板中至少两个第一像素驱动电路与同一第二发光元件的连接示意图;
图23为本申请实施例所提供的一种显示装置的结构示意图。
具体实施方式
参照附图来描述本申请的多种示例性实施例。在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何值应被解释为仅仅是示例性的。因此,示例性实施例的其它例子可以具有不同的值。
相似的标号和字母在下面的附图中表示类似项,因此,一旦一项在一个附图中被定义,则在随后的附图中不需要对其进行讨论。
相关技术中,当在显示面板的显示区开设光学部件区来容置摄像头、红外感测器件、指纹识别器件等感光器件,以提高显示面板的屏占比,实现窄边框或者无边框的显示效果时,通常会在光学部件区引入发光元件和对应的像素驱动电路,在显示阶段,利用光学部件区的像素驱动电路来驱动光学部件区的发光元件发光。但是,由于像素驱动电路中通常包括晶体管等电子元器件,当将像素驱动电路设置在光学部件区时,会对光学部件区的透光率造成较大的影响,影响光学部件区的感光性能。
本申请提供一种显示面板,包括:显示区,所述显示区包括第一显示区和光学部件区;发光元件,所述发光元件包括第一发光元件和第二发光元件,所述第一发光元件位于所述第一显示区,所述第二发光元件位于所述光学部件区;所述第一显示区包括复数个(两个及两个以上)沿第一方向排列的像素驱动单元列,所述像素驱动单元列包括第一像素驱动单元列,所述第一像素驱动单元列包括复数个(两个及两个以上)第一像素驱动电路,一个所述第一像素驱动电路与一个所述第二发光元件电连接。将与光学部件区的第二发光元件连接的第一像素驱动电路设置在第一显示区,避免占用光学部件区 的空间,有效提升了光学部件区的透光率,因而有利于提高光学部件区的感光性能。另外,第一像素驱动电路与第二发光元件的电连接方式,还有利于提升对第二发光元件的驱动性能,提高光学部件区在显示阶段的显示效果,进而有利于提升显示面板和显示装置的整体显示品质。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1为本申请实施例所提供的一种显示面板的结构示意图,图1示出了显示面板100上第一发光元件P1和第二发光元件P2的一种排布示意图,并未示出对应的像素驱动电路。图2为本申请实施例所提供的一种显示面板中像素驱动电路的排布示意图,为示意像素驱动电路20的排布,图2中并未示出第一发光元件P1和第二发光元件P2。图3为本申请实施例所提供的一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图,为体现二者的连接关系,图3并未示出第一显示区AA1中的第一发光元件P1和其他的像素驱动电路。
请结合图1至图3,本实施例提供一种显示面板100,包括:
显示区AA,显示区AA包括第一显示区AA1和光学部件区AA2;发光元件P,发光元件P包括第一发光元件P1和第二发光元件P2,第一发光元件P1位于第一显示区AA1,第二发光元件P2位于光学部件区AA2;第一显示区AA1包括复数个(两个及两个以上)沿第一方向D1排列的像素驱动单元列10,像素驱动单元列10包括第一像素驱动单元列11,第一像素驱动单元列11包括复数个(两个及两个以上)第一像素驱动电路21,一个第一像素驱动电路21与一个第二发光元件P2电连接。
本申请实施例所提供的显示面板100中,设置有第一显示区AA1和光学部件区AA2。一实施例中,第一显示区AA1至少部分包围光学部件区AA2,图1和图2以第一显示区AA1半包围光学部件区AA2为例进行说明,该光学部件区AA2设置为设置摄像头、红外感测器件、指纹识别器件等电子感光器件。第一显示区AA1设置有第一发光元件P1,光学部件区AA2设置有第二发光元件P2,在显示阶段,光学部件区AA2和第一显示区AA1均发挥显示功能,光学部件区AA2的第二发光元件P2由第一像素驱动电路21驱动而发光;在光感阶段,光学部件区AA2作为透光区域,实现感光功能,此时光学部件区AA2的第二发光元件P2可以不发光。例如,当光学部件区AA2设置有摄像头时,在光感阶段,光学部件区AA2作为透光区域实现画面拍摄功能。本实施例将光学部件区AA2集成在显示区AA中,有利于减小显示面板100的非显示区的空间,从而有利于实现显示面板100的窄边框或者无边 框的设计。
本申请将设置为驱动光学部件区AA2的第二发光元件P2发光的第一像素驱动电路21,设置在第一显示区AA1中的第一像素驱动单元列11中,并未将该第一像素驱动电路21设置在光学部件区AA2,从而避免了第一像素区驱动电路对光学部件区AA2的透光率的影响,因而有利于提升光学部件区AA2在光感阶段的感光性能。此外,光学部件区AA2中的第二发光元件P2与第一显示区AA1中的第一像素驱动电路21采用一个第一像素驱动电路21驱动一个第二发光元件P2发光,相比于相关技术中一个像素驱动电路驱动两个或者多个第二发光元件发光的方案而言,本申请更加有利于提升光学部件区AA2在显示阶段的显示效果,减小光学部件区AA2与第一显示区AA1的显示亮度差异,因而有利于提升显示面板100和显示装置的整体显示效果,提升显示品质。
图2仅对第一像素驱动单元列11的一种位置情况进行了示意,即仅示出了第一像素驱动单元列11位于光学部件区AA2沿第一方向D1两侧的方案,在本申请的一些其他实施例中,第一像素驱动单元列11还可位于光学部件区AA2沿第二方向D2的至少一侧,本申请对此不进行限定。例如请参考图4,图4为本申请实施例所提供的另一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图,本实施例中,第一像素驱动电路21所在的第一像素驱动单元列11位于光学部件区AA2沿第二方向的一侧。
本实施例提及第一像素驱动单元列11包括复数个(两个及两个以上)第一像素驱动电路21,一种可行的实现方式为,第一像素驱动单元列11中仅包括第一像素驱动电路21,例如请参考图3;另一种可行的实现方式为,第一像素驱动单元列11中除包括第一像素驱动电路21外,还有可能包括其他的像素驱动电路,例如不与第二发光元件P2连接的像素驱动电路,对此将在后续的实施例中进行说明。
本实施例提供的显示面板100可以为采用有机发光二极管(Organic Light-Emitting Diode,OLED)显示技术的显示面板,即显示面板,OLED显示面板的基本结构通常包括阳极、发光层与阴极。当电源供应适当电压时,阳极的空穴与阴极的电子会在发光层中结合,产生亮光。相比于薄膜场效应晶体管液晶显示器,OLED显示装置具有高可视度和高亮度的特点,并且更省电、重量轻、厚度薄。在本申请的一些其他实施例中,显示面板100还可为采用无机发光二极管显示技术的显示面板,例如Micro LED显示面板,或者,Mini LED显示面板等等。
图1和图2仅示出了显示面板100中包括一个光学部件区AA2的情形,在本申请的一些其他实施例中,显示面板100上还可根据需要设置两个或更多数量的光学部件区AA2,本申请对此不进行限定,以下将仅以显示面板100中包括一个光学部件区AA2为例进行说明,当显示面板100中包括复数个(两个及两个以上)光学部件区AA2时,均可参考本申请的实施例执行。图1和图2仅示出了第一显示区AA1半包围光学部件区AA2的情形,在本申请的一些其他实施例中,第一显示区AA1还可全包围光学部件区AA2。图1和图2也仅示出了显示面板100中第一显示区AA1和光学部件区AA2的一种相对位置关系,在本申请的一些其他实施例中,光学部件区AA2还可位于显示面板100中的其他位置,本申请对此不进行限定;另外,图1至图3中光学部件区AA2的形状为矩形也仅为示意,在本申请的一些其他实施例中,光学部件区AA2还可体现为圆形、椭圆形等其他形状,光学部件区AA2的尺寸也可根据实际需求进行设定,本申请对此也不进行限定。另外,图1仅示出了第一显示区AA1和光学部件区AA2的一种像素排布示意。例如请参考图5,图5以圆形结构的光学部件区AA2为例进行说明,并且光学部件区AA2所包含的发光元件的形状也为圆形,对应地,第一显示区AA1中的发光元件的形状可设置为与光学部件区AA2相同,也可设置为不同,本申请对此不进行限定,其中,图5为本申请实施例所提供的另一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图。
此外,图1和图2也仅示出了以矩形形状的显示面板100为例对本申请的显示面板100的形状进行示意,并不对显示面板100的实际形状进行限定,在本申请的一些其他实施例中,显示面板的形状还可体现为其他,例如圆形、椭圆形、非矩形的其他异形结构等等。
本实施例中仅以第一像素驱动电路21与第二发光元件P2之间的连接引线L0为直线为例进行说明,在本申请的一些其他实施例中,为避免光学部件区AA2的衍射现象,还可将光学部件区AA2的连接引线L0设置为曲线状。此外,为提升光学部件区AA2的透光率,还可将光学部件区AA2的连接引线L0设置为透明引线。
图6为本申请实施例所提供的一种显示面板的膜层示意图,该实施例示出了一种光学部件区AA2的连接引线的膜层分布示意图,请参考图6,本申请实施例所提供的显示面板100包括衬底00、设置于衬底00上的阵列层01、设置于阵列层01背离衬底00一侧的发光元件层02、以及设置于发光元件层02背离衬底00一侧的封装层03。本实施例示出了设置为连接第二发光元件P2与第一像素驱动电路21(图6中仅示出了像素驱动电路中的驱动晶体管T0)的连接引线L0的膜层示意图,本实施例将连接引线L0设置在三个不同 膜层中,有利于避免连接引L0单层设置时可能出现的空间不足以及影响光学器件区的透光率的问题。图6的实施例仅为示意,在本申请的一些其他实施例中,还可将光学部件区AA2的连接引线L0设置在两个不同的膜层中,或者三个以上的不同膜层中,本申请对此不进行限定。
继续结合图1、图2和图5和图7,图7为本申请实施例所提供的另一种显示面板中光学部件区的第二发光元件与第一显示区中的第一像素驱动电路的连接示意图,在本申请的一种实施方式中,第一像素驱动单元列11还包括复数个(两个及两个以上)第一虚设像素驱动电路22。
本申请实施例提及的虚设像素驱动电路指的是一般情况下,不与发光元件连接的像素驱动电路,或者说,一般情况下,虚设像素驱动电路并不起驱动发光元件发光的功能。一实施例中,虚设像素驱动电路的结构与显示面板100中能够驱动发光元件发光的像素驱动电路的结构相同或者说大体上相同。一实施例中,第一虚设像素驱动电路22复用为修复像素驱动电路,即在第一发光元件P1和/或第二发光元件P2对应的像素驱动电路处于非正常工作状态下时,设置为替代其工作。
本申请实施例中在第一显示区AA1引入第一像素驱动单元列11,通过第一像素驱动单元列11中的第一像素驱动电路21来驱动光学部件区AA2的第二发光元件P2发光。此外,还可以在第一像素驱动单元列11中引入了第一虚设像素驱动电路22。本申请实施例中的像素驱动单元列10除包括第一像素驱动单元列11外,还包括其他的像素驱动单元列,其他的像素驱动单元列中的至少部分像素驱动电路设置为驱动第一显示区AA1中的第一发光元件P1发光。当显示面板100中设置有复数个(两个及两个以上)像素驱动单元列10时,在实际制作过程中,复数个(两个及两个以上)像素驱动单元列10可采用相同的制作工艺进行制作,而且在第一像素驱动单元列11中保留第一虚设像素驱动电路22时,无需在制作完整体第一像素驱动单元列11之后再将不需要的像素驱动电路去除,而是作为第一虚设像素驱动电路22即可,因而有利于简化显示面板100的制作工艺,提高显示面板100的生产效率。一实施例中,第一像素驱动单元列11还包括第三像素驱动电路,其中,第三像素驱动电路和第一发光元件P1电连接。
请参考图5,在本申请的一种实施方式中,在第一像素驱动单元列11内,第一像素驱动电路21和第一虚设像素驱动电路22相间排布。
第一像素驱动单元列11中,第一像素驱动电路21是与光学部件区AA2中的第二发光元件P2电连接的像素驱动电路,而第一虚设像素驱动电路22是未与任何发光元件连接的像素驱动电路。图5所示实施例中虚框示出的第 一像素驱动单元列11中,第一像素驱动电路21和第一虚设像素驱动电路22是交替排布的,也就是说,与第二发光元件P2电连接的像素驱动电路和未与第二发光元件P2电连接的像素驱动电路是交替排列的,在实际应用中,可根据光学部件区AA2的像素排列结构以及与第一像素驱动单元列11中的像素驱动电路的位置关系,从第一像素驱动单元列11中选择方便布线的像素驱动电路作为与第二发光元件P2所连接的第一像素驱动电路21,其余未与第二发光元件P2连接的像素驱动电路作为第一虚设像素驱动电路22,以简化第一像素驱动电路21与第二发光元件P2之间的连接复杂度。
图5所示实施例中的第一像素驱动单元列11中仅对第一像素驱动电路21和第一虚设像素驱动电路22的一种相间排列的方式进行了限定,并不对第一像素驱动电路21和第一虚设像素驱动电路22的先后顺序进行限定,在本申请的一些其他实施例中,第一像素驱动单元列11中的位于第一位的也有可能是第一虚设像素驱动电路22。其中,图5仅示意出了一个第一像素驱动电路21和一个第一虚设像素驱动电路22交替相间排列的方式,在本申请的一些其他实施例中,还可以是复数个第一像素驱动电路21和一个第一虚设像素驱动电路22交替相间排列、一个第一像素驱动电路21和复数个第一虚设像素驱动电路22交替相间排列以及复数个第一像素驱动电路21和复数个第一虚设像素驱动电路22交替相间排列,本申请实施例对此不做限制。
请参考图7,在本申请的一种实施方式中,在第一像素驱动单元列11内,第一像素驱动电路21和第一虚设像素驱动电路22分别集中设置。
第一像素驱动单元列11中,第一像素驱动电路21是与光学部件区AA2中的第二发光元件P2电连接的像素驱动电路,而第一虚设像素驱动电路22是未与任何发光元件连接的像素驱动电路。图7所示实施例中虚框示出的第一像素驱动单元列11中,与第二发光元件P2电连接的第一像素驱动电路21彼此相邻,换言之,相邻两个第一像素驱动电路21之间并未设置第一虚设像素驱动电路22;未与第二发光元件P2电连接的第一虚设像素驱动电路22彼此相邻,换言之,相邻两个第一虚设像素驱动电路22之间并未设置第一像素驱动电路21。一实施例中,将第一像素驱动单元列11内与光学部件区AA2相邻的复数个(两个及两个以上)像素驱动电路作为第一像素驱动电路21,其余的像素驱动电路作为第一虚设像素驱动电路22,第一像素驱动电路21和第一虚设像素驱动电路22相当于是分别集中设置的,此种设置方式减小了第一像素驱动电路21和与之连接的第二发光元件P2之间的连接引线的长度,因而有利于简化布线复杂度,提高显示面板100的生产效率。
图3至图5以及图7所示实施例中对光学部件区AA2所包含的第二发光 元件P2以及第二发光元件P2与第一像素驱动电路21的连接关系仅为示意,并不对光学部件区AA2实际所包含的第二发光元件P2的数量、形状和排布结构进行限定。
图8为本申请实施例所提供的一种第一像素驱动单元列中的像素驱动电路与数据信号线的连接示意图,图9为本申请实施例所提供的一种显示面板中第一像素驱动电路与数据信号线的连接示意图,图10为本申请实施例所提供的一种第一虚设像素驱动电路与数据信号线的连接示意图,请参考图8至图10,在本申请的一种实施方式中,第一显示区AA1还包括与第一虚设像素驱动电路22电连接的第一虚设数据信号线DL01,第一虚设数据信号线DL01与固定电压信号端电连接。
显示面板100中通常设置有多条数据信号线,驱动发光元件发光的像素驱动电路与数据信号线DL连接,设置为获取数据信号,最终产生驱动发光元件发光的驱动电流或驱动电压。在数据信号线的制程中,多条数据信号线是在同一工艺中制作而成的,所形成的数据信号线中,与第一虚设像素驱动电路22所连接的数据信号线为第一虚设数据信号线DL01,实际上不发挥向第一虚设像素驱动电路22传输数据信号的作用;而与实际上能够发挥驱动作用的其他像素驱动电路所连接的数据信号线为真正意义上能传输数据信号的数据信号线。本申请实施例保留了不发挥数据信号传输作用的第一虚设数据信号线DL01,无需引入将此部分数据信号线进行去除的工艺,因而有利于简化显示面板100的制作工艺,提高显示面板100的生产效率。考虑到显示面板100中像素驱动电路与数据信号线之间的连接是在同一工艺中完成的,本实施例保留了第一虚设数据信号线DL01与第一虚设像素驱动电路22之间的连接,无需引入其余的制作工艺,因此同样有利于提高显示面板100的制作效率。一实施例中,显示面板100中的数据信号线均匀排布,以提升显示面板100的整体显示均匀性,还有利于避免显示面板100在息屏时出现黑态不均的现象。
图9和图10所示实施例中以像素驱动电路为7个晶体管和1个电容(7Transistor 1Capacitor,7T1C)结构的像素驱动电路为例进行示意,并不对本申请中像素驱动电路的结构进行限定,在本申请的一些其他实施例中,像素驱动电路还可体现为8T1C等其他结构。以图9所示的第一像素驱动电路21为例,该第一像素驱动电路21包括驱动晶体管T0、第一晶体管T1至第六晶体管T6以及存储电容C0。驱动晶体管T0的栅极连接第一节点N1、第一极连接第二节点N2、第二极连接第三节点N3,第二发光元件P2串联于第四节点N4和第二电源端PVEE之间。第一晶体管T1串联在第一复位端Vref1和第一节点N1之间,第二晶体管T2串联在数据信号线DL和第二节点N2之 间;第三晶体管T3串联在第一节点N1和第三节点N3之间;第四晶体管T4串联在第二复位端Vref2和第四节点N4之间;第五晶体管T5串联在第一电源端PVDD和第二节点N2之间,第六晶体管T6串联在第三节点N3和第四节点N4之间;存储电容C0串联在第一电源端PVDD和第一节点N1之间。
继续参考图9,第一像素驱动电路21的工作阶段包括第一复位阶段、第二复位阶段、数据写入阶段和发光阶段,在第一复位阶段,第一晶体管T1响应第一控制端S1的导通电平而导通,并将第一复位端Vref1的复位信号传输至第一节点N1;在第二复位阶段,第四晶体管T4响应第四控制端S4的导通电平而导通,并将第二复位端Vref2的复位信号传输至第四节点N4,对第二发光元件P2的阳极进行复位;在数据写入阶段,第二晶体管T2响应第二控制端S2的导通电平而导通,第三晶体管T3响应第三控制端S2的导通电平而导通,数据信号线DL上的数据信号传输至所述第二节点N2,第二节点N2的信号通过驱动晶体管T0传输至第三节点N3,所述第三节点N3的信号传输至第一节点N1。在发光阶段,第五晶体管T5和第六晶体管T6响应发光控制信号端Emit的信号而导通,驱动晶体管T0将驱动信号传输至第二发光元件P2,驱动第二发光元件P2发光。第一复位阶段和第二复位阶段可同时进行,亦可分时进行,本申请实施例对此不进行限定。上述像素驱动电路的工作过程也仅为举例说明,并不对本申请像素驱动电路的实际工作过程进行限定。一实施例中,图10所示实施例中的第一虚设像素驱动电路22的构成与图9中的第一像素驱动电路的构成相同。
当像素驱动电路为能够实际发挥驱动作用的像素驱动电路时,例如请参考图9,该像素驱动电路会与显示面板100上的发光元件P电连接,并且像素驱动电路会与显示面板100上实际能够传输数据信号的数据信号线DL电连接;当像素驱动电路为第一虚设像素驱动电路22等不发挥驱动作用的像素驱动电路时,例如请参考图10,该第一虚设像素驱动电路22将不与显示面板100上的发光元件P电连接,与此部分第一虚设像素驱动电路22所连接的第一虚设数据信号线DL01也不发挥数据信号的传输功能。本实施例中,将第一虚设数据信号线DL01与显示面板100中的固定电压信号端电连接,使第一虚设数据信号线DL01接收固定电压信号,避免第一虚设数据信号线DL01浮置时,静电可能通过第一虚设数据信号线DL01引入显示面板100内部而对显示面板100的正常显示造成影响,因而有利于提升显示面板100整体的抗静电能力。
请参考图10,上述固定电压端例如可以是显示面板100中的第一电源端PVDD或者第二电源端PVEE,还可以是第一复位信号端Vref1或者第二复位信号端Vref2,本申请对此不进行限定。
请参考图1,在本申请的一种实施方式中,光学部件区AA2和第一显示区AA1的发光元件密度相同。
本申请实施例所提及的发光元件P的密度相同,指的是相同单位面积内所包含的发光元件P的数量相同。例如,第一显示区AA1和光学部件区AA2中的发光元件P的形状和排列方式均相同,如此,发光元件P在显示面板100的第一显示区AA1和光学部件区AA2整体可以呈均匀排布。在显示阶段,光学部件区AA2和第一显示区AA1的发光亮度将一致或者趋于一致,因此有效提升了具有光学部件区AA2的显示面板100的显示亮度均一性。
请结合图1和图2,在本申请的一种实施方式中,显示面板100包括的像素驱动电路20的总数量大于发光元件P的总数量。此处的像素驱动电路20既包括与第一显示区AA1中的第一发光元件P1连接的像素驱动电路、与光学部件区AA2中的第二发光元件P2连接的像素驱动电路,还包括虚设的像素驱动电路。
本申请实施例所提供的显示面板100中,第一像素驱动电路21与光学部件区AA2中的第二发光元件P2是一一对应设置的,第一显示区AA1中的第一发光元件P1与像素驱动电路也是一一对应电连接的,本实施例中限定显示面板100包括的像素驱动电路的总数量大于发光元件的总数量,由于本申请中像素驱动电路均是设置在第一显示区AA1的,因此,第一显示区AA1中除设置有与第一发光元件P1和第二发光元件P2分别电连接的像素驱动电路外,还设置有虚设像素驱动电路,即与第一发光元件P1和第二发光元件P2均不连接的像素驱动电路。像素驱动电路的制程中,当将与第二发光元件P2电连接的像素驱动电路设置在第一显示区AA1中时,第一显示区AA1中的所有像素驱动电路均是一起制作的,而且制作的像素驱动电路的数量大于发光元件P的数量,满足对多个发光元件P的驱动的同时,无需去除多余的像素驱动电路,而是将多余的像素驱动电路作为虚设像素驱动电路,故无需引入将虚设像素驱动电路去除的工艺,因此有利于简化显示面板100的制作工艺,提高显示面板100的生产效率。
继续参考图3、图5和图7,在本申请的一种实施方式中,沿第一方向D1,第一像素驱动单元列11中的至少部分第一像素驱动电路21与光学部件区AA2交叠。
至少部分第一像素驱动电路21与光学部件区AA2沿第一方向D1交叠,指的是至少部分第一像素驱动电路21位于光学部件区AA2沿第一方向D1的一侧或者两侧,此种设置方式有利于减小第一像素驱动电路21和与其连接的第二发光元件P2之间的距离,当采用连接引线L0将第一像素驱动电路21 与第二发光元件P2电连接时,相当于减小了连接引线L0的长度,从而有利于减小连接引线L0的布线难度,提高显示面板100的制作效率。
本申请中,请参考图2,当将与光学部件区AA2中第二发光元件P2连接的第一像素驱动电路21设置在第一显示区AA1中时,相当于增加了第一显示区AA1中所包含的像素驱动电路20的数量,为腾出空间设置第一像素驱动电路21所在的第一像素驱动单元列11,一种方式为将沿第一方向D1与光学部件区AA2相邻的部分像素区驱动单元列之间的距离进行压缩,将新增的第一像素区驱动单元列11设置于经前述压缩所腾出的空间中,其他区域的像素驱动单元列保持不变,例如请参考图2,在第一区域A1中新增了第一像素驱动单元列11,第二区域A2中并未新增第一像素驱动单元列11,此时,第一区域A1中的像素驱动列的排布密度大于第二区域A2中的像素驱动单元列的排布密度,即,第一区域A1中相邻的像素驱动单元列之间的距离小于第二区域A2中相邻的像素驱动单元列之间的距离。
图11为本申请实施例所提供的另一种显示面板中像素驱动电路的排布示意图,该实施例示出了在第一显示区AA1中引入第一像素驱动单元列11时多个像素驱动单元列10的另一种排列方式。请参考图11,在本申请的一种实施方式中,像素驱动单元列10在第一方向D1均匀排列。
当在第一显示区AA1中引入第一像素驱动单元列11时,可将第一像素驱动单元列11与其他像素驱动单元列在第一显示区AA1呈均匀排列,即,沿第一方向D1任意相邻的两个像素驱动单元列10之间的间隔是相同的,如此,有利于提升显示面板100的第一显示区AA1中整体线路排布均匀性,有利于减小或者避免由于像素电路排布不均匀而可能导致的显示亮度不均的问题,因而像素驱动单元列10均匀排列的方式有利于提升显示面板100的整体显示效果。
图12为本申请实施例所提供的一种光学部件区周围的像素驱动单元列的分布示意图,请适应性参考图11和图12,在本申请的一种实施方式中,显示面板100还包括第一非显示区NA1,像素驱动单元列10包括第二像素驱动单元列12,第二像素驱动单元列12包括复数个(两个及两个以上)第二虚设像素驱动电路32;沿第二方向D2,第二像素驱动单元列12位于第一非显示区NA1和光学部件区AA2之间,第二方向D2与第一方向D1相交。
图11所示实施例示出了第一非显示区NA1为显示面板100的下边框区的方案,在本申请的一些其他实施例中,第一非显示区NA1还可为显示面板100的上边框区,第二像素驱动单元列12还可位于上边框区与光学部件区AA2之间,或者,在显示面板100的上边框与光学部件区AA2之间、以及 显示面板100的下边框与光学部件区AA2之间均设置有第二像素驱动单元列12。本实施例仅以第二像素驱动单元列12位于光学部件区AA2与显示面板100的下边框之间为例进行说明。
当在光学部件区AA2沿第一方向D1的两侧引入第一像素驱动单元列11时,为提升显示面板100上像素驱动单元列10的整体分布均匀性,还可在光学部件区AA2沿第二方向D2的一侧或者两侧引入第二像素驱动单元列12,其中,第二像素驱动单元列12包括第二虚设像素驱动电路32。如此,在实际制作像素驱动单元列时,可按照像素驱动单元列整体分布均匀的规格进行制作,在光学部件区AA2多出的像素驱动单元列可作为第二像素驱动单元列12,无需另外引入工艺将此部分多余像素驱动单元列去除,因而在保证像素驱动单元列的整体排布均匀性的同时,还有利于简化显示面板100的制作工艺。
继续结合图11和图12,在本申请的一种实施方式中,第一显示区AA1还包括与第二虚设像素驱动电路32电连接的第二虚设数据信号线DL02,第二虚设数据信号线DL02与固定电压信号端电连接。
在数据信号线的制程中,多条数据信号线是在同一工艺中制作而成的,所形成的数据信号线中,与第二虚设像素驱动电路32所连接的数据信号线为第二虚设数据信号线DL02,实际上不发挥向第二虚设像素驱动电路32传输数据信号的作用;而与实际上能够发挥驱动作用的其他像素驱动电路所连接的数据信号线DL为真正意义上能传输数据信号的数据信号线。本申请实施例保留了不发挥数据信号传输作用的第二虚设数据信号线DL02,无需引入将此部分数据信号线进行去除的工艺,因而有利于简化显示面板100的制作工艺,提高显示面板100的生产效率。考虑到显示面板100中像素驱动电路与数据信号线之间的连接是在同一工艺中完成的,本实施例保留了第二虚设数据信号线DL02与第二虚设像素驱动电路32之间的连接,无需引入其余的制作工艺,因此同样有利于提高显示面板100的制作效率。一实施例中,第二虚设像素驱动电路32复用为修复像素驱动电路,即在第一发光元件P1和/或第二发光元件P2对应的像素驱动电路处于非正常工作状态下时,设置为替代其工作。
图13为本申请实施例所提供的一种第二虚设像素驱动电路与数据信号线的连接示意图,第二虚设像素驱动电路32的构成与第一虚设像素驱动电路22以及第一像素驱动电路21的构成相同,例如体现为7T1C结构,连接关系可参考图9中第一像素驱动电路21中晶体管和电容的连接关系,此处不再赘述。本实施例将第二虚设数据信号线DL02与显示面板100中的固定电压 信号端电连接,使第二虚设数据信号线DL02接收固定电压信号,避免第二虚设数据信号线DL02浮置时,静电可能通过第二虚设数据信号线DL02引入显示面板100内部而对显示面板100的正常显示造成影响,因而有利于提升显示面板100整体的抗静电能力。请参考图13,上述固定电压端例如可以是显示面板100中的第一电源端PVDD或者第二电源端PVEE,还可以是第一复位信号端Vref1或者第二复位信号端Vref2,本申请对此不进行限定。
图14为本申请实施例所提供的另一种显示面板的结构示意图,该实施例示出了显示面板100中第一显示区AA1和光学部件区AA2的第一发光元件P1和第二发光元件P2,并且示出了第一显示区AA1中的部分像素驱动电路,并未示出第一显示区AA1中的全部像素驱动电路。
请参考图14,在本申请的一种实施方式中,像素驱动单元列10还包括位于第一显示区AA1的第三像素驱动单元列13,第三像素驱动单元列13包括复数个(两个及两个以上)第二像素驱动电路24,第二像素驱动电路24与第一发光元件P1电连接;第三像素驱动单元列13包括第一子第三像素驱动单元列131,显示面板100还包括第一非显示区NA1,沿第二方向D2,第一子第三像素驱动单元列131位于第一非显示区NA1和光学部件区AA2之间,第二方向D2与第一方向D1相交;第一显示区AA1还包括多条数据信号线DL,数据信号线DL包括第一数据信号线DL1和第二数据信号线DL2,第一数据信号线DL1与第一像素驱动电路21电连接,第二数据信号线DL2与第一子第三像素驱动单元列131中的第二像素驱动电路24电连接,第一数据信号线DL1和第二数据信号线DL2电连接。
继续参考图14,本实施例中将与光学部件区AA2中的第二发光元件P2电连接的第一像素驱动电路21与第一数据信号线DL1连接,将与第一发光元件P1连接的位于第一子第三像素驱动单元列131中的第二像素驱动电路24与第二数据信号线DL2连接,并且将上述第一数据信号线DL1和第二数据信号线DL2电连接。一实施例中,与第一数据信号线DL1对应的第二发光元件P2,以及与第二数据信号线DL2对应的第一发光元件P1位于同一像素列中,如此,相当于实现了位于同一列的发光元件P通过同一数据信号线(此处为第一数据信号线DL1和第二数据信号线DL2连接而成的数据信号线)传输数据信号。一实施例中,数据信号线通过数据信号端子获取数据信号,当将上述第一数据信号线DL1与第二数据信号线DL2电连接时,仅为第一数据信号线DL1和第二数据信号线DL2提供一个数据信号端即可,无需分别为第一数据信号线DL1和第二数据信号线DL2引入不同的数据信号端,因而无需改变绑定区的设计,不会增大显示面板100的制作复杂度。
继续参考图14,在本申请的一种实施方式中,第一数据信号线DL1和第二数据信号线DL2通过第一连接部41电连接,第一连接部41位于显示区AA或者第一非显示区NA1。
图14所示实施例示出了第一数据信号线DL1远离光学部件区AA2的一端,与第二数据信号线DL2远离光学部件区AA2的一端通过设置在第一非显示区NA1的第一连接部41电连接的方案,当将第一连接部41设置于第一非显示区NA1中时,第一连接部41不占用显示区AA的空间,因而不会对显示区AA开口率造成影响。一实施例中,当将第一连接部41设置在第一非显示区NA1中时,第一连接部41可以与第一数据信号线DL1和/或第二数据信号线DL2同层设置,也可与第一数据信号线DL1和第二数据信号线DL2异层设置,本申请对此不进行限定。
在本申请的一些其他实施例中,还可将上述第一连接部41设置在显示区AA中,例如请参考图15,图15为本申请实施例所提供的另一种显示面板的结构示意图,本实施例中,第二数据信号线DL2靠近光学部件区AA2的一端与第一数据信号线DL1通过第一连接部41电连接,此时,第一连接部41位于显示区AA中,一实施例中,位于显示区AA中的第一连接部41与第一数据信号线DL1和第二数据信号线DL2异层设置,避免显示区AA中第一数据信号线DL1和第二数据信号线DL2因空间不足而可能导致二者连接不可靠的问题。若第一数据信号线DL1和第二数据信号线DL2所在的膜层有足够的空间设置第一连接部41时,也可将第一连接部41与第一数据信号线DL1和/或第二数据信号线DL2同层设置。当采用位于显示区AA的第一连接部41将第一数据信号线DL1和第二数据信号线DL2电连接时,电连接的第一数据信号线DL1和第二数据信号线DL2仍可共用同一数据信号端来获取数据信号,不会增大显示面板100的制作复杂度。
图16为本申请实施例所提供的另一种显示面板的结构示意图,本实施例示出了对应的第一数据信号线DL1和第二数据信号线DL2之间通过第一连接部41和第二连接部42电连接的方案。
请参考图16,在本申请的一种实施方式中,第一数据信号线DL1和第二数据信号线DL2,在第一非显示区NA1内通过第一连接部41电连接,在显示区AA内通过第二连接部42连接。
与光学部件区AA2中的第二发光元件P2对应的第一数据信号线DL1,以及与第一显示区AA1中的第一发光元件P1对应的第二数据信号线DL2形成电连接的另一种方式为,二者通过位于第一非显示区NA1中的第一连接部41电连接,并通过位于显示区AA中的第二连接部42电连接,一实施例中, 在显示区AA中,第二数据信号线DL2靠近光学部件区AA2的一端通过第二连接部42电连接,如此,第二数据信号线DL2与第一数据信号线DL1中的至少部分线段形成并联关系,从而有效减小了相互连接的第一数据信号线DL1和第二数据信号线DL2的阻抗,有利于减小数据信号在第一数据信号线DL1和第二数据信号线DL2上传输时由于阻抗过大而导致压降过大,因此有利于提升第一数据信号线DL1和第二数据信号线DL2上所传输的数据信号的准确性。
图17为本申请实施例所提供的另一种显示面板的结构示意图,为示意显示面板100中的第一信号线L1,图17中并未示出第一显示区AA1中的其他信号线。图18为本申请实施例所提供的一种第一信号线与第一连接部或第二连接部的膜层示意图,请参考图17和图18,并结合图6,在本申请的一种实施方式中,第一显示区AA1包括沿第一方向D1延伸的第一信号线L1,在显示面板100的厚度方向上,第二连接部42与第一信号线L1交叠。
请结合图6、图14至图18,本申请实施例中的数据信号线的整体延伸方向为第二方向D2,一实施例中,在显示面板100中还设置有沿第一方向D1延伸的第一信号线L1,例如扫描线,复位信号线等等,图18所示实施例方式以第一信号线L1为与驱动晶体管T0的栅极同层设置的扫描线为例进行说明。一实施例中,图18所示实施方式以第一连接部41或第二连接部42与连接第一像素驱动电路21和第二发光元件P2的部分连接引线L0同层设置为例进行说明。当第一数据信号线DL1和第二数据信号线DL2通过第一连接部41或者第二连接部42电连接时,设置在沿显示面板100的厚度方向上,第二连接部42或者第一连接部41与第一信号线L1交叠,如此,有利于避免了在显示区AA引入第一连接部41或第二连接部42时在显示区AA出现息屏时黑态不均的现象,影响显示面板100的使用体验效果。一实施例中,第一连接部41和第二连接部42沿第二方向D2的线宽小于或者等于第一信号线L1沿第二方向D2的线宽,且第一连接部41和第二连接部42沿第一方向D1延伸的边缘不超出第一信号线L1沿第一方向D1延伸的边缘,从而更加有利于避免息屏时的黑态不均现象。
图19为本申请实施例所提供的另一种显示面板的结构示意图,本实施例示出了第一数据信号线DL1和第二数据信号线DL2的另一种连接示意图,并且示出了第一显示区AA1将光学部件区AA2包围的方案,也即,光学部件区AA2沿第一方向D1的两侧以及沿第二方向D2的两侧均设置有第一发光元件P1。本实施例中,位于光学部件区AA2上方的部分第一发光元件P1、光学部件区AA2中的部分第二发光元件P2、以及位于光学部件区AA2下方的部分第一发光元件P1同列设置时,与此三部分发光元件P对应的像素驱 动电路所连接的数据信号线是电连接的,三条数据信号线共用同一数据信号端即可。
图20为本申请实施例所提供的另一种显示面板的结构示意图,本实施例示出了在显示面板100中引入像素驱动单元行时第二发光元件P2与第一像素驱动电路21的一种连接示意图。
在本申请的一种实施方式中,像素驱动单元列10还包括位于第一显示区AA1的第三像素驱动单元列13,第三像素驱动单元列13包括复数个(两个及两个以上)第二像素驱动电路24,第二像素驱动电路24与第一发光元件P1电连接;第一显示区AA1还包括复数个(两个及两个以上)沿第二方向D2排列的像素驱动单元行,像素驱动单元行包括第一像素驱动单元行H1和第二像素驱动单元行H2,第一像素驱动单元行H1包括复数个(两个及两个以上)连续设置的第二像素驱动电路24,第二像素驱动单元行H2包括复数个(两个及两个以上)连续设置的第三虚设像素驱动电路33,第一像素驱动电路21与第二发光元件P2通过第三连接部43电连接,在显示面板100的厚度方向上,第三连接部43与第二像素驱动单元行H2交叠。
继续参考图20,本实施例示出了在显示面板100中引入像素驱动单元行的方案,图20仅示出了显示面板100中的部分像素驱动电路,并未示出全部像素驱动电路。一实施例中,至少部分像素驱动单元行中设置有设置为与第二发光元件P2连接的第一像素驱动电路21,至少部分像素驱动单元行中设置有设置为与第一发光元件P1连接的像素驱动电路。本实施例中的像素驱动单元行包括第一像素驱动单元行H1和第二像素驱动单元行H2,其中,第一像素驱动单元行H1中设置有设置为驱动第一发光元件P1发光的第二像素驱动电路24,一实施例中,至少部分第二像素驱动电路24在第一像素驱动单元行H1中连续设置,一实施例中,至少部分第一像素驱动单元行H1还设置有虚设像素驱动电路。第二像素驱动单元行H2中设置有连续的第三虚设像素驱动电路33,一实施例中,第二像素驱动单元行H2中还设置有设置为与第二发光元件P2电连接的第一像素驱动电路21。也就是说,本实施例通过引入第二像素驱动单元行H2来设置与第二发光元件P2连接的第一像素驱动电路21,在像素驱动电路的制作过程中,通常是行列排布的像素驱动电路同时进行制作的,在制作第一像素驱动电路21的同时,也会一并制作形成与第一发光元件P1连接的像素驱动电路和虚设像素驱动电路,为避免引入去除不需要的(例如无需与发光元件P连接的)像素驱动电路的工艺,通常将这些像素驱动电路保留作为虚设像素驱动电路,例如在第二像素驱动单元行H2中的第三虚设像素驱动电路33,从而有利于简化显示面板100的制作工艺。此外,本实施例在利用第三连接部43将第二像素驱动单元行H2中的第 一像素驱动电路21与第二发光元件P2电连接时,将第三连接部43在显示面板100的厚度方向上设置为与第二像素驱动单元行H2交叠,从而使得第三连接部43不占用显示区AA中原有的其他空间,仅占用新增的第二像素驱动单元行H2所在的空间,因此不会对显示区AA中的其他线路结构造成影响,另外,在第二像素驱动单元行H2中设置第三连接部43的方式,也有利于简化第三连接部43的布线工艺,因此有利于简化显示面板100的整体制作工艺,提高生产效率。一实施例中,第三虚设像素驱动电路33复用为修复像素驱动电路,即在第一发光元件P1和/或第二发光元件P2对应的像素驱动电路处于非正常工作状态下时,设置为替代其工作。
图21为本申请实施例所提供的另一种显示面板的结构示意图,请参考图21,在本申请的一种实施方式中,像素驱动单元行在第二方向D2均匀排列。
图21示出了在显示面板100中引入复数个(两个及两个以上)像素驱动单元行时,像素驱动单元行沿第二方向D2均匀排列的方案。像素驱动单元行沿第二方向D2均匀排列指的是沿第二方向D2任意相邻的两个像素驱动单元行之间的间距是相等的。采用此种设置方式,有利于保证显示面板100中像素驱动电路的排布均匀性,从而有利于避免由于像素驱动电路排布不均而可能导致显示区AA在息屏状态下出现黑态不均的现象,影响用户的使用体验效果。此外,将像素驱动单元行均匀排列的方式还有利于简化像素驱动电路的制作工艺,提高显示面板100整体的生产效率。
图20和图21所示实施例示出了像素驱动电路和发光元件的相对位置关系仅为示意,在第一显示区AA1中,像素驱动电路与发光元件P在显示面板100的厚度方向上例如可体现为图21所示的交叠结构,以合理利用显示区AA的空间。当二者交叠时,由于像素驱动电路是位于发光元件P朝向衬底的一侧,因此并不会对发光元件P的出光造成影响。
图22为本申请实施例所提供的一种显示面板中至少两个第一像素驱动电路与同一第二发光元件的连接示意图,在本申请的一种实施例方式中,至少两个第一像素驱动电路21与同一第二发光元件P2电连接。采用至少两个第一像素驱动电路21驱动同一第二发光元件P2的方式,有利于提升对第二发光元件P2的驱动能力,提升第二发光元件P2的发光可靠性。此外,当与同一第二发光元件P2连接的其中一个第一像素驱动电路21处于非正常工作状态时,其它的第一像素驱动电路21还可对第二发光元件P2进行正常驱动,因而有利于确保第二发光元件P2的发光可靠性。
图22仅以一个第二发光元件P2与两个第一像素驱动电路21连接的方案为例进行说明,并不对同一第二发光元件P2实际所连接的第一像素驱动 电路21的数量进行限定,在本申请的一些其他实施例中,与同一第二发光元件P2连接的第一像素驱动电路21的数量还可为三个或者三个以上。
基于同一构思,本申请还提供一种显示装置,图23为本申请实施例所提供的一种显示装置的结构示意图,该显示装置200包括本申请上述任一实施例所提供的显示面板100。一实施例中,显示装置200还包括设置在光学部件区AA2的光感元件,例如摄像头、红外感测器件、指纹识别器件等电子感光器件。
本申请实施例提供的显示装置200,可以是电脑、电视、车载显示装置等其他具有显示功能的显示装置,本申请对此不作限制。本申请实施例提供的显示装置200,具有本申请实施例提供的显示面板100的效果,可以参考上述实施例对于显示面板100的说明,本实施例在此不再赘述。
综上,本申请提供的显示面板及显示装置,至少实现了如下的效果:
本申请实施例所提供的显示面板及显示装置中,设置有第一显示区和光学部件区,一实施例中,第一显示区至少部分包围光学部件区,该光学部件区设置为设置摄像头、红外感测器件、指纹识别器件等电子感光器件。第一显示区设置有第一发光元件,光学部件区设置有第二发光元件,在显示阶段,光学部件区和第一显示区均发挥显示功能,光学部件区的第二发光元件由第一像素驱动电路驱动而发光;在光感阶段,光学部件区作为透光区域,实现感光功能,此时光学部件区的第二发光元件不发光。特别是,本申请将设置为驱动光学部件区的第二发光元件发光的第一像素驱动电路,设置在第一显示区中的第一像素驱动单元列中,并未将第一像素驱动电路设置在光学部件区,从而避免了第一像素区驱动电路对光学部件区的透光率的影响,因而有利于提升光学部件区在光感阶段的感光性能。此外,光学部件区中的第二发光元件与第一显示区中的第一像素驱动电路采用一个第一像素驱动电路驱动一个第二发光元件发光,相比于相关技术中一个像素驱动电路驱动两个或者多个第二发光元件发光的方案而言,本申请更加有利于提升光学部件区在显示阶段的显示效果,减小光学部件区与第一显示区的显示亮度差异,因而有利于提升显示面板和显示装置的整体显示效果,提升显示品质。

Claims (20)

  1. 一种显示面板,包括:
    显示区,所述显示区包括第一显示区和光学部件区;
    发光元件,所述发光元件包括第一发光元件和第二发光元件,所述第一发光元件位于所述第一显示区,所述第二发光元件位于所述光学部件区;
    所述第一显示区包括复数个沿第一方向排列的像素驱动单元列,所述像素驱动单元列包括第一像素驱动单元列,所述第一像素驱动单元列包括复数个第一像素驱动电路,一个第一像素驱动电路与一个第二发光元件电连接。
  2. 根据权利要求1所述的显示面板,其中,所述第一像素驱动单元列还包括复数个第一虚设像素驱动电路。
  3. 根据权利要求2所述的显示面板,其中,在所述第一像素驱动单元列内,所述第一像素驱动电路和所述第一虚设像素驱动电路相间排布。
  4. 根据权利要求2所述的显示面板,其中,在所述第一像素驱动单元列内,所述第一像素驱动电路和所述第一虚设像素驱动电路分别集中设置。
  5. 根据权利要求2所述的显示面板,其中,所述第一显示区还包括与所述第一虚设像素驱动电路电连接的第一虚设数据信号线,所述第一虚设数据信号线设置为与固定电压信号端电连接。
  6. 根据权利要求1所述的显示面板,其中,所述光学部件区和所述第一显示区的发光元件密度相同。
  7. 根据权利要求1所述的显示面板,其中,所述显示面板包括的像素驱动电路的总数量大于发光元件的总数量。
  8. 根据权利要求1所述的显示面板,其中,沿所述第一方向,所述第一像素驱动单元列中的至少部分第一像素驱动电路与所述光学部件区交叠。
  9. 根据权利要求1所述的显示面板,其中,
    复数个像素驱动单元列在所述第一方向均匀排列。
  10. 根据权利要求1所述的显示面板,其中,所述显示面板还包括第一非显示区,所述像素驱动单元列包括第二像素驱动单元列,所述第二像素驱动单元列包括复数个第二虚设像素驱动电路;
    沿第二方向,所述第二像素驱动单元列位于所述第一非显示区和所述光学部件区之间,所述第二方向与所述第一方向相交。
  11. 根据权利要求10所述的显示面板,其中,所述第一显示区还包括与所述第二虚设像素驱动电路电连接的第二虚设数据信号线,所述第二虚设数据信 号线设置为与固定电压信号端电连接。
  12. 根据权利要求1所述的显示面板,其中,所述像素驱动单元列还包括位于所述第一显示区的第三像素驱动单元列,所述第三像素驱动单元列包括复数个第二像素驱动电路,所述第二像素驱动电路与所述第一发光元件电连接;
    所述第三像素驱动单元列包括第一子第三像素驱动单元列,所述显示面板还包括第一非显示区,沿第二方向,所述第一子第三像素驱动单元列位于所述第一非显示区和所述光学部件区之间,所述第二方向与所述第一方向相交;
    所述第一显示区还包括多条数据信号线,所述数据信号线包括第一数据信号线和第二数据信号线,所述第一数据信号线与所述第一像素驱动电路电连接,所述第二数据信号线与所述第一子第三像素驱动单元列中的所述第二像素驱动电路电连接,所述第一数据信号线和所述第二数据信号线电连接。
  13. 根据权利要求12所述的显示面板,其中,所述第一数据信号线和所述第二数据信号线通过第一连接部电连接,所述第一连接部位于所述显示区或者所述第一非显示区。
  14. 根据权利要求12所述的显示面板,其中,所述第一数据信号线和所述第二数据信号线,在所述第一非显示区内通过第一连接部电连接,在所述显示区内通过第二连接部连接。
  15. 根据权利要求14所述的显示面板,其中,所述第一显示区包括沿第一方向延伸的第一信号线,在所述显示面板的厚度方向上,所述第二连接部与所述第一信号线交叠。
  16. 根据权利要求1所述的显示面板,其中,所述像素驱动单元列还包括位于所述第一显示区的第三像素驱动单元列,所述第三像素驱动单元列包括复数个第二像素驱动电路,所述第二像素驱动电路与所述第一发光元件电连接;
    所述第一显示区还包括复数个沿第二方向排列的像素驱动单元行,所述像素驱动单元行包括第一像素驱动单元行和第二像素驱动单元行,所述第一像素驱动单元行包括复数个连续设置的第二像素驱动电路,所述第二像素驱动单元行包括复数个连续设置的第三虚设像素驱动电路,所述第一像素驱动电路与所述第二发光元件通过第三连接部电连接,在所述显示面板的厚度方向上,所述第三连接部与所述第二像素驱动单元行交叠。
  17. 根据权利要求16所述的显示面板,其中,所述像素驱动单元行在所述第二方向均匀排列。
  18. 根据权利要求1所述的显示面板,其中,至少两个第一像素驱动电路 与同一个第二发光元件电连接。
  19. 根据权利要求2所述的显示面板,其中,所示第一虚设像素驱动电路复用为修复像素驱动电路。
  20. 一种显示装置,包括权利要求1至19中任一所述的显示面板。
PCT/CN2022/125058 2022-07-13 2022-10-13 显示面板及显示装置 WO2024011776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210824328.XA CN115346486A (zh) 2022-07-13 2022-07-13 显示面板及显示装置
CN202210824328.X 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024011776A1 true WO2024011776A1 (zh) 2024-01-18

Family

ID=83947505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125058 WO2024011776A1 (zh) 2022-07-13 2022-10-13 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN115346486A (zh)
WO (1) WO2024011776A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117750831A (zh) * 2021-11-30 2024-03-22 Oppo广东移动通信有限公司 显示面板、显示屏以及电子设备
CN115346486A (zh) * 2022-07-13 2022-11-15 武汉天马微电子有限公司 显示面板及显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834425A (zh) * 2020-07-02 2020-10-27 合肥维信诺科技有限公司 显示面板及显示装置
CN111916486A (zh) * 2020-08-27 2020-11-10 武汉天马微电子有限公司 显示面板及显示装置
US20210191552A1 (en) * 2019-12-24 2021-06-24 Samsung Display Co., Ltd. Display panel and display apparatus including the same
CN113410269A (zh) * 2021-06-03 2021-09-17 武汉天马微电子有限公司 显示面板及显示装置
CN113707092A (zh) * 2021-09-10 2021-11-26 武汉华星光电半导体显示技术有限公司 显示面板及电子装置
CN113745274A (zh) * 2020-05-29 2021-12-03 京东方科技集团股份有限公司 显示基板及显示装置
CN216623636U (zh) * 2021-12-15 2022-05-27 昆山国显光电有限公司 显示面板及显示装置
CN114649394A (zh) * 2022-03-22 2022-06-21 京东方科技集团股份有限公司 显示面板及显示装置
CN114725173A (zh) * 2022-03-31 2022-07-08 京东方科技集团股份有限公司 显示面板和显示装置
CN115346486A (zh) * 2022-07-13 2022-11-15 武汉天马微电子有限公司 显示面板及显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210191552A1 (en) * 2019-12-24 2021-06-24 Samsung Display Co., Ltd. Display panel and display apparatus including the same
CN113745274A (zh) * 2020-05-29 2021-12-03 京东方科技集团股份有限公司 显示基板及显示装置
CN111834425A (zh) * 2020-07-02 2020-10-27 合肥维信诺科技有限公司 显示面板及显示装置
CN111916486A (zh) * 2020-08-27 2020-11-10 武汉天马微电子有限公司 显示面板及显示装置
CN113410269A (zh) * 2021-06-03 2021-09-17 武汉天马微电子有限公司 显示面板及显示装置
CN113707092A (zh) * 2021-09-10 2021-11-26 武汉华星光电半导体显示技术有限公司 显示面板及电子装置
CN216623636U (zh) * 2021-12-15 2022-05-27 昆山国显光电有限公司 显示面板及显示装置
CN114649394A (zh) * 2022-03-22 2022-06-21 京东方科技集团股份有限公司 显示面板及显示装置
CN114725173A (zh) * 2022-03-31 2022-07-08 京东方科技集团股份有限公司 显示面板和显示装置
CN115346486A (zh) * 2022-07-13 2022-11-15 武汉天马微电子有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN115346486A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US10756136B1 (en) Display panel and display device
CN111668278B (zh) 一种显示面板及显示装置
WO2024011776A1 (zh) 显示面板及显示装置
WO2023000830A1 (zh) 显示模组和显示设备
KR20220106735A (ko) 어레이 기판, 디스플레이 패널, 접합된 디스플레이 패널 및 디스플레이 구동 방법
WO2022007571A1 (zh) 显示装置及其制作方法
KR102443121B1 (ko) 디스플레이 패널 및 그 제조 방법 및 디스플레이 디바이스
US20240078960A1 (en) Display device
WO2023000832A1 (zh) 显示模组和显示设备
WO2022001435A1 (zh) 显示基板和显示装置
US20220376003A1 (en) Display panel and display apparatus
CN112310140B (zh) Led背板的像素结构、led显示面板及其制作方法
WO2021051729A1 (zh) 有机发光二极管显示面板及有机发光二极管显示装置
WO2022120576A1 (zh) 显示基板及显示面板
CN113674689B (zh) 显示面板
CN215266306U (zh) 显示面板及显示装置
CN112928123A (zh) 一种驱动背板及其制作方法、显示面板、显示装置
WO2022222151A1 (zh) 一种显示基板、显示面板及显示设备
US20230189596A1 (en) Display panel and display device
CN114743504B (zh) 像素电路、显示面板及显示装置
US20240040885A1 (en) Display panel and display device
CN114649394A (zh) 显示面板及显示装置
US20190369768A1 (en) Touch display panel
CN213958958U (zh) 柔性显示面板及显示装置
CN113487999B (zh) 显示面板、电子设备和显示控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950886

Country of ref document: EP

Kind code of ref document: A1