WO2023020538A1 - 一种串联有机电致发光器件 - Google Patents

一种串联有机电致发光器件 Download PDF

Info

Publication number
WO2023020538A1
WO2023020538A1 PCT/CN2022/113049 CN2022113049W WO2023020538A1 WO 2023020538 A1 WO2023020538 A1 WO 2023020538A1 CN 2022113049 W CN2022113049 W CN 2022113049W WO 2023020538 A1 WO2023020538 A1 WO 2023020538A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type doped
doped layer
same
preparation
Prior art date
Application number
PCT/CN2022/113049
Other languages
English (en)
French (fr)
Inventor
段炼
张东东
刘子扬
李骁
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110947691.6A external-priority patent/CN113651836B/zh
Priority claimed from CN202210001683.7A external-priority patent/CN114520301A/zh
Application filed by 清华大学 filed Critical 清华大学
Priority to JP2023555404A priority Critical patent/JP2024510192A/ja
Priority to KR1020237029528A priority patent/KR20230138952A/ko
Publication of WO2023020538A1 publication Critical patent/WO2023020538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the invention relates to an organic electroluminescence device, which belongs to the technical field of photoelectric display devices, and in particular to an organic electroluminescence device with a series structure formed by adopting a specific connection layer scheme arranged between adjacent light-emitting units in the device.
  • OLED Organic Light Emitting Diodes
  • OLED Organic Light Emission Diodes
  • OLED Organic Light Emission Diodes
  • OLED devices show broad application prospects in the field of solid-state display and lighting technology due to their advantages such as low energy consumption, wide viewing angle, and bendability.
  • tandem OLED device with a tandem structure has received extensive attention.
  • the light-emitting principle of the tandem OLED device is similar to that of the traditional single-layer OLED device.
  • the difference is that the tandem OLED device is composed of multiple light-emitting units connected in series through a connection layer.
  • the connection layer acts like an electrode and can be formed under the drive of an external electric field. Carriers are generated on the ground, and these generated carriers can be further separated and injected into adjacent light-emitting units. Due to the device structure in series, each light-emitting unit can generate photons and radiate light when injecting one electron or hole. Therefore, for a series-connected OLED device containing N light-emitting units, its current efficiency is about 1 N times that of OLED devices. In order to achieve the same brightness, the current density required by the serial OLED device is greatly reduced, thus helping to improve the efficiency roll-off and lifetime problems of the OLED device.
  • connection layer structure mainly used in common tandem OLED devices is n-type doped layer/p-type doped layer, and the energy between the LUMO energy level of the n-type doped layer and the HOMO energy level of the p-type doped layer The level difference is small, which can effectively generate carriers at a lower driving voltage, in which the doping guests of the n-type doped layer are mainly composed of alkali metals or alkaline earth metals with low work function (WF ⁇ 3.0eV), including lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), magnesium (Mg), calcium (Ca), etc.
  • WF ⁇ 3.0eV work function
  • the doping guests of the n-type doped layer are mainly composed of alkali metals or alkaline earth metals with low work function (WF ⁇ 3.0eV), including lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), magnesium (Mg
  • n-type dopants of alkali metals or alkaline earth metals tend to diffuse to the side of the p-type doped layer under the action of an external electric field, which leads to an increase in the driving voltage of the device during operation, and a significant decrease in the life of the device, which seriously affects the performance of the device. efficiency and stability.
  • an intermediate connector between adjacent electroluminescent units is designed, and the connector includes an n-doped organic layer, a p-doped organic layer and an interface layer , where the role of the interfacial layer is mainly to prevent possible interdiffusion between the organic layer of n-type dopants and the material of the electron accepting layer.
  • the interface layer should be a metal compound or metal.
  • the interface layer can be selected from metals with high work function including Ti, Zr, Ti, Nb, Ta, Cr, Mo, W, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Al, In, Sn or their alloys, and titanium, zirconium, clam, niobium, tantalum, molybdenum, tungsten, manganese, iron , ruthenium, rhodium, iridium, nickel, palladium, platinum, copper, silicon, germanium or their combinations stoichiometric oxide or non-stoichiometric oxide, stoichiometric sulfide or non-stoichiometric sulfide, stoichiometric telluride or non-stoichiometric tellurides, stoichiometric nitrides or non-stoichiometric nitrides, stoichiometric carbides
  • the object of the present invention is to provide a new connection layer for tandem OLED devices to solve the problems in the prior art.
  • the connection layer in the traditional tandem OLED device is an n-type doped layer/p-type doped layer, and the metal n-type dopant is easy to diffuse into the p-type doped layer and the adjacent light-emitting layer when the device is working. , resulting in an increase in device driving voltage and a decrease in luminous efficiency.
  • a spacer layer structure is introduced between the n-type doped layer and the p-type doped layer of the tandem OLED device.
  • the spacer layer is composed of nitrogen-containing heterocyclic electron-transport materials with good electron-transport properties. These materials are organic Semiconductor material, low evaporation temperature, high transmittance in the visible light range. This type of electron transport material has a strong interaction with metal-type n-type dopants such as alkali metals, alkaline-earth metals, and some transition metals, thus helping to inhibit the transfer of such metal-type n-type dopants to the p-type doped layer. Diffusion, thereby effectively improving the driving voltage rise during device operation and improving the life of the device.
  • the present invention provides a tandem organic electroluminescent device, comprising the following structures: an anode, a cathode, at least two electroluminescent units arranged between the anode and the cathode, and adjacent electroluminescent units arranged
  • a connection layer between units, each electroluminescent unit includes at least one electron transport layer and an organic light-emitting layer, characterized in that: the connection layer is a multi-layer structure, including n-type doped layers, p-type a doped layer and a spacer layer therebetween;
  • the p-type doped layer is composed of a p-type doped host material and a p-type dopant, the p-type doped host adopts an organic material with hole transport properties, and in the p-type doped layer, the The p-type doping host adopts an organic material with hole transport properties, which can be specifically selected from the following compounds:
  • the p-type dopants used in the p-type doped layer are mainly metal oxides with high work function, including MoO 3 , WO 3 , V 2 O 5 , MoO 2 , Co 3 O 4 , and metal oxides with strong Electron-withdrawing organic semiconductor materials, including one or a mixture of CN6-CP, DDQ, HATCN, C 60 F 36 , F4TCNQ, F2HCNQ, F6TCNNQ, TECTFCNBN, the molecular structure of the p-type dopant is as follows:
  • the doping ratio of the p-type dopant is 0.2wt% to 30wt%, preferably the doping ratio is 0.5wt% to 10wt%;
  • the n-type doped layer is composed of an n-type doped host material and an n-type dopant, the n-type doped host is made of an organic material with electron transport properties, and the n-type dopant is made of alkali metal, alkaline earth metal or transition metal;
  • n-type dopant adopts alkali metal, alkaline earth metal or transition metal;
  • Preferred n-type dopant is selected from lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, gold, silver, copper, iron, nickel, One or a mixture of platinum, palladium, ruthenium, and ytterbium.
  • Most preferred n-type dopants are selected from lithium, silver, cesium.
  • the n-type doped host is an organic material with electron transport properties, which can be selected from the following compounds:
  • the spacer layer adopts an organic material with electron transport performance, which is different from the n-type doped host material.
  • the spacer layer is mainly composed of an electron transport material, which has good electron transport performance, and has a nitrogen-containing heterocycle in its molecular structure, and can be mixed with various metal n-type dopants There is a strong interaction, and this type of electron transport material has the structure shown in the following formula (1), or this type of electron transport material has the structure shown in the following formula (2):
  • the bridging group Q is selected from one of the substituted or unsubstituted following groups, and the substitution in the substituting group Q refers to being selected from deuterium, tritium, cyano, halogen, C1 ⁇ C10 alkyl, C3 ⁇ C10 cycloalkyl, silicon, C6 ⁇ C30 arylamino, C6 ⁇ C30 aryl, C2 ⁇ C30 heteroaryl or a combination of two, wherein is the position where R1 is bonded to the bridging group Q, is the bonding position of R2 and bridging group Q:
  • the R1 and R2 are each independently selected from one of substituted or unsubstituted C3 ⁇ C60 heteroaryl groups, the heteroaryl group contains at least one nitrogen atom, and the substituted heteroaryl group
  • the substitution in the group refers to being selected from deuterium, tritium, cyano, halogen, C1 ⁇ C10 alkyl, C3 ⁇ C10 cycloalkyl, silicon, C6 ⁇ C30 arylamino, C6 ⁇ C30 aryl, C2 ⁇ C30 Substituted by one or a combination of two heteroaryl groups, the substituents are independently connected to the connected heteroaryl ring to form a ring or not to form a ring;
  • the R1 and R2 are each independently selected from one of the substituted or unsubstituted following groups: pyridyl, pyrimidyl, triazinyl, quinolinyl, isoquinolyl, quinoxalinyl , quinazolinyl, benzimidazolyl, naphthimidazolyl, o-phenanthrolinyl, benzothiazolyl, benzoxazolyl, phenazine, dibenzophenazine, oxadiazolyl, thiadiazolyl, Triazole group, xanthraquinone group, anthraquinone group, substituted or unsubstituted in R1 and R2 means that they are selected from halogen, C1 ⁇ C10 alkyl, C3 ⁇ C10 cycloalkyl, C6 ⁇ C30 Arylamino group, C6 ⁇ C30 aryl group, C2 ⁇ C30 heteroaryl group or a combination of
  • R 1 and R 2 are independently selected from C1-C30 aliphatic chain hydrocarbon oxy, C2-C30 fatty chain hydrocarbon amino, C3-C20 cyclic aliphatic chain hydrocarbon amino, substituted or unsubstituted C6 ⁇ One of C30 arylamino, substituted or unsubstituted C3-C30 heteroarylamino, substituted or unsubstituted C6-C60 aryl, substituted or unsubstituted C3-C60 heteroaryl; when the above R When 1 and R2 have substituents, the substituents are selected from deuterium, halogen, C1 ⁇ C30 chain alkyl, C3 ⁇ C30 cycloalkyl, cyano, nitro, C1 ⁇ C6 alkoxy, C1 ⁇ C30 One or a combination of C6 thioalkoxy, C6-C30 aryl, and C3-C60 heteroaryl. 7.
  • R1 and R2 described in formula (2) are each independently selected from one of the substituted or unsubstituted following groups:
  • tandem organic electroluminescent device characterized in that the bridging group Q described in formula (1) is preferably selected from one of the following groups:
  • R1 and R2 are each independently preferably selected from one of the substituted or unsubstituted following groups:
  • the bridging group Q described in formula (2) is preferably selected from one of the following groups:
  • R1 and R2 are each independently preferably selected from one of the substituted or unsubstituted following groups:
  • the organic material with electron transport properties used in the spacer layer is selected from at least one of the following specific compounds:
  • the total thickness of the spacer layer is 0.1nm to 10nm; more preferably the total thickness of the spacer layer is 0.3nm to 5nm; more preferably the total thickness of the spacer layer is 0.5nm to 5nm. 1nm.
  • the number of the electroluminescent units is 2 to 6; preferably, the number of the electroluminescent units is 2 to 4.
  • the light emitting unit further includes at least one layer of a hole injection layer, a hole transport layer, and an electron blocking layer.
  • the "substituted or unsubstituted” group can be substituted with one substituent, or can be substituted with multiple substituents. When there are multiple substituents, they can be selected from different substituents. When the same expressions are involved in the present invention, they all have the same meaning, and the selection ranges of the substituents are all as shown above and will not be repeated one by one.
  • each independently means that when there are plural subjects, they may be the same or different from each other.
  • both aryl and heteroaryl include monocyclic and condensed rings.
  • the above-mentioned single-ring aryl group means that the molecule contains one or at least two phenyl groups. When the molecule contains at least two phenyl groups, the phenyl groups are independent of each other and connected by a single bond, for example, phenyl, two Biphenyl, terphenyl, etc.; fused-ring aryl refers to a molecule containing at least two benzene rings, but the benzene rings are not independent of each other, but are fused to each other by sharing ring edges, such as naphthyl , anthracenyl, etc.; monocyclic heteroaryl means that the molecule contains at least one heteroaryl group.
  • the heteroaryl When the molecule contains a heteroaryl group and other groups (such as aryl, heteroaryl, alkyl, etc.), the heteroaryl The radical and other groups are independent of each other and connected by a single bond, for example, pyridine, furan, thiophene, etc.; the condensed ring heteroaryl refers to the fusion of at least one phenyl group and at least one heteroaryl group, Or, formed by the fusion of at least two heteroaryl rings, such as quinoline, isoquinoline, benzofuran, dibenzofuran, benzothiophene, dibenzothiophene, etc. for example.
  • the tandem OLED device proposed by the present invention adopts a novel connection layer structure, that is, a spacer layer is introduced between the n-type doped layer and the p-type doped layer, and this type of spacer layer is composed of vacuum-evaporated electron transport materials.
  • the electron transport material has a general structural formula as described in formula (1), wherein the Q group is mainly a ⁇ -conjugated group, which can connect two acceptor groups, further expand the conjugated system, and increase the interval
  • the transport performance of the layer material is conducive to the realization of a lower driving voltage; wherein both R 1 and R 2 are electron acceptors, and one of the more typical features is that there is a nitrogen-containing heterocycle in the molecule, and the nitrogen atom of this type of heterocycle It is sp 2 hybridization, and there is a strong interaction between this kind of sp 2 hybridization nitrogen atom with a lone pair of electrons and various metal n-type dopants.
  • introducing an electron transport material with a structure of general formula (1) between the n-type doped layer and the p-type doped layer as a spacer layer can effectively inhibit the diffusion of metal n-type dopants to the p-type doped layer and migration, thereby effectively improving the voltage rise when the tandem organic electroluminescent device is working, and improving the life and stability of the tandem OLED device.
  • the tandem OLED device adopting the connecting layer structure of the present invention has many advantages such as low driving voltage, high device efficiency, long working life, etc., and can meet the needs of the current display and lighting fields.
  • each raw material required for the preparation of the compound of the present invention is easily available, the synthesis process, post-treatment and purification process are simple and reliable, the preparation process is compatible with the current preparation process, and is suitable for scientific research and industrial production.
  • the design and regulation of the bonding mode of position 2 and position 9 of the o-phenanthroline skeleton of the compound of formula (2) of the present invention is one of the core innovations of the present invention.
  • the o-phenanthroline skeleton is connected to the bridging group Q through position 2.
  • the nitrogen atom at position 1 of the o-phenanthroline skeleton can form intramolecular hydrogen bonds with the adjacent hydrogen atoms on the bridging group, so It helps to improve the sublimation properties of the material, and improve the stability of the material and the stability of the device during the evaporation process.
  • position 9 on the o-phenanthroline skeleton is a hydrogen atom, which helps to reduce the steric hindrance when the o-phenanthroline skeleton coordinates with the transition metal, making it have more excellent coordination properties.
  • the second special innovation point of the compound of formula (2) of the present invention is that R and R are designed as electron-donating substituents, which can significantly improve the electron cloud density and electrostatic potential near the nitrogen atom in the phenanthroline skeleton, which contributes to Improve its coordination ability, so as to achieve more excellent electron injection performance.
  • the compound with the structure of the general formula (2') of the present invention has both excellent coordination performance and stability, and can be applied to the preparation of high-performance electron injection materials and OLED devices.
  • Fig. 1 is a schematic structural view of a tandem organic electroluminescent device with N light-emitting units and N-1 connecting layers prepared in an embodiment of the organic electroluminescent device of the present invention
  • connection layer is a stacked structure, and each specifically includes n type doped layer, p-type doped layer and a spacer layer between them.
  • 4,7 dichloro-phenanthroline can be modified by base-catalyzed nucleophilic substitution (such as Representative synthetic route 2), and the corresponding target product was obtained through a similar process.
  • the product L92-2 was obtained from L92-1 through the Suzuki cross coupling reaction according to the above-mentioned route, and then the product L92-2 was sequentially processed according to the above-mentioned reaction scheme to obtain the product L92-4.
  • L92-4 (6.46g, 17.60mmol), E1-1 (2.64g, 8.00mmol), and use a mixed system of toluene (150ml), ethanol (50mL) and deionized water (100mL) as Solvent
  • Na 2 CO 3 (6.12g, 57.78mmol) and Pd(PPh 3 ) 4 (1.08g, 0.933mmol)
  • the mixed solution washed the filter cake several times and was further treated by conventional methods to obtain the final product L92 (3.22 g, 54% yield).
  • connection layer described in the present invention in a tandem organic electroluminescent device, and by testing the performance and performance of the device.
  • a tandem OLED device includes an anode, a cathode, and a layer of organic material between the two electrodes.
  • the organic material can in turn be divided into regions.
  • the organic material layer may include a hole transport region, a light emitting layer, and an electron transport region.
  • a substrate may be used either below the first electrode or above the second electrode.
  • the substrates are all glass or polymer materials with excellent mechanical strength, thermal stability, water resistance and transparency.
  • a thin-film transistor (TFT) may be provided on a substrate for a display.
  • the first electrode may be formed by sputtering or depositing a material used as the first electrode on the substrate.
  • oxide transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), zinc oxide (ZnO) and any combination thereof can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO 2 tin dioxide
  • ZnO zinc oxide
  • magnesium (Mg) silver
  • silver (Ag) aluminum
  • Al-lithium (Al-Li) calcium (Ca)
  • magnesium-silver (Mg-Ag) and other metals or alloys and any combination of them.
  • the organic material layer can be formed on the electrode by vacuum thermal evaporation, spin coating, printing and other methods.
  • Compounds used as the organic material layer may be small organic molecules, organic macromolecules, and polymers, and combinations thereof.
  • the hole transport region is located between the anode and the light emitting layer.
  • the hole transport region can be a hole transport layer (HTL) with a single-layer structure, including a single-layer hole-transport layer containing only one compound and a single-layer hole-transport layer containing multiple compounds.
  • the hole transport region may also be a multilayer structure including at least one layer of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid (Paniline /DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly( 4-styrene sulfonate) (Pani/PSS), aromatic amine derivatives, etc.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid (Paniline /DBSA), poly(3,4-ethylenedioxythiophene)/poly
  • a hole injection layer is located between the anode and the hole transport layer.
  • the hole injection layer can be a single compound material, or a combination of multiple compounds.
  • the luminescent layer includes luminescent dyes (that is, dopant) that can emit different wavelength spectra, and can also include a host material (Host) at the same time.
  • luminescent dyes that is, dopant
  • Host host material
  • different materials such as fluorescent electroluminescent materials, phosphorescent electroluminescent materials, and heat-activated delayed fluorescent luminescent materials can be used as materials for the light-emitting layer.
  • a tandem OLED device a single light-emitting technology can be used, or a combination of different light-emitting technologies can be used. These different luminescent materials classified by technology can emit light of the same color or of different colors.
  • the OLED organic material layer also includes an electron transport region.
  • the electron transport region may be a single-layer electron transport layer (ETL), that is, a single-layer electron-transport layer containing only one compound and a single-layer electron-transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • each light-emitting unit is composed of a hole transport region, a light-emitting layer, and an electron transport region.
  • a plurality of light-emitting units are connected in series by connecting layers, where the light-emitting unit can be a single-color light-emitting unit that emits a single color such as red, green, and blue, or a single-color light-emitting unit that emits different colors such as red, green, and blue. It can also be a single color light-emitting layer that can simultaneously emit different colors such as red, green, and blue.
  • connection layer in the tandem OLED device of the present invention is shown in Figure (1), the first light-emitting unit is prepared on the anode of the device, and the connection layer 1 of the device is prepared between the first light-emitting unit and the second light-emitting unit , the connection layer includes an n-type doped layer, a p-type doped layer and a spacer layer between the two, and then prepares the connection layer 2 and the third light-emitting unit on the second light-emitting unit; according to the design requirements of the device structure, The N-1 connection layer can be prepared accordingly until the Nth light-emitting unit is prepared, and finally the cathode of the device is prepared.
  • the n-type doped layer is mainly composed of a doped host and an n-type dopant.
  • the main dopant is an electron transport material
  • the n-type dopant is mainly composed of alkali metals, alkaline earth metals and some transition metals, including lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), magnesium (Mg), calcium (Ca), gold (Au), silver (Ag), copper (Cu), iron (Fe), nickel (Ni), platinum (Pt), palladium
  • the doping ratio of metal n-type dopant in the n-type doped layer is 0.2wt% to 30wt%, and the preferred doping ratio is 0.5wt% to 10wt%.
  • the p-type doped layer is composed of a p-type doped host material and a p-type dopant, the p-type doped host is made of an organic material with hole transport properties, and the p-type dopant is made of an organic material with a high Metal oxide with work function or organic semiconductor material with strong electron-withdrawing ability; the p-type dopant uses MoO 3 , WO 3 , V 2 O 5 , MoO 2 , Co 3 O 4 , CN6-CP, DDQ, One or a mixture of HATCN, C 60 F 36 , F4TCNQ, F4-R-TCNQ, F3-R-TCNQ, F2HCNQ, F6TCNNQ, TECTFCNBN.
  • the spacer layer between the n-type doped layer and the p-type doped layer is mainly composed of electron transport material, and its total thickness is 0.1nm to 10nm, more preferably 0.3nm to 5nm.
  • the organic material with electron transport properties used in the spacer layer has the structure shown in the following formula (1) or formula (2).
  • the preparation process of the organic electroluminescent device is as follows:
  • the tandem OLED device used in this experiment is a double-emitting layer device with a connection layer.
  • the preparation process of the device is as follows: the glass plate coated with the ITO transparent conductive layer is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreased in acetone: ethanol mixed solvent, and baked in a clean environment until completely Water is removed, cleaned with UV light and ozone, and the surface is bombarded with a beam of low-energy cations;
  • the above-mentioned glass substrate with an anode in a vacuum chamber evacuate to 1 ⁇ 10 -5 ⁇ 5 ⁇ 10 -4 Pa, and vacuum-deposit HATCN on the above-mentioned anode layer film as a hole injection layer, and the evaporation rate is is 0.05nm/s, and the vapor deposition film thickness is 5 to 10nm;
  • Vacuum-deposit NPB on the hole injection layer as the hole transport layer of the device the evaporation rate is 0.1nm/s, and the total film thickness is 30 to 50nm;
  • the light-emitting layer of the device is vacuum-evaporated on the hole-transport layer.
  • the light-emitting layer of the present invention includes host material Be(bq) 2 and phosphorescent dye Ir(mphmq) 2 (tmd), which are doped by multi-source co-evaporation. Doping, the rate and doping concentration are regulated through high and low crystal oscillator probes.
  • Vacuum-evaporate DPPyA on the light-emitting layer as the electron transport layer material the evaporation rate is 0.1nm/s, and the total film thickness is 20 to 60nm;
  • a connection layer with a total thickness of 20 to 60 nm is vacuum evaporated on the electron transport layer (ETL).
  • the thickness of the n-type doped layer is 10nm
  • the doping body is Bphen
  • the n-type dopant is Li, Cs, Ag and other alkali metals or transition metals
  • the doping ratio is 10%.
  • the spacer layer has a thickness of 0 to 10 nm according to the experimental requirements, wherein the thickness of the p-type doped layer is 20 nm
  • the doping body is NPB
  • the p-type dopant is TECTFCNBN
  • the doping ratio is 3%.
  • Table 1 below shows the organic compounds and structural formulas used in the tandem OLED device prepared in the embodiment of the present invention.
  • the glass plate coated with the ITO transparent conductive layer is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreased in acetone: ethanol mixed solvent, baked in a clean environment until the water is completely removed, and then cleaned with ultraviolet light. Light and ozone cleaning, and bombardment of the surface with a beam of low-energy cations;
  • the above-mentioned glass substrate with an anode in a vacuum chamber evacuate to 1 ⁇ 10 -5 ⁇ 5 ⁇ 10 -4 Pa, and vacuum-deposit HATCN on the above-mentioned anode layer film as a hole injection layer, and the evaporation rate is 0.05nm/s, the vapor deposition film thickness is 5nm;
  • Vacuum-evaporated NPB on the hole injection layer as the hole transport layer of the device the evaporation rate is 0.1nm/s, and the total film thickness is 35nm;
  • the light-emitting layer of the device is vacuum-evaporated on the hole-transport layer.
  • the light-emitting layer of the present invention includes host material Be(bq) 2 and phosphorescent dye Ir(mphmq) 2 (tmd), which are doped by multi-source co-evaporation. Doping, the rate and doping concentration are regulated through high and low crystal oscillator probes. Adjust the evaporation rate of the above host materials to 0.1nm/s, adjust the evaporation rate of the dye in the light-emitting layer to be 5% of the evaporation rate of the host, and then achieve a predetermined doping ratio, and the total film thickness of the light-emitting layer is 24nm ;
  • the electron transport layer material DPPyA of the device is vacuum evaporated on the light-emitting layer, the evaporation rate is 0.1nm/s, and the total film thickness is 40nm;
  • n-type doped layer was evaporated on the electron transport layer (ETL), and a connection layer with a total thickness of 20 nm was vacuum evaporated on the electron transport layer (ETL).
  • the thickness of the n-type doped layer is 10nm
  • the doping body is Bphen
  • the n-type dopant is Li
  • the doping ratio is 10%.
  • a 10nm p-type doped layer is vapor-deposited
  • the doping body is NPB
  • the p-type dopant is TECTFCNBN
  • the doping ratio is 3%.
  • vapor-deposit 50nm NPB as the hole transport layer, Be(bq) 2 : Ir(mphmq) 2 (tmd) doping ratio is 5%
  • the light-emitting layer with a thickness of 24nm
  • 40nm DPPyA as the electron transport layer
  • And 1nm LiF as the electron injection layer
  • 150nm Al as the cathode.
  • a tandem OLED device with dual emitting layers is then fabricated.
  • Example 2 The same preparation method as in Example 1, the difference is that a 0.1nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer, and the corresponding tandem OLED device structure is as follows: ITO/HATCN(5nm)/NPB (35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.1nm)/NPB:TECTFCNBN( 3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
  • Example 3 The preparation method is the same as that of Example 2, except that a 0.3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 4 The preparation method is the same as that of Example 2, except that a 0.5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 5 The preparation method is the same as that of Example 2, except that a 1 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 6 The preparation method is the same as that of Example 2, except that a 3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 7 The preparation method is the same as that of Example 2, except that a 5nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 8 The preparation method is the same as that of Example 2, except that a 7nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 9 The preparation method is the same as that of Example 2, except that a 10nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • the preparation method is the same as in Example 1, except that the p-type dopant used is MoO 3 , the thickness of the p-type doped layer is 10 nm, and the proportion of the p-type dopant is 10%.
  • the corresponding tandem OLED device structure is as follows: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li( 10%,10nm)/NPB:MoO 3 (10%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF( 1nm)/Al(150nm)
  • Example 11 The same preparation method as Example 10, the difference is that a 0.1nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer, and the corresponding tandem OLED device structure is as follows: ITO/HATCN (5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.1nm) /NPB:MoO 3 (10%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al( 150nm)
  • Example 12 The preparation method is the same as that of Example 10, except that a 0.3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 13 The preparation method is the same as that of Example 10, except that a 0.5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 14 The preparation method is the same as that of Example 10, except that a 1 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 15 The preparation method is the same as that of Example 10, except that a 3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 16 The preparation method is the same as that of Example 10, except that a 5nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 17 The preparation method is the same as that of Example 10, except that a 7nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 18 The preparation method is the same as that of Example 10, except that a 10 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • the preparation method is the same as in Example 1, except that the n-type dopant used is Cs, the thickness of the n-type doped layer is 10 nm, and the proportion of the p-type dopant is 10%.
  • the corresponding tandem OLED device structure is as follows: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs( 10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm )/Al(150nm)
  • Example 20 the same preparation method as Example 19, the difference is that a 0.1nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer, and the corresponding tandem OLED device structure is as follows: ITO/HATCN (5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs(10%,10nm)/L12(0.1nm) /NPB:MoO 3 (10%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al( 150nm)
  • Example 21 The preparation method is the same as that of Example 19, except that a 0.3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 22 The preparation method is the same as that of Example 19, except that a 0.5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 23 The preparation method is the same as that of Example 19, except that a 1 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 24 The preparation method is the same as that of Example 19, except that a 3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 25 The preparation method is the same as that of Example 19, except that a 5nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 26 The preparation method is the same as that of Example 19, except that a 7nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 27 The preparation method is the same as that of Example 19, except that a 10 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • the preparation method is the same as in Example 19, except that the p-type dopant used is MoO 3 , the thickness of the p-type doped layer is 10 nm, and the proportion of the p-type dopant is 10%.
  • the corresponding tandem OLED device structure is as follows: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs( 10%,10nm)/NPB:MoO 3 (10%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF( 1nm)/Al(150nm)
  • Example 29 The same preparation method as Example 31, the difference is that a 0.1nm L4 spacer layer is introduced between the n-type doped layer and the p-type doped layer, and the corresponding tandem OLED device structure is as follows: ITO/HATCN (5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs(10%,10nm)/L12(0.1nm) /NPB:MoO 3 (10%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al( 150nm)
  • Example 30 The preparation method is the same as that of Example 32, except that a 0.3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 31 The preparation method is the same as that of Example 32, except that a 0.5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 32 The preparation method is the same as that of Example 32, except that a 1 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 33 The preparation method is the same as that of Example 32, except that a 3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 34 The preparation method is the same as that of Example 32, except that a 5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 35 The preparation method is the same as that of Example 32, except that a 7nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 36 The preparation method is the same as that of Example 32, except that a 10 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • the preparation method is the same as in Example 1, except that the n-type dopant used is Ag, the thickness of the n-type doped layer is 10 nm, and the proportion of the p-type dopant is 10%.
  • the corresponding tandem OLED device structure is as follows: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Ag( 10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm )/Al(150nm)
  • Example 38 The same preparation method as Example 41, the difference is that a 0.1nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer, and the corresponding tandem OLED device structure is as follows: ITO/HATCN (5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Ag(10%,10nm)/L12(0.1nm) /NPB:MoO 3 (10%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al( 150nm)
  • Example 39 The preparation method is the same as that of Example 42, except that a 0.3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 40 The preparation method is the same as that of Example 42, except that a 0.5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 41 The preparation method is the same as that of Example 42, except that a 1 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 42 The preparation method is the same as that of Example 42, except that a 3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 43 The preparation method is the same as that of Example 42, except that a 5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 44 The preparation method is the same as that of Example 42, except that a 7nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 45 The preparation method is the same as that of Example 42, except that a 10 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • the preparation method is the same as in Example 38, except that the p-type dopant used is MoO 3 , the thickness of the p-type doped layer is 10 nm, and the proportion of the p-type dopant is 10%.
  • the corresponding tandem OLED device structure is as follows: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Ag( 10%,10nm)/NPB:MoO 3 (10%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF( 1nm)/Al(150nm)
  • Example 47 the same preparation method as Example 51, the difference is that a 0.1nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer, and the corresponding tandem OLED device structure is as follows:
  • Example 48 The preparation method is the same as that of Example 52, except that a 0.3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 49 The preparation method is the same as that of Example 52, except that a 0.5 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 50 The preparation method is the same as that of Example 52, except that a 1 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 51 The preparation method is the same as that of Example 52, except that a 3nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 52 The preparation method is the same as that of Example 52, except that a 5nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 53 The preparation method is the same as that of Example 52, except that a 7nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 54 The preparation method is the same as that of Example 52, except that a 10 nm L12 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 55 The preparation method is the same as that of Example 1, except that the tandem device has three light-emitting units and two connecting layers.
  • the corresponding tandem OLED device structure is: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%, 24nm)/DPPyA(40nm)/Bphen:Li( 10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li (10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Li
  • Example 56 The preparation method is the same as that of Example 55, except that 0.5 nm of L12 is introduced into the two connection layers of the tandem device as a spacer layer.
  • the corresponding tandem OLED device structure is: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%, 24nm)/DPPyA(40nm)/Bphen:Li( 10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA( 40nm)/Bphen:Li(10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphm
  • Example 57 The preparation method is the same as that of Example 55, except that 1 nm of L12 is introduced into the two connection layers of the tandem device as a spacer layer.
  • the corresponding tandem OLED device structure is: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%, 24nm)/DPPyA(40nm)/Bphen:Li( 10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm )/Bphen:Li(10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mph
  • Example 58 The preparation method is the same as that of Example 1, except that the tandem device has 4 light-emitting units and 3 connecting layers.
  • the corresponding tandem OLED device structure is: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%, 24nm)/DPPyA(40nm)/Bphen:Li( 10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li (10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/B
  • Example 59 The preparation method is the same as that of Example 58, except that 0.5 nm of L12 is introduced into the three connection layers of the tandem device as a spacer layer.
  • the corresponding tandem OLED device structure is: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%, 24nm)/DPPyA(40nm)/Bphen:Li( 10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA( 40nm)/Bphen:Li(10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(
  • Example 60 The preparation method is the same as that of Example 58, except that 1 nm of L12 is introduced into the three connection layers of the tandem device as a spacer layer.
  • the corresponding tandem OLED device structure is: ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%, 24nm)/DPPyA(40nm)/Bphen:Li( 10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm )/Bphen:Li(10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mph
  • Example 2 The same preparation method as in Example 2, the difference is that a 0.5nm L1 spacer layer is introduced between the n-type doped layer and the p-type doped layer, and the corresponding tandem OLED device structure is as follows: ITO/HATCN(5nm)/NPB (35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.1nm)/NPB:TECTFCNBN( 3%,10nm)/NPB(35nm)/Be(bq) 2 :Ir(mphmq) 2 (tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
  • Example 62 The preparation method is the same as that of Example 2, except that a 1 nm L1 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 63 the preparation method is the same as that of Example 2, except that a 0.5 nm L2 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 64 The preparation method is the same as that of Example 2, except that a 1 nm L2 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 65 The preparation method is the same as that of Example 2, except that a 0.5 nm L3 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 66 The preparation method is the same as that of Example 2, except that a 1 nm L3 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 67 The preparation method is the same as that of Example 2, except that a 0.5 nm L4 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 68 The preparation method is the same as that of Example 2, except that a 1 nm L4 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 69 The preparation method is the same as that of Example 2, except that a 0.5 nm L5 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 70 The preparation method is the same as that of Example 2, except that a 1 nm L5 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 71 The preparation method is the same as that of Example 2, except that a 0.5 nm L6 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 72 The preparation method is the same as that of Example 2, except that a 1 nm L6 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 73 The preparation method is the same as that of Example 2, except that a 0.5 nm L7 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 74 The preparation method is the same as that of Example 2, except that a 1 nm L7 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 75 The preparation method is the same as that of Example 2, except that a 0.5nm L8 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 76 The preparation method is the same as that of Example 2, except that a 1 nm L8 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 77 The preparation method is the same as that of Example 2, except that a 0.5 nm L11 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 78 The preparation method is the same as that of Example 2, except that a 1 nm L11 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 79 The preparation method is the same as that of Example 2, except that a 0.5 nm L13 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 80 The preparation method is the same as that of Example 2, except that a 1 nm L13 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 81 The preparation method is the same as that of Example 2, except that a 0.5 nm L14 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 82 The preparation method is the same as that of Example 2, except that a 1 nm L14 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 83 The preparation method is the same as that of Example 2, except that a 0.5 nm L19 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 84 the preparation method is the same as that of Example 2, except that a 1 nm L19 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 85 The preparation method is the same as that of Example 2, except that a 0.5 nm L20 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 86 The preparation method is the same as that of Example 2, except that a 1 nm L20 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 87 The preparation method is the same as that of Example 2, except that a 0.5 nm L21 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 88 The preparation method is the same as that of Example 2, except that a 1 nm L21 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 89 The preparation method is the same as that of Example 2, except that a 0.5 nm L22 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 90 The preparation method is the same as that of Example 2, except that a 1 nm L22 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 91 The preparation method is the same as that of Example 2, except that a 0.5nm L25 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 92 The preparation method is the same as that of Example 2, except that a 1 nm L25 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 93 the preparation method is the same as that of Example 2, except that a 0.5 nm L26 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 94 The preparation method is the same as that of Example 2, except that a 1 nm L26 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 95 the preparation method is the same as that of Example 2, except that a 0.5 nm L27 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 96 The preparation method is the same as that of Example 2, except that a 1 nm L27 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 97 The preparation method is the same as that of Example 2, except that a 0.5 nm L28 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 98 The preparation method is the same as that of Example 2, except that a 1 nm L28 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 99 The preparation method is the same as that of Example 2, except that a 0.5 nm L29 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 100 the preparation method is the same as that of Example 2, except that a 1 nm L29 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 101 The preparation method is the same as that of Example 2, except that a 0.5 nm L31 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 102 The preparation method is the same as that of Example 2, except that a 1 nm L31 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 103 the preparation method is the same as that of Example 2, except that a 0.5 nm L32 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 104 the preparation method is the same as that of Example 2, except that a 1 nm L32 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 105 the preparation method is the same as that of Example 2, except that a 0.5 nm L33 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 106 the preparation method is the same as that of Example 2, except that a 1 nm L33 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 107 The preparation method is the same as that of Example 2, except that a 0.5nm L35 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 108 The preparation method is the same as that of Example 2, except that a 1 nm L35 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 109 The preparation method is the same as that of Example 2, except that a 0.5 nm L37 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 110 the preparation method is the same as that of Example 2, except that a 1 nm L37 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 111 the preparation method is the same as that of Example 2, except that a 0.5 nm L43 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 112 the preparation method is the same as that of Example 2, except that a 1 nm L43 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 113 the preparation method is the same as that of Example 2, except that a 0.5 nm L49 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 114 the preparation method is the same as that of Example 2, except that a 1 nm L49 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 115 the preparation method is the same as that of Example 2, except that a 0.5 nm L57 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 116 the preparation method is the same as that of Example 2, except that a 1 nm L57 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 117 The preparation method is the same as that of Example 2, except that a 0.5 nm L75 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 118 the preparation method is the same as that of Example 2, except that a 1 nm L75 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 119 The preparation method is the same as that of Example 2, except that a 0.5 nm L79 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 120 The preparation method is the same as that of Example 2, except that a 1 nm L79 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 121 The preparation method is the same as that of Example 2, except that a 0.5 nm L103 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 122 The preparation method is the same as that of Example 2, except that a 1 nm L103 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 123 The preparation method is the same as that of Example 2, except that a 0.5nm L107 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 124 the preparation method is the same as that of Example 2, except that a 1 nm L107 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 125 The preparation method is the same as that of Example 2, except that a 0.5 nm L109 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 126 the preparation method is the same as that of Example 2, except that a 1 nm L109 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 127 The preparation method is the same as that of Example 2, except that a 0.5 nm L175 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 128 the preparation method is the same as that of Example 2, except that a 1 nm L175 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 129 The preparation method is the same as that of Example 2, except that a 0.5 nm L179 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 130 the preparation method is the same as that of Example 2, except that a 1 nm L179 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 131 the preparation method is the same as that of Example 2, except that a 0.5 nm L181 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 132 the preparation method is the same as that of Example 2, except that a 1 nm L181 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 133 the preparation method is the same as that of Example 2, except that a 0.5 nm L195 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 134 The preparation method is the same as that of Example 2, except that a 1 nm L195 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 135 the preparation method is the same as that of Example 2, except that a 0.5 nm L203 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 136 The preparation method is the same as that of Example 2, except that a 1 nm L203 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 137 The preparation method is the same as that of Example 2, except that a 0.5 nm L207 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 138 the preparation method is the same as that of Example 2, except that a 1 nm L207 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 139 The preparation method is the same as that of Example 2, except that a 0.5nm L209 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 140 the preparation method is the same as that of Example 2, except that a 1 nm L209 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 141 the preparation method is the same as that of Example 2, except that a 0.5 nm L215 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 142 the preparation method is the same as that of Example 2, except that a 1 nm L215 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 143 the preparation method is the same as that of Example 2, except that a 0.5 nm L219 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 144 The preparation method is the same as that of Example 2, except that a 1 nm L219 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 145 the preparation method is the same as that of Example 2, except that a 0.5 nm L221 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Example 146 the preparation method is the same as that of Example 2, except that a 1 nm L221 spacer layer is introduced between the n-type doped layer and the p-type doped layer.
  • Examples 1 to 9 and Examples 37 to 45 it can be found that in the case of the same other materials in the structure of the tandem organic electroluminescent device, by introducing a spacer layer with a thickness of 0.1 nm to 10 nm in the connection layer, the device After working for 24 hours, the voltage rise value is reduced, and the stability of the device is greatly improved, and the life of the device is correspondingly improved. It is speculated that during the process of heating evaporation and working in the device, the metal n-type dopant may migrate or diffuse into the p-type dopant and the light-emitting layer, resulting in the aging of the connection layer and the light-emitting layer in the light-emitting layer. The excitons are quenched, which leads to a decrease in the efficiency and lifetime of the device. Generally, the optimal thickness is about 0.1 nm to 10 nm when the spacer layer is introduced to improve the lifetime of the device.
  • Examples 1 to 9 By comparing Examples 1 to 9, Examples 19-27, and Examples 41 to 50, it can be found that the type of n-type dopant has a significant impact on the lifetime of the tandem OLED device. From the perspective of lifetime, the trend is silver>lithium>cesium, which is mainly because for the same doping host, there is a strong coordination effect between silver and Bphen, and the force is the strongest. The interaction between lithium, cesium and Bphen is mainly electrostatic.
  • tandem OLED devices based on silver as n-type dopant have a longer lifetime than OLED devices based on cesium.
  • the spacer layer described in the present invention has a similar life-span improvement effect on tandem OLED devices using different n-type dopants.
  • the p-type dopant is also the p-type dopant of inorganic semiconductors such as MoO 3 , and the spacer layer described in the present invention can improve the stability of the tandem OLED device, showing similar effects. This is mainly because the migration and diffusion of metal-type n-type dopants are the main factors that lead to lifetime attenuation and voltage rise when tandem devices age, so the introduction of spacers helps to improve the use of metal-type n-type dopants and different types of p Tandem OLED device performance of type dopants.
  • Examples 61 to 82 and the spacer materials mainly used contain bis-phenanthroline groups, while Examples 85 to 94 are mainly spacer materials containing triazine and pyridine groups, which can be found in
  • the di-phenanthroline materials in the tandem OLED devices are better than L19, L20 and other materials in blocking the migration of metal ions, which may be better than the electrostatic potential near the nitrogen atom of the phenanthroline group.
  • Examples 61 to 120 the performance of each tandem device was compared when the thickness of the spacer layer was 0.5nm and 1nm respectively. After the comparison, it can be found that the device driving voltage of the tandem OLED device using a 0.5nm spacer layer is lower. , which may be due to its lower series resistance. However, the lifetime and voltage stability of the tandem OLED devices with a spacer thickness of 1 nm are better than those of the tandem OLED devices with a spacer thickness of 0.5 nm. Diffusion of dopant, which further reflects the impact of the spacer layer of the present invention on device performance.
  • the characteristics of the spacer material used in Examples 95 to 120 are that one side is phenylpyridine, the other side is o-phenanthroline group, and the bridging group is naphthalene, substituted and unsubstituted anthracene, etc., which Large ⁇ -like conjugated groups are conducive to the formation of strong ⁇ - ⁇ stacking to improve electron mobility. At the same time, such large ⁇ -conjugated bridging groups help to expand the conjugation of molecules, thereby enhancing the negatively charged molecules. Therefore, the tandem OLED devices based on this kind of spacer material also exhibit excellent stability.
  • Embodiments 121 to 126 have adopted L103, L107 and L109 as spacer materials. Compared with Examples 4 and 5, these materials use methyl, methoxy and tetrahydro Pyrrolyl is substituted.
  • the thickness of the spacer layer is 0.5nm, the performance of the device using L103, L107, and L109 as the spacer layer is better than that of L12, which is manifested in longer lifetime or smaller change in driving voltage; the opposite is true when the thickness of the spacer layer is 1nm.
  • Embodiment 127 to 146 has adopted 10 kinds of different spacer materials, compared with embodiment 121 to 126, these materials have adopted different bridging groups, and some have adopted larger ⁇ conjugated group pyrenyl (implementation Examples 127 to 132, Examples 141 to 146), some have adopted nitrogen-containing group pyridine (Example 133, 134), and some have increased the number of o-phenanthrolines connected by bridging groups (Example 135 to 146).
  • the use of larger ⁇ -conjugated groups is conducive to the improvement of electron mobility and molecular stability, and the use of nitrogen-containing groups or increasing the number of bridging groups to connect o-phenanthroline can increase the number of coordination sites, which is more conducive to materials
  • the interaction with metals improves the ability to inhibit metal migration and diffusion, thus showing better device performance.
  • the spacer layer constructed by nitrogen-containing heterocyclic electron transport materials has a strong interaction with a variety of metal n-type dopants, which helps to inhibit the migration or diffusion of metals, and thus is conducive to improving Exciton utilization and efficiency and lifetime of OLED devices.
  • Examples 55 to 60 the effects of the spacer layer on tandem OLEDs with 3 and 4 light-emitting units were mainly verified. It can be found that for tandem OLED devices containing 3 and 4 light-emitting units, the introduction of 1nm L12 as a spacer layer can also inhibit the metal migration and diffusion in the n-type doped layer, and improve the stability of the organic electroluminescent device.
  • connection layer design strategy of the novel tandem OLED device proposed by the present invention i.e. n-type doped layer/spacer layer/p-type doped layer, helps to suppress the metal type n-type dopant in the tandem OLED device Diffusion and migration, which help to improve the stability of the connection layer and reduce the exciton quenching in the light-emitting layer, so it can be applied to tandem OLED devices, helping the device to achieve a longer lifetime and lower voltage rises.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种有机电致发光器件,属于光电显示器件技术领域,具体涉及一种采用设置于器件中相邻发光单元之间的特定连接层方案而形成串联结构的有机电致发光器件。所述器件包括阳极、阴极、设置在所述阳极和阴极之间的至少两个电致发光单元、设置在相邻的电致发光单元之间的连接层,所述连接层为多叠层结构,包括n型掺杂层、p型掺杂层和位于二者之间的间隔层,所述的间隔层由电子传输材料组成。由于这类由电子传输材料组成的间隔层可以有效抑制n型掺杂层中的n型掺杂剂向另一侧的p型掺杂层的扩散,有效地改善了n型掺杂剂扩散所引起的驱动电压上升和器件老化问题,从而显著地提升了串联有机电致发光器件的寿命和稳定性。

Description

一种串联有机电致发光器件 技术领域
本发明涉及一种有机电致发光器件,属于光电显示器件技术领域,具体涉及一种采用设置于器件中相邻发光单元之间的特定连接层方案而形成串联结构的有机电致发光器件。
背景技术
有机发光二极管(OLED,Organic Light Emission Diodes)是一类有机电致发光器件,主要包括阴极、阳极以及位于两电极之间的发光单元,其中发光单元主要有有机半导体材料组成。作为一种电致注入型发光器件,在OLED器件的电极施加电压,空穴和阳极注入到有机功能层中,电子从阴极注入到有机功能层中,电子和空穴在发光层复合并形成激子,并最终实现辐射发光。OLED器件凭借低能耗、宽视角、可弯折等诸多优势在固态显示和照明技术领域展现出广阔的应用前景。
近年来,一种具有串联结构的OLED器件受到了广泛的关注。串联OLED器件的发光原理与传统的单层OLED器件类似,其区别在于串联OLED器件由多个发光单元通过连接层串联所构成,其中连接层的作用类似于电极,可以在外电场的驱动下可以成对地产生载流子,这些产生的载流子可以进一步分离并注入到相邻的发光单元中。由于这种串联的器件结构,每注入一个的电子或者空穴,每个发光单元均可以产生光子并实现辐射发光,因此对于含有N个发光单元的串联OLED器件而言,其电流效率大约为单层OLED器件的N倍。为了实现同样的亮度,串联OLED器件所需电流密度大大降低,因而有助于改善OLED器件的效率滚降和寿命问题。
目前,常见的串联OLED器件中主要采用的连接层结构为n型掺杂层/p型掺杂层,n型掺杂层的LUMO能级和p型掺杂层的HOMO能级之间的能级差较小,可以在较低的驱动电压下有效地产生载流子,其中n型掺杂层的掺杂客体主要由低功函数(WF<3.0eV)的碱金属或碱土金属组成,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、镁(Mg),钙(Ca)等。但这类碱金属或碱土金属类的n型掺杂剂在外电场作用容易向p型掺杂层一侧扩散,进而导致器件在工作中驱动电压上升,器件寿命显著下降,严重地影响了器件的效率和稳定性。
柯达公司的专利CN100544020A中提出的串联OLED器件中设计了位于邻接的电致发光单元之间的中间连接器,该连接器包括n-掺杂的有机层,p-掺杂的有机层和界面层,其中界面层的作用主要是阻止n型掺杂剂的有机层和电子接受层材料之间可能的相互扩散。在该专利中强调界面层应当是金属化合物或金属,具体而言该界面层可以选择高功函数的金属包括Ti、Zr、Ti、Nb、Ta、Cr、Mo、W、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Al、In、Sn或他们的合金,以及钛、锆、蛤、铌、钽、钼、钨、锰、铁、钌、铑、铱、镍、钯、铂、铜、硅、锗这些金属或其组合的化学计量氧化物或非化学计量氧化物、化学计量硫化物或非化学计量硫化物、化学计量碲化物或非化学计量碲化物、化学计量氮化物或非化学计量氮化物、化学计量碳化物或非化学计量碳化物。因此,上述的连接层均由无机材料组成,蒸镀的温度普遍较高,厚度需要精确控制以确保高透过率。
发明内容
为此,本发明的目的在于提供一种新的串联OLED器件连接层,解决现有技术中存在的问题。具体而言,传统的串联OLED器件中连接层为n型掺杂层/p型掺杂层,在器件工作时金属类n型掺杂剂易于扩散进入p型掺杂层和相邻的发光层,从而导致器件驱动电压上升和发光效率的降低。
在串联OLED器件的n型掺杂层和p型掺杂层之间引入间隔层结构,该间隔层由具有较好的电子传输性能的含氮杂环类电子传输材料构成,这些材料均为有机半导体材料,蒸镀温度较低,可见光范围内透过率较高。这类电子传输材料与碱金属、碱土金属以及部分过渡金属等金属类n型掺杂剂存在较强的相互作用,因而有助于抑制这类金属类n型掺杂剂向p型掺杂层的扩散,进而有效地改善器件工作中的驱动电压上升,提升器件的寿命。
具体说,本发明提供了一种串联有机电致发光器件,包括以下结构:阳极、阴极、设置在所述阳极和阴极之间的至少两个电致发光单元、设置在相邻的电致发光单元之间的连接层,所述每个电致发光单元至少包括一个电子传输层和一个有机发光层,其特征在于:所述连接层为多叠层结构,包括n型掺杂层、p型掺杂层和位于二者之间的间隔层;
所述p型掺杂层由p型掺杂主体材料和p型掺杂剂组成,所述p型掺杂主体采用具有空穴传输性能的有机材料,所述p型掺杂层中,所述p型掺杂主体采用具有空穴传输性能的有机材料,具体可选自下述化合物:
Figure PCTCN2022113049-appb-000001
Figure PCTCN2022113049-appb-000002
Figure PCTCN2022113049-appb-000003
所述的p型掺杂层中采用的p型掺杂剂主要为具有高功函数的金属氧化物,包括MoO 3、WO 3、V 2O 5、MoO 2、Co 3O 4,以及具有强吸电子能力的有机半导体材料,包括CN6-CP、DDQ、HATCN、C 60F 36、F4TCNQ、F2HCNQ、F6TCNNQ、TECTFCNBN中的一种或几种的混合物,p型掺杂剂的分子结构具体如下:
Figure PCTCN2022113049-appb-000004
其特征在于,所述的p型掺杂层中,p型掺杂剂的掺杂比例为0.2wt%至30wt%,优选掺杂比例为0.5wt%至10wt%;
所述n型掺杂层由n型掺杂主体材料和n型掺杂剂组成,所述n型掺杂主体采用具有电子传输性能的有机材料,所述n型掺杂剂采用碱金属、碱土金属或过渡金属;
所述n型掺杂剂采用碱金属、碱土金属或过渡金属;优选的n型掺杂剂选自锂、钠、钾、铷、铯、镁、钙、金、银、铜、铁、镍、铂、钯、钌、镱中的一种或几种的混合物。最优选的n型掺杂剂选自锂、银、铯。
所述的n型掺杂层中,n型掺杂主体采用具有电子传输性能的有机材料,具体可选自下述化合物:
Figure PCTCN2022113049-appb-000005
Figure PCTCN2022113049-appb-000006
Figure PCTCN2022113049-appb-000007
Figure PCTCN2022113049-appb-000008
所述间隔层采用具有电子传输性能的有机材料,该有机材料不同于所述n型掺杂主体材料。在本说明书中,所述的间隔层主要由电子传输材料组成,该电子传输材料具有较好的电子传输性能,并且分子结构中具有含氮杂环,可以与多种金属类n型掺杂剂存在较强的相互作用,这类电子传输材料具有如下式(1)所示的结构,或者这类电子传输材料具有如下述(2)所示的结构:
Figure PCTCN2022113049-appb-000009
式(1)中,桥连基团Q选自取代或未取代的下述基团中的一种,所述取代基团Q中的取代是指被选自氘、氚、氰基、卤素、C1~C10烷基、C3~C10环烷基、硅基、C6~C30芳胺基、C6~C30芳基、C2~C30杂芳基中的一种或者两种的组合所取代,其中
Figure PCTCN2022113049-appb-000010
为R1与桥连基团Q键合的位置,
Figure PCTCN2022113049-appb-000011
为R2和桥连基团Q键合的位置:
Figure PCTCN2022113049-appb-000012
Figure PCTCN2022113049-appb-000013
式(1)中,所述R1和R2各自独立地选自取代或未取代的C3~C60杂芳基中的一种,所述杂芳基中含有至少一个氮原子,所述取代的杂芳基中的取代是指被选自氘、氚、氰基、卤素、C1~C10烷基、C3~C10环烷基、硅基、C6~C30芳胺基、C6~C30芳基、C2~C30杂芳基中的一种或者两种的组合所取代,该取代基独立地与相连接的杂芳环连接成环或不连接成环;
优选的,所述R1和R2各自独立地选自取代或未取代的下述基团中的一种:吡啶基、嘧啶基、三嗪基、喹啉基、异喹啉基、喹喔啉基、喹唑啉基、苯并咪唑基、萘并咪唑基、邻菲罗啉基、苯并噻唑基、苯并噁唑基、吩嗪、二苯并吩嗪、噁二唑基、噻二唑基、三氮唑基、氧杂蒽醌基、蒽醌基,R1和R2中取代或未取代中的取代,是指被选自卤素、C1~C10烷基、C3~C10环烷基、C6~C30芳胺基、C6~C30芳基、C2~C30杂芳基中的一种或者两种的组合所取代,该取代基独立地与相连接的芳环或杂芳环连接成环或不连接成环。
式(2)中,当n为2、3或4时,Q选自取代或未取代的下述基团中的一种:
Figure PCTCN2022113049-appb-000014
式(2)中,R 1和R 2分别独立地选自C1-C30脂肪链烃氧基、C2-C30脂肪链烃氨基、C3-C20环状脂肪链烃氨基、取代或未取代的C6~C30芳基氨基、取代或未取代的C3~C30杂芳基氨基、取代或未取代的C6-C60的芳基、取代或未取代的C3-C60的杂芳基中的一种;当上述R 1和R 2存在取代基时,所述取代基团选自氘、卤素、C1~C30链状烷基、C3~C30环烷基、氰基、硝基、C1~C6烷氧基、C1~C6硫代烷氧基、C6~C30芳基、C3~C60杂芳基中的一种或两种的组合。7、根据权利要求6所述的串联有机电致发光器件,其特征在于,式(1)所述R1和R2各自独立地选自取代或未取代的下述基团中的一 种:
Figure PCTCN2022113049-appb-000015
Figure PCTCN2022113049-appb-000016
式(2)所述R1和R2各自独立地选自取代或未取代的下述基团中的一种:
甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、二甲氨基、环丙亚氨基、四氢吡咯基、哌啶基、环己亚氨基、环庚亚氨基、环辛亚氨基、甲氧基、乙氧基、丙氧基、丁氧基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶 苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、叔丁基咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯巯基、苯砜基、苯酚基、二苯磷氧基、萘巯基、萘砜基、萘酚基、二萘磷氧基、蒽巯基、蒽砜基、蒽酚基、二蒽磷氧基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、恶唑基、苯并恶唑基、萘并恶唑基、蒽并恶唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5-嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、1,5,7-三氮杂二环[4.4.0]癸-5-烯基、4-甲氧基苯基中的一种,或者选自上述基团中的两种的组合。
8、根据权利要求6所述的串联有机电致发光器件,其特征在于,式(1)所述桥连基团Q优选自下述基团中的一种:
Figure PCTCN2022113049-appb-000017
所述R1和R2各自独立地优选自取代或未取代的下述基团中的一种:
Figure PCTCN2022113049-appb-000018
式(2)所述桥连基团Q优选自下述基团中的一种:
Figure PCTCN2022113049-appb-000019
Figure PCTCN2022113049-appb-000020
Figure PCTCN2022113049-appb-000021
所述R1和R2各自独立地优选自取代或未取代的下述基团中的一种:
Figure PCTCN2022113049-appb-000022
最优选的,本发明的有机电致发光器件中,所述间隔层所采用的具有电子传输性能的有机材料选自下述具体化合物中的至少一种:
Figure PCTCN2022113049-appb-000023
Figure PCTCN2022113049-appb-000024
Figure PCTCN2022113049-appb-000025
Figure PCTCN2022113049-appb-000026
Figure PCTCN2022113049-appb-000027
Figure PCTCN2022113049-appb-000028
Figure PCTCN2022113049-appb-000029
Figure PCTCN2022113049-appb-000030
Figure PCTCN2022113049-appb-000031
Figure PCTCN2022113049-appb-000032
Figure PCTCN2022113049-appb-000033
Figure PCTCN2022113049-appb-000034
Figure PCTCN2022113049-appb-000035
Figure PCTCN2022113049-appb-000036
Figure PCTCN2022113049-appb-000037
Figure PCTCN2022113049-appb-000038
Figure PCTCN2022113049-appb-000039
Figure PCTCN2022113049-appb-000040
Figure PCTCN2022113049-appb-000041
Figure PCTCN2022113049-appb-000042
Figure PCTCN2022113049-appb-000043
Figure PCTCN2022113049-appb-000044
本发明的这类串联有机电致发光器件中,所述间隔层的总厚度为0.1nm至10nm;更优选间隔层的总厚度为0.3nm至5nm;更优选间隔层的总厚度为0.5nm至1nm。
本发明的这类串联有机电致发光器件中,所述电致发光单元的数量为2至6;优选的,所述电致发光单元的数量为2至4。
本发明的这类串联有机电致发光器件,所述发光单元中还包括空穴注入层、空穴传输层、电子阻挡层中的至少一层。
在本说明书中,所述的“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个时,可以选自不同的取代基,本发明中涉及到相同的表达方式时,均具有同样的意义,且取代基的选择范围均如上所示不再一一赘述。
在本说明书中,“各自独立地”表示其主语具有多个时,彼此之间可以相同也可以不同。
在本说明书中,若无特别说明,芳基和杂芳基均包括单环和稠环的情况。上述单环芳基是指分子中含有一个或至少两个苯基,当分子中含有至少两个苯基时,苯基之间相互独立,通过单键进行连接,示例性地如苯基、二联苯基、三联苯基等;稠环芳基是指分子中含有至少两个苯环,但苯环之间并不相互独立,而是共用环边彼此稠合起来,示例性地如萘基、蒽基等;单环杂芳基是指分子中含有至少一个杂芳基,当分子中含有一个杂芳基和其他基团(如芳基、杂芳基、烷基等)时,杂芳基和其他基团之间相互独立,通过单键进行连接,示例性地如吡啶、呋喃、噻吩等;稠环杂芳基是指由至少一个苯基和至少一个杂芳基稠合而成,或,由至少两种杂芳环稠合而成,示例性地如喹啉、异喹啉、苯并呋喃,二苯并呋喃,苯并噻吩,二苯并噻吩等。
本发明提出的这种串联OLED器件,采用新型的连接层结构,即在n型掺杂层和p型掺杂层之间引入间隔层,这类间隔层由真空蒸镀的电子传输材料组成。该电子传输材料具有如式(1)所述的结构通式,其中Q基团主要为π共轭基团,可以将两个受体基团键连起来,可以进一步扩大共轭体系,提升间隔层材料的传输性能,有利于实现较低的驱动电压;其中R 1和R 2均为电子受体,其中一个比较典型的特征在于其分子中具有含氮杂环,这类杂环的氮原子为sp 2杂化,这类具有孤对电子的sp 2杂化的氮原子与多种金属类n型掺杂剂之间存在较强的相互作用。因此,在n型掺杂层和p型掺杂层之间引入具有通式(1)结构的电子传输材料作为间隔层可以有效地抑制金属类n型掺杂剂向p型掺杂层的扩散和迁移,进而有效地改善串联有机电致发光器件工作时的电压上升,提升串联OLED器件的寿命和稳定性。
采用本发明所述的连接层结构的串联OLED器件兼具驱动电压低、器件效率高、工作寿命长等诸多优势,能够满足当前显示和照明领域的需求。另外,本发明化合物的制备所需各个原材料易得,合成工艺、后处理及提纯过程简易可靠,制备工艺与现行的制备工艺兼容,适用于科学研究及工业生产。
本发明式(2)化合物的邻菲啰啉骨架的位置2和位置9的键连方式的设计和调控是本发明的核心创新点之一。一方面,邻菲啰啉骨架通过位置2与桥连基团Q相连,此时邻菲啰啉骨架位置1的氮原子可以与桥连基团上邻近的氢原子形成分子内氢键,因此有助于改善材料的升华性质,提升蒸镀过程中材料的稳定性和器件的稳定性。另一方面,邻菲啰啉骨架上的位置9为氢原子,有助于降低邻菲啰啉骨架与过渡金属配位时的空间位阻,使之具备更加优异的配位性能。
本发明式(2)化合物的特别创新点之二,是将R 1和R 2设计为给电子取代基,可以显著提升菲啰啉骨架中氮原子附近的电子云密度和静电势,有助于提升其与配位能力,从而实现更加优异的电子注入性能。由上,本发明的这类具有通式(2’)结构的化合物兼具优良的配位性能和稳定性,可应用于制备高性能的电子注入材料和OLED器件。
Figure PCTCN2022113049-appb-000045
附图说明
图1为本发明有机电致发光器件的实施例中制备的具有N个发光单元和N-1个连接层的串联有机电致发光器件的结构示意图;
图(1)中,包括阳极、阴极、位于两个电极之间的N个发光单元以及位于每两个相邻发光单元之间的连接层,各个连接层中均为层叠结构,均具体包括n型掺杂层、p型掺杂层和位于两者之间的间隔层。
具体实施方式
下面将以多个合成实施例为例来详述本发明式(2)所述化合物的具体制备方法,但本发明的制备方法并不限于这些合成实施例。
本发明中所用的各种化学药品如石油醚、二氯甲烷、乙酸乙酯、乙醇、甲苯、碳酸钠等基础化工原料均购自上海泰坦科技股份有限公司。确定下述化合物所用的质谱仪采用的是ZAB-HS型质谱仪测定(英国Micromass公司制造)。
下面将对本发明所述的化合物的合成方法进行简要的说明。首先用商业可得的4,7二氯邻菲啰啉作为原料,通过suzuki偶联邻菲啰啉的4,7位置进行取代和修饰。随后经过多步转化在邻菲啰啉类骨架的2号位进行氯代,最终通过suzuki偶联将多个邻菲啰啉类骨架与桥连基团连接并得到目标产物。对于邻菲啰啉的4,7位置直接与杂原子(O、N、S等)键连的目标产物,可以通过碱催化的亲核取代对4,7二氯邻菲啰啉进行修饰(如代表性合成路径2所示),并通过类似的过程得到相应的目标产物。
合成实施例
代表性合成路径1:
Figure PCTCN2022113049-appb-000046
代表性合成路径2:
Figure PCTCN2022113049-appb-000047
更具体地,以下给出本发明的代表性化合物的合成方法。
合成实施例1:
化合物L91的合成
Figure PCTCN2022113049-appb-000048
实施例1中,在500mL的圆底烧瓶中加入L91-1(2.80g,8.48mmol),L91-2(4.65g,19.17mmol),用甲苯(150ml)、乙醇(50mL)和去离子水(100mL)混合体系作为溶剂,加入Na 2CO 3(6.12g,57.78mmol)和Pd(PPh 3) 4(1.08g,0.933mmol)作为催化剂,在氮气保护下加热回流36小时,待反应体系冷却后过滤,并依次用饱和食盐水、乙醇冲洗滤饼,进一步采用常规方法处理得到最终产物L91(2.83g,68%收率)。质谱理论值[L91+H]:491.22;MALDI-TOF-MS结果:m/z:491.31[L91+H]。元素分析结果:理论值:C 83.24%,H 5.34%,N 11.42%。实验值:C 83.06%,H 5.02%,N 11.92%。
合成实施例2:
化合物L92的合成
Figure PCTCN2022113049-appb-000049
首先按照上述路线由L92-1经过铃木偶联反应(Suzuki cross coupling reaction)得到产物L92-2,随后产物L92-2按照上述反应流程依次处理得到产物L92-4。在500mL的圆底烧瓶中加入L92-4(6.46g,17.60mmol),E1-1(2.64g,8.00mmol),用甲苯(150ml)、乙醇(50mL)和去离子水(100mL)混合体系作为溶剂,加入Na 2CO 3(6.12g,57.78mmol)和Pd(PPh 3) 4(1.08g,0.933mmol)作为催化剂,加热回流36小时,冷却后过滤,并依次用乙醇、二氯甲烷/甲醇混合溶液多次冲洗滤饼,采用常规方法进一步处理可得到最终产物L92(3.22g,54%收率)。质谱理论值[L92+H]:739.29;MALDI-TOF-MS结果:m/z:739.43[L92+H]。元素分析结果:理论值:C 87.78%,H 4.64%,N 7.58%。实验值:C 87.67%,H 4.68%,N 7.65%。
合成实施例3:
化合物L93的合成
Figure PCTCN2022113049-appb-000050
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L93-1。目标化合物L93(5.02g,63%收率)。质谱理论值[L93+H]:939.35;MALDI-TOF-MS结果:m/z:939.43[L93+H]。元素分析结果:理论值:C 89.53%,H 4.50%,N 5.97%。实验值:C 89.43%,H 4.55%,N 6.02%。
合成实施例4:
化合物L94的合成
Figure PCTCN2022113049-appb-000051
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L94-1。目标化合物L9-4(4.14g,52%收率)。质谱理论值[L94+H]:939.35;MALDI-TOF-MS结果:m/z:939.56[L94+H]。元素分析结果:理论值:C 89.53%,H 4.50%,N 5.97%。实验值:C 89.51%,H 4.54%,N 5.95%。
合成实施例5:
化合物L95的合成
Figure PCTCN2022113049-appb-000052
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L95-1。目标化合物L95(2.26g,48%收率)。质谱理论值[L95+H]:555.21;MALDI-TOF-MS结果:m/z:555.33[L95+H]。元素分析结果:理论值:C 73.63%,H 4.73%,N 10.10%,O 11.54%。实验值:C 73.67%,H 4.72%,N 10.13%,O 11.48%。
合成实施例6:
化合物L97的合成
Figure PCTCN2022113049-appb-000053
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L97-1。目标化合物L97(3.32g,55%收率)。质谱理论值[L97+H]:711.39;MALDI-TOF-MS结果:m/z:711.49[L97+H]。元素分析结果:理论值:C 77.72%,H 6.52%,N 15.76%。实验值:C 77.79%,H 6.48%,N 15.73%。
合成实施例7:
化合物L103的合成
Figure PCTCN2022113049-appb-000054
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将L91-1换为等物质的量(mol)的L103-1。目标化合物L103(1.75g,42%收率)。质谱理论值[L103+H]:491.22;MALDI-TOF-MS结果:m/z:491.25[L103+H]。元素分析结果:理论值:C 83.24%,H 5.34%,N 11.42%。实验值:C 82.95%,H 5.21%,N 11.84%。
合成实施例8:
化合物L104的合成
Figure PCTCN2022113049-appb-000055
本实施例与合成实施例7基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L92-4。目标化合物L104(2.94g,47%收率)。质谱理论值[L104+H]:739.29;MALDI-TOF-MS结果:m/z:739.36[L104+H]。元素分析结果:理论值:C 87.78%,H 4.64%,N 7.58%。实验值:C 87.77%,H 4.62%,N 7.61%。
合成实施例9:
化合物L105的合成
Figure PCTCN2022113049-appb-000056
本实施例与合成实施例7基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L93-1。目标化合物L105(3.50g,44%收率)。质谱理论值[L105+H]:939.35;MALDI-TOF-MS结果:m/z:939.48[L105+H]。元素分析结果:理论值:C 89.53%,H 4.50%,N 5.97%。实验值:C 89.55%,H 4.45%,N 5.94%。
合成实施例10:
化合物L106的合成
Figure PCTCN2022113049-appb-000057
本实施例与合成实施例7基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L94-1。目标化合物L106(3.26g,41%收率)。质谱理论值[L106+H]:939.35;MALDI-TOF-MS结果:m/z:939.45[L106+H]。元素分析结果:理论值:C 89.53%,H 4.50%,N 5.97%。实验值:C 89.59%,H 4.48%,N 5.93%。
合成实施例11:
化合物L107的合成
Figure PCTCN2022113049-appb-000058
本实施例与合成实施例7基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L95-1。目标化合物L107(1.69g,36%收率)。质谱理论值[L107+H]:555.21;MALDI-TOF-MS结果:m/z:555.36[L107+H]。元素分析结果:理论值:C 73.63%,H 4.73%,N 10.10%,O 11.54%。实验值:C 73.61%,H 4.76%,N 10.05%,O 11.58%。
合成实施例12:
化合物L109的合成
Figure PCTCN2022113049-appb-000059
本实施例与合成实施例7基本相同,其不同之处在于:本例中需将L91-2换为等物质的量(mol)的L97-1。目标化合物L109(2.95g,49%收率)。质谱理论值[L109+H]:711.39;MALDI-TOF-MS结果:m/z:711.50[L109+H]。元素分析结果:理论值:C 77.72%,H 6.52%,N 15.76%。实验值:C 77.74%,H 6.53%,N 15.73%。
合成实施例13:
化合物L139的合成
Figure PCTCN2022113049-appb-000060
本实施例与合成实施例7基本相同,其不同之处在于:本例中需将L103-1换为等物质的量(mol)的L139-2。目标化合物L139(2.45g,51%收率)。质谱理论值L139+H]:567.25;MALDI-TOF-MS结果:m/z:567.32[L139+H]。元素分析结果:理论值:C 84.78%,H 5.34%,N 9.89%。实验值:C 84.69%,H 5.36%,N 9.95%。
合成实施例14:
化合物L140的合成
Figure PCTCN2022113049-appb-000061
本实施例与合成实施例8基本相同,其不同之处在于:本例中需将L103-1换为等物质的量(mol)的L139-2。目标化合物L140(2.90g,42%收率)。质谱理论值[L140+H]:815.32;MALDI-TOF-MS结果:m/z:815.52[L140+H]。元素分析结果:理论值:C 88.43%,H 4.70%,N 6.87%。实验值:C 88.40%,H 4.73%,N 6.87%。
合成实施例15:
化合物L141的合成
Figure PCTCN2022113049-appb-000062
本实施例与合成实施例9基本相同,其不同之处在于:本例中需将L103-1换为等物质的量(mol)的L139-2。目标化合物L141(3.53g,41%收率)。质谱理论值[L141+H]:1015.38;MALDI-TOF-MS结果:m/z:1015.46[L141+H]。元素分析结果:理论值:C 89.91%,H 4.57%,N 5.52%。实验值:C 89.88%,H 4.55%,N 5.57%。
合成实施例16:
化合物L142的合成
Figure PCTCN2022113049-appb-000063
本实施例与合成实施例10基本相同,其不同之处在于:本例中需将L103-1换为等物质的量(mol)的L139-2。目标化合物L142(3.27g,38%收率)。质谱理论值[L142+H]:1015.38;MALDI-TOF-MS结果:m/z:1015.49[L142+H]。元素分析结果:理论值:C 89.91%,H 4.57%,N 5.52%。实验值:C 89.94%,H 4.58%,N 5.48%。
合成实施例17:
化合物L203的合成
Figure PCTCN2022113049-appb-000064
在500mL的圆底烧瓶中加入L203-2(2.74g,6.00mmol),L91-2(4.81g,19.80mmol),用甲苯(150ml)、乙醇(50mL)和去离子水(100mL)混合体系作为溶剂,加入Na 2CO 3(6.30g,59.4mmol)和Pd(PPh 3) 4(1.08g,0.93mmol)作为催化剂,在氮气保护下加热回流36小时,待反应体系冷却后过滤,并依次用饱和食盐水、乙醇冲洗滤饼,进一步采用常规方法处理得到最终产物L203(1.97g,47%收率)。质谱理论值[L203+H]:697.22;MALDI-TOF-MS结果:m/z:697.33[L203+H]。元素分析结果:理论值:C 82.73%,H 5.21%,N 12.06%。实验值:C 82.38%,H 4.92%,N 12.70%。
合成实施例18:
化合物L215的合成
Figure PCTCN2022113049-appb-000065
在500mL的圆底烧瓶中加入L215-2(2.83g,4.00mmol),L91-2(4.26g,17.60mmol),用甲苯(150ml)、乙醇(50mL)和去离子水(100mL)混合体系作为溶剂,加入Na 2CO 3(5.60g,52.80mmol)和Pd(PPh 3) 4(1.02g,0.88mmol)作为催化剂,在氮气保护下加热回流36小时,待反应体系冷却后过滤,并依次用饱和食盐水、乙醇冲洗滤饼,进一步采用常规方法处理得到最终产物L215(1.60g,39%收率)。质谱理论值[L215+H]:1027.42;MALDI-TOF-MS结果:m/z:1027.89[L215+H]。元素分析结果:理论值:C 84.19%,H 4.91%,N 10.90%。实验值:C 83.66%,H 5.38%,N 10.96%。
合成实施例19-26:
具体化合物的合成详见下表1。
表1:
Figure PCTCN2022113049-appb-000066
Figure PCTCN2022113049-appb-000067
下面通过将本发明中所述的连接层在串联有机电致发光器件中的实际应用效果,并通过测试器件中表现和性能来展示和验证本发明的技术特色和优势。
串联OLED器件包括阳极、阴极,以及位于两个电极之间的有机材料层。该有机材料又可以分为多个区域。比如,该有机材料层可以包括空穴传输区、发光层、电子传输区。
在具体实施例中,在第一电极下方或者第二电极上方可以使用基板。基板均为具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。
第一电极可以通过在基板上溅射或者沉积用作第一电极的材料的方式来形成。当第一电极作为阳极时,可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。第一电极作为阴极时,可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
有机材料层可以通过真空热蒸镀、旋转涂敷、打印等方法形成于电极之上。用作有机材料层的化合物可以为有机小分子、有机大分子和聚合物,以及它们的组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构。
空穴传输区的材料可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物等。
空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。
发光层包括可以发射不同波长光谱的的发光染料(即掺杂剂,dopant),还可以同时包括主体材料(Host)。根据不同的技术,发光层材料可以采用荧光电致发光材料、磷光电致发光材料、热活化延迟荧光发光材料等不同的材料。在一个串联OLED器件中,可以采用单一的发光技术,也可以采用多种不同的发光技术的组合。这些按技术分类的不同发光材料可以发射同种颜色的光,也可以发射不同种颜色的光。
OLED有机材料层还包括电子传输区。电子传输区可以为单层结构的电子传输层(ETL),即只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。
在本发明所述的串联OLED器件中,每个发光单元由空穴传输区、发光层、电子传输区组成。多个发光单元之间由连接层串联而成,其中发光单元可以是发射红、绿、蓝等单一颜色的单色发光单元,也可以是红、绿、蓝等不同颜色的单色发光单元,还可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
本发明所述的串联OLED器件中的连接层如图(1)所示,第一个发光单元制备在器件的阳极上,在第一发光单元和第二发光单元之间制备器件的连接层1,连接层中包括n型掺杂层、p型掺杂层和位于两者之间的间隔层,然后再在第二发光单元上制备连接层2、第三发光单元;依据器件结构设计需要,可相应制备N-1连接层,直至完成制备第N个发光单元,最后完成器件阴极的制备。
其中n型掺杂层主要由掺杂主体和n型掺杂剂组成。其中掺杂主体主要为电子传输材料,n型掺杂剂主要由碱金属、碱土金属以及部分过渡金属组成,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、镁(Mg),钙(Ca)、金(Au)、银(Ag)、铜(Cu)、铁(Fe)、镍(Ni)、铂(Pt)、钯
(Pd)、钌(Ru)、镱(Yb)中的一种或几种的混合物。图(1)中,n型掺杂层中的金属类n型掺杂剂的掺杂比例为0.2wt%至30wt%,优选的掺杂比例为0.5wt%至10wt%。
其中所述p型掺杂层由p型掺杂主体材料和p型掺杂剂组成,所述p型掺杂主体采用具有空穴传输性能的有机材料,所述p型掺杂剂采用具有高功函数的金属氧化物或者具有强吸电子能力的有机半导体材料;所述p型掺杂剂采用MoO 3、WO 3、V 2O 5、MoO 2、Co 3O 4、CN6-CP、DDQ、HATCN、C 60F 36、F4TCNQ、F4-R-TCNQ、F3-R-TCNQ、F2HCNQ、F6TCNNQ、TECTFCNBN中的一种或几种的混合物。
n型掺杂层和p型掺杂层之间的间隔层主要由电子传输材料组成,其总厚度为0.1nm至10nm,更优选为0.3nm至5nm。所述间隔层所采用的具有电子传输性能的有机材料具有如下式(1)或式(2)所示的结构。
Figure PCTCN2022113049-appb-000068
本发明的实施例中有机电致发光器件制备过程如下:
具体地,本实验中所采用的串联OLED器件为双发光层器件,具有一个连接层。器件的制备过 程如下:将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10 -5~5×10 -4Pa,在上述阳极层膜上真空蒸镀HATCN作为空穴注入层,蒸镀速率为0.05nm/s,蒸镀膜厚为5至10nm;
在空穴注入层之上真空蒸镀NPB作为器件的空穴传输层,蒸镀速率为0.1nm/s,蒸镀总膜厚为30至50nm;
在空穴传输层之上真空蒸镀器件的发光层,本发明的发光层中包括主体材料Be(bq) 2和磷光染料Ir(mphmq) 2(tmd),采用多源共蒸的方法进行掺杂,通过高低晶振探头进行速率和掺杂浓度的调控。调节上述主体材料的蒸镀速率均为0.1nm/s,调节发光层中的染料蒸镀速率为主体蒸镀速率的1%至5%,进而实现预定的掺杂比例,发光层蒸镀总膜厚为20至50nm;
在发光层之上真空蒸镀DPPyA作为电子传输层材料,其蒸镀速率为0.1nm/s,蒸镀总膜厚为20至60nm;
在电子传输层(ETL)上真空蒸镀厚度总厚度为20至60nm的连接层。其中n型掺杂层厚度为10nm,掺杂主体为Bphen,n型掺杂剂为Li,Cs,Ag等碱金属或者过渡金属,掺杂比例为10%。间隔层根据实验需要,厚度为0至10nm,其中p型掺杂层的厚度为20nm,掺杂主体为NPB,p型掺杂剂为TECTFCNBN,掺杂比例为3%。
然后依次蒸30nm至50nm的NPB作为空穴传输层,总膜厚为20至50nm的发光层,20至60nm的电子传输层,以及1nm的LiF作为电子注入层,以及150nm的Al作为阴极。然后制成双发光层的串联OLED器件。
下表1为本发明实施例制备的串联OLED器件中所采用的有机化合物及结构式。
表1:
Figure PCTCN2022113049-appb-000069
Figure PCTCN2022113049-appb-000070
器件实施例1
将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10 -5~5×10 -4Pa,在上述阳极层膜上真空蒸镀HATCN作为空穴注入层,蒸镀速率为0.05nm/s,蒸镀膜厚为5nm;
在空穴注入层之上真空蒸镀NPB作为器件的空穴传输层,蒸镀速率为0.1nm/s,蒸镀总膜厚为35nm;
在空穴传输层之上真空蒸镀器件的发光层,本发明的发光层中包括主体材料Be(bq) 2和磷光染料Ir(mphmq) 2(tmd),采用多源共蒸的方法进行掺杂,通过高低晶振探头进行速率和掺杂浓度的调控。调节上述主体材料的蒸镀速率均为0.1nm/s,调节发光层中的染料蒸镀速率为主体蒸镀速率的5%,进而实现预定的掺杂比例,发光层蒸镀总膜厚为24nm;
在发光层之上真空蒸镀器件的电子传输层材料DPPyA,蒸镀速率为0.1nm/s,蒸镀总膜厚为40nm;
在电子传输层(ETL)上蒸镀n型掺杂层,在电子传输层(ETL)上真空蒸镀厚度总厚度为20nm的连接层。其中n型掺杂层厚度为10nm,掺杂主体为Bphen,n型掺杂剂为Li,掺杂比例为10%。然后蒸镀10nm的p型掺杂层,掺杂主体为NPB,p型掺杂剂为TECTFCNBN,掺杂比例为3%。
然后依次蒸镀50nm的NPB作为空穴传输层,Be(bq) 2:Ir(mphmq) 2(tmd)的掺杂比例为5%、厚度为24nm的发光层,40nm的DPPyA作为电子传输层,以及1nm的LiF作为电子注入层,以及150nm的Al作为阴极。然后制成双发光层的串联OLED器件。
使其具有如下结构:
ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例2
与实施例1的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.1nm的L12间 隔层,相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例3:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.3nm的L12间隔层。
器件实施例4:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L12间隔层。
器件实施例5:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L12间隔层。
器件实施例6:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入3nm的L12间隔层。
器件实施例7:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入5nm的L12间隔层。
器件实施例8:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入7nm的L12间隔层。
器件实施例9:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入10nm的L12间隔层。
器件实施例10
与实施例1的制备方法相同,区别在于,在所用的p型掺杂剂为MoO 3,p型掺杂层的厚度为10nm,p型掺杂剂的比例为10%。相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例11:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.1nm的L12间隔层,相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.1nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例12:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.3nm的L12间隔层。
器件实施例13:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L12间隔层。
器件实施例14:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L12间隔层。
器件实施例15:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入3nm的L12间隔层。
器件实施例16:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入5nm的L12间隔层。
器件实施例17:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入7nm的L12间隔层。
器件实施例18:与实施例10的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入10nm的L12间隔层。
上述的器件实施例1-18制备完成的采用L12作为间隔层的本发明的串联OLED器件的性能汇总数据详见下表2。
表2:
Figure PCTCN2022113049-appb-000071
器件实施例19
与实施例1的制备方法相同,区别在于,在所用的n型掺杂剂为Cs,n型掺杂层的厚度为10nm,p型掺杂剂的比例为10%。相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例20:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.1nm的L12间隔层,相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs(10%,10nm)/L12(0.1nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例21:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.3nm的L12间隔层。
器件实施例22:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L12间隔层。
器件实施例23:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L12间隔层。
器件实施例24:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入3nm的L12间隔层。
器件实施例25:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入5nm的L12间隔层。
器件实施例26:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入7nm的L12间隔层。
器件实施例27:与实施例19的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入10nm的L12间隔层。
器件实施例28
与实施例19的制备方法相同,区别在于,在所用的p型掺杂剂为MoO 3,p型掺杂层的厚度为10nm,p型掺杂剂的比例为10%。相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs(10%,10nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例29:与实施例31的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.1nm的L4间隔层,相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs(10%,10nm)/L12(0.1nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例30:与实施例32的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.3nm的L12间隔层。
器件实施例31:与实施例32的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L12间隔层。
器件实施例32:与实施例32的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L12间隔层。
器件实施例33:与实施例32的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入3nm的L12间隔层。
器件实施例34:与实施例32的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入5nm的L12间隔层。
器件实施例35:与实施例32的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入7nm的L12间隔层。
器件实施例36:与实施例32的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入10nm的L12间隔层。
上述的器件实施例19-36制备完成的采用L12作为间隔层的本发明的串联OLED器件的性能汇总数据详见下表3。
表3:
Figure PCTCN2022113049-appb-000072
器件实施例37
与实施例1的制备方法相同,区别在于,在所用的n型掺杂剂为Ag,n型掺杂层的厚度为10nm,p型掺杂剂的比例为10%。相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Ag(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例38:与实施例41的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.1nm的L12间隔层,相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Ag(10%,10nm)/L12(0.1nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例39:与实施例42的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.3nm的L12间隔层。
器件实施例40:与实施例42的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L12间隔层。
器件实施例41:与实施例42的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L12间隔层。
器件实施例42:与实施例42的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入3nm的L12间隔层。
器件实施例43:与实施例42的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入5nm的L12间隔层。
器件实施例44:与实施例42的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入7nm的L12间隔层。
器件实施例45:与实施例42的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入10nm的L12间隔层。
器件实施例46
与实施例38的制备方法相同,区别在于,在所用的p型掺杂剂为MoO 3,p型掺杂层的厚度为10nm,p型掺杂剂的比例为10%。相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Ag(10%,10nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例47:与实施例51的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.1nm的L12间隔层,相应的串联OLED器件结构如下:
ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Cs(10%,10nm)/L12(0.1nm)/NPB:MoO 3(10%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例48:与实施例52的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.3nm的L12间隔层。
器件实施例49:与实施例52的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L12间隔层。
器件实施例50:与实施例52的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L12间隔层。
器件实施例51:与实施例52的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入3nm的L12间隔层。
器件实施例52:与实施例52的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入 5nm的L12间隔层。
器件实施例53:与实施例52的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入7nm的L12间隔层。
器件实施例54:与实施例52的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入10nm的L12间隔层。
上述的器件实施例37-54制备完成的采用L12作为间隔层的本发明的串联OLED器件的性能汇总数据详见下表4。
表4:
Figure PCTCN2022113049-appb-000073
器件实施例55:与实施例1的制备方法相同,区别在于,该串联器件的发光单元为3个,连接层为2个。相应的串联OLED器件结构为:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例56:与实施例55的制备方法相同,区别在于,该串联器件的2个连接层均引入了0.5nm的L12作为间隔层。相应的串联OLED器件结构为:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,2 4nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例57:与实施例55的制备方法相同,区别在于,该串联器件的2个连接层均引入了1nm的L12作为间隔层。相应的串联OLED器件结构为:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例58:与实施例1的制备方法相同,区别在于,该串联器件的发光单元为4个,连接层为3个。相应的串联OLED器件结构为:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例59:与实施例58的制备方法相同,区别在于,该串联器件的3个连接层均引入了0.5nm的L12作为间隔层。相应的串联OLED器件结构为:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.5nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例60:与实施例58的制备方法相同,区别在于,该串联器件的3个连接层均引入了1nm的L12作为间隔层。相应的串联OLED器件结构为:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
上述的器件实施例55-60制备完成的采用L12作为间隔层且发光单元数量不同的本发明的串联OLED器件的性能汇总数据详见下表5。
表5:
Figure PCTCN2022113049-appb-000074
Figure PCTCN2022113049-appb-000075
器件实施例61
与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L1间隔层,相应的串联OLED器件结构如下:ITO/HATCN(5nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/Bphen:Li(10%,10nm)/L12(0.1nm)/NPB:TECTFCNBN(3%,10nm)/NPB(35nm)/Be(bq) 2:Ir(mphmq) 2(tmd)(5%,24nm)/DPPyA(40nm)/LiF(1nm)/Al(150nm)
器件实施例62:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L1间隔层。
器件实施例63:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L2间隔层。
器件实施例64:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L2间隔层。
器件实施例65:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L3间隔层。
器件实施例66:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L3间隔层。
器件实施例67:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L4间隔层。
器件实施例68:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L4间隔层。
器件实施例69:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L5间隔层。
器件实施例70:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L5间隔层。
器件实施例71:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L6间隔层。
器件实施例72:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L6间隔层。
器件实施例73:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L7间隔层。
器件实施例74:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L7间隔层。
器件实施例75:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入 0.5nm的L8间隔层。
器件实施例76:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L8间隔层。
器件实施例77:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L11间隔层。
器件实施例78:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L11间隔层。
器件实施例79:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L13间隔层。
器件实施例80:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L13间隔层。
器件实施例81:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L14间隔层。
器件实施例82:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L14间隔层。
器件实施例83:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L19间隔层。
器件实施例84:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L19间隔层。
器件实施例85:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L20间隔层。
器件实施例86:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L20间隔层。
器件实施例87:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L21间隔层。
器件实施例88:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L21间隔层。
器件实施例89:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L22间隔层。
器件实施例90:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L22间隔层。
器件实施例91:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入 0.5nm的L25间隔层。
器件实施例92:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L25间隔层。
器件实施例93:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L26间隔层。
器件实施例94:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L26间隔层。
器件实施例95:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L27间隔层。
器件实施例96:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L27间隔层。
器件实施例97:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L28间隔层。
器件实施例98:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L28间隔层。
器件实施例99:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L29间隔层。
器件实施例100:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L29间隔层。
器件实施例101:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L31间隔层。
器件实施例102:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L31间隔层。
器件实施例103:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L32间隔层。
器件实施例104:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L32间隔层。
器件实施例105:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L33间隔层。
器件实施例106:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L33间隔层。
器件实施例107:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入 0.5nm的L35间隔层。
器件实施例108:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L35间隔层。
器件实施例109:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L37间隔层。
器件实施例110:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L37间隔层。
器件实施例111:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L43间隔层。
器件实施例112:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L43间隔层。
器件实施例113:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L49间隔层。
器件实施例114:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L49间隔层。
器件实施例115:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L57间隔层。
器件实施例116:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L57间隔层。
器件实施例117:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L75间隔层。
器件实施例118:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L75间隔层。
器件实施例119:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L79间隔层。
器件实施例120:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L79间隔层。
器件实施例121:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L103间隔层。
器件实施例122:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L103间隔层。
器件实施例123:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入 0.5nm的L107间隔层。
器件实施例124:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L107间隔层。
器件实施例125:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L109间隔层。
器件实施例126:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L109间隔层。
器件实施例127:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L175间隔层。
器件实施例128:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L175间隔层。
器件实施例129:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L179间隔层。
器件实施例130:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L179间隔层。
器件实施例131:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L181间隔层。
器件实施例132:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L181间隔层。
器件实施例133:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L195间隔层。
器件实施例134:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L195间隔层。
器件实施例135:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L203间隔层。
器件实施例136:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L203间隔层。
器件实施例137:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L207间隔层。
器件实施例138:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L207间隔层。
器件实施例139:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入 0.5nm的L209间隔层。
器件实施例140:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L209间隔层。
器件实施例141:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L215间隔层。
器件实施例142:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L215间隔层。
器件实施例143:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L219间隔层。
器件实施例144:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L219间隔层。
器件实施例145:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入0.5nm的L221间隔层。
器件实施例146:与实施例2的制备方法相同,区别在于,在n型掺杂层和p型掺杂层之间引入1nm的L221间隔层。
上述的器件实施例61-146制备完成的采用本发明中多个代表性化合物作为间隔层的本发明的串联OLED器件的性能汇总数据详见下表6。
表6:
Figure PCTCN2022113049-appb-000076
Figure PCTCN2022113049-appb-000077
Figure PCTCN2022113049-appb-000078
通过实施例1至9、实施例37至45的对比可以发现,在串联有机电致发光器件结构中其他材料相同的情况下,通过在连接层中引入厚度为0.1nm至10nm的间隔层后器件工作24h后的电压上升值均有所降低,同时器件的稳定性有较大幅度提升,器件的寿命有相应的提高。推测应该是在加热蒸镀和在器件工作的过程中,金属类n型掺杂剂可能会向p型掺杂剂和发光层中发生迁移或者扩散,从而导致连接层的老化和发光层中的激子淬灭,从而导致器件的效率和寿命下降。在引入间隔层改善器件的寿命时一般最优厚度大约为0.1nm至10nm。
通过对比实施例1至9、实施例19-27、实施例41至50可以发现n型掺杂剂的种类对于串联OLED器件的寿命有显著的影响。单纯从寿命上看,其趋势为银>锂>铯,这主要是因为对于同一种掺杂主体而言,银和Bphen之间存在较强的配位作用,作用力最强。而锂和铯和Bphen之间主要为静电相互作用。由于铯的半径远远大于锂的半径,因此对于这两个形成+1价的离子而言锂和Bphen之间的相互作用力比铯更强,因此这三种金属类n型掺杂剂和Bphen之间的相互作用力强弱排序为银强于锂,且锂强于铯。因此基于银作为n型掺杂剂的串联OLED器件寿命比基于铯的OLED器件寿命更长。同时,由于引入的间隔层对于三种金属的迁移均有一定的阻挡作用,本发明所述的间隔层对于采用不同n型掺杂剂的串联OLED器件均为类似的寿命改善效果。
通过对比实施例1至9和实施例10至18,实施例19至27和实施例28至36,实施例37至45和实施例46至54可以发现,无论是采用TECTFCNBN这种有机半导体类的p型掺杂剂还是MoO 3这种无机半导体类的p型掺杂剂,本发明所述的间隔层均可以改善串联OLED器件的稳定性,表现出类似的效果。这主要是因为金属类n型掺杂剂的迁移和扩散是导致串联器件老化时寿命衰减和电压上升的主要因素,因此引入间隔层有助于改善采用金属类n型掺杂剂和不同种类p型掺杂剂的串联OLED器件性能。
实施例1,4,5以及实施例61至120中采用了近30种不同的间隔层材料,我们发现采用L12作为间隔层的器件性能优于L14,具体而言就是器件的驱动电压变化较小,寿命较长。推测应该是L12的外围电子受体基团为邻菲啰啉,而L14的外围电子受体基团为2-苯基-邻菲啰啉,外围的苯基不仅会 降低氮原子的静电势,而且会引入空间位阻,不利于其与金属的相互作用。因此L12阻挡金属类n型掺杂剂迁移或扩散的能力比L14更强,所以基于L12构筑的间隔层的串联OLED器件寿命更优。此外,可以发现实施例61至82以及主要采用的含有双邻菲啰啉基团的间隔层材料,而实施例85至94主要为含有三嗪以及吡啶等基团的间隔层材料,可以发现在串联OLED器件中的双邻菲啰啉类材料阻挡金属离子迁移的效果优于L19、L20等材料,这可能是优于邻菲啰啉基团的氮原子附近静电势更大,对于金属类n型掺杂剂的相互作用力更强,因而更利于抑制金属扩散和迁移。此外,实施例61至120中还比较了间隔层的厚度分别为0.5nm和1nm时各个串联器件的性能,对比后可以发现采用0.5nm的间隔层的串联OLED器件的器件驱动电压有所更低,这可能是由于其串联电阻更低。但间隔层厚度为1nm的串联OLED器件的寿命和电压稳定性均优于间隔层厚度为0.5nm的串联OLED器件,这说明采用更厚的间隔层有助于更好地抑制金属类n型掺杂剂的扩散,这也进一步反映出本发明所述的间隔层对于器件性能的影响。实施例95至120中所采用的间隔层材料的特征是一侧为苯基吡啶,另一侧为邻菲啰啉类基团,桥连基团为萘、取代及未取代的蒽等,这类大π共轭基团有利于形成较强的π-π堆积来提高电子迁移率,同时这类大π共轭的桥连基团有助于扩大分子的共轭,进而提升带负电的分子的稳定性,因此基于此类间隔层材料的串联OLED器件也展现出较为优异的稳定性。
实施例121至126采用了L103、L107和L109为间隔层材料,与实施例4和5相比,这些材料在邻菲啰啉的4位和7位分别用甲基、甲氧基和四氢吡咯基进行了取代。我们发现当间隔层厚度为0.5nm时,采用L103、L107、L109作为间隔层的器件性能好于L12,具体表现为寿命更长或驱动电压变化更小;而间隔层厚度为1nm时正好相反。推测原因在于L103、L107和L109种给电子取代基的引入提升了邻菲啰啉基团氮原子附近的静电势,且其空间分布有利于材料采取U型构象,进一步提升配位中心的静电势,有利于其与金属结合,因而阻挡金属类n型掺杂剂迁移或扩散的能力更强。但是这些非共轭取代基的引入增大了分子间距,不利于电子的传输,因而仅在厚度较小时能表现出更好的性能,而在厚度增加后性能反而有所下降。
实施例127至146采用了10种不同的间隔层材料,与实施例121至126相比,这些材料采用了不同的桥连基团,有些采用了较大的π共轭基团芘基(实施例127至132、实施例141至146),有些采用了含氮基团吡啶(实施例133、134),有些增加了桥连基团连接的邻菲啰啉数量(实施例135至146)。采用较大的π共轭基团有利于电子迁移率和分子的稳定性的提高,采用含氮基团或增加桥连基团连接邻菲啰啉数量可以增加配位位点数,更有利于材料与金属之间的相互作用,提高对金属迁移和扩散的抑制能力,因而也表现出较好的器件性能。基于以上结果,可以发现含氮杂环类电子传输材料所构筑的间隔层与多种金属类n型掺杂剂存在较强的相互作用,有助于抑制金属的迁移或扩散,因而有利于提升激子利用率以及OLED器件的效率和寿命。
在实施例55至60中主要验证了间隔层对于发光单元数量分别为3和4的串联OLED的效果。可以发现对于含3个和4个发光单元的串联OLED器件而言,引入1nm的L12作为间隔层同样可以抑制n型掺杂层中的金属迁移和扩散,提升有机电致发光器件的稳定性。
综上,本发明所提出的在新型串联OLED器件,即n型掺杂层/间隔层/p型掺杂层的的连接层设计策略有助于抑制串联OLED器件中金属类n型掺杂剂的扩散和迁移,有助于提升连接层和的稳定性和减少发光层中的激子淬灭,因而可以应用于串联OLED器件中,有助于器件在工作时实现较长的寿命和较低的电压上升。
上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。在本发明构思的引导下,本领域技术人员可进行各种修改和改进,在上述说明的基础上还可以做出其它不同形式的变化或变动,而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

  1. 一种串联有机电致发光器件,包括以下结构:阳极、阴极、设置在所述阳极和阴极之间的至少两个电致发光单元、设置在相邻的电致发光单元之间的连接层,所述每个电致发光单元至少包括一个电子传输层和一个有机发光层,其特征在于:所述连接层为多叠层结构,包括n型掺杂层、p型掺杂层和位于二者之间的间隔层;
    所述n型掺杂层由n型掺杂主体材料和n型掺杂剂组成,所述n型掺杂主体采用具有电子传输性能的有机材料,所述n型掺杂剂采用碱金属、碱土金属或过渡金属;
    所述p型掺杂层由p型掺杂主体材料和p型掺杂剂组成,所述p型掺杂主体采用具有空穴传输性能的有机材料,所述p型掺杂剂采用具有高功函数的金属氧化物或者具有强吸电子能力的有机半导体材料;
    所述间隔层采用具有电子传输性能的有机材料,该有机材料不同于所述n型掺杂主体材料。
  2. 根据权利要求1所述的串联有机电致发光器件,其特征在于,所述电致发光单元中还包括空穴注入层、空穴传输层、电子阻挡层中的至少一层。
  3. 根据权利要求1所述的串联有机电致发光器件,其特征在于,所述n型掺杂层中,n型掺杂剂的掺杂比例为0.2wt%至30wt%,优选掺杂比例为0.5wt%至10wt%;
    所述n型掺杂剂选自锂、钠、钾、铷、铯、镁、钙、金、银、铜、铁、镍、铂、钯、钌、镱中的一种或几种的混合物;
    优选的,所述n型掺杂剂选自锂、银或铯。
  4. 根据权利要求1所述的串联有机电致发光器件,其特征在于,所述p型掺杂层中,p型掺杂剂的掺杂比例为0.2wt%至30wt%,优选掺杂比例为0.5wt%至10wt%;
    所述p型掺杂剂采用MoO 3、WO 3、V 2O 5、MoO 2、Co 3O 4、CN6-CP、DDQ、HATCN、C 60F 36、F4TCNQ、F2HCNQ、F6TCNNQ、TECTFCNBN中的一种或几种的混合物。
  5. 根据权利要求1所述的串联有机电致发光器件,其特征在于,所述间隔层的总厚度为0.1nm至10nm;
    优选间隔层的总厚度为0.3nm至5nm;更优选间隔层的总厚度为0.5nm至1nm。
  6. 根据权利要求1-5中任一所述的串联有机电致发光器件,其特征在于,所述间隔层所采用的具有电子传输性能的有机材料具有如下式(1)或下式(2)中任一所示的结构:
    Figure PCTCN2022113049-appb-100001
    式(1)中,桥连基团Q选自取代或未取代的下述基团中的一种,所述取代基团Q中的取代是指被选自氘、氚、氰基、卤素、C1~C10烷基、C3~C10环烷基、硅基、C6~C30芳胺基、C6~C30芳基、C2~C30杂芳基中的一种或者两种的组合所取代,其中
    Figure PCTCN2022113049-appb-100002
    为R1与桥连基团Q键合的位置,
    Figure PCTCN2022113049-appb-100003
    为R2和桥连基团Q键合的位置:
    Figure PCTCN2022113049-appb-100004
    Figure PCTCN2022113049-appb-100005
    式(1)中,所述R1和R2各自独立地选自取代或未取代的C3~C60杂芳基中的一种,所述杂芳基中含有至少一个氮原子,所述取代的杂芳基中的取代是指被选自氘、氚、氰基、卤素、C1~C10烷基、C3~C10环烷基、硅基、C6~C30芳胺基、C6~C30芳基、C2~C30杂芳基中的一种或者两种的组合所取代,该取代基独立地与相连接的杂芳环连接成环或不连接成环;
    优选的,所述R1和R2各自独立地选自取代或未取代的下述基团中的一种:吡啶基、嘧啶基、三嗪基、喹啉基、异喹啉基、喹喔啉基、喹唑啉基、苯并咪唑基、萘并咪唑基、邻菲罗啉基、苯并噻唑基、苯并噁唑基、吩嗪、二苯并吩嗪、噁二唑基、噻二唑基、三氮唑基、氧杂蒽醌基、蒽醌基,R1和R2中取代或未取代中的取代,是指被选自卤素、C1~C10烷基、C3~C10环烷基、C6~C30芳胺基、C6~C30芳基、C2~C30杂芳基中的一种或者两种的组合所取代,该取代基独立地与相连接的芳环或杂芳环连接成环或不连接成环。
    式(2)中,当n为2、3或4时,Q选自取代或未取代的下述基团中的一种:
    Figure PCTCN2022113049-appb-100006
    Figure PCTCN2022113049-appb-100007
    式(2)中,R 1和R 2分别独立地选自C1-C30脂肪链烃氧基、C2-C30脂肪链烃氨基、C3-C20环状脂肪链烃氨基、取代或未取代的C6~C30芳基氨基、取代或未取代的C3~C30杂芳基氨基、取代或未取代的C6-C60的芳基、取代或未取代的C3-C60的杂芳基中的一种;当上述R 1和R 2存在取代基时,所述取代基团选自氘、卤素、C1~C30链状烷基、C3~C30环烷基、氰基、硝基、C1~C6烷氧基、C1~C6硫代烷氧基、C6~C30芳基、C3~C60杂芳基中的一种或两种的组合。7、根据权利要求6所述的串联有机电致发光器件,其特征在于,式(1)所述R1和R2各自独立地选自取代或未取代的下述基团中的一种:
    Figure PCTCN2022113049-appb-100008
    Figure PCTCN2022113049-appb-100009
    Figure PCTCN2022113049-appb-100010
    式(2)所述R1和R2各自独立地选自取代或未取代的下述基团中的一种:
    甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、二甲氨基、环丙亚氨基、四氢吡咯基、哌啶基、环己亚氨基、环庚亚氨基、环辛亚氨基、甲氧基、乙氧基、丙氧基、丁氧基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、叔丁基咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯巯基、苯砜基、苯酚基、二苯磷氧基、萘巯基、萘砜基、萘酚基、二萘磷氧基、蒽巯基、蒽砜基、蒽酚基、二蒽磷氧基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、恶唑基、苯并恶唑基、萘并恶唑基、蒽并恶唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、 菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5-嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、1,5,7-三氮杂二环[4.4.0]癸-5-烯基、4-甲氧基苯基中的一种,或者选自上述基团中的两种的组合。
  7. 根据权利要求6所述的串联有机电致发光器件,其特征在于,式(1)所述桥连基团Q优选自下述基团中的一种:
    Figure PCTCN2022113049-appb-100011
    所述R1和R2各自独立地优选自取代或未取代的下述基团中的一种:
    Figure PCTCN2022113049-appb-100012
    Figure PCTCN2022113049-appb-100013
    式(2)所述桥连基团Q优选自下述基团中的一种:
    Figure PCTCN2022113049-appb-100014
    Figure PCTCN2022113049-appb-100015
    所述R1和R2各自独立地优选自取代或未取代的下述基团中的一种:
    甲基、环戊基、环己基、苯基、1-萘基、2-萘基、芴基、甲氧基、环丙亚氨基、四氢吡咯基、2,5-二氢吡咯基、异吲哚啉基、吲哚啉基、吲哚基、异吲哚基、哌啶基、咪唑基、吡唑基、苯并咪唑基、1,5,7-三氮杂二环[4.4.0]癸-5-烯基。
  8. 根据权利要求6所述的串联有机电致发光器件,其特征在于,所述间隔层所采用的具有电子传输性能的有机材料选自下述化合物:
    Figure PCTCN2022113049-appb-100016
    Figure PCTCN2022113049-appb-100017
    Figure PCTCN2022113049-appb-100018
    Figure PCTCN2022113049-appb-100019
    Figure PCTCN2022113049-appb-100020
    Figure PCTCN2022113049-appb-100021
    Figure PCTCN2022113049-appb-100022
    Figure PCTCN2022113049-appb-100023
    Figure PCTCN2022113049-appb-100024
    Figure PCTCN2022113049-appb-100025
    Figure PCTCN2022113049-appb-100026
    Figure PCTCN2022113049-appb-100027
    Figure PCTCN2022113049-appb-100028
    Figure PCTCN2022113049-appb-100029
    Figure PCTCN2022113049-appb-100030
    Figure PCTCN2022113049-appb-100031
    Figure PCTCN2022113049-appb-100032
    Figure PCTCN2022113049-appb-100033
    Figure PCTCN2022113049-appb-100034
    Figure PCTCN2022113049-appb-100035
    Figure PCTCN2022113049-appb-100036
  9. 根据权利要求6或9所述的串联有机电致发光器件,其特征在于,所述电致发光单元的数量为2至6;
    优选的,所述电致发光单元的数量优选为2至4。
PCT/CN2022/113049 2021-08-18 2022-08-17 一种串联有机电致发光器件 WO2023020538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023555404A JP2024510192A (ja) 2021-08-18 2022-08-17 タンデム型有機電界発光素子
KR1020237029528A KR20230138952A (ko) 2021-08-18 2022-08-17 직렬 유기 전계 발광 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110947691.6A CN113651836B (zh) 2021-08-18 2021-08-18 一种有机化合物及包含该化合物的有机电致发光器件
CN202110947691.6 2021-08-18
CN202210001683.7A CN114520301A (zh) 2022-01-04 2022-01-04 一种串联有机电致发光器件
CN202210001683.7 2022-01-04

Publications (1)

Publication Number Publication Date
WO2023020538A1 true WO2023020538A1 (zh) 2023-02-23

Family

ID=85240092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113049 WO2023020538A1 (zh) 2021-08-18 2022-08-17 一种串联有机电致发光器件

Country Status (3)

Country Link
JP (1) JP2024510192A (zh)
KR (1) KR20230138952A (zh)
WO (1) WO2023020538A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498049A (zh) * 2002-10-09 2004-05-19 伊斯曼柯达公司 具有改善电压稳定性的级联有机电致发光器件
CN101452997A (zh) * 2008-12-31 2009-06-10 清华大学 一种叠层结构有机电致发光器件
CN103050632A (zh) * 2012-11-27 2013-04-17 昆山维信诺显示技术有限公司 一种叠层oled器件
CN104037349A (zh) * 2013-03-06 2014-09-10 海洋王照明科技股份有限公司 叠层有机电致发光器件及其制备方法
CN106328820A (zh) * 2016-09-27 2017-01-11 华南理工大学 一种叠层有机电致发光器件
CN110518136A (zh) * 2019-08-30 2019-11-29 京东方科技集团股份有限公司 一种有机电致发光器件、显示面板及显示装置
CN112397666A (zh) * 2020-11-13 2021-02-23 江苏集萃有机光电技术研究所有限公司 一种叠层oled器件及包含其的显示装置
CN113651836A (zh) * 2021-08-18 2021-11-16 清华大学 一种有机化合物及包含该化合物的有机电致发光器件
CN114520301A (zh) * 2022-01-04 2022-05-20 清华大学 一种串联有机电致发光器件
CN114864851A (zh) * 2022-07-06 2022-08-05 京东方科技集团股份有限公司 有机物、发光器件、叠层发光器件、显示基板及显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498049A (zh) * 2002-10-09 2004-05-19 伊斯曼柯达公司 具有改善电压稳定性的级联有机电致发光器件
CN101452997A (zh) * 2008-12-31 2009-06-10 清华大学 一种叠层结构有机电致发光器件
CN103050632A (zh) * 2012-11-27 2013-04-17 昆山维信诺显示技术有限公司 一种叠层oled器件
CN104037349A (zh) * 2013-03-06 2014-09-10 海洋王照明科技股份有限公司 叠层有机电致发光器件及其制备方法
CN106328820A (zh) * 2016-09-27 2017-01-11 华南理工大学 一种叠层有机电致发光器件
CN110518136A (zh) * 2019-08-30 2019-11-29 京东方科技集团股份有限公司 一种有机电致发光器件、显示面板及显示装置
CN112397666A (zh) * 2020-11-13 2021-02-23 江苏集萃有机光电技术研究所有限公司 一种叠层oled器件及包含其的显示装置
CN113651836A (zh) * 2021-08-18 2021-11-16 清华大学 一种有机化合物及包含该化合物的有机电致发光器件
CN114520301A (zh) * 2022-01-04 2022-05-20 清华大学 一种串联有机电致发光器件
CN114864851A (zh) * 2022-07-06 2022-08-05 京东方科技集团股份有限公司 有机物、发光器件、叠层发光器件、显示基板及显示装置

Also Published As

Publication number Publication date
KR20230138952A (ko) 2023-10-05
JP2024510192A (ja) 2024-03-06

Similar Documents

Publication Publication Date Title
KR102584939B1 (ko) 불소치환을 함유하는 금속 착물
CN110407858B (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
CN109761822A (zh) 芴类衍生物和电子器件
CN111647009B (zh) 含硼类化合物及其电子器件
EP2799515A1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode
CN113651836B (zh) 一种有机化合物及包含该化合物的有机电致发光器件
KR101041867B1 (ko) 바이나프틸 화합물 및 이것을 사용한 유기발광소자
CN111263753B (zh) 化合物和包含其的有机发光器件
CN111320612A (zh) 化合物及有机电致发光器件
CN111808085B (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN113004153B (zh) 一种化合物及其应用
KR102592657B1 (ko) 전계발광재료 및 그 소자
CN111943829B (zh) 一种激基复合物及其应用及采用该激基复合物的有机电致发光器件
CN111808082A (zh) 一种发光材料及其应用
CN113861040B (zh) 有机化合物及其在器件中的应用
JP2023528214A (ja) 化合物、有機エレクトロルミネッセンスデバイス及び表示装置
WO2023125276A1 (zh) 一种有机化合物及其应用
CN111943949B (zh) 一种有机化合物及其应用及包含该化合物的有机电致发光器件
CN111072666A (zh) 有机电致发光材料及其应用
WO2023093094A1 (zh) 一种有机电致发光器件及显示装置
WO2023020538A1 (zh) 一种串联有机电致发光器件
CN114520301A (zh) 一种串联有机电致发光器件
CN115368384B (zh) 有机化合物及其应用以及包含其的有机电致发光器件
CN111253373B (zh) 有机电致发光材料及应用及采用其的器件
CN112125880B (zh) 一种化合物及其应用、包含其的有机电致发光器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237029528

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023555404

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE