WO2024010353A1 - 페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물 - Google Patents

페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물 Download PDF

Info

Publication number
WO2024010353A1
WO2024010353A1 PCT/KR2023/009478 KR2023009478W WO2024010353A1 WO 2024010353 A1 WO2024010353 A1 WO 2024010353A1 KR 2023009478 W KR2023009478 W KR 2023009478W WO 2024010353 A1 WO2024010353 A1 WO 2024010353A1
Authority
WO
WIPO (PCT)
Prior art keywords
peg
formula
skin
brixelle
group
Prior art date
Application number
PCT/KR2023/009478
Other languages
English (en)
French (fr)
Inventor
김명립
마상호
신덕향
조승현
신유나
김현진
아부자르샤리프엠디
최민호
Original Assignee
주식회사 빌릭스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230086395A external-priority patent/KR20240007076A/ko
Application filed by 주식회사 빌릭스 filed Critical 주식회사 빌릭스
Publication of WO2024010353A1 publication Critical patent/WO2024010353A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants

Abstract

본 발명은 화학식 1의 화합물을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물 및 상기 화합물을 포함하는 화장료 조성물에 관한 것으로, 상기 화학식 1의 화합물을 포함함으로써 무독성으로 활성산소를 제거하고 염증성 사이토카인을 억제하여 세포를 보호하고 염증을 감소시킬 수 있다.

Description

페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물
본 발명은 페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물에 관한 것이다.
활성산소(Reactive oxygen species; ROS) 또는 활성산소종은 산소 원자를 포함한 화학적으로 반응성이 있는 분자를 의미한다. 활성산소는 생물체 내에서 생성되는 산소의 화합물로서, 과산소 이온과 과산화수소를 포함하고 짝지어지지 않은 전자를 가지고 있기 때문에 반응성이 매우 높아 생체 조직을 공격하고 세포를 손상시킬 수 있는 산화력이 매우 강력한 산소에 해당한다. 이와 같은 활성산소는 정상적인 대사 과정에서도 발생될 수 있으며, 세포 신호와 항상성을 조절하는데 역할을 하는 것으로 보고되어 있다.
이러한 활성산소 농도가 증가하여 정상세포를 손상시키는 것을 산화 스트레스라고 하며, 산화 스트레스는 활성산소의 생성과 반응 중간생성물을 해독하거나 활성산소로 인한 손상을 복구하는 생물학적 능력 사이의 불균형을 반영한다. 산화 스트레스에 의한 불균형이 심각한 경우에는 세포 사망이 발생할 수 있고, 증가된 활성산소는 개체에 존재하는 DNA에 직접적인 손상을 입힐 수 있다. 이로 인해 다양한 염증 반응, 노화, 고지혈증, 만성피로, 혈관 질환 등을 일으키는 원인이 되고 기존의 질병도 악화시킬 수 있다.
본 발명은 페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물을 제공하는 것을 목적으로 한다.
본 발명은 페길화된 빌리루빈을 포함하는 화장료 조성물을 제공하는 것을 목적으로 한다.
1. 화학식 1로 표시되는 화합물, 이의 용매화물 또는 이의 약학적으로 허용되는 염을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물:
[화학식 1]
Figure PCTKR2023009478-appb-img-000001
(상기 화학식 1에서 R1 및 R4는 바이닐기 또는 메틸기이고, R2 및 R3는 메틸기 또는 바이닐기이되, 전부 다 바이닐기이거나 메틸기는 아닐 수 있고;
R5는 폴리에틸렌 글리콜(PEG) 또는 이의 유도체임).
2. 위 1에 있어서, 상기 화합물은 화학식 2 내지 7 중 어느 하나로 표시되는 화합물인, 염증성 질환의 예방 또는 치료용 약학 조성물:
[화학식 2]
Figure PCTKR2023009478-appb-img-000002
[화학식 3]
Figure PCTKR2023009478-appb-img-000003
[화학식 4]
Figure PCTKR2023009478-appb-img-000004
[화학식 5]
Figure PCTKR2023009478-appb-img-000005
[화학식 6]
Figure PCTKR2023009478-appb-img-000006
[화학식 7]
Figure PCTKR2023009478-appb-img-000007
3. 위 1에 있어서, 상기 화학식 1로 표시되는 화합물이 자기-조립(self-assembled)하여 형성된 나노입자를 포함하는, 염증성 질환의 예방 또는 치료용 약학 조성물.
4. 위 3에 있어서, 상기 나노입자의 크기는 1 nm 내지 5000 nm인, 염증성 질환의 예방 또는 치료용 약학 조성물.
5. 위 1에 있어서, 상기 폴리에틸렌 글리콜의 유도체는 메톡시 PEG(methoxy polyethylene glycol), PEG 프로피론산의 숙시니미드(succinimide of PEG propionic acid), PEG 부타논산의 숙시니미드(succinimide of PEG butanoic acid), 가지달린 PEG-HNS(branched PEG-NHS), PEG 숙시니미딜 숙시네이트(PEG succinimidyl succinate), 카복시메틸화 PEG의 숙시니미드(succinimide of carboxymethylated PEG), PEG의 벤조트리아졸 카보네이트(benzotriazole carbonate of PEG), PEG-글리시딜 에테르(PEG-glycidyl ether), PEG-옥시카보닐이미다졸(PEG-oxycarbonylimidazole), PEG 니트로페닐 카보네이트(PEG nitrophenyl carbonates), PEG-알데히드(PEGaldehyde), PEG 숙시니미딜 카르복시메틸 에스테르(PEG succinimidyl carboxymethyl ester) 및 PEG 숙시니미딜에스테르(PEG succinimidyl ester)으로 이루어진 군에서 선택되는 것인, 염증성 질환의 예방 또는 치료용 약학 조성물.
6. 위 1에 있어서, 상기 염증성 질환은 염증성 피부 질환, 골관절염, 간염, 폐렴, 각막염, 위염, 신장염, 결핵, 기관지염, 흉막염, 복막염, 척추염, 췌장염, 염증성 장질환, 요도염, 방광염, 염증성 동맥경화증, 패혈증, 치주염, 치은염 및 자가염증성질환으로 이루어진 군에서 선택되는 적어도 하나인, 염증성 질환의 예방 또는 치료용 약학 조성물.
7. 위 6에 있어서, 상기 염증성 피부 질환은 아토피 피부염(Atopic dermatitis), 접촉성 피부염(Contact dermatitis), 건선(Psoriasis), 지루성 피부염(Seborrheic dermatitis), 가려움(Pruritus), 유사 건선(Parapsoriasis), 두드러기(Urticaria), 편평태선(Lichen planus), 일광화상(Sunburn), 방사선 피부염(Radiodermatitis), 다형 홍반(Erythema multiforme), 결절성 홍반(Erythema nodosum), 환상육아종(Granuloma annulare), 모공성 각화증(Keratosis pilaris), 피부 건조증(Xeroderma), 지방층염(Panniculitis), 괴저성 농피증(Pyoderma gangrenosum), 여드름(Acne), 주사(Rosacea), 홍반 루푸스(Lupus erythematosus), 천포창(Pemphigus), 기저귀 피부염(Diaper dermatitis), 비강진(Pityriasis rosea), 원형 탈모(Alopecia areata), 안드로젠탈모(Androgenic alopecia), 백반증(Vitiligo) 및 욕창궤양(Decubitus ulcer)으로 이루어진 군에서 선택되는 적어도 하나인, 염증성 질환의 예방 또는 치료용 약학 조성물.
8. 위 1에 있어서, 상기 염증성 질환은 산화 스트레스 증가로 유발되는 것인, 염증성 질환의 예방 또는 치료용 약학 조성물.
9. 화학식 1로 표시되는 화합물, 이의 용매화물 또는 이의 화장품학적으로 허용되는 염을 포함하는 화장료 조성물:
[화학식 1]
Figure PCTKR2023009478-appb-img-000008
(상기 화학식 1에서 R1 및 R4는 바이닐기 또는 메틸기이고, R2 및 R3는 메틸기 또는 바이닐기이되, 전부 다 바이닐기이거나 메틸기는 아닐 수 있고;
R5는 폴리에틸렌 글리콜(PEG) 또는 이의 유도체임).
10. 위 9에 있어서, 상기 화합물은 상기 화학식 2 내지 7 중 어느 하나로 표시되는 화합물인, 화장료 조성물.
11. 위 9에 있어서, 상기 화학식 1로 표시되는 화합물이 자기-조립(self-assembled)하여 형성된 나노입자를 포함하는, 화장료 조성물.
12. 위 11에 있어서, 상기 나노입자의 크기는 1 nm 내지 5000 nm인, 화장료 조성물.
13. 위 9에 있어서, 상기 폴리에틸렌 글리콜의 유도체는 메톡시 PEG(methoxy polyethylene glycol), PEG 프로피론산의 숙시니미드(succinimide of PEG propionic acid), PEG 부타논산의 숙시니미드(succinimide of PEG butanoic acid), 가지달린 PEG-HNS(branched PEG-NHS), PEG 숙시니미딜 숙시네이트(PEG succinimidyl succinate), 카복시메틸화 PEG의 숙시니미드(succinimide of carboxymethylated PEG), PEG의 벤조트리아졸 카보네이트(benzotriazole carbonate of PEG), PEG-글리시딜 에테르(PEG-glycidyl ether), PEG-옥시카보닐이미다졸(PEG-oxycarbonylimidazole), PEG 니트로페닐 카보네이트(PEG nitrophenyl carbonates), PEG-알데히드(PEGaldehyde), PEG 숙시니미딜 카르복시메틸 에스테르(PEG succinimidyl carboxymethyl ester) 및 PEG 숙시니미딜에스테르(PEG succinimidyl ester)으로 이루어진 군에서 선택되는 것인, 화장료 조성물.
14. 위 9에 있어서, 상기 화장료 조성물은 항염증 또는 항산화용인, 화장료 조성물.
15. 위 9에 있어서, 상기 화장료 조성물은 산화 스트레스 증가로 유발되는 피부 염증 예방 또는 개선용인, 화장료 조성물.
16. 위 15에 있어서, 상기 산화 스트레스 증가로 유발되는 피부 염증은 아토피 피부염(Atopic dermatitis), 접촉성 피부염(Contact dermatitis), 건선(Psoriasis), 지루성 피부염(Seborrheic dermatitis), 가려움(Pruritus), 유사 건선(Parapsoriasis), 두드러기(Urticaria), 편평태선(Lichen planus), 일광화상(Sunburn), 방사선 피부염(Radiodermatitis), 다형 홍반(Erythema multiforme), 결절성 홍반(Erythema nodosum), 환상육아종(Granuloma annulare), 모공성 각화증(Keratosis pilaris), 피부 건조증(Xeroderma), 지방층염(Panniculitis), 괴저성 농피증(Pyoderma gangrenosum), 여드름(Acne), 주사(Rosacea), 홍반 루푸스(Lupus erythematosus), 천포창(Pemphigus), 기저귀 피부염(Diaper dermatitis), 비강진(Pityriasis rosea), 원형 탈모(Alopecia areata), 안드로젠탈모(Androgenic alopecia), 백반증(Vitiligo) 및 욕창궤양(Decubitus ulcer)으로 이루어진 군에서 선택되는 적어도 하나인, 화장료 조성물.
17. 위 9에 있어서, 상기 화장료 조성물은 피부 보습, 피부장벽 기능 회복 또는 피부 노화 방지용인, 화장료 조성물.
본 발명의 조성물은 페길화된 빌리루빈을 포함하여 세포 독성을 일으키지 않으면서 염증 조직 및 세포를 선택적으로 타겟하여 염증의 원인이 되는 활성산소를 효과적으로 제거할 수 있다.
도 1은 합성된 화학식 2 내지 7의 화합물의 분자량 분석(QTOFmass spectrometry) 데이터 결과이다.
도 2a 및 2b는 페길화 빌리루빈 나노입자 형성 여부를 동적 광산란법(DLS)으로 확인한 결과이다.
도 3a 내지 3c는 Dil 염료의 탑재 여부와 페길화 빌리루빈 나노입자 형성여부를 동적 광산란법(DLS)과 흡광도 변화로 확인한 결과이다.
도 4a 및 4b는 사람 각질 세포주(HaCaT)에서 염증 유발 조건(집먼지진드기(HDM) 항원 자극)에 따른 Brixelle의 세포 내 유입 증가를 확인한 결과이다.
도 5a 내지 5d는 사람 각질 세포주(HaCaT)에 염증 유발 조건(HDM 혹은 C48/80 자극)에서 Brixelle을 처리하여 Brixelle이 피부 세포 내 활성산소종을 제거하고 세포를 보호할 수 있음을 확인한 결과이다.
도 6a 내지 6f는 사람 각질 세포주(HaCaT)에 염증 유발 조건(HDM 혹은 C48/80 자극)에서 생성되는 사이토카인(TSLP, IL-25, IL-33)이 Brixelle의 용량 의존적으로 억제되는 것을 확인한 결과이다.
도 7a 내지 7c는 인공피부모델(KeraSkinTM)을 이용하여 염증 유발 조건(UVB조사)에서 Brixelle을 처리하여 용량 의존적으로 피부 장벽 기능이 회복되고, 염증 반응이 억제됨을 확인한 결과이다.
도 8a 내지 8e는 집먼지진드기 항원으로 아토피피부염을 유발한 마우스 모델에서 Brixelle을 국소적으로 3주간 매일 처치하여 아토피피부염에 대한 Brixelle 용량 의존적인 치료 효능을 확인한 결과이다.
도 9a 내지 9d는 집먼지진드기 항원으로 아토피피부염을 유발한 마우스 모델에서 Brixelle을 국소적으로 3주간 매일 처치하여 아토피피부염 치료에 사용하는 약물들(Elidel, Dexamethasone, Eucrisa)과 비교하여 치료 효능을 확인한 결과이다.
도 10a 내지 10d는 이미퀴모드(imiquimod, IMQ)로 유발한 건선 마우스 모델에서 Brixelle을 국소적으로 7일간 매일 처치하여 건선에 대한 치료 효능을 확인한 결과이다.
도 11a 내지 11d는 DNFB(2,4-dinitrofluorobenzene)로 유발한 접촉성 피부염 마우스 모델에서 Brixelle을 국소적으로 5일간 매일 처치하여 접촉성 피부염에 대한 치료 효능을 확인한 결과이다.
도 12a 내지 12e는 인공피부모델(KeraSkinTM) 및 인공각막모델(MCTT HCETM)을 이용한 동물대체시험법으로 피부자극시험, 안점막자극시험, 피부소핵시험, 피부감작시험, 피부광독성 시험을 수행하여, Brixelle은 피부 독성 위험이 매우 낮은 물질임을 확인한 결과이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 화학식 1로 표시되는 화합물, 이의 용매화물 또는 이의 약학적으로 허용되는 염을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물에 관한 것이다.
[화학식 1]
Figure PCTKR2023009478-appb-img-000009
상기 화학식 1에서 R1 및 R4는 바이닐기 또는 메틸기이고, R2 및 R3는 메틸기 또는 바이닐기이되, 전부 다 바이닐기이거나 메틸기는 아닐 수 있고, R5는 폴리에틸렌 글리콜(PEG) 또는 이의 유도체이다.
상기 폴리에틸렌 글리콜 또는 이의 유도체의 분자량은 500 내지 10000, 500 내지 9000, 500 내지 8000, 500 내지 7000, 500 내지 6000, 500 내지 5000일 수 있으나, 이에 제한되지 않는다.
상기 폴리에틸렌 글리콜 또는 이의 유도체는 직쇄 또는 분지쇄일 수 있다.
예를 들어, 상기 폴리에틸렌 글리콜의 유도체는 메톡시 PEG(methoxy polyethylene glycol), PEG 프로피론산의 숙시니미드(succinimide of PEG propionic acid), PEG 부타논산의 숙시니미드(succinimide of PEG butanoic acid), 가지달린 PEG-HNS(branched PEG-NHS), PEG 숙시니미딜 숙시네이트(PEG succinimidyl succinate), 카복시메틸화 PEG의 숙시니미드(succinimide of carboxymethylated PEG), PEG의 벤조트리아졸 카보네이트(benzotriazole carbonate of PEG), PEG-글리시딜 에테르(PEG-glycidyl ether), PEG-옥시카보닐이미다졸(PEG-oxycarbonylimidazole), PEG 니트로페닐 카보네이트(PEG nitrophenyl carbonates), PEG-알데히드(PEGaldehyde), PEG 숙시니미딜 카르복시메틸 에스테르(PEG succinimidyl carboxymethyl ester) 및 PEG 숙시니미딜에스테르(PEG succinimidyl ester)으로 이루어진 군에서 선택되는 것일 수 있다.
구체적으로 상기 화합물은 하기 화학식 2 내지 7 중 어느 하나로 표시되는 화합물일 수 있다.
[화학식 2]
Figure PCTKR2023009478-appb-img-000010
[화학식 3]
Figure PCTKR2023009478-appb-img-000011
[화학식 4]
Figure PCTKR2023009478-appb-img-000012
[화학식 5]
Figure PCTKR2023009478-appb-img-000013
[화학식 6]
Figure PCTKR2023009478-appb-img-000014
[화학식 7]
Figure PCTKR2023009478-appb-img-000015
본 발명의 약학 조성물은 상기 화학식 1로 표시되는 화합물이 자기-조립(self-assembled)하여 형성된 나노입자를 포함할 수 있다.
상기 나노입자의 크기는 1 nm 내지 5000 nm, 보다 구체적으로는 50 nm 내지 1000 nm, 50 nm 내지 500 nm, 50 nm 내지 300 nm일 수 있으나, 이에 제한되는 것은 아니다.
상기 염증성 질환은 염증성 피부 질환, 골관절염, 간염, 폐렴, 각막염, 위염, 신장염, 결핵, 기관지염, 흉막염, 복막염, 척추염, 췌장염, 염증성 장질환, 요도염, 방광염, 염증성 동맥경화증, 패혈증, 치주염, 치은염 및 자가염증성질환으로 이루어진 군에서 선택되는 적어도 하나일 수 있으나, 이에 제한되는 것은 아니다.
상기 염증성 피부 질환은 예를 들어, 아토피 피부염(Atopic dermatitis), 접촉성 피부염(Contact dermatitis), 건선(Psoriasis), 지루성 피부염(Seborrheic dermatitis), 가려움(Pruritus), 유사 건선(Parapsoriasis), 두드러기(Urticaria), 편평태선(Lichen planus), 일광화상(Sunburn), 방사선 피부염(Radiodermatitis), 다형 홍반(Erythema multiforme), 결절성 홍반(Erythema nodosum), 환상육아종(Granuloma annulare), 모공성 각화증(Keratosis pilaris), 피부 건조증(Xeroderma), 지방층염(Panniculitis), 괴저성 농피증(Pyoderma gangrenosum), 여드름(Acne), 주사(Rosacea), 홍반 루푸스(Lupus erythematosus), 천포창(Pemphigus), 기저귀 피부염(Diaper dermatitis), 비강진(Pityriasis rosea), 원형 탈모(Alopecia areata), 안드로젠탈모(Androgenic alopecia), 백반증(Vitiligo) 및 욕창궤양(Decubitus ulcer)으로 이루어진 군에서 선택되는 적어도 하나일 수 있다.
상기 염증성 질환의 발생 원인은 면역 시스템의 이상, 감염, 외부 자극이나 손상, 환경적 요인, 유전적 요인 등일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 염증성 질환은 산화 스트레스 증가로 유발되는 것일 수 있다.
용어 "산화 스트레스"는 활성산소 등의 산화물질이 과생성되거나 항산화 물질이 부족해져 불균형이 야기되고, 세포나 조직이 손상 또는 파괴되는 현상을 말한다. 활성산소(reactive oxygen species, ROS)는 산소 원자를 포함한 화학적으로 반응성이 있는 분자로, 생물 체내에서 생성되는 산소의 화합물로 생체 조직을 공격하고 세포를 손상시키는 산화력이 강한 산소이다. 활성산소는 산소의 정상적인 대사과정에서 생기는 것이지만, 환경적인 스트레스 등으로 인해 그 농도가 급증할 수 있으며 이로 인해 세포가 손상될 수 있는 것이다.
활성산소의 과생성 내지 산화 스트레스의 발생 원인은 예를 들어, 올바르지 않은 식습관, 영양불균형, 불규칙적인 생활 습관, 과도한 운동, 흡연, 음주, 과로, 면역 반응, 수술, 항암제 투여, 배기가스, 중금속, 방사선, 자외선, 초음파, 전자파, 화학물질(세제, 살충제 등) 등의 여러 내적 및 외적 원인일 수 있으나 이에 제한되는 것은 아니다.
또한, 상기 염증성 피부 질환은 산화 스트레스로 인해 표피, 각질층 등이 수행하는 장벽 기능이 손상되어 발생하는 피부 건조, 민감도 증가, 색소 침착, 피부의 국소적인 염증 발생 등에 의해 발병할 수 있다.
용어 “예방”은 본 발명의 조성물 투여로 관련 질환의 발병을 억제시키거나 지연시키는 모든 행위를 의미한다. 본 발명이 속하는 기술분야의 통상의 기술자라면, 증상 발생 전이나 초기에 본 발명 조성물을 투여하여 관련 질환을 예방할 수 있다는 것을 판단할 수 있을 것이다.
용어 “치료”는 본 발명의 조성물 투여로 관련 질환의 증세를 호전시키거나 이롭게 변경하는 모든 행위를 의미하며, 치료는 완화 또는 개선을 포함한다. 본 발명이 속하는 기술분야의 통상의 기술자라면, 대한 의학협회 등에서 제시된 자료를 참조하여 질환의 정확한 기준을 알고, 개선, 향상 및 치료된 정도를 판단할 수 있을 것이다.
용어 “약학적으로 허용되는”은 화합물 또는 조성물이 투여되는 개체, 세포, 조직 등에 심각한 자극을 유발하지 않고 화합물의 생물학적 활성과 물성들을 손상시키지 않는 특성을 나타내는 것을 의미한다.
용어 “약학적으로 허용되는 염”은 본 발명에 따른 특정 화합물과 비교적 무독성인 산 또는 염기를 이용해서 조제되는 염을 의미하며, 약학적으로 허용되는 염은 예를 들어 산 부가염 또는 금속염일 수 있다.
산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요오드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 형성될 수 있다. 이러한 약학적으로 무독한 염은 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트, 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 핵산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-하이드톡시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함할 수 있다.
금속염은 나트륨, 칼륨 또는 칼슘염일 수 있다. 금속염은 염기를 사용하여 제조할 수 있으며, 예를 들어, 알칼리 금속 또는 알칼리 토금속 염은 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고 여액을 증발 또는 건조시켜 수득할 수 있다.
본 발명의 약학 조성물의 투여 경로는 경구 투여하거나, 신경내, 정맥내, 근육내, 복강내, 피하, 직장 및 국소를 포함하는 비경구 투여일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 약학 조성물의 투여 경로는 예를 들어 비경구 투여일 수 있고, 구체적으로는 피부, 코약, 안약, 귀점적, 질정제, 직장좌약 등의 국소 투여일 수 있고, 더 구체적으로는 국소 피부 도포의 투여일 수 있다.
용어 “투여”란 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하며, 용어 “개체”란 관련 질환이 발병하였거나 발병할 수 있는 인간을 포함한 쥐, 가축 등의 동물을 의미한다.
본 발명의 약학 조성물은 담체, 부형제 및 희석제를 함유할 수 있으며, 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있으나, 이에 제한되지 않는다.
상기 담체, 부형제 및 희석제로는 락토오스, 덱스트로스, 수크로스, 덱스트린, 말토덱스트린, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀룰로오스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있으나, 이에 제한되지 않는다. 제제화할 경우에는 당업계에서 통상적으로 사용되는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제되나, 이에 제한되지 않는다.
경구 투여를 위한 고형 제제에는 정제, 캡슐제, 환제, 과립제 등이 포함되며, 상기 고형 제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들어, 수크로스, 락토오스, 전분, 젤라틴, 칼슘카보네이트 등을 혼합하여 조제할 수 있다. 또한, 상기 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제가 사용될 수 있다.
경구 투여를 위한 액상 제제로는 수성액제, 현탁제, 시럽제, 유제 등이 포함되며, 이러한 액상 제제는 단순희석제인 물, 리퀴드 파라핀 외에 여러 가지 부형제, 예를 들어, 습윤제, 감미제, 향미제, 보존제 등이 사용될 수 있다.
비경구 투여를 위한 제제로는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 사용될 수 있다. 상기 비수성용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르가 사용될 수 있다. 상기 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween)61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
비경구 투여를 위한 제제로는 예를 들어 멸균 주사용 제제가 포함된다. 멸균 주사용 제제는 수성 또는 유성 현탁액일 수 있다. 상기 현탁액은 적합한 분산제, 습윤제(예를 들어 트윈 80) 또는 현탁화제를 사용하여 당업계에 널리 알려진 기술에 따라 제형화될 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매 중의 멸균 주사용액 또는 현탁액일 수 있으며, 만니톨, 물, 링겔 용액 또는 등장성 염화나트륨 용액 등의 용매가 사용될 수 있다. 또한 멸균 불휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용될 수 있으며, 상기 불휘발성 오일은 합성 모노 또는 디글리세라이드 등과 같이 자극성이 적은 것이라면 제한 없이 사용될 수 있다.
비경구 투여 중 국소 투여를 위한 제제로는 외용제(도포제), 점안제, 점비제, 흡입제제, 질정제, 좌제, 구강세정제 등이 포함된다. 예를 들어 외용제로 제제화되는 경우, 지방 물질, 유기 용매, 용해제, 농축제 및 겔화제, 연화제, 항산화제, 현탁화제, 안정화제, 발포제(foaming agent), 방향제, 계면활성제, 물, 이온형 유화제, 비이온형 유화제, 충전제, 금속이온 봉쇄제, 킬레이트화제, 보존제, 비타민, 차단제, 습윤화제, 필수 오일, 염료, 안료, 친수성 활성제, 친유성 활성제 또는 지질 소낭 등 피부 외용제에 통상적으로 사용되는 보조제를 함유할 수 있다. 이러한 외용제의 경우 연고, 패치, 겔, 크림 또는 분무제 등의 제형일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 약학 조성물은 약학적으로 유효한 양으로 투여한다. 상기 “약학적으로 유효한 양”은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 상태 및 체중, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명 약학 조성물은 개별 치료제로 투여하거나 종래의 염증성 질환 또는 산화 스트레스 관련 피부 질환의 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 통상의 기술자에 의해 용이하게 결정될 수 있다.
본 발명의 약학 조성물의 유효량은 환자의 나이, 성별, 체중 등에 따라 달라질 수 있으며, 예컨대 0.01~1000 mg/kg/day의 양, 더 바람직하게는 0.1~500 mg/kg/day의 양을 1회 내지 수회로 나누어 투여할 수 있다. 그러나 투여 경로, 투여 횟수, 질환의 중증도, 연령, 약물의 민감도 등에 따라 유효량은 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.
본 발명은 화학식 1로 표시되는 화합물, 이의 용매화물 또는 이의 화장품학적으로 허용되는 염을 포함하는 화장료 조성물에 관한 것이다.
[화학식 1]
Figure PCTKR2023009478-appb-img-000016
상기 화학식 1에서 R1 및 R4는 바이닐기 또는 메틸기이고, R2 및 R3는 메틸기 또는 바이닐기이되, 전부 다 바이닐기이거나 메틸기는 아닐 수 있고, R5는 폴리에틸렌 글리콜(PEG) 또는 이의 유도체이다.
상기 폴리에틸렌 글리콜 또는 이의 유도체는 전술한 범위 내일 수 있다.
상기 화합물은 전술한 화학식 2 내지 7 중 어느 하나로 표시되는 화합물일 수 있다.
본 발명의 화장료 조성물은 상기 화학식 1로 표시되는 화합물이 자기-조립(self-assembled)하여 형성된 나노입자를 포함할 수 있다.
나노입자에 관한 내용은 전술한 범위 내일 수 있다.
본 발명의 화장료 조성물은 항염증 또는 항산화용일 수 있다.
또한, 본 발명의 화장료 조성물은 산화 스트레스 증가로 유발되는 피부 염증 예방 또는 개선용일 수 있다.
상기 산화 스트레스 증가로 유발되는 피부 염증은 산화 스트레스로 인해 표피, 각질층 등이 수행하는 장벽 기능이 손상되어 발생하는 피부 건조, 민감도 증가, 색소 침착, 피부의 국소적인 염증 발생 등에 의해 발생할 수 있다.
예를 들어, 상기 산화 스트레스 증가로 유발되는 피부 염증은 아토피 피부염(Atopic dermatitis), 접촉성 피부염(Contact dermatitis), 건선(Psoriasis), 지루성 피부염(Seborrheic dermatitis), 가려움(Pruritus), 유사 건선(Parapsoriasis), 두드러기(Urticaria), 편평태선(Lichen planus), 일광화상(Sunburn), 방사선 피부염(Radiodermatitis), 다형 홍반(Erythema multiforme), 결절성 홍반(Erythema nodosum), 환상육아종(Granuloma annulare), 모공성 각화증(Keratosis pilaris), 피부 건조증(Xeroderma), 지방층염(Panniculitis), 괴저성 농피증(Pyoderma gangrenosum), 여드름(Acne), 주사(Rosacea), 홍반 루푸스(Lupus erythematosus), 천포창(Pemphigus), 기저귀 피부염(Diaper dermatitis), 비강진(Pityriasis rosea), 원형 탈모(Alopecia areata), 안드로젠탈모(Androgenic alopecia), 백반증(Vitiligo) 및 욕창궤양(Decubitus ulcer)으로 이루어진 군에서 선택되는 적어도 하나일 수 있다.
또한, 본 발명의 화장료 조성물은 피부 보습, 피부장벽 기능 회복 또는 피부 노화 방지용일 수 있다.
피부장벽 손상은 피부 노화, 자외선, 호르몬 등으로 인해 발생할 수 있다. 피부장벽이 손상되면 전술한 아토피피부염, 건선 등의 산화 스트레스 증가로 유발되는 피부 염증까지도 동반될 수 있다.
피부 노화는 자외선, 활성산소, 건조함 등으로 인해 유발될 수 있다. 본 발명의 화장료 조성물에 포함된 상기 화학식 1의 화합물이 활성산소를 제거할 수 있어 본 발명의 화장료 조성물은 활성산소로 야기되는 피부 노화, 피부 노화로 야기되는 피부장벽 손상의 예방 또는 회복 효과를 가질 수 있다.
본 발명의 화장료 조성물은 용액, 외용연고, 크림, 폼, 영양화장수, 유연화장수, 팩, 유연수, 유액, 메이크업베이스, 에센스, 비누, 액체 세정료, 입욕제, 선 스크린크림, 선오일, 현탁액, 유탁액, 페이스트, 겔, 로션, 파우더, 비누, 계면활성제-함유 클렌싱, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션, 패치 또는 스프레이 등의 제형으로 제조될 수 있으나, 이에 제한되는 것은 아니다.
화장료 조성물은 정제수, 안정화제, 유화제, 점증제, 보습제, 액정막강화제, pH 조절제, 항균제, 수용성 고분자, 피막제, 금속 이온 봉쇄제, 아미노산, 유기 아민, 고분자 에멀젼, 피부 영양제, 산화 방지제, 산화 방지조제, 방부제, 향료 등의 수성 첨가제; 및 유지류, 왁스류, 탄화 수소유, 고급 지방산유, 고급 알코올, 합성 에스테르유 및 실리콘유 등의 유성 첨가제에서 선택되는 하나 이상의 첨가제를 포함할 수 있다.
상기 수성 첨가제는 당업계에서 일반적으로 사용되는 원료라면 한정되지 않으며, 구체적인 일예로는 글리세린, 디프로필렌글라이콜, 부틸렌글라이콜, 펜틸렌글라이콜, 메칠프로판디올, 솔비톨, 디글리세린, 에리스리톨, 펜타에리스리톨, 폴리부틸렌글라이콜-10, 폴리글리세린-3, 폴리글리세린-4, 폴리글리세린-6, 폴리글리세린-10, 폴리글리세린-20, 폴리글리세린-40, 소르베스-5, 소르베스-6, 소르베스-20, 소르베스-30, 소르베스-40, 이노시톨, 말티톨, 말토스, 만난, 만니톨, 만노스, 락티톨, 락토스, 디하이드록시프로필PG-글루코사이드, 디치아옥탄디올, 프룩토오스, 글루카민, 메칠글루카민, 글루코스, 1,2,6-헥산치올, 메칠글루세스-10, 메칠글루세스-20, 오조니즈드글리세린, 피탄트리올, 치오글리세린, 트레이톨, 트리메칠올프로판, 자일리톨, 이디티에이(EDTA), 구아검, 쿠인스시드, 카라기난, 갈락탄, 아라비아검, 펙틴, 만난, 전분, 잔탄검, 커들란, 메틸셀룰로오스, 하이드록시 에틸셀룰로오스, 카복시메틸 셀룰로오스, 메틸 하이드록시프로필 셀룰로오스, 콘드로이틴 황산, 데르마탄황산, 글리코겐, 헤파란 황산, 히알루론산, 히알루론산 나트륨, 트라간트검, 케라탄황산, 콘드로이틴, 무코이틴 황산, 하이드록시에틸 구아검, 카르복시메틸 구아검, 덱스트란, 케라토 황산, 로커스트빈검, 숙시노글루칸, 카로닌산, 키틴, 키토산, 카르복시메틸키틴, 한천, 폴리비닐알코올, 폴리비닐 피롤리돈, 카르복시비닐폴리머, 폴리아크릴산 나트륨, 폴리에틸렌 글리콜, 벤토나이트, 메틸파라벤, 프로필파라벤, 페녹시에탄올, 1,2-헥산디올, 에틸헥실글리세린 등에서 선택되는 1종 이상일 수 있다.
상기 유성 첨가제는 당업계에서 일반적으로 사용되는 원료라면 한정되지 않으며, 올리브유, 동백유, 호호바유, 트리글리세라이드, 트리옥탄산글리세린, 트리이소팔미트산글리세린 등의 액상 유지와 야자유, 경화야자유, 팜유, 경화유, 경화피마자유 등의 고체 유지, 밀랍, 칸데릴라 왁스, 카나우바 왁스, 라놀린, 호호바 왁스 등이 예시된다. 탄화수소유로는 유동 파라핀, 스쿠알렌, 바셀린, 마이크로크리스탈린 왁스 등이 예시된다. 고급 지방산으로는 라우르산, 미리스트산, 팔미트산, 스테아르산, 베헨산 등의 왁스류, 세틸알콜, 스테아릴알콜, 베헤닐알콜, 미리스틸알콜, 세토스테아릴알콜 등이 예시될 수 있으며, 합성 에스테르유는 이소프로필미리스테이트, 세틸옥타노에이트, 옥틸도데실미리스테이트, 이소프로필팔미테이트, 헥실라우레이트, 미리스틸미리스테이트, 세틸락테이트, 이소세틸이소스테아레이트, 네오펜틸글리콜디카프레이트, 에틸헥실글리세린, 세틸에틸헥사노에이트, 에틸헥실팔미테이트, 세토스테아릴알콜 등의 고급 알코올, 디메틸폴리실록산, 메틸페닐폴리실록산, 메틸하이드로젠폴리실록산 등의 사슬형 실리콘유, 도데카메틸사이클로헥사실록산, 옥타메틸사이클로테트라실록산, 데카메틸사이클로펜타실록산 등의 환상형 실리콘유 등에서 선택되는 것일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 화장료 조성물은 당업계에서 통상적으로 일반 피부 화장료에 배합되는 화장품학적으로 허용 가능한 담체를 더 포함할 수 있다. 화장품학적으로 허용 가능한 담체는 예를 들어 유분, 물, 계면활성제, 보습제, 저급 알코올, 증점제, 킬레이트제, 색소, 방부제, 향료 등일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 화장료 조성물의 제형에 따라 다양한 화장품학적으로 허용 가능한 담체가 포함될 수 있다.
화장료 조성물의 제형이 연고, 페이스트, 크림 또는 겔인 경우에는 담체 성분으로서 동물성유, 식물성유, 왁스, 파라핀, 전분, 트라가칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크, 산화아연 또는 이들의 혼합물이 이용될 수 있다.
화장료 조성물의 제형이 파우더 또는 스프레이인 경우에는 담체 성분으로서 락토스, 탈크, 실리카, 알루미늄 하이드록사이드, 칼슘 실리케이트, 폴리아미드 파우더 또는 이들의 혼합물이 이용될 수 있다. 특히 스프레이인 경우에는 추가적으로 클로로플루오로히드로카본, 프로판/부탄 또는 디메틸 에테르와 같은 추진제를 포함할 수 있다.
화장료 조성물의 제형이 용액 또는 유탁액인 경우에는 담체 성분으로서 용매, 용해화제 또는 유탁화제가 이용될 수 있고, 이는 예를 들어 물, 에탄올, 이소프로판올, 에틸 카보네이트, 에틸 아세테이트, 벤질 알코올, 벤질 벤조에이트, 프로필렌 글리콜, 1,3-부틸글리콜 오일, 글리세롤 지방족 에스테르, 폴리에틸렌 글리콜 또는 소르비탄의 지방산 에스테르일 수 있다.
화장료 조성물의 제형이 현탁액인 경우에는 담체 성분으로서 물, 에탄올 또는 프로필렌 글리콜과 같은 액상의 희석제, 에톡실화 이소스테아릴 알코올, 폴리옥시에틸렌 소르비톨 에스테르 및 폴리옥시에틸렌 소르비탄 에스테르와 같은 현탁제, 미소결정성 셀룰로오스, 알루미늄 메타히드록시드, 벤토나이트, 아가 또는 트라가칸트 등이 이용될 수 있다.
화장료 조성물의 제형이 계면-활성제 함유 클렌싱인 경우에는 담체 성분으로서 지방족 알코올 설페이트, 지방족 알코올 에테르 설페이트, 설포숙신산 모노에스테르, 이세티오네이트, 이미다졸리늄 유도체, 메틸타우레이트, 사르코시네이트, 지방산 아미드 에테르 설페이트, 알킬아미도베타인, 지방족 알코올, 지방산 글리세라이드, 지방산 디에탄올아미드, 식물성유, 라놀린 유도체 또는 에톡실화 글리세롤 지방산 에스테르 등이 이용될 수 있다.
본 발명의 화장료 조성물에 포함되는 성분은 상기 화합물 등과 담체 성분 이외에, 화장료 조성물에 통상적으로 포함되는 성분들을 포함할 수 있으며, 예컨대 항산화제, 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제를 포함할 수 있다.
화장료 조성물을 단독 또는 중복 도포하여 사용하거나, 본 발명 이외의 다른 화장료 조성물과 중복 도포하여 사용할 수 있다. 또한 본 발명에 따른 화장료 조성물은 통상적인 사용방법에 따라 사용될 수 있으며, 사용자의 피부 상태 또는 취향에 따라 그 사용횟수를 달리할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
제조예
1. Brixelle의 제조
PEG의 분자량을 달리 하여 하기 화학식 2 내지 7(각각 화합물 1 내지 6)의 페길화빌리루빈 3α를 합성하고 이들의 분자량을 분석하였다(도 1). 합성된 페길화빌리루빈 3α를 사용하여 아래의 방법으로 이의 자기조립체인 Brixelle을 제조하였다.
화학식 구조 화합물
2
Figure PCTKR2023009478-appb-img-000017
1
3
Figure PCTKR2023009478-appb-img-000018
2
4
Figure PCTKR2023009478-appb-img-000019
3
5
Figure PCTKR2023009478-appb-img-000020
4
6
Figure PCTKR2023009478-appb-img-000021
5
7
Figure PCTKR2023009478-appb-img-000022
6
Brixelle을 균일한 크기의 나노입자로 제조하기 위해, flow chemistry를 기반으로 제조하였다.
구체적으로, 시트르산 소듐염 이수화물과 시트르산 무수물을 물에 녹여 10 L의 시트르산 완충용액을 만들고, pH 4.4를 확인하였다. 그리고, 시트르산 완충용액 9.9 L를 30 L반응기에 준비하였다. 온도는 4~15℃를 유지하도록 조절하면서 100~1000 rpm으로 교반하였다.
다음, 페길화빌리루빈 3α 504.4 g에 1100 mL의 아세토니트릴을 적가하여 완전히 용해될 때까지 교반하였다. 상기 용액을 2 L 메스실린더에 옮긴 후, 아세토니트릴을 추가하여 부피가 총 1650 mL가 되도록 했다. 상기 용액을 0.20 μm PVDF 필터로 여과 후, 반응기로 옮겼다. 온도는 4~15℃를 유지하도록 조절하면서 100~1000 rpm으로 교반하였다. 위 과정은 yellow light 환경에서 이뤄졌다.
나노입자로 제형화하기 위해, 페길화빌리루빈 3α 용액 1650 mL를 시트르산 완충 용액에 첨가하였다. 먼저, 내경 3.2 mm의 튜브를 펌프에 연결하고, 이 펌프와 튜브를 이용하여, 페길화빌리루빈 3α 용액을 10~50 mL/min의 유속으로 수용액 상에 흘려보냈다. 페길화빌리루빈 3α 용액 적가 완료 후, 15분을 추가로 100~1000 rpm, 4~15℃에서 교반하였다. 위 과정 또한 yellow light 환경에서 이뤄졌다. 교반 완료 후, 반응액을 0.20 μm PVDF 필터로 여과한 뒤, 철제 트레이에 옮겨 동결건조를 진행하여 Brixelle 동결건조 파우더를 얻었다. 제조가 완료된 Brixelle 파우더를 일부 증류수에 재 용해하고 동적 광산란법(DLS)으로 나노입자 형성을 파악하였다(도 2a 및 2b).
2. Dil(Tetramethylindocarbocyanine Perchlorate)@Brixelle의 제조
Brixelle의 Dil 염료를 탑재하기 위해, 다음과 같은 방식으로 제조하였다.
페길화빌리루빈 3α 135 mg에 Dil 15 mg을 넣고, 클로르포름 6.16 mL에 완전히 용해시킨 뒤, 0.20 μm PTFE 필터로 여과한 다음, 감압 증류장치를 이용하여 박막을 얻었다. 박막은 24시간 동안 진공 조건에서 건조하였다.
건조된 반응물은 14.6 mL의 증류수에 용해시킨 뒤 초음파 세척기로 20~30℃에서 5~15분간 초음파를 처리하여 분산액을 얻었다. Dil@Brixelle이 분산된 수용액을 0.45 μm PVDF 필터와 0.20 PVDF 필터로 여과하여 정제한 후 여액을 동결건조 하여, Dil@Brixelle 동결건조 파우더를 얻었다
제조가 완료된 Dil@Brixelle 파우더를 일부 증류수에 재 용해하고 동적 광산란법(DLS)으로 Dil@Brixelle 나노입자 형성 여부를 확인하였고(도 3a 및 3b), multi-mode plate reader를 이용하여, Brixelle의 최대흡광도와 Dil의 최대흡광도를 비교하여 Dil 염료의 탑재 여부를 확인하였다(도 3c; wavelength 500 nm 이후부터 형성되어 있는 그래프는 Dil@Brixelle(High Conc.)의 그래프임).
실시예
상기 제조예 1 및 2에서 제조된 Brixelle 및 Dil@Brixelle을 사용하여 아래의 실험들을 진행하였다.
1. Brixelle의 염증 유발 조건에서 피부 세포 내 유입 확인 결과
(1) 실험방법
염증 유발 조건(집먼지진드기(house dust mites, HDM) 항원 자극)에 따른 Brixelle의 피부 세포 내 흡수 양상을 확인하기 위해, 사람 각질 세포주(human keratinocytes, HaCaT)를 이용한 시험을 진행하였다. HDM 항원은 아토피피부염과 천식에서 Th2 면역 반응과 관련된 면역 세포 및 염증 세포의 활성산소종(reactive oxygen species, ROS) 생성 증가를 유도하는 것으로 알려져 있으며, 아토피피부염 유발 세포 모델에서 주요 항원 자극원으로 사용되고 있다. 염증 유발 세포 모델을 확립하기 위해 HaCaT 세포에 HDM 항원 500 μg/mL를 24시간 동안 처리하였다. 준비된 염증 유발 세포를 24 well culture plate에 분주 후, 형광 염료인 Dil(Tetramethylindocarbocyanine Perchlorate)을 탑재한 Brixelle(Dil@Brixelle)을 처리하였다. 이후, 실시간 형광 현미경 장비인 MuviCyte를 이용하여 1시간 단위로 24시간 동안 세포내 형광 발현 양상을 관찰하였다.
(2) 실험결과
염증 유발 조건에 따라 HaCaT 세포 내로 유입되는 Brixelle의 양을 비교한 결과, HDM 항원 자극이 없었던 정상 세포에 비해 HDM 항원으로 자극한 염증 유발 세포 내로의 뚜렷한 Brixelle 유입 증가가 관찰되었다. 특히, 염증 유발 세포로의 Brixelle의 유입은 Brixelle을 처리한 후 약 4시간 이후부터 빠르게 증가하였으며, 24시간 이후 정상 세포로의 유입양에 비해 약 6.2배 높은 것을 확인하였다(도 4a 및 4b).
2. Brixelle의 피부 세포 내 활성산소종 소거능 및 세포 보호능 확인 결과
(1) 실험방법
Compound 48/80(C48/80)은 비만 세포 탈과립제로서의 역할 뿐만 아니라 염증 반응 및 세포 분화를 매개하는 것으로 알려져 있다. 특히, C48/80은 각질 세포에서의 ROS 생성 및 비만 세포의 탈과립 작용을 통해 피부 염증에 관여하는 것으로 보고되었다. 따라서 본 시험에서는 염증 유발 세포 모델에서 HDM과 C48/80을 각각 항원 및 비항원 자극원으로 사용하였다. 먼저, Brixelle의 피부 세포 내 ROS 소거능을 평가하기 위해, HaCaT 세포를 96 well black plate에 분주하였다. 이후 HDM과 C48/80을 각각 500 μg/mL와 20 μg/mL 농도로 처리하여 염증 자극을 유발하고, 동시에 시험 물질인 Brixelle과 비교 물질인 N-acetylcysteine(NAC)을 농도별로 처리하였다. 24시간 이후, 배양액을 제거하고 멸균된 phosphate-buffered saline(PBS)으로 세포를 3회 세척하였다. 다시 2’,7’-dichlorofluorescin diacetate(DCF-DA) 20 μM을 45분동안 처리하여 세포내 ROS를 염색한 다음, λex=485/λem=535 nm 파장대에서 반응 용액의 형광 강도를 측정하였다.
다음으로 염증 유발 자극원에 대한 Brixelle의 피부 세포 보호능을 평가하기 위해서, 항원 및 비항원 자극원이 HaCaT 세포 생존력(cell viability)을 90% 저하하는 농도(90% cytotoxic concentration, CC90)로 각각 처리하였다(HDM = 2.5 mg/mL, C48/80 = 35 μg/mL). 염증 유발 자극원 처리와 동시에 시험 물질인 Brixelle과 비교 물질인 NAC를 농도별로 처리하였다. 24시간 이후, 배양액을 제거하고 멸균된 PBS로 3회 세척한 다음 새로운 배양액으로 교체하였다. 이후, 배양액 부피의 1/10에 해당하는 Quanti-Max WST-8 용액을 10 μL씩 각 well에 분주하고 4시간 동안 반응 후 450 nm 파장대에서 반응 용액의 흡광도를 측정하여 세포 생존력을 평가하였다.
(2) 실험결과
항원 혹은 비항원 자극원으로 유도된 염증 유발 세포주에서 Brixelle의 용량 의존적인 ROS 소거 효과를 확인할 수 있었다. HDM으로 유도된 염증 유발 세포주에서 Brixelle의 세포 내 ROS 50% 소거능 값(50% effective concentration, EC50)은 78.8 μM로 확인되었고, 이는 비교 물질인 NAC에 비해 약 3.7배 높은 값을 나타냈다(도 5A). C48/80으로 유도된 염증 유발 세포주에서도 Brixelle의 세포 내 ROS 소거능 EC50값은 48.1 μM로, NAC에 비해 약 6.2배 높은 값을 나타냈다(도 5B).
Brixelle은 염증 유발 세포주에서 항원 및 비항원 자극원 모두에 대해 용량 의존적인 세포 보호 효과를 나타냈다. HDM으로 유도된 염증 유발 세포주에서 Brixelle의 세포 보호능 EC50값은 93.9 μM로, NAC에 비해 약 1.6배 높은 값을 나타냈다(도 5C). C48/80으로 유도된 염증 유발 세포주에서도 Brixelle의 세포 보호능 EC50값은 67.0 μM로, NAC에 비해 약 4.8배 높은 값을 나타냈다(도 5D).
이를 통해 염증 유발 세포 모델에서 Brixelle의 세포 내 ROS 소거 효과를 확인하였고, 강력한 항산화 효과를 바탕으로 한 세포 보호 효과를 입증하였다.
3. Brixelle의 피부 세포에서의 염증성 사이토카인 억제능 확인 결과
(1) 실험방법
각질 세포로부터 생성되는 thymic stromal-derived lymphopoietin(TSLP), interleukin(IL)-25 및 IL-33은 아토피피부염에서 Th2 면역반응을 유도하는 중요한 매개체로 간주된다. Brixelle이 항원 및 비항원 자극원으로 유도된 염증 유발 세포 모델이 분비하는 대표적인 염증성 사이토카인 발현에 미치는 영향을 확인하였다. 96 well culture plate에 HaCaT 세포를 분주하고, HDM과 C48/80을 각각 500 μg/mL와 20 μg/mL 농도로 각각 처리함과 동시에 시험 물질인 Brixelle과 비교 물질인 NAC를 5, 50, 500 μM 농도로 처리하였다. 24시간 반응 후 세포의 상층액을 취하여 각각의 사이토카인에 대한 효소 결합 면역 흡착 분석법(enzyme-linked immunosorbent assay, ELISA)을 수행하였고, 450 nm 파장대에서 반응 용액의 흡광도를 측정하여 염증 유발 세포주가 분비한 사이토카인의 양을 정량하였다. 그래프의 결과값은 평균±표준 오차(standard error of the mean, SEM)로 표시하였고, GraphPad 프로그램을 이용하여 통계 분석을 진행하였다. 통계 분석은 one-way ANOVA를 사용하여 Dunnett 다중 비교 방법을 통해 음성 대조군과의 통계적 유의성을 확인하였다(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
(2) 실험결과
HDM 및 C48/80 자극원으로 유도된 염증 유발 세포 모델에서 분비되는 3종류의 사이토카인 양은 정상 세포에 비해 통계적으로 유의한 증가 양상을 나타냈다(p=0.0006, p<0.0001). 이를 통해 해당 자극원으로 유도된 염증 유발 세포 모델이 Brixelle의 염증성 사이토카인 조절 능력을 확인하기에 적합함을 확인할 수 있었다.
HDM으로 유도된 염증 유발 세포주에서 3 종류의 사이토카인 발현량은 모두 Brixelle에 대한 농도 의존적 감소 경향을 나타냈다. TSLP의 경우 음성 대조군 대비 Brixelle 50 μM 처리군에서 26.4%, Brixelle 500 μM 처리군에서 50.1% 감소 효과를 나타냈으며, 500 μM 처리군은 음성 대조군과 통계적으로 유의한 차이를 보였다(도 6a; p=0.0224). IL-25의 경우 음성 대조군 대비 Brixelle 50 μM 처리군에서 47.1%, Brixelle 500 μM 처리군에서 52.5% 감소 효과를 나타냈으며, 두 농도 처리군 모두 음성 대조군과 통계적으로 유의한 차이를 나타냈다(도 6b; p=0.0054, p=0.0018). IL-33은 Brixelle 500 μM 처리군에서 음성 대조군 대비 약 75.1%의 뚜렷한 감소를 보였으며, 이는 통계적으로 유의한 차이로 확인되었다(도 6c; p=0.001).
C48/80으로 유도된 염증 유발 세포주에서도 3 종류의 사이토카인 발현량은 모두 Brixelle에 대한 농도 의존적 감소 경향을 나타냈으며, 동일 농도의 NAC에 비해 뛰어난 감소 효과가 관찰되었다. TSLP의 경우 음성 대조군 대비 Brixelle 50 μM 처리군에서 31.3%, Brixelle 500 μM 처리군에서 38.3% 감소 효과를 나타냈으며, 두 농도 처리군 모두 음성 대조군과 통계적으로 유의한 차이를 보였다(도 6d; p=0.0143, p=0.0058). IL-25의 경우 음성 대조군 대비 Brixelle 50 μM 처리군에서 35.2%, Brixelle 500 μM 처리군에서 40% 감소 효과를 나타냈으며, Brixelle 500 μM 처리군에서 음성 대조군과 통계적으로 유의한 차이를 나타냈다(도 6e; p=0.0231). IL-33의 경우 음성 대조군 대비 Brixelle 50 μM 처리군에서 21.1%, Brixelle 500 μM 처리군에서 55.9% 감소 효과를 나타냈으며, Brixelle 500 μM 처리군에서 음성 대조군과 통계적으로 유의한 차이를 나타냈다(도 6f; p=0.0120).
해당 결과를 통해, 강력한 항산화 효과를 지닌 Brixelle이 기존에 알려진 항산화제인 NAC에 비해 염증 유발 세포주에서 염증 반응을 우월하게 억제하는 기전을 가지고 있음을 확인할 수 있었다.
4. Brixelle의 인공피부모델에서의 염증 억제능 확인 결과
(1) 실험방법
사람 피부 조직 모델인 인공피부모델(KeraSkinTM)에서 Brixelle의 염증 억제능을 확인하고자 하였다. 6 well culture plate에 인공피부모델 배양액을 첨가한 뒤, 준비된 인공피부모델(0.6 cm2)을 위치시키고 37℃, 5% CO2 세포배양기에서 22±2시간 동안 안정화하였다. 인공피부모델에 염증 반응을 유도하기 위해 자외선(UVB) 조사기에 culture plate를 삽입한 뒤 300 mJ/cm2의 자외선을 조사하였다. 염증 유도 후 파이펫을 이용하여 Brixelle 80, 400 μM을 인공피부모델 상부 중앙에 천천히 적용하며 표면 전체에 고르게 도포하였다. 세포배양기에서 8시간 동안 시험 물질을 처치한 뒤 Dulbecco’s PBS(DPBS)를 이용하여 시험 물질을 제거하였다. 그 후 40시간 동안 세포배양기에서 후속 배양을 실시한 다음, 상피간 전기저항도(transepithelial electrical resistance, TEER)와 배양액 내 염증성 사이토카인 발현을 측정하고, 시험 종료 후 조직 염색을 실시하여 Brixelle의 피부 장벽 손상 억제 효과를 확인하였다.
피부 장벽의 기능과 강도를 평가하기 위해 전기저항 시스템(ERS-2, Millipore)을 이용해 TEER을 측정하였으며, 염증 반응의 변화를 확인하기 위해 ELISA를 이용하여 tumor necrosis factor-α(TNF-α), IL-6, IL-1α와 TSLP를 측정하였다. 또한, 인공피부모델의 조직학적 변화를 확인하기 위해 hematoxylin & eosin(H&E) 염색과 피부 장벽 기능을 평가하는 filaggrin 면역조직화학염색을 실시하였다. TEER과 염증성 사이토카인의 결과들은 평균±표준 편차(standard deviation, SD)로 표시하였고, GraphPad 프로그램을 이용하여 통계 분석을 진행하였다. 통계 분석은 one-way ANOVA를 사용하고 Tukey’s 다중 비교 방법을 통해 시험군 간의 통계적 유의성을 확인하였다(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
(2) 실험결과
상피세포층은 세포와 세포 사이의 결합 형태 중 하나인 밀착 연접(tight junction)이 발달해 막과 같은 형태의 물리화학적 장벽을 형성한다. 피부에 염증 반응이 일어나면 피부 장벽 기능이 저해된다고 알려져 있으며, TEER은 밀착 연접의 강도를 측정하는 지표로서 장벽기능이 저해될수록 감소하게 된다. 본 실험에서는 자외선 조사를 통해 인공피부모델에 염증 반응을 유도한 뒤 TEER 변화를 분석하여 Brixelle의 피부 장벽 기능 보호 효과를 확인하였다. 인공피부모델의 TEER은 자외선 조사 후 음성 대조군에 비해 감소하게 되는데, Brixelle 처리군의 경우 24시간과 48시간에 측정한 결과에서 농도 의존적으로 TEER이 유의미하게 회복되는 것으로 나타났다(도 7A).
피부에서 발생하는 다양한 염증성 질환에서 전염증성 사이토카인이 정상 피부 조직에 비해 높게 발현한다고 알려져 있으며, 본 실험에서는 그 중 TNF-α, IL-6와 IL-1α에 대해 분석을 실시하였다. 또한, 알레르기 및 피부 면역 매개 질환과 연관되어 염증 반응을 조절하는데 중요한 역할을 하는 것으로 확인된 TSLP도 측정하였다(도 7B(7ba 내지 7bd)).
ELISA를 통해 위의 4개 사이토카인을 측정한 결과, TNF-α는 음성 대조군 대비 염증 유발군에서 통계적으로 유의미하게 증가하는 결과를 나타냈지만 Brixelle 80, 400 μM을 처리한 경우, 농도 의존적으로 유의미한 발현 감소를 나타냈다(Negative control vs UVB, 16.8±2.6 pg/mL vs 61.1±1.2 pg/mL, p<0.0001; UVB vs Brixelle 80 μM, 61.1±1.2 pg/mL vs 14.7±0.3 pg/mL, p<0.0001; UVB vs Brixelle 400 μM, 61.1±1.2 vs 15.6±0.0, p<0.0001).
IL-6의 발현양을 확인한 결과, 음성대조군과 염증유발군, 염증유발군과 Brixelle 400 μM 처리 군의 비교에서 p value값이 각각 0.0004, 0.0034로 Brixelle을 처리하는 경우, 염증유발군 대비 유의미한 발현양 감소를 확인하였다(Negative control vs UVB, 3.2±0.0 vs 30.0±2.3, p=0.0004; UVB vs Brixelle 400 μM, 30.0±2.3 vs 15.0±2.3, p=0.0034).
IL-1α의 음성대조군과 염증유발군, 염증유발군과 Brixelle 80, 400 μM을 각각 처리한 군의 배양액 내 IL-1α의 발현양을 비교한 결과, 비교한 그룹 간의 p value는 모두 0.0058 (p<0.01)로 확인되었다(Negative control vs UVB, 3.9±0.0 vs 14.1±3.0, p=0.0058; UVB vs Brixelle 80 μM, 14.1±3.0 vs 3.9±0.0, p=0.0058, UVB vs Brixelle 400 μM 14.1±3.0 vs 3.9±0.0, p=0.0058).
또한, 염증 반응을 조절하는 TSLP의 발현양은 음성대조군과 염증유발군, Brixelle 80 μM, 400 μM을 처리한 군에서 각각 3.3±0.0, 23.7±1.9, 10.1±1.6, 9.1±1.4 pg/mL로 확인되었으며, 염증유발군과 각 그룹 간의 발현양을 비교한 결과, p<0.001, p<0.01, p<0.01(Negative control vs UVB, p=0.0004; UVB vs Brixelle 80 μM, p=0.0020; UVB vs Brixelle 400 μM, p=0.0015)로 염증 유발 후 Brixelle을 처리하는 경우, 통계적으로 유의한 TSLP의 발현 감소를 나타내는 것으로 확인되었다.
H&E 염색과 filaggrin 면역조직화학염색을 통해 인공피부모델의 조직 병리와 염증 및 피부 장벽 기능 마커의 발현을 확인하고자 하였다. 피부 장벽 기능 마커 중 filaggrin은 표피의 항상성을 조절하는데 필수적인 인자이며 피부 각질층 내 지질 외피의 구성 요소로 피부의 보습 및 장벽 기능을 수행한다. H&E 염색을 통해 인공피부모델이 실제 피부와 같이 4개 층(각질층, 과립층, 유극층, 기저층(stratum corneum, Granular layer, Stratum spinosum, basal layer))으로 구성된 것을 확인하였으며, 자외선 조사를 통해 염증을 유발한 경우, 염색된 세포 핵의 수가 음성 대조군에 비해 감소하고 겹겹이 쌓여 있어야 하는 각질층이 탈락된 형태로 확인되었다. 하지만 Brixelle을 처리한 인공피부모델은 염증 유발군에 비해 염색된 세포 핵의 수에 변화가 없었으며 각질층이 정상적으로 겹겹이 쌓인 형태를 보였다. 면역조직화학염색을 통해 인공피부모델의 4개 층 중 과립층과 각질층에서 filaggrin의 발현을 확인하였다. 염증 유발군은 자외선 조사에 의해 filaggrin의 발현이 감소하였으나 Brixelle을 처리한 인공피부모델에서는 filaggrin 발현 감소가 억제되는 것으로 확인되었다(도 7C).
위의 결과를 종합하면, Brixelle은 자외선 조사를 통해 유발된 사람 피부 조직 모델의 염증 반응을 효과적으로 억제할 수 있으며, 손상된 피부 장벽 기능을 복원하고 조직학적 개선에 도움을 줄 수 있음이 입증되었다.
5. Brixelle의 아토피피부염 유발 마우스 모델에서의 유효성 확인 결과 (1)
(1) 실험방법
6-10주령 NC/Nga 암컷 마우스의 등과 귀 피부에 HDM 항원 연고를 Day 0, 7, 10, 14, 17, 21, 24까지 총 7회 피부 도포함으로써 HDM-유도 아토피피부염 마우스 모델을 제작하였다. HDM 항원을 도포하지 않은 정상군(Normal군)과 음성 대조군으로 아토피피부염을 유발하는 과정에 추가 물질 도포가 없는 비처치군(No treatment군) 및 부형제를 피부 도포한 군(Vehicle군), 그리고 양성 대조군으로 기허가 약물인 맥시덱스(Dexamethasone군, 0.1% Dexamethasone, 62.5 mg/animal)를 도포한 군을 두고 시험 물질 Brixelle(7.5, 15, 30 mg/kg)을 Day 7부터 매일 피부 도포하여 유효성을 평가하였다. 아토피피부염을 유발하는 과정에서 임상 증상을 평가하고, 생존 시험 종료 후 피부 조직을 확보하여 추가 분석을 진행하였다.
아토피피부염에 대한 임상 증상을 정량화하기 위해 1) 홍반(erythema)/출혈(hemorrhage), 2) 흉터(scarring)/건조(dryness), 3) 부종(edema), 4) 찰상(excoriation)/짓무름(erosion) 네 가지 임상 지표 항목에 대해 3점 만점의 Likert scale로 임상 점수를 측정하였다. 아토피피부염에 대한 피부의 조직학적 변화를 관찰하기 위해 H&E 염색을, 피부 조직 내 ROS를 측정하기 위해 dihydroethidium(DHE) 염색을, 피부 조직 내 침윤된 비만 세포(mast cell)와 호산구(eosinophil)를 확인하기 위해 각각 Toluidine blue와 Congo red 염색을 수행하였다. 그래프의 결과값은 평균±SEM으로 표시하였고, GraphPad 프로그램을 이용하여 통계 분석을 진행하였다. 통계 분석은 one-way ANOVA를 사용하여 Dunnett 다중 비교 방법을 통해 Vehicle군과의 통계적 유의성을 확인하였다(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
(2) 실험결과
생존 시험 종료 시점에서 임상 증상을 확인한 결과, 아토피피부염 유도에 따라 홍조, 부종 함께 각질이 형성되고, 가려움에 의한 이차적인 피부 손상 소견이 뚜렷하게 나타났다. 임상 지표 평가 결과, 기허가 약물인 Dexamethasone 처리군과 Brixelle 처리군의 경우, Vehicle군과 비교하였을 때 통계적으로 유의한 임상 증상 개선 효과를 나타내는 것을 확인할 수 있었고, Brixelle의 농도 의존적 효과를 확인할 수 있었다(도 8A. Vehicle vs Dexamethasone, 9.44±0.77 vs 4.90±0.76, p<0.0001; Vehicle vs Brixelle 7.5 mg/kg, 9.44±0.77 vs 5.90±0.47, p<0.0001; Vehicle vs Brixelle 15 mg/kg, 9.44±0.77 vs 5.05±0.32, p<0.0001; Vehicle vs Brixelle 30 mg/kg, 9.44±0.77 vs 4.40±0.48, p<0.0001).
H&E 염색을 통해 피부의 조직학적 변화를 확인한 결과, HDM 항원 연고를 처리함에 따라 표피 두께가 증가하고 과각질 현상이 관찰되었다. 또한 진피 내 혈관 신생이 증가하고 조직 부종과 염증 세포의 침윤이 확인되었다. Dexamethasone 처리군과 Brixelle 처리군은 Vehicle군과 비교하였을 때 표피 두께가 감소하고 과각질 현상이 줄어드는 효과를 확인할 수 있었다(도 8B).
Brixelle의 항산화 작용이 아토피피부염 증상 개선에 영향을 줄 수 있을 지 확인하기 위해 피부 조직 내 ROS의 발현을 확인하였다. DHE 염색을 통해 피부 조직의 ROS를 측정한 결과, 정상군에 비해 음성 대조군에서 표피와 진피에 강한 DHE 염색상을 확인할 수 있었으며, Dexamethasone 처리군과 Brixelle 처리군에서는 DHE 염색 강도가 감소되는 것을 관찰할 수 있었다(도 8C).
아토피피부염의 증상과 관련된 것으로 알려져 있는 염증 세포인 비만 세포와 호산구의 침윤을 확인하기 위해 추가 염색을 진행하였다. 비만 세포는 히스타민을, 호산구는 세포 독성 물질을 분비함으로써 알레르기 증상에 관여하는 면역 세포이다. Toluidine blue 염색을 통해 비만 세포를 정량한 결과, Dexamethasone 처리군과 Brixelle 처리군이 Vehicle군과 비교하였을 때 통계적으로 유의한 비만 세포 침윤 감소를 보이는 것을 확인할 수 있었고(도 8D, Vehicle vs Dexamethasone, 52.69±2.19 vs 27.38±3.19, p<0.0001; Vehicle vs Brixelle 7.5 mg/kg, 52.69±2.19 vs 32.19±2.72, p<0.0001; Vehicle vs Brixelle 15 mg/kg, 52.69±2.19 vs 29.81±1.11, p<0.0001; Vehicle vs Brixelle 30 mg/kg, 52.69±2.19 vs 23.19±1.57, p<0.0001), Congo red 염색을 통해 호산구를 정량했을 때도 역시 Dexamethasone 처리군과 Brixelle 처리군이 Vehicle군과 비교하였을 때 통계적으로 유의한 호산구 침윤 감소를 보이는 것을 확인할 수 있었다(도 8E, Vehicle vs Dexamethasone, 35.50±1.37 vs 18.88±1.64, p<0.0001; Vehicle vs Brixelle 7.5 mg/kg, 35.50±1.37 vs 21.56±1.44, p<0.0001; Vehicle vs Brixelle 15 mg/kg, 35.50±1.37 vs 20.88±1.55, p<0.0001; Vehicle vs Brixelle 30 mg/kg, 35.50±1.37 vs 17.56±0.92, p<0.0001).
이러한 결과를 토대로 강력한 항산화제로서 Brixelle은 용량 의존적으로 아토피피부염의 임상 증상, 피부 조직학적 변화 및 염증 반응을 방지하는 것을 확인할 수 있다.
6. Brixelle의 아토피피부염 유발 마우스 모델에서의 유효성 확인 결과 (2)
(1) 실험방법
6-10주령 NC/Nga 암컷 마우스의 등과 귀 피부에 HDM 항원 연고를 Day 0, 7, 10, 14, 17, 21, 24까지 총 7회 피부 도포함으로써 HDM-유도 아토피피부염 마우스 모델을 제작하였다. HDM 항원을 도포하지 않은 정상군(Normal군)과 함께, 음성 대조군으로 아토피피부염을 유발하는 과정에 추가 물질 도포가 없는 비처치군(No treatment군) 및 부형제를 피부 도포한 군(Vehicle군)을 두어, 시험 물질 Brixelle(30 mg/kg)과 기허가 약물 Elidel(Elidel군, 1% Pimecrolimus, 62.5 mg/animal), Maxidex(Dexamethasone군, 0.1% Dexamethasone, 62.5 mg/animal), Eucrisa(Eucrisa군, 2% Crisaborole, 62.5 mg/animal)을 Day 7부터 매일 피부 도포하여 유효성을 비교하였다. 아토피피부염을 유발하는 과정에서 임상 증상을 평가하고, 생존 시험 종료 후 피부 조직을 확보하여 추가 분석을 진행하였다.
아토피피부염에 대한 임상 증상을 정량화하기 위해 1) 홍반(erythema)/출혈(hemorrhage), 2) 흉터(scarring)/건조(dryness), 3) 부종(edema), 4) 찰상(excoriation)/짓무름(erosion) 네 가지 임상 지표 항목에 대해 3점 만점의 Likert scale로 임상 점수를 측정하였다. 아토피피부염에 대한 피부의 조직학적 변화를 관찰하기 위해 H&E 염색을, 피부 조직 내 ROS를 측정하기 위해 dihydroethidium(DHE) 염색을, 피부 조직 내 침윤된 비만 세포(mast cell)와 호산구(eosinophil)를 확인하기 위해 각각 Toluidine blue와 Congo red 염색을 수행하였다. 아토피피부염과 관련이 높은 것으로 알려진 염증 매개 인자인 IL-4와 IL-13 측정을 위해 피부 조직에 대한 ELISA를 수행하였다. 그래프의 결과값은 평균±SEM으로 표시하였고, GraphPad 프로그램을 이용하여 통계 분석을 진행하였다. 통계 분석은 one-way ANOVA를 사용하여 Dunnett 다중 비교 방법을 통해 Vehicle군과의 통계적 유의성을 확인하였다(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
(2) 실험결과
생존 시험 종료 시점에서 임상 증상을 확인한 결과, 아토피피부염 유도에 따라 홍조, 부종 함께 각질이 형성되고, 가려움에 의한 이차적인 피부 손상 소견이 뚜렷하게 나타났다. 임상 지표 평가 결과, Brixelle과 기허가 약물 2종(Dexamethasone군, Eucrisa군) 처리군이 Vehicle군과 비교하였을 때 통계적으로 유의한 임상 증상 개선 효과를 나타내는 것을 확인할 수 있었다(도 9A. Vehicle vs Dexamethasone, 9.58±0.64 vs 3.75±0.99, p<0.0001; Vehicle vs Eucrisa, 9.58±0.64 vs 3.25±0.67, p<0.0001; Vehicle vs Brixelle, 9.58±0.64 vs 6.00±0.52, p=0.0034).
H&E 염색을 통해 피부의 조직학적 변화를 확인한 결과, HDM 항원 연고를 처리함에 따라 표피 두께가 증가하고 과각질 현상이 관찰되었다. 또한 진피 내 혈관 신생이 증가하고 조직 부종과 염증 세포의 침윤이 확인되었다. Brixelle과 기허가 약물 2종(Dexamethasone군, Eucrisa군) 처리군이 Vehicle군과 비교하였을 때 표피 두께가 감소하고 과각질 현상이 줄어드는 효과를 나타내는 것을 확인할 수 있었다(도 9B).
Brixelle의 항산화 작용이 아토피피부염 증상 개선에 영향을 줄 수 있을 지 확인하기 위해 피부 조직 내 ROS의 발현을 확인하였다. DHE 염색을 통해 피부 조직의 ROS를 측정한 결과, 정상군에 비해 음성 대조군에서 표피와 진피에 강한 DHE 염색상을 확인할 수 있었으며, Brixelle과 기허가 약물 2종(Dexamethasone군, Eucrisa군) 처리군에서는 DHE 염색 강도가 감소되는 것을 관찰할 수 있었다(도 9C).
아토피피부염의 증상과 관련된 것으로 알려져 있는 염증 세포인 비만 세포와 호산구의 침윤을 확인하기 위해 추가 염색을 진행하였다. 비만 세포는 히스타민을, 호산구는 세포 독성 물질을 분비함으로써 알레르기 증상에 관여하는 면역 세포이다. Toluidine blue 염색을 통해 비만 세포를 정량한 결과, Brixelle 처리군과 기허가 약물 2종(Dexamethasone군, Eucrisa군) 처리군이 Vehicle군과 비교하였을 때 통계적으로 유의한 비만 세포 침윤 감소를 보이는 것을 확인할 수 있었고(도 9D, Vehicle vs Dexamethasone, 56.81±1.99 vs 20.69±5.25, p<0.0001; Vehicle vs Eucrisa, 56.81±1.99 vs 20.31±2.55, p<0.0001; Vehicle vs Brixelle, 56.81±1.99 vs 27.69±1.94, p<0.0001), Congo red 염색을 통해 호산구를 정량했을 때도 역시 Brixelle 처리군과 기허가 약물 2종(Dexamethasone군, Eucrisa군) 처리군이 Vehicle군과 비교하였을 때 통계적으로 유의한 호산구 침윤 감소를 보이는 것을 확인할 수 있었다(도 9E, (Vehicle vs Dexamethasone, 40.06±5.95 vs 10.25±2.56, p<0.0001; Vehicle vs Eucrisa, 40.06±5.95 vs 10.31±2.49, p<0.0001; Vehicle vs Brixelle, 40.06±5.95 vs 21.69±2.77, p=0.0027).
이러한 결과를 토대로 강력한 항산화제로서 Brixelle은 기허가 약물인 Elidel, Dexamethasone, Eucrisa와 유사하게 아토피피부염의 임상 증상, 피부 조직학적 변화 및 염증 반응을 방지하는 기전을 가지고 있음을 알 수 있다.
7. Brixelle의 건선 유발 마우스 모델에서의 유효성 확인 결과
(1) 실험방법
8주령 C57BL/6 수컷 마우스의 등 피부에 AldaraTM(imiquimod, IMQ) 크림을 Day 0부터 Day 6까지 총 7회 피부 도포함으로써 IMQ-유도 건선 마우스 모델을 제작하였다. IMQ 크림을 도포하지 않은 정상군(Normal군)과, 음성 대조군으로 건선을 유발하는 과정에 추가 물질 도포가 없는 비처치군(No treatment군) 및 부형제를 피부 도포한 군(Vehicle군), 그리고 양성 대조군으로 기허가 약물인 베타베이트(Clobetasol propionate군, 0.05% Clobetasol propionate, 62.5 mg/animal)를 도포한 군을 두고 시험 물질 Brixelle(30 mg/kg)을 Day 0부터 매일 피부 도포하여 유효성을 평가하였다. 건선을 유발하는 과정에서 임상 증상을 평가하고, 생존 시험 종료 후 피부 조직을 확보하여 추가 분석을 진행하였다.
건선에 대한 임상 증상을 정량화하기 위해 1) 홍반(erythema, redness), 2) 인설(scaling), 3) 피부 두께(skin thickness) 세 가지 임상 지표 항목에 대해 4점 만점의 scale로 임상 점수를 측정하였다(modified psoriasis area and severity index, PASI). 건선에 대한 피부의 조직학적 변화를 관찰하기 위해 H&E 염색을, 피부 조직 내 ROS를 측정하기 위해 DHE 염색을 수행하였다. 건선과 관련이 높은 것으로 알려진 염증 매개 인자인 IL-17과 IL-23 측정을 위해 피부 조직에 대한 RT-PCR과 ELISA를 수행하였다. 그래프의 결과값은 평균±SEM으로 표시하였고, GraphPad 프로그램을 이용하여 통계 분석을 진행하였다. 통계 분석은 one-way ANOVA를 사용하여 Dunnett 다중 비교 방법을 통해 Vehicle군과의 통계적 유의성을 확인하였다(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
(2) 실험결과
생존 시험 종료 시점에서 임상 증상을 확인한 결과, 건선 유도에 따라 홍조, 부종 함께 각질이 형성되는 소견이 뚜렷하게 나타났다. 임상 지표 평가 결과, Clobetasol propionate 처리군과 Brixelle 처리군은 Vehicle군과 비교하였을 때 통계적으로 유의한 임상 증상 개선 효과를 나타내는 것을 확인할 수 있었다(도 10A. Vehicle vs Clobetasol propionate, 10.50±0.47 vs 7.25±0.21, p<0.0001; Vehicle vs Brixelle 30 mg/kg, 10.50±0.47 vs 6.00±0.22, p<0.0001).
H&E 염색을 통해 피부의 조직학적 변화를 확인한 결과, IMQ 처리에 따라 표피 두께가 증가하고 과각질 현상이 관찰되었다. Brixelle 처리군은 Vehicle군과 비교했을 때 표피 두께가 감소하고 과각질 현상이 줄어드는 효과를 확인할 수 있었다(도 10B).
Brixelle의 항산화 작용이 건선 증상 개선에 영향을 줄 수 있을 지 확인하기 위해 피부 조직 내 ROS의 발현을 확인하였다. DHE 염색을 통해 피부 조직의 ROS를 측정한 결과, 정상군에 비해 음성 대조군에서 표피와 진피에 강한 DHE 염색상을 확인할 수 있었으며, Brixelle과 양성 대조군에서는 DHE 염색 강도가 감소되는 것을 관찰할 수 있었다(도 10C).
건선의 증상 발현에 중요한 기전인 Th1 및 Th17 면역 반응과 관련된 면역 매개 물질인 IL-23과 IL-17은 Th1 및 Th17 면역 반응을 개시하고, 유지하며, 염증을 증폭시키는 역할을 하기 때문에 건선 치료제 타깃으로 이용되고 있다. 건선 환자의 피부 조직 내 침윤된 대식 세포는 IL-23을 발현하여 γδT 세포로 하여금 IL-17을 발현시킬 수 있도록 한다. 따라서 피부 조직 내 IL-23과 IL-17의 발현을 비교하기 위한 분석을 수행하였다. IL-23의 mRNA 발현의 경우 Brixelle 처리군은 Vehicle군과 비교했을 때 통계적으로 유의하지는 않았으나 기허가 약물인 Clobetasol propionate와 유사한 감소 효과를 나타냈다(도 10D). IL-17의 단백질 발현의 경우 Brixelle은 Vehicle군과 비교하였을 때 통계적으로 유의한 감소 효과를 나타냈다(도 10D. Vehicle vs Brixelle 30 mg/kg, 354±36.5 vs 203±15.2, P=0.0378).
이러한 결과를 토대로 강력한 항산화제로서 Brixelle은 기허가 약물인 Clobetasol propionate와 유사하게 건선의 임상 증상, 피부 조직학적 변화 및 염증 반응을 방지하는 기전을 가지고 있음을 알 수 있다.
8. Brixelle의 접촉성 피부염 유발 마우스 모델에서의 유효성 확인 결과
(1) 실험방법
6-10주령 C57BL/6 NC/Nga 수컷 마우스와 Mouse 2,4 Dinitrofluorobenzene(DNFB)을 이용하여 DNFB-유도 접촉성 피부염 마우스 모델을 제작하였다. Day 0과 1에 등 피부에 0.5% DNFB 용액(아세톤:올리브유=4:1)을 도포하여 감작시킨 뒤, Day 7에 귀 피부에 0.3% DNFB 용액을 도포하여 접촉성 피부염을 유도하였다. DNFB 용액을 도포하지 않은 정상군(Normal군)과, 음성 대조군으로 접촉성 피부염을 유발하는 과정에 추가 물질 도포가 없는 비처치군(No treatment군) 및 부형제를 피부 도포한 군(Vehicle군), 그리고 양성 대조군으로 기허가 약물인 맥시덱스(Dexamethasone군, 0.1% Dexamethasone, 62.5 mg/animal)를 도포한 군을 두고 시험 물질 Brixelle(30 mg/kg) 을 Day 0부터 매일 피부 도포하여 유효성을 평가하였다. 접촉성 피부염을 유발하는 과정에서 임상 증상을 평가하고, 생존 시험 종료 후 피부 조직을 확보하여 추가 분석을 진행하였다.
접촉성 피부염에 대한 임상 증상인 부종을 평가하기 위해 귀의 두께를 측정하였다. 접촉성 피부염에 대한 피부의 조직학적 변화를 관찰하기 위해 H&E 염색을, 피부 조직 내 ROS를 측정하기 위해 DHE 염색을 수행하였다. 접촉성 피부염과 관련이 높은 것으로 알려진 염증 매개 인자인 TNF-α와 IFN-γ 측정을 위해 피부 조직에 대한 RT-PCR을 수행하였다. 그래프의 결과값은 평균±SEM으로 표시하였고, GraphPad 프로그램을 이용하여 통계 분석을 진행하였다. 통계 분석은 one-way ANOVA를 사용하여 Dunnett 다중 비교 방법을 통해 Vehicle군과의 통계적 유의성을 확인하였다(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
(2) 실험결과
생존 시험 종료 시점에서 임상 증상을 확인한 결과, 접촉성 피부염 유도에 따라 부종이 뚜렷하게 나타났다. 귀 피부의 두께를 측정한 결과, Brixelle 처리군은 Vehicle군과 비교하였을 때 통계적으로 유의한 효과를 나타내는 것을 확인할 수 있었다(도 11A. Vehicle vs Dexamethasone, 0.94±0.01 vs 0.67±0.02, p<0.0001; Vehicle vs Brixelle 30 mg/kg, 0.94±0.01 vs 0.71±0.01, p<0.0001).
H&E 염색을 통해 귀 피부의 조직학적 변화를 확인한 결과, 피부 두께가 증가하고 조직 부종이 확인되었다. Brixelle 처리군은 Vehicle군과 비교했을 때 피부 두께가 감소하고 조직 부종이 줄어드는 효과를 확인할 수 있었다(도 11B).
Brixelle의 항산화 작용이 접촉성 피부염 증상 개선에 영향을 줄 수 있을 지 확인하기 위해 귀 피부 조직 내 ROS의 발현을 확인하였다. DHE 염색을 통해 피부 조직의 ROS를 측정한 결과, 정상군에 비해 음성 대조군에서 강한 DHE 염색상을 확인할 수 있었으며, Brixelle 처리군과 양성 대조군에서는 DHE 염색 강도가 감소되는 것을 관찰할 수 있었다(도 11C).
접촉성 피부염의 증상 발현에 중요한 기전인 Th1 면역 반응과 관련된 면역 매개 물질인 TNF-α와 IFN-γ는 Th1 면역 반응을 유도하고 염증을 증폭시키는 역할을 하게 된다. 피부 조직 내 TNF-α와 IFN-γ의 발현과 관련하여, mRNA 발현을 비교하기 위해 RT-PCR을 수행하였다. 두 사이토카인의 mRNA 발현의 경우 Brixelle 처리군에서 Vehicle군과 비교하였을 때 통계적 유의성은 확인할 수 없었으나, 기허가 약물인 Dexamethasone과 유사한 감소 효과를 나타내는 것을 확인할 수 있었다(도 11D).
이러한 결과를 토대로 강력한 항산화제로서 Brixelle은 기허가 약물인 Dexamethasone과 유사하게 접촉성 피부염의 임상 증상, 피부 조직학적 변화 및 염증 반응을 방지하는 기전을 가지고 있음을 알 수 있다.
9. Brixelle의 피부 독성 확인 결과
(1) 실험방법
인공피부모델(KeraSkinTM) 및 인공각막모델(MCTT HCETM)을 이용하여 Brixelle이 피부 조직에 미치는 영향을 파악하고자 하였다. 사람의 피부와 각막을 모사한 인공 조직인 인공피부모델 및 인공각막모델에 Brixelle 3농도(10, 25, 50 mM)를 처리한 다음, 피부에 대한 Brixelle의 자극 가능성을 확인하기 위한 피부자극시험, 안점막에 대한 자극 가능성을 확인하기 위한 안점막 자극시험, 피부의 면역 체계를 활성화시킬 가능성이 있는 지 확인하기 위한 피부감작시험, UVA에 의해 피부에 자극을 주는 물질로 변화할 가능성이 있는 지 확인하기 위한 피부광독성시험, 피부 조직에 유전독성을 일으킬 가능성이 있는 지 확인하기 위한 피부소핵시험을 각각 수행하였다.
(2) 실험결과
시험 물질이 피부에 대한 자극을 나타낼 가능성을 확인하기 위한 피부자극시험에서, Brixelle은 50 mM 농도까지 50% 이상의 세포 생존율을 나타내어 비자극으로 확인되었다(도 12A).
시험 물질이 안점막에 대한 자극을 나타낼 가능성을 확인하기 위한 안점막 자극시험에서, Brixelle은 50 mM 농도까지 35% 이상의 세포 생존율을 나타내어 비자극으로 확인되었다(도 12B).
시험 물질이 피부 조직에 유전독성을 일으킬 가능성이 있는 지 확인하기 위한 피부소핵시험에서, Brixelle은 50 mM 농도까지 음성 대조군과 비교했을 때 유의미하지 않은 소핵 유발 빈도를 확인할 수 있었으며, 소핵의 유발 빈도가 농도 의존적으로 증가하지 않아 유전독성 음성으로 확인되었다(도 12C).
시험 물질이 피부의 면역 체계를 활성화시킬 가능성이 있는 지 확인하기 위한 피부감작시험은 인공피부모델과 함께 배양된 면역 세포 유래 세포주인 THP-1 세포가 분화되면서 세포 표면의 CD54 및 CD86의 발현이 증가하는 지 여부를 평가한다. Brixelle은 50 mM 농도까지 함께 배양된 THP-1 세포의 CD54 및 CD86을 음성 대조군에 비해 각각 200 RFI, 120 RFI 미만 발현하는 것으로 나타나 피부 감작 음성으로 확인되었다(도 12D(12da 및 12db)).
시험 물질이 UVA에 의해 피부에 자극을 주는 물질로 변화할 가능성이 있는 지 확인하기 위한 피부광독성시험에서, Brixelle은 50 mM 농도까지 UVA 조사 전후 세포 생존율의 차이가 30% 미만으로 나타나 피부광독성 음성으로 확인되었다(도 12E).
이러한 결과를 토대로 강력한 항산화제인 Brixelle은 피부나 안점막에 자극을 주거나, 피부 면역 체계를 활성화시키거나, UV와 반응하여 자극 물질로 변경되거나, 유전 독성을 유발하지 않는 것을 확인할 수 있었다.

Claims (17)

  1. 화학식 1로 표시되는 화합물, 이의 용매화물 또는 이의 약학적으로 허용되는 염을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물:
    [화학식 1]
    Figure PCTKR2023009478-appb-img-000023
    (상기 화학식 1에서 R1 및 R4는 바이닐기 또는 메틸기이고, R2 및 R3는 메틸기 또는 바이닐기이되, 전부 다 바이닐기이거나 메틸기는 아닐 수 있고;
    R5는 폴리에틸렌 글리콜(PEG) 또는 이의 유도체임).
  2. 청구항 1에 있어서, 상기 화합물은 화학식 2 내지 7 중 어느 하나로 표시되는 화합물인, 염증성 질환의 예방 또는 치료용 약학 조성물:
    [화학식 2]
    Figure PCTKR2023009478-appb-img-000024
    [화학식 3]
    Figure PCTKR2023009478-appb-img-000025
    [화학식 4]
    Figure PCTKR2023009478-appb-img-000026
    [화학식 5]
    Figure PCTKR2023009478-appb-img-000027
    [화학식 6]
    Figure PCTKR2023009478-appb-img-000028
    [화학식 7]
    Figure PCTKR2023009478-appb-img-000029
    .
  3. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물이 자기-조립(self-assembled)하여 형성된 나노입자를 포함하는, 염증성 질환의 예방 또는 치료용 약학 조성물.
  4. 청구항 3에 있어서, 상기 나노입자의 크기는 1 nm 내지 5000 nm인, 염증성 질환의 예방 또는 치료용 약학 조성물.
  5. 청구항 1에 있어서, 상기 폴리에틸렌 글리콜의 유도체는 메톡시 PEG(methoxy polyethylene glycol), PEG 프로피론산의 숙시니미드(succinimide of PEG propionic acid), PEG 부타논산의 숙시니미드(succinimide of PEG butanoic acid), 가지달린 PEG-HNS(branched PEG-NHS), PEG 숙시니미딜 숙시네이트(PEG succinimidyl succinate), 카복시메틸화 PEG의 숙시니미드(succinimide of carboxymethylated PEG), PEG의 벤조트리아졸 카보네이트(benzotriazole carbonate of PEG), PEG-글리시딜 에테르(PEG-glycidyl ether), PEG-옥시카보닐이미다졸(PEG-oxycarbonylimidazole), PEG 니트로페닐 카보네이트(PEG nitrophenyl carbonates), PEG-알데히드(PEGaldehyde), PEG 숙시니미딜 카르복시메틸 에스테르(PEG succinimidyl carboxymethyl ester) 및 PEG 숙시니미딜에스테르(PEG succinimidyl ester)으로 이루어진 군에서 선택되는 것인, 염증성 질환의 예방 또는 치료용 약학 조성물.
  6. 청구항 1에 있어서, 상기 염증성 질환은 염증성 피부 질환, 골관절염, 간염, 폐렴, 각막염, 위염, 신장염, 결핵, 기관지염, 흉막염, 복막염, 척추염, 췌장염, 염증성 장질환, 요도염, 방광염, 염증성 동맥경화증, 패혈증, 치주염, 치은염 및 자가염증성질환으로 이루어진 군에서 선택되는 적어도 하나인, 염증성 질환의 예방 또는 치료용 약학 조성물.
  7. 청구항 6에 있어서, 상기 염증성 피부 질환은 아토피 피부염(Atopic dermatitis), 접촉성 피부염(Contact dermatitis), 건선(Psoriasis), 지루성 피부염(Seborrheic dermatitis), 가려움(Pruritus), 유사 건선(Parapsoriasis), 두드러기(Urticaria), 편평태선(Lichen planus), 일광화상(Sunburn), 방사선 피부염(Radiodermatitis), 다형 홍반(Erythema multiforme), 결절성 홍반(Erythema nodosum), 환상육아종(Granuloma annulare), 모공성 각화증(Keratosis pilaris), 피부 건조증(Xeroderma), 지방층염(Panniculitis), 괴저성 농피증(Pyoderma gangrenosum), 여드름(Acne), 주사(Rosacea), 홍반 루푸스(Lupus erythematosus), 천포창(Pemphigus), 기저귀 피부염(Diaper dermatitis), 비강진(Pityriasis rosea), 원형 탈모(Alopecia areata), 안드로젠탈모(Androgenic alopecia), 백반증(Vitiligo) 및 욕창궤양(Decubitus ulcer)으로 이루어진 군에서 선택되는 적어도 하나인, 염증성 질환의 예방 또는 치료용 약학 조성물.
  8. 청구항 1에 있어서, 상기 염증성 질환은 산화 스트레스 증가로 유발되는 것인, 염증성 질환의 예방 또는 치료용 약학 조성물.
  9. 화학식 1로 표시되는 화합물, 이의 용매화물 또는 이의 화장품학적으로 허용되는 염을 포함하는 화장료 조성물:
    [화학식 1]
    Figure PCTKR2023009478-appb-img-000030
    (상기 화학식 1에서 R1 및 R4는 바이닐기 또는 메틸기이고, R2 및 R3는 메틸기 또는 바이닐기이되, 전부 다 바이닐기이거나 메틸기는 아닐 수 있고;
    R5는 폴리에틸렌 글리콜(PEG) 또는 이의 유도체임).
  10. 청구항 9에 있어서, 상기 화합물은 화학식 2 내지 7 중 어느 하나로 표시되는 화합물인, 화장료 조성물:
    [화학식 2]
    Figure PCTKR2023009478-appb-img-000031
    [화학식 3]
    Figure PCTKR2023009478-appb-img-000032
    [화학식 4]
    Figure PCTKR2023009478-appb-img-000033
    [화학식 5]
    Figure PCTKR2023009478-appb-img-000034
    [화학식 6]
    Figure PCTKR2023009478-appb-img-000035
    [화학식 7]
    Figure PCTKR2023009478-appb-img-000036
    .
  11. 청구항 9에 있어서, 상기 화학식 1로 표시되는 화합물이 자기-조립(self-assembled)하여 형성된 나노입자를 포함하는, 화장료 조성물.
  12. 청구항 11에 있어서, 상기 나노입자의 크기는 1 nm 내지 5000 nm인, 화장료 조성물.
  13. 청구항 9에 있어서, 상기 폴리에틸렌 글리콜의 유도체는 메톡시 PEG(methoxy polyethylene glycol), PEG 프로피론산의 숙시니미드(succinimide of PEG propionic acid), PEG 부타논산의 숙시니미드(succinimide of PEG butanoic acid), 가지달린 PEG-HNS(branched PEG-NHS), PEG 숙시니미딜 숙시네이트(PEG succinimidyl succinate), 카복시메틸화 PEG의 숙시니미드(succinimide of carboxymethylated PEG), PEG의 벤조트리아졸 카보네이트(benzotriazole carbonate of PEG), PEG-글리시딜 에테르(PEG-glycidyl ether), PEG-옥시카보닐이미다졸(PEG-oxycarbonylimidazole), PEG 니트로페닐 카보네이트(PEG nitrophenyl carbonates), PEG-알데히드(PEGaldehyde), PEG 숙시니미딜 카르복시메틸 에스테르(PEG succinimidyl carboxymethyl ester) 및 PEG 숙시니미딜에스테르(PEG succinimidyl ester)으로 이루어진 군에서 선택되는 것인, 화장료 조성물.
  14. 청구항 9에 있어서, 상기 화장료 조성물은 항염증 또는 항산화용인, 화장료 조성물.
  15. 청구항 9에 있어서, 상기 화장료 조성물은 산화 스트레스 증가로 유발되는 피부 염증 예방 또는 개선용인, 화장료 조성물.
  16. 청구항 15에 있어서, 상기 산화 스트레스 증가로 유발되는 피부 염증은 아토피 피부염(Atopic dermatitis), 접촉성 피부염(Contact dermatitis), 건선(Psoriasis), 지루성 피부염(Seborrheic dermatitis), 가려움(Pruritus), 유사 건선(Parapsoriasis), 두드러기(Urticaria), 편평태선(Lichen planus), 일광화상(Sunburn), 방사선 피부염(Radiodermatitis), 다형 홍반(Erythema multiforme), 결절성 홍반(Erythema nodosum), 환상육아종(Granuloma annulare), 모공성 각화증(Keratosis pilaris), 피부 건조증(Xeroderma), 지방층염(Panniculitis), 괴저성 농피증(Pyoderma gangrenosum), 여드름(Acne), 주사(Rosacea), 홍반 루푸스(Lupus erythematosus), 천포창(Pemphigus), 기저귀 피부염(Diaper dermatitis), 비강진(Pityriasis rosea), 원형 탈모(Alopecia areata), 안드로젠탈모(Androgenic alopecia), 백반증(Vitiligo) 및 욕창궤양(Decubitus ulcer)으로 이루어진 군에서 선택되는 적어도 하나인, 화장료 조성물.
  17. 청구항 9에 있어서, 상기 화장료 조성물은 피부 보습, 피부장벽 기능 회복 또는 피부 노화 방지용인, 화장료 조성물.
PCT/KR2023/009478 2022-07-05 2023-07-05 페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물 WO2024010353A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0082580 2022-07-05
KR20220082580 2022-07-05
KR1020230086395A KR20240007076A (ko) 2022-07-05 2023-07-04 페길화된 빌리루빈을 포함하는 염증성 질환의 예방또는 치료용 약학 조성물
KR10-2023-0086395 2023-07-04

Publications (1)

Publication Number Publication Date
WO2024010353A1 true WO2024010353A1 (ko) 2024-01-11

Family

ID=89453724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009478 WO2024010353A1 (ko) 2022-07-05 2023-07-05 페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물

Country Status (1)

Country Link
WO (1) WO2024010353A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062245A2 (en) * 2000-02-25 2001-08-30 Medical Research Council Bilirubin or biliverdin degradation fragments
KR20150079436A (ko) * 2013-12-27 2015-07-08 한국과학기술원 빌리루빈 나노입자, 이의 용도 및 제조방법
WO2020154110A1 (en) * 2019-01-22 2020-07-30 Purdue Research Foundation Bilirubin-coated radio-luminescent particles
KR102254093B1 (ko) * 2017-05-12 2021-05-20 주식회사 빌릭스 빌리루빈 유도체 및 금속을 포함하는 입자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062245A2 (en) * 2000-02-25 2001-08-30 Medical Research Council Bilirubin or biliverdin degradation fragments
KR20150079436A (ko) * 2013-12-27 2015-07-08 한국과학기술원 빌리루빈 나노입자, 이의 용도 및 제조방법
KR102254093B1 (ko) * 2017-05-12 2021-05-20 주식회사 빌릭스 빌리루빈 유도체 및 금속을 포함하는 입자
WO2020154110A1 (en) * 2019-01-22 2020-07-30 Purdue Research Foundation Bilirubin-coated radio-luminescent particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, M. J. ET AL.: "PEGylated bilirubin nanoparticle as an anti-oxidative and anti-inflaimnatory demulcent in pancreatic islet xenotransplantation", BIOMATERIALS, vol. 133, 2017, pages 242 - 252, XP085000796, DOI: 10.1016/j.biomaterials.2017.04.029 *

Similar Documents

Publication Publication Date Title
WO2013039350A2 (ko) 세라마이드를 포함하는 피부 외용제 조성물
WO2016076520A1 (ko) 신규 유사세라마이드 화합물 및 이를 포함하는 피부 외용제 조성물 {novel pseudoceramide compound and skin topical composition comprising it}
WO2020040442A1 (ko) 수딩 크림 및 이의 제조 방법
WO2021112398A1 (ko) 비타민 c를 포함하는 조성물
WO2019103433A1 (ko) 안정성이 개선된 신규 유사세라마이드 화합물 및 이를 포함하는 조성물
WO2019103541A1 (ko) 그래핀 나노구조체를 포함하는 항염증용 조성물
WO2014084676A1 (ko) 신규한 유사 세라마이드 화합물 및 그 제조방법
WO2022260454A1 (ko) 장수만리화 추출물을 포함하는 아토피 피부염 치료용 또는 피부 장벽 강화용 또는 노화 방지용 조성물
WO2018062922A1 (ko) 수가용화된 우르소데옥시콜산을 함유하는 염증성 피부질환 또는 중증 소양증 예방 또는 치료용 조성물
WO2019013396A1 (ko) 비타민나무 열매 추출물을 포함하는 미백용 에멀션 화장료 조성물 및 그의 제조방법
WO2019240495A1 (ko) 가역적인 졸-겔 현상이 일어나는 박테리얼 셀룰로오스 겔의 용도
WO2024010353A1 (ko) 페길화된 빌리루빈을 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물
WO2013042811A1 (ko) 카페오일알파네오엔돌핀 펩타이드 유도체 및 이의 항가려움 및 항아토피 소재로의 활용
WO2018097388A1 (ko) 대추씨 추출물을 유효성분으로 포함하는 피부미백, 주름개선, 항산화 및 자외선차단을 위한 조성물
WO2019143145A1 (ko) 레졸빈 d2를 유효성분으로 함유하는 피부 염증 치료용 조성물
KR100530843B1 (ko) 동충하초 추출물을 유효성분으로 포함하는 항염 조성물
WO2019045214A1 (ko) 아토피피부염 예방 또는 치료용 조성물
WO2022139558A1 (en) Composition for protecting the skin against harmful substance, light and stress
WO2015037855A1 (en) A composition comprising an extract of combined herbs consisting of acanthopanax koreanum nakai and crinum asiaticum var. japonicum showing preventing activity of baldness and stimulating activity of hair growth
WO2022131820A1 (ko) 아토피 피부염 예방 또는 치료용 항염증 펩타이드
WO2023033414A1 (ko) 유효 성분의 포집력이 우수한 리포좀 화장료 조성물
WO2017018847A1 (ko) 미리세틴 유도체를 함유하는 snare 복합체 형성 억제용 조성물
WO2021107381A1 (ko) 페룰산 및 이의 유사체를 포함하는 유전자 돌연변이에 의한 피부질환 예방 및 치료용 조성물
WO2012173383A2 (ko) 크립토탄시논을 유효성분으로 함유하는 피부 외용제 조성물
WO2017142368A2 (ko) 알레르기성 또는 염증성 피부질환의 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835819

Country of ref document: EP

Kind code of ref document: A1