WO2024009548A1 - 紫外線吸収用組成物、及びその製造方法 - Google Patents

紫外線吸収用組成物、及びその製造方法 Download PDF

Info

Publication number
WO2024009548A1
WO2024009548A1 PCT/JP2023/005774 JP2023005774W WO2024009548A1 WO 2024009548 A1 WO2024009548 A1 WO 2024009548A1 JP 2023005774 W JP2023005774 W JP 2023005774W WO 2024009548 A1 WO2024009548 A1 WO 2024009548A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
composition
carbon
ultraviolet
ultraviolet absorbing
Prior art date
Application number
PCT/JP2023/005774
Other languages
English (en)
French (fr)
Inventor
翔 武富
良平 森
Original Assignee
冨士色素株式会社
Gsアライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冨士色素株式会社, Gsアライアンス株式会社 filed Critical 冨士色素株式会社
Publication of WO2024009548A1 publication Critical patent/WO2024009548A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/31Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to an ultraviolet absorbing composition that can be used in products such as cosmetics, a method for producing the same, and an ultraviolet absorbing method using the same.
  • UVA ultraviolet rays
  • UVB wavelength 280 to 315 nm
  • UVC wavelength 200 to 280 nm
  • Titanium oxide particularly reflects ultraviolet rays with a wavelength of 260 to 400 nm, which mainly includes UVB (wavelengths of 280 to 315 nm).
  • Zinc oxide reflects similar wavelengths, but reflects UVA (wavelengths from 315 to 380 nm) better than titanium oxide. Therefore, the two have been mixed and used as an inorganic ultraviolet reflector.
  • Patent Document 1 describes a highly transparent and highly dispersible ultraviolet absorber in which the surface of a flaky substrate is coated with ultrafine zinc oxide particles having an average particle diameter of 100 nm or less.
  • Patent Document 2 lists a sunscreen aerosol cosmetic containing ethylhexyl methoxycinnamate and the like as an organic ultraviolet absorber.
  • the object of the present invention is to provide an ultraviolet absorbing composition that has an excellent ultraviolet absorption function, particularly absorbs UVA (wavelength 315 to 380 nm) and UVB (wavelength 280 to 315 nm), and has excellent dispersibility, and its production.
  • An object of the present invention is to provide a method and an ultraviolet absorption method using the method.
  • the inventors of the present invention conducted extensive research to achieve the above object, and found that by dispersing carbon-based quantum dots well in an oily base or a hydrophilic base, excellent ultraviolet absorption function can be exhibited.
  • the present invention has now been completed.
  • the present invention includes the following aspects.
  • An ultraviolet absorbing composition containing carbon-based quantum dots, an aqueous solvent, a surfactant, and an oily base.
  • An ultraviolet absorbing composition containing carbon-based quantum dots, an aqueous solvent, and a hydrophilic base.
  • the content of the carbon-based quantum dots is 0.001 to 10 w/w% based on the total amount of the composition.
  • the surfactant is one or more selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Or 3.
  • the oily base is one or more selected from the group consisting of hydrocarbons, fatty acids, higher alcohols, ester oils, fats and oils, waxes, siloxanes, and silicones. Or 3. ⁇ 4.
  • the hydrophilic base is one or more selected from the group consisting of saccharides, water-soluble polymers, polyhydric alcohols, cellulose derivatives, glycol ethers, and lower alcohols. ⁇ 4.
  • the formulation of the ultraviolet absorbing composition according to any of the above may be in the form of a liquid, a suspension, an emulsion, a cream, an ointment, a gel, a liniment, a spray, an aerosol, a poultice, or a sheet. , a powder agent, and a lotion agent.
  • a cosmetic comprising the ultraviolet absorbing composition according to any one of the above.
  • a method for producing an ultraviolet absorbing composition comprising a step of mixing an aqueous dispersion containing carbon-based quantum dots and an aqueous solvent, a surfactant, and an oily base.
  • a method for producing an ultraviolet absorbing composition comprising a step of mixing an aqueous dispersion containing carbon-based quantum dots and an aqueous solvent, and a hydrophilic base.
  • An ultraviolet absorption method using an ultraviolet absorption composition containing carbon-based quantum dots, an aqueous solvent, and a hydrophilic base is provided.
  • the ultraviolet absorbing composition of the present invention it is possible to provide an ultraviolet absorbing composition that has an excellent ultraviolet absorbing function and has excellent dispersibility. Further, according to the method for producing an ultraviolet absorbing composition of the present invention, it is possible to obtain an ultraviolet absorbing composition having an excellent ultraviolet absorbing function and excellent dispersibility. Further, according to the ultraviolet absorption method of the present invention, it is possible to provide an ultraviolet absorption method using an ultraviolet absorption composition that has an excellent ultraviolet absorption function and has excellent dispersibility.
  • the ultraviolet absorbing composition of the present invention contains carbon-based quantum dots, an aqueous solvent, a surfactant, and an oily base.
  • the ultraviolet absorbing composition of the present invention contains carbon-based quantum dots, an aqueous solvent, and a hydrophilic base. Further, the ultraviolet absorbing composition of the present invention can be used in products such as cosmetics. EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated in detail. However, the present invention is not limited to the following embodiments.
  • the ultraviolet absorbing composition of the present invention contains carbon-based quantum dots.
  • Quantum dots refer to nanoscale particles with unique optical properties that comply with quantum chemistry and quantum mechanics. The optical properties can be adjusted depending on the particle size, so they have characteristic luminescent properties that depend on the particle size. have.
  • carbon-based quantum dots can be used, which have luminescent properties depending on particle size due to ⁇ bonds between carbon atoms.
  • carbon-based quantum dots examples include graphene quantum dots with a graphene structure, carbon quantum dots without a graphene structure, and quantum dots that are chemically modified. It is preferable that it is one or more selected from the group consisting of.
  • carbon-based quantum dots are commercially available from Sigma-Aldrich, Fuji Shiki Co., Ltd., GS Alliance Co., Ltd., Funakoshi Co., Ltd., Kishida Chemical Co., Ltd., and any of these can be used. From the viewpoint of practicality, it is preferable to use an aqueous dispersion in which carbon-based quantum dots are dispersed in an aqueous solvent as described below, and it is also possible to obtain such a form as a commercial product. It is.
  • the content of carbon-based quantum dots relative to the total amount of the composition is not particularly limited when used as a raw material, but from a practical point of view and obtaining appropriate absorbance, the content of carbon-based quantum dots relative to the total amount of the composition is 0.001 w/w relative to the total amount of the composition. % or more and 10 w/w% or less, more preferably 0.01 w/w% or more and 8 w/w% or less, still more preferably 0.05 w/w% or more and 6 w/w% or less, Particularly preferably 0.1 w/w% or more and 5 w/w% or less, particularly preferably 0.1 w/w% or more and 3.5 w/w% or less.
  • the unit of content "w/w%” is synonymous with w/w% of "g/100g".
  • the content of carbon-based quantum dots at the time of formulation is preferably the concentration described above, but when used as a raw material, the concentration at the time of formulation may be used, or the concentration may be higher than that.
  • Graphene quantum dots include non-functionalized graphene quantum dots, functionalized graphene quantum dots, pristine graphene quantum dots, and combinations thereof.
  • Functionalized graphene quantum dots may be functionalized with one or more functional groups.
  • Functional groups include oxygen groups, carboxyl groups, carbonyl groups, amorphous carbon, hydroxyl groups, alkyl groups, aryl groups, esters, amines, amides, polymers, poly(propylene oxide), and combinations thereof.
  • Graphene quantum dots also include functionalized graphene quantum dots that are functionalized with one or more alkyl groups.
  • Alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, and combinations thereof.
  • alkyl groups include octyl groups (eg, octylamine).
  • Graphene quantum dots can also be functionalized with one or more polymer precursors.
  • graphene quantum dots can be functionalized with one or more monomers (eg, vinyl monomers).
  • Graphene quantum dots can be functionalized with polymer precursors that polymerize to form polymer-functionalized graphene quantum dots.
  • an end-functionalized polyvinyl adduct can be formed by functionalizing the ends with a vinyl monomer that polymerizes.
  • Graphene quantum dots include functionalized graphene quantum dots that are functionalized with one or more hydrophilic functional groups.
  • Hydrophilic functional groups include carboxyl groups, carbonyl groups, hydroxyl groups, hydroxyalkyl groups, poly(ethylene glycol), poly(vinyl alcohol), poly(acrylic acid), and combinations thereof.
  • Graphene quantum dots include functionalized graphene quantum dots that are functionalized with one or more hydrophobic functional groups.
  • Hydrophobic functional groups include alkyl groups, aryl groups, and combinations thereof.
  • Hydrophobic functional groups include one or more alkylamides or arylamides.
  • the graphene quantum dots include edge-functionalized graphene quantum dots.
  • the end-functionalized graphene quantum dots include one or more of the hydrophobic functional groups described above.
  • the edge-functionalized graphene quantum dots include one or more hydrophobic functional groups as described above.
  • the edge-functionalized graphene quantum dots also include one or more hydrophilic functional groups as described above.
  • Edge-functionalized graphene quantum dots include one or more oxygen adducts on their edges.
  • Edge-functionalized graphene quantum dots include adducts of one or more amorphous carbons on their edges.
  • Graphene quantum dots are end-functionalized with one or more alkyl or aryl groups, such as alkylamides or arylamides. Edge functionalization of graphene quantum dots with alkyl or aryl groups is carried out by reaction of an alkyl or arylamide with a carboxylic acid at the ends of the graphene quantum dots.
  • Graphene quantum dots include pristine graphene quantum dots.
  • Pristine graphene quantum dots include graphene quantum dots that remain unprocessed after synthesis.
  • Pristine graphene quantum dots include graphene quantum dots that have not undergone any additional surface modification after synthesis.
  • graphene quantum dots can be obtained from various sources.
  • graphene quantum dots include coal-derived graphene quantum dots, coke-derived graphene quantum dots, and combinations thereof.
  • Graphene quantum dots include graphene quantum dots derived from coke.
  • Graphene quantum dots include graphene quantum dots derived from coal.
  • Coal includes, but is not limited to, anthracite, bituminous, sub-bituminous, modified bituminous, asphaltenes, asphalt, peat, lignite, boiler coal, petrified oil, carbon black, activated carbon, and combinations thereof. is included.
  • the carbon source is bituminous coal. Carbon includes bituminous coal.
  • Graphene quantum dots can have various diameters.
  • graphene quantum dots preferably have diameters ranging from about 1 nm to about 100 nm, more preferably from about 1 nm to about 50 nm, and more preferably from about 1 nm to about 20 nm. It is more preferable to have.
  • graphene quantum dots can also have various structures.
  • graphene quantum dots may have a crystalline structure, such as a crystalline hexagonal structure.
  • Graphene quantum dots may have a single layer or multiple layers, for example graphene quantum dots have from about two layers to about four layers.
  • Graphene quantum dots can also have various quantum yields.
  • the graphene quantum dots have a quantum yield in the range of about 30-80%.
  • the fluorescence characteristic of the aqueous dispersion of graphene quantum dots is such that the emission wavelength is preferably 380 nm to 650 nm with respect to at least one wavelength of excitation light of 300 nm to 420 nm.
  • Graphene quantum dots may be in the form of powder or pellets. Graphene quantum dots may be in a liquid state, a dispersion, a solution, or a molten state. From the viewpoint of dispersibility, graphene quantum dots are preferably in the form of an aqueous dispersion dispersed in an aqueous solvent as described below, and it is also possible to obtain such a form as a commercial product.
  • graphene quantum dots can include exposing a carbon source to an oxidizing agent, resulting in the formation of graphene quantum dots.
  • Carbon sources include coal, coke, and combinations thereof.
  • Oxidizing agents include acids, including sulfuric acid, nitric acid, phosphoric acid, hypophosphorous acid, fuming sulfuric acid, hydrochloric acid, oleum, chlorosulfonic acid, and combinations thereof.
  • Oxidizing agents also include potassium permanganate, sodium permanganate, hypophosphorous acid, nitric acid, sulfuric acid, hydrogen peroxide, and combinations thereof.
  • a preferred oxidizing agent is a mixture of potassium permanganate, sulfuric acid and hypophosphorous acid.
  • the carbon source is exposed to the oxidizing agent by sonicating the carbon source in the presence of the oxidizing agent. It includes heating the carbon source in the presence of an oxidizing agent. Heating is performed at a temperature of at least about 100°C.
  • Carbon quantum dots are quantum dots that do not have a ring structure like graphene. It has the property that it is more easily affected by pH value than graphene quantum dots, and its emission intensity and peak position change.
  • Carbon quantum dots can have various diameters.
  • carbon quantum dots preferably have diameters ranging from about 1 nm to about 100 nm, more preferably from about 1 nm to about 50 nm, and more preferably from about 1 nm to about 30 nm. It is more preferable to have.
  • Carbon quantum dots can also have different quantum yields.
  • the carbon quantum dots have a quantum yield in the range of about 20-50%.
  • the fluorescence characteristic of the aqueous dispersion of carbon quantum dots is such that the emission wavelength is preferably 380 nm to 600 nm with respect to at least one wavelength of excitation light of 300 nm to 420 nm.
  • the method for producing carbon quantum dots is not much different from the method for producing graphene quantum dots, the only difference being whether or not the raw materials used and production conditions facilitate forming a graphene structure.
  • carbon-based quantum dots containing both can be manufactured using, for example, a method of manufacturing a carbon target by laser ablation and then chemical treatment (Japanese Patent Publication No. 2012-501863), or a method of manufacturing from candle soot ( H. Liu, et al., Angew. Chem. er. 2010, 22, 505-509.), a method of manufacturing from a chemical reaction using graphite oxide as a precursor (JP 2012-136566), a method of manufacturing from a conversion reaction of fullerene (J. Lu, et al. , Nature Nanotech. 2011, 6, 247-252.), and a method of chemically processing cheaper carbon raw materials such as carbon fiber and activated carbon (J. Peng, et al., Nano Lett.
  • the carbon quantum dots may be in the form of powder or pellets.
  • the carbon quantum dots may be in a liquid state, a dispersion, a solution, or a molten state. From the viewpoint of dispersibility, it is preferable that the carbon quantum dots be in the form of an aqueous dispersion in which the carbon quantum dots are dispersed in an aqueous solvent as described below, and it is also possible to obtain such a form as a commercial product.
  • the ultraviolet absorbing composition of the present invention contains an aqueous solvent.
  • the aqueous solvent in the present invention is preferably water or one containing mainly water.
  • the content of water relative to the total amount of the aqueous solvent is preferably 80 w/w% or more and 100 w/w% or less, more preferably 85 w/w% or more and 99.9 w/w% or less, based on the total amount of the aqueous solvent. It is more preferably 90 w/w% or more and 99.5 w/w% or less.
  • the water used in the present invention is not particularly limited, and examples thereof include tap water, purified water, distilled water, ion exchange water, pure water, ultrapure water, and the like.
  • the aqueous solvent in the present invention can contain conventional, well-known arbitrary components without particular limitation, and may include arbitrary substances such as dispersants, acids, salts, and organic solvents.
  • the organic solvent are preferably organic solvents that are miscible with water, such as methanol, ethanol, isopropanol, acetone, acetonitrile, propionitrile, tetrahydrofuran, 1,4-dioxane, methyl isobutyl ketone, methyl ethyl ketone, ⁇ -Butyl lactone, propylene carbonate, sulfolane, nitromethane, N,N-dimethylformamide, N-methylacetamide, dimethylsulfoxide, dimethylsulfone, N-methylpyrrolidone, benzene, toluene, xylene, methylene chloride, chloroform, dichloroethane, etc. .
  • the content of the aqueous solvent relative to the total amount of the composition is not particularly limited, but regardless of whether the composition uses an oil base or a hydrophilic base, the composition With respect to the total amount of The content is 30 w/w% or less.
  • water dispersion In the present invention, from the viewpoint of stability, it is preferably in the form of an aqueous dispersion containing the above-mentioned carbon-based quantum dots and the above-mentioned aqueous solvent. It is also possible to use the product as is. Moreover, in order to improve dispersibility, it is also possible to further dilute the aqueous dispersion with the above-mentioned aqueous solvent to adjust the concentration of the carbon-based quantum dots before use.
  • the content of carbon-based quantum dots relative to the total amount of the water dispersion is preferably 1 w/w% or more and 30 w/w% or less, more preferably 5 w/w% or less, based on the total amount of the water dispersion. It is not less than w% and not more than 20w/w%.
  • the aqueous dispersion may contain conventional, well-known arbitrary components without particular limitation, and may include arbitrary substances such as dispersants, acids, salts, and organic solvents.
  • the aqueous dispersion in the present invention can be produced by a method commonly used in the technical field, for example, by mixing and stirring carbon-based quantum dots, an aqueous solvent, and other arbitrary components as necessary.
  • the ultraviolet absorbing composition of the present invention contains a surfactant when an oily base is used in the composition.
  • a hydrophilic base is used in the composition, it is also possible to include a surfactant.
  • the surfactant in the present invention is not particularly limited, and well-known surfactants can be used, but from the viewpoint of improving dispersibility, nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, Preferably, it is one or more selected from the group consisting of surfactants.
  • the nonionic surfactant is not particularly limited, and well-known ones can be used, such as polyoxyalkylene alkyl ether, polyoxyalkylene alkenyl ether, alkyl glyceryl ether, alkenyl glyceryl ether, fatty acid sucrose ester, Glycerin fatty acid ester, polyglycerin fatty acid ester, polyethylene glycol fatty acid ester, propylene glycol fatty acid, ester higher fatty acid, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester, mono- or diethanolamide , polyoxyethylene hydrogenated castor oil, alkyl saccharides, alkylamine oxides, alkylamidoamine oxides, polyoxyalkylene-modified silicones, polyoxyalkylene-modified organopolysiloxanes, polyoxyal
  • ether type nonionic surfactants such as polyoxyalkylene alkyl ether, polyoxyalkylene alkenyl ether, alkylglyceryl ether, alkenylglyceryl ether, fatty acid sucrose ester, glycerin fatty acid ester, polyglycerin fatty acid ester , polyethylene glycol fatty acid ester, propylene glycol fatty acid, ester higher fatty acid, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester, and other ester type nonionic surfactants can be used.
  • ester type nonionic surfactants such as polyoxyalkylene alkyl ether, polyoxyalkylene alkenyl ether, alkylglyceryl ether, alkenylglyceryl ether, fatty acid sucrose ester, glycerin fatty acid ester, polyglycerin
  • examples of the sorbitan fatty acid ester include sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, sorbitan coconut oil fatty acid, and sorbitan tristearate.
  • Rheodol SP-P10 As sorbitan monopalmitate, Rheodol SP-P10, as sorbitan monostearate, Rheodol SP-S10V, as sorbitan monooleate, Rheodol SP-O10V, Rheodol AO-10V, as sorbitan sesquioleate, Rheodol AO-15V, Palm
  • the oil fatty acid sorbitan include commercially available products such as Rheodol SP-L10 and sorbitan tristearate such as SP-S30V (manufactured by Kao Corporation).
  • the anionic surfactant is not particularly limited, and well-known ones can be used, and examples thereof include sulfuric acid-based, sulfonic acid-based, carboxylic acid-based, and phosphoric acid-based ones.
  • sulfuric acid type include alkyl sulfates, polyoxyalkylene alkyl ether sulfates, polyoxyalkylene alkenyl ether sulfates, and sulfosuccinic acid alkylene alkylphenyl ether sulfates.
  • sulfonic acids include alkanesulfonic acid salts and the like.
  • carboxylic acids examples include alkyl ether carboxylic acids or salts thereof, polyoxyethylene alkyl ether carboxylic acids or salts thereof, and the like.
  • phosphoric acids examples include monoalkyl phosphates. These can be used alone or in combination of two or more.
  • polyoxyethylene alkyl ether carboxylic acid or its salt specifically, polyoxyethylene lauryl ether carboxylic acid or its salt, polyoxyethylene myristyl ether carboxylic acid or its salt, and polyoxyethylene palmityl ether carboxylic acid or salts thereof.
  • these commercially available products include Kao Akipo RLM-45NV, Kao Akipo RLM-45, Kao Akipo RLM-100NV, and Kao Akipo RLM-100 (all manufactured by Kao Corporation).
  • the cationic surfactant is not particularly limited, and well-known ones can be used, such as quaternary ammonium salts, alkylamine salts, and the like. These can be used alone or in combination of two or more.
  • quaternary ammonium salts include lauryltrimethylammonium chloride, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, alkyl (carbon number 11 to 23) benzyldimethylammonium chloride, alkyltrimethylammonium salt, Examples include dialkyldimethylammonium salts and alkylbenzyldimethylammonium salts. Examples of these commercially available products include Cortamine 24P, Cortamine 60W, Cortamine 86P Conc, Cortamine 86W, Cortamine D86P, Sanisol C, and Sanisol B-50 (all manufactured by Kao Corporation).
  • examples of the alkylamine salt include an alkylamine salt having an alkyl group having 11 or more and 23 or less carbon atoms (for example, the salt is an acetate).
  • Specific examples of the alkylamine salt include coconut amine acetate and stearylamine acetate. Examples of these commercially available products include Acetamine 24 and Acetamine 86 (both manufactured by Kao Corporation).
  • amphoteric surfactant is not particularly limited, and well-known ones can be used, including, for example, acetic acid betaine type surfactants such as lauryl dimethylaminoacetic acid betaine, and amine oxide type surfactants such as lauryl dimethylamine oxide.
  • acetic acid betaine type surfactants such as lauryl dimethylaminoacetic acid betaine
  • amine oxide type surfactants such as lauryl dimethylamine oxide.
  • imidazolinium betaine type surfactants such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine
  • amidobetaine type surfactants such as lauric amidopropyl betaine
  • sulfonate surfactants such as laurylhydroxysulfobetaine.
  • betaine type surfactants include betaine type surfactants. These can be used alone or in combination of two or more.
  • the above-mentioned surfactants can be used alone or in combination of two or more.
  • the content of surfactants relative to the total amount of the composition is determined from the viewpoint of improving dispersibility when using an oily base in the composition.
  • the content of the surfactant is not particularly limited, but the amount as described above It is also possible to prepare
  • the ratio of surfactant to carbon-based quantum dots is 0.01 parts by mass or more and 20.0 parts by mass to 1 part by mass of the total content of carbon-based quantum dots. Parts or less are preferable, and more preferably 0.1 parts by mass or more and 10.0 parts by mass or less.
  • the ultraviolet absorbing composition of the present invention preferably contains an oily base.
  • oily base means that the solubility in water is 1 w/w% or less.
  • the oily base in the present invention is not particularly limited, and well-known ones can be used, but examples include hydrocarbons, fatty acids, higher alcohols, ester oils, fats and oils, waxes, siloxanes, and silicones. Can be done.
  • the oily base is preferably one or more selected from the group consisting of hydrocarbons, fatty acids, higher alcohols, ester oils, fats and oils, waxes, siloxanes, and silicones.
  • hydrocarbons examples include paraffin, isoparaffin, liquid paraffin, liquid isoparaffin, squalane, petrolatum, ⁇ -olefin oligomer, light liquid paraffin, light liquid isoparaffin, and the like. These can be used alone or in combination of two or more.
  • petrolatum is generally made by decolorizing and refining a mixture of hydrocarbons obtained from petroleum, and most of it consists of branched paraffins (isoparaffins, etc.) and alicyclic hydrocarbons (cycloaliphatic hydrocarbons, etc.). paraffin, naphthene, etc.).
  • fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, isostearic acid, and oleic acid. These can be used alone or in combination of two or more.
  • higher alcohol means an alcohol having 10 or more and 30 or less carbon atoms.
  • examples of the higher alcohol include cetanol, stearyl alcohol, cetostearyl alcohol, lauryl alcohol, oleyl alcohol, isostearyl alcohol, behenyl alcohol, cholesterol, and phytosterol. These can be used alone or in combination of two or more.
  • ester oils include isopropyl myristate, cetyl octanoate, octyldodecyl myristate, isopropyl palmitate, isopropyl isostearate, octyl palmitate, diisopropyl adipate, diisopropyl sebacate, isononyl isononanoate, isotridecyl isononanoate, cetyl lactate.
  • isostearyl isostearate isostearyl isostearate, cholesteryl 12-hydroxystearate, cholesteryl oleate, phytosteryl macadamia nut fatty acid, phytosteryl oleate, dextrin palmitate, inulin stearate, hydrogenated jojoba oil, dipentaerythritol fatty acid ester, neopentyl glycol dicaprate, Bisethoxydiglycol cyclohexane-1,4-dicarboxylate, tri-2-ethylhexyl trimellitate, pentaneerythritol tetra-2-ethylhexanoate, glycerin tri-2-ethylhexanoate, glyceryl tri(caprylic/capric acid), Tri(caprylic acid/capric acid/myristic acid/stearic acid) glyceryl, di(phytosteryl/octyldodecyl
  • oils and fats examples include avocado oil, macadamia nut oil, corn oil, olive oil, jojoba oil, grape seed oil, sunflower oil, almond oil, sesame oil, cacao butter, soybean oil, peanut oil, evening primrose oil, and rapeseed oil. , vegetable oils such as cottonseed oil, palm oil, palm kernel oil, coconut oil, sunflower oil, and safflower oil, and animal oils such as beef tallow, lard, fish oil, milk fat, horse tallow, egg yolk oil, mink oil, and turtle oil. Examples include oils and fats. These can be used alone or in combination of two or more.
  • wax examples include candelilla wax, carnauba wax, beeswax, spermaceti wax, and orange roughy oil. These can be used alone or in combination of two or more.
  • siloxane examples include methylpolysiloxane, methylphenylpolysiloxane, decamethylcyclopentasiloxane, methylcyclopentasiloxane, highly polymerized methylpolysiloxane, octamethylcyclotetrasiloxane, methylhydrogenpolysiloxane, crosslinked methylpolysiloxane, etc. can be mentioned. These can be used alone or in combination of two or more.
  • silicone examples include alkyl-modified silicones such as methyl trimethicone, dimethiconol, dimethiconol crosspolymer, and caprylyl methicone, crosslinked alkyl-modified silicones, acrylic silicones, silicone resins, and cyclic silicones. These can be used alone or in combination of two or more.
  • each of the oily bases described above can be used alone or in combination of two or more.
  • the content of the oil base based on the total amount of the composition is preferably 50w/% based on the total amount of the composition.
  • the content is from w/w% to 99w/w%, more preferably from 60w/w% to 97w/w%, even more preferably from 70w/w% to 95w/w%.
  • the ratio of the oil base to the carbon-based quantum dots is preferably 5 parts by mass or more and 700 parts by mass or less with respect to 1 part by mass of the total content of carbon-based quantum dots. , more preferably 7 parts by mass or more and 650 parts by mass or less, further preferably 10 parts by mass or more and 600 parts by mass or less.
  • the ultraviolet absorbing composition of the present invention preferably contains a hydrophilic base.
  • hydrophilic means that the solubility in water is greater than 50 w/w%.
  • the hydrophilic base in the present invention is not particularly limited, and well-known ones can be used, and examples thereof include saccharides, water-soluble polymers, polyhydric alcohols, cellulose derivatives, glycol ethers, lower alcohols, and the like.
  • the hydrophilic base is preferably one or more selected from the group consisting of saccharides, water-soluble polymers, polyhydric alcohols, cellulose derivatives, glycol ethers, and lower alcohols.
  • sugars examples include glucose, sucrose, fructose, sorbitol, maltitol, pentaerythritol, xylitol, trehalose, glucosyltrehalose, carrageenan, and the like. These can be used alone or in combination of two or more.
  • water-soluble polymers examples include polyvinylpyrrolidone, ethylene glycol triisostearate, polyoxyethylene (20) methyl glucoside triisostearate, bentonite, macrogol, sodium caseinate, and the like. These can be used alone or in combination of two or more.
  • polyhydric alcohols examples include glycerin, polyglycerin (eg, diglycerin, tetraglycerin), and the like.
  • polyhydric alcohols include glycols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propanediol, propylene glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, and butylene glycol. These can be used alone or in combination of two or more. These can be used alone or in combination of two or more.
  • cellulose derivatives include ethylcellulose, hydroxypropylcellulose, and hydroxypropylmethylcellulose. These can be used alone or in combination of two or more.
  • glycol ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether (ethoxy diglycol), diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene glycol mono Examples include ethyl ether, propylene glycol monopropyl ether, dipropylene glycol monoethyl ether, and dipropylene glycol monopropyl ether. These can be used alone or in combination of two or more.
  • lower alcohol means a monohydric alcohol having 1 to 6 carbon atoms.
  • lower alcohols include ethanol, propanol, isopropanol, n-butyl alcohol, s-butyl alcohol, t-butyl alcohol, isobutyl alcohol, pentyl alcohol, and hexyl alcohol. These can be used alone or in combination of two or more.
  • each of the above-mentioned hydrophilic bases can be used alone or in combination of two or more.
  • the content of the hydrophilic base relative to the total amount of the composition is preferably 70 w relative to the total amount of the composition. /w% or more and 99w/w% or less, more preferably 80w/w% or more and 97w/w% or less, and still more preferably 85w/w% or more and 95w/w% or less.
  • the ratio of the hydrophilic base to the carbon-based quantum dots is 400 parts by mass or more and 700 parts by mass or less per 1 part by mass of the total content of carbon-based quantum dots. It is preferably 500 parts by mass or more and 600 parts by mass or less.
  • the ultraviolet absorbing composition of the present invention may contain additives commonly used in cosmetics, quasi-drugs, etc., within a range that does not impede the effects of the present invention.
  • Additives such as pH adjusters, humectants, thickeners, stabilizers, chelating agents, preservatives, fragrances, antioxidants, whitening agents, anti-inflammatory agents, coloring agents, and feel improvers are required. They may be blended as appropriate. These additives can be used alone or in combination of two or more.
  • the content of the above additive is not particularly limited as long as it provides the desired ultraviolet absorption function, but it should be 0.01 w/w% or more and 20 w/w% or less based on the total amount of the composition. is preferable, and more preferably 0.05 w/w% or more and 15 w/w% or less.
  • the form of the ultraviolet absorbing composition of the present invention as a preparation is not particularly limited and can be arbitrarily selected depending on the intended use of the composition, such as a solution, suspension, emulsion, cream, etc. , ointments, gels, liniments, sprays, aerosols, poultices, sheets, powders, lotions and the like.
  • the form of the composition is a group consisting of solutions, suspensions, emulsions, creams, ointments, gels, liniments, sprays, aerosols, poultices, sheets, powders, and lotions. It is preferable that it is one or more selected from the following.
  • Such formulations can be prepared by methods conventional in the art.
  • the ultraviolet absorbing composition of the present invention is made into a formulation, it is preferable to adjust the content of carbon-based quantum dots so as to obtain the desired ultraviolet absorption effect, and the absorbance of petrolatum (control) at a wavelength of 350 nm is preferably adjusted. It is preferable to adjust the content of carbon-based quantum dots so that the content is 3.0 or more when the number is 1.
  • the pH of the ultraviolet absorbing composition of the present invention is not particularly limited as long as it is within a physiologically or pharmaceutically acceptable range, but for example, it is preferably 3.5 or more and 8.5 or less, and 4.0 or more. More preferably, it is 7.0 or less.
  • any container having a known shape can be used without limitation.
  • the material of the container is not particularly limited, and the container may be filled and provided in a container made of a plastic material such as polyethylene terephthalate, polyethylene naphthalate, polyarylate, polycarbonate, polyethylene, or polypropylene, or glass.
  • the ultraviolet absorbing composition of the present invention Since the ultraviolet absorbing composition of the present invention has excellent ultraviolet absorbing function and dispersibility, it can be used in various applications requiring these properties. For example, it can be used in cosmetics, paints, lubricants, agricultural chemicals, etc. In the present invention, from the viewpoint of increasing the ultraviolet absorbing function and improving dispersibility, it is preferable that the cosmetic contains the ultraviolet absorbing composition of the present invention described above. In these uses, the ultraviolet absorbing composition of the present invention may be blended, or each component may be individually blended without preparing an ultraviolet absorbing composition.
  • the cosmetics of the present invention can be widely applied to sunscreen cosmetics, make-up cosmetics, skin cleansing agents, skin care products, hair cosmetics, etc.; Cosmetics and makeup cosmetics are preferred.
  • sunscreen cosmetics may also have the function of makeup cosmetics, like base cosmetics. More specifically, base cosmetics, powder foundation, liquid foundation, cream foundation, stick foundation, concealer, loose powder, pressed powder, cheek, lipstick, lip gloss, lip liner, lip balm, lip balm, lipstick, eyebrow.
  • Pencil eyebrow powder, pencil eyeliner, liquid eyeliner, mascara, mascara base, eyelash serum, eye shadow, nail color, nail care cosmetics, nail remover, bar soap, facial cleansing foam, facial cleansing powder, cleansing gel, cleansing cream, cleansing Oil, point makeup remover, lotion, emulsion, gel/serum, oil, cream, massage cream, hand cream, body cream, pack, peel-off pack, wipe/wash-off pack, g., eye care cosmetics, lip care cosmetics, body cleanser Examples include skin cosmetics such as bath salts, body milks, body lotions, hand milks, and hand lotions, and hair cosmetics such as shampoos, conditioners, hair treatments, hair styling agents, hair colors, and perm solutions.
  • skin cosmetics such as bath salts, body milks, body lotions, hand milks, and hand lotions
  • hair cosmetics such as shampoos, conditioners, hair treatments, hair styling agents, hair colors, and perm solutions.
  • the cosmetic of the present invention can be used to protect the skin and hair from ultraviolet rays, but the amount and method of application to the skin, etc. are not particularly limited, and an appropriate amount can be applied to the skin, etc. several times a day. It can be used as The present invention can be widely applied to other industrial fields such as oil-based paints, oil-based inks, greases, industrial lubricants, and OD agents for agricultural chemicals. These can be manufactured according to conventional methods.
  • the method for producing an ultraviolet absorbing composition of the present invention includes a step of mixing an aqueous dispersion containing carbon-based quantum dots and an aqueous solvent, a surfactant, and an oily base. Further, the method for producing an ultraviolet absorbing composition of the present invention includes a step of mixing an aqueous dispersion containing carbon-based quantum dots and an aqueous solvent, and a hydrophilic base. Note that the description here may be omitted for the same contents as described above.
  • the aqueous dispersion containing carbon-based quantum dots and an aqueous solvent is commercially available, as described above, and can be used as is.
  • the content of carbon-based quantum dots relative to the total amount of the water dispersion is preferably 0.15/w% or more and 10w/w% or less, more preferably It is preferable to include a dilution step of further diluting with an aqueous solvent or the like so that the concentration is 0.5 w/w % or more and 5 w/w % or less.
  • the present invention includes a step of mixing an aqueous dispersion containing carbon-based quantum dots and an aqueous solvent, a surfactant, and the oily base.
  • a hydrophilic base is used in the composition, a step of mixing an aqueous dispersion containing carbon-based quantum dots and an aqueous solvent and the hydrophilic base is included. Such a mixing step can be performed by methods commonly used in the art.
  • the above-mentioned surfactant is added to an aqueous dispersion containing carbon-based quantum dots, the above-mentioned surfactant is sufficiently stirred, and then the above-mentioned oily base (or hydrophilic base) is added.
  • each component can be mixed uniformly.
  • the mixing conditions are preferably 40 to 100°C, more preferably 50 to 80°C, and mixing using a stirrer for about 10 minutes to 3 hours.
  • the concentration of carbon-based quantum dots in the final composition can be adjusted by adjusting the amount of the oily base (or hydrophilic base) added, but the content of carbon-based quantum dots relative to the total amount of the composition is 0.
  • the amount of oily base (or hydrophilic base) ) etc. can be added.
  • conventional and well-known arbitrary components can be included without particular limitation, and for example, arbitrary substances such as dispersants, acids, salts, and organic solvents may be included.
  • the cosmetic of the present invention can be produced by a method commonly used in the technical field, for example, by mixing and stirring the above ultraviolet absorbing composition with other ingredients.
  • the ultraviolet absorption method of the present invention uses an ultraviolet absorption composition containing carbon-based quantum dots, an aqueous solvent, a surfactant, and an oily base. Further, as described above, the ultraviolet absorption method of the present invention uses an ultraviolet absorption composition containing carbon-based quantum dots, an aqueous solvent, and a hydrophilic base. The details are as described above, so the explanation here will be omitted.
  • When the absorbance of vaseline (control) is 1 at a wavelength of 350 nm, it is 2.0 or more and less than 3.0. ⁇ : Less than 2.0 when the absorbance of vaseline (control) is 1 at a wavelength of 350 nm.
  • Figure 4 shows the aqueous dispersion of QDs (QD concentration: 1.5 w/w%) used in Example 1 (before being dispersed in Vaseline) at a concentration of 0, with the final QD concentration shown in the graph.
  • QD concentration 1.5 w/w%
  • Each sample was prepared by further diluting it with purified water to a concentration of 0.0025 w/w% to 0.10 w/w%, and was measured using a 1 cm quartz cell using the measuring device and conditions described above.
  • Figure 5 shows the aqueous dispersion of QDs (QD concentration: 1.5 w/w%) used in Example 1, with the final QD concentrations ranging from 0.15 w/w% to 3 w/w% as indicated in the graph. Adjust the amount of vaseline so that (in the case of 3 w / w %, use QD concentration 15 w / w % without diluting to QD concentration: 1.5 w / w %) to prepare each sample, Each sample was coated onto a polyethylene film to a thickness of 25 ⁇ m and measured using the measuring device and conditions described above. Note that as a control, the same measurement was performed using only petrolatum.
  • FIG. 6 is similar to FIG. 5, but the absorption spectrum was measured after 2 months.
  • the two-month-old sample is the measurement result of a sample that was stored without being tightly capped, although it was free of foreign matter such as dust when it was prepared. Absorption of 0.5 to 1.0 was confirmed in the range of 300 nm to 450 nm, and no deterioration of the ultraviolet absorption effect was observed. Especially at wavelengths of 400 nm or more, the absorption was higher than when it was prepared, but this is thought to be because the water was not sealed tightly, so water was removed and the QD concentration became high. Although measured values are not listed, it has been confirmed that the weight of the sample after two months has decreased compared to the sample at the time of preparation.
  • Example 1 An aqueous dispersion of graphene quantum dots (FUJI QD GRAPHENE 818 manufactured by Fuji Shiki Co., Ltd., quantum dot content (hereinafter also referred to as QD concentration) 15 w/w%) was diluted 10 times with purified water to make the QD concentration in water. An aqueous dispersion was prepared at a concentration of 1.5 w/w% based on the total amount of the dispersion. 1 g of a surfactant (Rheodor AO-10V (nonionic surfactant) manufactured by Kao Corporation) was added to 10 g of the above water dispersion (QD concentration: 1.5 w/w %) and thoroughly stirred.
  • a surfactant Rudionic surfactant
  • Vaseline Rossi Baby Vaseline Pure N, manufactured by Cosmetex Roland Co., Ltd.
  • QD concentration 0.15 w/w% with respect to the total amount of the composition, and while heating to 60 ° C.
  • the mixture was thoroughly mixed using a stirrer to prepare a UV absorbing composition (QD concentration: 0.15 w/w % based on the total amount of the composition).
  • Example 1-1 an ultraviolet absorbing composition was produced under the same conditions as in Example 1, except that each component was adjusted to have the concentration shown in Table 1.
  • Example 2 In Example 1, instead of using an aqueous dispersion of graphene quantum dots (FUJI QD GRAPHENE 818, manufactured by Fuji Shiki Co., Ltd., QD concentration: 15 w/w%), an aqueous dispersion of carbon quantum dots (FUJI QD CARBON, manufactured by Fuji Shiki Co., Ltd.) was used. An ultraviolet absorbing composition was produced under the same conditions as in Example 1, except that 308, QD concentration: 15 w/w%) was used.
  • FUJI QD GRAPHENE 818 aqueous dispersion of graphene quantum dots
  • FUJI QD CARBON manufactured by Fuji Shiki Co., Ltd.
  • Example 3 In Example 1, instead of using a surfactant (Rheodor AO-10V (nonionic surfactant, manufactured by Kao Corporation)), a surfactant (Kao Akipo RLM-100NV (manufactured by Kao Corporation, anionic surfactant) was used) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  • Example 4 In Example 1, instead of using a surfactant (Rheodol AO-10V (nonionic surfactant), manufactured by Kao Corporation), a surfactant (Acetamine 86 (cationic surfactant), manufactured by Kao Corporation) was used. An ultraviolet absorbing composition was produced under the same conditions as in Example 1 except that .
  • Example 5 In Example 1, no surfactant (Rheodor AO-10V (nonionic surfactant, manufactured by Kao Corporation)) was used, and petrolatum (Rossi Baby Vaseline Pure N, manufactured by Cosmetex Roland Co., Ltd.) was not used. An ultraviolet absorbing composition was produced under the same conditions as in Example 1, except that glycerin (manufactured by Fuji Film Wako Co., Ltd., commercial name: Glycerin) was used instead.
  • glycerin manufactured by Fuji Film Wako Co., Ltd., commercial name: Glycerin
  • Example 5-1 and Example 5-2> an ultraviolet absorbing composition was produced under the same conditions as in Example 5, except that each component was adjusted to the concentration shown in Table 2.
  • Example 6 ⁇ Example 6> In Example 5, ethoxydiglycol (manufactured by Fuji Film Wako, commercial name: 2-(2-ethoxyethoxy)ethanol) was used instead of glycerin (manufactured by Fuji Film Wako, commercial name: glycerin). A UV absorbing composition was produced under the same conditions as in Example 5.
  • Example 7 ultraviolet absorption was carried out under the same conditions as in Example 5, except that ethanol (manufactured by Fujifilm Wako Co., Ltd., commercial name: Ethanol) was used instead of glycerin (manufactured by Fuji Film Wako Co., Ltd., commercial name: Glycerin). A composition for use was produced.
  • Example 8 In Example 1, the amounts of graphene quantum dots, water, and surfactant (manufactured by Kao Corporation, Rheodol AO-10V (nonionic surfactant)) were increased, and the amount of petrolatum was decreased so that the amounts were as shown in Table 1. A UV absorbing composition was produced under the same conditions as in Example 1 except for this.
  • Example 1 a UV absorbing composition was produced under the same conditions as in Example 1, except that a surfactant (Rheodor AO-10V (nonionic surfactant), manufactured by Kao Corporation) was not used. .
  • a surfactant Rudiodor AO-10V (nonionic surfactant), manufactured by Kao Corporation
  • Example 2 An ultraviolet absorbing composition was produced under the same conditions as in Example 1, except that water containing no carbon-based quantum dots was used.
  • Example 1 a composition excellent in both dispersibility and ultraviolet absorption function was obtained. Specifically, when the dispersibility of Example 1 was visually confirmed, as shown in Figures 1 and 2, the dispersibility was good both immediately after filling (Figure 1) and one month after filling ( Figure 2), and the overall dispersibility was good. was found to be in a uniform state and remained in that state. This is thought to be due to the surfactant effect caused by the addition of a surfactant, since petrolatum is oily and the QD water dispersion is hydrophilic, so they do not mix together as they are.
  • Comparative Example 1 in Table 1 is - (bar), but as mentioned above, it is completely precipitated, so it is considered that it clearly does not have an ultraviolet absorbing function even when measured. Therefore, by comparing Example 1 and Comparative Example 1, it was found that in order to have excellent dispersibility and excellent ultraviolet absorption function, it is necessary to add a surfactant when using an oil base. It has been shown.
  • Example 2 the type of quantum dots was changed from graphene to carbon, but a composition having the same performance as Example 1 was also obtained.
  • the surfactant was changed from nonionic to anionic and cationic, respectively, but even if the type of surfactant was changed, good dispersibility was maintained and the UV absorption function was maintained. It has been found that a composition having the following properties can be obtained.
  • Example 8 by adding a surfactant in an amount of about 1/10 of the amount of water added, even if the amount of carbon-based quantum dots was increased, a composition that maintained dispersibility and also had an ultraviolet absorption function was obtained. It was shown that it can be obtained.
  • Comparative Example 2 no carbon-based quantum dots were added.
  • a carbon-based quantum dot dispersion solvent: aqueous
  • a surfactant is necessary in order to obtain a composition that has both excellent ultraviolet absorption function and dispersibility using an oil base. It has been shown.
  • petrolatum is used as the oil base in the Examples and Comparative Examples listed in Table 1, but this is because the aqueous dispersion of QDs can be dispersed in an extremely low polarity base such as petrolatum. It is thought that a base having a higher polarity than that can be easily dispersed in the base.
  • FIG. 4 shows the aqueous dispersion of QDs (QD concentration: 1.5 w/w%) used in Example 1, with the QD concentrations shown in the graph ranging from 0.0025 w/w% to 0.10 w/w%. % with purified water to study absorption changes at various QD concentrations. It was confirmed at what concentration of QDs the desired ultraviolet absorption effect can be achieved during formulation. As a result, it was found that the QD concentration of the aqueous QD dispersion is preferably 0.01 w/w% or more based on the absorption change at a wavelength of 300 nm to 400 nm.
  • organic UV absorbers used in commercially available sunscreens cannot cover a wide range of wavelengths with a single component, but by using the QD of the present invention, UV absorbers from 300 nm to 300 nm can be used without combining multiple components. It was found that a wide range of wavelengths such as 400 nm can be covered.
  • Figure 5 shows the aqueous dispersion of QDs (QD concentration: 1.5 w/w%) used in Example 1, with the final QD concentrations ranging from 0.15 w/w% to 3 w/w% as indicated in the graph. Adjust the amount of vaseline so that (in the case of 3 w / w %, use QD concentration 15 w / w % without going through QD concentration: 1.5 w / w %) to prepare each sample, Each sample was coated and dried on a polyethylene film to a thickness of about 25 ⁇ m, and measured using the measuring device and conditions described above (corresponding to Examples 1, 1-1, and 1-2). Note that as a control, the same measurement was performed using only petrolatum.
  • FIG. 6 is similar to FIG. 5, but absorption spectra were measured after 2 months (corresponding to Examples 1, 1-1, and 1-2).
  • the two-month-old sample is the measurement result of a sample that was stored without being tightly capped, although it was free of foreign matter such as dust when it was prepared. Absorption of 0.5 to 1.0 was confirmed in the range of 300 nm to 450 nm, and no deterioration of the ultraviolet absorption effect was observed. Especially at wavelengths of 400 nm or more, the absorption was higher than when it was prepared, but this is thought to be because the water was not sealed tightly, so water was removed and the QD concentration became high. Although measured values are not listed, it has been confirmed that the weight of the sample after two months has decreased compared to the sample at the time of preparation.
  • Example 5 a composition excellent in both dispersibility and ultraviolet absorption function was obtained.
  • Example 6 and 7 the hydrophilic base was changed from glycerin to ethoxydiglycol and ethanol, respectively, but compositions that maintained dispersibility and ultraviolet absorption function were obtained. From the above, even when changing from an oil-based base to a hydrophilic base, the UV absorption function of QDs is not destroyed, and various types (Examples 5, 6, 7) and various concentrations (Examples 5, 5-1, and 5-2), it was suggested that there was no effect on the dispersibility or ultraviolet absorption function.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

優れた紫外線吸収機能を有する、特にUVA(波長315~380nm)、UVB(波長280~315nm)を吸収しつつ、分散性に優れた紫外線吸収用組成物、その製造方法、及びそれを用いた紫外線吸収方法を提供する。 炭素系量子ドット、水系溶媒、界面活性剤、及び油性基剤を含有する紫外線吸収用組成物。または、炭素系量子ドット、水系溶媒、及び親水性基剤を含有する紫外線吸収用組成物。炭素系量子ドットと水系溶媒とを含む水分散体、界面活性剤、及び油性基剤を混合する工程を含む、紫外線吸収用組成物の製造方法。炭素系量子ドットと水系溶媒とを含む水分散体、及び親水性基剤を混合する工程を含む、紫外線吸収用組成物の製造方法。

Description

紫外線吸収用組成物、及びその製造方法
 本発明は、化粧料等の製品に使用することができる紫外線吸収用組成物、その製造方法、及びそれを用いた紫外線吸収方法に関する。
 紫外線という10~400nm程度の領域の電磁波(光)は、我々の肌に日焼けだけではなく、「光老化」(紫外線によるDNA損傷や結合組織の破壊によって、皮膚の正常な再生が間に合わず老化が進んでしまう現象)を引き起こす。太陽光には、UVA(波長315~380nm)、UVB(波長280~315nm)、UVC(波長200~280nm)と呼ばれる紫外線が含まれる。波長の短いUVCは殆ど地表に到達しないが、UVAやUVBは地表に到達する。その結果、年齢以上に加齢感が皮膚に出てしまい、その先には皮膚ガンのリスクも含んでいる。
 これまでに、様々な日焼け止め材が開発されてきた。代表的なものとしては、酸化チタン、酸化亜鉛等の無機系紫外線反射剤が挙げられる。酸化チタンは、主にUVB(波長280~315nm)を含む波長260~400nmの紫外線を特に反射する。酸化亜鉛も同様の波長を反射するが、UVA(波長315~380nm)の反射が、酸化チタンより優れている。そこで、2つを混合し、無機系紫外線反射剤として使われてきた。例えば、特許文献1には、薄片状基質表面に平均粒子径が100nm以下の超微粒子酸化亜鉛粒子が被覆された透明性が高く、かつ分散性の優れた紫外線吸収剤が挙げられている。
 一方、2006年以降増えている日焼け止めが、有機系紫外線吸収剤を配合したものである。いまや、市場の半分くらいが有機系紫外線吸収剤になってきている。例えば、特許文献2には、有機系紫外線吸収剤として、メトキシケイヒ酸エチルヘキシル等を含有する日焼け止めエアゾール化粧料が挙げられている。
特開平11-302625号公報 特開2021-080203号公報
 しかしながら、例えば、特許文献1のように超微粒子酸化亜鉛粒子を含む無機系の紫外線吸収剤では、長期的には粉体が凝集しやすく、分散性等の観点からさらなる改善の余地があった。
 また、無機系紫外線反射剤を用いない場合として、例えば、特許文献2のように有機系紫外線吸収剤を含有する日焼け止めがある。しかし、有機系紫外線吸収剤には、多数の種類があるが、それぞれに吸収できる波長の幅が違うため、単一成分では広域をカバーできない。そのため、最低でも3種類ほどの混合が必要で、作業が煩雑となるため、さらなる改善の余地があった。
 そこで、本発明の目的は、優れた紫外線吸収機能を有する、特にUVA(波長315~380nm)、UVB(波長280~315nm)を吸収しつつ、分散性に優れた紫外線吸収用組成物、その製造方法、及びそれを用いた紫外線吸収方法を提供することにある。
 本発明者らは、上記目的を達成すべく鋭意研究したところ、炭素系量子ドットを油性基剤又は親水性基剤に良好に分散させることで、優れた紫外線吸収機能を発揮することを見出し、本発明を完成するに至った。
 即ち、本発明は以下の態様を含むものである。
 1.炭素系量子ドット、水系溶媒、界面活性剤、及び油性基剤を含有する紫外線吸収用組成物。
 2.炭素系量子ドット、水系溶媒、及び親水性基剤を含有する紫外線吸収用組成物。
 3.前記炭素系量子ドットの含有量が、組成物の全量に対して0.001~10w/w%である、1.又は2.に記載の紫外線吸収用組成物。
 4.前記界面活性剤は、非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤及び両性界面活性剤からなる群から選択される1種以上である、1.又は3.に記載の紫外線吸収用組成物。
 5.前記油性基剤は、炭化水素類、脂肪酸類、高級アルコール、エステル油、油脂、ロウ、シロキサン、及びシリコーンからなる群から選択される1種以上である、1.又は3.~4.いずれかに記載の紫外線吸収用組成物。
 6.前記親水性基剤は、糖類、水溶性ポリマー、多価アルコール、セルロース誘導体、グリコールエーテル、及び低級アルコールからなる群から選択される1種以上である、2.~4.いずれかに記載の紫外線吸収用組成物。
 1.~6.いずれかに記載の紫外線吸収用組成物を製剤化した場合の形態が、液剤、懸濁剤、乳剤、クリーム剤、軟膏剤、ゲル剤、リニメント剤、スプレー剤、エアゾール剤、パップ剤、シート剤、パウダー剤及びローション剤からなる群から選択される1種以上である、紫外線吸収用組成物。
 8.1.~7.いずれかに記載の紫外線吸収用組成物を含む化粧料。
 9.炭素系量子ドットと水系溶媒とを含む水分散体、界面活性剤、及び油性基剤を混合する工程を含む、紫外線吸収用組成物の製造方法。
 10.炭素系量子ドットと水系溶媒とを含む水分散体、及び親水性基剤を混合する工程を含む、紫外線吸収用組成物の製造方法。
 11.炭素系量子ドット、水系溶媒、界面活性剤、及び油性基剤を含有する紫外線吸収用組成物を用いる紫外線吸収方法。
 12.炭素系量子ドット、水系溶媒、及び親水性基剤を含有する紫外線吸収用組成物を用いる紫外線吸収方法。
 本発明の紫外線吸収用組成物によると、優れた紫外線吸収機能を有しつつ、分散性に優れた紫外線吸収用組成物を提供できる。また、本発明の紫外線吸収用組成物の製造方法によると、優れた紫外線吸収機能を有しつつ、分散性に優れた紫外線吸収用組成物を得ることができる。また、本発明の紫外線吸収方法によると、優れた紫外線吸収機能を有しつつ、分散性に優れた紫外線吸収用組成物を用いた紫外線吸収方法を提供することができる。
グラフェン量子ドットを用いて得られた実施例1の紫外線吸収用組成物の充填後直後の分散性を示す写真である。 グラフェン量子ドットを用いて得られた実施例1の紫外線吸収用組成物の充填後1か月後の分散性を示す写真である。 界面活性剤を有しない比較例1の紫外線吸収用組成物の充填後直後の分散性を示す写真である。 グラフェン量子ドットの水分散体(ワセリンに分散する前の状態で)のQD濃度による吸光分布を示すグラフである。 ワセリン(コントロール)に対するグラフェン量子ドットの水分散体(ワセリンに分散した後の状態で)のQD濃度による吸光分布を示すグラフである。 2か月経過後の、ワセリン(コントロール)に対するグラフェン量子ドットの水分散体(ワセリンに分散した後の状態で)のQD濃度による吸光分布を示すグラフである。
 <紫外線吸収用組成物>
 本発明の紫外線吸収用組成物は、炭素系量子ドット、水系溶媒、界面活性剤、及び油性基剤を含有するものである。本発明の紫外線吸収用組成物は、炭素系量子ドット、水系溶媒、及び親水性基剤を含有するものである。また、本発明の紫外線吸収用組成物は、化粧料等の製品に使用することができる。以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 (炭素系量子ドット)
 本発明の紫外線吸収用組成物は、炭素系量子ドットを含む。量子ドットは、量子化学、量子力学に従う独特な光学特性を持つナノスケールの粒子のことを指し、粒子サイズによって光学特性を調節することが可能であるため、粒径に依存した特徴的な発光特性を持つ。本発明では量子ドットのうち、炭素原子間のπ結合に起因して、粒径に依存した発光特性を有する炭素系量子ドットを使用することができる。
 炭素系量子ドットとしては、グラフェン構造を有するグラフェン量子ドット、グラフェン構造を有しないカーボン量子ドット、これらを化学修飾した量子ドット等が挙げられるが、実用化の観点から、グラフェン量子ドット及びカーボン量子ドットからなる群から選択される1種以上であることが好ましい。
 これらの炭素系量子ドットは、シグマ-アルドリッチ社、冨士色素株式会社、GSアライアンス株式会社、フナコシ株式会社、キシダ化学株式会社などから、市販されており、これらを何れも使用することができる。実用性の観点からは、炭素系量子ドットが後述の水系溶媒に分散された水分散体の形態であるものを使用することが好ましく、そのような形態のものを市販品として入手することも可能である。
 組成物の全量に対する炭素系量子ドットの含有量は、原料としての使用時には特に制限されないものの、適度な吸光度を得ることと、実用的な観点から、組成物の全量に対して0.001w/w%以上10w/w%以下であることが好ましく、0.01w/w%以上8w/w%以下であることがより好ましく、さらに好ましくは0.05w/w%以上6w/w%以下であり、特に好ましくは0.1w/w%以上5w/w%以下、特に好ましくは0.1w/w%以上3.5w/w%以下である。ここで、本明細書において、含有量の単位「w/w%」は、「g/100g」のw/w%と同義である。なお、製剤時の炭素系量子ドットの含有量は、前述に記載した濃度が好ましいが、原料時には製剤時の濃度であっても良いし、それより高い濃度であっても良い。
 (グラフェン量子ドット)
 グラフェン量子ドットとしては、非官能化グラフェン量子ドット、官能化グラフェン量子ドット、原初の(pristine)グラフェン量子ドット、およびこれらの組み合わせが挙げられる。
 官能化グラフェン量子ドットは1つ以上の官能基で官能化されていてもよい。官能基には、酸素基、カルボキシル基、カルボニル基、非晶質炭素、ヒドロキシル基、アルキル基、アリール基、エステル、アミン、アミド、ポリマー、ポリ(プロピレンオキシド)、およびこれらの組み合わせが含まれる。
 また、グラフェン量子ドットには、1つ以上のアルキル基で官能化されている官能化グラフェン量子ドットが含まれる。アルキル基には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、およびこれらの組み合わせが含まれる。幾つかの態様において、アルキル基にはオクチル基(例えば、オクチルアミン)が含まれる。
 また、グラフェン量子ドットは、1種以上のポリマー先駆物質で官能化することができる。例えば、グラフェン量子ドットは1種以上のモノマー(例えば、ビニルモノマー)で官能化することができる。
 グラフェン量子ドットは、重合するポリマー先駆物質で官能化することにより、ポリマー官能化グラフェン量子ドットを形成することができる。例えば、重合するビニルモノマーで端部を官能化することにより、端部官能化ポリビニルの付加物を形成することができる。
 グラフェン量子ドットは、1種以上の親水性官能基で官能化されている官能化グラフェン量子ドットを含む。親水性官能基には、カルボキシル基、カルボニル基、ヒドロキシル基、ヒドロキシアルキル基、ポリ(エチレングリコール)、ポリ(ビニルアルコール)、ポリ(アクリル酸)、およびこれらの組み合わせが含まれる。
 グラフェン量子ドットは、1種以上の疎水性官能基で官能化されている官能化グラフェン量子ドットを含む。疎水性官能基には、アルキル基、アリール基、およびこれらの組み合わせが含まれる。疎水性官能基には1種以上のアルキルアミドまたはアリールアミドが含まれる。
 グラフェン量子ドットは端部官能化グラフェン量子ドットを含む。端部官能化グラフェン量子ドットには、前述した1種以上の疎水性官能基が含まれる。端部官能化グラフェン量子ドットには、前述したような1種以上の疎水性官能基が含まれる。端部官能化グラフェン量子ドットには、やはり前述したような1種以上の親水性官能基が含まれる。端部官能化グラフェン量子ドットには、それらの端部上にある1種以上の酸素の付加物が含まれる。端部官能化グラフェン量子ドットには、それらの端部上にある1種以上の非晶質炭素の付加物が含まれる。
 グラフェン量子ドットは、アルキルアミドまたはアリールアミドなどの1種以上のアルキル基またはアリール基で端部が官能化されている。アルキル基またはアリール基を用いるグラフェン量子ドットの端部官能化は、グラフェン量子ドットの端部におけるアルキルアミドまたはアリールアミドのカルボン酸との反応によって行われる。
 グラフェン量子ドットには原初の(pristine)グラフェン量子ドットが含まれる。原初のグラフェン量子ドットは、合成後に未処理のままのグラフェン量子ドットを含む。原初のグラフェン量子ドットは、合成後にいかなる追加の表面変性も行われていないグラフェン量子ドットを含む。
 グラフェン量子ドットは様々な発生源から得ることができる。例えば、グラフェン量子ドットには、石炭由来のグラフェン量子ドット、コークス由来のグラフェン量子ドット、およびこれらの組み合わせが含まれる。グラフェン量子ドットにはコークス由来のグラフェン量子ドットが含まれる。グラフェン量子ドットには石炭由来のグラフェン量子ドットが含まれる。石炭には、(これらに限定はされないが)無煙炭、瀝青炭、亜瀝青炭、変性瀝青炭、アスファルテン、アスファルト、泥炭、亜炭、ボイラー用炭、石化油(petrified oil)、カーボンブラック、活性炭、およびこれらの組み合わせが含まれる。炭素源は瀝青炭である。炭素には瀝青炭が含まれる。
 グラフェン量子ドットは様々な直径を有することができる。例えば、グラフェン量子ドットは約1nmから約100nmまでの範囲の直径を有することが好ましく、約1nmから約50nmまでの範囲の直径を有することがより好ましく、約1nmから約20nmまでの範囲の直径を有することが更に好ましい。
 グラフェン量子ドットはまた、様々な構造を有することもできる。例えば、グラフェン量子ドットは結晶質の構造を有していてもよく、例えば結晶質の六方晶構造を有する。グラフェン量子ドットは単層又は複層を有していてもよく、例えばグラフェン量子ドットはおよそ2つの層からおよそ4つの層までを有する。
 グラフェン量子ドットは、様々な量子収率を有することもできる。グラフェン量子ドットは約30~80%までの範囲の量子収率を有することが好ましい。また、グラフェン量子ドットの水分散体における蛍光特性は、励起光300nm~420nmの少なくとも何れかの波長に対して、発光波長が380nm~650nmであることが好ましい。
 グラフェン量子ドットは粉末の形態であってもよく、ペレットの形態であってもよい。グラフェン量子ドットは液体状態であってもよく、分散液、溶液、溶融した状態であってもよい。分散性の観点からは、グラフェン量子ドットが後述の水系溶媒に分散された水分散体の形態であることが好ましく、そのような形態のものを市販品として入手することも可能である。
 グラフェン量子ドットを形成するために、様々な方法を利用することができる。例えば、グラフェン量子ドットを形成する工程は、炭素源を酸化剤に曝し、その結果としてグラフェン量子ドットを形成することを含むことができる。炭素源には、石炭、コークス、およびこれらの組み合わせが含まれる。
 酸化剤には酸が含まれ、酸には、硫酸、硝酸、リン酸、次亜リン酸、発煙硫酸、塩化水素酸、オレウム、クロロスルホン酸、およびこれらの組み合わせが含まれる。また、酸化剤には、過マンガン酸カリウム、過マンガン酸ナトリウム、次亜リン酸、硝酸、硫酸、過酸化水素、およびこれらの組み合わせが含まれる。好ましい酸化剤は過マンガン酸カリウム、硫酸および次亜リン酸の混合物である。
 酸化剤の存在下で炭素源を音波処理することによって炭素源は酸化剤に曝される。酸化剤の存在下で炭素源を加熱することが含まれる。加熱は少なくとも約100℃の温度において行われる。
 グラフェン量子ドットを形成するさらなる方法の使用も想定することができる。例えば、グラフェン量子ドットを形成するさらなる方法は、国際特許出願であるPCT/US2014/036604号に開示されている。グラフェン量子ドットを製造するさらなる適当な方法は、次の参考文献にも開示されている:ACS Appl. Mater. Interfaces 2015, 7, 7041-7048;および、Nature Commun. 2013, 4:2943, 1-6。
 (カーボン量子ドット)
 カーボン量子ドットは、グラフェンのような環状構造を持っていない量子ドットである。pH値によってグラフェン量子ドットより影響を受け易く、発光強度、ピーク位置が変化する性質を有する。
 カーボン量子ドットは様々な直径を有することができる。例えば、カーボン量子ドットは約1nmから約100nmまでの範囲の直径を有することが好ましく、約1nmから約50nmまでの範囲の直径を有することがより好ましく、約1nmから約30nmまでの範囲の直径を有することが更に好ましい。
 カーボン量子ドットはまた、様々な量子収率を有することもできる。カーボン量子ドットは約20~50%までの範囲の量子収率を有することが好ましい。また、カーボン量子ドットの水分散体における蛍光特性は、励起光300nm~420nmの少なくとも何れかの波長に対して、発光波長が380nm~600nmであることが好ましい。
 カーボン量子ドットの製造方法は、グラフェン量子ドットの製造方法と大差はなく、使用原料や製造条件がグラフェン構造を形成し易いか否かの違いのみである。
 従って、両者を含む炭素系量子ドットは、例えば、炭素ターゲットをレーザーアブレーション(laserablation)後、化学処理を実施して製造する手法(特表2012-501863号公報)や蝋燭の煤から製造する手法(H. Liu, et al., Angew. Chem.Int. Ed. 2007, 46, 6473-6475.)、グラファイト酸化物を化学処理して製造する手法(G. Eda, et al., Adv. Mater.2010, 22, 505-509.)、グラファイト酸化物を前駆体とする化学反応から製造する手法(特開2012-136566号公報)、フラーレンの転換反応から製造する手法(J. Lu, et al., Nature Nanotech.2011, 6, 247-252.)、更に、炭素繊維や活性炭など、より安価な炭素原料を化学処理して製造する手法(J. Peng, et al., Nano Lett. 2012, 12, 844-849.、Z.A. Qiao, ChemCommun. 2010, 46,8812-8814.、Y. Dong, et al., Chem. Mater.2010, 22, 5895-5899.)で製造することも可能である。
 なお、これらの手法は、大別してトップダウン(top-down)の手法であるが、有機前駆体分子のポリマー化から炭素量子ドットを製造するボトムアップ(bottom-up)の手法(G. A. Ozin, et al., J. Mater. Chem., 2012, 22, 1265-1269.)でも製造可能である。
 また、炭素材と過酸化水素とを混合し、過酸化水素により炭素を分解反応させ、炭素量子ドット生成液を調製する工程と、炭素量子ドット生成液中の炭素量子ドットと過酸化水素を分離して分解反応を停止させ、炭素量子ドットを取得する工程と、を含む炭素量子ドットの製造方法(特開2014-133685号公報)で製造することも可能である。
 カーボン量子ドットは粉末の形態であってもよく、ペレットの形態であってもよい。カーボン量子ドットは液体状態であってもよく、分散液、溶液、溶融した状態であってもよい。分散性の観点からは、カーボン量子ドットが後述の水系溶媒に分散された水分散体の形態であることが好ましく、そのような形態のものを市販品として入手することも可能である。
 (水系溶媒)
 本発明の紫外線吸収用組成物は、水系溶媒を含む。本発明における水系溶媒は、環境および人体への影響などを考慮すると、水であるか又は主に水を含むものが好ましい。水系溶媒の全量に対する水の含有量は、水系溶媒の全量に対して、好ましくは80w/w%以上100w/w%以下であり、より好ましくは85w/w%以上99.9w/w%以下であり、さらに好ましくは90w/w%以上99.5w/w%以下である。本発明に用いる水は、特に限定されず、例えば、水道水、精製水、蒸留水、イオン交換水、純水、超純水等が挙げられる。
 また、本発明における水系溶媒は、従来の周知の任意成分を特に限定されることなく含むことができ、例えば、分散剤、酸、塩、有機溶媒等の任意の物質を含んでいてもよい。有機溶媒の例としては、水と混和性のある有機溶媒であることが好ましく、メタノール、エタノール、イソプロパノール、アセトン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、1,4-ジオキサン、メチルイソブチルケトン、メチルエチルケトン、γ-ブチルラクトン、プロピレンカーボネート、スルホラン、ニトロメタン、N,N-ジメチルホルムアミド、N-メチルアセトアミド、ジメチルスルホキシド、ジメチルスルホン、N-メチルピロリドン、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、ジクロロエタン等が挙げられる。
 組成物の全量に対する水系溶媒の含有量は、特に限定されないが、組成物中に油性基剤を用いる場合であっても、組成物中に親水性基剤を用いる場合であっても、組成物の全量に対して、好ましくは0.01w/w%以上50w/w%以下であり、より好ましくは0.05w/w%以上40w/w%以下であり、さらに好ましくは0.1w/w%以上30w/w%以下である。
 (水分散体)
 本発明では、安定性の観点からは、上述の炭素系量子ドットと上述の水系溶媒とを含む水分散体の形態であることが好ましく、上述に記載の通り、水分散体として市販されているものをそのまま用いることも可能である。また、分散性を向上させるために、水分散体をさらに上述の水系溶媒で希釈して、炭素系量子ドットの濃度を調整してから使用することも可能である。水分散体の全量に対する炭素系量子ドットの含有量は、製造効率及び作業性の観点から、水分散体の全量に対して好ましくは1w/w%以上30w/w%以下、より好ましくは5w/w%以上20w/w%以下である。水分散体は、従来の周知の任意成分を特に限定されることなく含むことができ、例えば、分散剤、酸、塩、有機溶媒等の任意の物質を含んでいてもよい。本発明における水分散体は、当該技術分野で慣用の方法により、たとえば、炭素系量子ドットと水系溶媒とその他必要に応じて任意の成分とを混合撹拌することにより製造できる。
 (界面活性剤)
 本発明の紫外線吸収用組成物は、組成物中に油性基剤を用いる場合には、界面活性剤を含む。一方、組成物中に親水性基剤を用いる場合には、界面活性剤を含むことも可能である。本発明における界面活性剤は、特に限定されず、周知のものを用いることができるが、分散性を向上させる観点から、非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤及び両性界面活性剤からなる群から選択される1種以上であることが好ましい。
 非イオン界面活性剤としては、特に限定されず、周知のものを用いることができるが、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルケニルエーテル、アルキルグリセリルエーテル、アルケニルグリセリルエーテル、脂肪酸ショ糖エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、プロピレングリコール脂肪酸、エステル高級脂肪酸、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、モノ又はジエタノールアミド、ポリオキシエチレン硬化ヒマシ油、アルキルサッカライド、アルキルアミンオキサイド、アルキルアミドアミンオキサイド、ポリオキシアルキレン変性シリコーン、ポリオキシアルキレン変性オルガノポリシロキサン、ポリオキシアルキレン・アルキル共変性オルガノポリシロキサン等が挙げられる。分散性を向上させる観点から、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルケニルエーテル、アルキルグリセリルエーテル、アルケニルグリセリルエーテル等のエーテル型非イオン界面活性剤、脂肪酸ショ糖エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、プロピレングリコール脂肪酸、エステル高級脂肪酸、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等のエステル型非イオン界面活性剤を用いることが好ましい。これらは、単独で又は2種以上を組み合わせて使用することができる。
 例えば、ソルビタン脂肪酸エステルとしては、例えば、モノパルミチン酸ソルビタン、モノステアリン酸ソルビタン、モノオレイン酸ソルビタン、セスキオレイン酸ソルビタン、ヤシ油脂肪酸ソルビタン、トリステアリン酸ソルビタン等が挙げられる。モノパルミチン酸ソルビタンとして、レオドールSP-P10、モノステアリン酸ソルビタンとして、レオドールSP-S10V、モノオレイン酸ソルビタンとして、レオドールSP-O10V、レオドールAO-10V、セスキオレイン酸ソルビタンとして、レオドールAO-15V、ヤシ油脂肪酸ソルビタンとして、レオドールSP-L10、トリステアリン酸ソルビタンとして、SP-S30V(以上、花王社製)等の市販品を挙げることができる。
 陰イオン界面活性剤としては、特に限定されず、周知のものを用いることができるが、例えば、硫酸系、スルホン酸系、カルボン酸系、リン酸系のもの等が挙げられる。硫酸系としては、アルキル硫酸塩、ポリオキシアルキレンアルキルエーテル硫酸塩、ポリオキシアルキレンアルケニルエーテル硫酸塩、スルホコハク酸アルキレンアルキルフェニルエーテル硫酸塩等が挙げられる。スルホン酸系としては、アルカンスルホン酸塩等が挙げられる。カルボン酸系としては、アルキルエーテルカルボン酸又はその塩、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩等が挙げられる。リン酸系としては、モノアルキルリン酸塩等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 例えば、ポリオキシエチレンアルキルエーテルカルボン酸又はその塩として、具体的には、ポリオキシエチレンラウリルエーテルカルボン酸又はその塩、ポリオキシエチレンミリスチルエーテルカルボン酸又はその塩、及びポリオキシエチレンパルミチルエーテルカルボン酸又はその塩から選択される1種又は2種以上を含むことが好ましい。これらの市販品として、例えば、カオーアキポRLM-45NV、カオーアキポRLM-45、カオーアキポRLM-100NV、カオーアキポRLM-100(以上、花王社製)等が挙げられる。
 陽イオン界面活性剤としては、特に限定されず、周知のものを用いることができるが、例えば、第4級アンモニウム塩、アルキルアミン塩等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 例えば、第4級アンモニウム塩としては、ラウリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、アルキル(炭素数11以上23以下)ベンジルジメチルアンモニウムクロライド、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩等が挙げられる。これらの市販品として、例えば、コータミン24P、コータミン60W、コータミン86Pコンク、コータミン86W、コータミンD86P、サニゾールC、サニゾールB-50(以上、花王社製)等が挙げられる。
 例えば、アルキルアミン塩としては、炭素数11以上23以下のアルキル基を有するアルキルアミン塩(例えば塩は酢酸塩)などが挙げられる。アルキルアミン塩としては、具体的には、ココナットアミンアセテート、ステアリルアミンアセテートが挙げられる。これらの市販品として、例えば、アセタミン24、アセタミン86(以上、花王社製)等が挙げられる。
 両性界面活性剤としては、特に限定されず、周知のものを用いることができるが、例えば、ラウリルジメチルアミノ酢酸ベタイン等の酢酸ベタイン型界面活性剤、ラウリルジメチルアミンオキサイド等のアミンオキサイド型界面活性剤、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等のイミダゾリニウムベタイン型界面活性剤、ラウリン酸アミドプロピルベタイン等のアミドベタイン型界面活性剤、ラウリルヒドロキシスルホベタイン等のスルホベタイン型界面活性剤などが挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 本発明における界面活性剤は、上述のような各界面活性剤を単独で又は2種以上を組合せて用いることができる。組成物の全量に対する界面活性剤の含有量(2種以上を組み合わせて使用している場合はその総含有量)は、組成物中に油性基剤を用いる場合、分散性を向上させる観点から、組成物の全量に対して好ましくは0.01w/w%以上5.0w/w%以下、より好ましくは0.1w/w%以上4.5w/w%以下、更に好ましくは0.5w/w%以上4.0w/w%以下である。なお、組成物中に親水性基剤を用いる場合であっても、界面活性剤を添加することが可能であり、その場合、界面活性剤の含有量は特に限定されないものの前述のような量に調製することも可能である。
 本発明の紫外線吸収用組成物において、炭素系量子ドットに対する界面活性剤の配合量の比率は、炭素系量子ドットの総含有量1質量部に対して、0.01質量部以上20.0質量部以下が好ましく、0.1質量部以上10.0質量部以下がより好ましい。
 (油性基剤)
 本発明の紫外線吸収用組成物は、油性基剤を含有することが好ましい。本明細書において、「油性」とは、水への溶解度が1w/w%以下であることをいう。本発明における油性基剤は、特に限定されず、周知のものを用いることができるが、例えば、炭化水素類、脂肪酸類、高級アルコール、エステル油、油脂、ロウ、シロキサン、及びシリコーン等を挙げることができる。本発明では、油性基剤は、炭化水素、脂肪酸類、高級アルコール、エステル油、油脂、ロウ、シロキサン、及びシリコーンからなる群から選択される1種以上であることが好ましい。
 炭化水素としては、例えば、パラフィン、イソパラフィン、流動パラフィン、流動イソパラフィン、スクワラン、ワセリン、α-オレフィンオリゴマー、軽質流動パラフィン、軽質流動イソパラフィン等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。なお、ワセリンは、一般的には、石油から得た炭化水素類の混合物を脱色して精製したものであり、大部分は、分岐鎖を有するパラフィン(イソパラフィン等)及び脂環式炭化水素(シクロパラフィン、ナフテン等)を含むものである。
 脂肪酸類としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、イソステアリン酸、オレイン酸等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 本明細書において、高級アルコールとは、炭素数が10以上30以下のアルコールを意味する。高級アルコールとしては、例えば、セタノール、ステアリルアルコール、セトステアリルアルコール、ラウリルアルコール、オレイルアルコール、イソステアリルアルコール、ベヘニルアルコール、コレステロール、フィトステロール等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 エステル油としては、例えば、ミリスチン酸イソプロピル、オクタン酸セチル、ミリスチン酸オクチルドデシル、パルミチン酸イソプロピル、イソステアリン酸イソプロピル、パルミチン酸オクチル、アジピン酸ジイソプロピル、セバシン酸ジイソプロピル、イソノナン酸イソノニル、イソノナン酸イソトリデシル、乳酸セチル、イソステアリン酸イソステアリル、12-ヒドロキシステアリル酸コレステリル、オレイン酸コレステリル、マカデミアナッツ脂肪酸フィトステリル、オレイン酸フィトステリル、パルミチン酸デキストリン、ステアリン酸イヌリン、水素添加ホホバ油、ジペンタエリスリトール脂肪酸エステル、ジカプリン酸ネオペンチルグリコール、シクロヘキサン-1,4-ジカルボン酸ビスエトキシジグリコール、トリメリット酸トリ2-エチルヘキシル、テトラ-2-エチルヘキサン酸ペンタンエリスリトール、トリ-2-エチルヘキサン酸グリセリン、トリ(カプリル酸/カプリン酸)グリセリル、トリ(カプリル酸/カプリン酸/ミリスチン酸/ステアリン酸)グリセリル、ラウロイルグルタミン酸ジ(フィトステリル/オクチルドデシル)、ラウロイルグルタミン酸ジ(オクチルドデシル/フィトステリル/ベヘニル)、コハク酸2-エチルヘキシル、クエン酸トリエチル、ダイマ-ジリノール酸(フィトステリル/イソステアリル/セチル/ステアリル/ベヘニル)等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 油脂としては、例えば、アボガド油、マカデミアナッツ油、トウモロコシ油、オリ-ブ油、ホホバ油、ブドウ種子油、ヒマワリ油、ア-モンド油、ゴマ油、カカオ脂、大豆油、落花生油、月見草油、菜種油、綿実油、パーム油、パーム核油、ヤシ油、ひまわり油、サフラワー油等の植物性油脂や、牛脂、豚脂、魚油、乳脂、馬脂、卵黄油、ミンク油、タートル油等の動物性油脂等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 ロウとしては、例えば、キャンデリラロウ、カルナウバロウ、ミツロウ、鯨ロウ、オレンジラフィー油等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 シロキサンとしては、例えば、メチルポリシロキサン、メチルフェニルポリシロキサン、デカメチルシクロペンタシロキサン、メチルシクロペンタシロキサン、高重合メチルポリシロキサン、オクタメチルシクロテトラシロキサン、メチルハイドロジェンポリシロキサン、架橋型メチルポリシロキサン等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 シリコーンとしては、例えば、メチルトリメチコン、ジメチコノール、ジメチコノールクロスポリマー、カプリリルメチコン等のアルキル変性シリコーン、架橋型アルキル変性シリコーン、アクリルシリコーン、シリコーンレジン、環状シリコーン等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 本発明における油性基剤は、上述のような各油性基剤を単独で又は2種以上を組合せて用いることができる。組成物の全量に対する油性基剤の含有量(2種以上を組み合わせて使用している場合はその総含有量)は、分散性を向上させる観点から、組成物の全量に対して好ましくは50w/w%以上99w/w%以下、より好ましくは60w/w%以上97w/w%以下、更に好ましくは70w/w%以上95w/w%以下である。
 本発明の紫外線吸収用組成物において、炭素系量子ドットに対する油性基剤の配合量の比率は、炭素系量子ドットの総含有量1質量部に対して、5質量部以上700質量部以下が好ましく、7質量部以上650質量部以下がより好ましく、10質量部以上600質量部以下がさらに好ましい。
 (親水性基剤)
 本発明の紫外線吸収用組成物は、親水性基剤を含有することが好ましい。本明細書において、「親水性」とは、水への溶解度が50w/w%より大きいことをいう。本発明における親水性基剤は、特に限定されず、周知のものを用いることができるが、例えば、糖類、水溶性ポリマー、多価アルコール、セルロース誘導体、グリコールエーテル、低級アルコール等が挙げられる。本発明では、親水性基剤は、糖類、水溶性ポリマー、多価アルコール、セルロース誘導体、グリコールエーテル、及び低級アルコールからなる群から選択される1種以上であることが好ましい。
 糖類としては、例えば、グルコース、ショ糖、果糖、ソルビトール、マルチトール、ペンタエリスリトール、キシリトール、トレハロース、グルコシルトレハロース、カラギーナン等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 水溶性ポリマーとしては、例えば、ポリビニルピロリドン、トリイソステアリン酸エチレングリコール、トリイソステアリン酸ポリオキシエチレン(20)メチルグルコシド、ベントナイト、マクロゴール、ガゼインナトリウム等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 多価アルコールとしては、例えば、グリセリン、ポリグリセリン(例えば、ジグリセリン、テトラグリセリン)等が挙げられる。また、多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロパンジオール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ブチレングリコール等のグリコール類も挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 セルロース誘導体としては、例えば、エチルセルロース、ヒドロキシプロピルセルロース、及びヒドロキシプロピルメチルセルロース等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 グリコールエーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル(エトキシジグリコール)、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノエチルエーテル、及びジプロピレングリコールモノプロピルエーテル等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 本明細書において、低級アルコールとは、炭素数1~6の1価のアルコールを意味する。低級アルコールとしては、例えば、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール、イソブチルアルコール、ペンチルアルコール及びヘキシルアルコール等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 本発明における親水性基剤は、上述のような各親水性基剤を単独で又は2種以上を組合せて用いることができる。組成物の全量に対する親水性基剤の含有量(2種以上を組み合わせて使用している場合はその総含有量)は、分散性を向上させる観点から、組成物の全量に対して好ましくは70w/w%以上99w/w%以下、より好ましくは80w/w%以上97w/w%以下、更に好ましくは85w/w%以上95w/w%以下である。
 本発明の紫外線吸収用組成物において、炭素系量子ドットに対する親水性基剤の配合量の比率は、炭素系量子ドットの総含有量1質量部に対して、400質量部以上700質量部以下が好ましく、500質量部以上600質量部以下がより好ましい。
 (任意の添加剤)
 本発明の紫外線吸収用組成物には、上記成分以外に、本発明の効果を妨げない範囲で、化粧品や医薬部外品等に通常用いられる添加剤を配合することができる。添加剤として、例えば、pH調整剤、保湿剤、増粘剤、安定化剤、キレート剤、防腐剤、香料、抗酸化剤、美白剤、抗炎症剤、着色剤、使用感改良剤等を必要に応じて適宜配合してもよい。これらの添加剤は、単独でまたは2種以上を組み合わせて使用できる。なお、上記添加剤の含有量は、所望の紫外線吸収機能が得られる含有量であれば特に制限されないものの、組成物の全量に対して0.01w/w%以上20w/w%以下であることが好ましく、0.05w/w%以上15w/w%以下であることがより好ましい。
 (形態)
 本発明の紫外線吸収用組成物を製剤とした際の形態は、特に限定されず、組成物の用途等に応じて任意に選択することができ、例えば、液剤、懸濁剤、乳剤、クリーム剤、軟膏剤、ゲル剤、リニメント剤、スプレー剤、エアゾール剤、パップ剤、シート剤、パウダー剤、ローション剤等が挙げられる。本発明において、組成物の形態が、液剤、懸濁剤、乳剤、クリーム剤、軟膏剤、ゲル剤、リニメント剤、スプレー剤、エアゾール剤、パップ剤、シート剤、パウダー剤及びローション剤からなる群から選択される1種以上であることが好ましい。このような製剤は、当該技術分野で慣用の方法により調製できる。
 本発明の紫外線吸収用組成物を製剤とした際には、所望の紫外線吸収効果が得られるように炭素系量子ドットの含有量を調製することが好ましく、波長350nmにおいてワセリン(コントロール)の吸光度を1とした際に3.0以上となるように炭素系量子ドットの含有量を調製することが好ましい。
 本発明の紫外線吸収用組成物のpHは、生理学的又は薬学的に許容できる範囲内であれば特に制限されないが、例えば、3.5以上8.5以下であることが好ましく、4.0以上7.0以下であることがより好ましい。
 本発明の紫外線吸収用組成物を充填する容器としては、公知の形状の容器を制限なく使用できる。容器の素材も特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリカーボネート、ポリエチレン、ポリプロピレンのようなプラスチック製やガラス製等の素材の容器に充填して提供することもできる。
 (用途)
 本発明の紫外線吸収用組成物は、紫外線吸収機能及び分散性に優れるため、これらの特性が求められる各種用途に使用することができる。例えば、化粧料、塗料、潤滑油、農薬などに用いることができる。本発明では、紫外線吸収機能の増加及び分散性の向上の観点から、以上で説明した本発明の紫外線吸収用組成物を含む化粧料とすることが好ましい。これらの用途においては、本発明の紫外線吸収用組成物を配合してもよいし、紫外線吸収用組成物を調製することなく各成分を個別に配合することもできる。
 本発明の化粧料としては、日焼け止め用化粧料、メイクアップ化粧料や皮膚洗浄剤、スキンケア製品、毛髪化粧料など幅広く適用が可能であるが、優れた紫外線吸収機能を有する点から、日焼け止め用化粧料やメイクアップ化粧料が好ましい。なお、日焼け止め用化粧料は、下地化粧料のようにメイクアップ化粧料としての機能を併せ持つこともある。より具体的には、下地化粧料、パウダーファンデーション、リキッドファンデーション、クリームファンデーション、スティックファンデーション、コンシーラー、ルースパウダー、プレストパウダー、チーク、口紅、リップグロス、リップライナー、リップクリーム、リップバーム、リップスティック、アイブロウペンシル、アイブロウパウダー、ペンシルアイライナー、リキッドアイライナー、マスカラ、マスカラ下地、まつげ美容液、アイシャドウ、ネイルカラー、ネイルケア化粧品、ネイルリムーバー、固形石鹸、洗顔フォーム、洗顔パウダー、クレンジングジェル、クレンジングクリーム、クレンジングオイル、ポイントメイク落とし、化粧水、乳液、ジェル・美容液、オイル、クリーム、マッサージクリーム、ハンドクリーム、ボディークリーム、パック、ピールオフパック、ふき取り・洗い流しパック、ゴマージュ、アイケア化粧品、リップケア化粧品、ボディ洗浄料、入浴剤、ボディミルク、ボディローション、ハンドミルク、ハンドローション等の皮膚化粧料、シャンプー、リンス、ヘアトリートメント、ヘアスタイリング剤、ヘアカラー、パーマ液等の毛髪化粧料が例示できる。本発明の化粧料は、紫外線からの肌や毛髪の保護のため使用することができるが、肌等への適用量や用法は特に限定されず、1日数回、適量を肌等に塗布等して用いることができる。本発明のその他産業分野での活用としては、油性塗料、油性インク、グリース、工業用潤滑油、農薬のOD剤等、幅広く適用が可能である。これらは常法に従い製造することができる。
 (紫外線吸収用組成物の製造方法)
 以下に、本発明の紫外線吸収用組成物及び本発明の化粧料の製造方法を説明する。本発明の紫外線吸収用組成物の製造方法は、炭素系量子ドットと水系溶媒とを含む水分散体、界面活性剤、及び油性基剤を混合する工程を含むものである。また、本発明の紫外線吸収用組成物の製造方法は、炭素系量子ドットと水系溶媒とを含む水分散体、及び親水性基剤を混合する工程を含むものである。なお、前述に記載した内容と同様であるものについては、ここでの説明は省略する場合もある。
 (希釈工程)
 本発明では、炭素系量子ドットと水系溶媒とを含む水分散体は、前述の通り、市販されており、これらをそのまま使用することができる。しかし、分散性を向上させる観点から、水分散体の全量に対する炭素系量子ドットの含有量を、水分散体の全量に対して好ましくは0.15/w%以上10w/w%以下、より好ましくは0.5w/w%以上5w/w%以下となるように水系溶媒等でさらに希釈する希釈工程を含むことが好ましい。
 (混合工程)
 本発明では、組成物中に油性基剤を用いる場合には、炭素系量子ドットと水系溶媒とを含む水分散体、界面活性剤、及び油性基剤を混合する工程を含む。一方、組成物中に親水性基剤を用いる場合には、炭素系量子ドットと水系溶媒とを含む水分散体、及び親水性基剤を混合する工程を含む。そのような混合工程は、当該技術分野で慣用の方法により、行うことができる。例えば、炭素系量子ドットを含有する水分散体に、必要に応じて前述の界面活性剤を添加して、十分に攪拌し、その後、前述の油性基剤(又は親水性基剤)を添加することにより、各成分を均一に混合することができる。混合条件としては、好ましくは40~100℃、より好ましくは50~80℃に加温しながら、攪拌機で10分間~3時間程度混合することが好ましい。油性基剤(又は親水性基剤)の添加量により、最終組成物中の炭素系量子ドットの濃度を調整することができるが、組成物の全量に対する炭素系量子ドットの含有量は、0.001w/w%以上10w/w%以下であることが好ましく、0.01w/w%以上8w/w%以下であることがより好ましく、さらに好ましくは0.05w/w%以上6w/w%以下であり、特に好ましくは0.1w/w%以上5w/w%以下、特に好ましくは0.1w/w%以上3.5w/w%以下となるように、油性基剤(又は親水性基剤)等を添加することができる。混合時には、従来の周知の任意成分を特に限定されることなく含むことができ、例えば、分散剤、酸、塩、有機溶媒等の任意の物質を含んでいてもよい。
 (化粧料の製造方法)
 本発明の化粧料は、当該技術分野で慣用の方法により、たとえば、上記の紫外線吸収組成物をその他の成分と混合撹拌することにより製造できる。
 (紫外線吸収方法)
 本発明の紫外線吸収方法は、上述の通り、炭素系量子ドット、水系溶媒、界面活性剤、及び油性基剤を含有する紫外線吸収用組成物を用いるものである。また、本発明の紫外線吸収方法は、上述の通り、炭素系量子ドット、水系溶媒、及び親水性基剤を含有する紫外線吸収用組成物を用いるものである。詳細は、前述の通りであるので、ここでの説明は省略する。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例等における評価項目は下記のようにして測定を行った。
 (1)分散性の測定
 実施例1~8及び比較例1~2で得られた各紫外線吸収用組成物を、20mLのガラス製ボトルに10mL秤りとって、キャップを閉めて試料とした。各試料について、室温で充填後直後の分散性を目視で確認した。さらに、各試料を室温で1か月間静置保管し、分散性を目視で確認した。各試料の評価結果を表1~2、及び図1~3に示す。また、実施例1の充填後直後の写真を図1に、及び充填後1か月後の分散性の写真を図2に、比較例1の充填後直後の分散性の写真を図3に示す。
〇:分散性が良く、全体が均一状態で、その状態のまま
△:分散性が良く、全体が均一状態にはなるが、多少分離する
×:分散性が悪く、全体が均一状態にならない
 (2)吸収スペクトルの測定
 分光光度計(V-770、日本分光製)を用いて実施例1~8及び比較例1~2で得られた各紫外線吸収用組成物の吸収スペクトルを測定した。測定範囲は、250nmから700nm及び、250nmから500nmとし、測定条件ダブルビームで測定した。測定結果を図4~図6に示す。測定結果に基づき、紫外線吸収機能を評価した。紫外線吸収機能の評価は、以下の基準に基づき行った。評価結果を表1~2に示す。
〇:波長350nmにおいてワセリン(コントロール)の吸光度を1とした際に3.0以上である。
△:波長350nmにおいてワセリン(コントロール)の吸光度を1とした際に2.0以上3.0未満である。
×:波長350nmにおいてワセリン(コントロール)の吸光度を1とした際に2.0未満である。
 図4は、実施例1で使用したQDの水分散体(QD濃度:1.5w/w%)を(ワセリンに分散する前の状態で)、最終QD濃度がグラフに表示されている濃度0.0025w/w%~0.10w/w%となるように精製水でさらに希釈して、各試料を作製し、上記測定装置及び条件にて、1cm石英セルを用い測定したものである。
 図5は、実施例1で使用したQDの水分散体(QD濃度:1.5w/w%)を、最終QD濃度がグラフに表示されている濃度0.15w/w%~3w/w%となるようにワセリン量を調整して(3w/w%の場合は、QD濃度:1.5w/w%に希釈せずに、QD濃度15w/w%を使用)、各試料を作製し、ポリエチレン製フィルム上に各試料を厚み25μmとなるよう塗布して、上記測定装置及び条件にて測定したものである。なお、コントロールとして、ワセリンのみでも同様に測定した。
 図6は、図5と同様であるが、2か月経過後のものについて、吸収スペクトルを測定した。2か月経過のサンプルは、作成時の状態で埃などの異物が付着しない状態ではあるが密栓等をせずに保管したものの測定結果である。300nm~450nmの範囲において0.5~1.0の吸収が確認でき紫外線吸収作用の劣化はみられなかった。特に400nm以上において、作成時よりも吸収が多くなっているが、これは密栓していなかったため水分が抜けQD濃度が高くなったためと考えている。測定値は記載しないが、作成時のサンプルに比べ2か月経過後のサンプルの重量が減少していることを確認している。
 <実施例1>
 グラフェン量子ドットの水分散体(冨士色素社製FUJI QD GRAPHENE 818、量子ドットの含有量(以下、QD濃度ともいう)15w/w%)を精製水で10倍に希釈して、QD濃度が水分散体の全量に対して1.5w/w%となるように、水分散体を調製した。前記水分散体(QD濃度:1.5w/w%)10gに界面活性剤(花王社製、レオドール AO-10V(非イオン性界面活性剤))1gを加えて、十分に攪拌した。その後、ワセリン(コスメテックスローランド社製、ロッシベビー ワセリンピュアN)89gを、QD濃度が組成物の全量に対して0.15w/w%となるように、添加し、60℃に加温しながら、攪拌機で十分に混合して、紫外線吸収用組成物(QD濃度:組成物の全量に対して0.15w/w%)を製造した。
 <実施例1―1、及び実施例1-2>
 実施例1において、各成分を表1に記載の濃度となるように調製したこと以外は、実施例1と同じ条件で紫外線吸収用組成物を製造した。
 <実施例2>
 実施例1において、グラフェン量子ドットの水分散体(冨士色素社製FUJI QD GRAPHENE 818、QD濃度:15w/w%)を用いる代わりに、カーボン量子ドットの水分散体(冨士色素社製FUJI QD CARBON 308、QD濃度:15w/w%)を使用したこと以外は、実施例1と同じ条件で紫外線吸収用組成物を製造した。
 <実施例3>
 実施例1において、界面活性剤(花王社製、レオドール AO-10V(非イオン性界面活性剤))を用いる代わりに、界面活性剤(花王社製、カオーアキポRLM-100NV(陰イオン性界面活性剤))を使用したこと以外は、実施例1と同じ条件で紫外線吸収用組成物を製造した。
 <実施例4>
 実施例1において、界面活性剤(花王社製、レオドール AO-10V(非イオン性界面活性剤))を用いる代わりに、界面活性剤(花王社製、アセタミン 86(陽イオン性界面活性剤))を使用したこと以外は、実施例1と同じ条件で紫外線吸収用組成物を製造した。
 <実施例5>
 実施例1において、界面活性剤(花王社製、レオドール AO-10V(非イオン性界面活性剤))を使用しなかったこと、及び、ワセリン(コスメテックスローランド社製、ロッシベビー ワセリンピュアN)を用いる代わりに、グリセリン(富士フイルム和光社製、市販名グリセリン)を使用したこと以外は、実施例1と同じ条件で紫外線吸収用組成物を製造した。
 <実施例5―1、及び実施例5-2>
 実施例5において、各成分を表2に記載の濃度となるように調製したこと以外は、実施例5と同じ条件で紫外線吸収用組成物を製造した。
 <実施例6>
 実施例5において、グリセリン(富士フイルム和光社製、市販名グリセリン)を用いる代わりに、エトキシジグリコール(富士フイルム和光社製、市販名2-(2-エトキシエトキシ)エタノール)を使用したこと以外は、実施例5と同じ条件で紫外線吸収用組成物を製造した。
 <実施例7>
 実施例5において、グリセリン(富士フイルム和光社製、市販名グリセリン)を用いる代わりに、エタノール(富士フイルム和光社製、市販名エタノール)を使用したこと以外は、実施例5と同じ条件で紫外線吸収用組成物を製造した。
 <実施例8>
 実施例1において、表1の量となるように、グラフェン量子ドットと水と界面活性剤(花王社製、レオドール AO-10V(非イオン性界面活性剤))を増量し、ワセリンを減量したこと以外は実施例1と同じ条件で紫外線吸収用組成物を製造した。
 <比較例1>
 実施例1において、界面活性剤(花王社製、レオドール AO-10V(非イオン性界面活性剤))を使用しなかったこと以外は、実施例1と同じ条件で紫外線吸収用組成物を製造した。
 <比較例2>
 実施例1において、炭素系量子ドットを含まない水を使用したこと以外は、実施例1と同じ条件で紫外線吸収用組成物を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 評価結果を表1~表2に示す。
 表1に示す通り、実施例1において、分散性、紫外線吸収機能ともに優れた組成物が得られた。具体的には、実施例1の分散性を目視確認すると、図1~2に示す通り、充填後直後(図1)も充填後1か月後(図2)も、分散性が良く、全体が均一状態で、その状態のままであったことが分かった。これは、ワセリンは油性、QD水分散体は親水性であり、そのままでは混ざり合わないところ、界面活性剤を入れたことによる界面活性作用の為と考えられる。しかも、分散状態が良好であると、優れた紫外線吸収機能、特にUVA(波長315~380nm)、UVB(波長280~315nm)を吸収する機能を発揮できることが分かった。一方、比較例1では、界面活性剤を添加しなかったが、その結果、分散性を目視確認すると、図3に示す通り、充填後直後で、既に沈殿が生じており、分散性が悪く、全体が均一状態にならなかった。なお、充填後1か月後も、直後と同様に沈殿が生じている状態であった(写真はなし)。また、表1における比較例1の吸光度は―(バー)となっているが、前記の通り完全に沈殿している為、測定しても明らかに紫外線吸収機能は有しないと考えられる。従って、実施例1と比較例1を比較することで、優れた分散性及び優れた紫外線吸収機能を有するためには、油性基剤を使用する場合は、界面活性剤の添加が必要であることが示された。
 次に、表1に示す通り、実施例2では量子ドットの種類をグラフェンからカーボンへ変更したが、こちらも実施例1と同様の性能を持つ組成物が得られた。実施例3,実施例4ではそれぞれ界面活性剤を非イオン系から陰イオン系、陽イオン系へと変更したが、界面活性剤の種類を変えても、良好な分散性を保ちつつ紫外線吸収機能も有する組成物が得られることがわかった。また、実施例8において、水の添加量の1/10程度の界面活性剤を添加することにより、炭素系量子ドット量を増量させても、分散性を保ちつつ紫外線吸収機能も有する組成物が得られることが示された。一方、比較例2では、炭素系量子ドットを添加しなかった。実施例1と比較例2を比較することで、優れた紫外線吸収機能を有するためには炭素系量子ドットの存在が必要であることが示された。以上より、油性基剤を用いて、優れた紫外線吸収機能、分散性を併せ持つ組成物を得るためには、炭素系量子ドット分散液(溶媒:水系)、界面活性剤の存在が必要であることが示された。なお、表1に記載の実施例及び比較例での油性基剤は、全てワセリンを使用しているが、ワセリンのような極低極性の基剤にQDの水分散体を分散できているため、それより極性の高い基剤であれば容易に基剤への分散可能と考えられる。
 一方、図4は、実施例1に使用したQDの水分散体(QD濃度:1.5w/w%)を、グラフに表示されているQD濃度0.0025w/w%~0.10w/w%となるように精製水でさらに希釈して、様々なQD濃度における吸収変化を検討したものである。製剤時にどの程度のQD濃度であれば所望の紫外線吸収効果を発揮できるか確認したものである。その結果、300nm~400nmの波長における吸収変化から、QDの水分散体のQD濃度が0.01w/w%以上であることが好ましいことが分かった。また、市販の日焼け止め等に用いられている有機系紫外線吸収剤は、単一成分では広域な波長をカバーできないが、本発明におけるQDを用いることで、複数の成分を配合することなく300nm~400nmのような広域な波長をカバーできることが分かった。
 図5は、実施例1で使用したQDの水分散体(QD濃度:1.5w/w%)を、最終QD濃度がグラフに表示されている濃度0.15w/w%~3w/w%となるようにワセリン量を調整して(3w/w%の場合は、QD濃度:1.5w/w%を経由せずに、QD濃度15w/w%を使用)、各試料を作製し、ポリエチレン製フィルム上に各試料を厚み25μm程度となるよう塗布乾燥して、上記測定装置及び条件にて測定したものである(実施例1,1-1,1-2に対応)。なお、コントロールとして、ワセリンのみでも同様に測定した。その結果、ワセリンのみと比較してグラフェン量子ドット入りのものは吸光度が上昇していることが分かった。なお、図5において、いずれのQD濃度においても、UVAの範囲である波長350nmにおいてワセリン(コントロール)の吸光度を1とした際に3.0以上の紫外線吸収機能が得られたのとともに、UVBの範囲である波長300nmにおいてもワセリン(コントロール)の吸光度を1とした際に3.0以上の紫外線吸収機能が得られることが分かった。
 図6は、図5と同様であるが、2か月経過後のものについて、吸収スペクトルを測定した(実施例1,1-1,1-2に対応)。2か月経過のサンプルは、作成時の状態で埃などの異物が付着しない状態ではあるが密栓等をせずに保管したものの測定結果である。300nm~450nmの範囲において0.5~1.0の吸収が確認でき紫外線吸収作用の劣化はみられなかった。特に400nm以上において、作成時よりも吸収が多くなっているが、これは密栓していなかったため水分が抜けQD濃度が高くなったためと考えている。測定値は記載しないが、作成時のサンプルに比べ2か月経過後のサンプルの重量が減少していることを確認している。
 次に、表2に示す通り、親水性基剤を用いて検討を行った。実施例5において、分散性、紫外線吸収機能ともに優れた組成物が得られた。実施例6,7では親水性基剤をグリセリンからそれぞれエトキシジグリコール、エタノールへ変更したが分散性、紫外線吸収機能を保つ組成物が得られた。以上より、油性基剤から親水性基剤へと変更しても、QDが有する紫外線吸収機能を壊すことがなく、さらに様々な種類(実施例5,6,7)や様々な濃度(実施例5,5-1,5-2)の親水性基剤を検討しても分散性や紫外線吸収機能には影響がないことが示唆された。
 
 

Claims (12)

  1.  炭素系量子ドット、水系溶媒、界面活性剤、及び油性基剤を含有する紫外線吸収用組成物。
  2.  炭素系量子ドット、水系溶媒、及び親水性基剤を含有する紫外線吸収用組成物。
  3.  前記炭素系量子ドットの含有量が、組成物の全量に対して0.001~10w/w%である、請求項1又は2に記載の紫外線吸収用組成物。
  4.  前記界面活性剤は、非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤及び両性界面活性剤からなる群から選択される1種以上である、請求項1に記載の紫外線吸収用組成物。
  5.  前記油性基剤は、炭化水素類、脂肪酸類、高級アルコール、エステル油、油脂、ロウ、シロキサン、及びシリコーンからなる群から選択される1種以上である、請求項1に記載の紫外線吸収用組成物。
  6.  前記親水性基剤は、糖類、水溶性ポリマー、多価アルコール、セルロース誘導体、グリコールエーテル、及び低級アルコールからなる群から選択される1種以上である、請求項2に記載の紫外線吸収用組成物。
  7.  請求項1又は2に記載の紫外線吸収用組成物を製剤化した場合の形態が、液剤、懸濁剤、乳剤、クリーム剤、軟膏剤、ゲル剤、リニメント剤、スプレー剤、エアゾール剤、パップ剤、シート剤、パウダー剤及びローション剤からなる群から選択される1種以上である、紫外線吸収用組成物。
  8.  請求項1又は2に記載の紫外線吸収用組成物を含む化粧料。
  9.  炭素系量子ドットと水系溶媒とを含む水分散体、界面活性剤、及び油性基剤を混合する工程を含む、紫外線吸収用組成物の製造方法。
  10.  炭素系量子ドットと水系溶媒とを含む水分散体、及び親水性基剤を混合する工程を含む、紫外線吸収用組成物の製造方法。
  11.  炭素系量子ドット、水系溶媒、界面活性剤、及び油性基剤を含有する紫外線吸収用組成物を用いる紫外線吸収方法。
  12.  炭素系量子ドット、水系溶媒、及び親水性基剤を含有する紫外線吸収用組成物を用いる紫外線吸収方法。
PCT/JP2023/005774 2022-07-08 2023-02-17 紫外線吸収用組成物、及びその製造方法 WO2024009548A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110409 2022-07-08
JP2022-110409 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024009548A1 true WO2024009548A1 (ja) 2024-01-11

Family

ID=89453218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005774 WO2024009548A1 (ja) 2022-07-08 2023-02-17 紫外線吸収用組成物、及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024009548A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278625A (ja) * 1996-04-11 1997-10-28 Shiseido Co Ltd サンケア用化粧組成物
JP2011184495A (ja) * 2010-03-05 2011-09-22 Japan Fine Ceramics Center 発光体、発光体の製造方法、照明装置および化粧品用紫外線遮蔽材
JP2016020417A (ja) * 2014-07-14 2016-02-04 住友金属鉱山株式会社 紫外線遮蔽性粉末とその製造方法
KR101710907B1 (ko) * 2015-06-12 2017-02-28 한국과학기술원 자외선 차단 기능이 부여된 화장료 조성물 및 이의 제조 방법
CN107714493A (zh) * 2017-11-28 2018-02-23 拜东辰 一种抗菌防紫外线防腐材料在日用化妆品中的应用
JP2018203630A (ja) * 2017-05-30 2018-12-27 ビタミンC60バイオリサーチ株式会社 化粧料用フラーレン含有組成物とそれを用いた化粧料
WO2021006490A1 (ko) * 2019-07-09 2021-01-14 코스맥스 주식회사 그래핀 양자점을 유효성분으로 함유하는 화장료 조성물
JP2021080346A (ja) * 2019-11-18 2021-05-27 冨士色素株式会社 蛍光体組成物、及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278625A (ja) * 1996-04-11 1997-10-28 Shiseido Co Ltd サンケア用化粧組成物
JP2011184495A (ja) * 2010-03-05 2011-09-22 Japan Fine Ceramics Center 発光体、発光体の製造方法、照明装置および化粧品用紫外線遮蔽材
JP2016020417A (ja) * 2014-07-14 2016-02-04 住友金属鉱山株式会社 紫外線遮蔽性粉末とその製造方法
KR101710907B1 (ko) * 2015-06-12 2017-02-28 한국과학기술원 자외선 차단 기능이 부여된 화장료 조성물 및 이의 제조 방법
JP2018203630A (ja) * 2017-05-30 2018-12-27 ビタミンC60バイオリサーチ株式会社 化粧料用フラーレン含有組成物とそれを用いた化粧料
CN107714493A (zh) * 2017-11-28 2018-02-23 拜东辰 一种抗菌防紫外线防腐材料在日用化妆品中的应用
WO2021006490A1 (ko) * 2019-07-09 2021-01-14 코스맥스 주식회사 그래핀 양자점을 유효성분으로 함유하는 화장료 조성물
JP2021080346A (ja) * 2019-11-18 2021-05-27 冨士色素株式会社 蛍光体組成物、及びその製造方法

Similar Documents

Publication Publication Date Title
CA2253223C (fr) Particules de dioxyde de titane
DE69206628T2 (de) Feine dispersion von melaninpigmente, seine herstellung sowie seine verwendung in die kosmetik.
JP5260060B2 (ja) 微粒子酸化チタン分散物及びそれを含む化粧料
EP2616038A2 (en) Cosmetic composition comprising a dyestuff, said dyestuff and cosmetic treatment process
JP2007161648A (ja) 微粒子酸化亜鉛分散物及びそれを含む化粧料
JP2023527051A (ja) (不)飽和炭化水素ベース鎖を有するポリヒドロキシアルカノエートコポリマーと界面活性剤とを含む化粧用組成物
JP5540243B2 (ja) 日焼け止め化粧料
JP2002080771A (ja) 顔料分散体および化粧料
KR101006343B1 (ko) 이산화티탄의 유분산액을 함유하는 자외선 차단용 화장료조성물
CN111182884B (zh) 涂覆有羟基肉桂酸酯和硅烷醇的加合物的无机防晒剂
WO2015007146A1 (zh) 具有更佳紫外防护效用的紫外吸收剂及其组合物
JP2018526400A (ja) ペラルゴン酸エステルを含む親油性化粧品用組成物
JP2010241763A (ja) 化粧品組成物
WO2024009548A1 (ja) 紫外線吸収用組成物、及びその製造方法
JP6682950B2 (ja) 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子
EP1677742A1 (de) Pulverförmige zubereitungen, enthaltend diethylamino-hydroxybenzoyl-hexyl-benzoat
KR102340304B1 (ko) 자외선 차단용 실리카 나노입자 조성물 및 그 제조방법
WO2013161553A1 (ja) 表面修飾無機酸化物微粒子、及び該微粒子を含有するサンスクリーン化粧料
US8481007B2 (en) Compositions and methods for providing ultraviolet radiation protection
KR101970949B1 (ko) 징크 옥사이드 무기분체를 이용한 유무기 복합체 및 이를 포함하는 화장료 조성물 및 이의 제조 방법
KR20190017488A (ko) 이중 코팅된 티타늄디옥사이드를 함유하는 자외선 차단용 화장료 조성물
WO2011065251A1 (ja) 紫外線吸収剤包接粘土鉱物及びこれを含有する化粧料
JP7508248B2 (ja) 繊維含有化粧料
KR101116596B1 (ko) 할로이사이트 나노튜브-광 산란 나노입자의 하이브리드 분말, 이의 제조방법 및 이를 유효성분으로 함유하는 자외선 차단용 화장료 조성물
ES2922173T3 (es) Compuestos derivados de 1,3-propilen éter para el cuidado personal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835089

Country of ref document: EP

Kind code of ref document: A1