WO2024009713A1 - エアバッグ用ノンコート基布、エアバッグ用ノンコート基布の製造方法およびエアバッグ - Google Patents

エアバッグ用ノンコート基布、エアバッグ用ノンコート基布の製造方法およびエアバッグ Download PDF

Info

Publication number
WO2024009713A1
WO2024009713A1 PCT/JP2023/022117 JP2023022117W WO2024009713A1 WO 2024009713 A1 WO2024009713 A1 WO 2024009713A1 JP 2023022117 W JP2023022117 W JP 2023022117W WO 2024009713 A1 WO2024009713 A1 WO 2024009713A1
Authority
WO
WIPO (PCT)
Prior art keywords
base fabric
airbag
heat
coated base
fabric
Prior art date
Application number
PCT/JP2023/022117
Other languages
English (en)
French (fr)
Inventor
裕也 清水
祐介 江川
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024009713A1 publication Critical patent/WO2024009713A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/02Setting

Definitions

  • the present invention relates to a non-coated base fabric for airbags, a method for manufacturing the non-coated base fabric for airbags, and an airbag.
  • Airbags inflate and deploy within a very short time after a vehicle collision, absorbing the impact and protecting the occupants.
  • the airbag base fabric constituting the airbag needs to efficiently utilize the energy released from the inflator in order to inflate and deploy to catch the occupant.
  • cushions are becoming larger from the viewpoint of expanding the passenger protection area. In order to improve occupant restraint performance, it is essential to improve deployment speed.
  • Patent Documents 1 and 2 propose an airbag base fabric with excellent heat insulation properties that contains a powdery substance with low thermal conductivity.
  • Patent Document 3 proposes an airbag base fabric with improved heat resistance and instantaneous thermal deformation rate, which is made of polyester filaments manufactured from polyethylene terephthalate chips with high intrinsic viscosity.
  • the technique disclosed in Patent Document 1 coats an airbag base fabric with an elastomer resin containing ceramics with low thermal conductivity. However, in the technique disclosed in Patent Document 1, since the base fabric is coated with resin, the base fabric becomes thicker, and the storability is not sufficient compared to a non-coated base fabric.
  • the technique disclosed in Patent Document 2 contains a powdery substance that has high electromagnetic wave reflectance and low thermal conductivity in fibers or coating resin. However, the technique disclosed in Patent Document 2 does not have sufficient mechanical properties such as tensile strength and tear strength of the yarn when a powdery substance is contained in the fiber.
  • the technique disclosed in Patent Document 3 uses polyethylene terephthalate with high intrinsic viscosity.
  • the base fabric using the polyethylene terephthalate fiber of Patent Document 3 has a higher specific gravity than the nylon material, and when the same fineness and density are used, the base fabric is thicker, and the storability is not sufficient compared to the non-coated base fabric.
  • the techniques disclosed in these documents add or coat a substance with low thermal conductivity or use polyethylene terephthalate fibers to impart heat insulation properties to the airbag base fabric.
  • the techniques disclosed in these documents do not have sufficient base fabric strength or storability, which are important characteristics of airbag base fabrics.
  • the present invention has been made in view of such conventional problems, and provides a non-coated base fabric for airbags with excellent heat utilization efficiency, an airbag sewn with the non-coated base fabric for airbags, and a non-coated base fabric for airbags.
  • the purpose is to provide a manufacturing method for.
  • the present inventors investigated and found that in order to obtain a non-coated airbag base fabric with high heat insulation properties, strong base fabric, and excellent storage properties, it is necessary to control the amount of heat during base fabric production. As a result, it was found that it is better to reduce the energy loss of the gas ejected from the surface of the base fabric, that is, to increase the heat utilization rate.
  • a non-coated base fabric for an airbag that solves the above problems is made of a woven fabric made of polyamide fibers, and has a heat utilization rate of 10% or more calculated from the following formula (1).
  • Q0 Electric energy (W) measured without placing a sample on the hot plate
  • Qd Electric energy (W) measured when the sample is placed on the hot plate
  • a method for manufacturing a non-coated base fabric for an airbag includes a heat setting step, and has the following formula: This is a method for producing a non-coated base fabric for an airbag, in which the amount of heat given to the base fabric calculated from (2) is 20,000 to 50,000 J.
  • an airbag according to one aspect of the present invention that solves the above problems is an airbag in which the above non-coated airbag base fabric is sewn.
  • the non-coated base fabric for an airbag (hereinafter also simply referred to as base fabric) according to one embodiment of the present invention is made of a fabric woven from polyamide fibers.
  • the base fabric has a heat utilization rate of 10% or more calculated from the following formula (1). Each will be explained below.
  • Heat utilization rate (%) (Q0(W)-Qd(W))/Q0 ⁇ 100(%)
  • Q0 Electric energy (W) measured without placing a sample on the hot plate
  • Qd Electric energy (W) measured when the sample is placed on the hot plate
  • Polyamide fibers include nylon 6, nylon 6,6, nylon 12, nylon 46, copolyamides of nylon 6 and nylon 6,6, and copolymerized nylon 6 with polyalkylene glycol, dicarboxylic acid, amine, etc. Examples include fibers made of polymerized polyamide and the like.
  • the polyamide fibers are preferably fibers made of nylon 6 or nylon 6,6, since the resulting airbag has excellent impact resistance.
  • the polyamide fibers constituting the woven fabric are preferably multifilaments.
  • the total fineness of the polyamide fibers is not particularly limited.
  • the total fineness of the polyamide fiber is preferably 235 dtex or more, more preferably 350 dtex or more.
  • the total fineness of the polyamide fiber is preferably 940 dtex or less, more preferably 700 dtex or less.
  • the total fineness is 235 dtex or more, the resulting base fabric can easily obtain mechanical properties (tensile strength, tear strength, etc.) necessary for airbags.
  • the total fineness is 940 dtex or less, the resulting base fabric will have better lightness and compactness.
  • the total fineness of the polyamide fibers is calculated based on JIS L 1013 (1999) 8.3.1 A method.
  • the single fiber fineness of the polyamide fiber is not particularly limited.
  • the single fiber fineness of the polyamide fiber is preferably 1 dtex or more, more preferably 1.5 dtex or more, and even more preferably 2 dtex or more.
  • the single fiber fineness of the polyamide fiber is preferably 8 dtex or less, more preferably 7 dtex or less.
  • the number of filaments is calculated based on the method of JIS L 1013 (1999) 8.4.
  • the number of filaments of the polyamide fiber is not particularly limited.
  • the number of filaments is preferably 44 to 144, more preferably 72 to 136.
  • the number of filaments is 44 or more, the amount of air vented between the fibers of the obtained base fabric does not become too large, and a predetermined air permeability can be obtained. If the number of filaments is 144 or less, the resulting base fabric will not have a single fiber fineness that is too small, will be able to suppress damage caused by abrasion from guides or reeds during warping and weaving, and will have no fluff caused by abrasion in the warp yarns. etc., and productivity is less likely to deteriorate.
  • the cross-sectional shape of the single fiber of the polyamide fiber is not particularly limited.
  • the cross-sectional shape of a single fiber may be circular, or may have various non-circular shapes such as X-shape, C-shape, Y-shape, V-shape, or flat shape, and may have a hollow part. There may be.
  • the cross-sectional shape of the single fiber is preferably circular from the viewpoint of spinnability.
  • the tensile strength of the polyamide fiber of this embodiment is preferably 8.0 cN/dtex or more, and more preferably 8.4 cN/dex or more.
  • the resulting base fabric has sufficient mechanical properties (tensile strength, tear strength, etc.).
  • the upper limit of the tensile strength is not particularly limited. Note that the tensile strength of the polyamide fiber is calculated by measuring under constant speed elongation conditions shown in JIS L 1013 (1999) 8.5.1 standard time test.
  • the elongation of the polyamide fiber in this embodiment is preferably 20% or more, more preferably 21% or more. Further, the elongation of the polyamide fiber is preferably 25% or less, more preferably 24% or less.
  • the resulting woven fabric has excellent toughness and breaking work.
  • polyamide fibers exhibiting elongation within the above range can have improved spinning and weaving properties. Note that the elongation of the polyamide fiber can be calculated based on the elongation at the point showing the maximum strength on the SS curve obtained when calculating the tensile strength.
  • the polyamide fiber in this embodiment may contain heat stabilizers, antioxidants, light stabilizers, smoothing agents, etc. as appropriate. Additives such as antistatic agents, plasticizers, thickeners, pigments, and flame retardants may be added.
  • the cover factor of the non-coated base fabric in this embodiment is preferably 2000 to 2600, more preferably 2100 to 2500.
  • the cover factor is within the above range, the resulting fabric has excellent mechanical properties such as tensile strength and slip resistance.
  • the non-coated airbag base fabric of the present embodiment preferably has a heat utilization rate of 10% or more, more preferably 11% or more, calculated from power consumption measured according to JIS L 1927.
  • a heat utilization rate of 10% or more the obtained base fabric can more efficiently utilize the energy released from the inflator when the airbag is deployed.
  • Heat utilization rate (%) (Q0(W)-Qd(W))/Q0 ⁇ 100(%)
  • Q0 Electric energy (W) measured without placing a sample on the hot plate
  • Qd Electric energy (W) measured when the sample is placed on the hot plate
  • the air permeability of the non-coated base fabric for airbags of this embodiment is preferably 4 L/dm 2 /min or less, and preferably 3.5 L/dm 2 /min or less when measured at a test differential pressure of 500 Pa. More preferred. When the air permeability is within the above range, the airbag using the obtained base fabric has sufficient gas barrier properties and can utilize energy more efficiently.
  • An airbag according to an embodiment of the present invention is an airbag obtained by sewing the above-mentioned non-coated airbag base fabric.
  • the airbag of this embodiment can be manufactured by a conventionally known method.
  • an airbag can be made by sewing a non-coated base fabric for an airbag into a known bag-like shape using a known sewing method.
  • the base fabric constituting the airbag has excellent heat utilization efficiency, as detailed in the above embodiment. Therefore, the airbag of this embodiment has little loss of energy emitted from the inflator, and has high internal pressure retention performance and occupant restraint performance. Therefore, airbags are useful for driver protection, passenger seat protection, knee protection, chest protection built into seats, head protection installed in the ceiling above windows, and the like.
  • An airbag module according to an embodiment of the present invention is an airbag module including the above airbag.
  • Airbag modules can be manufactured by conventionally known methods. That is, they are manufactured by attaching accessory equipment such as an inflator to an airbag.
  • a method for producing a non-coated base fabric for an airbag (hereinafter also simply referred to as a method for producing a base fabric) according to an embodiment of the present invention is a method for producing the above-described base fabric (non-coated base fabric for an airbag).
  • the method for manufacturing the base fabric includes a heat setting step. Further, in the method for manufacturing the base fabric, the amount of heat given to the base fabric is 20,000 to 50,000 J, which is calculated from the following equation (2).
  • the method for manufacturing the base fabric of the present embodiment adjusts the amount of heat applied during heat setting in the scouring setting process. Therefore, all of the other steps shown below are just examples, and may be replaced with other known steps as appropriate.
  • the warp yarn described above is warped and installed in a loom.
  • the weft thread is installed on the loom.
  • the loom is not particularly limited.
  • examples of the loom include a water jet loom, an air jet loom, and a rapier loom.
  • a water jet loom is preferable as the loom because high-speed weaving is relatively easy and productivity can be easily increased.
  • the warp yarn and the weft yarn are both polyamide fibers of the same type. Further, it is preferable that the warp threads and the weft threads are woven to have the same weaving density.
  • the same type of polyamide fibers means fibers with the same polymer type, total fineness, and physical properties.
  • the weaving density is the same means that the difference in the weaving density of the warp yarn and the weft yarn after weaving is within 1.5 yarns. Note that the weave density is calculated based on JIS L 1096 (1999) 8.6.1.
  • weaving conditions are not particularly limited.
  • the warp thread tension is preferably adjusted to 60 to 180 cN/strand.
  • the warp threads to which the tension is applied are flattened when the weft threads are driven, and the air permeability can be controlled to be low.
  • the warp yarn tension is within the above range, the force with which the warp yarn restrains the weft yarn during weaving becomes appropriate, and it is easy to achieve a predetermined density.
  • the warp thread tension is within the above range, the resulting base fabric has low air permeability, and the warp threads are less likely to generate fluff due to abrasion, resulting in excellent productivity.
  • the method for adjusting the warp thread tension is not particularly limited.
  • the warp thread tension can be adjusted by adjusting the warp delivery speed of the loom, adjusting the weft delivery speed, etc. Note that whether the warp thread tension is within the above range can be confirmed by, for example, measuring the tension applied to the entire warp thread using a load cell of the warp thread beam and back roller during operation of the loom.
  • the resulting fabric is subjected to scouring, if necessary.
  • the fabric is placed in, for example, multiple tanks and washed with water.
  • a scouring agent for example, a nonionic surfactant, an anionic surfactant
  • the water temperature in each tank is preferably about 40 to 70°C.
  • the drying temperature is not particularly limited.
  • the drying temperature is preferably 90 to 150°C.
  • the tension in the warp direction during heat setting is preferably 0.1 to 0.5 kg/cm, and the tension in the weft direction during heat setting is preferably 0.1 to 0.3 kg/cm.
  • the equipment used in the heat setting process is not particularly limited. For example, in the heat setting step, a pin tenter, a clip tenter, etc., which can control the shrinkage of the base fabric in the width direction, are preferably used.
  • the obtained fabric is subjected to a heat setting step.
  • the amount of heat applied is adjusted to 20,000 to 50,000 J, preferably 24,000 to 46,000 J.
  • the amount of heat given in the heat setting step is within the above range, the resulting base fabric is imparted with heat resistance and the heat utilization rate during airbag deployment is improved. If the amount of heat given in the heat setting step is less than 20,000 J, the resulting base fabric will not have sufficient heat resistance and will have poor heat utilization efficiency.
  • the resulting base fabric will have heat resistance, but will have high air permeability, causing gas to leak from the surface of the cushion base fabric, resulting in airbags.
  • the internal pressure during deployment is low, resulting in poor deployment performance.
  • the heating time in the heat setting step is preferably adjusted to 40 seconds or more, more preferably 50 seconds or more.
  • the heating time in the heat setting step is 40 seconds or more, the temperature necessary for relaxing residual shrinkage stress due to softening of the base fabric can be set to a value sufficiently lower than the melting point of the base fabric.
  • the obtained base fabric has excellent surface quality and low air permeability.
  • the airbag obtained using such a base fabric has improved deployment performance.
  • the heating time is preferably within 80 seconds.
  • the heating method in the heat setting step is not particularly limited.
  • the heating method may be an indirect heat medium type, an indirect gas type, a steam type, an electric heater type, or the like.
  • the base fabric obtained as described above has excellent heat utilization efficiency. Therefore, even if the base fabric is a non-coated base fabric, the energy released from the inflator can be effectively utilized, so that the base fabric is particularly useful as a base fabric for an airbag.
  • a non-coated base fabric for airbags which is made of a woven fabric made of polyamide fibers and has a heat utilization coefficient of 10% or more as calculated by the following formula (1).
  • Heat utilization rate (%) (Q0(W)-Qd(W))/Q0 ⁇ 100(%)
  • Q0 Electric energy (W) measured without placing a sample on the hot plate
  • Qd Electric energy (W) measured when the sample is placed on the hot plate
  • total fineness The total fineness was calculated by measuring the normal fineness at a predetermined load of 0.045 cN/dtex according to JIS L 1013 (1999) 8.3.1 A method.
  • Single fiber fineness was calculated by dividing the total fineness by the number of filaments.
  • the weaving density of each warp yarn and weft yarn was calculated based on JIS L 1096 (1999) 8.6.1. Specifically, the sample was placed on a flat table, unnatural wrinkles and tension were removed, and 2.54 cm sections (2.54 cm vertically x horizontally The number of warp yarns and weft yarns in a direction of 2.54 cm) was counted, and the average value of each was calculated.
  • the thickness was determined based on the JIS L 1096 (1999) 8.5 A method, using a thickness measuring device with a circular measuring tip with a diameter of 1.05 cm every 20 cm from one end of the base fabric under a pressure of 1.0 kPa. , the thickness was measured after waiting 10 seconds for the thickness to settle.
  • Air permeability is determined based on the ASTM D3886 method by determining the amount of air passing through the test piece (L/dm 2 /min) at 6 different locations on the sample under a measurement area of 100 cm 2 and a differential pressure of 500 Pa, and then calculating the average value. The air permeability was calculated (L/dm 2 /min).
  • Heat utilization rate (heat utilization rate) The heat utilization rate is based on JIS L 1927 (2020). Three test pieces of 15 cm x 15 cm were taken, and the samples were set on a hot plate set at a constant temperature using Kato Tech's KES-F7. When the sample surface was brought into contact with the sample surface and air was blown at a constant speed, the amount of electric power required to maintain the hot plate at a constant temperature through the sample was measured and calculated using the following formula (3).
  • Heat utilization rate (%) (Q0(W)-Qd(W))/Q0 ⁇ 100(%)
  • Q0 Electric energy (W) measured without placing a sample on the hot plate
  • Qd Electric energy (W) measured when the sample is placed on the hot plate
  • the bag surface temperature was measured using an infrared radiation thermometer (manufactured by A&D Co., Ltd.) to measure the surface temperature of the base fabric when a 60 liter airbag body was sewn and inflated and deployed using an inflator tester (E type for 60 liters). AD-5615).
  • the warp and weft yarns are made of nylon 6,6, have a circular cross-sectional shape, are composed of 136 single filaments with a single fiber fineness of 3.57 dtex, a total fineness of 485 dtex, and a tensile strength of 8.
  • a non-twisted synthetic fiber filament having a tensile strength of 4 cN/dtex and an elongation of 23.5% was prepared.
  • the resulting fabric was then scoured at 65°C and dried at 120°C. Thereafter, a heat setting process was performed at 150° C. for 60 seconds using a pin tenter under dimensional restrictions of 0% width increase and 0% overfeed rate.
  • the temperature of the base fabric before heat setting was 50° C., and the amount of heat given in the heat setting step was 28,514 J.
  • Example 2 (Preparation of thread) Synthetic fiber filaments similar to those in Example 1 were prepared as warp yarns and weft yarns.
  • Example 3 (Preparation of thread) Synthetic fiber filaments similar to those in Example 1 were prepared as warp yarns and weft yarns.
  • the warp and weft yarns are made of nylon 6,6, have a circular cross-sectional shape, are composed of 108 single filaments with a single fiber fineness of 6.61 dtex, have a total fineness of 714 dtex, and have a tensile strength of 8.
  • a non-twisted synthetic fiber filament having a tensile strength of 4 cN/dtex and an elongation of 23.5% was prepared.
  • the resulting fabric was then scoured at 65°C and dried at 120°C. Thereafter, a heat setting process was performed at 180° C. for 60 seconds using a pin tenter under dimensional restrictions of 0% width increase and 0% overfeed rate.
  • the base fabric temperature before heat setting was 50° C., and the amount of heat given in the heat setting step was 44,799 J.
  • the warp and weft yarns are made of nylon 6,6, have a circular cross-sectional shape, are composed of 136 single filaments with a single fiber fineness of 2.57 dtex, a total fineness of 350 dtex, and a tensile strength of 8.
  • a non-twisted synthetic fiber filament having a tensile strength of 4 cN/dtex and an elongation of 23.5% was prepared.
  • the warp and weft yarns are made of nylon 6,6, have a circular cross-sectional shape, are composed of 36 single filaments with a single fiber fineness of 4.86 dtex, have a total fineness of 175 dtex, and have a tensile strength of 9.
  • a non-twisted synthetic fiber filament with 2 cN/dtex and an elongation of 23.5% was prepared.
  • the resulting fabric was then scoured at 65°C and dried at 120°C. Thereafter, a heat setting process was performed at 130° C. for 60 seconds using a pin tenter under dimension restrictions of 0% width increase and 0% overfeed rate.
  • the temperature of the base fabric before heat setting was 50° C., and the amount of heat given in the heat setting step was 15,904 J.
  • the warp and weft yarns are made of nylon 6,6, have a circular cross-sectional shape, are composed of 36 single filaments with a single fiber fineness of 6.53 dtex, have a total fineness of 235 dtex, and have a tensile strength of 8.
  • a non-twisted synthetic fiber filament having a tensile strength of 4 cN/dtex and an elongation of 23.5% was prepared.
  • the resulting fabric was then scoured at 65°C and dried at 120°C. Thereafter, a heat setting process was performed at 120° C. for 60 seconds using a pin tenter under dimension restrictions of 0% width increase and 0% overfeed rate.
  • the base fabric temperature before heat setting was 50° C., and the amount of heat given in the heat setting step was 15,407 J.
  • the base fabrics produced in Examples 1 to 5 had excellent heat utilization efficiency. Furthermore, it can be seen that the base fabrics produced in Examples 1 to 5 have a heat insulating effect that lowers the temperature of the airbag surface.
  • the base fabrics produced in Comparative Examples 1 to 4 had low heat utilization efficiency, and the temperature of the airbag surface increased. Therefore, these base fabrics cause a large loss of energy radiated from the inflator when the airbag is deployed, and there is a concern that the internal pressure retention and occupant restraint performance of the airbag will deteriorate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Woven Fabrics (AREA)

Abstract

熱利用率が優れるエアバッグ用基布、エアバッグ用ノンコート基布が縫製されたエアバッグ、およびエアバッグ用ノンコート基布の製造方法を提供する。ポリアミド繊維からなる織物からなり、熱利用率が10%以上である、エアバッグ用ノンコート基布。

Description

エアバッグ用ノンコート基布、エアバッグ用ノンコート基布の製造方法およびエアバッグ
 本発明は、エアバッグ用ノンコート基布、エアバッグ用ノンコート基布の製造方法およびエアバッグに関する。
 近年、車両衝突時における乗員の安全を確保するために、車両には各種エアバッグが装着されており、乗員に対する保護機能が高まっている。エアバッグは、車両が衝突してから極めて短時間のうちに膨張展開し、乗員を受け止め、衝撃を吸収して乗員を保護する。エアバッグを構成するエアバッグ用基布は、膨張展開して乗員を受け止めるために、インフレーターから放出されるエネルギーを効率的に活用することが必要である。特に、主にノンコート基布が用いられる運転者保護用および助手席者保護用のエアバッグは、乗員保護エリア拡大の観点からクッションの大型化が進んでいる。乗員拘束性能を向上させるためには、展開速度の向上が不可欠である。しかしながら、断熱性の低いエアバッグ用基布の場合、展開時の噴出ガス温度が基布表面からバッグ外側に逃げ、エアバッグの内圧が充分に上がらない懸念がある。そのため、エアバッグに用いる基布は、高い断熱性が求められる。
 高い断熱性を持つ基布を得る方法として、たとえば、特許文献1および2には、熱伝導率が低い粉末状物質を含有した、断熱性優れたエアバッグ基布が提案されている。また、特許文献3には、高い固有粘度のポリエチレンテレフタレートチップから製造されたポリエステルフィラメントからなる、熱抵抗性と瞬間熱変形率が改善されたエアバッグ基布が提案されている。
特開平4-201647号公報 特開平11-105655号公報 国際公開第2011/162486号
 特許文献1に開示された技術は、エラストマー樹脂に熱伝導率が低いセラミックスを含有させてエアバッグ基布にコーティングしている。しかしながら、特許文献1に開示された技術は、樹脂をコーティングしているため基布が厚くなり、ノンコート基布と比べて収納性が充分ではない。特許文献2に開示された技術は、電磁波の反射率が高く、熱伝導率が低い粉末状物質を繊維あるいはコーティング樹脂中に含有している。しかしながら、特許文献2に開示された技術は、粉末状物質を繊維中に含有する場合は、原糸の引張強力や引裂強力などの機械物性が充分ではない。特許文献3に開示された技術は、高い固有粘度のポリエチレンテレフタレートを使用している。しかしながら、特許文献3のポリエチレンテレフタレート繊維を用いた基布は、ナイロン素材に比べ比重が高く、同じ繊度・同じ密度の場合基布が厚くなり、ノンコート基布と比べて収納性が充分ではない。また、これらの文献に開示された技術は、熱伝導率の低い物質を添加もしくは塗布したり、ポリエチレンテレフタレート繊維を用いてエアバッグ基布に断熱性を付与している。しかしながら、これらの文献に開示された技術は、エアバッグ基布の重要特性である基布強力や収納性が充分ではない。
 本発明は、このような従来の問題に鑑みてなされたものであり、熱利用率に優れるエアバッグ用ノンコート基布、エアバッグ用ノンコート基布が縫製されたエアバッグおよびエアバッグ用ノンコート基布の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明者らが検討した結果、断熱性が高く、基布強力や収納性に優れたノンコートエアバッグ基布を得るためには、基布製造時の熱量をコントロールすることで、基布表面から噴出ガスのエネルギー損失が少ない、すなわち熱利用率を高くすることが良いことが分かった。
 すなわち、上記課題を解決する本発明の一態様のエアバッグ用ノンコート基布は、ポリアミド繊維で構成される織物からなり、下記の式(1)より算出される熱利用率が10%以上である、エアバッグ用ノンコート基布である。
式(1) 熱利用率(%) = (Q0(W)-Qd(W))/Q0×100(%)
Q0: 熱版に試料を置かずに計測した電力量(W)
Qd: 熱板に試料を置いたときに計測した電力量(W)
 また、上記課題を解決する本発明の一態様のエアバッグ用ノンコート基布の製造方法は、上記エアバッグ用ノンコート基布を製造するための方法であり、熱セット工程を有し、下記の式(2)より算出される基布に与えられる熱量が20,000~50,000Jである、エアバッグ用ノンコート基布の製造方法である。
式(2) 熱量(J) = (C(J/(kg・℃)×ρ(kg/L)×V(L)×ΔT(℃))
C: 比熱(J/kg・℃)
ρ: 密度(kg/L)
V: 体積(L)
ΔT: 基布表面上昇温度(℃)
 さらに、上記課題を解決する本発明の一態様のエアバッグは、上記エアバッグ用ノンコート基布が縫製された、エアバッグである。
[エアバッグ用ノンコート基布]
 本発明の一実施形態のエアバッグ用ノンコート基布(以下、単に基布ともいう)は、ポリアミド繊維が製織された織物からなる。基布は、下記の式(1)より算出される熱利用率が10%以上である。以下、それぞれについて説明する。
式(1) 熱利用率(%) = (Q0(W)-Qd(W))/Q0×100(%)
Q0: 熱版に試料を置かずに計測した電力量(W)
Qd: 熱板に試料を置いたときに計測した電力量(W)
 ポリアミド繊維は、ナイロン6、ナイロン6,6、ナイロン12、ナイロン46や、ナイロン6とナイロン6,6との共重合ポリアミド、ナイロン6にポリアルキレングリコール、ジカルボン酸、アミン等を共重合させた共重合ポリアミド等からなる繊維等が例示される。ポリアミド繊維は、得られるエアバッグの耐衝撃性が優れる点から、ナイロン6またはナイロン6,6からなる繊維であることが好ましい。
 本実施形態において、織物を構成するポリアミド繊維はマルチフィラメントが好ましい。ポリアミド繊維の総繊度は特に限定されない。一例を挙げると、ポリアミド繊維の総繊度は、235dtex以上が好ましく、350dtex以上であることがより好ましい。また、ポリアミド繊維の総繊度は、940dtex以下が好ましく、700dtex以下であることがより好ましい。総繊度が235dtex以上であれば、得られる基布は、エアバッグに必要な機械的特性(引張強力や引裂強力等)が得られやすい。一方、総繊度が940dtexを以下であれば、得られる基布は、軽量性やコンパクト性がより優れる。なお、ポリアミド繊維の総繊度は、JIS L 1013(1999) 8.3.1 A法に基づいて算出する。
 また、本実施形態において、ポリアミド繊維の単繊維繊度は特に限定されない。一例を挙げると、ポリアミド繊維の単繊維繊度は、1dtex以上であることが好ましく、1.5dtex以上であることがより好ましく、2dtex以上であることがさらに好ましい。また、ポリアミド繊維の単繊維繊度は、8dtex以下であることが好ましく、7dtex以下であることがより好ましい。ポリアミド繊維の単繊維繊度を1dtex以上とすることにより、得られる基布は、製造時の単繊維切れを抑えることができ、製造されやすい。また、ポリアミド繊維の単繊維繊度を8dtex以下とすることにより、得られるタテ糸やヨコ糸は、柔軟性が向上する。なお、ポリアミド繊維の単繊維繊度は、総繊度をフィラメント数で除することにより算出する。
 フィラメント数は、JIS L 1013(1999) 8.4の方法に基づいて算出する。本実施形態において、ポリアミド繊維のフィラメント数は特に限定されない。一例を挙げると、フィラメント数は、44本~144本が好ましく、72本~136本がより好ましい。フィラメント数が44本以上であれば、得られる基布は、繊維間から通気する空気量が大きくなりすぎず、所定の通気度を得ることができる。フィラメント数が144本以下であれば、得られる基布は、単繊維繊度が小さくなりすぎることもなく、整経時および製織時にガイドや筬等の擦過によりダメージを抑えられ、タテ糸に擦過による毛羽等が発生して、生産性が悪化しにくい。
 ポリアミド繊維の単繊維の断面形状は特に限定されない。一例を挙げると、単繊維の断面形状は、円形であってもよく、X型、C型、Y型、V型、扁平型等の各種非円形であってもよく、中空部を有するものであってもよい。これらの中でも、単繊維の断面形状は、製糸性の点から、円形であることが好ましい。
 本実施形態のポリアミド繊維の引張強度は、8.0cN/dtex以上が好ましく、8.4cN/dex以上であることがより好ましい。ポリアミド繊維の引張強度が8.0cN/dtex以上の場合、得られる基布は、充分な機械的特性(引張強力や引裂強力等)が得られる。なお、引張強度の上限は特に限定されない。なお、ポリアミド繊維の引張強度は、JIS L 1013(1999) 8.5.1標準時試験に示される定速伸長条件で測定することにより算出する。
 本実施形態におけるポリアミド繊維の伸度は、20%以上であることが好ましく、21%以上であることがより好ましい。また、ポリアミド繊維の伸度は、25%以下であることが好ましく、24%以下であることがより好ましい。ポリアミド繊維の伸度が上記範囲内である場合、得られる織物は、タフネス性、破断仕事量が優れる。また、上記範囲内の伸度を示すポリアミド繊維は、製糸性および製織性が向上し得る。なお、ポリアミド繊維の伸度は、上記引張強度を算出する際に得られるS-S曲線における最大強力を示した点の伸びに基づいて算出し得る。
 本実施形態におけるポリアミド繊維は、紡糸工程、延伸工程、加工工程における生産性、または、得られる織物の特性を改善するために、適宜、熱安定剤、酸化防止剤、光安定剤、平滑剤、帯電防止剤、可塑剤、増粘剤、顔料、難燃剤等の添加剤が配合されてもよい。
 本実施形態におけるノンコート基布のカバーファクターは、2000~2600であることが好ましく、2100~2500がより好ましい。カバーファクターが上記範囲内である場合、得られる織物は、引張強力や滑脱抵抗などの機械的特性が優れる。
 本実施形態のエアバッグ用ノンコート基布は、JIS L 1927により計測された消費電力から算出された熱利用率が10%以上であることが好ましく、11%以上がより好ましい。熱利用率が10%以上であることにより、得られる基布は、エアバッグ展開時にインフレーターから放出されるエネルギーをより効率的に活用することができる。
 なお、熱利用率は以下の式より算出される。
式(1) 熱利用率(%) = (Q0(W)-Qd(W))/Q0×100(%)
Q0: 熱版に試料を置かずに計測した電力量(W)
Qd: 熱板に試料を置いたときに計測した電力量(W)
 本実施形態のエアバッグ用ノンコート基布は、試験差圧500Paで測定した時の通気度が4L/dm2/min以下であることが好ましく、3.5L/dm2/min以下であることがより好ましい。通気度が上記範囲内であることにより、得られる基布を用いたエアバッグは、ガス遮断性が充分となりエネルギーをより効率的に活用することが出来る。
[エアバッグ]
 本発明の一実施形態のエアバッグは、上記エアバッグ用ノンコート基布を縫製して得られるエアバッグである。本実施形態のエアバッグは、従来公知の方法により製造し得る。たとえばエアバッグ用ノンコート基布を公知の袋状の形状に、公知の縫製方法で縫製してエアバッグとすることができる。
 エアバッグを構成する基布は、上記実施形態により詳述したとおり、熱利用率に優れる。そのため、本実施形態のエアバッグは、インフレーターから発せられるエネルギーのロスが少なく、高い内圧保持性能・乗員拘束性能が得られる。そのため、エアバッグは、運転者保護用、助手席者保護用、膝保護用、座席シートに内蔵された胸部保護用、窓上部の天井内に装着された頭部保護用等として有用である。
[エアバッグモジュール]
 本発明の一実施形態のエアバッグモジュールは、上記エアバッグを備えたエアバッグモジュールである。エアバッグモジュールは、従来公知の方法により製造し得る。すなわち、エアバッグに、インフレーターなどの付属機器を取り付けられることにより製造される。
[エアバッグ用ノンコート基布の製造方法]
 本発明の一実施形態のエアバッグ用ノンコート基布の製造方法(以下、単に基布の製造方法ともいう)は、上記した基布(エアバッグ用ノンコート基布)を製造するための方法である。基布の製造方法は、熱セット工程を有する。また、基布の製造方法は、下記の式(2)より算出される基布に与えられる熱量が20,000~50,000Jである。
式(2) 熱量(J) = (C(J/(kg・℃)×ρ(kg/L)×V(L)×ΔT(℃))
C: 比熱(J/kg・℃)
ρ: 密度(kg/L)
V: 体積(L)
ΔT: 上昇温度(℃)
 このように、本実施形態の基布の製造方法は、精練セット工程における熱セット時に与えられる熱量を調整する。そのため、以下に示される他の工程は、いずれも例示であり、公知の他の工程に適宜置き換えられてもよい。
 本実施形態によれば、まず、上記したタテ糸が整経され、織機に設置される。同様にヨコ糸が織機に設置される。織機は、特に限定されない。具体的には、織機は、ウォータージェットルーム、エアジェットルーム、レピアルーム等が例示される。これらの中でも、高速製織が比較的容易であり、生産性を高めやすい点から、織機は、ウォータージェットルームが好ましい。タテ糸およびヨコ糸は、いずれも同じ種類のポリアミド繊維であることが好ましい。また、タテ糸およびヨコ糸は、いずれも同じ織密度となるよう製織されることが好ましい。なお、本実施形態において、「同じ種類のポリアミド繊維」とは、ポリマー種類、総繊度、物理特性が同等な繊維であることを意味する。また、「織密度が同じ」とは、製織後のタテ糸およびヨコ糸の織密度の差が、1.5本以内であることを意味する。なお、織密度は、JIS L 1096(1999) 8.6.1に基づいて算出する。
 本実施形態の基布の製造方法において、製織の条件は特に限定されない。一例を挙げると、タテ糸張力は、60~180cN/本に調整されることが好ましい。タテ糸張力が上記範囲内である場合、ヨコ糸が打ち込まれる際に、張力の加えられたタテ糸が扁平形状化し、通気度を低くコントロールできる。また、タテ糸張力が上記範囲内である場合、製織時に、タテ糸がヨコ糸を拘束する力が適切となり、所定の密度を達成しやすい。また、タテ糸張力が上記範囲内である場合、得られる基布は、低い通気度が得られ、かつ、タテ糸に擦過による毛羽等が発生しにくく、生産性が優れる。
 本実施形態の基布の製造方法において、タテ糸張力を調整する方法は特に限定されない。一例を挙げると、タテ糸張力は、織機のタテ糸送り出し速度を調整する方法、ヨコ糸の打ち込み速度を調整する方法等により調整し得る。なお、タテ糸張力が上記範囲であるかどうかは、たとえば織機稼動中にタテ糸ビームとバックローラーのロードセルによって、タテ糸全体にかかる張力を測ることにより、確認し得る。
 製織が終わると、得られた織物は、必要に応じて、精練加工が施される。精練工程では、織物は、たとえば複数の槽に入れられ、水洗される。その際、精練剤(たとえば非イオン界面活性剤、アニオン界面活性剤)が適宜配合される。各槽の水温は、好適には40~70℃程度である。これにより、精練剤が活性化され、織糸に付着した油剤やワックス等が効率的に除去され得る。
 精練加工が終わると、乾燥・熱セット加工を施す。乾燥温度は特に限定されない。一例を挙げると、乾燥温度は、90~150℃であることが好ましい。また、熱セット時のタテ糸方向の張力は0.1~0.5kg/cm、熱セット時のヨコ糸方向の張力は0.1~0.3kg/cmであることが好ましい。熱セット工程に用いる機器は、特に限定されない。一例を挙げると、熱セット工程は、幅方向の基布収縮をコントロールできるピンテンター、クリップテンターなどが好適に用いられる。
 本実施形態のノンコート基布の製造方法は、得られた織物に熱セット工程を実施する。熱セット工程では、与える熱量が、20,000~50,000Jに調整され、24,000~46,000Jに調整されることが好ましい。熱セット工程にて与えられる熱量が上記範囲内である場合、得られる基布は、耐熱性が付与され、エアバッグ展開時の熱利用率が向上する。熱セット工程で与えられる熱量が20,000J未満であると、得られる基布は、充分な耐熱性が付与されず、熱利用率が劣る。また、熱セット工程で与えられる熱量が50,000Jより大きくなると、得られる基布は、耐熱性が付与されるが、通気度が高くなり、クッション基布表面からガスが漏れ、結果としてエアバッグ展開時の内圧が低くなり、展開性能が劣る。
 なお、熱量は以下の式より算出される。
式(2) 熱量(J) = (C(J/(kg・℃)×ρ(kg/L)×V(L)×ΔT(℃))
C: 比熱(J/kg・℃)
ρ: 密度(kg/L)
V: 体積(L)
ΔT: 基布表面上昇温度(℃)
 熱セット工程の加熱時間は、40秒以上に調整することが好ましく、50秒以上に調整することがより好ましい。熱セット工程の加熱時間が40秒以上であると、基布の軟化による残留収縮応力緩和に必要な温度を、基布の融点から充分に低い値に設定することが出来る。その結果、得られる基布は、基布表面の品位が優れ、低通気性を有する。また、そのような基布を用いて得られたエアバッグは、展開性能がより向上する。また、生産効率の観点から、加熱時間は、80秒以内である事が好ましい。
 熱セット工程の加熱方式は特に限定されない。一例を挙げると、加熱方式は、熱媒間接型、ガス間接型、蒸気型、電気ヒーター型等である。
 以上により得られた基布は、熱利用率に優れ。そのため、基布は、ノンコート基布であっても、インフレーターから放出されたエネルギーを有効活用することができるため、エアバッグ用の基布として特に有用である。
 以上、本発明の一実施形態について説明した。本発明は、上記実施形態に格別限定されない。なお、上記した実施形態は、以下の構成を有する発明を主に説明するものである。
(1)ポリアミド繊維で構成される織物からなり、下記の式(1)より算出される熱利用率が10%以上である、エアバッグ用ノンコート基布。
式(1) 熱利用率(%) = (Q0(W)-Qd(W))/Q0×100(%)
Q0: 熱版に試料を置かずに計測した電力量(W)
Qd: 熱板に試料を置いたときに計測した電力量(W)
 (2)織物を構成するマルチフィラメントの総繊度が350~700dtex、単繊維繊度が2~7dtex、引張強度が6.5~9.5cN/dtexである、(1)記載のエアバッグ用ノンコート基布。
 (3)カバーファクターが2000~2600である、(1)または(2)記載のエアバッグ用ノンコート基布。
 (4)試験差圧500Paで測定した時の通気度が4.0L/dm2/min以下である、(1)~(3)のいずれかに記載のエアバッグ用ノンコート基布。
 (5)前記(1)~(4)のいずれかに記載のエアバッグ用ノンコート基布を製造するための方法であり、熱セット工程を有し、下記の式(2)より算出される基布に与えられる熱量が20,000~50,000Jである、エアバッグ用ノンコート基布の製造方法。
式(2) 熱量(J) = (C(J/(kg・℃)×ρ(kg/L)×V(L)×ΔT(℃))
C: 比熱(J/kg・℃)
ρ: 密度(kg/L)
V: 体積(L)
ΔT: 基布表面上昇温度(℃)
 (6)熱セット工程での加熱時間が40秒以上である、(5)記載のエアバッグ用ノンコート基布の製造方法。
 (7)前記(1)~(4)のいずれかに記載のエアバッグ用ノンコート基布が縫製された、エアバッグ。
 以下、実施例により本発明をより具体的に説明する。本発明は、これら実施例に何ら限定されない。なお、以下の実施例において、それぞれの特性値は、以下の方法により測定した。
<特性値の測定方法>
(総繊度)
 総繊度は、JIS L 1013(1999) 8.3.1 A法により、所定荷重0.045cN/dtexで正量繊度を測定することにより算出した。
(フィラメントの引張強度および伸度)
 引張強度および伸度は、JIS L 1013(1999) 8.5.1標準時試験に示される定速伸長条件で測定することにより算出した。その際、オリエンテック社製“テンシロン”(TENSILON)UCT-100を用い、掴み間隔を25cmとし、引張速度を30cm/分に設定した。なお、伸度は、S-S曲線における最大強力を示した点の伸びに基づいて算出した。
(単繊維繊度)
 単繊維繊度は、総繊度をフィラメント数で除することにより算出した。
(フィラメントの引張強度および伸度)
 引張強度および伸度は、JIS L 1013(1999) 8.5.1標準時試験に示される定速伸長条件で測定することにより算出した。その際、オリエンテック社製“テンシロン”(TENSILON)UCT-100を用い、掴み間隔を25cmとし、引張速度を30cm/分に設定した。なお、伸度は、S-S曲線における最大強力を示した点の伸びに基づいて算出した。
(織密度)
 タテ糸およびヨコ糸のそれぞれの織密度は、JIS L 1096(1999) 8.6.1に基づいて算出した。具体的には、試料を平らな台上に置き、不自然なしわや張力を除いて、基布片端からヨコ方向20cm毎に少なくとも5カ所における2.54cmの区間(タテ方向2.54cm×ヨコ方向2.54cm)のタテ糸およびヨコ糸の本数を数え、それぞれの平均値を算出した。
(目付け)
 目付けは、JIS L 1096(1999) 8.4.2に基づき、20cm×20cmの試験片を基布片端から20cm毎に採取し、それぞれの質量(g)を量り、その平均値を1m2当たりの質量(g/m2)に換算することにより算出した。
(厚み)
 厚みは、JIS L 1096(1999) 8.5 A法に基づき、基布片端から20cm毎に、直径が1.05cmの円形の測定子の厚さ測定機を用いて、1.0kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定した。
(カバーファクター)
 織段欠点は、加工後の基布に対して、10mm以上の密度異常を目視によりカウントし、500m当たりの発生数を計算した。
(通気度)
 通気度は、ASTM D3886法に基づき、試料の異なる6か所について、測定面積100cm2、500Pa差圧下での、試験片を通過する空気量(L/dm2/min)を求め、平均値を算出し通気度(L/dm2/min)とした。
<評価方法>
(熱利用率)
 熱利用率は、JIS L 1927(2020)に基づき、15cm×15cmの試験片を3枚採取し、カトーテック社製KES-F7にて、一定温度に設定した熱板に試料をセットし、空気と接触させ、試料面に一定速度の風を吹きつける際に、この時に試料を介して熱板を一定温度に保つために必要な電力量を測定し、下記式(3)により算出した。
式(3) 熱利用率(%) = (Q0(W)-Qd(W))/Q0×100(%)
Q0: 熱版に試料を置かずに計測した電力量(W)
Qd: 熱板に試料を置いたときに計測した電力量(W)
(バッグ表面温度)
 バッグ表面温度は、60リットルのエアバッグ袋体を縫製し、インフレータ試験機(60リットル用E式)で膨脹展開させたときの基布表面温度を赤外線放射温度計(エー・アンド・ディ社製AD-5615)で測定した。
<実施例1>
(糸の準備)
 タテ糸およびヨコ糸として、ナイロン6,6からなり、円形の断面形状を有し、単繊維繊度が3.57dtexの単繊維数136フィラメントで構成され、総繊度485dtexであり、引張強度が8.4cN/dtex、伸度が23.5%であり、無撚りの合成繊維フィラメントを準備した。
(製織)
 上記の合成繊維フィラメントをタテ糸およびヨコ糸として使用し、ウォータージェットルームで、タテ糸およびヨコ糸の織密度がいずれも48本/2.54cmである幅200cmの織物を製織した。その際、タテ糸張力を90cN/本に調整し、織機回転数は660rpmとした。
(精練および熱セット)
 次いで、得られた織物を、65℃で精練し、120℃で乾燥した。その後、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、150℃にて60秒間の熱セット加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は28,514Jであった。
<実施例2>
(糸の準備)
 タテ糸およびヨコ糸として、実施例1と同様の合成繊維フィラメントを準備した。
(製織)
 次いで、実施例1と同様の方法により製織した。その際、タテ糸およびヨコ糸の織密度がいずれも51本/2.54cmである織物を製織した。
(精練および熱セット)
 次いで、得られた織物を、実施例1と同様の方法により適宜精練、乾燥した。熱セット加工については、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、160℃にて60秒間の加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は33,521Jであった。
<実施例3>
(糸の準備)
 タテ糸およびヨコ糸として、実施例1と同様の合成繊維フィラメントを準備した。
(製織)
 上記の合成繊維フィラメントをタテ糸およびヨコ糸として使用し、ウォータージェットルームで、タテ糸およびヨコ糸の織密度がいずれも57本/2.54cmである幅200cmの織物を製織した。その際、タテ糸張力を170cN/本に調整し、織機回転数は660rpmとした。
(精練および熱セット)
 次いで、得られた織物を、実施例1と同様の方法により適宜精練、乾燥した。熱セット加工については、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、160℃にて60秒間の加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は37,176Jであった。
<実施例4>
(糸の準備)
 タテ糸およびヨコ糸として、ナイロン6,6からなり、円形の断面形状を有し、単繊維繊度が6.61dtexの単繊維数108フィラメントで構成され、総繊度714dtexであり、引張強度が8.4cN/dtex、伸度が23.5%であり、無撚りの合成繊維フィラメントを準備した。
(製織)
 上記の合成繊維フィラメントをタテ糸およびヨコ糸として使用し、ウォータージェットルームで、タテ糸およびヨコ糸の織密度がいずれも39本/2.54cmである幅200cmの織物を製織した。その際、タテ糸張力を100cN/本に調整し、織機回転数は660rpmとした。
(精練および熱セット)
 次いで、得られた織物を、65℃で精練し、120℃で乾燥した。その後、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、180℃にて60秒間の熱セット加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は44,799Jであった。
<実施例5>
(糸の準備)
 タテ糸およびヨコ糸として、ナイロン6,6からなり、円形の断面形状を有し、単繊維繊度が2.57dtexの単繊維数136フィラメントで構成され、総繊度350dtexであり、引張強度が8.4cN/dtex、伸度が23.5%であり、無撚りの合成繊維フィラメントを準備した。
(製織)
 上記の合成繊維フィラメントをタテ糸およびヨコ糸として使用し、ウォータージェットルームで、タテ糸およびヨコ糸の織密度がいずれも60本/2.54cmである幅200cmの織物を製織した。その際、タテ糸張力を85cN/本に調整し、織機回転数は660rpmとした。
(精練および熱セット)
 次いで、得られた織物を、65℃で精練し、120℃で乾燥した。その後、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、150℃にて50秒間の熱セット加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は26,412Jであった。
<比較例1>
(糸の準備)
 タテ糸およびヨコ糸として、実施例1と同様の合成繊維フィラメントを準備した。
(製織)
 次いで、実施例1と同様の方法により製織した。
(精練および熱セット)
 次いで、得られた織物を、実施例1と同様の方法により適宜精練、乾燥した。熱セット加工については、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、120℃にて60秒間の加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は19,960であった。
<比較例2>
(糸の準備)
 タテ糸およびヨコ糸として、ナイロン6,6からなり、円形の断面形状を有し、単繊維繊度が4.86dtexの単繊維数36フィラメントで構成され、総繊度175dtexであり、引張強度が9.2cN/dtex、伸度が23.5%であり、無撚りの合成繊維フィラメントを準備した。
(製織)
 上記の合成繊維フィラメントをタテ糸およびヨコ糸として使用し、ウォータージェットルームで、タテ糸およびヨコ糸の織密度がいずれも84本/2.54cmである幅200cmの織物を製織した。その際、タテ糸張力を100cN/本に調整し、織機回転数は660rpmとした。
(精練および熱セット)
 次いで、得られた織物を、65℃で精練し、120℃で乾燥した。その後、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、130℃にて60秒間の熱セット加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は15,904Jであった。
<比較例3>
(糸の準備)
 タテ糸およびヨコ糸として、ナイロン6,6からなり、円形の断面形状を有し、単繊維繊度が6.53dtexの単繊維数36フィラメントで構成され、総繊度235dtexであり、引張強度が8.4cN/dtex、伸度が23.5%であり、無撚りの合成繊維フィラメントを準備した。
(製織)
 上記の合成繊維フィラメントをタテ糸およびヨコ糸として使用し、ウォータージェットルームで、タテ糸およびヨコ糸の織密度がいずれも70本/2.54cmである幅200cmの織物を製織した。その際、タテ糸張力を100cN/本に調整し、織機回転数は660rpmとした。
(精練および熱セット)
 次いで、得られた織物を、65℃で精練し、120℃で乾燥した。その後、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、120℃にて60秒間の熱セット加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は15,407Jであった。
<比較例4>
(糸の準備)
 タテ糸およびヨコ糸として、実施例1と同様の合成繊維フィラメントを準備した。
(製織)
 次いで、実施例1と同様の方法により製織した。
(精練および熱セット)
 次いで、得られた織物を、実施例1と同様の方法により適宜精練、乾燥した。熱セット加工については、ピンテンターを用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で、220℃にて30秒間の加工を施した。熱セット前の基布温度は50℃であり、熱セット工程で与えられた熱量は48,474Jであった。
 実施例1~5および比較例1~4で得られたそれぞれの基布について、上記した評価方法により、基布物性等を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~5で作製した基布は、熱利用率に優れていた。また、実施例1~5で作製した基布は、エアバッグ表面の温度を低下させる断熱効果を有することがわかる。
 一方、比較例1~4で作製した基布は、熱利用率が低く、エアバッグ表面の温度が上昇した。そのため、これらの基布は、エアバッグ展開時に、インフレーターから放射されたエネルギーロスが大きく、エアバッグの内圧保持性・乗員拘束性能が低下する懸念があった。

Claims (7)

  1.  ポリアミド繊維で構成される織物からなり、
     下記の式(1)より算出される熱利用率が10%以上である、エアバッグ用ノンコート基布。
    式(1) 熱利用率(%) = (Q0(W)-Qd(W))/Q0×100(%)
    Q0: 熱版に試料を置かずに計測した電力量(W)
    Qd: 熱板に試料を置いたときに計測した電力量(W)
  2.  織物を構成するマルチフィラメントの総繊度が350~700dtex、単繊維繊度が2~7dtex、引張強度が6.5~9.5cN/dtexである、請求項1記載のエアバッグ用ノンコート基布。
  3.  カバーファクターが2000~2600である、請求項1または2記載のエアバッグ用ノンコート基布。
  4.  試験差圧500Paで測定した時の通気度が4.0L/dm2/min以下である、請求項1または2に記載のエアバッグ用ノンコート基布。
  5.  請求項1または2に記載のエアバッグ用ノンコート基布を製造するための方法であり、
     熱セット工程を有し、下記の式(2)より算出される基布に与えられる熱量が20,000~50,000Jである、エアバッグ用ノンコート基布の製造方法。
    式(2) 熱量(J) = (C(J/(kg・℃)×ρ(kg/L)×V(L)×ΔT(℃))
    C: 比熱(J/kg・℃)
    ρ: 密度(kg/L)
    V: 体積(L)
    ΔT: 上昇温度(℃)
  6.  熱セット工程での加熱時間が40秒以上である、請求項5記載のエアバッグ用ノンコート基布の製造方法。
  7.  請求項1または2記載のエアバッグ用ノンコート基布が縫製された、エアバッグ。
PCT/JP2023/022117 2022-07-04 2023-06-14 エアバッグ用ノンコート基布、エアバッグ用ノンコート基布の製造方法およびエアバッグ WO2024009713A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-107530 2022-07-04
JP2022107530 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024009713A1 true WO2024009713A1 (ja) 2024-01-11

Family

ID=89453220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022117 WO2024009713A1 (ja) 2022-07-04 2023-06-14 エアバッグ用ノンコート基布、エアバッグ用ノンコート基布の製造方法およびエアバッグ

Country Status (1)

Country Link
WO (1) WO2024009713A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111958A (ja) * 2008-11-05 2010-05-20 Toray Ind Inc ノンコートエアバッグ用織物
WO2020059443A1 (ja) * 2018-09-19 2020-03-26 東レ株式会社 エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111958A (ja) * 2008-11-05 2010-05-20 Toray Ind Inc ノンコートエアバッグ用織物
WO2020059443A1 (ja) * 2018-09-19 2020-03-26 東レ株式会社 エアバッグ用ノンコート基布、エアバッグおよびエアバッグ用ノンコート基布の製造方法

Similar Documents

Publication Publication Date Title
EP3279377B1 (en) Coated base fabric for airbag, airbag, and method for producing coated base fabric for airbag
EP3279376B1 (en) Polyester base fabric for airbag, polyester airbag, and method for manufacturing polyester base fabric for airbag
JP5614512B1 (ja) エアバッグ用織物、その製造方法およびエアバッグ
WO2017010458A1 (ja) エアバッグ用基布、エアバッグおよびエアバッグ用基布の製造方法
JPWO2012026455A1 (ja) エアバッグ用基布
JP5003378B2 (ja) エアバッグ用コート布帛、エアバッグおよびエアバッグ用コート布帛の製造方法
US11761126B2 (en) Non-coated base fabric for airbag, airbag, and manufacturing method of non-coated base fabric for airbag
JP3733869B2 (ja) エアバッグ用高密度織物
WO2023037982A1 (ja) エアバッグ用織物およびエアバッグ
US6832633B2 (en) High density fabric for air bag and method for manufacturing high density fabric
WO2024048153A1 (ja) エアバッグ用織物
JP7188393B2 (ja) エアバッグ基布およびそれを含むエアバッグ
JP7380549B2 (ja) エアバッグ用基布およびエアバッグ用基布の製造方法
WO2024009713A1 (ja) エアバッグ用ノンコート基布、エアバッグ用ノンコート基布の製造方法およびエアバッグ
JP3544179B2 (ja) 高密度織物の製織法
JP4496451B2 (ja) 高密度織物の製織方法
JP7533215B2 (ja) エアバッグ用基布、エアバッグ用基布の製造方法およびエアバッグ
JP4574890B2 (ja) エアバック用高密度織物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023545854

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835248

Country of ref document: EP

Kind code of ref document: A1