WO2024011372A1 - 显示基板及其制备方法、制备装置、显示装置 - Google Patents

显示基板及其制备方法、制备装置、显示装置 Download PDF

Info

Publication number
WO2024011372A1
WO2024011372A1 PCT/CN2022/104986 CN2022104986W WO2024011372A1 WO 2024011372 A1 WO2024011372 A1 WO 2024011372A1 CN 2022104986 W CN2022104986 W CN 2022104986W WO 2024011372 A1 WO2024011372 A1 WO 2024011372A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting
luminescent
area
Prior art date
Application number
PCT/CN2022/104986
Other languages
English (en)
French (fr)
Inventor
关峰
张永峰
王超璐
赵梦
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/104986 priority Critical patent/WO2024011372A1/zh
Priority to CN202280002167.4A priority patent/CN117693813A/zh
Publication of WO2024011372A1 publication Critical patent/WO2024011372A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate

Definitions

  • the present disclosure relates to the technical field of display devices, and in particular, to a display substrate, a method for preparing a display substrate, a device for preparing a display substrate, and a display device.
  • OLED Organic Light Emitting Semiconductor Display
  • OLED is a display device that uses a multi-layer organic thin film structure to produce electroluminescence through the injection and recombination of carriers.
  • technicians have been working on improving the pixel resolution and display size of OLED displays, which affects many aspects such as display design, internal materials, and production processes. Put forward higher requirements.
  • An embodiment of the present disclosure provides a display substrate, including: a plurality of light-emitting areas and a non-light-emitting area surrounding each of the light-emitting areas; the display substrate includes:
  • a light-emitting functional layer provided on one side of the base substrate, the light-emitting functional layer including a light-emitting material located in the plurality of light-emitting areas and the non-light-emitting area;
  • the luminescent material in the non-luminescent region is doped with disruptive ions, and the disruptive ions are used to destroy the luminescent properties of the luminescent material in the non-luminescent region.
  • the plurality of light-emitting areas include a first color light-emitting area and a second color light-emitting area, the first color light-emitting area is used to emit light of the first color; the second color light-emitting area is used to emit a second color light. Light, the first color and the second color are different;
  • the luminescent functional layer includes a first color luminescent material capable of emitting the first color light, and the first color luminescent material located in the second color luminescent area is doped with the destruction ions.
  • the distance between orthographic projections of two adjacent light-emitting regions on the base substrate is greater than or equal to 5 nm and less than or equal to 50 ⁇ m.
  • the plurality of light-emitting areas include at least one of the following: a red light area, a green light area, a blue light area, and a white light area.
  • the light-emitting functional layer further includes at least one of the following:
  • hole transport layer hole injection layer, light emitting layer, charge transport layer, charge generation layer and charge injection layer.
  • the hole transport layer includes: a first hole transport layer and a second hole transport layer;
  • the hole injection layer includes: a first hole injection layer and a second hole injection layer;
  • the luminescent layer includes:
  • a first light-emitting layer located on the side of the first hole injection layer or the first hole transport layer away from the base substrate;
  • a second light-emitting layer located on the side of the first light-emitting layer away from the base substrate;
  • a third light-emitting layer located on the side of the second hole injection layer or the second hole transport layer away from the base substrate;
  • the second hole injection layer and the second hole transport layer are located on a side of the first hole injection layer and the first hole transport layer away from the base substrate; the charge The generation layer and the charge injection layer are located between the first light emitting layer and the second hole injection layer or the second hole transport layer; the charge transport layer is located between the second hole injection layer Or the side of the second hole transport layer away from the base substrate.
  • the length of the base substrate is greater than or equal to 1850 mm, and the width of the base substrate is greater than or equal to 1500 mm.
  • the luminescent material includes at least one of the following: organic electroluminescent material and quantum dot luminescent material.
  • the method further includes: a first electrode located between the light-emitting functional layer and the base substrate, and a second electrode located on a side of the light-emitting functional layer away from the base substrate.
  • the damaging ions include at least one of the following: fluoride ions, phosphorus ions, nitrogen ions, boron fluoride ions, and argon ions.
  • An embodiment of the present disclosure also provides a display device, which includes the display substrate as described in any of the above embodiments.
  • Embodiments of the present disclosure also provide a method for preparing a display substrate, wherein the display substrate includes: a light-emitting area and a non-light-emitting area; the method includes:
  • a luminescent material is formed on the base substrate, and an orthographic projection of the luminescent material on the base substrate covers the luminescent area and the non-luminescent area;
  • Destruction ions are injected into the luminescent material in the non-luminescent area to obtain the display substrate; wherein the destruction ions are used to destroy the luminescent properties of the luminescent material in the non-luminescent area.
  • the step of injecting damaging ions into the luminescent material in the non-luminescent area to obtain the display substrate includes:
  • a blocking layer is formed on the side of the luminescent material away from the base substrate; wherein the orthographic projection of the blocking layer on the base substrate covers the luminescent area;
  • the shielding layer is removed to obtain the display substrate.
  • the shielding layer includes: a first glue layer and a first organic layer; the step of forming a shielding layer on the side of the luminescent material away from the base substrate includes:
  • a second organic layer is formed on a side of the luminescent material away from the base substrate.
  • the orthographic projection of the second organic layer on the base substrate covers the orthogonal projection of the luminescent material on the base substrate. projection;
  • the second glue layer is developed using an anhydrous developer, and the first glue layer is formed on the second organic layer.
  • the first glue layer is formed on the base substrate. Orthographic projection covers the luminous area;
  • the second glue layer includes: anhydrous oxygen photoresist.
  • the luminescent material includes an organic luminescent material; the step of forming the luminescent material on the base substrate includes:
  • An open mask is used to perform surface evaporation to form the organic light-emitting material on the base substrate.
  • An embodiment of the present disclosure also provides a device for preparing a display substrate, wherein the display substrate includes: a light-emitting area and a non-light-emitting area; the device includes:
  • a substrate carrier for providing a substrate substrate
  • An evaporation module used to form a luminescent material on the base substrate, the orthographic projection of the luminescent material on the base substrate covering the luminescent area and the non-luminescent area;
  • An ion implantation module is used to inject damaging ions into the luminescent material in the non-luminescent area to obtain the display substrate; wherein the damaging ions are used to destroy the luminescent characteristics of the luminescent material in the non-luminescent area.
  • Figure 1 schematically shows a structural diagram of a display substrate provided by an embodiment of the present disclosure
  • Figure 2 schematically shows a schematic structural diagram of a substrate substrate provided by an embodiment of the present disclosure
  • Figure 3 schematically shows an example of the stacked structure of yet another display substrate provided by an embodiment of the present disclosure
  • Figure 4 schematically shows a step flow chart of a method for preparing a display substrate provided by an embodiment of the present disclosure
  • Figure 5 schematically shows a structural diagram during the preparation process of a display substrate provided by an embodiment of the present disclosure
  • Figure 6 schematically shows a schematic structural diagram of yet another display substrate preparation process provided by an embodiment of the present disclosure
  • Figure 7 schematically shows a schematic structural diagram of yet another display substrate preparation process provided by an embodiment of the present disclosure
  • Figure 8 schematically shows a structural block diagram of a display substrate preparation device provided by an embodiment of the present disclosure
  • Figure 9 schematically illustrates a block diagram of a computing processing device for performing methods according to the present disclosure.
  • Figure 10 schematically illustrates a storage unit for holding or carrying program code implementing a method according to the present disclosure.
  • FIG. 1 schematically shows a structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a display substrate including: a plurality of light-emitting areas and a non-light-emitting area surrounding each light-emitting area.
  • the multiple light-emitting areas are areas that can emit colored light or white light, and the light-emitting areas can include light-emitting areas of the same color or light-emitting areas of different colors.
  • the light-emitting area may include a red light-emitting area and a blue light-emitting area.
  • the non-light-emitting area may be an area on the display substrate other than the light-emitting area, and this area may not emit any light.
  • Display substrate includes:
  • a light-emitting functional layer is provided on one side of the base substrate 11.
  • the light-emitting functional layer includes light-emitting materials 20 located in a plurality of light-emitting areas and non-light-emitting areas.
  • FIG. 2 schematically shows a schematic structural diagram of a substrate substrate 11 provided by an embodiment of the present disclosure.
  • the base substrate 11 can be bonded to the first electrode 12 (anode electrode) in advance for preparing a display substrate.
  • the base substrate 11 can be a TFT Array thin film transistor array backplane, which can include base materials, pixel circuits and drive circuits.
  • the base material may include an opaque rigid backsheet or a flexible backsheet, which is used to support or protect the light-emitting functional layer.
  • the base substrate 11 may include any one of metal, inorganic material, and organic material. In order to realize the preparation of a flexible display panel, further, the base substrate 11 may include flexible organic matter.
  • the light-emitting functional layer may include organic light-emitting material 20 .
  • the luminescent material 20 includes at least one of the following: organic electroluminescent material and quantum dot luminescent material.
  • organic electroluminescent materials can achieve the purpose of luminescence and display by driving an organic semiconductor film through current.
  • Quantum dot luminescent materials can use electrons and holes on both sides to gather in the quantum dot layer to form photons (Exciton), and emit light through the recombination of photons.
  • the display substrate may be a monochromatic light-emitting device.
  • it can be a blue light-emitting device or a white light-emitting device.
  • the display substrate may be a multi-color composite light-emitting device, and a composite light-emitting pattern is formed by at least two colors.
  • the display substrate may be an RGB three primary color display substrate.
  • FIG. 3 schematically shows an example diagram of a stacked structure of a display substrate provided by an embodiment of the present disclosure.
  • the present disclosure also provides a Display substrate, where,
  • the hole transport layer includes: a first hole transport layer and a second hole transport layer.
  • the hole injection layer includes: a first hole injection layer and a second hole injection layer.
  • the charge injection layer includes: a first charge injection layer and a second charge injection layer.
  • the luminescent layer includes:
  • the first light-emitting layer is located on the side of the first hole injection layer or the first hole transport layer away from the base substrate.
  • the first luminescent layer may be the red luminescent layer 21 .
  • the second light-emitting layer is located on the side of the first light-emitting layer away from the base substrate.
  • the second luminescent layer may be the green luminescent layer 22 .
  • the third light-emitting layer is located on the side of the second hole injection layer or the second hole transport layer away from the base substrate.
  • the third luminescent layer may be the blue luminescent layer 23.
  • the second hole injection layer and the second hole transport layer are located on the side of the first hole injection layer and the first hole transport layer away from the base substrate.
  • the charge generation layer 41 and the first charge injection layer are located between the first light emitting layer and the second hole injection layer or the second hole transport layer.
  • the charge transport layer or the second charge injection layer is located on a side of the second hole injection layer or the second hole transport layer away from the base substrate.
  • embodiments of the present disclosure also provide an example of a stacked structure of a display substrate.
  • the display substrate may include:
  • Base substrate 11 First electrode 12, first hole layer 31, red light emitting layer 21, green light emitting layer 22, first charge injection layer 32, charge generation layer 41, second hole layer 33, blue light emitting layer 23.
  • the luminescent material 20 includes a red luminescent layer 21 , a green luminescent layer 22 and a blue luminescent layer 23 .
  • the first hole layer 31 may include at least one of a first hole transport layer and a first hole injection layer.
  • the second hole layer 33 may include at least one of a second hole transport layer and a second hole injection layer.
  • the charge layer 34 may include at least one of a second charge injection layer and a charge transport layer.
  • the light-emitting functional layer can include multiple sub-light-emitting layers, and each sub-light-emitting layer can be stacked in sequence, and the light-emitting area can include light-emitting areas of different colors.
  • the orthographic projections of the light-emitting areas of the colors on the base substrate 11 do not overlap with each other, so as to emit light of different colors at the same time, which are respectively used as sub-pixels and combined to form the light-emitting of one pixel, thereby realizing the display of various colors.
  • the first sub-emitting layer may include a first color luminescent area in the luminescent area for emitting the first color light;
  • the second sub-emitting layer may include a second color luminescent area in the luminous area for emitting the second color.
  • the orthographic projections of the first color light-emitting area and the second color light-emitting area on the base substrate 11 do not overlap with each other.
  • light-emitting areas of different colors can also be arranged on the same layer.
  • the luminescent material 20 in the red luminescent area may be located on the same layer as the luminescent material 20 in the blue luminescent area.
  • the luminescent material 20 in the non-luminescent area is doped with destruction ions 71, and the destruction ions 71 are used to destroy the luminescence characteristics of the luminescent material 20 in the non-luminescence area.
  • the damaging ions 71 may be ions that block the internal transmission of carriers in the luminescent material 20 in the non-luminescent region.
  • the damaging ions 71 include at least one of the following: fluoride ions, phosphorus ions, nitrogen ions, boron fluoride ions, and argon ions.
  • the present disclosure takes into account the characteristics of the luminescent material 20 to achieve electroluminescence by utilizing carrier transport, and for the purpose of facilitating preparation and production, the above structural design is proposed, using regionally doped destructive ions.
  • 71. Inject and dope the luminescent material 20 in the non-luminescent area so that the luminescent material 20 in the non-luminescent area does not emit light. Compared with the high requirements of equipment and processes in related technologies, high-resolution and large-size OLED displays can be easily realized. preparation.
  • Embodiments of the present disclosure also consider that functional differences between the light-emitting area and the non-light-emitting area can be achieved by destroying the functions of other layers in the display substrate except the light-emitting functional layer in the non-light-emitting area.
  • the non-light-emitting area can also be prevented from emitting any light by destroying at least one of the following functions of the non-light-emitting area in the non-light-emitting area:
  • first electrode 12 first hole layer 31, red emitting layer 21, green emitting layer 22 and blue emitting layer 23, first charge injection layer 32, charge generation layer 41, second hole layer 33, charge layer 34 , the second electrode 13.
  • the present disclosure also provides a display substrate, in which multiple light emitting The area includes a first color light emitting area and a second color light emitting area, and the first color light emitting area is used to emit first color light.
  • the second color light-emitting area is used to emit second color light, and the first color and the second color are different.
  • the luminescent functional layer includes a first color luminescent material 20 capable of emitting first color light, and the first color luminescent material 20 located in the second color luminescent area is doped with destroying ions 71 .
  • the first color light and the second color light may be different color lights.
  • the first color light may be red light
  • the second color light may be blue light, green light, or white light.
  • the light-emitting functional layer may also include a second-color light-emitting material 20 capable of emitting second-color light.
  • the second-color light-emitting material 20 located in the first-color light-emitting area is doped with damaging ions 71 .
  • the present disclosure also provides a display substrate, wherein the plurality of light-emitting areas also include a third color light-emitting area, and a second color light-emitting area.
  • the area is a light-emitting area other than the first color light-emitting area and the second color light-emitting area among the plurality of light-emitting areas, and is used for emitting third color light.
  • the luminescent functional layer includes a third color luminescent material 20 capable of emitting light of a third color.
  • any color light-emitting material 20 can only emit light in this color light-emitting area, and the color light-emitting material 20 can be doped in other color light-emitting areas.
  • the present disclosure also provides a display substrate, in which two adjacent light-emitting areas
  • the pitch of the orthographic projection on the base substrate 11 is greater than or equal to 5 nm and less than or equal to 50 ⁇ m.
  • the two adjacent light-emitting areas may be light-emitting areas of different colors, for example, they may be a red light-emitting area and a blue light-emitting area.
  • Embodiments of the present disclosure can improve the preparation accuracy through structural design and obtain a display substrate with a more compact light-emitting area, thereby improving the pixel resolution of OLED display.
  • the present disclosure also provides a display substrate, wherein the plurality of light-emitting areas include at least one of the following: a red light-emitting area , green luminous area, blue luminous area, white luminous area.
  • the embodiments of the present disclosure can realize OLED display through any method of organic electroluminescent material 20 and quantum dot luminescent material 20.
  • the organic electroluminescent material 20 can also realize white light organic light emitting diode display (White Organic Light).
  • Emitting Display (WOLED) in order to realize the WOLED display function, in an optional implementation, the present disclosure also provides a display substrate, wherein the light-emitting functional layer further includes at least one of the following:
  • hole transport layer hole injection layer, light emitting layer, charge transport layer, charge generation layer and charge injection layer.
  • the light-emitting layer may be a light-emitting material used as an organic electroluminescent layer.
  • Hole transporting layer (HTL), hole injection layer (HIL), charge transporting layer (ETL), charge generation layer (CGL) and charge injection layer (EIL) can be used to use electrons or holes as carriers to achieve directional and orderly controllable migration of carriers under the action of an electric field to complete the transfer of charges, thereby making the luminescent material 20 emit light.
  • the present disclosure also provides a display substrate, wherein the substrate substrate 11 The length is greater than or equal to 1850 mm, and the width of the base substrate 11 is greater than or equal to 1500 mm.
  • the display substrate provided by the embodiment of the present disclosure can be of large size.
  • the display substrate provided by the embodiment of the present disclosure can also be of small or medium size, wherein the substrate substrate 11 The length may be less than 1850mm, and the width of the base substrate 11 may be less than 1500mm.
  • inventions of the present disclosure also consider arranging electrodes in the display substrate to energize the light-emitting functional layer to achieve electroluminescence.
  • the present disclosure also provides a The display substrate further includes: a first electrode 12 located between the light-emitting functional layer and the base substrate 11 , and a second electrode 13 located on the side of the light-emitting functional layer away from the base substrate 11 .
  • the first electrode 12 may be an anode electrode
  • the second electrode 13 may be a cathode electrode.
  • the material of the anode may include any one of silver Ag and indium tin oxide (ITO).
  • embodiments of the present disclosure also provide a display substrate, further comprising:
  • the thin film encapsulation layer 51 located on the side of the second electrode 13 away from the base substrate 11 is used to encapsulate and protect the light-emitting functional layer and prevent the light-emitting material 20 from being eroded by water and oxygen in the outside air.
  • the embodiment of the present disclosure also provides a display substrate, further comprising:
  • the color filter layer 52 located on the side of the thin film encapsulation layer 51 away from the base substrate 11 is used to filter and integrate the light of various colors emitted by the light-emitting functional layer.
  • an embodiment of the present disclosure also provides a display device, which includes the display substrate of any of the above embodiments.
  • FIG. 4 schematically shows a step flow chart of a method for preparing a display substrate provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a preparation method of a display substrate, which can be used to implement the display substrate of any of the above embodiments.
  • the display substrate includes: a light-emitting area and a non-light-emitting area.
  • Methods include:
  • Step S801 Provide a base substrate 11.
  • the base substrate 11 carrying the electrodes when providing the base substrate 11, the base substrate 11 carrying the electrodes may be provided, and the electrodes may be placed upward.
  • the electrode may be an anode electrode.
  • step S802 the luminescent material 20 is formed on the base substrate 11, and the orthographic projection of the luminescent material 20 on the base substrate 11 covers the luminescent area and the non-luminescent area.
  • the present disclosure also provides a method of forming a luminescent material 20 , wherein the luminescent material 20 includes an organic luminescent material 20 .
  • Methods include:
  • An open mask is used to perform surface evaporation (Open mask) to form the organic light-emitting material 20 on the base substrate 11 .
  • this disclosure uses an open mask plate for surface evaporation, covering the entire surface of the luminescent area and non-luminous area. Depositing the organic light-emitting material 20 greatly reduces equipment and process requirements, and facilitates the preparation and production of display substrates.
  • step S803 destroying ions 71 are injected into the luminescent material 20 in the non-luminescent area to obtain a display substrate.
  • the destruction ions 71 are used to destroy the luminescence characteristics of the luminescent material 20 in the non-luminescence area.
  • the destruction ions 71 may be implanted after the luminescent material 20 is formed and before thin film encapsulation.
  • the process parameters of implanting the destruction ions 71 can be adjusted according to the process position of implanting the destruction ions 71 .
  • the luminescent material 20 in the luminescent area can be masked, and the destruction ions 71 can be injected into the luminescence material 20 in the non-luminescence area through an ion implantation process, so that the destruction ions 71 only affect the carrier of the luminescence material 20 in the non-luminescence area.
  • the flow transport is destroyed and blocked, thereby ensuring that the luminescent material 20 in the luminescent area realizes the luminescent function, while the luminescent material 20 in the non-luminescent area doped with the destruction ions 71 does not emit light.
  • the present disclosure can use the destruction ions 71 to regionally inject and dope the luminescent material 20 so that the luminescent material 20 in the non-luminescent area does not emit light, thereby forming a correspondingly designed luminescent area. Due to the need for equipment and processes, The requirements are greatly reduced compared with related technologies, and it can easily realize the preparation of high-resolution and large-size OLED displays.
  • Figure 5 schematically shows a structural schematic diagram of a display substrate preparation process provided by an embodiment of the present disclosure
  • Figure 6 schematically shows another embodiment of the present disclosure.
  • FIG. 7 schematically shows a schematic structural diagram during the preparation process of yet another display substrate provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure considers blocking the light-emitting area so that the destruction ions 71 can be doped regionally.
  • the present disclosure also provides a method of injecting destruction ions. 71 methods, including:
  • Step S901 Form a shielding layer on the side of the luminescent material 20 away from the base substrate 11. Wherein, the orthographic projection of the blocking layer on the base substrate 11 covers the light-emitting area.
  • the shielding layer may be an organic substance.
  • the shielding layer may be a flexible organic material.
  • Step S902 Inject destruction ions 71 into the luminescent material 20 that is not blocked by the blocking layer.
  • the luminescent material 20 that is not blocked by the blocking layer can cover the non-luminescent area. Therefore, the luminescent area and the non-luminous area of the display substrate can be pre-designed, and the luminescent material 20 that is not blocked by the blocking layer can be injected into the luminescent material 20 that is not blocked by the blocking layer. By destroying the ions 71, a non-luminescent area of corresponding shape and position can be obtained.
  • Step S903 Remove the shielding layer to obtain a display substrate.
  • the shielding layer can be removed through a peeling process.
  • the orthographic projection of the blocking layer on the base substrate 11 covers the light-emitting area. After the blocking layer is removed, the luminescent material 20 in the light-emitting area can emit light toward the side away from the base substrate 11 .
  • each sub-light-emitting layer may be prepared separately.
  • the present disclosure can also form a light-emitting material 20 corresponding to a sub-light-emitting layer on the side away from the base substrate 11 each time.
  • the shielding layer is used to inject destroying ions 71 into the luminescent material 20 of the sub-luminescent layer that is not blocked by the shielding layer, and then the shielding layer is removed to obtain the sub-luminescent layer.
  • the orthographic projection of the shielding layer on the base substrate 11 covers the light-emitting area of the corresponding color of the sub-light-emitting layer.
  • the orthographic projection of the red blocking layer on the base substrate 11 covers the red emitting area.
  • embodiments of the present disclosure can also use the blocking layer of the same layer to inject destroying ions 71 into the non-luminescent area to emit light on the same layer. Luminous areas of different colors are obtained in the material 20 .
  • the present invention also provides a method of forming a shielding layer, wherein the shielding layer includes: a first glue layer 91 and a first organic layer 81 .
  • Methods include:
  • step S1001 a second organic layer 82 is formed on the side of the luminescent material 20 away from the base substrate 11.
  • the orthographic projection of the second organic layer 82 on the base substrate 11 covers the orthographic projection of the luminescent material 20 on the base substrate 11.
  • the second organic layer 82 can be used to coat the entire surface of the luminescent material 20 , thereby reducing the requirements for equipment and processes in preparation.
  • step S1002 a first glue layer 91 is formed on the second organic layer 82, and the orthographic projection of the first glue layer 91 on the base substrate 11 covers the light-emitting area.
  • the first glue layer 91 can be obtained through development. Since the accuracy of the FMM mask is difficult to break through, it is easy to achieve high precision by developing the first glue layer 91, thereby breaking through the process bottleneck in the entire display substrate preparation process.
  • step S1003 the portion of the second organic layer 82 not covered by the first adhesive layer 91 is removed through development to obtain the first organic layer 81.
  • the photoresist can be protected from damaging the material properties of the luminescent material 20.
  • both the first glue layer 91 and the first organic layer 81 can be formed through development, thereby avoiding direct patterning of the luminescent material 20 through patterning of the blocking layer, thereby bypassing the FMM mask pattern.
  • the problem of precision or size of chemically deposited luminescent material 20 is eliminated, thereby enabling high pixel resolution and large-size OLED displays.
  • the present disclosure also considers providing a method for destroying the functions of other layers in the display substrate except the light-emitting functional layer in the non-light-emitting area.
  • the present disclosure can also When at least one of the following is completed, a blocking layer is prepared in the light-emitting area above at least one of the following to destroy at least one of the following while protecting the function of at least one of the following in the light-emitting area from being destroyed.
  • Functions in non-luminous areas are described in non-luminous areas.
  • first electrode 12 first hole layer 31, red emitting layer 21, green emitting layer 22 and blue emitting layer 23, first charge injection layer 32, charge generation layer 41, second hole layer 33, charge layer 34 , the second electrode 13.
  • the present disclosure can also perform differentiated functional settings of the luminescent region and the non-luminescent region after preparing the second electrode 13 as the cathode. Furthermore, since there is no need to consider the electroluminescent material in the luminescent functional layer, the present disclosure can also prepare a shielding layer after preparing the second electrode 13 serving as the cathode. Wherein, the shielding layer may include photoresist and an inorganic layer.
  • the inorganic layer is used to isolate water and oxygen, and may include silicon nitride. After completing the functional differentiation of the light-emitting area and the non-light-emitting area, the photoresist can also be removed, and the inorganic layer can be retained as a packaging material to protect the light-emitting device in the display substrate from being corroded by external water and oxygen.
  • the present disclosure also provides a method of forming the first glue layer 91, including:
  • Step S1101 as shown in FIG. 5, a second glue layer 82 is formed on the second organic layer 82, and the orthographic projection of the second glue layer 82 on the base substrate 11 covers the second organic layer 82 on the base substrate 11. Orthographic projection.
  • the second glue layer 82 can be coated on the entire surface, the accuracy requirements for the preparation of the glue layer are also reduced, and the preparation of the shielding layer is easy to realize.
  • Step S1102 as shown in FIG. 6, use an anhydrous developer to develop the second glue layer 82 in a nitrogen environment to obtain the first glue layer 91.
  • the first glue layer 91 and the second glue layer 82 in the embodiment of the present disclosure may be photoresist.
  • the second glue layer 82 includes anhydrous oxygen photoresist.
  • high-precision development and etching of the second adhesive layer 82 of the anhydrous oxygen photoresist can be achieved through a nitrogen atmosphere and an anhydrous developer.
  • FIG. 8 schematically shows a structural block diagram of a display substrate preparation device provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a device for preparing a display substrate, wherein the display substrate includes: a light-emitting area and a non-light-emitting area.
  • Devices include:
  • the substrate stage 1501 is used to provide the substrate 11 .
  • the evaporation module 1502 is used to form the luminescent material 20 on the base substrate 11.
  • the orthographic projection of the luminescent material 20 on the base substrate 11 covers the luminescent area and the non-luminescent area.
  • the ion implantation module 1503 is used to inject damaging ions 71 into the luminescent material 20 in the non-luminescent area to obtain a display substrate; wherein the damaging ions 71 are used to destroy the luminescent properties of the luminescent material 20 in the non-luminous area.
  • Various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in a computing processing device according to embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure may also be implemented as an apparatus or apparatus program (eg, computer program and computer program product) for performing part or all of the methods described herein.
  • Such a program implementing the present disclosure may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, or provided on a carrier signal, or in any other form.
  • Figure 9 illustrates a computing processing device that may implement methods in accordance with the present disclosure.
  • the computing processing device conventionally includes a processor 1010 and a computer program product or computer-readable medium in the form of memory 1020 .
  • Memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for program code 1031 for executing any method steps in the above-mentioned methods.
  • the storage space 1030 for program codes may include individual program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 10 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 9 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', ie code that can be read by, for example, a processor such as 1010, which code, when executed by a computing processing device, causes the computing processing device to perform the methods described above. various steps.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示基板及其制备方法、制备装置、显示装置,涉及显示技术领域。显示基板包括:多个发光区域和围绕各发光区域的非发光区域。显示基板包括:衬底基板;设置在衬底基板一侧的发光功能层,发光功能层包括位于多个发光区域和非发光区域的发光材料;其中,非发光区域的发光材料中掺杂有破坏离子,破坏离子用于对非发光区域的发光材料的发光特性进行破坏。

Description

显示基板及其制备方法、制备装置、显示装置 技术领域
本公开涉及显示器件技术领域,特别是涉及一种显示基板、一种显示基板的制备方法、一种显示基板的制备装置和一种显示装置。
背景技术
有机发光半导体显示器(Organic Light Emitting Display,OLED)是通过载流子的注入和复合,利用多层有机薄膜结构产生电致发光的显示器件。目前,为了满足用户对显示效果的要求和应用场景的适应要求,技术人员一直在致力于提高OLED显示器的像素分辨率和显示器尺寸,这对显示器设计、内部材料、生产工艺等多方面的条件均提出了更高的要求。
概述
本公开实施例提供了一种显示基板,包括:多个发光区域和围绕各所述发光区域的非发光区域;所述显示基板包括:
衬底基板;
设置在所述衬底基板一侧的发光功能层,所述发光功能层包括位于所述多个发光区域和所述非发光区域的发光材料;
其中,所述非发光区域的发光材料中掺杂有破坏离子,所述破坏离子用于对所述非发光区域的发光材料的发光特性进行破坏。
可选地,所述多个发光区域包括第一色发光区域和第二色发光区域,所述第一发光区域用于发出第一颜色光;所述第二色发光区域用于发出第二颜色光,所述第一颜色和所述第二颜色不同;
其中,所述发光功能层包括能够发出所述第一颜色光的第一色彩发光材料,位于所述第二色发光区域的第一色彩发光材料中掺杂有所述破坏离子。
可选地,相邻两个所述发光区域在所述衬底基板的上的正投影的间距大于或等于5nm,并且小于或等于50μm。
可选地,多个所述发光区域包括以下至少之一:红色光区域,绿色光区 域,蓝色光区域,白色光区域。
可选地,所述发光功能层还包括以下至少之一:
空穴传输层、空穴注入层、发光层、电荷传输层、电荷产生层和电荷注入层。
可选地,所述空穴传输层包括:第一空穴传输层和第二空穴传输层;所述空穴注入层包括:第一空穴注入层和第二空穴注入层;
所述发光层包括:
第一发光层,位于所述第一空穴注入层或者所述第一空穴传输层远离所述衬底基板的一侧;
第二发光层,位于所述第一发光层远离所述衬底基板的一侧;
第三发光层,位于所述第二空穴注入层或者所述第二空穴传输层远离所述衬底基板的一侧;
其中,所述第二空穴注入层和所述第二空穴传输层位于所述第一空穴注入层和所述第一空穴传输层远离所述衬底基板的一侧;所述电荷产生层和所述电荷注入层位于所述第一发光层与所述第二空穴注入层或者所述第二空穴传输层之间;所述电荷传输层位于所述第二空穴注入层或者所述第二空穴传输层远离所述衬底基板的一侧。
可选地,所述衬底基板的长度大于或等于1850mm,并且所述衬底基板的宽度大于或等于1500mm。
可选地,所述发光材料包括以下至少之一:有机电致发光材料和量子点发光材料。
可选地,还包括:位于所述发光功能层与所述衬底基板之间的第一电极,以及,位于所述发光功能层远离所述衬底基板一侧的第二电极。
可选地,所述破坏离子包括以下至少之一:氟离子,磷离子,氮离子,硼氟离子,氩离子。
本公开实施例还提供了一种显示装置,其中,包括如上述任一项实施例所述的显示基板。
本公开实施例还提供了一种显示基板的制备方法,其中,所述显示基板包括:发光区域和非发光区域;所述方法包括:
提供衬底基板;
在所述衬底基板上形成发光材料,所述发光材料在所述衬底基板上的正投影覆盖所述发光区域和所述非发光区域;
向所述非发光区域的发光材料注入破坏离子,得到所述显示基板;其中,所述破坏离子用于破坏所述非发光区域的发光材料的发光特性。
可选地,所述向所述非发光区域的发光材料注入破坏离子,得到所述显示基板的步骤,包括:
在所述发光材料远离所述衬底基板的一侧形成遮挡层;其中,所述遮挡层在所述衬底基板上的正投影覆盖所述发光区域;
向未被所述遮挡层遮挡的发光材料注入所述破坏离子;
去除所述遮挡层,得到所述显示基板。
可选地,
所述遮挡层包括:第一胶层和第一有机层;所述在所述发光材料远离所述衬底基板的一侧形成遮挡层的步骤,包括:
在所述发光材料远离所述衬底基板的一侧形成第二有机层,所述第二有机层在所述衬底基板上的正投影覆盖所述发光材料在所述衬底基板上的正投影;
在所述第二有机层上形成第二胶层,所述第二胶层在所述衬底基板上的正投影覆盖所述第二有机层在所述衬底基板上的正投影;
在氮气环境中,采用无水显影液对所述第二胶层进行显影,在所述第二有机层上形成所述第一胶层,所述第一胶层在所述衬底基板上的正投影覆盖所述发光区域;
通过显影,去除所述第二有机层未被所述第一胶层覆盖的部分,得到所述第一有机层;
其中,所述第二胶层包括:无水氧光刻胶。
可选地,所述发光材料包括有机发光材料;所述在所述衬底基板上形成发光材料的步骤包括:
采用开放式掩膜板进行面蒸镀,在所述衬底基板上形成所述有机发光材料。
本公开实施例还提供了一种显示基板的制备装置,其中,所述显示基板包括:发光区域和非发光区域;所述装置包括:
基板载台,用于提供衬底基板;
蒸镀模块,用于在所述衬底基板上形成发光材料,所述发光材料在所述衬底基板上的正投影覆盖所述发光区域和所述非发光区域;
离子注入模块,用于向所述非发光区域的发光材料注入破坏离子,得到所述显示基板;其中,所述破坏离子用于破坏所述非发光区域的发光材料的发光特性。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。需要说明的是,附图中的比例仅作为示意并不代表实际比例。
图1示意性地示出了本公开实施例提供的一种显示基板的结构示意图;
图2示意性地示出了本公开实施例提供的一种衬底基板的结构示意图;
图3示意性地示出了本公开实施例提供的又一种显示基板的层叠结构示例图;
图4示意性地示出了本公开实施例提供的一种显示基板的制备方法的步骤流程图;
图5示意性地示出了本公开实施例提供的一种显示基板制备过程中的结构示意图;
图6示意性地示出了本公开实施例提供的又一种显示基板制备过程中的结构示意图;
图7示意性地示出了本公开实施例提供的又一种显示基板制备过程中的结构示意图;
图8示意性地示出了本公开实施例提供的一种显示基板的制备装置的结 构框图;
图9示意性地示出了用于执行根据本公开的方法的计算处理设备的框图。
图10示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了提高制备精度,获得高像素分辨率的OLED显示器,在相关技术中,提出采用精细金属掩模板(Fine metal mask,FMM Mask),利用因瓦合金(invar)电镀在有图案的基板上制造FMM,进而用于形成OLED显示器的有机薄膜结构,由此将有机薄膜结构用于实现电致发光。精细金属掩模板能够有效提高显示面板的像素分辨率和生产良率。然而,发明人发现由于精细金属掩模板对设备和生产条件的要求苛刻,不适合产业化生产,更无法用于大尺寸OLED显示器的生产。考虑到用户对于高分辨率大尺寸OLED显示器的需求,本公开实施例旨在解决难以实现高分辨率大尺寸OLED显示的问题。
下面参考说明书附图,对本公开实施例进行说明:
参照图1,图1示意性地示出了本公开实施例提供的一种显示基板的结构示意图。如图1所示,本公开实施例提供了一种显示基板,包括:多个发光区域和围绕各发光区域的非发光区域。
具体的,多个发光区域是可以发出彩色光或白色光的区域,发光区域可以包括相同颜色的发光区域或不同颜色的发光区域。示例性的,发光区域可以包括红色发光区域和蓝色发光区域。
非发光区域可以是显示基板上除发光区域以外的区域,该区域可以不发 出任何光。
显示基板包括:
衬底基板11;
设置在衬底基板11一侧的发光功能层,发光功能层包括位于多个发光区域和非发光区域的发光材料20。
参照图2,图2示意性地示出了本公开实施例提供的一种衬底基板11的结构示意图。如图2所示,可选的,衬底基板11可以预先与第一电极12(阳电极)贴合,用于制备显示基板。具体的,衬底基板11可以是TFT Array薄膜晶体管阵列背板,可以包括基底材料、像素电路和驱动电路。其中,基底材料可以包括不透明的刚性背板或柔性背板,用于对发光功能层起到承载或保护的作用。衬底基板11可以包括金属、无机物,有机物中的任一者。为了实现柔性显示面板的制备,进一步的,衬底基板11可以包括柔性有机物。
具体的,发光功能层可以包括有机发光材料20。
在可选的一种实施方式中,发光材料20包括以下至少之一:有机电致发光材料和量子点发光材料。
其中,有机电致发光材料可以通过电流驱动有机半导体薄膜来达到发光和显示的目的。而量子点发光材料可以利用两侧电子(Electron)和空穴(Hole)在量子点层中汇聚后形成光子(Exciton),并且通过光子的重组发光。
在一种可选的实施方式中,显示基板可以是单色发光器件。示例性的,可以是蓝色发光器件或者白色发光器件。
在又一种可选的实施方式中,显示基板可以是多色彩的复合发光器件,通过至少两种色彩形成复合发光图案。示例性的,显示基板可以是RGB三原色显示基板。
参照图3,图3示意性地示出了本公开实施例提供的一种显示基板的层叠结构示例图。如图3所示,进一步地,考虑到复合发光器件可以通过多个发光层提供不同颜色光,以实现组合发光,为此,在一种可选的实施方式中,本公开还提供了一种显示基板,其中,
空穴传输层包括:第一空穴传输层和第二空穴传输层。
空穴注入层包括:第一空穴注入层和第二空穴注入层。
电荷注入层包括:第一电荷注入层和第二电荷注入层。
发光层包括:
第一发光层,位于第一空穴注入层或者第一空穴传输层远离衬底基板的一侧。
具体的,第一发光层可以是红色发光层21。
第二发光层,位于第一发光层远离衬底基板的一侧。
具体的,第二发光层可以是绿色发光层22。
第三发光层,位于第二空穴注入层或者第二空穴传输层远离衬底基板的一侧。
具体的,第三发光层可以是蓝色发光层23。
其中,第二空穴注入层和第二空穴传输层位于第一空穴注入层和第一空穴传输层远离衬底基板的一侧。
电荷产生层41和第一电荷注入层位于第一发光层与第二空穴注入层或者第二空穴传输层之间。
电荷传输层或者第二电荷注入层位于第二空穴注入层或者第二空穴传输层远离衬底基板的一侧。
结合上述实施例,本公开实施例还提供了一种显示基板的层叠结构示例,在该示例性的层叠结构中,显示基板可以依次包括:
衬底基板11、第一电极12、第一空穴层31、红色发光层21、绿色发光层22、第一电荷注入层32、电荷产生层41、第二空穴层33、蓝色发光层23、电荷层34、第二电极13、薄膜封装层51、彩色滤光层52。
其中,发光材料20包括红色发光层21、绿色发光层22和蓝色发光层23。其中,第一空穴层31可以包括第一空穴传输层和第一空穴注入层中的至少一者。
第二空穴层33可以包括第二空穴传输层和第二空穴注入层中的至少一者。电荷层34可以包括第二电荷注入层和电荷传输层中的至少一者。
进一步的,针对复合发光器件,为了便于各个颜色发光区域的独立制备,发光功能层可以包括多个子发光层,各子发光层依次层叠设置,并且在发光区域可以包括不同颜色的发光区域,各不同颜色的发光区域在衬底基板11 上的正投影互不重叠,以同时发出不同颜色的光线,分别作为子像素,组合形成一个像素的发光,进而实现各种色彩的显示。
示例性的,第一子发光层在发光区域可以包括第一色发光区域,用于发出第一颜色光;第二子发光层在发光区域可以包括第二色发光区域,用于发出第二颜色光;其中,第一色发光区域和第二色发光区域在衬底基板11上的正投影互不重叠。
为了进一步降低显示基板的厚度,提高设备的便携性,在又一种可选的实施方式中,还可以使不同颜色的发光区域同层设置。示例性的,红色发光区域的发光材料20可以和蓝色发光区域的发光材料20位于同一层。
其中,非发光区域的发光材料20中掺杂有破坏离子71,破坏离子71用于对非发光区域的发光材料20的发光特性进行破坏。
具体的,破坏离子71可以是阻断非发光区域的发光材料20中的载流子的内部传输的离子。
在可选的一种实施方式中,破坏离子71包括以下至少之一:氟离子,磷离子,氮离子,硼氟离子,氩离子。
通过上述实施例,可以看到,本公开考虑到发光材料20利用载流子传输实现电致发光的特性,从能够便于制备生产的目的出发,提出上述结构设计,利用区域性掺杂的破坏离子71,对非发光区域的发光材料20进行注入和掺杂,使非发光区域的发光材料20不发光,相较于相关技术对设备和工艺的高要求,能够易于实现高分辨大尺寸的OLED显示器的制备。
本公开实施例还考虑可以通过破坏显示基板中除发光功能层以外的其他层在非发光区域的功能,实现发光区域和非发光区域之间的功能差异。为此,在一种可选的实施方式中,还可以通过破坏非发光区域的以下其中至少一者在非发光区域的功能,使非发光区域不发出任何光:
第一电极12,第一空穴层31,红色发光层21、绿色发光层22以及蓝色发光层23、第一电荷注入层32、电荷产生层41、第二空穴层33、电荷层34、第二电极13。
如图3所示,考虑到目前OLED显示器通常采用RGB或RGBW显示,为了实现子像素复合发光,在一种可选的实施方式中,本公开还提供了一种显示基板,其中,多个发光区域包括第一色发光区域和第二色发光区域,第 一色发光区域用于发出第一颜色光。
第二色发光区域用于发出第二颜色光,第一颜色和第二颜色不同。
其中,发光功能层包括能够发出第一颜色光的第一色彩发光材料20,位于第二色发光区域的第一色彩发光材料20中掺杂有破坏离子71。
具体的,第一颜色光和第二颜色光可以是不同颜色的光。
示例性的,第一颜色光可以是红色光,第二颜色光可以是蓝色光或绿色光或白色光。
进一步的,发光功能层还可以包括能够发出第二颜色光的第二色彩发光材料20,位于第一色发光区域的第二色彩发光材料20中掺杂有破坏离子71。
为了进一步便于不同颜色的各发光区域的制备,在一种可选的实施方式中,本公开还提供了一种显示基板,其中,多个发光区域还包括第三色发光区域,第二色发光区域为多个发光区域中除第一色发光区域和第二色发光区域之外的发光区域,用于发出第三颜色光。
其中,发光功能层包括能够发出第三颜色光的第三色彩发光材料20。
具体的,为了实现不同颜色的各发光区域之间的组合发光,以便实现像素组合,任一色彩发光材料20可以只在该色发光区域发光,该色彩发光材料20在其他色发光区域可以是掺杂有破坏离子71的。
通过上述实施例,实现了结构能够易于实现高像素分辨率的显示基板,为此,在一种可选的实施方式中,本公开还提供了一种显示基板,其中,相邻两个发光区域在衬底基板11的上的正投影的间距大于或等于5nm,并且小于或等于50μm。
其中,相邻两个发光区域可以是不同颜色的发光区域,示例性的,可以是红色发光区域和蓝色发光区域。
本公开实施例可以通过结构设计改善制备精度,得到发光区域更加紧凑的显示基板,由此提高OLED显示的像素分辨率。
考虑到目前OLED显示器通常采用RGB或RGBW显示,为此,在一种可选的实施方式中,本公开还提供了一种显示基板,其中,多个发光区域包括以下至少之一:红色发光区域,绿色发光区域,蓝色发光区域,白色发光区域。
结合上述实施例,本公开实施例可以通过有机电致发光材料20和量子 点发光材料20中任一种方式实现OLED显示,有机电致发光材料20还可以实现白光有机发光二极管显示(White Organic Light Emitting Display,WOLED),为了实现WOLED显示功能,在一种可选的实施方式中,本公开还提供了一种显示基板,其中,发光功能层还包括以下至少之一:
空穴传输层、空穴注入层、发光层、电荷传输层、电荷产生层和电荷注入层。
其中,发光层可以是发光材料,用于作为有机电致发光层。空穴传输层(hole transporting layer,HTL)、空穴注入层(hole injection layer,HIL)、电荷传输层(election transporting layer,ETL)、电荷产生层(Charge Generation Layer,CGL)和电荷注入层(election injection layer,EIL)可以用于将电子或空穴作为载流子,在电场作用下实现载流子的定向有序的可控迁移从而完成电荷的传输,进而使发光材料20发光。
通过上述实施例获得的显示基板,易于实现大尺寸的显示面板的制备生产,为此,在一种可选的实施方式中,本公开还提供了一种显示基板,其中,衬底基板11的长度大于或等于1850mm,并且衬底基板11的宽度大于或等于1500mm。
在上述实施例中,本公开实施例提供的显示基板可以实现大尺寸,在又一种可选的实施方式中,本公开实施例提供的显示基板还可以是中小尺寸,其中,衬底基板11的长度可以小于1850mm,并且衬底基板11的宽度可以小于1500mm。
为了进一步实现OLED显示,本公开实施例还考虑将电极设置在显示基板中,为发光功能层通电,实现电致发光,为此,在一种可选的实施方式中,本公开还提供一种显示基板,其中,还包括:位于发光功能层与衬底基板11之间的第一电极12,以及,位于发光功能层远离衬底基板11一侧的第二电极13。
具体的,第一电极12可以是阳电极,第二电极13可以是阴电极。其中,阳电极的材料可以包括银Ag、氧化铟锡(Indium tin oxide,ITO)中的任一者。
为了实现显示基板的完整的显示功能,在一种可选的实施方式中,本公开实施例还提供了一种显示基板,还包括:
位于第二电极13远离衬底基板11一侧的薄膜封装层51(Thin Film Encapsulation,TFE),用于对发光功能层进行封装保护,防止发光材料20被外界空气中的水氧侵蚀。
进一步地,在一种可选的实施方式中,本公开实施例还提供了一种显示基板,还包括:
位于薄膜封装层51远离衬底基板11一侧的彩色滤光层52,用于对发光功能层发出的各种颜色的光进行过滤整合。
基于同一发明构思,本公开实施例还提供了一种显示装置,其中,包括如上述任一项实施例的显示基板。
参照图4,图4示意性地示出了本公开实施例提供的一种显示基板的制备方法的步骤流程图。如图4所示,基于同一发明构思,本公开实施例还提供了一种显示基板的制备方法,可以用于实现上述任一项实施例的显示基板。
其中,显示基板包括:发光区域和非发光区域。
方法包括:
步骤S801,提供衬底基板11。
其中,在提供衬底基板11时,可以提供携带电极的衬底基板11,并将电极朝上放置。示例性的,电极可以是阳电极。
步骤S802,在衬底基板11上形成发光材料20,发光材料20在衬底基板11上的正投影覆盖发光区域和非发光区域。
不同于相关技术中为了精准制备实现像素发光的发光材料20,需要采用FMM精细金属掩模板获得有机发光材料20,本申请可以直接制备正投影覆盖发光区域和非发光区域的发光材料20,对设备和工艺的要求大大降低。为此,为此,在一种可选的实施方式中,本公开还提供了一种形成发光材料20的方法,其中,发光材料20包括有机发光材料20。方法包括:
采用开放式掩膜板进行面蒸镀(Open mask),在衬底基板11上形成有机发光材料20。
其中,不同于FMM精细金属掩模板需要在精准位置上沉积像素发光材 料20,对设备和工艺要求高,本公开采用开放式掩膜板进行面蒸镀,在发光区域和非发光区域的整面沉积有机发光材料20,极大降低了对设备和工艺要求,易于实现显示基板的制备生产。
步骤S803,向非发光区域的发光材料20注入破坏离子71,得到显示基板。其中,破坏离子71用于破坏非发光区域的发光材料20的发光特性。
在一种可选的实施方式中,可以在形成发光材料20之后,并且在进行薄膜封装之前注入破坏离子71。其中,注入破坏离子71的工艺参数可以根据注入破坏离子71的工序位置进行调整。
具体的,可以通过对发光区域的发光材料20进行掩膜遮挡,通过离子注入工艺,向非发光区域的发光材料20注入破坏离子71,使得破坏离子71只对非发光区域的发光材料20的载流子传输进行破坏阻断,从而保证发光区域的发光材料20实现发光功能,而掺杂了破坏离子71的非发光区域的发光材料20不发光。
通过上述实施例,本公开可以利用破坏离子71对发光材料20进行区域性注入和掺杂,使非发光区域的发光材料20不发光,并由此形成相应设计的发光区域,由于对设备和工艺的要求相较于相关技术大大降低,能够易于实现高分辨大尺寸的OLED显示器的制备。
参照图5~图7,其中,图5示意性地示出了本公开实施例提供的一种显示基板制备过程中的结构示意图;图6示意性地示出了本公开实施例提供的又一种显示基板制备过程中的结构示意图;图7示意性地示出了本公开实施例提供的又一种显示基板制备过程中的结构示意图。如图7所示,本公开实施例考虑对发光区域进行遮挡,使破坏离子71实现区域性掺杂,为此,在一种可选的实施方式中,本公开还提供了一种注入破坏离子71的方法,包括:
步骤S901,在发光材料20远离衬底基板11的一侧形成遮挡层。其中,遮挡层在衬底基板11上的正投影覆盖发光区域。
具体的,为了便于制备和剥离,并且,对电致发光的发光材料20进行保护,遮挡层可以是有机物。进一步的,遮挡层可以是柔性有机物。
步骤S902,向未被遮挡层遮挡的发光材料20注入破坏离子71。
在本公开实施例中,未被遮挡层遮挡的发光材料20可以覆盖非发光区 域,因此,显示基板的发光区域和非发光区域可以是预先设计的,向未被遮挡层遮挡的发光材料20注入破坏离子71即可以得到相应形状和位置的非发光区域。
步骤S903,去除遮挡层,得到显示基板。
具体的,可以通过剥离工艺,去除遮挡层。其中,遮挡层在衬底基板11上的正投影,覆盖发光区域,在遮挡层去除后,发光区域的发光材料20可以向远离衬底基板11的一侧发光。
进一步的,考虑到发光功能层可以包括多个子发光层的情况,在本公开实施例中,可以分别制备每个子发光层。为此,在可选的一种实施方式中,本公开还可以在每次形成一个子发光层对应的发光材料20后,在该子发光层的发光材料20远离衬底基板11的一侧形成遮挡层,对该子发光层未被遮挡层遮挡的发光材料20注入破坏离子71,再去除遮挡层,得到该子发光层。
其中,该遮挡层在衬底基板11上的正投影覆盖该子发光层对应的颜色的发光区域。
示例性的,假设当前需要形成的子发光层为红色发光层21,则红色遮挡层在衬底基板11上的正投影覆盖红色发光区域。
针对不同颜色的发光区域同层设置的情况,在又一种可选的实施方式中,本公开实施例还可以利用同一层的遮挡层,通过对非发光区域注入破坏离子71,在同一层发光材料20中获得不同颜色的发光区域。
如图7所示,为了实现对破坏离子71的有效阻隔,使破坏离子71对非发光区域的发光材料20的发光特性进行针对性破坏,为此,在一种可选的实施方式中,本公开还提供了一种形成遮挡层的方法,其中,遮挡层包括:第一胶层91和第一有机层81。
方法包括:
步骤S1001,在发光材料20远离衬底基板11的一侧形成第二有机层82,第二有机层82在衬底基板11上的正投影覆盖发光材料20在衬底基板11上的正投影。
通过本公开实施例,可以利用第二有机层82对发光材料20进行整面涂覆,由此降低制备对设备和工艺的要求。
步骤S1002,在第二有机层82上形成第一胶层91,第一胶层91在衬底 基板11上的正投影覆盖发光区域。
其中,第一胶层91可以是通过显影获得的,由于不同于FMM mask的精度难以突破,显影获得第一胶层91易于实现高精度,由此突破了整个显示基板制备过程中的工艺瓶颈。
步骤S1003,通过显影,去除第二有机层82未被第一胶层91覆盖的部分,得到第一有机层81。
其中,由于第二有机层82或第一有机层81对发光材料20的覆盖,可以保护光刻胶不对发光材料20的材料性质造成损害。
通过本公开实施例,第一胶层91和第一有机层81均可以通过显影形成,由此通过遮挡层的图形化,避开了发光材料20的直接图形化,从而绕开了FMM mask图形化沉积发光材料20存在的精度或尺寸难题,由此可以实现高像素分辨率和大尺寸的OLED显示器。
结合上述实施例,本公开还考虑提供破坏显示基板中除发光功能层以外的其他层在非发光区域的功能的方法,为此,在又一种可选的实施方式中,本公开还可以在完成以下其中至少一者的情况下,在以下其中至少一者之上的发光区域制备遮挡层,以在保护以下其中至少一者在发光区域的功能不被破坏的情况下,破坏以下其中至少一者在非发光区域的功能:
第一电极12,第一空穴层31,红色发光层21、绿色发光层22以及蓝色发光层23、第一电荷注入层32、电荷产生层41、第二空穴层33、电荷层34、第二电极13。
结合上述实施例,本公开还可以在制备得到作为阴极的第二电极13后,进行发光区域和非发光区域的功能差异化设置,进一步的,由于无需考虑对发光功能层中的电致发光材料造成的功能损害,在一种可选的实施方式中,本公开还可以在制备得到作为阴极的第二电极13后,制备遮挡层。其中,遮挡层可以包括光刻胶和无机层。
其中,无机层用于隔离水氧,可以包括氮化硅。在完成发光区域和非发光区域的功能差异化设置之后,还可以去除光刻胶,并保留无机层作为封装材料,以保护显示基板中的发光器件不被外界水氧侵蚀。
进一步的,在一种可选的实施方式中,本公开还提供了一种形成第一胶层91的方法,包括:
步骤S1101,如图5所示,在第二有机层82上形成第二胶层82,第二胶层82在衬底基板11上的正投影覆盖第二有机层82在衬底基板11上的正投影。
其中,第二胶层82由于可以是整面涂覆,同样降低了对胶层制备的精度要求,易于实现遮挡层的制备。
步骤S1102,如图6所示,在氮气环境中,采用无水显影液对第二胶层82进行显影,得到第一胶层91。
优选的,本公开实施例中的第一胶层91和第二胶层82可以是光刻胶。
进一步的,在一种可选的实施方式中,第二胶层82包括无水氧光刻胶。
在本公开实施例中,可以通过氮气氛围和无水显影液,对无水氧光刻胶的第二胶层82实现高精度显影刻蚀。
参照图8,图8示意性地示出了本公开实施例提供的一种显示基板的制备装置的结构框图。如图8所示,基于同一发明构思,本公开实施例还提供了一种显示基板的制备装置,其中,显示基板包括:发光区域和非发光区域。
装置包括:
基板载台1501,用于提供衬底基板11。
蒸镀模块1502,用于在衬底基板11上形成发光材料20,发光材料20在衬底基板11上的正投影覆盖发光区域和非发光区域。
离子注入模块1503,用于向非发光区域的发光材料20注入破坏离子71,得到显示基板;其中,破坏离子71用于破坏非发光区域的发光材料20的发光特性。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。 本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图9示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图10所述的便携式或者固定存储单元。该存储单元可以具有与图9的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的一种显示基板、一种显示基板的制备方法、一种 显示基板的制备装置和一种显示装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或 者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (16)

  1. 一种显示基板,包括:多个发光区域和围绕各所述发光区域的非发光区域;所述显示基板包括:
    衬底基板;
    设置在所述衬底基板一侧的发光功能层,所述发光功能层包括位于所述多个发光区域和所述非发光区域的发光材料;
    其中,所述非发光区域的发光材料中掺杂有破坏离子,所述破坏离子用于对所述非发光区域的发光材料的发光特性进行破坏。
  2. 根据权利要求1所述的一种显示基板,其中,所述多个发光区域包括第一色发光区域和第二色发光区域,所述第一发光区域用于发出第一颜色光;所述第二色发光区域用于发出第二颜色光,所述第一颜色和所述第二颜色不同;
    其中,所述发光功能层包括能够发出所述第一颜色光的第一色彩发光材料,位于所述第二色发光区域的第一色彩发光材料中掺杂有所述破坏离子。
  3. 根据权利要求2所述的一种显示基板,其中,相邻两个所述发光区域在所述衬底基板的上的正投影的间距大于或等于5nm,并且小于或等于50μm。
  4. 根据权利要求2所述的一种显示基板,其中,多个所述发光区域包括以下至少之一:红色光区域,绿色光区域,蓝色光区域,白色光区域。
  5. 根据权利要求1所述的一种显示基板,其中,所述发光功能层还包括以下至少之一:
    空穴传输层、空穴注入层、发光层、电荷传输层、电荷产生层和电荷注入层。
  6. 根据权利要求5所述的一种显示基板,其中,所述空穴传输层包括:第一空穴传输层和第二空穴传输层;所述空穴注入层包括:第一空穴注入层 和第二空穴注入层;所述电荷注入层包括:第一电荷注入层和第二电荷注入层;
    所述发光层包括:
    第一发光层,位于所述第一空穴注入层或者所述第一空穴传输层远离所述衬底基板的一侧;
    第二发光层,位于所述第一发光层远离所述衬底基板的一侧;
    第三发光层,位于所述第二空穴注入层或者所述第二空穴传输层远离所述衬底基板的一侧;
    其中,所述第二空穴注入层和所述第二空穴传输层位于所述第一空穴注入层和所述第一空穴传输层远离所述衬底基板的一侧;所述电荷产生层和所述第一电荷注入层位于所述第一发光层与所述第二空穴注入层或者所述第二空穴传输层之间;所述电荷传输层或者所述第二电荷注入层位于所述第二空穴注入层或者所述第二空穴传输层远离所述衬底基板的一侧。
  7. 根据权利要求1所述的一种显示基板,其中,所述衬底基板的长度大于或等于1850mm,并且所述衬底基板的宽度大于或等于1500mm。
  8. 根据权利要求1所述的一种显示基板,其中,所述发光材料包括以下至少之一:有机电致发光材料和量子点发光材料。
  9. 根据权利要求1所述的一种显示基板,其中,还包括:位于所述发光功能层与所述衬底基板之间的第一电极,以及,位于所述发光功能层远离所述衬底基板一侧的第二电极。
  10. 根据权利要求1-8任一项所述的一种显示基板,其中,所述破坏离子包括以下至少之一:氟离子,磷离子,氮离子,硼氟离子,氩离子。
  11. 一种显示装置,其中,包括如权利要求10任一项所述的显示基板。
  12. 一种显示基板的制备方法,其中,所述显示基板包括:发光区域和 非发光区域;所述方法包括:
    提供衬底基板;
    在所述衬底基板上形成发光材料,所述发光材料在所述衬底基板上的正投影覆盖所述发光区域和所述非发光区域;
    向所述非发光区域的发光材料注入破坏离子,得到所述显示基板;其中,所述破坏离子用于破坏所述非发光区域的发光材料的发光特性。
  13. 根据权利要求12所述的一种显示基板的制备方法,其中,所述向所述非发光区域的发光材料注入破坏离子,得到所述显示基板的步骤,包括:
    在所述发光材料远离所述衬底基板的一侧形成遮挡层;其中,所述遮挡层在所述衬底基板上的正投影覆盖所述发光区域;
    向未被所述遮挡层遮挡的发光材料注入所述破坏离子;
    去除所述遮挡层,得到所述显示基板。
  14. 根据权利要求13所述的一种显示基板的制备方法,其中,所述遮挡层包括:第一胶层和第一有机层;所述在所述发光材料远离所述衬底基板的一侧形成遮挡层的步骤,包括:
    在所述发光材料远离所述衬底基板的一侧形成第二有机层,所述第二有机层在所述衬底基板上的正投影覆盖所述发光材料在所述衬底基板上的正投影;
    在所述第二有机层上形成第二胶层,所述第二胶层在所述衬底基板上的正投影覆盖所述第二有机层在所述衬底基板上的正投影;
    在氮气环境中,采用无水显影液对所述第二胶层进行显影,在所述第二有机层上形成所述第一胶层,所述第一胶层在所述衬底基板上的正投影覆盖所述发光区域;
    通过显影,去除所述第二有机层未被所述第一胶层覆盖的部分,得到所述第一有机层;
    其中,所述第二胶层包括:无水氧光刻胶。
  15. 根据权利要求12所述的一种显示基板的制备方法,其中,所述发 光材料包括有机发光材料;所述在所述衬底基板上形成发光材料的步骤包括:
    采用开放式掩膜板进行面蒸镀,在所述衬底基板上形成所述有机发光材料。
  16. 一种显示基板的制备装置,其中,所述显示基板包括:发光区域和非发光区域;所述装置包括:
    基板载台,用于提供衬底基板;
    蒸镀模块,用于在所述衬底基板上形成发光材料,所述发光材料在所述衬底基板上的正投影覆盖所述发光区域和所述非发光区域;
    离子注入模块,用于向所述非发光区域的发光材料注入破坏离子,得到所述显示基板;其中,所述破坏离子用于破坏所述非发光区域的发光材料的发光特性。
PCT/CN2022/104986 2022-07-11 2022-07-11 显示基板及其制备方法、制备装置、显示装置 WO2024011372A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/104986 WO2024011372A1 (zh) 2022-07-11 2022-07-11 显示基板及其制备方法、制备装置、显示装置
CN202280002167.4A CN117693813A (zh) 2022-07-11 2022-07-11 显示基板及其制备方法、制备装置、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104986 WO2024011372A1 (zh) 2022-07-11 2022-07-11 显示基板及其制备方法、制备装置、显示装置

Publications (1)

Publication Number Publication Date
WO2024011372A1 true WO2024011372A1 (zh) 2024-01-18

Family

ID=89535179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104986 WO2024011372A1 (zh) 2022-07-11 2022-07-11 显示基板及其制备方法、制备装置、显示装置

Country Status (2)

Country Link
CN (1) CN117693813A (zh)
WO (1) WO2024011372A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565053A (zh) * 2017-08-25 2018-01-09 上海天马有机发光显示技术有限公司 显示面板及显示装置
CN107742676A (zh) * 2017-09-12 2018-02-27 上海天马有机发光显示技术有限公司 一种有机发光显示面板、其制作方法及显示装置
CN110164921A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法
CN110165062A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法
CN114256306A (zh) * 2020-09-22 2022-03-29 三星电子株式会社 显示装置及其制造方法以及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565053A (zh) * 2017-08-25 2018-01-09 上海天马有机发光显示技术有限公司 显示面板及显示装置
CN107742676A (zh) * 2017-09-12 2018-02-27 上海天马有机发光显示技术有限公司 一种有机发光显示面板、其制作方法及显示装置
CN110164921A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法
CN110165062A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法
CN114256306A (zh) * 2020-09-22 2022-03-29 三星电子株式会社 显示装置及其制造方法以及电子设备

Also Published As

Publication number Publication date
CN117693813A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
KR101976829B1 (ko) 대면적 유기발광 다이오드 표시장치 및 그 제조 방법
US9252398B2 (en) Organic light emitting diode display device and method of fabricating the same
JP3948082B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5677435B2 (ja) 有機el表示パネルとその製造方法
CN103515413B (zh) 有机发光二极管显示设备及其制造方法
US8120246B2 (en) Display device with improved moisture prevention and production method for the same
EP3279944B1 (en) Electroluminescent display and display device
US20140206117A1 (en) Method for manufacturing display device
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
CN109817695B (zh) 一种oled显示面板及制备方法、显示装置
WO2019214125A1 (zh) 彩色滤光基板及其制作方法与woled显示器
CN109994644B (zh) 有机发光二极管显示装置
KR102185577B1 (ko) Oled 기판 및 그 제조 방법
WO2019085108A1 (zh) Oled显示器及其制作方法
JP2014123441A (ja) 有機el表示装置の製造方法
JP2003264059A (ja) エレクトロルミネッセンス素子
KR102058239B1 (ko) 대면적 유기발광 다이오드 표시장치 및 그 제조 방법
CN108461659B (zh) Oled薄膜封装方法
JP2004047179A (ja) 帯電防止有機el素子およびその製造方法
WO2024011372A1 (zh) 显示基板及其制备方法、制备装置、显示装置
KR20140041315A (ko) 유기전계발광표시장치의 제조방법
US10424626B2 (en) OLED display with light-blocked pixel isolation layer and manufacture method thereof
KR102043851B1 (ko) 대면적 유기발광 다이오드 표시장치 및 그 제조 방법
KR100700491B1 (ko) 아이콘부를 구비하는 유기 전계 발광 표시 장치
JP2010140852A (ja) 有機el表示装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002167.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950503

Country of ref document: EP

Kind code of ref document: A1