WO2024008099A1 - 有机物、发光器件、叠层发光器件、显示基板及显示装置 - Google Patents

有机物、发光器件、叠层发光器件、显示基板及显示装置 Download PDF

Info

Publication number
WO2024008099A1
WO2024008099A1 PCT/CN2023/105761 CN2023105761W WO2024008099A1 WO 2024008099 A1 WO2024008099 A1 WO 2024008099A1 CN 2023105761 W CN2023105761 W CN 2023105761W WO 2024008099 A1 WO2024008099 A1 WO 2024008099A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsubstituted
substituted
light
group
emitting device
Prior art date
Application number
PCT/CN2023/105761
Other languages
English (en)
French (fr)
Other versions
WO2024008099A9 (zh
Inventor
陈磊
王丹
高荣荣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024008099A1 publication Critical patent/WO2024008099A1/zh
Publication of WO2024008099A9 publication Critical patent/WO2024008099A9/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic substance, a light-emitting device, a laminated light-emitting device, a display substrate and a display device.
  • OLED organic light-emitting diode
  • a stacked light-emitting device including a first electrode, a second electrode, at least two light-emitting units and at least one stacked connection layer.
  • the at least two light-emitting units are stacked between the first electrode and the second electrode, and the stacked connection layer is provided between every two adjacent light-emitting units.
  • the laminated connection layer includes a stacked N-type charge generation layer and a P-type charge generation layer.
  • the N-type charge generation layer is a binary doping structure including a first host material and a first guest material
  • the P-type charge generation layer is a binary doping structure including a second host material and a second guest material. structure.
  • the absolute value of the difference between the highest occupied molecular orbital energy level of the second host material and the highest occupied molecular orbital energy level of the first host material is greater than 0.3 electron volts, and the lowest unoccupied molecular orbital of the second host material
  • the absolute value of the difference between the energy level and the lowest unoccupied molecular orbital energy level of the first host material is greater than 0.1 electron volts.
  • the first guest material includes at least one of metal or organic matter.
  • the absolute value of the difference between the work function of the first guest material and the lowest unoccupied molecular orbital energy level of the first host material is less than 1.0 electron volts;
  • the absolute value of the difference between the highest occupied molecular orbital energy level of the first guest material and the lowest unoccupied molecular orbital energy level of the first host material is less than 1.0 electrons volt.
  • the absolute value of the difference between the lowest unoccupied molecular orbital energy level of the second guest material and the highest occupied molecular orbital energy level of the second host material is less than 0.5 electron volts.
  • the first host material has a conjugated segment in its structure; the conjugated segment has at least two benzene rings, and all benzene rings in the conjugated segment are ⁇ - ⁇ conjugated structures. .
  • the conjugated fragment has a phosphorus oxygen group in at least one substituent.
  • the first body material has a structure shown in Formula (I):
  • R 1 , R 2 , R 3 and R 4 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 aryl group Heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or Unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted C 1 to C 20 alkoxy group, substituted or unsubstituted C 6 to C 30 aryloxy group, and formula (II) any of the structures shown.
  • R 1 , said R 2 , said R 3 and said R 4 has the structure shown in formula (II):
  • L 1 is selected from: single bond, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group , substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted Any of a C 1 to C 20 alkoxy group and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • X 1 and _ _ _ C 1 to C 20 alkyl group substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 Any one of an aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, or a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • At least one of said R 3 and said R 4 has the structure shown in formula (II).
  • both R 3 and R 4 have the structure shown in formula (II).
  • the first body material has a structure shown in any one of Formula (1-1) to Formula (1-10):
  • the light-emitting unit includes a light-emitting layer, and the light-emitting layer is a binary doped structure including a third host material and a third guest material; the third host material has a conjugated segment in its structure; The conjugated fragment has at least two benzene rings, and all benzene rings in the conjugated fragment are ⁇ - ⁇ conjugated structures.
  • the third body material has a structure shown in formula (III):
  • a 1 and A 2 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or Unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to Any of a C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the third body material has a structure shown in any one of Formula (3-1) to Formula (3-12):
  • the stacked light-emitting device includes a first electrode, a second electrode, at least two light-emitting units and at least one stacked connection layer.
  • the at least two light-emitting units are stacked between the first electrode and the second electrode.
  • the light-emitting unit includes a light-emitting layer.
  • the stacked connection layer is disposed between every two adjacent light-emitting units.
  • the laminated connection layer includes a stacked N-type charge generation layer and a P-type charge generation layer.
  • At least three film layers in the stacked light emitting device include materials having conjugated segments.
  • the at least three film layers include at least one of the light-emitting layer and the N-type charge generation layer.
  • the conjugated fragment has at least two benzene rings, and all benzene rings in the conjugated fragment are ⁇ - ⁇ conjugated structures.
  • At least one material having a conjugated segment has a phosphorus oxygen group in at least one substituent of the conjugated segment.
  • At least two film layers in the stacked light-emitting device have different conjugated segments.
  • the stacked light-emitting device there are at least two of the light-emitting layers, and an N-type charge generation layer located between the at least two of the light-emitting layers, including the conjugated segment. s material.
  • all the light-emitting layers of the stacked light-emitting device include at least two light-emitting layers of the same material.
  • the light-emitting layer includes a binary doping structure including a third host material and a third guest material; the third host material has the conjugated segment in its structure.
  • the third body material has a structure shown in formula (III):
  • a 1 and A 2 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or Unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to Any of a C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the third body material has a structure shown in any one of Formula (3-1) to Formula (3-12):
  • the N-type charge generation layer includes a binary doping structure including a first host material and a first guest material; the first host material has the conjugated segment in its structure.
  • the P-type charge generation layer is a binary doped structure including a second host material and a second guest material; the highest occupied molecular orbital energy level of the second host material is the same as that of the first host material.
  • the absolute value of the difference between the highest occupied molecular orbital energy level of the material is greater than 0.3 electron volts, and the difference between the lowest unoccupied molecular orbital energy level of the second host material and the lowest unoccupied molecular orbital energy level of the first host material The absolute value of the value is greater than 0.1 electron volts.
  • the first guest material includes at least one of a metal or an organic matter; wherein the first guest material includes the metal, and the work function of the metal included in the first guest material is equal to of the first body material
  • the absolute value of the difference between the lowest unoccupied molecular orbital energy levels is less than 1.0 electron volts; or, the first guest material includes the organic matter, and the highest occupied molecular orbital energy level of the organic matter included in the first guest material is equal to The absolute value of the difference between the lowest unoccupied molecular orbital energy levels of the first host material is less than 1.0 electron volts.
  • the absolute value of the difference between the lowest unoccupied molecular orbital energy level of the second guest material and the highest occupied molecular orbital energy level of the second host material is less than 0.5 electron volts.
  • the first body material has a structure shown in Formula (I):
  • R 1 , R 2 , R 3 and R 4 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 aryl group Heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or Unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted C 1 to C 20 alkoxy group, substituted or unsubstituted C 6 to C 30 aryloxy group, and formula (II) Any one of the structures shown; wherein, at least one of the R 1 , the R 2 , the R 3 and the R 4 has the structure shown in the formula (II):
  • * indicates the site connected to the carbon atom
  • L 1 is selected from: single bond, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group , substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted Any one of C 1 to C 20 alkoxy groups and substituted or unsubstituted C 6 to C 30 aryloxy groups;
  • X 1 and _ _ _ C 1 to C 20 alkyl group substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 Any one of an aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, or a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the first body material has a structure shown in any one of formulas (1-1) to (1-10). Structure:
  • a light-emitting device including a first electrode, a second electrode and at least one light-emitting unit.
  • the at least one light-emitting unit is disposed between the first electrode and the second electrode.
  • the light-emitting unit includes a light-emitting layer.
  • the light-emitting layer has a binary doping structure including a third host material and a third guest material.
  • the third host material has a conjugated segment in its structure; the conjugated segment has at least two benzene rings, and all benzene rings in the conjugated segment are ⁇ - ⁇ conjugated structures.
  • the third body material has a structure shown in formula (III):
  • a 1 and A 2 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or Unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted C 1 to C 20 alkoxy group, Any of substituted or unsubstituted C 6 to C 30 aryloxy groups.
  • the third body material has a structure shown in any one of Formula (3-1) to Formula (3-12):
  • a display substrate in yet another aspect, includes a substrate, a plurality of light-emitting devices, a plurality of pixel driving circuits and an encapsulation layer. At least one of the light-emitting devices is a stacked light-emitting device as described in any of the above embodiments or a light-emitting device as described in any of the above embodiments.
  • the plurality of pixel driving circuits are used to drive the at least one light emitting device to emit light.
  • the encapsulation layer is used to encapsulate the plurality of light-emitting devices and the plurality of pixel driving circuits.
  • a display device including the display substrate as described in the above embodiment.
  • a 1 and A 2 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or Unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to Any of a C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the organic substance has any one of the following structures from formula (3-1) to formula (3-12):
  • Figure 1 is a structural diagram of a display device according to some embodiments.
  • Figure 2 is a structural diagram of a display module according to some embodiments.
  • Figure 3 is a structural diagram of a display substrate according to some embodiments.
  • Figure 4 is a structural diagram of a light-emitting device in the related art
  • Figure 5 is a structural diagram of a stacked light-emitting device in the related art
  • Figure 6 is a structural diagram of a stacked light emitting device according to some embodiments.
  • Figure 7 is a structural diagram of a light emitting device according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • some embodiments of the present disclosure provide a display device 100 , which may be any device that displays images, whether moving (eg, video) or fixed (eg, still images), and whether text or text. device. More specifically, it is contemplated that some embodiments of the present disclosure may be implemented in or associated with a variety of electronic devices.
  • the various electronic devices may be, for example (but not limited to), mobile phones, wireless devices, personal digital assistants (PDAs), handheld or portable computers, and global positioning system (GPS) receivers/navigators.
  • PDAs personal digital assistants
  • GPS global positioning system
  • the display device 100 includes a display module 110 and a housing 120 .
  • the display module 110 includes a display substrate 111, a flexible circuit board 112, and other electronic accessories.
  • the above-mentioned display substrate 111 includes multiple types, and can be selected and set according to actual needs.
  • the above display substrate 111 can be an electroluminescent display substrate, for example, it can be an organic light emitting diode (OLED) display substrate, a quantum dot light emitting diode (Quantum Dot Light Emitting Diodes, QLED) display substrate, etc.
  • OLED organic light emitting diode
  • QLED Quantum Dot Light Emitting Diodes
  • the above-mentioned display substrate 111 may have a display area A located within the dotted line frame, and a peripheral area B located outside the dotted line frame.
  • the display area A is an area where the display substrate 111 displays an image;
  • the peripheral area B is an area where no image is displayed, and the peripheral area B is configured to provide a display driving circuit, such as a gate driving circuit and a source driving circuit.
  • FIG. 2 illustrates an example by taking the peripheral area B surrounding the display area A as an example.
  • the above-mentioned display substrate 111 includes a plurality of sub-pixels P disposed on one side of the substrate 1 and located in the display area A.
  • the plurality of sub-pixels P include at least a first color sub-pixel, a second color sub-pixel and a third color sub-pixel.
  • the first color, the second color and the third color may be three primary colors (such as red, green and blue).
  • the plurality of sub-pixels P are arranged in multiple rows and columns. Each row includes a plurality of sub-pixels P arranged along the first direction X, and each column includes a plurality of sub-pixels P arranged along the second direction Y.
  • the plurality of sub-pixels P arranged in a row along the first direction X may be called sub-pixels P in the same row
  • the plurality of sub-pixels P arranged in a column along the second direction Y may be called sub-pixels P in the same column.
  • first direction X and the second direction Y cross each other.
  • the angle between the first direction X and the second direction Y can be selected and set according to actual needs.
  • the angle between the first direction X and the second direction Y may be 85°, 89°, 90°, etc.
  • the display substrate 111 includes a substrate 1 , a circuit structure layer 2 , a light-emitting structure layer 3 and an encapsulation layer 4 .
  • the circuit structure layer 2 is provided on the substrate 1, and the circuit structure layer 2 includes a plurality of pixel drivers.
  • the pixel driving circuit 10 includes a plurality of transistors 101 .
  • the light-emitting structure layer 3 is disposed on the side of the circuit structure layer 2 away from the substrate 1 .
  • the light-emitting structure layer 3 includes a plurality of light-emitting devices D0 , and one light-emitting device D0 is connected to a pixel driving circuit 10 correspondingly.
  • the encapsulation layer 4 is disposed on a side of the light-emitting structure layer 3 away from the substrate 1 .
  • the encapsulation layer 4 is configured to encapsulate the circuit structure layer 2 and the light-emitting structure layer 3 on the substrate 1 .
  • each transistor 101 included in the above-mentioned pixel driving circuit 10 includes multiple types.
  • each transistor 101 included in the above-mentioned pixel driving circuit 10 may be a thin film transistor with a bottom gate structure, or may also be a thin film transistor with a top gate structure.
  • the plurality of transistors 101 included in the pixel driving circuit 10 includes one driving transistor, and the driving transistor is electrically connected to the light-emitting device D0.
  • driving transistor and the light-emitting device D0 may be directly electrically connected or indirectly electrically connected.
  • transistor 101 includes active layer 1011 , source 1012 , drain 1013 , gate 1014 , and gate insulating layer 1015 .
  • the source electrode 1012 and the drain electrode 1013 are respectively in contact with the active layer 1011; the gate insulating layer 1015 is provided between the active layer 1011 and the gate electrode 1014.
  • the light-emitting device D0 includes a first electrode d1 , a light-emitting functional layer d3 and a second electrode d2 arranged in sequence.
  • the first electrode d1 is electrically connected to the source electrode 1012 or the drain electrode 1013 of at least one transistor 101 among the plurality of transistors 101 .
  • FIG. 3 illustrates the electrical connection between the first electrode d1 and the source 1012 of a transistor 101 as an example.
  • first electrodes d1 of the plurality of light-emitting devices D0 jointly constitute the first electrode layer
  • second electrodes d2 of the plurality of light-emitting devices D0 jointly constitute the second electrode layer.
  • the light-emitting functions of the plurality of light-emitting devices D0 Layer d3 together constitutes the organic light-emitting layer.
  • the above-mentioned first electrode layer may have a block structure, for example; the above-mentioned second electrode layer may have a whole-surface structure, for example, and cover the entire display area A; in addition, the above-mentioned organic light-emitting layer may, for example, have a whole-surface structure, or It can also be a block structure.
  • the first electrode d1 may be an anode or a cathode; correspondingly, the second electrode d2 may be a cathode or an anode.
  • the first electrode d1 is an anode, and the first electrode layer is an anode layer; correspondingly, the second electrode d2 is a cathode, and the second electrode layer is a cathode layer.
  • the light-emitting device D0 is a positive top-emission light-emitting device.
  • the first electrode d1 is opaque and the second electrode d2 is transparent or translucent, the light emitted by the light-emitting functional layer d3 is emitted from the side of the light-emitting device D0 away from the substrate 1 .
  • first electrode d1 as the anode and the second electrode d2 as the cathode as examples for illustrative description.
  • the above-mentioned packaging layer 4 may be a packaging film or a packaging cover.
  • the display substrate 111 further includes a pixel defining layer 102 that includes It includes multiple opening areas, and one light-emitting device D0 is disposed in one opening area.
  • the display substrate 111 further includes a capping layer (CPL) 103 disposed on the side of the first electrode d1 away from the second electrode d2 .
  • the material constituting the covering layer 103 may be 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB).
  • the light-emitting functional layer d3 of the above-mentioned light-emitting device D0 only includes one light-emitting unit d310.
  • the light-emitting device D0 along the direction Z away from the first electrode d1 , the light-emitting device D0 includes the first electrode d1 , the light-emitting unit d310 and the second electrode d2 .
  • the above-mentioned light-emitting unit d310 includes a hole injection layer (Hole Injection Layer, HIL) d3101, a hole transporting layer (Hole Transporting Layer, HTL) d3102, Electron Blocking Layer (EBL) d3103, Emitting Material Layer (EML) d3104, Hole Blocking Layer (HBL) d3105, Electronic Transporting Layer (ETL) d3106 and electron injection Layer (Electron Injection Layer, EIL)d3107.
  • HIL hole injection layer
  • HTL hole transporting layer
  • EBL Electron Blocking Layer
  • EML Emitting Material Layer
  • HBL Hole Blocking Layer
  • HBL Electronic Transporting Layer
  • ETL Electronic Transporting Layer
  • EIL Electron injection Layer
  • the working principle of the above-mentioned display substrate 111 is explained as follows: when the pixel driving circuit 10 works, the driving voltage is transmitted to the light-emitting device through the transistor 101 electrically connected to the first electrode d1 After D0, the first electrode d1 can generate positively charged holes under the action of the electric field, and the second electrode d2 can generate negatively charged electrons under the action of the electric field. At this time, holes generated by the first electrode d1 can be injected into the hole transport layer d3102 through the hole injection layer d3101, and enter the light-emitting layer d3104 through the hole transport layer d3102 and the electron blocking layer d3103.
  • electrons generated by the second electrode d2 can be injected into the electron transport layer d3106 through the electron injection layer d3107, and enter the light-emitting layer d3104 through the electron transport layer d3106 and the hole blocking layer d3105.
  • the holes and electrons in the luminescent layer d3104 recombine to form excitons, which transition back to the ground state through radiation and emit photons.
  • the light-emitting device D0 emits light.
  • the light-emitting functional layer d3 of the above-mentioned light-emitting device D0 may include at least two stacked light-emitting units and at least one stacked connection layer, and the stacked connection layer is provided on every two adjacent light-emitting units. between. At this time, the light-emitting device D0 may be called a stacked light-emitting device.
  • every two light-emitting units in the stacked light-emitting device are connected in series through a stacked connecting layer, thereby improving the luminous efficiency of the stacked light-emitting device and extending the service life of the stacked light-emitting device. Moreover, as the number of light-emitting units included in the stacked light-emitting device increases, the luminous efficiency and service life of the stacked light-emitting device linearly doubles.
  • the light-emitting functional layer d3 of the above-mentioned light-emitting device D0 includes two stacked light-emitting units, which are a first light-emitting unit d301 and a second light-emitting unit d302 respectively.
  • the above-mentioned light-emitting device D0 ie, the stacked light-emitting device
  • the above-mentioned light-emitting device D0 includes the first electrode d1, the first light-emitting unit d301, the stacked connection layer d422, the second light-emitting unit d302 and second electrode d2.
  • the first light-emitting unit d301 includes a first hole injection layer d3211, a first hole transport layer d3212, a first electron blocking layer d3213, a first light-emitting layer d3214, a first hole blocking layer Layer D3215 and first electrical Sub-transport layer d3216.
  • the second light-emitting unit d302 includes a second hole transport layer d3222, a second electron blocking layer d3223, a second light-emitting layer d3224, a second hole blocking layer d3225, and a second electron transport layer d3226 and the second electron injection layer d3227.
  • the stacked connection layer d422 includes a stacked N-type charge generation layer d4221 and a P-type charge generation layer d4222.
  • the N-type charge generation layer d4221 is provided on the side of the laminated connection layer d422 close to the first electrode d1; the P-type charge generation layer d4222 is provided on the side of the laminated connection layer d422 close to the second electrode d2.
  • the working principle of the above-mentioned display substrate 111 is explained as follows: when the pixel driving circuit 10 is working, the driving voltage can be transmitted to the stacked layer through the transistor 101 electrically connected to the first electrode d1. Light emitting device. At this time, under the action of the electric field, the first electrode d1 can generate holes, the second electrode d2 can generate electrons, and the contact area between the N-type charge generation layer d4221 and the P-type charge generation layer d4222 can generate holes and electrons.
  • the holes generated by the first electrode d1 can enter the first light-emitting layer d3214 through the first hole injection layer d3211, the first hole transport layer d3212 and the first electron blocking layer d3213 in sequence.
  • electrons generated in the contact area between the N-type charge generation layer d4221 and the P-type charge generation layer d4222 can enter the first light emission through the N-type charge generation layer d4221, the first electron transport layer d3216 and the first hole blocking layer d3215 in sequence. in layer d3214.
  • holes generated in the contact area between the N-type charge generation layer d4221 and the P-type charge generation layer d4222 can enter the second through the P-type charge generation layer d4222, the second hole transport layer d3222 and the second electron blocking layer d3223 in sequence.
  • the electrons generated by the second electrode d2 can enter the second light-emitting layer d3224 through the second electron injection layer d3227, the second electron transport layer d3226, and the second hole blocking layer d3225 in sequence.
  • the holes and electrons in the first light-emitting layer d3214 and the holes and electrons in the second light-emitting layer d3224 recombine to form excitons, and the stacked light-emitting device emits light.
  • the N-type charge generation layer d4221 has electron injection capability
  • the P-type charge generation layer d4222 has hole injection capability. Therefore, the N-type charge generation layer d4221 can be reused as the electron injection layer in the first light-emitting unit d301, and the P-type charge generation layer d4222 can be reused as the hole injection layer in the second light-emitting unit d302. That is, the above stack
  • the first light-emitting unit d301 of the layered light-emitting device may not have an additional electron injection layer
  • the second light-emitting unit d302 may not have an additional hole injection layer.
  • an additional electron injection layer located between the N-type charge generation layer d4221 and the first electron transport layer d3216 can also be provided in the first light-emitting unit d301.
  • an additional electron injection layer can also be provided in the first light-emitting unit d301.
  • the second light-emitting unit d302 is additionally provided with a hole injection layer between the P-type charge generation layer d4222 and the second hole transport layer d3222, which is not limited by this disclosure.
  • the inventor of the present disclosure found through research that: because the physical parameters of the N-type charge generation layer d4221 and the P-type charge generation layer d4222 of the above-mentioned stacked light-emitting device have not been reasonably designed in the related art, the two cannot Effective cooperation.
  • the holes and electrons generated in the contact area between the N-type charge generation layer d4221 and the P-type charge generation layer d4222 in the laminated connection layer d422 may be quenched, causing the laminated connection layer d422 to provide It is difficult to ensure the number of electrons and holes in two adjacent light-emitting units (for example, the above-mentioned first light-emitting unit d301 and the second light-emitting unit d302), which ultimately leads to overlapping. The luminous efficiency and service life of layer light-emitting devices are reduced.
  • the stacked light-emitting device D includes a first electrode d1, a second electrode d2, at least two light-emitting units d30 and at least one stacked connection layer d4. At least two light-emitting units d30 are stacked between the first electrode d1 and the second electrode d2.
  • the laminated connection layer d4 is disposed between every two adjacent light-emitting units d30; the laminated connection layer d4 includes a stacked N-type charge generation layer d41 and a P-type charge generation layer d42.
  • the N-type charge generation layer d41 is a binary doping structure including a first host material and a first guest material
  • the P-type charge generation layer d42 is a binary doping structure including a second host material and a second guest material;
  • the absolute value of the difference between the highest occupied molecular orbital (Highest Occupied Molecular Orbital, HOMO) energy level of the second host material and the HOMO energy level of the first host material is greater than 0.3 electron volts
  • the lowest unoccupied molecular orbital (HOMO) of the second host material is (
  • the absolute value of the difference between the Lowest Unoccupied Molecular Orbital (LUMO) energy level and the LUMO energy level of the first host material is greater than 0.1 electron volts.
  • the stacked light-emitting device D defines that the absolute value of the difference between the HOMO energy level of the second host material and the HOMO energy level of the first host material is greater than 0.3 electron volts, and the second host The absolute value of the difference between the LUMO energy level of the material and the LUMO energy level of the first host material is greater than 0.1 electron volts, which can prevent the electrons and holes generated in the contact area of the N-type charge generation layer d41 and the P-type charge generation layer d42 from reversing.
  • To transport ie, prevent electrons generated in the contact area from being transferred to the P-type charge generation layer d42, and prevent holes generated in the contact area from being transferred to the N-type charge generation layer d41
  • the holes are quenched due to reverse transport, thereby ensuring the stability of the number of carriers provided by each stacked connection layer d4 to its two adjacent light-emitting units, and ultimately improving the luminous efficiency of the stacked light-emitting device D.
  • the absolute value of the difference between the HOMO energy level of the second host material and the HOMO energy level of the first host material is greater than 0.3 electron volts, which can be: the HOMO energy level of the second host material is different from the HOMO energy level of the first host material.
  • the difference in HOMO energy level is greater than 0.3 electron volts.
  • the HOMO energy level of the second host material is greater than the HOMO energy level of the first host material; or, the HOMO energy level of the second host material is different from the HOMO energy level of the first host material.
  • the difference in energy levels is less than minus 0.3 electron volts.
  • the HOMO energy level of the second host material is smaller than the HOMO energy level of the first host material.
  • the absolute value of the difference between the LUMO energy level of the second host material and the LUMO energy level of the first host material is greater than 0.1 electron volts, which can be: the LUMO energy level of the second host material and the LUMO energy level of the first host material.
  • the difference in energy levels is greater than 0.1 electron volts.
  • the LUMO energy level of the second host material is greater than the LUMO energy level of the first host material; or, the LUMO energy level of the second host material is greater than the LUMO energy level of the first host material.
  • the difference is less than minus 0.1 electron volts.
  • the LUMO energy level of the second host material is smaller than the LUMO energy level of the first host material.
  • the number of the light-emitting units d30 can be selected as needed, and the embodiment of the present disclosure does not limit this.
  • the number of the light-emitting units d30 is two, in which case the number of the laminated connection layer d4 is one; in this case, the manufacturing cost of the laminated light-emitting device D can be saved.
  • the number of light-emitting units d30 is three. In this case, the number of laminated connection layers d4 is two. In this case, the luminous efficiency of the laminated light-emitting device D can be improved and the length of the laminated light-emitting device D can be extended. service life.
  • the stacked light-emitting device D includes a first electrode d1 , a first light-emitting unit d31 , a stacked connection layer d4 , a second light-emitting unit d32 and a Two electrodes d2.
  • the first light-emitting unit d31 includes a first hole injection layer d311, a first hole transport layer d312, a first electron blocking layer d313, a first light-emitting layer d314, a first hole blocking layer layer d315 and first electron transport layer d316.
  • the second light-emitting unit d32 includes a second hole transport layer d322, a second electron blocking layer d323, a second light-emitting layer d324, a second hole blocking layer d325, and a second electron transport layer. d326 and the second electron injection layer d327.
  • the N-type charge generation layer d41 is provided on the side of the laminated connection layer d4 close to the first electrode d1
  • the P-type charge generation layer d42 is provided on the side of the laminated connection layer d4 close to the second electrode d2.
  • the function of the N-type charge generation layer d41 is to inject electrons generated in the contact area between the N-type charge generation layer d41 and the P-type charge generation layer d42 into the first electron transport layer d316
  • the P-type charge generation layer d41 The function of the generation layer d42 is to inject holes generated in the contact area into the second hole transport layer d322. Therefore, the absolute value of the difference between the HOMO energy level of the second host material and the HOMO energy level of the first host material is defined.
  • the absolute value of the difference between the LUMO energy level of the second host material and the LUMO energy level of the first host material is greater than 0.1 electron volts, which can prevent the N-type charge generation layer d41 and the P-type charge generation layer d42 from collapsing
  • the electrons and holes generated in the contact area are transported in the opposite direction (that is, the electrons generated in the contact area are prevented from being transferred to the P-type charge generation layer d42, and the holes generated in the contact area are prevented from being transferred to the N-type charge generation layer d41), thereby This prevents the electrons and holes generated in the contact area from being quenched due to reverse transmission, thus ensuring the stability of the number of carriers provided by each stacked connection layer d4 to the two adjacent light-emitting units, ultimately improving the Luminous efficiency of stacked light-emitting device D.
  • the embodiments of the present disclosure do not limit the materials of the first electrode d1 and the second electrode d2.
  • the material of the first electrode d1 is metal.
  • the material of the first electrode d1 may be selected from the group consisting of silver (Ag), magnesium (Mg), copper (Cu), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel ( Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), Ca-LiF alloy, Al-LiF alloy, molybdenum (Mo), titanium (Ti), indium ( At least one of In), tin (Sn) and zinc (Zn).
  • the material of the second electrode d2 is metal or inorganic material.
  • the material of the second electrode d2 may be silver (Ag), magnesium (Mg), ytterbium (Yb), lithium (Li) or calcium (Ca);
  • the material of the second electrode d2 may be lithium oxide (Li 2 O), calcium oxide (CaO), lithium fluoride (LiF) or magnesium fluoride (MgF 2 ) wait.
  • the first guest material of the N-type charge generation layer d41 includes at least one of metal or organic matter.
  • the first guest material of the N-type charge generation layer d41 is a metal.
  • the absolute value of the difference between the work function of the first guest material and the LUMO energy level of the first host material is less than 1.0 electrons. volt.
  • the function of the first guest material is to donate the electrons on the first guest material to the first host material, so that the electrons can be transported through the first host material in the N-type charge generation layer d41 and injected. to produce the N-type charge in the first electron transport layer d316 adjacent to the growth layer d41.
  • the closer the work function of the first guest material is to the LUMO energy level of the first host material the less energy is required for electron transfer between the first guest material and the first host material, and the electrons on the first guest material The easier it is to transfer to the first host material.
  • the stacked light-emitting device D increases the excitation generated by the recombination of electrons and holes in the first light-emitting layer d314 by limiting the difference between the work function of the first guest material and the LUMO energy level of the first host material. The probability of electrons improves the luminous efficiency of the stacked light-emitting device D.
  • the absolute value of the difference between the work function of the first guest material and the LUMO energy level of the first host material is less than 1.0 electron volts, which can be: the work function of the first guest material and the LUMO energy level of the first host material.
  • the difference in energy levels is greater than or equal to zero and less than 1.0 electron volts.
  • the work function of the first guest material is greater than or equal to the LUMO energy level of the first host material; or, the work function of the first guest material is different from the first host material.
  • the difference in LUMO energy levels of the materials is greater than minus 1.0 electron volts and less than or equal to zero. At this time, the work function of the first guest material is less than or equal to the LUMO energy level of the first host material.
  • the first guest material of the N-type charge generation layer d41 is an organic substance.
  • the absolute value of the difference between the HOMO energy level of the first guest material and the LUMO energy level of the first host material is less than 1.0 electron volts.
  • the function of the first guest material is to donate electrons on the first guest material to the first host material, so that the electrons can be transported in the N-type charge generation layer d41 through the first host material, and Injected into the first electron transport layer d316 adjacent to the N-type charge generation layer d41.
  • the stacked light-emitting device D increases the recombination of electrons and holes in the first light-emitting layer d314 by limiting the difference between the HOMO energy level of the first guest material and the LUMO energy level of the first host material. The probability of excitons improves the luminous efficiency of the stacked light-emitting device D.
  • the absolute value of the difference between the HOMO energy level of the first guest material and the LUMO energy level of the first host material is less than 1.0 electron volts, which can be: the HOMO energy level of the first guest material and the LUMO energy level of the first host material.
  • the difference in LUMO energy levels is greater than or equal to zero and less than 1.0 electron volts.
  • the HOMO energy level of the first guest material is greater than or equal to the LUMO energy level of the first host material; or, the HOMO energy level of the first guest material
  • the difference with the LUMO energy level of the first host material is greater than minus 1.0 electron volts and less than or equal to zero.
  • the HOMO energy level of the first guest material is less than or equal to the LUMO energy level of the first host material.
  • the embodiments of the present disclosure do not limit the method of obtaining the binary doping structure of the N-type charge generation layer d41.
  • the first guest material can be doped into the first host material through ion implantation or diffusion to obtain the binary doping structure.
  • the absolute value of the difference between the LUMO energy level of the second guest material and the HOMO energy level of the second host material is less than 0.5 electron volts.
  • the function of the second guest material is to impart holes on the second guest material to the second host material, so that the holes can be transported in the P-type charge generation layer d42 through the second host material. , and injected into the second hole transport layer d322 adjacent to the P-type charge generation layer d42.
  • the stacked light-emitting device D provided in the above embodiment increases the excitation generated by the recombination of holes and electrons in the second light-emitting layer d324 by limiting the difference between the LUMO energy level of the second guest material and the HOMO energy level of the second host material. The probability of electrons improves the luminous efficiency of the stacked light-emitting device D.
  • the absolute value of the difference between the LUMO energy level of the second guest material and the HOMO energy level of the second host material is less than 0.5 electron volts, which can be: the LUMO energy level of the second guest material and the HOMO energy level of the second host material.
  • the difference in HOMO energy levels is greater than or equal to zero and less than 0.5 electron volts.
  • the LUMO energy level of the second guest material is greater than or equal to the HOMO energy level of the second host material; or, the LUMO energy level of the second guest material
  • the difference with the HOMO energy level of the second host material is greater than minus 0.5 electron volts and less than or equal to zero.
  • the LUMO energy level of the second guest material is greater than or equal to the HOMO energy level of the second host material.
  • the embodiments of the present disclosure do not limit the method of obtaining the binary doping structure of the P-type charge generation layer d42.
  • the second guest material can be doped into the second host material through ion implantation or diffusion to obtain the binary doping structure.
  • the limitations on the physical parameters of the materials constituting each structure of the laminated connection layer d4 are mainly explained (for example, the difference between the HOMO energy level of the second body material and the HOMO energy level of the first body material). limits on the absolute value of the value).
  • each material that satisfies the limitations between the above-mentioned physical parameters is exemplified.
  • the first host material of the N-type charge generation layer d41 has a conjugated segment in its structure; the conjugated segment has at least two benzene rings, and all benzene rings in the conjugated segment are ⁇ - ⁇ conjugated structure.
  • the first body material of the N-type charge generation layer d41 has conjugated segments in its structure.
  • the stacked light-emitting device D adopts The material with this conjugated segment in the structure, as the host material of the N-type charge generation layer d41, can improve the smoothness of electron transport in the N-type charge generation layer d41, that is, improve the electron mobility of the N-type charge generation layer d41, thereby The efficiency of electron transmission to the electron transport layer d316 through the N-type charge generation layer d41 is improved, thereby improving the luminous efficiency of the stacked light-emitting device D.
  • the above-mentioned conjugated fragment has two benzene rings, and the two benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is a fragment naphthalene, its chemical formula is C 10 H 8 , and its structural formula is
  • the above-mentioned conjugated fragment has three benzene rings, and the three benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is anthracene fragment, its chemical formula is C 14 H 10 , and its structural formula is
  • the above-mentioned conjugated fragment has five benzene rings, and the five benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is fragment pentacene, its chemical formula is C 22 H 14 and its structural formula is
  • the structure of the first host material of the N-type charge generation layer d41 also has at least one substituent connected to the conjugated segment.
  • the at least one substituent is each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group , substituted or unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted C 1 to C 20 alkoxy group, and substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the phosphorus oxygen group is a strong electron-withdrawing group (a strong electron-withdrawal group is a substituent that exhibits a positive electric field to the outside and tends to attract electrons)
  • D can enhance the electron injection capability of the N-type charge generation layer d41, thereby further improving the electron mobility of the N-type charge generation layer d41, thereby improving the stacked light-emitting device D's luminous efficiency.
  • the first host material of the above-mentioned N-type charge generation layer d41 has a structure shown in formula (I):
  • R 1 , R 2 , R 3 and R 4 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 aryl group Heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or Unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted C 1 to C 20 alkoxy group, substituted or unsubstituted C 6 to C 30 aryloxy group and as shown in formula (II) any kind of structure.
  • R 1 , R 2 , R 3 and R 4 has the structure of formula (II):
  • * indicates the site connected to the carbon atom.
  • L 1 is selected from: single bond, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group , substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 aralkyl group, substituted or unsubstituted Any of a C 1 to C 20 alkoxy group and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • X 1 and _ _ _ C 1 to C 20 alkyl group substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to C 30 Any one of an aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, or a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the first host material of the N-type charge generation layer d41 has a structure as shown in formula (I), that is, the structure of the first host material contains fragmented anthracene (the molecular formula is C 14 H 10 and the structural formula is ), which is a large conjugate rigid structure.
  • the electron cloud overlap between molecules in the conjugated structure is large, it is conducive to the jumping transmission of electrons between molecules.
  • the stacked light-emitting device D adopts Materials containing fragmented anthracene as the host material of the N-type charge generation layer d41 can improve the smoothness of electron transport in the N-type charge generation layer d41, that is, improve the electron mobility of the N-type charge generation layer d41, thereby improving the electron mobility through the N-type charge generation layer d41.
  • the charge generation layer d41 is transmitted to the electron transport layer d316 more efficiently, thereby improving the luminous efficiency of the stacked light-emitting device D.
  • the stacked light-emitting device D provided by the embodiment of the present disclosure can enhance the N-type by using a material with a phosphorus oxy group in the structure as the first host material.
  • the electron injection capability of the charge generation layer d41 further improves the electron mobility of the N-type charge generation layer d41, thereby improving the luminous efficiency of the stacked light-emitting device D.
  • the first host material has a structure shown in the following formula (IV):
  • the first host material has a structure shown in the following formula (V):
  • At least one of R 3 and R 4 has a structure as shown in the above formula (II).
  • the structure of the tail group has a phosphorus oxygen (based) material as the first host material can further enhance the electron injection capability of the N-type charge generation layer d41, thereby further improving the electron mobility of the N-type charge generation layer d41, thereby improving the luminous efficiency of the stacked light-emitting device D.
  • both R 3 and R 4 have the structure shown in the above formula (II).
  • the material can further enhance the electron injection capability of the N-type charge generation layer d41, thereby further improving the electron mobility of the N-type charge generation layer d41, and thereby improving the luminous efficiency of the stacked light-emitting device D.
  • the first body material has a structure shown in any one of Formulas (1-1) to Formula (1-10):
  • first body material any material that satisfies the above formula (I) can be used as the first body material in the embodiments of the present disclosure.
  • First body material any material that satisfies the above formula (I) can be used as the first body material in the embodiments of the present disclosure.
  • the tail group (R 3 and/or R 4 of the first host material ) has a phosphorus oxygen group in its structure, which can further enhance the electron injection capability of the N-type charge generation layer d41, thereby further improving the electron mobility of the N-type charge generation layer d41, thereby improving the luminous efficiency of the stacked light-emitting device D.
  • the preparation method of the material represented by the above formula (1-1) may include S11 and S12.
  • reaction equation of the above S11 is as follows:
  • reaction equation of the above S12 is as follows:
  • the above-mentioned first guest material may be an organic substance containing a strong electron-donating group, a metal (such as an alkali metal), or a metal-containing compound.
  • strong electron-donating groups are substituents that exhibit a negative electric field to the outside and tend to donate electrons.
  • the first guest material may be selected from invisible crystal violet (LCV), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), magnesium (Mg) , calcium (Ca), ytterbium (Yb) or lithium fluoride (LiF), etc.
  • LCD invisible crystal violet
  • Li lithium
  • Na sodium
  • K potassium
  • K rubidium
  • Rb rubidium
  • Cs cesium
  • Mg magnesium
  • Ca calcium
  • LiF lithium fluoride
  • the N-type charge generation layer d41 of the stacked light-emitting device D When the N-type charge generation layer d41 of the stacked light-emitting device D is composed of the first host material and the first guest material provided in the above embodiment, it can satisfy the above "work function of the first guest material and LUMO energy of the first host material"
  • the absolute value of the difference between levels is less than 1.0 electron volts" the physical parameter requirement or "the HOMO energy level of the first guest material and the first host material
  • the absolute value of the difference between the LUMO energy levels is less than 1.0 electron volts, which is a physical parameter requirement, which can increase the number of electrons injected into the first electron transport layer d316 by the N-type charge generation layer d41, thereby making the first light emitting
  • the probability of recombination of electrons and holes to generate excitons in layer d314 increases, which ultimately improves the luminous efficiency of the stacked light-emitting device D.
  • the P-type charge generation layer d42 is a binary doping structure including a second host material and a second guest material.
  • the second host material may be an aromatic amine material, dimethyl fluorene or carbazole material with hole transport properties.
  • the second host material can be selected from 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl) )-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl ) triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4'- Bis(9-carbazolyl)biphenyl (CBP), 9-phenyl-3-[4-(10-phenyl-9-anthracenyl)pheny
  • the above-mentioned second guest material may be an organic material containing a strong electron-withdrawing group.
  • the second guest material may be selected from hexacyanohexaazatriphenylene, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), 1 , 2,3-tris[(cyano)(4-cyano-2,3,5,6-tetrafluorophenyl)methylene]cyclopropane, etc.
  • the N-type charge generation layer d41 of the stacked light-emitting device D is composed of the first host material and the first guest material provided in the above embodiment
  • the P-type charge generation layer d42 is composed of the second host material and the second guest material provided in the above embodiment.
  • the guest material can satisfy the above "The absolute value of the difference between the HOMO energy level of the second host material and the HOMO energy level of the first host material is greater than 0.3 electron volts, and the LUMO energy level of the second host material is different from that of the first host material.
  • the absolute value of the difference between the LUMO energy levels is greater than 0.1 electron volts, which is a physical parameter requirement, thereby preventing the reverse transmission of electrons and holes generated in the contact area between the N-type charge generation layer and the P-type charge generation layer, and avoiding the The electrons and holes generated in the contact area are quenched due to reverse transmission, thus ensuring the stability of the number of carriers provided by each stack connection layer d4 to the two adjacent light-emitting units d30, and ultimately improving the stack luminescence. device luminous efficiency.
  • the light-emitting layer d34 in the light-emitting unit d30 is a binary doping structure including a third host material and a third guest material.
  • the third host material has a conjugated segment in its structure; the conjugated segment has at least two benzene rings, and all benzene rings in the conjugated segment are ⁇ - ⁇ conjugated structures.
  • the stacked light-emitting device D uses a material having the above-mentioned conjugated segments in the structure as the host material of the light-emitting layer d34 (ie, the third host material).
  • the conjugated fragment has at least two benzene rings (aromatic rings) and has the characteristics of high fluorescence quantum yield, it is possible to use a material with the conjugated fragment in the structure as the host material of the light-emitting layer d34.
  • the fluorescence luminescence characteristics of the luminescent layer d34 are improved, thereby improving the luminous efficiency of the luminescent layer d34.
  • the laminated light-emitting device D can also select the first host material as the host material of the N-type charge generation layer d41.
  • the laminated light-emitting device D contains at least two light-emitting units d30, and the light-emitting layer d34 of each light-emitting unit d30 uses a third host material as the host material of the light-emitting layer d34. Therefore, the N-type charge generation layer d41 and the light-emitting layer d34 in the entire stacked light-emitting device D both contain conjugate Segments (that is, a stacked light-emitting device D includes at least three layers of structures containing conjugated segments).
  • the conjugated segments in the structure of the first host material and the conjugated segments in the structure of the third host material are both large conjugated rigid aromatic ring structures, the electrons in the N-type charge generation layer d41 and the light-emitting layer d34 The mobility and the fluorescence emission characteristics of the light-emitting layer d34 can be improved, and ultimately, the luminous efficiency of the stacked light-emitting device D can be extended to a greater extent.
  • the above-mentioned conjugated fragment has two benzene rings, and the two benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is a fragment naphthalene, its chemical formula is C 10 H 8 , and its structural formula is
  • the above-mentioned conjugated fragment has three benzene rings, and the three benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is anthracene fragment, its chemical formula is C 14 H 10 , and its structural formula is
  • the above-mentioned conjugated fragment has five benzene rings, and the five benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is fragment pentacene, its chemical formula is C 22 H 14 and its structural formula is
  • the above-mentioned third host material has a structure shown in formula (III):
  • a 1 and A 2 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or Unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to Any of a C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the laminated light-emitting device D provided in the above embodiment is selected to contain fragmented anthracene (the molecular formula is C 14 H 10 and the structural formula is ) material serves as the host material of the light-emitting layer d34 (ie, the third host material).
  • anthracene is a large conjugated aromatic ring structure and has the characteristics of high fluorescence quantum yield, therefore, using anthracene-containing materials as the host material (ie, the third host material) of the luminescent layer d34 can improve the luminescent layer.
  • the fluorescent luminescence properties of d34 can improve the luminous efficiency of the luminescent layer d34.
  • the electron cloud overlap between molecules in the conjugated structure is large, it is conducive to the jumping transmission of electrons between molecules. Therefore, using anthracene-containing materials as the host material of the light-emitting layer d34 can improve the electron transfer rate.
  • the smoothness of transmission in the light-emitting layer d34 increases the electron mobility of the light-emitting layer d34, thus promoting the formation of excitons in the light-emitting layer d34, and ultimately improving the luminous efficiency of the stacked light-emitting device D.
  • the embodiments of the present disclosure do not limit the method of obtaining the binary doping structure of the above-mentioned light-emitting layer d34.
  • the third guest material can be doped into the third host material through ion implantation or diffusion to obtain the binary doping structure.
  • the third body material has a structure shown in any one of Formula (3-1) to Formula (3-12):
  • the third host material when the third host material has a structure shown in any one of formulas (3-1) to (3-12), the third host material contains more aromatic ring structures, and there is It is beneficial to improve the fluorescence luminescence characteristics of the luminescent layer d34.
  • the preparation method of the material represented by the above formula (3-2) may include: S21.
  • reaction equation of the above S21 is as follows:
  • the above-mentioned third guest material may be 4,4'-[1,4-phenylenebis-(1E)-2,1-ethylenediyl]bis[N,N-diphenylaniline] (DSA-ph).
  • the light-emitting layer d34 of the stacked light-emitting device D is composed of the third host material and the third guest material provided in the above embodiment, it is beneficial to increase the electron mobility in the light-emitting layer d34, thereby increasing the number of electrons and holes in the light-emitting layer d34. The probability of recombination to generate excitons ultimately improves the luminous efficiency of the stacked light-emitting device D.
  • the embodiments of the present disclosure include the first hole injection layer d311, the first hole transport layer d312, the first electron blocking layer d313, and the first hole blocking layer d315 in the first light emitting unit d31.
  • the material of the first electron transport layer d316 is not limited.
  • the material of the first hole injection layer d311 may be a dopant of both a hole transport material and an organic material containing a strong electron-withdrawing group.
  • the hole transport material is an organic material having hole transport properties.
  • the hole transport material can be selected from aromatic amine materials, dimethyl fluorene or carbazole materials with hole transport properties.
  • the hole transport material can be selected from 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl) )-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl ) triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4'- Bis(9-carbazolyl)biphenyl (CBP), 9-phenyl-3-[4-(10-phenyl-9-anthracenyl)
  • Organic materials containing strong electron-withdrawing groups can be selected from hexacyanohexaazatriphenylene, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ ), 1,2,3-tris[(cyano)(4-cyano-2,3,5,6-tetrafluorophenyl)methylene]cyclopropane, etc.
  • At least one of the first hole transport layer d312 and the first electron blocking layer d313 may also be It is formed from the hole transport material mentioned above.
  • both the above-mentioned first hole blocking layer d315 and the first electron transport layer d316 may be formed of aromatic heterocyclic compounds.
  • the materials constituting the first hole blocking layer d315 and the first electron transport layer d316 may be imidazole derivatives (such as benzimidazole derivatives, imidazopyridine derivatives, benziimidazophenanthridine derivatives, etc. ), oxazine derivatives (such as pyrimidine derivatives, triazine derivatives, etc.), quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, etc., including compounds with a nitrogen-containing six-membered ring structure and compounds with a heterocyclic ring.
  • imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives, benziimidazophenanthridine derivatives, etc.
  • oxazine derivatives such as pyrimidine derivatives, triazine derivatives, etc
  • the embodiments of the present disclosure include the second hole transport layer d322, the second electron blocking layer d323, the second hole blocking layer d325, the second electron transport layer d326 and the second electron blocking layer d322 in the second light-emitting unit d32.
  • the material of the injection layer d327 is not limited.
  • the selection range of the materials constituting the second hole transport layer d322, the second electron blocking layer d323, the second hole blocking layer d325 and the second electron transport layer d326 may refer to the above-mentioned embodiments to constitute the first material.
  • the selection range of materials for the hole transport layer d312, the first electron blocking layer d313, the first hole blocking layer d315 and the first electron transport layer d316 will not be described again here.
  • the above-mentioned second electron injection layer d327 may be formed of metal (eg, alkali metal) or a metal-containing compound.
  • the material constituting the second electron injection layer d327 may be selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), magnesium (Mg), calcium (Ca), ytterbium (Yb) or lithium fluoride (LiF), etc.
  • the laminated light-emitting device D provided by the embodiment of the present disclosure can ensure the stability of the number of carriers provided by each laminated connection layer d4 to its two adjacent light-emitting units d30 and improve N-type charge generation.
  • the electron mobility of the layer d41 and the light-emitting layer d34 increases the probability of recombination of electrons and holes in the light-emitting layer d34 to generate excitons, improves the fluorescence emission characteristics of the light-emitting layer d34, and thereby improves the luminous efficiency of the stacked light-emitting device D.
  • the laminated light-emitting device D provided by the embodiments of the present disclosure will be exemplarily described through specific embodiments.
  • a stacked light-emitting device D including a first electrode d1, a first hole injection layer d311, a first hole transport layer d312, a first electron blocking layer d313, a first light-emitting layer d314, and a first electrode d1 as shown in Figure 6.
  • the material constituting the first electrode d1 is ITO; the material constituting the first hole injection layer d311 is a mixture of m-MTDATA and F4TCNQ; and the material constituting the first hole transport layer d312 and the second hole transport layer
  • the materials of d322 are all selected from m-MTDATA; the materials that constitute the first electron blocking layer d313 and the second electron blocking layer d323 are selected from CBP; the third host materials that constitute the first luminescent layer d314 and the second luminescent layer d324 are selected as above
  • the material represented by formula (3-2), the third guest material constituting the first luminescent layer d314 and the second luminescent layer d324 are all selected from materials represented by formula (VI); the materials constituting the first hole blocking layer d315 and the second luminescent layer d324 are
  • the materials of the two hole blocking layers d325 are all selected from TPBi; the materials constituting the first electron transport layer d316 and the second electron
  • an ITO transparent conductive layer with a thickness of 150 nm can be coated on the glass substrate as the first electrode d1.
  • the glass substrate coated with the ITO transparent conductive layer was placed in a cleaning agent for ultrasonic treatment, and then rinsed with deionized water. Then, perform ultrasonic degreasing treatment in a mixed solvent of acetone and ethanol, bake in a clean environment until the water is completely removed, then clean with ultraviolet light and ozone, and bombard the surface with low-energy cation beams.
  • the evaporation rate of the first hole injection layer d311 may be 0.1 nm/s, and the total evaporation film thickness may be 10 nm.
  • the first hole injection layer d311 is formed from a mixture of m-MTDATA and F4TCNQ, and the mass ratio of m-MTDATA to F4TCNQ is 97:3.
  • the structural formula of m-MTDATA and the structural formula of F4TCNQ are shown below.
  • a first hole transport layer d312 is evaporated on the first hole injection layer d311.
  • the evaporation rate of the first hole transport layer d12 may be 0.1 nm/s, and the total evaporation film thickness may be 20 nm.
  • the first hole transport layer d312 is formed of the above-mentioned m-MTDATA.
  • a first electron blocking layer d313 is evaporated on the first hole transport layer d312.
  • the evaporation rate of the first electron blocking layer d313 may be 0.1 nm/s, and the total evaporation film thickness may be 10 nm.
  • the first electron blocking layer d313 is formed of CBP.
  • the structural formula of CBP is shown below.
  • the first luminescent layer d314 is evaporated on the first electron blocking layer d313.
  • the evaporation rate of the first light-emitting layer d314 may be 0.1 nm/s, and the total evaporation film thickness may be 20 nm.
  • the first light-emitting layer d314 is composed of a third host material and a third guest material, and the mass ratio of the third host material to the third guest material is 95:5.
  • the third main body material is a material represented by the above formula (3-2).
  • the third guest material is a material represented by the above formula (VI).
  • a first hole blocking layer d315 is evaporated on the first light emitting layer d314.
  • the evaporation of the first hole blocking layer d315 The plating rate can be 0.1nm/s, and the total evaporation film thickness can be 5nm.
  • the first hole blocking layer d315 is formed of TPBi.
  • the structural formula of TPBi is shown below.
  • a first electron transport layer d316 is evaporated on the first hole blocking layer d315.
  • the evaporation rate of the first electron transport layer d316 may be 0.1 nm/s, and the total evaporation film thickness may be 30 nm.
  • the first electron transport layer d316 is formed from a mixture of BCP and Liq, and the mass ratio of BCP to Liq is 1:1. The structures of BCP and Liq are shown below.
  • An N-type charge generation layer d41 is evaporated on the first electron transport layer d316.
  • the evaporation rate of the N-type charge generation layer d41 may be 0.1 nm/s, and the total evaporation film thickness may be 20 nm.
  • the N-type charge generation layer d41 is composed of a first host material and a first guest material, and the mass ratio of the first host material to the first guest material is 99:1.
  • the first body material is a material represented by the above formula (1-1).
  • the first guest material is Yb.
  • a P-type charge generation layer d42 is evaporated on the N-type charge generation layer d41.
  • the P-type charge generation layer d42 The evaporation rate can be 0.1nm/s, and the total evaporation film thickness can be 9nm.
  • the P-type charge generation layer d42 is formed from a mixture of m-MTDATA and F4TCNQ, and the mass ratio of m-MTDATA to F4TCNQ is 95:5.
  • a second hole transport layer d322 is evaporated on the P-type charge generation layer d42.
  • the evaporation rate of the second hole transport layer d322 may be 0.1 nm/s, and the total evaporation film thickness may be 40 nm.
  • the second hole transport layer d322 is formed of the above-mentioned m-MTDATA.
  • a second electron blocking layer d323 is evaporated on the second hole transport layer d322, a second luminescent layer d324 is evaporated on the second electron blocking layer d323, and a second hole blocking layer d325 is evaporated on the second luminescent layer d324.
  • the method of evaporating the second electron transport layer d326 on the second hole blocking layer d325 may refer to the above embodiments, and will not be described again here.
  • a second electron injection layer d327 is evaporated on the second electron transport layer d326.
  • the evaporation rate of the second electron injection layer d327 may be 0.1 nm/s, and the total evaporation film thickness may be 1 nm.
  • the second electrode d2 is evaporated on the second electron injection layer d327.
  • the evaporation rate of the second electron injection layer d327 may be 0.1 nm/s, and the total evaporation film thickness may be 13 nm.
  • the second electron injection layer d327 is formed of a mixture of Mg and Ag, and the mass ratio of Mg and Ag is 1:9.
  • resin is used as the encapsulating material, and ultraviolet light is used to cure the resin to encapsulate the above layers on the substrate to obtain a laminated light-emitting device D.
  • the difference between this embodiment is that the third host material constituting the first luminescent layer d314 and the second luminescent layer d324 is selected as described above.
  • the preparation method of the stacked light-emitting device D in this embodiment can be referred to the above-mentioned Embodiment 1, and will not be described again.
  • the difference between this embodiment and Embodiment 1 is that the first host material constituting the N-type charge generation layer d41 is selected according to the above formula (1-6) Materials shown.
  • the preparation method of the stacked light-emitting device D in this embodiment can be referred to the above-mentioned Embodiment 1, and will not be described again.
  • the difference between this embodiment is that the third host material constituting the first luminescent layer d314 and the second luminescent layer d324 is selected as described above.
  • the preparation method of the stacked light-emitting device D in this embodiment can be referred to the above-mentioned Embodiment 1, and will not be described again.
  • the difference between this embodiment and Embodiment 1 is that the first host material constituting the N-type charge generation layer d41 is selected according to the above formula (1-7) Materials shown.
  • the preparation method of the stacked light-emitting device D in this embodiment can be referred to the above-mentioned Embodiment 1, and will not be described again.
  • the difference between this embodiment and Embodiment 1 is that the first host material constituting the N-type charge generation layer d41 is selected according to the above formula (1-7)
  • the materials shown, and the third host material constituting the first luminescent layer d314 and the second luminescent layer d324 are all selected from materials represented by the above formula (3-8).
  • the preparation method of the stacked light-emitting device D in this embodiment can be referred to the above-mentioned Embodiment 1, and will not be described again.
  • Example 1 In terms of the selection of materials for each layer constituting the comparative light-emitting device D ref , compared with Example 1, the difference between this comparative example is that BCP is selected as the first host material constituting the N-type charge generation layer d41.
  • the preparation method of the comparative light-emitting device D ref can be referred to the above-mentioned Embodiment 1, and will not be described again here.
  • the difference between this comparative example is that the third host material constituting the first light-emitting layer d314 and the second light-emitting layer d324 is selected to have a structure such as Materials represented by formula (VII).
  • the preparation method of the comparative light-emitting device D ref can be referred to the above-mentioned Embodiment 1, and will not be described again here.
  • the difference between this comparative example is that BCP is selected as the first host material constituting the N-type charge generation layer d41, and the first luminescent
  • the third host material of the layer d314 and the second light-emitting layer d324 is selected from the above-mentioned structure as shown in formula (VII).
  • the laminated light-emitting device D provided by the specific embodiments of the present disclosure (the above-mentioned Example 1 to Example 6) and the comparative light-emitting device D ref provided by the comparative example (the above-mentioned Comparative Example 1 to Comparative Example 3) are compared. Performance comparison.
  • the percentages of voltage, EQE, and LT95 data in Table 1 are calculated based on the measured data of Comparative Example 1. That is, the specific value of the voltage measured in Comparative Example 1 is used as the denominator, and the specific value of the voltage measured in each comparative example or each embodiment is used as the numerator, and the voltage of each comparative example or each embodiment in Table 1 is calculated. Data; use the specific value of the EQE measured in Comparative Example 1 as the denominator, use the specific value of the EQE measured in each comparative example or each embodiment as the numerator, and calculate the EQE of each comparative example or each embodiment in Table 1.
  • N-CGL represents the host material of the N-type charge generation layer d41 of the laminated light-emitting device D provided by the specific embodiment or the comparative example laminated light-emitting device D ref ;
  • EML host represents the laminated light-emitting device D provided by the specific embodiment or Comparative Example The host material of the light-emitting layer in each light-emitting unit of the laminated light-emitting device D ref .
  • the voltage in Table 1 is the driving voltage of the stacked light-emitting device; the external quantum efficiency (EQE) reflects the luminous efficiency of the stacked light-emitting device; LT95 indicates that the brightness of the stacked light-emitting device drops from the initial brightness to 95% of the initial brightness. The time reflects the service life of the laminated light-emitting device.
  • the material provided by the embodiment of the present disclosure is selected as the The first host material of the N-type charge generation layer d41 can reduce the driving voltage of the stacked light-emitting device D, improve the luminous efficiency of the stacked light-emitting device D, and extend the service life of the stacked light-emitting device D.
  • the material provided by the embodiment of the present disclosure is selected as the luminescent material.
  • the third host material of layer d34 can reduce the driving voltage of the stacked light-emitting device D, improve the luminous efficiency of the stacked light-emitting device D, and extend the service life of the stacked light-emitting device D.
  • Example 1 Example 2, Example 3, Example 4, Example 5 and Example 6 in Table 1 It can be seen from these seven sets of data that while the material provided by the embodiment of the present disclosure is selected as the first host material of the N-type charge generation layer d41, the material provided by the embodiment of the present disclosure is selected as the third host material of the light-emitting layer d34.
  • the driving voltage of the stacked light-emitting device D can be reduced to a greater extent, the luminous efficiency of the stacked light-emitting device D can be improved, and the service life of the stacked light-emitting device D can be extended.
  • the light-emitting device D1 includes a first electrode d1 , a second electrode d2 and at least one light-emitting unit d30 .
  • the at least one light-emitting unit d30 is disposed between the first electrode d1 and the second electrode d2.
  • the light-emitting unit d30 includes a light-emitting layer d34.
  • the light-emitting layer d34 has a binary doping structure including a third host material and a third guest material.
  • the third host material has a conjugated segment in its structure; the conjugated segment has at least two benzene rings, and all benzene rings in the conjugated segment are ⁇ - ⁇ conjugated structures.
  • the light-emitting device D1 provided by the embodiment of the present disclosure uses a material with conjugated segments in the structure as the host material of the light-emitting layer d34 (ie, the third host material).
  • the conjugated fragment has at least two benzene rings (aromatic rings) and has the characteristics of high fluorescence quantum yield
  • a material with the conjugated fragment in the structure is used as the host material of the light-emitting layer d34
  • the fluorescence luminescence characteristics of the luminescent layer d34 can be improved, thereby improving the luminous efficiency of the luminescent layer d34.
  • the above-mentioned conjugated fragment has two benzene rings, and the two benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is a fragment naphthalene, its chemical formula is C 10 H 8 , and its structural formula is
  • the above-mentioned conjugated fragment has three benzene rings, and the three benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is anthracene fragment, its chemical formula is C 14 H 10 , and its structural formula is
  • the above-mentioned conjugated fragment has five benzene rings, and the five benzene rings are ⁇ - ⁇ conjugated structures.
  • the conjugated fragment is fragment pentacene, its chemical formula is C 22 H 14 and its structural formula is
  • the above-mentioned third host material has a structure shown in formula (III):
  • a 1 and A 2 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or Unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to Any of a C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • an anthracene containing fragment (the molecular formula is C 14 H 10 and the structural formula is ) material as the host material of the light-emitting layer d34 (ie, the above-mentioned third host material).
  • fragmented anthracene is a large conjugated aromatic ring structure and has the characteristics of high fluorescence quantum yield
  • using a material containing fragmented anthracene as the host material of the luminescent layer d34 can improve the fluorescence luminescence characteristics of the luminescent layer d34, thereby improving The luminous efficiency of the luminescent layer d34.
  • the electron cloud overlap between molecules in the conjugated structure is large, it is conducive to the jumping transmission of electrons between molecules. Therefore, using materials containing fragmented anthracene as the host material of the light-emitting layer d34 can increase the number of electrons.
  • the smoothness of transmission in the light-emitting layer d34 increases the electron mobility of the light-emitting layer d34, thereby promoting the formation of excitons in the light-emitting layer d34, and ultimately improving the luminous efficiency of the light-emitting device D1.
  • the embodiment of the present disclosure does not limit the number of light-emitting units d30 in the above-mentioned light-emitting device D1.
  • the above-mentioned light-emitting device D1 only includes one light-emitting unit d33. At this time, the manufacturing cost of the light-emitting device D1 can be saved.
  • the light-emitting device D1 includes the first electrode d1, the light-emitting unit d33 and the second electrode d2.
  • the light-emitting unit d33 includes a first hole injection layer d3111, a first hole transport layer d3121, a first electron blocking layer d3131, a first light-emitting layer d3141, a first hole blocking layer Layer d3151, first electron transport layer d3161 and first electron injection layer d3171.
  • the above-mentioned light-emitting device D1 includes two or more light-emitting units d30.
  • the light-emitting device D1 is a stacked light-emitting device. At this time, the luminous efficiency of the light-emitting device D1 can be improved and the service life of the light-emitting device D1 can be extended.
  • the structure of the light-emitting device D1 can be referred to FIG. 6 .
  • each layer in the above-mentioned light-emitting unit d30 can be referred to the above-mentioned embodiments, and will not be repeated here. narrate.
  • the third body material has a structure shown in any one of Formula (3-1) to Formula (3-12):
  • the third host material when the third host material has a structure shown in any one of formulas (3-1) to (3-12), the third host material contains more aromatic ring structures, and there is It is beneficial to improve the fluorescence luminescence characteristics of the luminescent layer d34.
  • the light-emitting layer d34 is a binary doping structure including a third host material and a third guest material.
  • the above-mentioned third guest material may be the above-mentioned DSA-ph or the above-mentioned material represented by formula (VI).
  • the light-emitting layer d34 of the light-emitting device D1 is composed of the third host material and the third guest material provided in the above embodiment, it is beneficial to increase the electron mobility in the light-emitting layer d34, thereby increasing the recombination of electrons and holes in the light-emitting layer d34. The probability of excitons ultimately improves the luminous efficiency of the light-emitting device D1.
  • the embodiments of the present disclosure do not limit the method of obtaining the binary doping structure of the light-emitting layer d34.
  • the third guest material can be doped into the third host material through ion implantation or diffusion to obtain the binary doping structure.
  • the display substrate 111 includes the substrate 1 as mentioned above, the circuit structure layer 2 provided on the substrate 1, the light-emitting structure layer 3 provided on the side of the circuit structure layer 2 away from the substrate 1, and the light-emitting structure layer 3 provided on the substrate 1.
  • the encapsulation layer 4 on the side away from the substrate 1 .
  • the circuit structure layer 2 includes a plurality of pixel driving circuits 10 .
  • the light-emitting structure layer 3 includes a plurality of light-emitting devices, one light-emitting device is connected to a pixel driving circuit 10; wherein at least one light-emitting device D is a stacked light-emitting device D as described in any of the above embodiments or a stacked light emitting device as described in any of the above embodiments.
  • the encapsulation layer 4 encapsulates the circuit structure layer 2 and the light-emitting structure layer 3 on the substrate 1 .
  • Some embodiments of the present disclosure provide a display device 100 including the display substrate 111 as described in any of the above embodiments.
  • the beneficial effects that can be achieved by the display device 100 provided by the embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the display substrate 111 provided by any of the above embodiments, and will not be described again here.
  • Some embodiments of the present disclosure are an organic substance having a structure shown in formula (III):
  • a 1 and A 2 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or Unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, substituted or unsubstituted C 7 to Any of a C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, and a substituted or unsubstituted C 6 to C 30 aryloxy group.
  • the organic matter provided by the embodiments of the present disclosure contains fragmented anthracene (the molecular formula is C 14 H 10 and the structural formula is ), and the substituents A 1 and A 2 on the anthracene fragment are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, Any one of a substituted or unsubstituted C 7 to C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, or a substituted or unsubstituted C 6 to C 30 aryloxy group, Therefore, the fluorescence quantum yield of the organic matter
  • the organic substance has any one of the following structures from formula (3-1) to formula (3-12):
  • the organic substance contains more aromatic ring structures, which is beneficial to further improving its fluorescence quantum yield.
  • the organic matter provided by the embodiments of the present disclosure contains fragmented anthracene (the molecular formula is C 14 H 10 and the structural formula is ), and the substituents A 1 and A 2 on the anthracene fragment are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted C 6 to C 60 heteroaryl group, substituted or unsubstituted C 1 to C 20 alkyl group, substituted or unsubstituted C 3 to C 20 cycloalkyl group, substituted or unsubstituted C 1 to C 20 heteroalkyl group, Any one of a substituted or unsubstituted C 7 to C 30 aralkyl group, a substituted or unsubstituted C 1 to C 20 alkoxy group, or a substituted or unsubstituted C 6 to C 30 aryloxy group, Therefore, the fluorescence quantum yield and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种叠层发光器件(D)包括第一电极(d1)、第二电极(d2)、至少两个发光单元(d30)和至少一个叠层连接层(d4)。叠层连接层(d4)包括层叠设置的N型电荷产生层(d41)和P型电荷产生层(d42)。N型电荷产生层(d41)为包含第一主体材料和第一客体材料的双元掺杂结构,P型电荷产生层(d42)为包含第二主体材料和第二客体材料的双元掺杂结构。第二主体材料的最高占据分子轨道能级与第一主体材料的最高占据分子轨道能级的差值的绝对值大于0.3电子伏特,第二主体材料的最低未占分子轨道能级与第一主体材料的最低未占分子轨道能级的差值的绝对值大于0.1电子伏特。

Description

有机物、发光器件、叠层发光器件、显示基板及显示装置
本申请要求于2022年07月06日提交的、申请号为202210788076.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种有机物、发光器件、叠层发光器件、显示基板及显示装置。
背景技术
在显示技术领域,有机发光二极管(Organic Light-emitting diode,OLED)显示装置由于具有色域广、对比度高、节能、可折叠性等优点,已经被广泛应用于平板显示、柔性显示、车载显示和固态照明等多个领域。
发明内容
一方面,提供一种叠层发光器件,包括第一电极、第二电极、至少两个发光单元和至少一个叠层连接层。所述至少两个发光单元层叠设置于所述第一电极与所述第二电极之间,所述叠层连接层设置于每两个相邻的发光单元之间。所述叠层连接层包括层叠设置的N型电荷产生层和P型电荷产生层。
其中,所述N型电荷产生层为包含第一主体材料和第一客体材料的双元掺杂结构,所述P型电荷产生层为包含第二主体材料和第二客体材料的双元掺杂结构。所述第二主体材料的最高占据分子轨道能级与所述第一主体材料的最高占据分子轨道能级的差值的绝对值大于0.3电子伏特,所述第二主体材料的最低未占分子轨道能级与所述第一主体材料的最低未占分子轨道能级的差值的绝对值大于0.1电子伏特。
在一些实施例中,所述第一客体材料包括金属或有机物中的至少一种。其中,在所述第一客体材料为金属的情况下,所述第一客体材料的功函数与所述第一主体材料的最低未占分子轨道能级的差值的绝对值小于1.0电子伏特;在所述第一客体材料为有机物的情况下,所述第一客体材料的最高占据分子轨道能级与所述第一主体材料的最低未占分子轨道能级的差值的绝对值小于1.0电子伏特。
在一些实施例中,所述第二客体材料的最低未占分子轨道能级与所述第二主体材料的最高占据分子轨道能级的差值的绝对值小于0.5电子伏特。
在一些实施例中,所述第一主体材料的结构中具有共轭片段;所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
在一些实施例中,所述共轭片段的至少一个取代基中具有磷氧基。
在一些实施例中,所述第一主体材料具有如式(Ⅰ)所示的结构:
其中,R1、R2、R3和R4各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基、以及如式(Ⅱ)所示的结构中的任一种。
其中,所述R1、所述R2、所述R3和所述R4中的至少一个具有所述如式(Ⅱ)所示的结构:
其中,*表示与碳原子连接的位点。L1选自:单键、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。X1和X2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在一些实施例中,所述R3和所述R4中的至少一个具有所述如式(Ⅱ)所示的结构。
在一些实施例中,所述R3和所述R4均具有所述如式(Ⅱ)所示的结构。
在一些实施例中,所述第一主体材料具有如式(1-1)~式(1-10)中的任一种所示的结构:
在一些实施例中,所述发光单元包括发光层,所述发光层为包含第三主体材料和第三客体材料的双元掺杂结构;所述第三主体材料的结构中具有共轭片段;所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
在一些实施例中,所述第三主体材料具有如式(Ⅲ)所示的结构:
其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在一些实施例中,所述第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:
另一方面,提供一种叠层发光器件。所述叠层发光器件包括第一电极、第二电极、至少两个发光单元和至少一个叠层连接层。所述至少两个发光单元层叠设置于所述第一电极与所述第二电极之间。所述发光单元包括发光层。所述叠层连接层设置于每两个相邻的发光单元之间。所述叠层连接层包括层叠设置的N型电荷产生层和P型电荷产生层。
所述叠层发光器件中的至少三个膜层包括具有共轭片段的材料。所述至少三个膜层包括所述发光层和所述N型电荷产生层中的至少一种。
在一些实施例中,所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
在一些实施例中,至少一个具有共轭片段的材料的所述共轭片段的至少一个取代基中具有磷氧基。
在一些实施例中,所述叠层发光器件中的至少两个膜层中,具有不同的所述共轭片段。
在一些实施例中,所述叠层发光器件中,存在至少两个所述发光层、以及位于所述至少两个所述发光层之间的N型电荷产生层,包括具有所述共轭片段的材料。
在一些实施例中,所述叠层发光器件的所有所述发光层中,包括至少两个材料相同的发光层。
在一些实施例中,所述发光层包括包含第三主体材料和第三客体材料的双元掺杂结构;所述第三主体材料的结构中具有所述共轭片段。
在一些实施例中,所述第三主体材料具有如式(Ⅲ)所示的结构:
其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在一些实施例中,所述第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:
在一些实施例中,所述N型电荷产生层包括包含第一主体材料和第一客体材料的双元掺杂结构;所述第一主体材料的结构中具有所述共轭片段。
在一些实施例中,所述P型电荷产生层为包含第二主体材料和第二客体材料的双元掺杂结构;所述第二主体材料的最高占据分子轨道能级与所述第一主体材料的最高占据分子轨道能级的差值的绝对值大于0.3电子伏特,所述第二主体材料的最低未占分子轨道能级与所述第一主体材料的最低未占分子轨道能级的差值的绝对值大于0.1电子伏特。
在一些实施例中,所述第一客体材料包括金属或有机物中的至少一种;其中,所述第一客体材料包括所述金属,所述第一客体材料包括的所述金属的功函数与所述第一主体材料的 最低未占分子轨道能级的差值的绝对值小于1.0电子伏特;或,所述第一客体材料包括所述有机物,所述第一客体材料包括的所述有机物的最高占据分子轨道能级与所述第一主体材料的最低未占分子轨道能级的差值的绝对值小于1.0电子伏特。
在一些实施例中,所述第二客体材料的最低未占分子轨道能级与所述第二主体材料的最高占据分子轨道能级的差值的绝对值小于0.5电子伏特。
在一些实施例中,所述第一主体材料具有如式(Ⅰ)所示的结构:
其中,R1、R2、R3和R4各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基、以及如式(Ⅱ)所示的结构中的任一种;其中,所述R1、所述R2、所述R3和所述R4中的至少一个具有所述如式(Ⅱ)所示的结构:
其中,*表示与碳原子连接的位点;
L1选自:单键、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种;
X1和X2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在一些实施例中,所述第一主体材料具有如式(1-1)~式(1-10)中的任一种所示的结 构:
又一方面,提供一种发光器件,包括第一电极、第二电极和至少一个发光单元。所述至少一个发光单元设置于所述第一电极与所述第二电极之间。所述发光单元包括发光层。
其中,所述发光层为包含第三主体材料和第三客体材料的双元掺杂结构。所述第三主体材料的结构中具有共轭片段;所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
在一些实施例中,所述第三主体材料具有如式(Ⅲ)所示的结构:
其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20 的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在一些实施例中,所述第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:
再一方面,提供一种显示基板。所述显示基板包括衬底、多个发光器件、多个像素驱动电路以及封装层。至少一个所述发光器件为如上述任一实施例所述的叠层发光器件或如上述任一实施例所述的发光器件。所述多个像素驱动电路用于驱动所述至少一个发光器件发光。所述封装层用于封装所述多个发光器件和所述多个像素驱动电路。
又一方面,提供一种显示装置,包括如上述实施例所述的显示基板。
又一方面,提供一种有机物,具有如式(Ⅲ)所示的结构:
其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在一些实施例中,所述有机物具有如下式(3-1)~式(3-12)中的任一种结构:
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的结构图;
图2为根据一些实施例的显示模组的结构图;
图3为根据一些实施例的显示基板的结构图;
图4为相关技术中的发光器件的结构图;
图5为相关技术中的叠层发光器件的结构图;
图6为根据一些实施例的叠层发光器件的结构图;
图7为根据一些实施例的发光器件的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、 材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
如图1所示,本公开的一些实施例提供一种显示装置100,该显示装置100可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期本公开的一些实施例可实施在多种电子装置中,或与多种电子装置关联。该多种电子装置例如(但不限于)可以是移动电话、无线装置、个人数据助理(Personal Digital Assistant,PDA)、手持式或便携式计算机、全球定位系统(Global Positioning System,GPS)接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视 监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
在一些实施例中,请继续参照图1,该显示装置100包括显示模组110和壳体120。
在一些示例中,如图2所示,该显示模组110包括显示基板111、柔性电路板112以及其他电子配件等。
需要说明的是,上述显示基板111的类型包括多种,可以根据实际需要选择设置。示例性地,上述显示基板111可以为电致发光显示基板,例如,可以为有机发光二极管(Organic Light Emitting Diode,OLED)显示基板、量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示基板等,本公开实施例对此不做具体限定。
下面,以上述显示基板111为OLED显示基板为例,对本公开的一些实施例进行示例性说明。
在一些实施例中,如图2所示,上述显示基板111可以具有位于虚线框内的显示区A,以及位于虚线框外的周边区B。其中,显示区A为上述显示基板111显示图像的区域;周边区B为不显示图像的区域,周边区B被配置为设置显示驱动电路,例如,栅极驱动电路和源极驱动电路。
需要说明的是,本公开对周边区B的设置位置不做限制。例如,周边区B可以位于显示区A的一侧、两侧或三侧等。又例如,周边区B也可以围绕显示区A一圈。图2以周边区B围绕显示区A为例进行示例性说明。
在一些示例中,如图2所示,上述显示基板111包括设置在衬底1的一侧、且位于显示区A的多个亚像素P。示例性地,上述多个亚像素P至少包括第一颜色亚像素、第二颜色亚像素和第三颜色亚像素。其中,第一颜色、第二颜色和第三颜色可以为三基色(例如红色、绿色和蓝色)。
上述多个亚像素P排列为多行和多列,每行包括沿第一方向X排列的多个亚像素P,每列包括沿第二方向Y排列的多个亚像素P。其中,沿第一方向X排列成一行的多个亚像素P可以称为同一行亚像素P,沿第二方向Y排列成一列的多个亚像素P可以称为同一列亚像素P。
此处,第一方向X和第二方向Y相互交叉。第一方向X和第二方向Y之间的夹角可以根据实际需要选择设置。示例性地,第一方向X和第二方向Y之间的夹角可以为85°、89°或90°等。
在一些实施例中,如图2和图3所示,显示基板111包括衬底1、电路结构层2、发光结构层3和封装层4。其中,电路结构层2设置于衬底1上,该电路结构层2包括多个像素驱 动电路10,该像素驱动电路10包括多个晶体管101。发光结构层3设置于电路结构层2远离衬底1的一侧,该发光结构层3包括多个发光器件D0,一个发光器件D0与一个像素驱动电路10对应连接。封装层4设置于发光结构层3远离衬底1的一侧,该封装层4被配置为将电路结构层2和发光结构层3封装在衬底1上。
需要说明的是,上述像素驱动电路10所包括的晶体管101的类型包括多种。例如,上述像素驱动电路10所包括的各个晶体管101可以为底栅结构的薄膜晶体管,或者也可以为顶栅结构的薄膜晶体管。
在一些示例中,像素驱动电路10所包括的多个晶体管101中,包括一个驱动晶体管,该驱动晶体管与发光器件D0电连接。
需要说明的是,驱动晶体管与发光器件D0之间可以直接电连接,也可以间接电连接。
在一些示例中,如图3所示,晶体管101包括有源层1011、源极1012、漏极1013、栅极1014和栅极绝缘层1015。其中,源极1012和漏极1013分别与有源层1011接触;栅极绝缘层1015设置于有源层1011与栅极1014之间。
在此基础上,示例性地,请继续参照图3,沿远离衬底1的方向Z,发光器件D0包括依次设置的第一电极d1、发光功能层d3以及第二电极d2。其中,第一电极d1和多个晶体管101中的至少一个晶体管101的源极1012或漏极1013电连接。图3以第一电极d1和一个晶体管101的源极1012电连接为例进行示例性说明。
需要说明的是,上述多个发光器件D0的第一电极d1共同构成了第一电极层,多个发光器件D0的第二电极d2共同构成了第二电极层,多个发光器件D0的发光功能层d3共同构成了有机发光层。
需要说明的是,上述第一电极层例如可以为块状结构;上述第二电极层例如可以为整面结构,并覆盖整个显示区A;此外,上述有机发光层例如可以为整面结构,或者也可以为块状结构。
上述第一电极d1可以是阳极,也可以是阴极;对应地,上述第二电极d2可以是阴极,也可以是阳极。
在一些示例中,第一电极d1为阳极,第一电极层为阳极层;对应地,第二电极d2为阴极,第二电极层为阴极层。在这种情况下,该发光器件D0为正置的顶发射型发光器件。此时,由于上述第一电极d1不透光,上述第二电极d2呈透明或半透明,从而使得发光功能层d3发射的光线从发光器件D0远离衬底1的一侧射出。
应理解,下述实施例均以第一电极d1为阳极、第二电极d2为阴极为例,进行示例性说明。
在一些示例中,上述封装层4可以为封装薄膜,也可以为封装盖板。
在一些示例中,如图3所示,显示基板111还包括像素界定层102,像素界定层102包 括多个开口区,一个发光器件D0设置于一个开口区中。
在一些示例中,如图3所示,显示基板111还包括设置于第一电极d1远离第二电极d2一侧的覆盖层(Caping Layer,CPL)103。示例性地,构成覆盖层103的材料可以为4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)。
下面,结合图4和图5,对显示基板111中的发光器件D0的结构进行说明。
在一些实施例中,上述发光器件D0的发光功能层d3仅包括一个发光单元d310。在该情况下,如图4所示,沿远离第一电极d1的方向Z,发光器件D0包括第一电极d1、发光单元d310和第二电极d2。
在一些示例中,参照图4,沿远离第一电极d1的方向Z,上述发光单元d310包括空穴注入层(Hole Injection Layer,HIL)d3101、空穴传输层(Hole Transporting Layer,HTL)d3102、电子阻挡层(Electron Blocking Layer,EBL)d3103、发光层(Emitting Material Layer,EML)d3104、空穴阻挡层(Hole Blocking Layer,HBL)d3105、电子传输层(Electronic Transporting Layer,ETL)d3106和电子注入层(Electron Injection Layer,EIL)d3107。
在该情况下,结合图3和图4,对上述显示基板111的工作原理进行如下说明:当像素驱动电路10工作,并通过与第一电极d1电连接的晶体管101将驱动电压传输给发光器件D0后,第一电极d1可以在电场作用下产生带正电的空穴,第二电极d2可以在电场作用下产生带负电的电子。此时,第一电极d1产生的空穴可以通过空穴注入层d3101注入空穴传输层d3102,并通过空穴传输层d3102和电子阻挡层d3103进入发光层d3104中。相应地,第二电极d2产生的电子可以通过电子注入层d3107注入电子传输层d3106,并通过电子传输层d3106和空穴阻挡层d3105进入发光层d3104中。发光层d3104中的空穴和电子复合形成激子,激子通过辐射跃迁回到基态,发出光子。此时,发光器件D0发光。
在另一些实施例中,上述发光器件D0的发光功能层d3可以包括至少两个层叠设置的发光单元和至少一个叠层连接层,且该叠层连接层设置于每两个相邻的发光单元之间。此时,发光器件D0可以称为叠层发光器件。
在该情况下,叠层发光器件中的每两个发光单元通过一个叠层连接层串联在一起,从而可以提高叠层发光器件的发光效率,延长叠层发光器件的使用寿命。并且,随着叠层发光器件所包括的发光单元个数的增加,叠层发光器件的发光效率和使用寿命呈线性加倍增长。
在一些示例中,如图5所示,上述发光器件D0的发光功能层d3包括两个层叠设置的发光单元,分别为第一发光单元d301和第二发光单元d302。在该情况下,沿远离第一电极d1的方向Z,上述发光器件D0(即叠层发光器件)包括第一电极d1、第一发光单元d301、叠层连接层d422、第二发光单元d302和第二电极d2。
沿远离第一电极d1的方向Z,第一发光单元d301包括第一空穴注入层d3211、第一空穴传输层d3212、第一电子阻挡层d3213、第一发光层d3214、第一空穴阻挡层d3215和第一电 子传输层d3216。沿远离第一电极d1的方向Z,第二发光单元d302包括第二空穴传输层d3222、第二电子阻挡层d3223、第二发光层d3224、第二空穴阻挡层d3225、第二电子传输层d3226和第二电子注入层d3227。
叠层连接层d422包括层叠设置的N型电荷产生层d4221和P型电荷产生层d4222。N型电荷产生层d4221设置在叠层连接层d422中靠近第一电极d1的一侧;P型电荷产生层d4222设置在叠层连接层d422中靠近第二电极d2的一侧。
在该情况下,结合图3和图5,对上述显示基板111的工作原理进行如下说明:像素驱动电路10工作时,可以通过与第一电极d1电连接的晶体管101将驱动电压传输给叠层发光器件。此时,在电场的作用下,第一电极d1可以产生空穴,第二电极d2可以产生电子,N型电荷产生层d4221与P型电荷产生层d4222的接触区域可以产生空穴和电子。此时,第一电极d1产生的空穴可以依次通过第一空穴注入层d3211、第一空穴传输层d3212和第一电子阻挡层d3213进入第一发光层d3214中。相应地,N型电荷产生层d4221与P型电荷产生层d4222的接触区域产生的电子可以依次通过N型电荷产生层d4221、第一电子传输层d3216和第一空穴阻挡层d3215进入第一发光层d3214中。类似地,N型电荷产生层d4221与P型电荷产生层d4222的接触区域产生的空穴可以依次通过P型电荷产生层d4222、第二空穴传输层d3222和第二电子阻挡层d3223进入第二发光层d3224中。第二电极d2产生的电子可以依次通过第二电子注入层d3227、第二电子传输层d3226和第二空穴阻挡层d3225进入第二发光层d3224中。此时,第一发光层d3214中的空穴与电子、以及第二发光层d3224中的空穴与电子均复合形成激子,叠层发光器件发光。
需要说明的是,N型电荷产生层d4221具备电子注入能力、P型电荷产生层d4222具备空穴注入能力。因此,N型电荷产生层d4221可复用为第一发光单元d301中的电子注入层,P型电荷产生层d4222可复用为第二发光单元d302中的空穴注入层,也即,上述叠层发光器件的第一发光单元d301中可以不额外设置电子注入层,第二发光单元d302中可以不额外设置空穴注入层。
当然,在上述叠层发光器件中,也可以在第一发光单元d301中额外设置一层位于N型电荷产生层d4221和第一电子传输层d3216之间的电子注入层,同理,也可以在第二发光单元d302中额外设置一层位于P型电荷产生层d4222和第二空穴传输层d3222之间的空穴注入层,本公开对此不做限制。
对此,本公开发明人经研究发现:由于相关技术中未对上述叠层发光器件的N型电荷产生层d4221和P型电荷产生层d4222两者的物理参数进行合理的设计,使两者无法有效配合,此时,叠层连接层d422中N型电荷产生层d4221与P型电荷产生层d4222的接触区域产生的空穴和电子可能会发生淬灭,使得叠层连接层d422提供给与其相邻的两个发光单元(例如,上述第一发光单元d301和第二发光单元d302)的电子和空穴的数量难以保证,最终导致叠 层发光器件的发光效率和使用寿命降低。
基于此,本公开的实施例提供了一种叠层发光器件D。该叠层发光器件D包括第一电极d1、第二电极d2、至少两个发光单元d30和至少一个叠层连接层d4。至少两个发光单元d30层叠设置于第一电极d1和第二电极d2之间。叠层连接层d4设置于每两个相邻的发光单元d30之间;叠层连接层d4包括层叠设置的N型电荷产生层d41和P型电荷产生层d42。其中,N型电荷产生层d41为包含第一主体材料和第一客体材料的双元掺杂结构;P型电荷产生层d42为包含第二主体材料和第二客体材料的双元掺杂结构;第二主体材料的最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)能级与第一主体材料的HOMO能级的差值的绝对值大于0.3电子伏特,第二主体材料的最低未占分子轨道(Lowest Unoccupied Molecular Orbital,LUMO)能级与第一主体材料的LUMO能级的差值的绝对值大于0.1电子伏特。
综上所述,本公开实施例提供的叠层发光器件D通过限定第二主体材料的HOMO能级与第一主体材料的HOMO能级的差值的绝对值大于0.3电子伏特,以及第二主体材料的LUMO能级与第一主体材料的LUMO能级的差值的绝对值大于0.1电子伏特,可以防止N型电荷产生层d41与P型电荷产生层d42的接触区域产生的电子和空穴反向传输(即,防止该接触区域产生的电子向P型电荷产生层d42传输,以及防止该接触区域产生的空穴向N型电荷产生层d41传输),从而避免该接触区域产生的电子和空穴因为反向传输而发生淬灭,进而保证了每个叠层连接层d4提供给与其相邻的两个发光单元的载流子数目的稳定,最终提升了叠层发光器件D的发光效率。
需要说明的是,上述第二主体材料的HOMO能级与第一主体材料的HOMO能级的差值的绝对值大于0.3电子伏特,可以是:第二主体材料的HOMO能级与第一主体材料的HOMO能级的差值大于0.3电子伏特,此时,第二主体材料的HOMO能级大于第一主体材料的HOMO能级;或者,第二主体材料的HOMO能级与第一主体材料的HOMO能级的差值小于负0.3电子伏特,此时,第二主体材料的HOMO能级小于第一主体材料的HOMO能级。
同理,上述第二主体材料的LUMO能级与第一主体材料的LUMO能级的差值的绝对值大于0.1电子伏特,可以是:第二主体材料的LUMO能级与第一主体材料的LUMO能级的差值大于0.1电子伏特,此时,第二主体材料的LUMO能级大于第一主体材料的LUMO能级;或者,第二主体材料的LUMO能级与第一主体材料的LUMO能级的差值小于负0.1电子伏特,此时,第二主体材料的LUMO能级小于第一主体材料的LUMO能级。
需要说明的是,在本公开实施例提供的叠层发光器件D中,发光单元d30的数量可根据需要进行选择,本公开实施例对此不做限制。示例性地,发光单元d30的数量为两个,在该情况下,叠层连接层d4的数量为一个;此时,能够节省叠层发光器件D的制造成本。再示例性地,发光单元d30的数量为三个,在该情况下,叠层连接层d4的数量为两个;此时,能够提高叠层发光器件D的发光效率以及延长叠层发光器件D的使用寿命。
在一些示例中,请参照图6,沿远离第一电极d1的方向Z,叠层发光器件D包括第一电极d1、第一发光单元d31、叠层连接层d4、第二发光单元d32和第二电极d2。
沿远离第一电极d1的方向Z,第一发光单元d31包括第一空穴注入层d311、第一空穴传输层d312、第一电子阻挡层d313、第一发光层d314、第一空穴阻挡层d315和第一电子传输层d316。沿远离第一电极d1的方向Z,第二发光单元d32包括第二空穴传输层d322、第二电子阻挡层d323、第二发光层d324、第二空穴阻挡层d325、第二电子传输层d326和第二电子注入层d327。
其中,N型电荷产生层d41设置在叠层连接层d4中靠近第一电极d1的一侧,P型电荷产生层d42设置在叠层连接层d4中靠近第二电极d2的一侧。
在上述实施例中,由于上述N型电荷产生层d41的作用是将N型电荷产生层d41与P型电荷产生层d42的接触区域产生的电子注入第一电子传输层d316中,而P型电荷产生层d42的作用是将该接触区域产生的空穴注入第二空穴传输层d322中,因此,限定第二主体材料的HOMO能级与第一主体材料的HOMO能级的差值的绝对值大于0.3电子伏特,以及第二主体材料的LUMO能级与第一主体材料的LUMO能级的差值的绝对值大于0.1电子伏特,可以防止N型电荷产生层d41与P型电荷产生层d42的接触区域产生的电子和空穴反向传输(即,防止该接触区域产生的电子向P型电荷产生层d42传输,以及防止该接触区域产生的空穴向N型电荷产生层d41传输),从而避免该接触区域产生的电子和空穴因为反向传输而发生淬灭,进而保证了每个叠层连接层d4提供给与其相邻的两个发光单元的载流子数目的稳定,最终提升了叠层发光器件D的发光效率。
需要说明的是,本公开实施例对第一电极d1和第二电极d2的材料均不做限制。
在一些示例中,第一电极d1的材料为金属。示例性地,第一电极d1的材料可以选自银(Ag)、镁(Mg)、铜(Cu)、铝(Al)、铂(Pt)、钯(Pd)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)、Ca-LiF合金、Al-LiF合金、钼(Mo)、钛(Ti)、铟(In)、锡(Sn)和锌(Zn)中的至少一种。
在一些示例中,第二电极d2的材料为金属或无机材料。示例性地,在第二电极d2的材料为金属的情况下,第二电极d2的材料可以为银(Ag)、镁(Mg)、镱(Yb)、锂(Li)或钙(Ca);在第二电极d2的材料为无机材料的情况下,第二电极d2的材料可以为氧化锂(Li2O)、氧化钙(CaO)、氟化锂(LiF)或氟化镁(MgF2)等。
在一些实施例中,N型电荷产生层d41的第一客体材料包括金属或有机物中的至少一种。
在一些示例中,N型电荷产生层d41的第一客体材料为金属,在这种情况下,第一客体材料的功函数与第一主体材料的LUMO能级的差值的绝对值小于1.0电子伏特。
在上述实施例中,第一客体材料的作用是将该第一客体材料上的电子给予第一主体材料,以使电子能够通过该第一主体材料在N型电荷产生层d41中传输,并注入至与该N型电荷产 生层d41相邻的第一电子传输层d316中。并且,第一客体材料的功函数与第一主体材料的LUMO能级越接近,第一客体材料与第一主体材料之间的电子转移所需要的能量就越少,第一客体材料上的电子就越容易转移至第一主体材料上。这样,N型电荷产生层d41注入到第一电子传输层d316中的电子数量会增多,从而,第一发光层d314中电子与空穴复合产生激子的概率就会增加。因此,上述实施例提供的叠层发光器件D通过限制第一客体材料的功函数与第一主体材料的LUMO能级的差值关系,增加了第一发光层d314中电子与空穴复合产生激子的概率,提高了叠层发光器件D的发光效率。
需要说明的是,上述第一客体材料的功函数与第一主体材料的LUMO能级的差值的绝对值小于1.0电子伏特,可以是:第一客体材料的功函数与第一主体材料的LUMO能级的差值大于或等于零、且小于1.0电子伏特,此时,第一客体材料的功函数大于或等于第一主体材料的LUMO能级;或者,第一客体材料的功函数与第一主体材料的LUMO能级的差值大于负1.0电子伏特、且小于或等于零,此时,第一客体材料的功函数小于或等于第一主体材料的LUMO能级。
在另一些示例中,N型电荷产生层d41的第一客体材料为有机物,在这种情况下,第一客体材料的HOMO能级与第一主体材料的LUMO能级的差值的绝对值小于1.0电子伏特。
在上述实施例中,上述第一客体材料的作用是将该第一客体材料上的电子给予第一主体材料,以使电子能够通过该第一主体材料在N型电荷产生层d41中传输,并注入至与该N型电荷产生层d41相邻的第一电子传输层d316中。第一客体材料的HOMO能级与第一主体材料的LUMO能级越接近,第一客体材料与第一主体材料之间的电子转移所需要的能量就越少,第一客体材料上的电子就越容易转移至第一主体材料上。这样,N型电荷产生层d41注入到第一电子传输层d316中的电子数量会增多,从而,第一发光层d314中电子与空穴复合产生激子的概率就会增加。因此,上述实施例提供的叠层发光器件D通过限制第一客体材料的HOMO能级与第一主体材料的LUMO能级的差值关系,增加了第一发光层d314中电子与空穴复合产生激子的概率,提高了叠层发光器件D的发光效率。
需要说明的是,上述第一客体材料的HOMO能级与第一主体材料的LUMO能级的差值的绝对值小于1.0电子伏特,可以是:第一客体材料的HOMO能级与第一主体材料的LUMO能级的差值大于或等于零、且小于1.0电子伏特,此时,第一客体材料的HOMO能级大于或等于第一主体材料的LUMO能级;或者,第一客体材料的HOMO能级与第一主体材料的LUMO能级的差值大于负1.0电子伏特、且小于或等于零,此时,第一客体材料的HOMO能级小于或等于第一主体材料的LUMO能级。
需要说明的是,本公开实施例对获得N型电荷产生层d41的双元掺杂结构的方法不做限制。例如,可以通过离子注入法或扩散法,在第一主体材料中掺入第一客体材料以得到该双元掺杂结构。
在一些实施例中,第二客体材料的LUMO能级与第二主体材料的HOMO能级的差值的绝对值小于0.5电子伏特。
在上述实施例中,上述第二客体材料的作用是将该第二客体材料上的空穴给予第二主体材料,以使空穴能够通过该第二主体材料在P型电荷产生层d42中传输,并注入至与该P型电荷产生层d42相邻的第二空穴传输层d322中。第二客体材料的LUMO能级与第二主体材料的HOMO能级越接近,第二客体材料与第二主体材料之间的空穴转移所需要的能量就越少,第二客体材料上的空穴就越容易转移至第二主体材料上。这样,P型电荷产生层d42注入到第二空穴传输层d322中的空穴数量会增多,从而,第二发光层d324中空穴与电子复合产生激子的概率就会增加。因此,上述实施例提供的叠层发光器件D通过限制第二客体材料的LUMO能级与第二主体材料的HOMO能级的差值关系,增加了第二发光层d324中空穴与电子复合产生激子的概率,提高了叠层发光器件D的发光效率。
需要说明的是,上述第二客体材料的LUMO能级与第二主体材料的HOMO能级的差值的绝对值小于0.5电子伏特,可以是:第二客体材料的LUMO能级与第二主体材料的HOMO能级的差值大于或等于零、且小于0.5电子伏特,此时,第二客体材料的LUMO能级大于或等于第二主体材料的HOMO能级;或者,第二客体材料的LUMO能级与第二主体材料的HOMO能级的差值大于负0.5电子伏特、且小于或等于零,此时,第二客体材料的LUMO能级大于或等于第二主体材料的HOMO能级。
需要说明的是,本公开实施例对获得P型电荷产生层d42的双元掺杂结构的方法不做限制。例如,可以通过离子注入法或扩散法,在第二主体材料中掺入第二客体材料以得到该双元掺杂结构。
在上述实施例中,主要阐述了对构成叠层连接层d4各结构的材料的物理参数之间的限制(例如,对第二主体材料的HOMO能级与第一主体材料的HOMO能级的差值的绝对值的限制)。下面,对满足上述物理参数之间的限制的各材料进行示例性说明。
在一些实施例中,上述N型电荷产生层d41的第一主体材料的结构中具有共轭片段;该共轭片段具有至少两个苯环,且该共轭片段中的所有苯环为π-π共轭结构。
在该实施例中,N型电荷产生层d41的第一主体材料的结构中具有共轭片段。在此基础上,由于共轭结构的分子与分子之间的电子云交叠部分较大,有利于电子在分子之间的跳跃传输,因此,本公开实施例提供的叠层发光器件D通过采用结构中具有该共轭片段的材料作为N型电荷产生层d41的主体材料能够提升电子在N型电荷产生层d41中传输的顺畅性,即,提升N型电荷产生层d41的电子迁移率,从而提升电子通过N型电荷产生层d41传输至电子传输层d316的效率,进而提升叠层发光器件D的发光效率。
需要说明的是,本公开对上述共轭片段中所含苯环的个数不做限制,只要能够满足其中所具有的所有苯环为π-π共轭结构即可。
在一些示例中,上述共轭片段具有两个苯环,且该两个苯环为π-π共轭结构。此时,该共轭片段为片段萘,其化学式为C10H8,结构式为
在另一些示例中,上述共轭片段具有三个苯环,且该三个苯环为π-π共轭结构。此时,该共轭片段为片段蒽,其化学式为C14H10,结构式为
在又一些示例中,上述共轭片段具有五个苯环,且该五个苯环为π-π共轭结构。此时,该共轭片段为片段并五苯,其化学式为C22H14,结构式为
需要说明的是,N型电荷产生层d41的第一主体材料的结构中还具有连接在共轭片段上的至少一个取代基。
在一些示例中,该至少一个取代基各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基以及取代或未取代的C6~C30的芳氧基。
在一些实施例中,上述共轭片段的至少一个取代基中具有磷氧基(P=O基)。
在该实施例中,N型电荷产生层d41的第一主体材料的结构中具有磷氧基(P=O基)。在此基础上,由于磷氧基是强吸电子基团(强吸电子基团是对外表现为正电场的取代基,其倾向于吸电子),因此,本公开实施例提供的叠层发光器件D通过使用结构中具有磷氧基的材料作为第一主体材料,能够增强N型电荷产生层d41的电子注入能力,从而进一步提升N型电荷产生层d41的电子迁移率,进而提升叠层发光器件D的发光效率。
在一些实施例中,上述N型电荷产生层d41的第一主体材料具有如式(Ⅰ)所示的结构:
其中,R1、R2、R3和R4各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基以及如式(Ⅱ)所示的结构中的任一种。
其中,R1、R2、R3和R4中的至少一个具有式(Ⅱ)的结构:
其中,*表示与碳原子连接的位点。
L1选自:单键、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
X1和X2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在该实施例中,N型电荷产生层d41的第一主体材料具有如式(Ⅰ)所示的结构,即该第一主体材料的结构中含有片段蒽(分子式为C14H10,结构式为),其为大共轭刚性结构。在此基础上,由于共轭结构的分子与分子之间的电子云交叠部分较大,有利于电子在分子之间的跳跃传输,因此,本公开实施例提供的叠层发光器件D通过采用含有片段蒽的材料作为N型电荷产生层d41的主体材料能够提升电子在N型电荷产生层d41中传输的顺畅性,即,提升N型电荷产生层d41的电子迁移率,从而提升电子通过N型电荷产生层d41传输至电子传输层d316的效率,进而提升叠层发光器件D的发光效率。此外,N型电荷产生层d41的第一主体材料上的取代基团R1、R2、R3和R4中的至少一个具有式(Ⅱ)的结构,即,该第一主体材料的结构中具有磷氧基(P=O基)。在此基础上,由于磷氧基是强吸电子基团,因此,本公开实施例提供的叠层发光器件D通过使用的结构中具有磷氧基的材料作为第一主体材料,能够增强N型电荷产生层d41的电子注入能力,从而进一步提升N型电荷产生层d41的电子迁移率,进而提升叠层发光器件D的发光效率。
需要说明的是,本公开实施例对上述R3和R4的取代位点不做限制。
例如,第一主体材料具有如下式(Ⅳ)所示的结构:
或者,第一主体材料具有如下式(Ⅴ)所示的结构:
在一些实施例中,R3和R4中的至少一种具有如上述式(Ⅱ)所示的结构。
在上述实施例提供的叠层发光器件D中,通过使用尾端基团(R3和/或R4)中具有如式(Ⅱ)所示的结构(尾端基团的结构中具有磷氧基)的材料作为第一主体材料,能够进一步增强N型电荷产生层d41的电子注入能力,从而进一步提升N型电荷产生层d41的电子迁移率,进而提升叠层发光器件D的发光效率。
在一些实施例中,R3和R4均具有如上述式(Ⅱ)所示的结构。
在上述实施例提供的叠层发光器件D中,通过使用尾端基团(R3和R4)均具有如式(Ⅱ)所示的结构(尾端基团的结构中具有磷氧基)的材料作为第一主体材料,能够更进一步增强N型电荷产生层d41的电子注入能力,从而更进一步提升N型电荷产生层d41的电子迁移率,进而提升叠层发光器件D的发光效率。
在一些实施例中,第一主体材料具有如式(1-1)~式(1-10)中的任一种所示的结构:

需要说明的是,上述式(1-1)~式(1-10)所示的材料仅作为第一主体材料的示例,任何满足上述式(Ⅰ)的材料均可作为本公开实施例中的第一主体材料。
在上述实施例中,当第一主体材料具有如上述式(1-1)~式(1-10)所示的结构时,第一主体材料的尾端基团(R3和/或R4)的结构中具有磷氧基,能够进一步增强N型电荷产生层d41的电子注入能力,从而进一步提升N型电荷产生层d41的电子迁移率,进而提升叠层发光器件D的发光效率。
在一些示例中,上述式(1-1)所示的材料的制备方法可以包括S11和S12。
S11、在容量规格为500mL的烧瓶中通入氩气,将3.06g的结构如式A所示的原料1和3.23g的结构如式B所示的原料2装入该烧瓶,再将0.236g的四(三苯基膦)钯、20mL的1,2-二甲氧基乙烷、20mL的甲苯和20mL的2M碳酸钠水溶液(即,20mL的体积摩尔浓度为2mol/L的碳酸钠水溶液)装入该烧瓶,加热至150℃,回流反应10小时;将回流反应后得到的产物冷却至室温后,过滤冷却后析出的固体。然后,用水和甲醇洗涤过滤得到的固体,再用甲苯进行重结晶,得到结构如式C所示的中间体1。
其中,上述S11的反应方程式如下:
S12、在容量规格为500mL的三口瓶中,通入氮气,将0.02mol的中间体1、0.02mol的结构如式D所示的原料3、0.002mol的二甲基甲酰胺(DMF)和0.002mol的醋酸钯装入该三口瓶,搅拌;然后将0.01mol的K3PO4水溶液装入该烧瓶,加热至150℃,回流反应24小时,取样点板,直至判断为反应完全;将上述回流反应得到的产物冷却至室温后,用二氯甲烷进行萃取,并将得到的萃取液用无水硫酸钠干燥,滤除干燥后析出的固体,再将得到的滤液进行旋转蒸发,最后利用硅胶柱进行纯化,得到如上述式(1-1)所示的磷氧基衍生物。
其中,上述S12的反应方程式如下:
需要说明的是,由于上述式(1-1)~式(1-10)所示的材料为具有同一通式的磷氧基衍生物,因此,上述式(1-2)~式(1-10)所示的材料的制备方法与式(1-1)所示的材料的制备方法类似,在此不一一赘述。
在一些示例中,上述第一客体材料可以为含有强给电子基团的有机物、金属(例如碱金属)或含金属的化合物。其中,强给电子基团是对外表现为负电场的取代基,其倾向于给电子。
例如,第一客体材料可以选自隐形结晶紫(LCV)、锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)、镁(Mg)、钙(Ca)、镱(Yb)或氟化锂(LiF)等。
当叠层发光器件D的N型电荷产生层d41由上述实施例提供的第一主体材料和第一客体材料构成时,能够满足上述“第一客体材料的功函数与第一主体材料的LUMO能级的差值的绝对值小于1.0电子伏特”这一物理参数要求或“第一客体材料的HOMO能级与第一主体材料 的LUMO能级的差值的绝对值小于1.0电子伏特”这一物理参数要求,从而能够使得N型电荷产生层d41注入到第一电子传输层d316中的电子数量增多,进而能够使得第一发光层d314中电子与空穴复合产生激子的概率增加,最终能够提高叠层发光器件D的发光效率。
在一些示例中,P型电荷产生层d42为包含第二主体材料和第二客体材料的双元掺杂结构。
示例性地,该第二主体材料可以为具有空穴传输特性的芳胺类材料、二甲基芴或者咔唑类材料。例如,第二主体材料可以选自4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(TPD)、4-苯基-4'-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4'-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4'-二(9-咔唑基)联苯(CBP)、9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)或4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA)等。
示例性地,上述第二客体材料可以为含有强吸电子基团的有机材料。例如,第二客体材料可以选自六氰基六氮杂三亚苯基、2,3,5,6-四氟-7,7,8,8-四氰基对醌二甲烷(F4TCNQ)、1,2,3-三[(氰基)(4-氰基-2,3,5,6-四氟苯基)亚甲基]环丙烷等。
当叠层发光器件D的N型电荷产生层d41由上述实施例提供的第一主体材料和第一客体材料构成,且P型电荷产生层d42由上述实施例提供的第二主体材料和第二客体材料构成时,能够满足上述“第二主体材料的HOMO能级与第一主体材料的HOMO能级的差值的绝对值大于0.3电子伏特,第二主体材料的LUMO能级与第一主体材料的LUMO能级的差值的绝对值大于0.1电子伏特”这一物理参数要求,从而可以防止N型电荷产生层与P型电荷产生层的接触区域产生的电子和空穴反向传输,避免该接触区域产生的电子和空穴因为反向传输而发生淬灭,进而保证每个叠层连接层d4提供给与其相邻的两个发光单元d30的载流子数目的稳定,最终提升叠层发光器件的发光效率。
在一些实施例中,发光单元d30中的发光层d34为包含第三主体材料和第三客体材料的双元掺杂结构。第三主体材料的结构中具有共轭片段;该共轭片段具有至少两个苯环,且共轭片段中的所有苯环为π-π共轭结构。
在该实施例中,叠层发光器件D选用结构中具有上述共轭片段的材料作为发光层d34的主体材料(即,第三主体材料)。在此基础上,由于该共轭片段具有至少两个苯环(芳香环),具有荧光量子产率高的特点,因此,采用结构中具有该共轭片段的材料作为发光层d34的主体材料能够提升发光层d34的荧光发光特性,从而提升发光层d34的发光效率。此外,由于该共轭片段中的所有苯环为π-π共轭结构,而π-π共轭结构的分子与分子之间的电子云交叠部分较大,有利于电子和空穴在分子之间的跳跃传输,因此,采用结构中具有该共轭片段的材料作为发光层d34的主体材料能够提升电子和空穴在发光层d34中传输的顺畅性,即提升发光层d34的电子迁移率和空穴迁移率,从而促进发光层d34中激子的形成,最终提升叠层 发光器件D的发光效率。
在此基础上,本公开实施例所提供的叠层发光器件D还可以选用第一主体材料作为N型电荷产生层d41的主体材料,此时,由于叠层发光器件D含有至少两个发光单元d30,且每个发光单元d30的发光层d34均选用第三主体材料作为发光层d34的主体材料,因此,整个叠层发光器件D中的N型电荷产生层d41和发光层d34同时含有共轭片段(即,一个叠层发光器件D中至少包括三层含有共轭片段的结构)。由于第一主体材料的结构中具有的共轭片段和第三主体材料的结构中具有的共轭片段均为大共轭刚性芳香环结构,因此,N型电荷产生层d41和发光层d34的电子迁移率以及发光层d34的荧光发光特性都能够得到提升,最终,叠层发光器件D的发光效率能够被更大幅度地延长。
需要说明的是,本公开对上述共轭片段中所含苯环的个数不做限制,只要能够满足其中所具有的所有苯环为π-π共轭结构即可。
在一些示例中,上述共轭片段具有两个苯环,且该两个苯环为π-π共轭结构。此时,该共轭片段为片段萘,其化学式为C10H8,结构式为
在另一些示例中,上述共轭片段具有三个苯环,且该三个苯环为π-π共轭结构。此时,该共轭片段为片段蒽,其化学式为C14H10,结构式为
在又一些示例中,上述共轭片段具有五个苯环,且该五个苯环为π-π共轭结构。此时,该共轭片段为片段并五苯,其化学式为C22H14,结构式为
在一些实施例中,上述第三主体材料具有如式(Ⅲ)所示的结构:
其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
上述实施例提供的叠层发光器件D,选用含有片段蒽(分子式为C14H10,结构式为 )的材料作为发光层d34的主体材料(即,第三主体材料)。在此基础上,由于蒽为大共轭芳香环结构,具有荧光量子产率高的特点,因此,采用含有蒽的材料作为发光层d34的主体材料(即,第三主体材料)能够提升发光层d34的荧光发光特性,从而提升发光层d34的发光效率。此外,由于共轭结构的分子与分子之间的电子云交叠部分较大,有利于电子在分子之间的跳跃传输,因此,采用含有蒽的材料作为发光层d34的主体材料能够提升电子在发光层d34中传输的顺畅性,即提升发光层d34的电子迁移率,从而促进发光层d34中激子的形成,最终提升叠层发光器件D的发光效率。
需要说明的是,本公开实施例对获得上述发光层d34的双元掺杂结构的方法不做限制。例如,可以通过离子注入法或扩散法,在第三主体材料中掺入第三客体材料以得到该双元掺杂结构。
在一些实施例中,第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:
需要说明的是,上述式(3-1)~式(3-12)所示的材料仅作为第三主体材料的示例,任何满足上述式(Ⅲ)的材料均可作为本公开实施例中的第三主体材料。
在上述实施例中,当第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构时,第三主体材料中含有较多芳香环结构,有利于提升发光层d34的荧光发光特性。
在一些示例中,上述式(3-2)所示的材料的制备方法可以包括:S21。
S21、在容量规格为500mL的烧瓶中通入氩气,将3.2g的结构如式E所示的原料4、2.9g的2-溴萘、0.23g的四(三苯基膦)钯、20mL的2M碳酸钠水溶液、20mL的1,2-二甲氧基乙烷和25mL的甲苯装入该烧瓶,加热至150℃,回流反应10小时;将回流反应后得到的产物冷却至室温后,过滤析出的固体;然后,用水和甲醇洗涤过滤得到的固体,再用甲苯进 行重结晶,得到上述式(3-2)所示的材料。
其中,上述S21的反应方程式如下:
需要说明的是,由于上述式(3-1)~式(3-12)所示的材料具有同一通式,因此,式(3-1)以及式(3-3)~式(3-12)所示的材料的制备方法与式(3-1)所示的材料的制备方法类似,在此不一一赘述。
在一些示例中,上述第三客体材料可以为4,4'-[1,4-亚苯基二-(1E)-2,1-乙烯二基]二[N,N-二苯基苯胺](DSA-ph)。
当叠层发光器件D的发光层d34由上述实施例提供的第三主体材料和第三客体材料构成时,有利于提升发光层d34中的电子迁移率,从而增加发光层d34中电子与空穴复合产生激子的概率,最终提高叠层发光器件D的发光效率。
需要说明的是,本公开实施例对构成上述第一发光单元d31中的第一空穴注入层d311、上述第一空穴传输层d312、第一电子阻挡层d313、第一空穴阻挡层d315和第一电子传输层d316的材料不做限制。
在一些示例中,上述第一空穴注入层d311的材料可以为空穴传输材料与含有强吸电子基团的有机材料两者的掺杂物。此处,空穴传输材料是具备空穴传输特性的有机材料。
其中,空穴传输材料可以选自具有空穴传输特性的芳胺类材料、二甲基芴或者咔唑类材料。例如,空穴传输材料可以选自4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(TPD)、4-苯基-4'-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4'-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4'-二(9-咔唑基)联苯(CBP)、9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)或4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA)等。
含有强吸电子基团的有机材料可以选自六氰基六氮杂三亚苯基、2,3,5,6-四氟-7,7,8,8-四氰基对醌二甲烷(F4TCNQ)、1,2,3-三[(氰基)(4-氰基-2,3,5,6-四氟苯基)亚甲基]环丙烷等。
需要说明的是,上述第一空穴传输层d312和第一电子阻挡层d313中的至少一种也可以 由上述空穴传输材料形成。
在一些示例中,上述第一空穴阻挡层d315和第一电子传输层d316均可以由芳族杂环化合物形成。示例性地,构成第一空穴阻挡层d315和第一电子传输层d316的材料均可以为咪唑衍生物(例如苯并咪唑衍生物、咪唑并吡啶衍生物、苯并咪唑并菲啶衍生物等)、嗪衍生物(例如嘧啶衍生物、三嗪衍生物等)、喹啉衍生物、异喹啉衍生物、菲咯啉衍生物等包括含氮六元环结构的化合物和在杂环上具有氧化膦系的取代基的化合物等。例如,2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-联苯基)-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP)、4,4'-双(5-甲基苯并噁唑-2-基)芪(BzOs)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)和8-羟基喹啉-锂(Liq)的掺杂物等。
同理,本公开实施例对构成上述第二发光单元d32中的第二空穴传输层d322、第二电子阻挡层d323、第二空穴阻挡层d325、第二电子传输层d326和第二电子注入层d327的材料不做限制。
在一些示例中,构成第二空穴传输层d322、第二电子阻挡层d323、第二空穴阻挡层d325和第二电子传输层d326的材料的选用范围可以分别参照上述实施例中构成第一空穴传输层d312、第一电子阻挡层d313、第一空穴阻挡层d315和第一电子传输层d316的材料的选用范围,在此不再赘述。
在一些示例中,上述第二电子注入层d327可以由金属(例如碱金属)或含金属的化合物形成。例如,构成第二电子注入层d327的材料可以选自锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)、镁(Mg)、钙(Ca)、镱(Yb)或氟化锂(LiF)等。
综上所述,本公开实施例提供的叠层发光器件D,能够保证每个叠层连接层d4提供给与其相邻的两个发光单元d30的载流子数目的稳定,提升N型电荷产生层d41和发光层d34的电子迁移率,增加发光层d34中电子与空穴复合产生激子的概率,提升发光层d34的荧光发光特性,从而提升叠层发光器件D的发光效率。
为了对本公开的实施例的技术效果进行客观评价,以下,将通过具体实施例对本公开实施例所提供的叠层发光器件D进行示例性地描述。
实施例1
一种叠层发光器件D,包括如图6所示的第一电极d1、第一空穴注入层d311、第一空穴传输层d312、第一电子阻挡层d313、第一发光层d314、第一空穴阻挡层d315、第一电子传输层d316、N型电荷产生层d41、P型电荷产生层d42、第二空穴传输层d322、第二电子阻挡层d323、第二发光层d324、第二空穴阻挡层d325、第二电子传输层d326、第二电子注入层d327和第二电极d2。
在该实施例中,构成第一电极d1的材料选用ITO;构成第一空穴注入层d311的材料选用m-MTDATA和F4TCNQ的混合物;构成第一空穴传输层d312和第二空穴传输层d322的材料均选用m-MTDATA;构成第一电子阻挡层d313和第二电子阻挡层d323的材料均选用CBP;构成第一发光层d314和第二发光层d324的第三主体材料均选用如上述式(3-2)所示的材料,构成第一发光层d314和第二发光层d324的第三客体材料均选用如式(Ⅵ)所示的材料;构成第一空穴阻挡层d315和第二空穴阻挡层d325的材料均选用TPBi;构成第一电子传输层d316和第二电子传输层d326的材料均选用BCP和Liq的混合物;构成N型电荷产生层d41的第一主体材料选用如上述式(1-1)所示的材料,构成N型电荷产生层d41的第一客体材料选用Yb;构成P型电荷产生层d42的第二主体材料选用m-MTDATA,构成P型电荷产生层d42的第二客体材料选用F4TCNQ;构成第二电子注入层d327的材料选用Yb;构成第二电极d2的材料选用Mg和Ag的混合物。
下面,对上述叠层发光器件D的制备方法进行介绍。
以第一电极d1为阳极为例,可以在玻璃基片上涂布厚度为150nm的ITO透明导电层作为第一电极d1。将涂布了ITO透明导电层的玻璃基片置于清洗剂中进行超声处理后,用去离子水冲洗。然后,在丙酮与乙醇的混合溶剂中进行超声除油处理,在洁净环境下烘烤至完全除去水份后,再用紫外光和臭氧清洗,并用低能阳离子束轰击其表面。
把上述制得的玻璃基片置于真空腔内,抽至真空(1空璃基-5~1璃基片-4Pa)后,在第一电极d1上真空蒸镀第一空穴注入层d311。示例性地,第一空穴注入层d311的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为10nm。其中,第一空穴注入层d311由m-MTDATA和F4TCNQ的混合物形成,且m-MTDATA与F4TCNQ的质量比为97:3。m-MTDATA的结构式和F4TCNQ的结构式如下所示。
在第一空穴注入层d311上蒸镀第一空穴传输层d312。示例性地,第一空穴传输层d12的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为20nm。其中,第一空穴传输层d312由上述m-MTDATA形成。
在第一空穴传输层d312上蒸镀第一电子阻挡层d313。示例性地,第一电子阻挡层d313的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为10nm。其中,第一电子阻挡层d313由CBP形成。CBP的结构式如下所示。
在第一电子阻挡层d313上蒸镀第一发光层d314。示例性地,第一发光层d314的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为20nm。其中,第一发光层d314由第三主体材料和第三客体材料组成,且第三主体材料与第三客体材料的质量比为95:5。该第三主体材料为如上述式(3-2)所示的材料。该第三客体材料为如上述式(Ⅵ)所示的材料。
在第一发光层d314上蒸镀第一空穴阻挡层d315。示例性地,第一空穴阻挡层d315的蒸 镀速率可以为0.1nm/s,蒸镀总膜厚可以为5nm。其中,第一空穴阻挡层d315由TPBi形成。TPBi的结构式如下所示。
在第一空穴阻挡层d315上蒸镀第一电子传输层d316。示例性地,第一电子传输层d316的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为30nm。其中,第一电子传输层d316由BCP和Liq的混合物形成,且BCP与Liq的质量比为1:1。BCP和Liq的结构如下所示。
在第一电子传输层d316上蒸镀N型电荷产生层d41。示例性地,N型电荷产生层d41的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为20nm。其中,N型电荷产生层d41由第一主体材料和第一客体材料组成,且第一主体材料与第一客体材料的质量比为99:1。该第一主体材料为如上述式(1-1)所示的材料。该第一客体材料为Yb。
在N型电荷产生层d41上蒸镀P型电荷产生层d42。示例性地,P型电荷产生层d42的 蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为9nm。其中,P型电荷产生层d42由m-MTDATA和F4TCNQ的混合物形成,且m-MTDATA与F4TCNQ的质量比为95:5。
在P型电荷产生层d42上蒸镀第二空穴传输层d322。示例性地,第二空穴传输层d322的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为40nm。其中,第二空穴传输层d322由上述m-MTDATA形成。
在第二空穴传输层d322上蒸镀第二电子阻挡层d323、在第二电子阻挡层d323上蒸镀第二发光层d324、在第二发光层d324上蒸镀第二空穴阻挡层d325、以及在第二空穴阻挡层d325上蒸镀第二电子传输层d326的方法可以参照上述实施例,在此不再赘述。
在第二电子传输层d326上蒸镀第二电子注入层d327。示例性地,第二电子注入层d327的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为1nm。
在第二电子注入层d327上蒸镀第二电极d2。示例性地,第二电子注入层d327的蒸镀速率可以为0.1nm/s,蒸镀总膜厚可以为13nm。其中,第二电子注入层d327由Mg和Ag的混合物形成,且Mg和Ag的质量比为1:9。
完成上述蒸镀步骤后,以树脂作为封装材料,采用紫外线固化该树脂以将上述各层封装在衬底上,得到叠层发光器件D。
实施例2
在构成叠层发光器件D的各层的材料选用方面,与实施例1相比,该实施例的区别在于:构成第一发光层d314和第二发光层d324的第三主体材料均选用如上述式(3-8)所示的材料。
该实施例中叠层发光器件D的制备方法可以参照上述实施例1,在此不再赘述。
实施例3
在构成叠层发光器件D的各层的材料选用方面,与实施例1相比,该实施例的区别在于:构成N型电荷产生层d41的第一主体材料选用如上述式(1-6)所示的材料。
该实施例中叠层发光器件D的制备方法可以参照上述实施例1,在此不再赘述。
实施例4
在构成叠层发光器件D的各层的材料选用方面,与实施例1相比,该实施例的区别在于:构成第一发光层d314和第二发光层d324的第三主体材料均选用如上述式(3-8)所示的材料,并且,构成N型电荷产生层d41的第一主体材料选用如上述式(1-6)所示的材料。
该实施例中叠层发光器件D的制备方法可以参照上述实施例1,在此不再赘述。
实施例5
在构成叠层发光器件D的各层的材料选用方面,与实施例1相比,该实施例的区别在于:构成N型电荷产生层d41的第一主体材料选用如上述式(1-7)所示的材料。
该实施例中叠层发光器件D的制备方法可以参照上述实施例1,在此不再赘述。
实施例6
在构成叠层发光器件D的各层的材料选用方面,与实施例1相比,该实施例的区别在于:构成N型电荷产生层d41的第一主体材料选用如上述式(1-7)所示的材料,并且,构成第一发光层d314和第二发光层d324的第三主体材料均选用如上述式(3-8)所示的材料。
该实施例中叠层发光器件D的制备方法可以参照上述实施例1,在此不再赘述。
对比例1
在构成对比发光器件Dref的各层的材料选用方面,与实施例1相比,该对比例的区别在于:构成N型电荷产生层d41的第一主体材料选用BCP。
该对比例中,对比发光器件Dref的制备方法可以参照上述实施例1,在此不再赘述。
对比例2
在构成对比发光器件Dref的各层的材料选用方面,与实施例1相比,该对比例的区别在于:构成第一发光层d314和第二发光层d324的第三主体材料均选用结构如式(Ⅶ)所示的材料。
该对比例中,对比发光器件Dref的制备方法可以参照上述实施例1,在此不再赘述。
对比例3
在构成对比发光器件Dref的各层的材料选用方面,与实施例1相比,该对比例的区别在于:构成N型电荷产生层d41的第一主体材料选用BCP,并且,构成第一发光层d314和第二发光层d324的第三主体材料均选用上述结构如式(Ⅶ)所示的材料。
下面,结合表1,对本公开的具体实施例(上述实施例1~实施例6)提供的叠层发光器件D和对比例(上述对比例1~对比例3)提供的对比发光器件Dref进行性能对比。
表1
需要说明的是,表1中电压、EQE、LT95这三项数据的百分比是以对比例1的测得的数据为基准进行计算的。即,以对比例1的测得的电压的具体数值作为分母,以各对比例或各实施例测得的电压的具体数值作为分子,计算得到表1中各对比例或各实施例的电压的数据;以对比例1的测得的EQE的具体数值作为分母,以各对比例或各实施例测得的EQE的具体数值作为分子,计算得到表1中各对比例或各实施例的EQE的数据;以对比例1的测得的LT95的具体数值作为分母,以各对比例或各实施例测得的LT95的具体数值作为分子,计算得到表1中各对比例或各实施例的LT95数据。
其中,N-CGL表示具体实施例提供的叠层发光器件D或对比例叠层发光器件Dref的N型电荷产生层d41的主体材料;EML host表示具体实施例提供的叠层发光器件D或对比例叠层发光器件Dref的每个发光单元中发光层的主体材料。表1中的电压为叠层发光器件的驱动电压;外量子效率(external quantum efficiency,EQE)反映叠层发光器件的发光效率;LT95表示叠层发光器件的亮度从初始亮度下降到95%初始亮度的时间,反映叠层发光器件的使用寿命。
根据表1中对比例1、实施例1、实施例3和实施例5这四组数据可以看出,在发光层d34的第三主体材料一致的情况下,选用本公开实施例提供的材料作为N型电荷产生层d41的第一主体材料,能够降低叠层发光器件D的驱动电压、提高叠层发光器件D的发光效率、延长叠层发光器件D的使用寿命。
根据表1中对比例2、实施例1、实施例2这三组数据可以看出,在N型电荷产生层d41的第一主体材料一致的情况下,选用本公开实施例提供的材料作为发光层d34的第三主体材料,能够降低叠层发光器件D的驱动电压、提高叠层发光器件D的发光效率、延长叠层发光器件D的使用寿命。
根据表1中对比例3、实施例1、实施例2、实施例3、实施例4、实施例5和实施例6 这七组数据可以看出,在选用本公开实施例提供的材料作为N型电荷产生层d41的第一主体材料的同时,选用本公开实施例提供的材料作为发光层d34的第三主体材料,能够更大幅度地降低叠层发光器件D的驱动电压、提高叠层发光器件D的发光效率、延长叠层发光器件D的使用寿命。
本公开一些实施例提供另一种发光器件D1。如图7所示,该发光器件D1包括第一电极d1、第二电极d2和至少一个发光单元d30。该至少一个发光单元d30设置于第一电极d1与第二电极d2之间。该发光单元d30包括发光层d34。其中,发光层d34为包含第三主体材料和第三客体材料的双元掺杂结构。该第三主体材料的结构中具有共轭片段;该共轭片段具有至少两个苯环,且共轭片段中的所有苯环为π-π共轭结构。
本公开实施例提供的发光器件D1,选用结构中具有共轭片段的材料作为发光层d34的主体材料(即,所述第三主体材料)。在此基础上,由于该共轭片段具有至少两个苯环(芳香环),具有荧光量子产率高的特点,因此,采用具有结构中具有该共轭片段的材料作为发光层d34的主体材料能够提升发光层d34的荧光发光特性,从而提升发光层d34的发光效率。此外,由于上述共轭片段中的所有苯环为π-π共轭结构,而π-π共轭结构的分子与分子之间的电子云交叠部分较大,有利于电子和空穴在分子之间的跳跃传输,因此,采用具有该共轭片段的材料作为发光层d34的主体材料能够提升电子和空穴在发光层d34中传输的顺畅性,即提升发光层d34的电子迁移率和空穴迁移率,从而促进发光层d34中激子的形成,最终提升发光器件D1的发光效率。
需要说明的是,本公开对上述共轭片段中所含苯环的个数不做限制,只要能够满足其中所具有的所有苯环为π-π共轭结构即可。
在一些示例中,上述共轭片段具有两个苯环,且该两个苯环为π-π共轭结构。此时,该共轭片段为片段萘,其化学式为C10H8,结构式为
在另一些示例中,上述共轭片段具有三个苯环,且该三个苯环为π-π共轭结构。此时,该共轭片段为片段蒽,其化学式为C14H10,结构式为
在又一些示例中,上述共轭片段具有五个苯环,且该五个苯环为π-π共轭结构。此时,该共轭片段为片段并五苯,其化学式为C22H14,结构式为
在一些实施例中,上述第三主体材料具有如式(Ⅲ)所示的结构:
其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
在该实施例中,选用含有片段蒽(分子式为C14H10,结构式为)的材料作为发光层d34的主体材料(即,上述第三主体材料)。在此基础上,由于片段蒽为大共轭芳香环结构,具有荧光量子产率高的特点,采用含有片段蒽的材料作为发光层d34的主体材料能够提升发光层d34的荧光发光特性,从而提升发光层d34的发光效率。此外,由于共轭结构的分子与分子之间的电子云交叠部分较大,有利于电子在分子之间的跳跃传输,因此,采用含有片段蒽的材料作为发光层d34的主体材料能够提升电子在发光层d34中传输的顺畅性,即提升发光层d34的电子迁移率,从而促进发光层d34中激子的形成,最终提升发光器件D1的发光效率。
需要说明的是,本公开实施例对上述发光器件D1中的发光单元d30的个数不做限制。
在一些示例中,如图7所示,上述发光器件D1仅包括一个发光单元d33。此时,能够节省发光器件D1的制造成本。
在该情况下,沿远离第一电极d1的方向Z,该发光器件D1包括第一电极d1、发光单元d33和第二电极d2。
其中,沿远离第一电极d1的方向Z,发光单元d33包括第一空穴注入层d3111、第一空穴传输层d3121、第一电子阻挡层d3131、第一发光层d3141、第一空穴阻挡层d3151、第一电子传输层d3161和第一电子注入层d3171。
在另一些实施例中,上述发光器件D1包括两个或两个以上发光单元d30,此时,该发光器件D1为叠层发光器件。此时,能够提高发光器件D1的发光效率以及延长发光器件D1的使用寿命。
在该情况下,以该发光器件D1包括两个发光单元d30为例,该发光器件D1的结构可以参照图6。
上述发光单元d30中各层的结构和材料选用范围等均可以参照上述实施例,在此不再赘 述。
在一些实施例中,第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:
在上述实施例中,当第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构时,第三主体材料中含有较多芳香环结构,有利于提升发光层d34的荧光发光特性。
在一些示例中,发光层d34为包含第三主体材料和第三客体材料的双元掺杂结构。示例性地,上述第三客体材料可以为上述DSA-ph或上述如式(Ⅵ)所示的材料。
当发光器件D1的发光层d34由上述实施例提供的第三主体材料和第三客体材料构成时,有利于提升发光层d34中的电子迁移率,从而增加发光层d34中电子与空穴复合产生激子的概率,最终提高发光器件D1的发光效率。
需要说明的是,本公开实施例对获得发光层d34的双元掺杂结构的方法不做限制。例如,可以通过离子注入法或扩散法,在第三主体材料中掺入第三客体材料以得到该双元掺杂结构。
本公开一些实施例提供一种显示基板111。该显示基板111包括如前文所述的衬底1、设置于衬底1上的电路结构层2、设置于电路结构层2远离衬底1一侧的发光结构层3以及设置于发光结构层3远离衬底1一侧的封装层4。
电路结构层2包括多个像素驱动电路10。发光结构层3包括多个发光器件,一个发光器件与一个像素驱动电路10连接;其中,至少一个发光器件D为如上述任一实施例所述的叠层发光器件D或如上述任一实施例所述的发光器件D1。封装层4将电路结构层2和发光结构层3封装在衬底1上。
本公开实施例提供的显示基板111所能实现的有益效果,与上述任一实施例提供的叠层发光器件D或发光器件D1所能达到的有益效果相同,在此不再赘述。
本公开一些实施例提供一种显示装置100,包括如上述任一实施例所述的显示基板111。
本公开实施例提供的显示装置100所能实现的有益效果,与上述任一实施例提供的显示基板111所能达到的有益效果相同,在此不再赘述。
本公开一些实施例一种有机物,具有如式(Ⅲ)所示的结构:
其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
本公开实施例提供的所述有机物含有片段蒽(分子式为C14H10,结构式为),并且该片段蒽上的取代基A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种,因此,能够提高所述有机物的荧光量子产率,并且能够提升电子在所述有机物中传输的顺畅性,从而提高所述有机物的电子迁移率。
在一些实施例中,有机物具有如下式(3-1)~式(3-12)中的任一种结构:

在上述实施例中,该有机物中含有较多芳香环结构,有利于进一步提高其荧光量子产率。
综上所述,本公开实施例提供的有机物含有片段蒽(分子式为C14H10,结构式为),并且该片段蒽上的取代基A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种,因此,能够提高该有机物的荧光量子产率和电子迁移率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种叠层发光器件,包括:
    第一电极;
    第二电极;
    至少两个发光单元,所述至少两个发光单元层叠设置于所述第一电极与所述第二电极之间;
    至少一个叠层连接层,所述叠层连接层设置于每两个相邻的发光单元之间;所述叠层连接层包括层叠设置的N型电荷产生层和P型电荷产生层;其中,所述N型电荷产生层为包含第一主体材料和第一客体材料的双元掺杂结构;所述P型电荷产生层为包含第二主体材料和第二客体材料的双元掺杂结构;所述第二主体材料的最高占据分子轨道能级与所述第一主体材料的最高占据分子轨道能级的差值的绝对值大于0.3电子伏特,所述第二主体材料的最低未占分子轨道能级与所述第一主体材料的最低未占分子轨道能级的差值的绝对值大于0.1电子伏特。
  2. 根据权利要求1所述的叠层发光器件,其中,所述第一客体材料包括金属或有机物中的至少一种;其中,
    在所述第一客体材料为所述金属的情况下,所述第一客体材料的功函数与所述第一主体材料的最低未占分子轨道能级的差值的绝对值小于1.0电子伏特;
    在所述第一客体材料为所述有机物的情况下,所述第一客体材料的最高占据分子轨道能级与所述第一主体材料的最低未占分子轨道能级的差值的绝对值小于1.0电子伏特。
  3. 根据权利要求1或2所述的叠层发光器件,其中,所述第二客体材料的最低未占分子轨道能级与所述第二主体材料的最高占据分子轨道能级的差值的绝对值小于0.5电子伏特。
  4. 根据权利要求1~3中任一项所述的叠层发光器件,其中,所述第一主体材料的结构中具有共轭片段;所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
  5. 根据权利要求4所述的叠层发光器件,其中,所述共轭片段的至少一个取代基中具有磷氧基。
  6. 根据权利要求1~4中任一项所述的叠层发光器件,其中,所述第一主体材料具有如式(Ⅰ)所示的结构:

    其中,R1、R2、R3和R4各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基、以及如式(Ⅱ)所示的结构中的任一种;其中,所述R1、所述R2、所述R3和所述R4中的至少一个具有所述如式(Ⅱ)所示的结构:
    其中,*表示与碳原子连接的位点;
    L1选自:单键、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种;
    X1和X2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
  7. 根据权利要求6所述的叠层发光器件,其中,所述R3和所述R4中的至少一个具有所述如式(Ⅱ)所示的结构。
  8. 根据权利要求6所述的叠层发光器件,其中,所述R3和所述R4均具有所述如式(Ⅱ)所示的结构。
  9. 根据权利要求6~8任一项中的所述的叠层发光器件,其中,所述第一主体材料具有如式(1-1)~式(1-10)中的任一种所示的结构:

  10. 根据权利要求1~9中任一项所述的叠层发光器件,其中,所述发光单元包括发光层,所述发光层为包含第三主体材料和第三客体材料的双元掺杂结构;所述第三主体材料的结构中具有共轭片段;所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
  11. 根据权利要求10所述的叠层发光器件,其中,所述第三主体材料具有如式(Ⅲ)所示的结构:
    其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
  12. 根据权利要求10所述的叠层发光器件,其中,所述第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:

  13. 一种叠层发光器件,包括:
    第一电极;
    第二电极;
    至少两个发光单元,所述至少两个发光单元层叠设置于所述第一电极与所述第二电极之间;所述发光单元包括发光层;
    至少一个叠层连接层,所述叠层连接层设置于每两个相邻的发光单元之间;所述叠层连接层包括层叠设置的N型电荷产生层和P型电荷产生层;
    所述叠层发光器件中的至少三个膜层包括具有共轭片段的材料;所述至少三个膜层包括所述发光层和所述N型电荷产生层中的至少一种。
  14. 根据权利要求13所述的叠层发光器件,其中,所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
  15. 根据权利要求13或14所述的叠层发光器件,其中,至少一个具有共轭片段的材料的所述共轭片段的至少一个取代基中具有磷氧基。
  16. 根据权利要求13~15中任一项所述的叠层发光器件,其中,所述叠层发光器件中的至少两个膜层中,具有不同的所述共轭片段。
  17. 根据权利要求13~16中任一项所述的叠层发光器件,其中,所述叠层发光器件中,存在至少两个所述发光层、以及位于所述至少两个所述发光层之间的N型电荷产生层,包括具有所述共轭片段的材料。
  18. 根据权利要求13~17中任一项所述的叠层发光器件,其中,所述叠层发光器件的所有所述发光层中,包括至少两个材料相同的发光层。
  19. 根据权利要求13~18中任一项所述的叠层发光器件,其中,所述发光层包括包含第三主体材料和第三客体材料的双元掺杂结构;所述第三主体材料的结构中具有所述共轭片段。
  20. 根据权利要求19所述的叠层发光器件,其中,所述第三主体材料具有如式(Ⅲ)所 示的结构:
    其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
  21. 根据权利要求19所述的叠层发光器件,其中,所述第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:
  22. 根据权利要求13~21中任一项所述的叠层发光器件,其中,所述N型电荷产生层包括包含第一主体材料和第一客体材料的双元掺杂结构;所述第一主体材料的结构中具有所述共轭片段。
  23. 根据权利要求22所述的叠层发光器件,其中,所述P型电荷产生层为包含第二主体材料和第二客体材料的双元掺杂结构;
    所述第二主体材料的最高占据分子轨道能级与所述第一主体材料的最高占据分子轨道能级的差值的绝对值大于0.3电子伏特,所述第二主体材料的最低未占分子轨道能级与所述第 一主体材料的最低未占分子轨道能级的差值的绝对值大于0.1电子伏特。
  24. 根据权利要求22或23所述的叠层发光器件,其中,所述第一客体材料包括金属或有机物中的至少一种;其中,
    所述第一客体材料包括所述金属,所述第一客体材料包括的所述金属的功函数与所述第一主体材料的最低未占分子轨道能级的差值的绝对值小于1.0电子伏特;或,
    所述第一客体材料包括所述有机物,所述第一客体材料包括的所述有机物的最高占据分子轨道能级与所述第一主体材料的最低未占分子轨道能级的差值的绝对值小于1.0电子伏特。
  25. 根据权利要求23所述的叠层发光器件,其中,所述第二客体材料的最低未占分子轨道能级与所述第二主体材料的最高占据分子轨道能级的差值的绝对值小于0.5电子伏特。
  26. 根据权利要求22~24中任一项所述的叠层发光器件,其中,所述第一主体材料具有如式(Ⅰ)所示的结构:
    其中,R1、R2、R3和R4各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基、以及如式(Ⅱ)所示的结构中的任一种;其中,所述R1、所述R2、所述R3和所述R4中的至少一个具有所述如式(Ⅱ)所示的结构:
    其中,*表示与碳原子连接的位点;
    L1选自:单键、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种;
    X1和X2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
  27. 根据权利要求26所述的叠层发光器件,其中,所述第一主体材料具有如式(1-1)~式(1-10)中的任一种所示的结构:
  28. 一种发光器件,包括:
    第一电极;
    第二电极;
    至少一个发光单元,所述至少一个发光单元设置于所述第一电极与所述第二电极之间;所述发光单元包括发光层;
    其中,所述发光层为包含第三主体材料和第三客体材料的双元掺杂结构;所述第三主体材料的结构中具有共轭片段;所述共轭片段具有至少两个苯环,且所述共轭片段中的所有苯环为π-π共轭结构。
  29. 根据权利要求28所述的发光器件,其中,所述第三主体材料具有如式(Ⅲ)所示的 结构:
    其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
  30. 根据权利要求28所述的发光器件,其中,所述第三主体材料具有如式(3-1)~式(3-12)中的任一种所示的结构:
  31. 一种显示基板,包括:
    衬底;
    多个发光器件;其中,至少一个所述发光器件为如权利要求1至27中任一项所述的叠层发光器件或如权利要求28至30所述的发光器件;
    多个像素驱动电路,用于驱动所述至少一个发光器件发光;
    以及
    封装层,用于封装所述多个发光器件和所述多个像素驱动电路。
  32. 一种显示装置,包括如权利要求31所述的显示基板。
  33. 一种有机物,具有如式(Ⅲ)所示的结构:
    其中,A1和A2各自独立地选自:氢、氘、卤素、取代或者未取代的C6~C60的芳基、取代或者未取代的C6~C60的杂芳基、取代或者未取代的C1~C20的烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C1~C20的杂烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C20的烷氧基、取代或未取代的C6~C30的芳氧基中的任一种。
  34. 根据权利要求33所述的有机物,其中,所述有机物具有如下式(3-1)~式(3-12)中的任一种所示的结构:
PCT/CN2023/105761 2022-07-06 2023-07-04 有机物、发光器件、叠层发光器件、显示基板及显示装置 WO2024008099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210788076.X 2022-07-06
CN202210788076.XA CN114864851B (zh) 2022-07-06 2022-07-06 有机物、发光器件、叠层发光器件、显示基板及显示装置

Publications (2)

Publication Number Publication Date
WO2024008099A1 true WO2024008099A1 (zh) 2024-01-11
WO2024008099A9 WO2024008099A9 (zh) 2024-05-23

Family

ID=82626958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105761 WO2024008099A1 (zh) 2022-07-06 2023-07-04 有机物、发光器件、叠层发光器件、显示基板及显示装置

Country Status (2)

Country Link
CN (2) CN117425364A (zh)
WO (1) WO2024008099A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020538A1 (zh) * 2021-08-18 2023-02-23 清华大学 一种串联有机电致发光器件
CN117425364A (zh) * 2022-07-06 2024-01-19 京东方科技集团股份有限公司 有机物、发光器件、叠层发光器件、显示基板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040131A1 (en) * 2004-08-19 2006-02-23 Eastman Kodak Company OLEDs with improved operational lifetime
CN101599535A (zh) * 2008-06-02 2009-12-09 精工爱普生株式会社 发光元件、显示装置以及电子设备
CN104518003A (zh) * 2013-10-02 2015-04-15 乐金显示有限公司 有机发光显示装置
CN106784355A (zh) * 2016-12-29 2017-05-31 深圳市华星光电技术有限公司 叠层有机电致发光器件
CN110678474A (zh) * 2017-05-23 2020-01-10 诺瓦尔德股份有限公司 氧化膦化合物在包含于电子器件中的半导体层中的用途
CN113497193A (zh) * 2020-04-06 2021-10-12 三星显示有限公司 发光器件
CN114864851A (zh) * 2022-07-06 2022-08-05 京东方科技集团股份有限公司 有机物、发光器件、叠层发光器件、显示基板及显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675413B2 (ja) * 2008-02-14 2011-04-20 財団法人山形県産業技術振興機構 有機発光素子
WO2009139607A2 (ko) * 2008-05-16 2009-11-19 주식회사 엘지화학 적층형 유기발광소자
TWI804457B (zh) * 2015-07-23 2023-06-11 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,以及照明裝置
KR102027523B1 (ko) * 2017-12-22 2019-10-01 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
CN113544234A (zh) * 2019-03-08 2021-10-22 株式会社半导体能源研究所 发光器件、发光设备、显示装置、电子设备及照明装置
CN113097394B (zh) * 2020-01-09 2022-08-12 京东方科技集团股份有限公司 一种oled器件、显示装置及其制备方法
CN111864095B (zh) * 2020-07-23 2023-04-28 京东方科技集团股份有限公司 有机发光二极管结构、显示装置
US20220310920A1 (en) * 2020-09-28 2022-09-29 Boe Technology Group Co., Ltd. Organic Light Emitting Device and Display Apparatus
WO2022082764A1 (zh) * 2020-10-23 2022-04-28 京东方科技集团股份有限公司 有机电致发光器件和显示装置
CN114361372A (zh) * 2022-01-04 2022-04-15 京东方科技集团股份有限公司 有机化合物、发光器件和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040131A1 (en) * 2004-08-19 2006-02-23 Eastman Kodak Company OLEDs with improved operational lifetime
CN101599535A (zh) * 2008-06-02 2009-12-09 精工爱普生株式会社 发光元件、显示装置以及电子设备
CN104518003A (zh) * 2013-10-02 2015-04-15 乐金显示有限公司 有机发光显示装置
CN106784355A (zh) * 2016-12-29 2017-05-31 深圳市华星光电技术有限公司 叠层有机电致发光器件
CN110678474A (zh) * 2017-05-23 2020-01-10 诺瓦尔德股份有限公司 氧化膦化合物在包含于电子器件中的半导体层中的用途
CN113497193A (zh) * 2020-04-06 2021-10-12 三星显示有限公司 发光器件
CN114864851A (zh) * 2022-07-06 2022-08-05 京东方科技集团股份有限公司 有机物、发光器件、叠层发光器件、显示基板及显示装置

Also Published As

Publication number Publication date
CN117425364A (zh) 2024-01-19
WO2024008099A9 (zh) 2024-05-23
CN114864851B (zh) 2022-11-25
CN114864851A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
KR102360842B1 (ko) 발광소자, 발광장치, 및 전자기기
JP6922008B2 (ja) 発光素子、発光装置、電子機器及び照明装置
KR101983991B1 (ko) 축합아릴 화합물 및 이를 포함하는 유기전계발광소자
WO2024008099A1 (zh) 有机物、发光器件、叠层发光器件、显示基板及显示装置
CN109748898B (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
JP5868195B2 (ja) 新規スピロ化合物およびそれを有する有機発光素子
TWI619718B (zh) 雜環化合物及包含其之有機發光裝置
KR102169273B1 (ko) 아크리딘 유도체를 포함하는 유기발광 화합물 및 이를 포함하는 유기발광소자
KR101865606B1 (ko) 축합아릴 화합물 및 이를 포함하는 유기전계발광소자
KR20160057018A (ko) 아민 화합물 및 이를 이용한 유기전계 발광소자
KR20100002030A (ko) 안트라센 유도체 및 이를 포함하는 유기전계발광소자
CN110590755B (zh) 空间电荷转移化合物及有机发光二极管和显示装置
TW201720793A (zh) 有機發光顯示裝置
KR102146105B1 (ko) 청색 인광 화합물 및 이를 사용한 유기전계발광소자
KR102237159B1 (ko) 유기화합물 및 이를 이용한 유기발광다이오드소자
JP5681766B2 (ja) 燐光化合物及びそれを用いた有機発光ダイオード素子
KR102004385B1 (ko) 신규한 화합물 및 이를 포함하는 유기전계발광소자
KR101327301B1 (ko) 아민계 정공수송 물질 및 이를 포함한 유기전계 발광소자
US20140155618A1 (en) Charge transport material for organic electroluminescence device and organic electroluminescence device including the same
CN117003729B (zh) 一种发光辅助材料及其制备方法和有机电致发光器件
JP2014108940A (ja) インドロカルバゾール誘導体及びそれを含む有機電界発光素子
KR102078641B1 (ko) 청색 인광 화합물 및 이를 사용한 유기전계발광소자
KR102175791B1 (ko) 유기 화합물 및 이를 포함하는 유기전계발광소자
WO2024022170A1 (zh) 功能层材料、发光器件、发光基板及发光装置
US20230232712A1 (en) Organic Electronic Device and Display Device Comprising the Organic Electronic Device as Well as a Composition for Use in Organic Electronic Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834866

Country of ref document: EP

Kind code of ref document: A1