WO2024009419A1 - 光増幅装置及び光増幅方法 - Google Patents

光増幅装置及び光増幅方法 Download PDF

Info

Publication number
WO2024009419A1
WO2024009419A1 PCT/JP2022/026791 JP2022026791W WO2024009419A1 WO 2024009419 A1 WO2024009419 A1 WO 2024009419A1 JP 2022026791 W JP2022026791 W JP 2022026791W WO 2024009419 A1 WO2024009419 A1 WO 2024009419A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal light
optical
section
polarized signal
Prior art date
Application number
PCT/JP2022/026791
Other languages
English (en)
French (fr)
Inventor
新平 清水
拓志 風間
孝行 小林
毅伺 梅木
裕 宮本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/026791 priority Critical patent/WO2024009419A1/ja
Publication of WO2024009419A1 publication Critical patent/WO2024009419A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present invention relates to an optical amplification device and an optical amplification method.
  • optical amplifiers are used to compensate for optical loss that occurs in the optical fiber.
  • the transmission band of the optical fiber transmission system is limited to the amplification band of the optical amplifier.
  • Some common optical amplifiers include optical fibers doped with rare earth elements.
  • An erbium-doped fiber amplifier (EDFA) is a typical rare earth-doped optical amplifier.
  • the amplification band of the EDFA is approximately 4 THz within the C-band (approximately 1530 to 1565 nm) where propagation loss in optical fibers is small. This is a wavelength band commonly used in long-distance optical communications.
  • OPA optical parametric amplifiers
  • An OPA is an amplifier that amplifies input light by utilizing a nonlinear optical effect in a medium such as lithium niobate, which is a second-order nonlinear optical medium, or an optical fiber, which is a third-order nonlinear optical medium.
  • the amplification band of the OPA depends on the phase matching characteristics in the nonlinear optical medium used as the amplification medium.
  • OPA can achieve broadband amplification that exceeds the amplification band of EDFA.
  • the center of the phase matching characteristic can be designed to have various wavelengths. Therefore, it is also possible to amplify various communication wavelength bands other than the conventionally used C-band and L-band.
  • a second-order nonlinear optical medium that uses second-order harmonics as pump light for parametric amplification
  • the frequency difference between the amplified light and the pump light is large, so the difference in effective refractive index for each component is large. Therefore, it is not easy to design a device that satisfies the phase matching condition.
  • broadband phase matching characteristics can be achieved by a method called quasi-phase matching (QPM) using a periodic polarization inversion structure that alternately forms regions in which the sign of the nonlinear susceptibility is reversed.
  • QPM quasi-phase matching
  • a configuration using periodically poled lithium niobate (PPLN) which is less likely to cause unnecessary nonlinear optical effects, as the amplification medium is promising.
  • OPA using a PPLN waveguide has shown the possibility of wideband amplification and relay transmission exceeding 10 THz with an amplification gain of 15 dB (for example, see Non-Patent Document 1).
  • a polarization diversity configuration is required in which the polarization of input light is divided into two orthogonal components before amplification, and each component is amplified and recombined. Further, even with a third-order nonlinear optical effect, a gain occurs depending on the polarization state of the pump light. In order to realize stable polarization-independent amplification, it is desirable to use a similar polarization diversity configuration.
  • OPA when input signal light is amplified, idler light, which is phase conjugate light of the signal light, is generated at a frequency that is symmetrical to the signal light with the center frequency of the amplification band as the boundary. For signal transmission, either the idler light or the original signal light may be transmitted. Therefore, optical components that are not used for transmission are amplified and then cut using a band-pass filter (BPF). At this time, when the idler light is extracted as a new transmission optical signal, the OPA also functions as an optical phase conjugate converter (see, for example, Non-Patent Document 2) or a wavelength converter (see, for example, Patent Document 1).
  • One of the characteristics of OPA is that it can perform not only a simple optical amplifier but also various optical signal processing.
  • the optical amplifier In amplified repeat transmission, the optical amplifier needs to compensate for the transmission loss of the optical signal within the entire band used. Furthermore, even in single-span transmission, it is necessary to have sufficient amplification gain within the band used to ensure the signal-to-noise ratio necessary for receiving optical signals.
  • the amplification band of an optical amplifier having such a desired amplification gain will be referred to as an effective amplification band.
  • the phase matching band of the nonlinear optical medium which determines the amplification band of the OPA, is determined by the wavelength dependence of the refractive index of the medium, and can be adjusted by parameter design during manufacturing of the medium and temperature conditions.
  • the gain spectrum of the OPA has flat characteristics near the center frequency.
  • the gain near the center frequency decreases and the gain at frequencies away from the center increases. Thereby, the effective amplification band can be widened. Note that when the temperature is changed in the opposite direction to the direction in which the effective amplification band becomes wider, the gain spectrum changes so that the flat gain band near the center frequency becomes narrower.
  • an object of the present invention is to provide an optical amplification device and an optical amplification method that can widen the amplification band of signal light while reducing the increase in power consumption and signal distortion.
  • An optical amplifying device includes a polarization demultiplexing section that demultiplexes a signal light into two orthogonal polarization components, a first polarization signal light and a second polarization signal light; a first pumping light multiplexer that combines pumping light with each of the one polarized signal light and the second polarized signal light; and a first pumping light multiplexer that generates an optical parametric amplification process, and a first optical amplification section that amplifies the first polarized signal light and the second polarized signal light that are combined with the first polarized signal light and the second polarized signal light amplified by the first optical amplification section; a first pumping light separation section that separates the pumping light from each of the polarized signal lights, and the first polarization signal light and the second polarization signal from which the pumping light is separated by the first pumping light separation section.
  • an unnecessary band separation unit that removes unnecessary frequency components from each of the lights, the first polarized signal light from which unnecessary frequency components have been removed by the unnecessary band separation unit, and the first polarized signal light from which the unnecessary frequency components have been removed by the first pumping light separation unit.
  • the pumping light separated from the first polarized signal light is combined into the second polarized signal light from which unnecessary frequency components have been removed by the unnecessary band separation section, and the first pumping light signal light is generated by the first pumping light separation section.
  • a second pumping light multiplexer that combines the pumping light separated from the dual polarized signal light; and a second pumping light multiplexer that generates an optical parametric amplification process to combine the pumping light and the a second optical amplification section that amplifies the first polarization signal light and the second polarization signal light, and each of the first polarization signal light and the second polarization signal light amplified by the second optical amplification section; a second excitation light separation unit that separates the excitation light from the second excitation light separation unit; and a signal obtained by combining the first polarized signal light and the second polarized signal light from which the excitation light has been separated by the second excitation light separation unit.
  • the first optical amplification unit includes a polarization multiplexing unit that outputs light, and a bandpass filter unit that removes unnecessary frequency components from the signal light output from the polarization multiplexing unit, and the first optical amplification unit
  • the second optical amplifying section is in a phase matching state in which the amplification gain becomes larger near the center frequency, and the second optical amplification section is in a phase matching state in which the amplification gain becomes larger near the center frequency.
  • An optical amplification method includes a polarization splitting step of splitting a signal light into two orthogonal polarization components, a first polarization signal light and a second polarization signal light; a first pumping light combining step of combining pumping light with each of the first polarized signal light and the second polarized signal light; and generating an optical parametric amplification process, and in the first pumping light combining step, the pumping light a first optical amplification step of amplifying the first polarized signal light and the second polarized signal light that are combined with the first polarized signal light and the second polarized signal light that are amplified in the first optical amplification step; a first pumping light separation step of separating the pumping light from each of two polarized signal lights, and the first polarized signal light and the second polarized light from which the pumping light is separated by the first pumping light separating step.
  • an unnecessary band separation step for removing unnecessary frequency components from each of the signal lights; the first polarized signal light from which unnecessary frequency components have been removed by the unnecessary band separation step; The pumping light separated from the first polarized signal light is combined, and the second polarized signal light from which unnecessary frequency components have been removed by the unnecessary band separation step and the first pumping light signal light separated by the first pumping light separation step are combined.
  • a second pumping light combining step of combining the pumping light separated from the second polarized signal light, and generating the optical parametric amplification process to combine the pumping light with the pumping light in the second pumping light combining step.
  • the first optical amplification step includes a polarization multiplexing step for outputting signal light, and a filtering step for removing unnecessary frequency components from the signal light output from the polarization multiplexing step, and the first optical amplification step includes a polarization multiplexing step for outputting signal light.
  • This is a phase matching state in which the amplification gain becomes larger as the frequency is farther away from the center frequency, which is 1/2 of the frequency of light, and in the second optical amplification step, the phase matching state is such that the amplification gain becomes larger near the center frequency. state.
  • the present invention it is possible to widen the amplification band of signal light while reducing increase in power consumption and signal distortion.
  • FIG. 1 is a diagram showing a configuration example of an optical amplifier according to a first embodiment of the present invention
  • FIG. 3 is a diagram showing an example of amplification gain of a nonlinear medium in the first embodiment.
  • FIG. 3 is a diagram showing a comparison between the amplification band spectrum of the optical amplifier in the first embodiment and the amplification band spectrum of the optical amplifier of the prior art.
  • FIG. 2 is a diagram showing a configuration example of an optical amplifier in the first embodiment.
  • FIG. 2 is a diagram showing a configuration example of an optical amplifier in the first embodiment.
  • FIG. 7 is a diagram showing a configuration example of an optical amplifier in a second embodiment.
  • FIG. 7 is a diagram showing a configuration example of an optical amplifier in a second embodiment.
  • This embodiment relates to an optical signal amplification technique using optical parametric amplification.
  • the optical amplification device of this embodiment is an OPA having a configuration in which nonlinear optical media having complementary phase matching characteristics (gain spectra) are connected in cascade.
  • the medium temperature is adjusted so as to amplify at least a frequency band away from the center frequency in the frequency band to be amplified.
  • the gain near the center frequency may be lower than the desired gain.
  • the second-stage nonlinear optical medium complementarily amplifies the band near the center frequency that could not be amplified completely by the first-stage medium, that is, the band for which the desired gain was not achieved by the first-stage medium.
  • the amplification band is deliberately narrowed by controlling the temperature of the medium in the latter stage in the opposite direction to that of the medium in the first stage.
  • the input optical power to the medium in the subsequent stage becomes substantially low, and even with weak pumping light, sufficient gain can be obtained to complement the gain characteristics of the medium in the first stage. Therefore, the excitation light used in the first-stage nonlinear optical medium can be reused as is, and no additional excitation light is required. That is, the effective amplification band can be expanded without increasing power consumption.
  • FIG. 1 is a diagram showing the configuration of an optical amplifier 100 of the first embodiment.
  • Optical amplifier 100 is an OPA.
  • the optical amplifier 100 includes a polarization demultiplexer 101, a pump light multiplexer 102-1, a pump light multiplexer 102-2, a nonlinear medium 103-1, a nonlinear medium 103-2, and a pump light splitter 104.
  • the nonlinear It includes a medium 107-1, a nonlinear medium 107-2, an excitation light separation section 108-1, an excitation light separation section 108-2, a polarization multiplexing section 109, and a bandpass filter 110.
  • the polarization splitter 101 separates the input signal light into orthogonal polarization components.
  • One of the signal lights divided into two orthogonal polarization components will be referred to as a first polarization signal light, and the other signal light will be referred to as a second polarization signal light.
  • the polarization demultiplexer 101 outputs the first polarized signal light to the excitation light multiplexer 102-1, and inputs the second polarized signal light to the excitation light multiplexer 102-2.
  • the excitation light multiplexer 102-i outputs the i-th polarized signal light combined with the excitation light to the nonlinear medium 103-i.
  • the nonlinear medium 103-i is an optical amplification section using a nonlinear optical medium.
  • the nonlinear medium 103-i amplifies the i-th polarized signal light input from the pump light multiplexer 102-i by generating an optical parametric process.
  • the nonlinear medium 103-i outputs the amplified i-th polarized signal light to the excitation light separation unit 104-i.
  • the excitation light separation unit 104-i receives the i-th polarized signal from the nonlinear medium 103-i, and separates the excitation light from the input i-th polarized signal light.
  • the excitation light separation section 104-i outputs the i-th polarized signal light from which the excitation light has been separated to the unnecessary band separation section 105-i, and outputs the excitation light to the excitation light combination section 106-i.
  • the unnecessary band separation unit 105-i inputs the i-th polarized signal light from the excitation light separation unit 104-i, and removes unnecessary frequency components generated in the optical parametric process from the input i-th polarized signal light. , and output to the pump light multiplexing section 106-i.
  • the pumping light multiplexing section 106-i combines the pumping light separated by the pumping light separating section 104-i with the i-th polarized signal light from which unnecessary frequency components have been removed by the unnecessary band separating section 105-i.
  • the excitation light multiplexer 106-i outputs the i-th polarized signal light combined with the excitation light to the nonlinear medium 107-i.
  • the nonlinear medium 107-i is an optical amplification section using a nonlinear optical medium.
  • the nonlinear medium 107-i amplifies the i-th polarized signal light input from the pump light multiplexer 106-i by generating an optical parametric process.
  • the nonlinear medium 107-i outputs the amplified i-th polarized signal light to the excitation light separation unit 108-i.
  • the excitation light separation unit 108-i receives the i-th polarized signal light from the nonlinear medium 107-i and separates the excitation light from the input i-th polarized signal light.
  • the excitation light separation unit 108-i outputs the i-th polarized signal light from which the excitation light has been separated to the polarization multiplexing unit 109.
  • the polarization multiplexer 109 multiplexes the first polarized signal light input from the pump light splitter 108-1 and the second polarized signal light input from the pump light splitter 108-2.
  • the resulting signal light is output to the bandpass filter 110.
  • the bandpass filter 110 inputs the signal light from the polarization multiplexing section 109 and removes unnecessary frequency components generated in the optical parametric process of each of the nonlinear medium 107-1 and the nonlinear medium 107-2 from the input signal light. .
  • the bandpass filter 110 outputs signal light from which unnecessary frequency components have been removed.
  • the signal light input to the optical amplifier 100 is first divided into two bands with the center frequency of the amplification band as the border. This is because, with parametric amplification, idler light, which is phase conjugate light of signal light, is generated at a frequency that is symmetrical with respect to the center frequency. Thereafter, each signal light divided into two bands is separated into orthogonal polarization components by the polarization splitter 101. This is because nonlinear phenomena in a nonlinear medium have polarization dependence.
  • the signal light divided into two orthogonal polarization components is combined with the pump light by pump light multiplexing sections 102-1 and 102-2, and is then combined with the pump light by nonlinear media 103-1, 103-2, 107-1, 107-2.
  • the pump light is separated from the signal light of each polarization component by the pump light separation units 108-1 and 108-2. After the excitation light is separated, the signal lights of each polarization component are again polarized and combined by the polarization multiplexing section 109.
  • the combination of excitation light by the excitation light multiplexing sections 102-1 and 102-2 and the demultiplexing of the excitation light by the excitation light separation sections 108-1 and 108-2 are performed using wavelength multiplexing filters, dichroic mirrors, and the like.
  • a bandpass filter 110 extracts a signal light component in the same band as the signal light input to the optical amplifier 100, and outputs the extracted signal light component to a subsequent stage.
  • the bandpass filter 110 may extract the idler light and output the extracted idler light to a subsequent stage.
  • the optical amplifier 100 can be used as a phase conjugate converter or a wavelength converter.
  • two nonlinear media 103-i and a nonlinear medium 107-i are arranged in the path of each polarization component.
  • the temperatures of these two nonlinear media 103-i and nonlinear medium 107-i are adjusted by a Peltier element, a heater, etc. attached to the media so that they each have complementary gain spectra.
  • the pump light used for amplification by the nonlinear medium 103-i in the first stage is separated by the pump light separation unit 104-i, and then combined with the signal light again by the pump light multiplexing unit 106-i in the subsequent stage, and then the nonlinear medium 107 - used for amplification by i.
  • the separation of the excitation light by the excitation light separation section 104-i and the multiplexing of the excitation light by the excitation light multiplexing section 106-i are performed using a wavelength multiplexing filter, a dichroic mirror, or the like.
  • the pump light separation unit 104-i between the nonlinear medium 103-i and the nonlinear medium 107-i passes the same band as the signal light input to the optical amplifier 100, or passes the idler light band.
  • the power of the pump light once used decreases due to slight attenuation due to nonlinear processes within the medium, loss in the pump light separation section, and loss in the pump light combination section. Further, in order to linearly amplify the signal light, which has been amplified once and has a high optical power, an even higher optical power of the pumping light is required. For the reasons described above, reusing the pump light usually causes gain saturation due to pump depression, resulting in nonlinear distortion of the signal light. However, as in this embodiment, by making the phase matching characteristic of the nonlinear medium 107-i in the subsequent stage narrow band, the pumping light is not consumed in the band outside the signal light.
  • the input signal optical power to the nonlinear medium 107-i in the subsequent stage can be considered to be lower than the true input power, so that gain saturation can be suppressed.
  • Another factor that makes such a configuration possible is that only the band near the center needs to be amplified with a small gain.
  • FIG. 2 is a diagram showing an example of the amplification gain of the first-stage nonlinear medium 103-i and the amplification gain of the second-stage nonlinear medium 107-i.
  • the amplification gain around the center wavelength of the phase matching characteristic is low, and the amplification gain is correspondingly large at wavelengths distant from the center wavelength.
  • the center wavelength of the phase matching characteristic is a wavelength corresponding to a center frequency that is half the frequency of the excitation light.
  • the nonlinear medium 107-i in the second stage has an amplification gain spectrum that complementarily amplifies the area around the center wavelength of the nonlinear medium 103-i in the first stage.
  • FIG. 3 is a diagram showing a comparison between the amplification gain spectrum of the optical amplifier 100 of the present embodiment shown in FIG. 1 and the amplification gain spectrum of the conventional optical amplifier.
  • Prior art optical amplifiers are OPA configurations consisting of a single nonlinear medium. The amplification gain was measured when continuous light was input using a PPLN waveguide whose phase matching characteristic center wavelength (1/2 frequency of the pumping light frequency) was 1545.32 nm by sweeping the wavelength of the input light. Ta.
  • temperature control was performed to maximize the band in which a gain of 15 dB could be obtained.
  • the input power of the pumping light is the same in both this embodiment and the prior art.
  • the optical amplifier 100 having the configuration of this embodiment can expand the effective amplification band by about 8 nm compared to the conventional optical amplifier. This embodiment can achieve such band expansion with good power efficiency without adding pumping light or increasing the output.
  • FIG. 4 is a diagram showing the configuration of the optical amplifier 200.
  • the optical amplifier 200 is configured to use the entire band extending from the center frequency of the phase matching characteristic of the OPA to the low frequency side and the high frequency side.
  • the optical amplifier 200 includes a band demultiplexer 201, an OPA 202-1, an OPA 202-2, and a band multiplexer 203.
  • OPA 202-1 and OPA 202-2 each have a configuration in which bandpass filter 110 is removed from optical amplifier 100 shown in FIG.
  • the polarization branching unit 101 of the OPA 202-1 and the polarization branching unit 101 of the OPA 202-2 receive signal light from the band branching unit 201. Further, the polarization multiplexing section 109 of the OPA 202-1 and the polarization multiplexing section 109 of the OPA 202-2 output the polarization-combined signal light to the band multiplexing section 203.
  • the band multiplexer 203 multiplexes the signal light input from the polarization multiplexer 109 of the OPA 202-1 and the signal light input from the polarization multiplexer 109 of the OPA 202-2.
  • the band multiplexing unit 203 uses a filter to cut components not used for transmission from the multiplexed signal light, extracts and outputs signal light in a band used for transmission. As a result, the band multiplexer 203 outputs a signal light with the idler light cut off, or an idler light with the signal light cut off.
  • the band where idler light is generated needs to be left open. Therefore, it is necessary to have a configuration in which the signal light is divided into two bands with the center frequency as the boundary, and after processing each band, the signal light is combined again. Therefore, for the optical amplifier 200, another configuration of the optical amplifier 100 described above is prepared and connected in parallel via a band multiplexing/demultiplexing filter constituted by a band demultiplexer 201 and a band multiplexer 203.
  • the configuration of optical amplifier 100 corresponds to OPA 202-1 and OPA 202-2.
  • isolators may be provided before and after the nonlinear medium.
  • An example in which an isolator is provided is shown in FIG.
  • FIG. 5 is a configuration diagram of the OPA 300.
  • the same parts as in the optical amplifier 100 shown in FIG. 1 are denoted by the same reference numerals, and their explanation will be omitted.
  • the OPA 300 shown in FIG. 5 is different from the optical amplifier 100 shown in FIG. 2, 305-1, and 305-2.
  • the isolator 301-i passes the i-th polarized signal light in the direction from the polarization demultiplexer 101 to the excitation light multiplexer 102-i, and passes the i-th polarized signal light from the excitation light multiplexer 102-i to the polarization demultiplexer 101. Block out the light in the direction.
  • the isolator 302-i is provided between the excitation light separation section 104-i and the unnecessary band separation section 105-i.
  • the isolator 302-i passes the i-th polarized signal light in the direction from the pumping light separating section 104-i to the unnecessary band separating section 105-i, and passes the i-th polarized signal light from the unnecessary band separating section 105-i to the pumping light separating section 104-i. Blocks light in the direction of.
  • the isolator 303-i is provided between the unnecessary band separation section 105-i and the excitation light multiplexing section 106-i.
  • the isolator 303-i passes the i-th polarized signal light in the direction from the unnecessary band separating section 105-i to the pumping light multiplexing section 106-i, and passes the i-th polarized signal light from the pumping light combining section 106-i to the unnecessary band separating section 105-i. Block out light in the direction of.
  • the isolator 304-i is provided between the excitation light separation section 104-i and the excitation light multiplexing section 106-i.
  • the isolator 304-i allows the excitation light in the direction from the excitation light separation unit 104-i to the excitation light multiplexing unit 106-i to pass, and allows the excitation light in the direction from the excitation light multiplexing unit 106-i to the excitation light separation unit 104-i to pass through. Block out light.
  • the isolator 305-i is provided between the excitation light separation section 108-i and the polarization multiplexing section 109.
  • the isolator 305-i passes the i-th polarized signal light in the direction from the excitation light splitter 108-i to the polarization multiplexer 109, and passes the i-th polarized signal light from the polarization multiplexer 109 to the excitation light multiplexer 108-i. Block out the light in the direction.
  • an isolator may be provided only in front of, immediately after, or both of the first-stage nonlinear media 103-1 and 103-2 and the second-stage nonlinear media 107-1 and 107-2. It is also desirable to arrange an isolator in the process of separating and recombining the excitation light to avoid multiple reflections of the excitation light between the two media.
  • FIG. 6 is a diagram showing a configuration example of an optical amplifier 400 according to the second embodiment.
  • the optical amplifier 400 shown in FIG. 6 is different from the optical amplifier 100 shown in FIG. The point is that an optical attenuator 401-2 is provided between the optical separation section 104-2 and the excitation light multiplexing section 106-2.
  • an optical attenuator 401-i is arranged in the excitation light path between the first-stage nonlinear medium 103-i and the second-stage nonlinear medium 107-i.
  • FIG. 7 is a diagram showing a configuration example of an optical amplifier 500 equipped with an automatic gain control mechanism.
  • the optical amplifier 500 shown in FIG. 7 differs from the optical amplifier 100 shown in FIG. 1 in that it further includes variable optical attenuators (VOA) 501, 502-1, 502-2, and 503.
  • VOA variable optical attenuators
  • the variable optical attenuator 501 is provided before the polarization splitter 101.
  • the variable optical attenuator 502-1 is provided between the pump light separation section 104-1 and the pump light multiplexing section 106-1.
  • a variable optical attenuator 502-2 is provided between the pump light separation section 104-2 and the pump light multiplexing section 106-2.
  • the variable optical attenuator 503 is provided after the bandpass filter 110.
  • FIG. 7 illustrates a light source 504 for pumping light input to the pumping light multiplexing section 102-1 and pumping light inputting to the pumping light multiplexing section 102-2.
  • the optical tap 510 is connected before the optical amplifier 500
  • the optical tap 520 is connected after the optical amplifier 500.
  • the optical amplifier 500, the optical tap 510, and the optical tap 520 are connected to a gain control device 530.
  • Gain control device 530 is an AGC.
  • the optical tap 510 branches part of the signal light input to the optical amplifier 500.
  • the optical tap 510 outputs the branched signal light to the gain control device 530 and outputs the remaining branched signal light to the variable optical attenuator 501 of the optical amplifier 500.
  • the variable optical attenuator 501 attenuates the signal light input from the optical tap 510 and outputs it to the polarization splitter 101 .
  • the variable optical attenuator 503 attenuates the signal light output from the bandpass filter 110 and outputs the attenuated signal light.
  • the optical tap 520 branches part of the signal light attenuated by the variable optical attenuator 503 of the optical amplifier 500.
  • the optical tap 520 outputs the branched signal light to the gain control device 530, and outputs the remaining
  • the gain control device 530 includes a monitor section 531 and a control section 532.
  • the monitor unit 531 monitors the signal light branched by the optical tap 510 and the signal light branched by the optical tap 520.
  • the control unit 532 controls the gain when attenuating the signal light in each of the variable optical attenuators 501, 502-1, 502-2, and 503, and controls the injection into the light source 504 based on the monitoring result in the monitor unit 531.
  • the excitation light power is controlled by changing the current. With the configuration shown in FIG. 7, AGC can be performed not only by controlling the power injected into the excitation light but also by controlling the temperature of the nonlinear medium and the aforementioned VOA for the excitation light.
  • the OPA configuration in which two nonlinear media with complementary gain characteristics are connected enables power efficient amplification in the amplification band without the need for adding pumping light or increasing the output power. can be made broadband.
  • the optical amplification device includes a polarization demultiplexing section, a first pumping light multiplexing section, a first optical amplifying section, a first pumping light separating section, an unnecessary band separating section, and a first pumping light multiplexing section. It includes a dual excitation light multiplexing section, a second optical amplification section, a second excitation light separation section, a polarization multiplexing section, and a bandpass filter section.
  • the polarization branching section corresponds to, for example, the polarization branching section 101 of the embodiment.
  • the first excitation light multiplexing section corresponds to, for example, the excitation light multiplexing sections 102-1 and 102-2 of the embodiment.
  • the first optical amplification section corresponds to, for example, the nonlinear media 103-1 and 103-2 of the embodiment.
  • the first excitation light separation section corresponds to, for example, the excitation light separation sections 104-1 and 104-2 of the embodiment.
  • the unnecessary band separation section corresponds to, for example, the unnecessary band separation sections 105-1 and 105-2 in the embodiment.
  • the second excitation light multiplexing section corresponds to, for example, the excitation light multiplexing sections 106-1 and 106-2 of the embodiment.
  • the second optical amplification section corresponds to, for example, the nonlinear media 107-1 and 107-2 of the embodiment.
  • the second excitation light separation section corresponds to, for example, the excitation light separation sections 108-1 and 108-2 of the embodiment.
  • the polarization multiplexing section corresponds to, for example, the polarization multiplexing section 109 of the embodiment.
  • the bandpass filter section corresponds to, for example, the bandpass filter 110 of the embodiment.
  • the polarization splitter splits the signal light into two orthogonal polarization components, a first polarization signal light and a second polarization signal light.
  • the first pumping light multiplexing section combines the pumping light into each of the first polarized signal light and the second polarized signal light.
  • the first optical amplification section generates an optical parametric amplification process and amplifies the first polarized signal light and the second polarized signal light that are combined with the pump light by the first pump light multiplexing section.
  • the first pumping light separation section separates pumping light from each of the first polarized signal light and the second polarized signal light amplified by the first optical amplification section.
  • the unnecessary band separation section removes unnecessary frequency components from each of the first polarized signal light and the second polarized signal light from which the pump light is separated by the first pump light separation section.
  • the second pumping light multiplexing section combines the first polarized signal light from which unnecessary frequency components have been removed by the unnecessary band separation section and the pumping light separated from the first polarized signal light by the first pumping light separation section.
  • the second polarized signal light from which unnecessary frequency components have been removed by the unnecessary band separation section and the pump light separated from the second polarized signal light by the first pump light separation section are combined.
  • the second optical amplification section generates an optical parametric amplification process and amplifies the first polarized signal light and the second polarized signal light that are combined with the pump light by the second pump light multiplexing section.
  • the second pumping light separation section separates the pumping light from each of the first polarized signal light and the second polarized signal light amplified by the second optical amplification section.
  • the polarization multiplexing section outputs a signal light obtained by combining the first polarization signal light and the second polarization signal light from which the pump light was separated by the second pump light separation section.
  • the bandpass filter section removes unnecessary frequency components from the signal light output from the polarization multiplexing section.
  • the first optical amplification section is in a phase matching state in which the amplification gain increases as the frequency becomes farther from the center frequency, which is 1/2 the frequency of the pumping light.
  • the second optical amplification section is in a phase matching state where the amplification gain becomes large near the center frequency.
  • the second optical amplification section complementarily amplifies the first polarized signal light and the second polarized signal light, which have less than a predetermined amplification gain in the first optical amplification section, in the frequency band to be amplified.
  • the optical amplification device may further include an adjustment section.
  • the adjustment section corresponds to, for example, the optical attenuators 401-1 and 401-2 of the embodiment.
  • the adjustment section adjusts the optical power of the excitation light output from the first excitation light separation section to the second excitation light multiplexing section.
  • the amount of attenuation of the excitation light in the adjustment section may be fixed or variable.
  • the optical amplification device may further include a control section.
  • the control unit corresponds to, for example, the gain control device 530 of the embodiment.
  • the control section controls the gain of the adjustment section according to the result of monitoring the signal light before being separated by the polarization splitting section and the signal light output from the bandpass filter section.
  • the optical amplification device transmits light in the direction from the first optical amplification section to the second optical amplification section to one or both of the preceding stage and the subsequent stage of one or both of the first optical amplification section and the second optical amplification section. and may further include an isolator that blocks light in the direction from the second optical amplification section to the first optical amplification section.
  • the bandpass filter section passes the amplified signal light or idler light.
  • Optical amplifier 101 Polarization demultiplexing sections 102-1, 102-2 Pumping light multiplexing sections 103-1, 103-2 Nonlinear media 104-1, 104-2 Pumping light separation sections 105-1, 105-2 Unnecessary band separation Sections 106-1, 106-2 Pumping light multiplexing section 107-1, 107-2 Nonlinear medium 108-1, 108-2 Pumping light separating section 109 Polarization multiplexing section 110 Band pass filter 200
  • Optical attenuator 500 Optical amplifiers 501, 502-1, 502-2, 503 Variable optical attenuator 504
  • Gain control device 531 Monitor section 532 Control section

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光増幅装置(100)は、信号光を偏波成分に分波する偏波分波部(101)と、各偏波成分に励起光を合波する第一励起光合波部(102)と、光パラメトリック増幅過程を発生させて各偏波成分を増幅する第一光増幅部(103)と、各偏波成分から励起光を分離する第一励起光分離部(104)と、各偏波成分から不要な周波数成分を除去する不要帯域分離部(105)と、分離された励起光を各偏波成分に合波する第二励起光合波部(106)と、光パラメトリック増幅過程を発生させて各偏波成分を増幅する第二光増幅部(107)と、各偏波成分から励起光を分離する第二励起光分離部(108)と、各偏波成分を合波する偏波合波部(109)と、合波された信号光から不要な周波数成分を除去する帯域通過フィルタ部(110)とを備える。第一光増幅部(103)は中心周波数から離れるほど増幅利得が大きくなる位相整合状態、第二光増幅部(107)は中心周波数付近で増幅利得が大きくなる位相整合状態である。

Description

光増幅装置及び光増幅方法
 本発明は、光増幅装置及び光増幅方法に関する。
 近年の第5世代移動通信システムの運用開始や高解像動画像などのリッチコンテンツの普及などにともなって、通信トラフィックは指数関数的に増大している。そのため、光ネットワークの継続的な大容量化が求められている。光ファイバ伝送においては、光伝送帯域を広帯域化することでファイバ1本あたりの伝送容量を向上させることができる。そこで、超広帯域波長分割多重伝送の実現に向けて様々な検討がなされている。
 長距離の光ファイバ伝送では、光ファイバ中で生じる光損失の補償のために光増幅器が用いられる。このような伝送方式においては、光ファイバ伝送システムの伝送帯域は、光増幅器の増幅帯域に制限される。一般的な光増幅器には、光ファイバに希土類元素を添加したものがある。エルビウム添加光ファイバ増幅器(EDFA:Erbium-doped fiber amplifier)は、代表的な希土類添加型光増幅器である。EDFAの増幅帯域は、光ファイバ内の伝搬損失が小さいC-band(1530~1565nm程度)内の約4THzの帯域である。これは、長距離の光通信で一般に使用される波長帯域である。伝送帯域の拡張のために、例えば、光ファイバに添加する希土類元素を変えるなどして増幅帯域をシフトさせた異種増幅器を並列する方法が考えられる。しかしながら、C-band以外の帯域では低利得かつ高雑音指数になることが課題である。また、伝送システムのコストやオペレーション、光信号を多数の帯域成分に分割することによる過剰な光損失を考慮すると、単一の光増幅器を用いて広帯域に増幅できることが望ましい。
 このような背景のもと、光パラメトリック増幅器(OPA:Optical parametric amplifier)が注目されている。OPAは、2次非線形光学媒質であるニオブ酸リチウムや、3次非線形光学媒質である光ファイバなどの媒質中の非線形光学効果を利用して入力光を増幅する増幅器である。OPAの増幅帯域は、増幅媒体として用いる非線形光学媒質中の位相整合特性に依存する。媒質の設計により広帯域な位相整合状態を実現することで、OPAは、EDFAの増幅帯域を上回る広帯域増幅が可能となる。また、位相整合特性の中心は様々な波長に設計できる。よって、従来利用されているC-bandやL-band以外の様々な通信波長帯を増幅することもできる。
 パラメトリック増幅のための励起光に二次高調波を用いる二次非線形光学媒質では、被増幅光と励起光の周波数差が大きいため、各成分に対する実効屈折率の差が大きい。従って、位相整合条件を満たす設計は容易ではない。また、非線形感受率の符号が反転した領域を交互に形成した周期分極反転構造による疑似位相整合(QPM:quasi-phase matching)と呼ばれる手法により、広帯域な位相整合特性を実現することができる。広帯域性と利得を両立するには、不要な非線形光学効果を生じにくい周期分極反転ニオブ酸リチウム(PPLN:Periodically poled lithium niobate)を増幅媒体とする構成が有望である。PPLN導波路を用いたOPAによって、15dBの増幅利得で10THzを超える広帯域増幅中継伝送の可能性が示されている(例えば、非特許文献1参照)。
 PPLNをはじめとする2次の非線形媒質では、特定の偏波状態にのみ光パラメトリック増幅過程が起こる。そのため、増幅前に入力光の偏波を直交した2つの成分に分割した後に各成分をそれぞれ増幅し、再合波する偏波ダイバーシティ構成が必要となる。また、3次の非線形光学効果であっても、励起光の偏波状態に応じた利得が生じる。安定した偏波無依存増幅を実現するためには、同様の偏波ダイバーシティ構成を用いることが望ましい。
 OPAでは、入力信号光の増幅時に信号光の位相共役光であるアイドラ光が、増幅帯域の中心周波数を境として信号光に対称な周波数に生じる。信号伝送のためには、アイドラ光、あるいは、元の信号光のいずれか一方を伝送すればよい。そこで、伝送に用いない光成分については、増幅した後に帯域通過フィルタ(BPF:band-pass filter)によりカットする。この時、アイドラ光を新たな伝送光信号として抽出すると、OPAは光位相共役変換器(例えば、非特許文献2参照)や、波長変換器(例えば、特許文献1参照)としても機能する。単なる光増幅器としてだけでなく、このような様々な光信号処理を行うことができることもOPAの特徴の一つである。
 一方で、OPAによる増幅時にはアイドラ光が発生する帯域を空けておく必要があるため、その帯域には信号光を配置することができない。したがって、OPAの増幅帯域を最大限利用するためには、中心周波数を境として信号光を2つのバンドに分け、異なる非線形媒体で増幅したあとに不要な光成分、すなわち、元の信号光又はアイドラ光のいずれか一方を波長フィルタでカットし、各バンドの光成分を再合波する構成が必要になる。
特開2020-86031号公報
T. Kobayashi et al., "Wide-Band Inline-Amplified WDM Transmission Using PPLN-Based Optical Parametric Amplifier," IEEE Journal of Lightwave Technology, Vol. 39, No. 3, pp. 787-794, Feb. 2021. T. Umeki et al., "Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation," Optics Express, Vol.24, No.15, 16945-16951, 2016.
 増幅中継伝送において、光増幅器は、使用する全帯域内において光信号の伝送損失を補償する必要がある。また、シングルスパンの伝送であっても、光信号の受信に必要な信号対雑音比を確保するために十分な増幅利得を、使用する帯域内において有する必要がある。以下では、このような所望の増幅利得を持つ光増幅器の増幅帯域を実効増幅帯域と呼ぶ。
 OPAの増幅帯域を決める非線形光学媒質の位相整合帯域は、媒質の屈折率の波長依存性によって決まり、媒質の製造時のパラメータ設計や、温度状態によって調整が可能である。中心周波数付近の帯域において最適な位相整合条件となる温度の場合、OPAの利得スペクトルは中心周波数付近で平坦な特性となる。また、媒質の温度を変化させ、位相整合状態を変化させると、中心周波数付近の利得が下がり、中心から離れた周波数の利得が上昇する。これにより、実効増幅帯域を広くすることができる。なお、実効増幅帯域が広くなる方向とは逆の方向に温度を変化させると、中心周波数付近の平坦な利得の帯域が狭くなるように利得スペクトルが変化する。
 温度制御による実効増幅帯域の拡張は、中心周波数付近の利得が所望の利得を下回った時点で限界となる。二つのOPAを縦続接続することにより増幅利得を確保する手段も考えられる。しかし、追加の励起光が必要なことによる消費電力増加の影響や、後段のOPAにおける利得飽和による信号歪みが懸念される。
 上記事情に鑑み、本発明は、消費電力の増加や信号歪みを軽減しながら信号光の増幅帯域を広帯域化することができる光増幅装置及び光増幅方法を提供することを目的としている。
 本発明の一態様の光増幅装置は、信号光を、直交する二つの偏波成分である第一偏波信号光及び第二偏波信号光に分波する偏波分波部と、前記第一偏波信号光及び前記第二偏波信号光のそれぞれに励起光を合波する第一励起光合波部と、光パラメトリック増幅過程を発生させて、前記第一励起光合波部が前記励起光と合波した前記第一偏波信号光及び前記第二偏波信号光を増幅する第一光増幅部と、前記第一光増幅部により増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第一励起光分離部と、前記第一励起光分離部により前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光のそれぞれから不要な周波数成分を除去する不要帯域分離部と、前記不要帯域分離部により不要な周波数成分が除去された前記第一偏波信号光と、前記第一励起光分離部により前記第一偏波信号光から分離された前記励起光を合波し、前記不要帯域分離部により不要な周波数成分が除去された前記第二偏波信号光と、前記第一励起光分離部により前記第二偏波信号光から分離された前記励起光を合波する第二励起光合波部と、光パラメトリック増幅過程を発生させて、前記第二励起光合波部が前記励起光と合波した前記第一偏波信号光及び前記第二偏波信号光を増幅する第二光増幅部と、前記第二光増幅部により増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第二励起光分離部と、前記第二励起光分離部により前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光を合波した信号光を出力する偏波合波部と、前記偏波合波部が出力した前記信号光から不要な周波数成分を除去する帯域通過フィルタ部とを備え、前記第一光増幅部は、前記励起光の周波数の1/2の周波数である中心周波数から離れた周波数ほど増幅利得が大きくなる位相整合状態であり、前記第二光増幅部は、前記中心周波数付近で増幅利得が大きくなる位相整合状態である。
 本発明の一態様の光増幅方法は、信号光を、直交する二つの偏波成分である第一偏波信号光及び第二偏波信号光に分波する偏波分波ステップと、前記第一偏波信号光及び前記第二偏波信号光のそれぞれに励起光を合波する第一励起光合波ステップと、光パラメトリック増幅過程を発生させて、前記第一励起光合波ステップにおいて前記励起光と合波された前記第一偏波信号光及び前記第二偏波信号光を増幅する第一光増幅ステップと、前記第一光増幅ステップにおいて増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第一励起光分離ステップと、前記第一励起光分離ステップにより前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光のそれぞれから不要な周波数成分を除去する不要帯域分離ステップと、前記不要帯域分離ステップにより不要な周波数成分が除去された前記第一偏波信号光と、前記第一励起光分離ステップにより前記第一偏波信号光から分離された前記励起光を合波し、前記不要帯域分離ステップにより不要な周波数成分が除去された前記第二偏波信号光と、前記第一励起光分離ステップにより前記第二偏波信号光から分離された前記励起光を合波する第二励起光合波ステップと、光パラメトリック増幅過程を発生させて、前記第二励起光合波ステップにおいて前記励起光と合波した前記第一偏波信号光及び前記第二偏波信号光を増幅する第二光増幅ステップと、前記第二光増幅ステップにより増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第二励起光分離ステップと、前記第二励起光分離ステップにより前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光を合波した信号光を出力する偏波合波ステップと、前記偏波合波ステップが出力した前記信号光から不要な周波数成分を除去するフィルタリングステップとを有し、前記第一光増幅ステップにおいては、前記励起光の周波数の1/2の周波数である中心周波数から離れた周波数ほど増幅利得が大きくなる位相整合状態であり、前記第二光増幅ステップにおいては、前記中心周波数付近で増幅利得が大きくなる位相整合状態である。
 本発明により、消費電力の増加や信号歪みを軽減しながら信号光の増幅帯域を広帯域化することが可能となる。
本発明第1の実施形態による光増幅器の構成例を示す図である。 第1の実施形態における非線形媒体の増幅利得の例を示す図である。 第1の実施形態における光増幅器の増幅帯域スペクトルと従来技術の光増幅器の増幅帯域スペクトルとの比較を示す図である。 第1の実施形態における光増幅器の構成例を示す図である。 第1の実施形態における光増幅器の構成例を示す図である。 第2の実施形態における光増幅器の構成例を示す図である。 第2の実施形態における光増幅器の構成例を示す図である。
 以下、図面を参照しながら本発明の実施形態を詳細に説明する。本実施形態は、光パラメトリック増幅を用いた光信号増幅技術に関する。
 本実施形態の光増幅装置は、相補的な位相整合特性(利得スペクトル)を持つ非線形光学媒質を縦続接続させた構成のOPAである。初段の非線形光学媒質では、少なくとも増幅を行う対象の周波数帯域において、中心周波数から離れた周波数帯域を増幅するように媒質温度を調整する。この際、従来の構成とは異なり、中心周波数付近の利得が所望の利得を下回っても構わない。後段の非線形光学媒質では、初段の媒質で増幅しきれなかった中心周波数付近の帯域、すなわち初段の媒質による増幅では所望の利得に満たなかった帯域を補完的に増幅する。この時、後段の媒質の温度を初段の媒質とは逆方向に制御することにより、あえて増幅帯域を狭くする。このようにすることで、後段の媒質への入力光電力は実質的に低くなり、弱い励起光でも初段の媒質の利得特性を補完するのに十分な利得を得ることができる。従って、初段の非線形光学媒質で利用した励起光をそのまま再利用することができ、追加の励起光が必要ない。すなわち消費電力を増加させることなく、実効増幅帯域を拡張することができる。
(第1の実施形態)
 本発明の第1の実施形態を、図1から図5を用いて説明する。
 図1は、第1の実施形態の光増幅器100の構成を示す図である。光増幅器100は、OPAである。光増幅器100は、偏波分波部101と、励起光合波部102-1と、励起光合波部102-2と、非線形媒体103-1と、非線形媒体103-2と、励起光分離部104-1と、励起光分離部104-2と、不要帯域分離部105-1と、不要帯域分離部105-2と、励起光合波部106-1と、励起光合波部106-2と、非線形媒体107-1と、非線形媒体107-2と、励起光分離部108-1と、励起光分離部108-2と、偏波合波部109と、帯域通過フィルタ110とを有する。
 偏波分波部101は、入力した信号光を、それぞれ直交する偏波成分に分離する。直交する2偏波成分に分割した信号光のうち一方の信号光を第1偏波信号光と記載し、もう一方の信号光を第2偏波信号光と記載する。偏波分波部101は、第1偏波信号光を励起光合波部102-1に出力し、第2偏波信号光を励起光合波部102-2に入力する。
 励起光合波部102-i(i=1,2)は、偏波分波部101から入力した第i偏波信号光と励起光とを合波する。励起光合波部102-iは、励起光と合波された第i偏波信号光を非線形媒体103-iに出力する。非線形媒体103-iは、非線形光学媒体を用いた光増幅部である。非線形媒体103-iは、光パラメトリック過程を発生させることにより、励起光合波部102-iから入力した第i偏波信号光を増幅する。非線形媒体103-iは、増幅された第i偏波信号光を励起光分離部104-iに出力する。
 励起光分離部104-iは、非線形媒体103-iから第i偏波信号を入力し、入力した第i偏波信号光から励起光を分離する。励起光分離部104-iは、励起光が分離された第i偏波信号光を不要帯域分離部105-iに出力し、励起光を励起光合波部106-iに出力する。不要帯域分離部105-iは、励起光分離部104-iから第i偏波信号光を入力し、入力した第i偏波信号光から光パラメトリック過程において生じた不要な周波数成分を除去した後、励起光合波部106-iに出力する。
 励起光合波部106-iは、不要帯域分離部105-iにより不要な周波数成分が除去された第i偏波信号光に、励起光分離部104-iが分離した励起光を合波する。励起光合波部106-iは、励起光と合波された第i偏波信号光を非線形媒体107-iに出力する。非線形媒体107-iは、非線形光学媒体を用いた光増幅部である。非線形媒体107-iは、光パラメトリック過程を発生させることにより、励起光合波部106-iから入力した第i偏波信号光を増幅する。非線形媒体107-iは、増幅された第i偏波信号光を励起光分離部108-iに出力する。励起光分離部108-iは、非線形媒体107-iから第i偏波信号光を入力し、入力した第i偏波信号光から励起光を分離する。励起光分離部108-iは、励起光が分離された第i偏波信号光を偏波合波部109に出力する。
 偏波合波部109は、励起光分離部108-1から入力した第1偏波信号光と、励起光分離部108-2から入力した第2偏波信号光とを合波し、合波した信号光を帯域通過フィルタ110に出力する。帯域通過フィルタ110は、偏波合波部109から信号光を入力し、入力した信号光から非線形媒体107-1及び非線形媒体107-2それぞれの光パラメトリック過程において生じた不要な周波数成分を除去する。帯域通過フィルタ110は、不要な周波数成分が除去された信号光を出力する。
 光増幅器100に入力された信号光はまず、増幅帯域の中心周波数を境に2つの帯域に分割される。これは、パラメトリック増幅に伴って、信号光の位相共役光であるアイドラ光が、中心周波数に対して対称な周波数に発生するためである。その後、2つの帯域に分割された各信号光は、偏波分波部101によって、それぞれ直交する偏波成分に分離される。これは、非線形媒体中での非線形現象には偏波依存性があるためである。直交する2偏波成分に分割された信号光は、励起光合波部102-1、102-2によって励起光と合波され、非線形媒体103-1、103-2、107-1、107-2によってパラメトリック増幅される。増幅後、励起光分離部108-1、108-2により各偏波成分の信号光から励起光が分離される。励起光の分離後に、各偏波成分の信号光は、再び偏波合波部109により偏波合成される。
 励起光合波部102-1、102-2による励起光の合波及び励起光分離部108-1、108-2による励起光の分波は、波長多重フィルタ、ダイクロイックミラーなどを用いて行われる。信号光とアイドラ光のうち、伝送に使用しない成分は、帯域通過フィルタ110によりカットされる。通常、帯域通過フィルタ110は、光増幅器100に入力された信号光と同じ帯域の信号光成分を抽出し、抽出した信号光成分を後段に出力する。しかし、帯域通過フィルタ110がアイドラ光を抽出し、抽出したアイドラ光を後段に出力してもよい。これにより、光増幅器100を、位相共役変換器や、波長変換器として利用できる。
 本実施形態では、各偏波成分の経路中に2つの非線形媒体103-i及び非線形媒体107-iを配置する。これら2つの非線形媒体103-i及び非線形媒体107-iの温度は、それぞれ相補的な利得スペクトルを持つように、媒体に取り付けられたペルチェ素子やヒータなどによって調整される。初段の非線形媒体103-iが増幅に使用した励起光は、励起光分離部104-iにより分離されたのち、後段の励起光合波部106-iによって再び信号光と合波されて非線形媒体107-iによる増幅に使用される。なお、励起光分離部104-iによる励起光の分波及び励起光合波部106-iによる励起光の合波は、波長多重フィルタ、ダイクロイックミラーなどを用いて行われる。非線形媒体103-i及び非線形媒体107-iの間の励起光分離部104-iは、光増幅器100に入力された信号光と同じ帯域を通過させるか、アイドラ光の帯域を通過させる。
 通常、一度使用された励起光のパワーは、媒体内の非線形過程に伴うわずかな減衰や、励起光分離部の損失及び励起光合波部の損失によって低下する。また、一度増幅されて光電力が高くなった信号光を再び線形に増幅するには、さらに高い励起光光電力が必要となる。以上のような理由により、通常、励起光を再利用するとすぐにポンプデプレッションによる利得飽和を引き起こし、信号光に非線形な歪みをもたらす。しかしながら、本実施形態のように、後段の非線形媒体107-iの位相整合特性を狭い帯域とすることで、励起光は信号光の外側の帯域には消費されない。すなわち、実質的に後段の非線形媒体107-iへの入力信号光パワーは、真の入力パワーと比較して低く見なすことができるため、利得飽和を抑えることができる。また、中央付近の帯域のみを小さな利得で増幅すればよいことも、このような構成を可能とする要因となっている。
 図2は、初段の非線形媒体103-iの増幅利得と後段の非線形媒体107-iの増幅利得の例を示す図である。初段の非線形媒体103-iでは、位相整合特性の中心波長周りの増幅利得は低く、それに応じて中心波長から離れた波長では増幅利得は大きい。位相整合特性の中心波長は、励起光の周波数の1/2の周波数である中心周波数に対応した波長である。また、後段の非線形媒体107-iは、初段の非線形媒体103-iの中心波長周りを相補的に増幅するような増幅利得スペクトルを有している。
 図3は、図1に示す本実施形態の光増幅器100の増幅利得スペクトルと、従来技術の光増幅器の増幅利得スペクトルとの比較を示す図である。従来技術の光増幅器は、単一の非線形媒体からなるOPA構成である。位相整合特性の中心波長(励起光周波数の1/2の周波数)が1545.32nmのPPLN導波路を用いて連続光を入力した際の増幅利得の測定を、入力光の波長を掃引して行った。本実施形態の光増幅器100及び従来技術の光増幅器のいずれも、15dBの利得が得られる帯域を最大化するように温度制御を行った。励起光の入力パワーは本実施形態及び従来技術のいずれも同じである。図3によれば、本実施形態の構成の光増幅器100は、従来技術の光増幅器と比較して、実効増幅帯域を約8nm程度拡張できている。本実施形態はこのような帯域拡張を、励起光の追加や高出力化なしに電力効率良く実現することができる。
 図4は、光増幅器200の構成を示す図である。光増幅器200は、OPAの位相整合特性の中心周波数から低周波側及び高周波側に伸びた全帯域を用いる構成である。図4において、図1に示す光増幅器100と同様の部分には同一の符号を付し、その説明を省略する。光増幅器200は、帯域分波部201と、OPA202-1と、OPA202-2と、帯域合波部203とを備える。
 帯域分波部201は、光増幅器200に入力された信号光を、中心周波数を境に2つの帯域に分波する。帯域分波部201は、分波した一方の信号光をOPA202-1に出力し、分波したもう一方の信号光をOPA202-2に出力する。
 OPA202-1及びOPA202-2はそれぞれ、図1に示す光増幅器100から帯域通過フィルタ110を除いた構成である。OPA202-1の偏波分波部101及びOPA202-2の偏波分波部101は、帯域分波部201から信号光を入力する。また、OPA202-1の偏波合波部109及びOPA202-2の偏波合波部109は、偏波合成した信号光を帯域合波部203に出力する。
 帯域合波部203は、OPA202-1の偏波合波部109から入力した信号光と、OPA202-2の偏波合波部109から入力した信号光とを合波する。帯域合波部203は、合波された信号光から伝送に使用しない成分をフィルタによりカットし、伝送に使用する帯域の信号光を抽出して出力する。これにより、帯域合波部203からはアイドラ光がカットされた信号光、又は、信号光がカットされたアイドラ光が出力される。
 OPAではアイドラ光が発生する帯域は空けておく必要がある。そのため、中心周波数を境に二つの帯域に信号光を分割し、それぞれを処理した後に再び合波する構成が必要である。そこで、光増幅器200は、前述した光増幅器100の構成をもう1構成用意し、帯域分波部201及び帯域合波部203により構成される帯域合分波フィルタを介して並列に接続する。光増幅器100の構成は、OPA202-1及びOPA202-2に相当する。
 非線形媒体からの反射光を抑えるために、非線形媒体の前後にアイソレータを設けてもよい。アイソレータを設けた例を図5に示す。
 図5は、OPA300の構成図である。図5において、図1に示す光増幅器100と同様の部分には同一の符号を付し、その説明を省略する。図5に示すOPA300が、図1に示す光増幅器100と異なる点は、アイソレータ301-1、301-2、302-1、302-2、303-1、303-2、304-1、304-2、305-1、305-2を備える点である。
 アイソレータ301-i(i=1,2)は、偏波分波部101と励起光合波部102-iとの間に備えられる。アイソレータ301-iは、偏波分波部101から励起光合波部102-iへの方向の第i偏波信号光を通過させ、励起光合波部102-iから偏波分波部101への方向の光を遮断する。アイソレータ302-iは、励起光分離部104-iと不要帯域分離部105-iとの間に備えられる。アイソレータ302-iは、励起光分離部104-iから不要帯域分離部105-iへの方向の第i偏波信号光を通過させ、不要帯域分離部105-iから励起光分離部104-iの方向への光を遮断する。アイソレータ303-iは、不要帯域分離部105-iと励起光合波部106-iとの間に備えられる。アイソレータ303-iは、不要帯域分離部105-iから励起光合波部106-iへの方向の第i偏波信号光を通過させ、励起光合波部106-iから不要帯域分離部105-iへの方向の光を遮断する。
 アイソレータ304-iは、励起光分離部104-iと励起光合波部106-iとの間に備えられる。アイソレータ304-iは、励起光分離部104-iから励起光合波部106-iへの方向の励起光を通過させ、励起光合波部106-iから励起光分離部104-iへの方向の光を遮断する。アイソレータ305-iは、励起光分離部108-iと偏波合波部109との間に備えられる。アイソレータ305-iは、励起光分離部108-iから偏波合波部109への方向の第i偏波信号光を通過させ、偏波合波部109から励起光分離部108-iへの方向の光を遮断する。
 図5に示すように、アイソレータを各非線形媒体103-1、103-2、107-1、107-2の直前または直後、あるいは両方に置くことで、効果的に反射光を抑圧できる。なお、初段の非線形媒体103-1及び103-2と、後段の非線形媒体107-1及び107-2とのいずれかの直前、直後、あるいは、両方にのみアイソレータを設けてもよい。また、励起光を分離し、再合波する過程にもアイソレータを配置し、2つの媒質間で励起光が多重反射することを避けることが望ましい。
(第2の実施形態)
 第2の実施形態では、後段の非線形媒体に入力する励起光の光電力を調整する。本発明の第2の実施形態を、図6及び図7を用いて説明する。
 図6は、第2の実施形態による光増幅器400の構成例を示す図である。図6において、図1に示す第1の実施形態による光増幅器100と同一の部分には同一の符号を付し、その説明を省略する。図6に示す光増幅器400が、図1に示す光増幅器100と異なる点は、励起光分離部104-1と励起光合波部106-1との間に光減衰器401-1を備え、励起光分離部104-2と励起光合波部106-2との間に光減衰器401-2を備える点である。光減衰器401-i(i=1,2)は、励起光分離部104-iが分離した励起光を減衰して、励起光合波部106-iに出力する。
 後段の非線形媒体107-iに入力される励起光の光電力が強すぎる場合、利得が大きくなるが、一般に入力信号光パワーに対する利得飽和耐力は低下する。そのため、後段の非線形媒体107-iに入力する励起光の光電力は、必要最低限の利得が得られる程度まで減衰させることが望ましい。そこで第2の実施形態では、図6に示すように、初段の非線形媒体103-iと後段の非線形媒体107-iとの間の励起光経路に光減衰器401-iを配置している。
 また、通常、光増幅器には、自動利得制御機構(AGC:automatic gain control)が搭載されている。図7は、自動利得制御機構を搭載した光増幅器500の構成例を示す図である。図7において、図1に示す第1の実施形態の光増幅器100と同一の部分には同一の符号を付し、その説明を省略する。図7に示す光増幅器500が、図1に示す光増幅器100と異なる点は、可変光減衰器(VOA:variable optical attenuator)501、502-1、502-2、503をさらに備える点である。可変光減衰器501は、偏波分波部101の前段に備えられる。可変光減衰器502-1は、励起光分離部104-1と励起光合波部106-1との間に備えられる。可変光減衰器502-2は、励起光分離部104-2と励起光合波部106-2との間に備えられる。可変光減衰器503は、帯域通過フィルタ110の後段に備えられる。また、図7では、励起光合波部102-1に入力する励起光及び励起光合波部102-2に入力する励起光の光源504を図示している。光タップ510は、光増幅器500の前段には接続され、光タップ520は、光増幅器500の後段に接続される。また、光増幅器500、光タップ510及び光タップ520は、利得制御装置530と接続される。利得制御装置530は、AGCである。
 光タップ510は、光増幅器500に入力された信号光の一部を分岐する。光タップ510は、分岐した信号光を利得制御装置530に出力し、分岐した残りの信号光を光増幅器500の可変光減衰器501に出力する。可変光減衰器501は、光タップ510から入力した信号光を減衰して偏波分波部101に出力する。可変光減衰器502-i(i=1,2)は、励起光分離部104-2が分離した励起光を減衰して、励起光合波部106-iに出力する。可変光減衰器503は、帯域通過フィルタ110が出力した信号光を減衰して出力する。光タップ520は、光増幅器500の可変光減衰器503が減衰させた信号光の一部を分岐する。光タップ520は、分岐した信号光を利得制御装置530に出力し、分岐した残りの信号光を出力する。
 利得制御装置530は、モニタ部531と、制御部532とを備える。モニタ部531は、光タップ510が分岐した信号光、及び、光タップ520が分岐した信号光をモニタする。制御部532は、モニタ部531におけるモニタ結果に基づいて、可変光減衰器501、502-1、502-2、503のそれぞれにおいて信号光を減衰する際の利得の制御や、光源504への注入電流を変化させることによる励起光電力の制御を行う。図7に示す構成により、励起光への注入電力のみでなく、非線形媒体の温度と前述した励起光用のVOAの制御によってもAGCを行うことができる。
 以上説明したように、本実施形態によれば、相補的な利得特性をもつ2つの非線形媒体を接続したOPA構成によって、励起光の追加や高出力化を必要とせずに、電力効率良く増幅帯域を広帯域化できる。
 上述した実施形態によれば、光増幅装置は、偏波分波部と、第一励起光合波部と、第一光増幅部と、第一励起光分離部と、不要帯域分離部と、第二励起光合波部と、第二光増幅部と、第二励起光分離部と、偏波合波部と、帯域通過フィルタ部とを備える。偏波分波部は、例えば実施形態の偏波分波部101に対応する。第一励起光合波部は、例えば実施形態の励起光合波部102-1、102-2に対応する。第一光増幅部は、例えば実施形態の非線形媒体103-1、103-2に対応する。第一励起光分離部は、例えば実施形態の励起光分離部104-1、104-2に対応する。不要帯域分離部は、例えば実施形態の不要帯域分離部105-1、105-2に対応する。第二励起光合波部は、例えば実施形態の励起光合波部106-1、106-2に対応する。第二光増幅部は、例えば実施形態の非線形媒体107-1、107-2に対応する。第二励起光分離部は、例えば実施形態の励起光分離部108-1、108-2に対応する。偏波合波部は、例えば実施形態の偏波合波部109に対応する。帯域通過フィルタ部は、例えば実施形態の帯域通過フィルタ110に対応する。
 偏波分波部は、信号光を、直交する二つの偏波成分である第一偏波信号光及び第二偏波信号光に分波する。第一励起光合波部は、第一偏波信号光及び第二偏波信号光のそれぞれに励起光を合波する。第一光増幅部は、光パラメトリック増幅過程を発生させて、第一励起光合波部が励起光と合波した第一偏波信号光及び第二偏波信号光を増幅する。第一励起光分離部は、第一光増幅部により増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから励起光を分離する。不要帯域分離部は、第一励起光分離部により励起光が分離された第一偏波信号光及び第二偏波信号光のそれぞれから不要な周波数成分を除去する。第二励起光合波部は、不要帯域分離部により不要な周波数成分が除去された第一偏波信号光と、第一励起光分離部により第一偏波信号光から分離された励起光を合波し、不要帯域分離部により不要な周波数成分が除去された第二偏波信号光と、第一励起光分離部により第二偏波信号光から分離された励起光を合波する。第二光増幅部は、光パラメトリック増幅過程を発生させて、第二励起光合波部が励起光と合波した第一偏波信号光及び第二偏波信号光を増幅する。第二励起光分離部は、第二光増幅部により増幅させた第一偏波信号光及び第二偏波信号光のそれぞれから励起光を分離する。偏波合波部は、第二励起光分離部により励起光が分離された第一偏波信号光及び第二偏波信号光を合波した信号光を出力する。帯域通過フィルタ部は、偏波合波部が出力した信号光から不要な周波数成分を除去する。第一光増幅部は、励起光の周波数の1/2の周波数である中心周波数から離れた周波数ほど増幅利得が大きくなる位相整合状態である。第二光増幅部は、中心周波数付近で増幅利得が大きくなる位相整合状態である。第二光増幅部は、増幅を行う対象の周波数帯域のうち、第一光増幅部において所定の増幅利得に満たない第一偏波信号光及び第二偏波信を補完的に増幅する。
 光増幅装置は、さらに調整部を備えてもよい。調整部は、例えば、実施形態の光減衰器401-1、401-2に対応する。調整部は、第一励起光分離部から第二励起光合波部へ出力される励起光の光電力を調整する。調整部における励起光の減衰量は、固定でもよく、可変でもよい。
 光増幅装置は、制御部をさらに備えてもよい。制御部は、例えば実施形態の利得制御装置530に対応する。制御部は、偏波分波部により分離される前の信号光と、帯域通過フィルタ部が出力した信号光とのモニタ結果に従って、調整部の利得を制御する。
 光増幅装置は、第一光増幅部と第二光増幅部との一方又は両方の前段と後段との一方又は両方に、第一光増幅部から第二光増幅部への方向の光を通過させ、第二光増幅部から第一光増幅部への方向の光を遮断するアイソレータをさらに備えてもよい。
 帯域通過フィルタ部は、増幅された信号光又はアイドラ光を通過させる。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれら実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
100 光増幅器
101 偏波分波部
102-1、102-2 励起光合波部
103-1、103-2 非線形媒体
104-1、104-2 励起光分離部
105-1、105-2 不要帯域分離部
106-1、106-2 励起光合波部
107-1、107-2 非線形媒体
108-1、108-2 励起光分離部
109 偏波合波部
110 帯域通過フィルタ
200 光増幅器
201 帯域分波部
203 帯域合波部
301-1、301-2、302-1、302-2、303-1、303-2、304-1、304-2、305-1、305-2 アイソレータ
400 光増幅器
401-1、401-2 光減衰器
500 光増幅器
501、502-1、502-2、503 可変光減衰器
504 光源
510、520 光タップ
530 利得制御装置
531 モニタ部
532 制御部

Claims (6)

  1.  信号光を、直交する二つの偏波成分である第一偏波信号光及び第二偏波信号光に分波する偏波分波部と、
     前記第一偏波信号光及び前記第二偏波信号光のそれぞれに励起光を合波する第一励起光合波部と、
     光パラメトリック増幅過程を発生させて、前記第一励起光合波部が前記励起光と合波した前記第一偏波信号光及び前記第二偏波信号光を増幅する第一光増幅部と、
     前記第一光増幅部により増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第一励起光分離部と、
     前記第一励起光分離部により前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光のそれぞれから不要な周波数成分を除去する不要帯域分離部と、
     前記不要帯域分離部により不要な周波数成分が除去された前記第一偏波信号光と、前記第一励起光分離部により前記第一偏波信号光から分離された前記励起光を合波し、前記不要帯域分離部により不要な周波数成分が除去された前記第二偏波信号光と、前記第一励起光分離部により前記第二偏波信号光から分離された前記励起光を合波する第二励起光合波部と、
     光パラメトリック増幅過程を発生させて、前記第二励起光合波部が前記励起光と合波した前記第一偏波信号光及び前記第二偏波信号光を増幅する第二光増幅部と、
     前記第二光増幅部により増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第二励起光分離部と、
     前記第二励起光分離部により前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光を合波した信号光を出力する偏波合波部と、
     前記偏波合波部が出力した前記信号光から不要な周波数成分を除去する帯域通過フィルタ部とを備え、
     前記第一光増幅部は、前記励起光の周波数の1/2の周波数である中心周波数から離れた周波数ほど増幅利得が大きくなる位相整合状態であり、
     前記第二光増幅部は、前記中心周波数付近で増幅利得が大きくなる位相整合状態である、
     光増幅装置。
  2.  前記第一励起光分離部から前記第二励起光合波部へ出力される前記励起光の光電力を調整する調整部をさらに備える、
     請求項1に記載の光増幅装置。
  3.  前記偏波分波部により分離される前の前記信号光と、前記帯域通過フィルタ部が出力した前記信号光とのモニタ結果に従って、前記調整部の利得を制御する制御部をさらに備える、
     請求項2に記載の光増幅装置。
  4.  前記第一光増幅部と前記第二光増幅部との一方又は両方の前段と後段との一方又は両方に、前記第一光増幅部から前記第二光増幅部への方向の光を通過させ、前記第二光増幅部から前記第一光増幅部への方向の光を遮断するアイソレータをさらに備える、
     請求項1に記載の光増幅装置。
  5.  前記帯域通過フィルタ部は、増幅された信号光、又は、アイドラ光を通過させる、
     請求項1から請求項4のいずれか一項に記載の光増幅装置。
  6.  信号光を、直交する二つの偏波成分である第一偏波信号光及び第二偏波信号光に分波する偏波分波ステップと、
     前記第一偏波信号光及び前記第二偏波信号光のそれぞれに励起光を合波する第一励起光合波ステップと、
     光パラメトリック増幅過程を発生させて、前記第一励起光合波ステップにおいて前記励起光と合波された前記第一偏波信号光及び前記第二偏波信号光を増幅する第一光増幅ステップと、
     前記第一光増幅ステップにおいて増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第一励起光分離ステップと、
     前記第一励起光分離ステップにより前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光のそれぞれから不要な周波数成分を除去する不要帯域分離ステップと、
     前記不要帯域分離ステップにより不要な周波数成分が除去された前記第一偏波信号光と、前記第一励起光分離ステップにより前記第一偏波信号光から分離された前記励起光を合波し、前記不要帯域分離ステップにより不要な周波数成分が除去された前記第二偏波信号光と、前記第一励起光分離ステップにより前記第二偏波信号光から分離された前記励起光を合波する第二励起光合波ステップと、
     光パラメトリック増幅過程を発生させて、前記第二励起光合波ステップにおいて前記励起光と合波した前記第一偏波信号光及び前記第二偏波信号光を増幅する第二光増幅ステップと、
     前記第二光増幅ステップにより増幅させた前記第一偏波信号光及び前記第二偏波信号光のそれぞれから前記励起光を分離する第二励起光分離ステップと、
     前記第二励起光分離ステップにより前記励起光が分離された前記第一偏波信号光及び前記第二偏波信号光を合波した信号光を出力する偏波合波ステップと、
     前記偏波合波ステップが出力した前記信号光から不要な周波数成分を除去するフィルタリングステップとを有し、
     前記第一光増幅ステップにおいては、前記励起光の周波数の1/2の周波数である中心周波数から離れた周波数ほど増幅利得が大きくなる位相整合状態であり、
     前記第二光増幅ステップにおいては、前記中心周波数付近で増幅利得が大きくなる位相整合状態である、
     光増幅方法。
PCT/JP2022/026791 2022-07-06 2022-07-06 光増幅装置及び光増幅方法 WO2024009419A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026791 WO2024009419A1 (ja) 2022-07-06 2022-07-06 光増幅装置及び光増幅方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026791 WO2024009419A1 (ja) 2022-07-06 2022-07-06 光増幅装置及び光増幅方法

Publications (1)

Publication Number Publication Date
WO2024009419A1 true WO2024009419A1 (ja) 2024-01-11

Family

ID=89453044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026791 WO2024009419A1 (ja) 2022-07-06 2022-07-06 光増幅装置及び光増幅方法

Country Status (1)

Country Link
WO (1) WO2024009419A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132905A (ja) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> 線形中継器の雑音指数監視装置
JPH08248455A (ja) * 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
WO2001005005A1 (fr) * 1999-07-09 2001-01-18 Sumitomo Electric Industries, Ltd. Amplificateur optique et procede d'amplification optique
JP2002076482A (ja) * 2000-08-31 2002-03-15 Fujitsu Ltd 光増幅器,光増幅方法及び光増幅システム
US20030112493A1 (en) * 2001-12-13 2003-06-19 The Regents Of The University Of California High average power scaling of optical parametric amplification through cascaded difference-frequency generators
JP2004343121A (ja) * 2003-05-17 2004-12-02 Samsung Electronics Co Ltd 利得平坦化された広帯域エルビウム添加光ファイバ増幅器
JP2010287839A (ja) * 2009-06-15 2010-12-24 Fujitsu Ltd 光増幅器及び光増幅器の偏波依存性利得抑制方法
JP2011066142A (ja) * 2009-09-16 2011-03-31 Fujitsu Ltd 光増幅器及び光増幅方法
JP2011145554A (ja) * 2010-01-15 2011-07-28 Fujitsu Ltd 光増幅器および光増幅装置
JP2014228639A (ja) * 2013-05-21 2014-12-08 日本電信電話株式会社 光増幅装置
WO2017065229A1 (ja) * 2015-10-13 2017-04-20 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器および光通信システム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132905A (ja) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> 線形中継器の雑音指数監視装置
JPH08248455A (ja) * 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
WO2001005005A1 (fr) * 1999-07-09 2001-01-18 Sumitomo Electric Industries, Ltd. Amplificateur optique et procede d'amplification optique
JP2002076482A (ja) * 2000-08-31 2002-03-15 Fujitsu Ltd 光増幅器,光増幅方法及び光増幅システム
US20030112493A1 (en) * 2001-12-13 2003-06-19 The Regents Of The University Of California High average power scaling of optical parametric amplification through cascaded difference-frequency generators
JP2004343121A (ja) * 2003-05-17 2004-12-02 Samsung Electronics Co Ltd 利得平坦化された広帯域エルビウム添加光ファイバ増幅器
JP2010287839A (ja) * 2009-06-15 2010-12-24 Fujitsu Ltd 光増幅器及び光増幅器の偏波依存性利得抑制方法
JP2011066142A (ja) * 2009-09-16 2011-03-31 Fujitsu Ltd 光増幅器及び光増幅方法
JP2011145554A (ja) * 2010-01-15 2011-07-28 Fujitsu Ltd 光増幅器および光増幅装置
JP2014228639A (ja) * 2013-05-21 2014-12-08 日本電信電話株式会社 光増幅装置
WO2017065229A1 (ja) * 2015-10-13 2017-04-20 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器および光通信システム

Similar Documents

Publication Publication Date Title
Deng et al. Challenges and enabling technologies for multi-band WDM optical networks
US6574037B2 (en) All band amplifier
JP5069825B2 (ja) 分散、利得傾斜、及び帯域ポンピング非線形性の光ファイバーの補償
US5392154A (en) Self-regulating multiwavelength optical amplifier module for scalable lightwave communications systems
US7940454B2 (en) Optical parametric amplifier
EP1156607B2 (en) Radiation power equalizer
JP4707399B2 (ja) 光分岐挿入装置
WO2010125657A1 (ja) 光信号処理装置
JPWO2002035665A1 (ja) 光送信機、光中継器及び光受信機並びに光送信方法
JP2000078081A (ja) 波長分散補償機能を備えた光増幅器及び光通信システム、並びに波長多重信号光の波長分散補償方法
JP6733407B2 (ja) 光伝送システム、光伝送方法及び複素共役光生成部
Gordienko et al. Suppression of nonlinear crosstalk in a polarization insensitive FOPA by mid-stage idler removal
Kraemer et al. High extinction ratio and low crosstalk C and L-band photonic integrated wavelength selective switching
US6602002B1 (en) High capacity optical transmission arrangement
WO2024009419A1 (ja) 光増幅装置及び光増幅方法
KR20010112716A (ko) 전광자동이득조절 기능을 갖는 양방향 애드/드롭 광증폭기
Kuksenkov et al. Nonlinear fibre devices operating on multiple WDM channels
JP3597045B2 (ja) 広帯域光増幅器およびこれを含む装置および光信号を増幅する方法
WO2022244255A1 (ja) 光増幅システム、光増幅装置及び光増幅方法
WO2024176295A1 (ja) 光増幅中継装置、光伝送システム及び光増幅中継方法
WO2024218904A1 (ja) 光増幅中継装置及び光増幅中継方法
Jiang et al. Degree-expandable colorless, directionless, and contentionless ROADM without drop-side EDFAs
Olonkins et al. Comparison of Single-pump FOPA and Raman Assisted FOPA Performance in a 16 Channel DWDM Transmission System
Shimizu et al. 8.375-THz optical amplification for wideband WDM transmission by optical parametric amplifier using cascaded PPLN modules with complementary gain profiles
JP7328599B2 (ja) 光増幅装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950213

Country of ref document: EP

Kind code of ref document: A1