WO2024007813A1 - 驱动机构和血泵 - Google Patents

驱动机构和血泵 Download PDF

Info

Publication number
WO2024007813A1
WO2024007813A1 PCT/CN2023/099070 CN2023099070W WO2024007813A1 WO 2024007813 A1 WO2024007813 A1 WO 2024007813A1 CN 2023099070 W CN2023099070 W CN 2023099070W WO 2024007813 A1 WO2024007813 A1 WO 2024007813A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
rotor
rotating shaft
shaft
groove
Prior art date
Application number
PCT/CN2023/099070
Other languages
English (en)
French (fr)
Inventor
谢端卿
余顺周
Original Assignee
深圳核心医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210800376.5A external-priority patent/CN115282467B/zh
Priority claimed from CN202210977269.XA external-priority patent/CN115414591B/zh
Application filed by 深圳核心医疗科技股份有限公司 filed Critical 深圳核心医疗科技股份有限公司
Publication of WO2024007813A1 publication Critical patent/WO2024007813A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body

Definitions

  • This application relates to the technical field of medical devices, and in particular to a driving mechanism and a blood pump.
  • the blood pump is designed to be inserted percutaneously into a patient's blood vessel, such as an artery or vein in the thigh or armpit, and can be advanced into the patient's heart to function as a left ventricular assist device or a right ventricular assist device. Therefore, the blood pump may also be called an intracardiac blood pump or an intravascular blood pump.
  • a blood pump has a driving mechanism and an impeller.
  • the impeller is connected to the driving shaft of the driving mechanism.
  • it is usually necessary to provide a structure for positioning or limiting the driving shaft, resulting in a relatively complex structure of the driving mechanism.
  • this application provides a driving mechanism and blood pump with a relatively simple structure.
  • the embodiment of the first aspect of the present application provides a driving mechanism, including the driving mechanism including a housing, a rotating shaft, a rotor, and a first bushing and a second bushing; wherein the rotating shaft is rotatably mounted on the The housing, the rotating shaft has a connecting end and a ball head end away from the connecting end, the connecting end is used to connect with the impeller; the rotor is fixed to the rotating shaft; the first sleeve and the third Both shaft sleeves are installed on the housing.
  • the first shaft sleeve is provided with a groove.
  • the groove has a concave spherical wall, wherein the rotating shaft is rotatably inserted through the second shaft sleeve.
  • the ball head end can be movably disposed in the groove and can contact the spherical wall, the rotor is located between the first sleeve and the second sleeve; the stopper Fixedly connected to at least one of the rotating shaft and the rotor, the stopper is located between the rotor and the second sleeve, and the stopper can abut against the second sleeve.
  • An embodiment of the second aspect of the present application provides a blood pump, including an impeller and a driving mechanism as described in the first aspect; the impeller is connected to the connecting end of the rotating shaft, and the impeller can follow the rotating shaft. Turn.
  • Figure 1 is a schematic structural diagram of a blood pump provided by an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the blood pump shown in Figure 1, omitting the sleeve, impeller and part of the conduit;
  • Figure 3 is a partial enlarged view of the blood pump shown in Figure 2;
  • Figure 4 is a cross-sectional view of the rotating shaft, stopper, rotor, first bushing and second bushing in Figure 1 assembled together;
  • Figure 5 is a partial enlarged view of part A shown in Figure 4.
  • Figure 8 is a schematic structural diagram of the second rotor and a magnetic conductive plate of the magnetic conductive member shown in Figure 7 assembled together;
  • Figure 9 is a schematic structural view of the first flywheel of the first rotor of the rotor shown in Figure 7;
  • Figure 10 is a partial enlarged view of part B shown in Figure 2;
  • Figure 11 is a schematic structural diagram of the first sleeve of the blood pump shown in Figure 2;
  • Figure 12 is a cross-sectional view of the second bushing in Figure 11;
  • Figure 13 is a cross-sectional view from another angle of the blood pump shown in Figure 1, omitting the sleeve, impeller and part of the conduit;
  • Figure 15 is a schematic structural diagram of the support base of the blood pump shown in Figure 13;
  • Figure 16 is a schematic structural diagram of the second sleeve of the blood pump shown in Figure 2;
  • Figure 17 is a schematic structural diagram of a blood pump provided by an embodiment of the present invention.
  • Figure 18 is an exploded view of the blood pump of Figure 17;
  • Figure 19 is a schematic structural diagram of the cannula assembly of the blood pump in Figure 17;
  • Figure 22 is a schematic diagram of the internal structure of the connecting tube in Figure 21;
  • Figure 24 is an exploded view of the blood pump in Figure 17 with the intubation tube and connecting tube omitted;
  • Figure 25 is another exploded view of the blood pump in Figure 17 with the cannula and connecting tube omitted;
  • Figure 26 is a cross-sectional view of the blood pump in Figure 17 with the intubation tube, adapter tube and part of the catheter omitted;
  • Figure 27 is a partial enlarged view of E in Figure 26;
  • Figure 28 is a schematic structural diagram of the rotating shaft, first bushing and second bushing in Figure 26 assembled together;
  • Figure 29 is a schematic assembly diagram of the first bushing and part of the rotating shaft in Figure 28;
  • Figure 30 is a schematic diagram of the positional relationship between the rotating shaft and the second sleeve when deflection occurs in Figure 28;
  • Figure 31 is a cross-sectional view of the first bushing in Figure 26;
  • Figure 32 is a schematic structural diagram of the support base in Figure 26;
  • Figure 33 is a schematic structural diagram of the second bushing in Figure 26;
  • Figure 34 is a schematic structural diagram of the first rotor in Figure 26;
  • Figure 35 is a schematic structural diagram of the second rotor in Figure 26;
  • Figure 36 is an exploded view of the stator and magnetic conductive member in Figure 26.
  • the end of a device closest to the operator is usually defined as the proximal end, and the end far from the operator is defined as the distal end.
  • the blood pump 1 includes a driving mechanism 10 and an impeller 20 .
  • the driving mechanism 10 is drivingly connected to the impeller 20, and the driving mechanism 10 can drive the impeller 20 to rotate.
  • the blood pump 1 further includes a sleeve 40 , which is fixedly connected to the distal end of the driving mechanism 10 .
  • the impeller 20 is rotatably received in the casing 40 .
  • the cannula 40 has a blood outlet 41 and a blood Liquid inlet 42. When the impeller 20 rotates, blood flows into the cannula 40 from the blood inlet 42 and then flows out from the blood outlet 41 .
  • the cannula 40 extends through a heart valve, such as the aortic valve, the blood inlet 42 is located within the heart, and the blood outlet 41 and drive mechanism 10 are located outside the heart in a blood vessel such as the aorta.
  • the blood pump 1 also includes a conduit 50 connected to the proximal end of the driving mechanism 10 .
  • the conduit 50 is used to accommodate various supply lines.
  • the supply line includes a wire for electrical connection with the drive mechanism 10 and a cleaning line for feeding flushing fluid to the blood pump 1 .
  • the flushing solution is physiological saline, physiological saline containing heparin, glucose, etc.
  • the driving mechanism 10 includes a housing 100 , a rotating shaft 200 , a stator 300 , a rotor 400 , a first sleeve 510 , a second sleeve 520 and a stopper 600 .
  • the housing 100 is generally a cylindrical housing with openings at both ends. The distal end of the housing 100 is fixedly connected to the sleeve 40 , and the proximal end is fixedly connected to the catheter 50 .
  • Housing 100 has an interior cavity. Specifically, the housing 100 is provided with a separation ring 120 , and the separation ring 120 separates the inner cavity of the housing 100 into a limiting cavity 112 and an accommodating cavity 114 . In the illustrated embodiment, the limiting cavity 112 and the accommodating cavity 114 are arranged along the axial direction of the housing 100 .
  • the rotating shaft 200 is elongated.
  • the rotating shaft 200 is rotatably mounted on the housing 100 .
  • the rotating shaft 200 has a connecting end 210 for connecting with the impeller 20 and a ball end 220 away from the connecting end 210 .
  • the rotating shaft 200 extends generally along the axial direction of the housing 100 , or in other words, the extending direction of the axis of the rotating shaft 200 is generally consistent with the axial direction of the housing 100 .
  • the limiting cavity 112 and the accommodating cavity 114 are arranged along the axis of the rotating shaft 200 .
  • the rotating shaft 200 passes through the limiting cavity 112 , is partially received in the accommodating cavity 114 , and is partially located outside the housing 100 or partially extends into the sleeve 10 .
  • the part of the rotating shaft 200 that extends outside the housing 100 or extends into the sleeve 10 is the connecting end 210 of the rotating shaft 200; the ball end 220 is located in the accommodating cavity 114.
  • the impeller 20 is fixedly connected to the connecting end 210 so that the impeller 20 can rotate with the rotating shaft 200 .
  • the rotating shaft 200 is made of ceramic material. Compared with metal materials, ceramics have higher processing accuracy, higher biocompatibility, higher mechanical strength, and better wear resistance and corrosion resistance.
  • the stator 300 is fixedly installed on the housing 100 , that is, the stator 300 is disposed in the inner cavity of the housing 100 . In the illustrated embodiment, the stator 300 is located in the receiving cavity 114 .
  • the rotating shaft 200 is rotatably installed in the stator 300 .
  • the rotor 400 is located in the housing 100 , that is, the rotor 400 is also disposed in the inner cavity of the housing 100 . In the illustrated embodiment, the rotor 400 is located within the receiving cavity 114 .
  • the rotor 400 is fixedly connected to the rotating shaft 200, the stator 300 can drive the rotor 400 to rotate, and the rotor 400 can drive the rotating shaft 200 to rotate.
  • the rotor 400 has magnetism, and the stator 300 can generate a rotating magnetic field that drives the rotor 400 to rotate.
  • the rotor 400 includes a first rotor 410 and a second rotor 420.
  • the first rotor 410 and the second rotor 420 are both fixed to the rotating shaft 200.
  • Both the first rotor 410 and the second rotor 420 are rotatably received in the accommodation cavity 114 of the housing 100 .
  • the first rotor 420 and the second rotor 420 are arranged along the axis of the rotating shaft 200 .
  • the stator 300 is located between the first rotor 410 and the second rotor 420 .
  • the first rotor 410 and the second rotor 420 both have magnetism, and the stator 300 can generate a rotating magnetic field that drives the first rotor 410 and the second rotor 420 to rotate.
  • the first rotor 410 includes a first magnet 411 , and the first magnet 411 is fixedly connected to the rotating shaft 200 .
  • the first magnet 411 is a ring-shaped Halbach array magnet.
  • the first rotor 410 further includes a first flywheel 412 , the first flywheel 412 is fixed to the rotating shaft 200 , and the first magnet 411 is fixed to the first flywheel 412 .
  • the first flywheel 412 includes a first built-in tube 4121, a first disc-shaped portion 4122, and a first outer ring wall 4123. Both the first built-in tube 4121 and the first outer ring wall 4123 It is a circular tube structure, and the first disc-shaped part 4122 is an annular disc structure. The first built-in tube 4121 and the first outer ring wall 4123 are both fixedly connected to the first disk-shaped portion 4122. The first outer ring wall 4123 is arranged around the first disc-shaped portion 4122. The first built-in tube 4121 and the first outer ring wall 4123 are arranged coaxially.
  • the rotating shaft 200 is passed through the first built-in tube 4121 and is connected with the first built-in tube 4121.
  • a first annular cavity 4124 is formed between the first built-in tube 4121 and the first outer annular wall 4123.
  • the first magnet 411 is accommodated in the first annular cavity 4124.
  • the shape of the first annular cavity 4124 is adapted to the first magnet 411 to facilitate the installation and positioning of the first magnet 411. This arrangement enables the first flywheel 412 to limit the position of the first magnet 411, which not only facilitates the installation of the first magnet 411, but also makes the combination between the first magnet 411 and the first flywheel 412 more stable.
  • the first flywheel 412 is not limited to the above structure.
  • the first flywheel 412 is not has a first outer ring wall 4123; in some embodiments, the first flywheel 412 does not have a first outer ring wall 4123 and a first built-in tube 4121.
  • the rotating shaft 200 is fixedly penetrated through the first disc-shaped portion 4122. center.
  • providing the first built-in tube 4121 can connect the first flywheel 412 to the rotating shaft 200 more stably.
  • the second rotor 420 includes a second magnet 421 , and the second magnet 421 is fixed to the rotating shaft 200 .
  • the second magnet 421 is a ring-shaped Halbach array magnet.
  • the second rotor 420 further includes a second flywheel 422 , the second flywheel 422 is fixed on the rotating shaft 200 , and the second magnet 421 is fixed on the second flywheel 422 .
  • the connection strength between the second magnet 421 and the rotating shaft 200 can be enhanced; in addition, the shaking of the rotating shaft 200 during rotation can be reduced, making the entire rotating shaft 200 more stable during the rotating process.
  • the second flywheel 422 includes a second built-in tube 4221, a second disc-shaped portion 4222, and a second outer ring wall 4223.
  • Both the second built-in tube 4221 and the second outer ring wall 4223 are circular tubes. structure, the second disc-shaped portion 4222 is an annular disc structure.
  • the second built-in tube 4221 and the second outer ring wall 4223 are both fixedly connected to the second disk-shaped portion 4222.
  • the second outer ring wall 4223 is arranged around the second disc-shaped portion 4222.
  • the second inner tube 4221 and the second outer ring wall 4223 are arranged coaxially.
  • the rotating shaft 200 is passed through the second inner tube 4221 and is connected with the second inner tube 4222. Pipe 4221 fixed connection.
  • a second annular cavity is formed between the second built-in tube 4221 and the second outer annular wall 4223.
  • the second magnet 421 is housed in the second annular cavity.
  • the shape of the second annular cavity is adapted to the second magnet 421 to facilitate the installation and positioning of the second magnet 421 .
  • This arrangement enables the second flywheel 422 to limit the second magnet 421, which not only facilitates the installation of the second magnet 421, but also makes the combination of the second magnet 421 and the second flywheel 422 more stable.
  • the second flywheel 422 is not limited to the above structure. In some embodiments, the second flywheel 422 does not have a second outer ring wall 4223; in some embodiments, the second flywheel 422 does not have a second outer ring wall.
  • the wall 4223 and the second built-in tube 4221, at this time, the rotating shaft 200 is fixedly penetrated through the center of the second disc-shaped portion 4222. Compared with the second flywheel 422 having only the second disc-shaped portion 4222, providing the second built-in tube 4221 can connect the second flywheel 422 to the rotating shaft 200 more stably.
  • the stator 300 includes a first stator unit 310 and a second stator unit 320 arranged along the axis of the rotating shaft 200.
  • the first stator unit 310 can drive the first rotor 410 to rotate, and the second stator unit 320 can drive the second rotor. 420 turns.
  • the first stator unit 310 can generate a rotating magnetic field that drives the first rotor 410 to rotate, and the second stator unit 320 can generate a rotating magnetic field that drives the second rotor 420 to rotate.
  • the first stator unit 310 and the second stator unit 320 are both fixedly received in the accommodation cavity 114 of the housing 100 .
  • the rotating shaft 200 is rotatably inserted through the first stator unit 310 and the second stator unit 320 .
  • the first stator unit 310 and the second stator unit 320 are both located between the first rotor 410 and the second rotor 420 .
  • the first stator unit 310 and the second stator unit 320 each include a magnetic core and a coil, and the coil is wound around the magnetic core.
  • the first stator unit 310 includes a first magnetic core 312 and a first coil 313.
  • the first coil 313 is wound around the first magnetic core 312.
  • There are a plurality of first magnetic cores 312 and the plurality of first magnetic cores 312 are arranged around the axis of the rotating shaft 200 .
  • Each first magnetic core 312 is provided with a first coil 313 .
  • the structure of the second stator unit 320 is similar to that of the first stator unit 310 . Please refer to FIG. 8 together.
  • the second stator unit 320 includes a second magnetic core 322 and a second coil 323.
  • the second coil 323 is wound around the second magnetic core 322.
  • Each second magnetic core 322 is provided with a second coil 323 .
  • the driving mechanism 10 also includes a magnetic conductive member 700 fixed to the housing 100 .
  • the first magnetic core 312 of the first stator unit 310 and the second magnetic core 322 of the second stator unit 320 are both in contact with the magnetic conductive member 700 .
  • the magnetic conductive member 700 is fixedly received in the housing 100 , for example, is clamped on the inner wall of the housing 100 .
  • the rotating shaft 200 is rotatably passed through the magnetic conductive member 700 .
  • One end of the first magnetic core 312 is fixedly connected to the magnetic conductive member 700, and the first rotor 410 is disposed close to the other end of the first magnetic core 312; one end of the second magnetic core 423 is fixedly connected to the magnetic conductive member 700, and the second rotor 420 is close to The other end of the second magnetic core 322 is provided.
  • the magnetic conductive member 700 plays a role in closing the magnetic circuit to promote and increase the generation of magnetic flux and improve the coupling capacity. Therefore, the magnetic conductive member 700 is provided to close the magnetic circuit between the first stator unit 310 and the first rotor 410 .
  • the function of the circuit and the function of closing the magnetic circuit between the second stator unit 320 and the second rotor 420 increase the magnetic flux. Therefore, the arrangement of the magnetic conductive member 700 is beneficial to reducing the overall diameter of the driving mechanism 10 .
  • first magnetic core 312 of the first stator unit 310 and the The second magnetic cores 322 of the two stator units 320 are fixedly connected to the magnetically conductive member 700, which can also realize the positioning and installation of the first stator unit 310 and the second stator unit 320, reducing the cost of the first stator unit 310 and the second stator unit 320. Difficulty in assembling the stator unit 320.
  • the magnetic conducting member 700 arranged in the above manner can also reduce the number of positioning structures in the housing 100, thereby simplifying the structure of the housing 100 and simplifying the assembly process of the entire driving mechanism 10.
  • the magnetic conductive member 700 includes two magnetic conductive plates 710 , which are stacked. One of the magnetic plates 710 is fixedly connected to the first magnetic core 312 of the first stator unit 310 , and the other magnetic conductive plate 710 Fixedly connected to the second magnetic core 322 of the second stator unit 320 , the rotating shaft 200 is rotatably inserted through the two magnetic conductive plates 710 . Specifically, the two magnetic conductive plates 710 are separated before assembly. By arranging the magnetic conductive member 700 into two separated magnetic conductive plates 710 before assembly, when assembling the driving mechanism 10, the first magnetic conductive plate 710 can be assembled first.
  • the magnetic core 312 is fixed to the magnetic conductive plate 710, the second magnetic core 322 is fixed to another magnetic conductive plate 710, and then the two magnetic conductive plates 710 are stacked. In this way, the first magnetic core 312 and the second magnetic core can be conveniently connected. 322 are respectively assembled to the two magnetic conductive plates 710, which can make the assembly of the first magnetic core 321 and the second magnetic core 322 more convenient.
  • the two magnetic conductive plates 710 are fixed, so that the first stator unit 310 , the second stator unit 320 and the magnetic conductive member 700 form a whole body and are assembled into the housing 100 , making the assembly of the stator 300 easier.
  • two magnetically conductive plates 710 can be connected together by gluing or welding. It can be understood that in other embodiments, the two magnetically conductive plates 710 are not fixed, but are in contact with each other.
  • the magnetically conductive member 700 is not limited to the above-mentioned combination of two separate magnetically conductive plates 710.
  • the magnetically conductive member 700 can also be a plate-shaped structure, with the first magnetic core 231 and the second magnetic core 241 are connected to the magnetic conductive member 700 , that is, the first stator unit 310 and the second stator unit 320 share a magnetic conductive member 700 .
  • the magnetic conductive plate 710 is made of silicon steel, and the first magnetic core 312 and the second magnetic core 322 are made of silicon steel.
  • the first sleeve 510 and the second sleeve 520 are both installed on the housing 100 . Specifically, the first sleeve 510 is received in the accommodation cavity 114 , and the second sleeve 520 is received in the limiting cavity 112 . The first sleeve 510 and the second sleeve 520 are both fixed to the housing 100 . The first bushing 510 and the second bushing 520 are spaced apart along the axial direction of the housing 100 , and the first bushing 510 and the second bushing 520 can limit the position of the rotating shaft 200 .
  • the second sleeve 520 is closer to the connecting end 210 of the rotating shaft 200 than the first sleeve 510 , or in other words, the second sleeve 520 is closer to the separation ring 120 in the housing 100 than the first sleeve 510 .
  • the rotor 400 is located between the first sleeve 510 and the second sleeve 520; the stator 300 is also located between the first sleeve 510 and the second sleeve 520.
  • the first rotor 410, the second rotor 420, the first stator unit 310 and the second stator unit 320 are all located between the first sleeve 510 and the second sleeve 520; the first rotor 410 The second rotor 420 is disposed close to the first sleeve 510 and the second rotor 420 is disposed close to the second sleeve 520 .
  • first sleeve 510, the first rotor 410, the first stator unit 310, the second stator unit 320, the second rotor 420 and the second sleeve 520 are arranged in sequence along the axis of the rotating shaft 200, wherein the The two sleeves 510 are closest to the connecting end 210 of the rotating shaft 200 .
  • the first sleeve 510 is provided with a groove 512, and the groove 512 has a concave spherical wall 514.
  • the rotating shaft 200 is rotatably inserted through the second sleeve 520 , the ball end 220 of the rotating shaft 200 is movably disposed in the groove 512 , and the ball end 220 of the rotating shaft 200 can abut against the spherical wall 514 .
  • the groove 512 can support and limit the ball end 220 of the rotating shaft 200 to limit the range of movement of the rotating shaft 200 in the direction away from the impeller 20 along the axis of the rotating shaft 200 . radial swing range.
  • the groove 512 has a notch 512a, the rotating shaft 200 passes through the notch 512a, and a rounding 515 is provided at the notch 512a of the groove 512. That is, the groove wall at the notch 512a of the groove 512 is rounded to prevent the rotating shaft 200 from being scratched and worn by the notch 512a of the groove 512 with edges.
  • the length h of the ball end 220 in the axial direction of the rotating shaft 200 is less than the depth s of the groove 512 (the depth s of the groove 512 is the maximum distance from the notch 512a of the groove 512 to the spherical wall 514), so that The ball end 220 is better confined within the groove 512 and the radial swing range of the rotating shaft 200 is reduced.
  • the depth of the groove 512 should not be too large to avoid the length of the rotating shaft 200 located in the groove 512 being too long, otherwise the length of the rotating shaft 200 may be increased.
  • the radius of the spherical wall 514 is greater than the radius of the ball end 220 , that is, the radius of the sphere where the spherical wall 514 is located is greater than the radius of the sphere where the ball end 220 is located.
  • the length L of the spherical wall 514 in the axial direction of the first sleeve 510 is less than the depth s of the groove 512 .
  • the first sleeve 510 also has a liquid hole 516 connected with the groove 512 .
  • the liquid through hole 512 can be connected with the cleaning pipeline in the conduit 50 so that the flushing liquid can enter the groove 512 through the liquid through hole 516 .
  • rinse The liquid entering between the groove wall of the groove 512 and the ball end 220 can play a lubricating role to reduce the friction between the ball end 220 and the groove wall of the groove 512, thereby reducing the friction between the ball end 220 and the groove. Wall wear.
  • an opening 516a of the liquid hole 516 is located at the center of the spherical wall 514, so that the flushing liquid entering the groove 512 from the liquid hole 516 can provide an axial impulse to the ball end 220 of the rotating shaft 200 as much as possible.
  • the central axis of the liquid hole 516 coincides with the central axis of the cavity surrounded by the spherical wall 514 , so that the liquid hole 516 is a straight hole to reduce the energy consumption of the flushing liquid in the liquid hole 516 .
  • the diameter of the opening 516a of the liquid hole 516 located on the spherical wall 514 is 1/9 to 1/3 of the diameter of the sphere where the ball head end 220 is located (the diameter of the ball head end 220 is also the diameter of the ball head end 220 where the ball head end 220 is located). diameter of the sphere). In the illustrated embodiment, since the diameter of the liquid hole 516 is constant, that is, the diameter of the liquid hole 516 is 1/9 to 1/3 of the diameter of the ball end 220 .
  • the diameter of the opening 516a of the liquid hole 516 on the spherical wall 514 is too large, the contact surface between the ball end 220 and the spherical wall 514 will be reduced, which will increase the wear of the spherical wall 514 on the ball end 220; if the diameter of the opening 516a is too large, It will affect the amount of flushing liquid entering the groove 512 from the liquid hole 516.
  • the flushing liquid entering the groove 512 needs to give an impulse to the ball head end 220, and on the other hand, it enters the ball head end 220 and
  • the spherical walls 514 have a lubricating effect to reduce the friction coefficient between the ball head end 220 and the spherical walls 514. Therefore, the amount of flushing liquid entering the groove 512 should not be too small.
  • the driving mechanism 10 further includes a support base 800 , and the support base 800 is fixed to the housing 100 .
  • the support base 800 is provided with an installation cavity 810 and a liquid inlet hole 820 connected with the installation cavity 810.
  • the first sleeve 510 is installed in the installation cavity 810.
  • the liquid passage hole 516 is connected with the liquid inlet hole 820 .
  • the end of the liquid inlet hole 820 away from the installation cavity 810 is used to communicate with the cleaning pipeline of the conduit 50 so that the flushing liquid can flow into the space between the groove wall of the groove 512 and the ball head end 220 through the liquid inlet hole 820 and the liquid hole 516 into the gap, and then flows into the inner cavity of the housing 100.
  • the installation cavity 810 has a cavity bottom 812, and an opening of the liquid inlet 820 is located at the cavity bottom 812 of the installation cavity 810.
  • a support step 814 is provided in the installation cavity 810, and the support step 814 is in contact with the first sleeve 510, so as to The first sleeve 510 is spaced apart from the cavity bottom 812 by a certain distance to better ensure the smooth flow of the flushing liquid.
  • the support step 814 abuts the side of the first sleeve 510 away from the second sleeve 520 .
  • the support base 800 is also provided with a branch channel 830, which is in fluid communication with the liquid inlet hole 820, so that the flushing liquid flowing through the liquid inlet hole 820 can also flow into the inner cavity of the housing 100 through the branch channel 830.
  • one end of the branch channel 300 is connected to the gap between the first sleeve 510 and the cavity bottom 812 of the installation cavity 810 , and the other end is connected to the accommodation cavity 114 .
  • the shunt channel 830 is formed by a partial recess in the cavity wall of the installation cavity 810 . In other words, under normal conditions, the flushing liquid enters the installation cavity 810 from the liquid inlet hole 820 and is divided into two streams.
  • the number of branch channels 830 is two, and the two branch channels 830 are arranged opposite to each other. It can be understood that the number of shunt channels 830 can be adjusted according to design needs. For example, in some embodiments, the number of shunt channels 830 can be one or more than two.
  • the second sleeve 520 is in contact with the separation ring 120 , that is, the separation ring 120 is located between the second sleeve 520 and the rotor 400 .
  • the spacer ring 120 is located between the second sleeve 520 and the second rotor 420 .
  • the separation ring 120 is used to facilitate the positioning of the second sleeve 520 and the assembly of the second sleeve 520 can be facilitated.
  • the second sleeve 520 is provided with a shaft hole 522, and the rotating shaft 200 is rotatably inserted into the shaft hole 522.
  • the central axis of the shaft hole 522 coincides with the central axis of the liquid hole 516 of the first sleeve 510 .
  • the flushing liquid entering the accommodation cavity 114 can flow through the gap between the rotating shaft 200 and the hole wall of the shaft hole 522 and flow out of the housing 100 .
  • the stopper 600 is fixed to at least one of the rotating shaft 200 and the rotor 400 (specifically, the second rotor 420).
  • the stopper 600 can be directly fixed only to the rotor 400 or only to the rotating shaft 200. , or can be directly fixed to both the rotor 400 and the rotating shaft 200 at the same time. Since the rotor 400 is fixed to the rotating shaft 200, the stopper 600, the rotating shaft 200 and the rotor 400 rotate and move synchronously.
  • the stopper 600 is located between the rotor 400 and the second sleeve 520 . The stopper 600 can abut against the second sleeve 520 to limit the movement of the rotating shaft 200 along the axis of the rotating shaft 200 toward the impeller 20 .
  • the stopper 600 can interact with the second The sleeve 520 is in contact to restrict the movement of the rotating shaft 200 along the axis of the rotating shaft 200 in a direction close to the impeller 20 , and the ball end 220 of the rotating shaft 200 is disposed in the groove 512 of the first sleeve 510 and can engage with the groove.
  • the spherical wall 514 of 512 abuts to limit the range of movement of the rotating shaft 200 in the direction away from the impeller 20 along the axis of the rotating shaft 200, thereby limiting the position of the rotating shaft 200 on the axis of the rotating shaft 200; at the same time, since the rotating shaft 200 passes through the third There are two sleeves 520, and since the ball end 220 of the rotating shaft 200 is disposed in the groove 512 of the first sleeve 510, the groove wall of the groove 512 of the first sleeve 510 can also limit the ball end 220 of the rotating shaft 200 in the groove 512 of the first sleeve 510.
  • the radial swing range of the rotating shaft 200 is thus limited as a whole. In other words, the above design not only realizes the axial limitation of the rotating shaft 200 , but also realizes the radial limitation of the rotating shaft 200 .
  • the stopper 600 is fixedly connected to the second rotor 420 .
  • the stopper 600 is fixedly connected to the second flywheel 422 of the second rotor 420 .
  • the stopper 600 is bonded to the second flywheel 422 of the second rotor 420; in some embodiments, the stopper 600 and the second flywheel 422 of the second rotor 420 are integrally formed. Since the overall volume of the blood pump 1 is small, the size of the stopper 600 is even smaller, and it is difficult to process accurately and assemble. Therefore, the stopper 600 and the second flywheel 422 are integrally formed to facilitate installation and eliminate the need for bonding operations.
  • the fluid communication between the shaft hole 522 of the second shaft sleeve 520 and the accommodation cavity 114 is achieved; when the stopper 600 contacts the second shaft sleeve 520
  • the separation ring 120 is spaced apart from the rotor 400 by a certain distance to avoid friction and wear caused by contact between the rotor 400 and the separation ring 120 when the stopper 600 abuts the second sleeve 520 .
  • the stopper 600 is generally annular, and the central axis of the stopper 600 coincides with the axis of the rotating shaft 200 .
  • the outer diameter of the stopper 600 is smaller than the inner diameter of the separation ring 120 , so that there is a gap for fluid communication between the stopper 600 and the inner ring wall of the separation ring 120 .
  • the stopper 600 can also be arranged by a plurality of sector rings, which are evenly spaced around the rotating shaft 200 , or can be understood as a plurality of sector rings that are discretely arranged in the circumferential direction. Arranged.
  • the thickness of the stopper 600 along the axis of the rotating shaft 200 is greater than the thickness of the separation ring 120 along the axis of the rotating shaft 200 , so that when the stopper 600 abuts the second sleeve 520 , the separation ring 120 is spaced apart from the rotor 400 some distance. It can be understood that in some embodiments, the thickness of the stopper 600 along the axis of the rotating shaft 200 can also be made smaller than or equal to the thickness of the separation ring 120 along the axis of the rotating shaft 200 . In this case, the rotor 400 (specifically, the second rotor) can be 420) and the stopper 600 are separated by a distance along the axis of the rotating shaft 200. This distance is sufficient to separate the separation ring 120 and the rotor 400 when the stopper 600 abuts the second sleeve 520.
  • the side of the second sleeve 520 facing the stopper 600 is partially recessed to form a guide groove 524, and the guide groove 524 is connected with the shaft hole 522 of the second sleeve 520; the stopper 600 and the second sleeve 520 When abutting, part of the guide groove 524 is not covered by the stopper 600 .
  • the guide groove 524 not covered by the stopper 600 can achieve fluid communication when the stopper 600 contacts the second sleeve 520 to ensure flushing.
  • the fluid flow is smooth; in addition, the guide groove 524 is formed by partially recessing the side of the second sleeve 520 facing the stopper 600, so that the flushing liquid can better flow into the stopper 600 and the second sleeve.
  • the stop member 600 has a stop surface 610 which is perpendicular to the axis of the rotating shaft 200 .
  • the second sleeve 520 has a stop surface 526 which is aligned with the center of the shaft hole 522 of the second sleeve 520 .
  • the axis is vertical, and the stop surface 526 is opposite to the stop surface 610 .
  • the stop surface 526 can contact the stop surface 610 to limit the movement of the rotating shaft 200 along the axis of the rotating shaft 200 toward the impeller 20 .
  • the rotating shaft 200 can be rotatably inserted into the shaft hole 522 of the second sleeve 520, so that When the rotating shaft 200 is operating normally and the stopper 600 is in contact with the second sleeve 520, the stop surface 610 and the stop surface 526 The surface-to-surface contact can reduce wear caused by friction between the stopper 600 and the second sleeve 520 .
  • the stop surface 526 is in contact with the separation ring 120 .
  • the guide groove 524 is formed by a partial depression of the stop surface 526 .
  • the roughness of at least one of the stop surface 610 and the stop surface 526 is less than or equal to 0.1 micron. In some embodiments, the roughness of stop surface 610 and stop surface 526 is less than or equal to 0.1 microns. In some embodiments, the roughness of one of stop surface 610 and stop surface 526 is less than or equal to 0.1 microns.
  • At least one of the stop surface 610 and the stop surface 526 is a ceramic surface. Ceramics have high processing precision, high biocompatibility, high mechanical strength, good wear resistance and corrosion resistance.
  • the material of the stopper 600 and the second sleeve 520 can be ceramic, or by providing a ceramic coating, at least one of the stop surface 610 and the stop surface 526 can be a ceramic surface.
  • the material of the stop surface 610 is diamond, so that the stop surface 610 has a higher hardness, a smoother surface, and is wear-resistant. In this case, the stop surface is realized by providing a diamond coating.
  • the material of 610 is ceramic surface.
  • the structure of the driving mechanism 10 is not limited to the above structure.
  • the number of rotors 400 and the number of stators 300 is both one. At this time, the rotor 400 is disposed close to the second sleeve 520 and the stator unit is disposed close to the first sleeve 510 . In some embodiments, the rotor 400 still has a first rotor 410 and a second rotor 420, but the stator 300 has one stator unit. At this time, the stator unit is located between the first rotor 410 and the second rotor 420, and the stator unit can The first rotor and the second rotor are driven to rotate simultaneously.
  • the blood pump 1 includes a driving mechanism 10 and an impeller 20.
  • the driving mechanism 10 is drivingly connected to the impeller 20, and the driving mechanism 10 can drive the impeller 20 to rotate.
  • the blood pump 1 further includes a sleeve assembly 30 fixed to the distal end of the driving mechanism 10 .
  • the impeller 20 is rotatably received in the casing assembly 30 .
  • the cannula assembly 30 has a blood inlet 31 and a blood outlet 32 .
  • the blood inlet 31 is located at the distal end of the cannula assembly 30
  • the blood outlet 32 is located at the proximal end of the cannula assembly 30 .
  • the multiple blood outlets 32 are spaced apart along the circumferential direction of the cannula assembly 30 .
  • the cannula assembly 30 extends through a heart valve, such as the aortic valve, with the blood inlet 31 located within the heart and the blood outlet 32 and drive mechanism 10 located outside the heart in a blood vessel such as the aorta.
  • the casing assembly 30 includes an intubation tube 33, an adapter tube 34 and an outlet tube 35.
  • the intubation tube 33, the adapter tube 34 and the outlet tube 35 are all hollow tubular structures.
  • the cannula 33 is sleeved with the connecting tube 34 so that the inner wall of one end of the connecting tube 34 is connected to the outer wall of the cannula 33 .
  • the cannula 33 has a proximal end and a distal end, and the proximal end of the cannula 33 is engaged with the adapter tube 34 , wherein the blood inlet 31 is located on the distal end of the cannula 33 .
  • the outlet pipe 35 includes a connecting part 351 close to the connecting pipe 34 and an outlet part 352 away from the connecting pipe 34 .
  • the outlet pipe 35 is sleeved with the connecting pipe 34 so that the outer wall of the connecting portion 351 is connected to the inner wall of one end of the connecting pipe 34 away from the intubation tube 33 .
  • one end of the outlet portion 352 away from the connecting pipe 34 is fixedly connected to the driving mechanism 10 , and the impeller 20 is rotatably placed in the outlet pipe 35 , or the impeller 20 is partly placed in the outlet pipe 35 and partly in the intubation tube 33 .
  • the blood outlet 32 is located on the outlet portion 352.
  • a plurality of blood outlets 32 are evenly arranged on the outlet portion 352 in the circumferential direction of the outlet tube 35 .
  • the impeller 20 is driven and rotated by the driving mechanism 10 to allow blood to flow in from the blood inlet 31 , flow through the cannula 33 , and then from the outlet tube 35 . Multiple blood outlets 32 flow out.
  • the traditional connection method between the intubation tube 33 and the outlet tube 35 is that the intubation tube 33 is directly sleeved on the outlet tube 35, but since the intubation tube 33 is a flexible tube and the outlet tube 35 is a metal tube, there is no matching assembly position.
  • the pipe diameters of the two are also different, so the cannula 33 before connection needs to be molded through a process to enlarge the diameter of the port of the cannula 33 to match the outlet pipe 35, so that the cannula 33 can be sleeved on the outlet pipe 35.
  • the process is cumbersome, the connection is unstable and the strength of the shaping area is reduced.
  • the intubation tube 33 and the outlet tube 35 in the casing assembly 30 provided in this embodiment are transitionally connected through the connecting tube 34.
  • the inner wall of one end of the connecting tube 34 is connected to the outer wall of the intubating tube 33, and the outer wall of the connecting portion 351 of the outlet tube 35 is connected.
  • Connected to the inner wall of the other end of the connecting pipe 34, the intubation pipe 33 and the outlet pipe 35 can be fixedly connected to form a coherent pipeline; the intubation pipe 33 is omitted. It is directly connected to the outlet pipe 35 and requires molding process of the intubation pipe 33. The connection is stable and the assembly operation is simple.
  • a limiting convex ring 341 is provided on the inner wall of the connecting tube 34 .
  • the limiting convex ring 341 is protruding in an annular shape on the inner wall of the connecting pipe 34 , and the limiting convex ring 341 is coaxial with the connecting pipe 34 .
  • the limiting flange 341 has a first end surface 3411 and a second end surface 3412 arranged along the axial direction of the connecting tube 34. The first end surface 3411 abuts the end of the intubation tube 33, and the second end surface 3412 abuts the connecting tube 34. end of portion 351.
  • the outer diameter of the connecting portion 351 is smaller than the outer diameter of the outlet portion 352 .
  • the end of the connecting tube 34 away from the intubation tube 33 is in contact with the end of the outlet portion 352 close to the connecting portion 351 , and the outer wall of the connecting tube 34 is flush with the outer wall of the outlet portion 352 .
  • the connecting portion 351 and the outlet portion 352 have the same inner diameter, and the limiting flange 341 has a certain thickness to form a first end surface 3411 close to the intubation tube 33 and a second end surface 3412 close to the outlet tube 35 .
  • the limiting convex ring 341 can limit the axial directions of the outlet tube 35 and the intubation tube 33 at the same time to control the outlet tube 35 and the intubation tube 33.
  • the depth of the connection plays a role in pre-positioning to facilitate subsequent fixing operations.
  • the end of the connecting tube 34 can contact the end of the outlet portion 352 and cooperate with the limiting convex ring 341 to form axial limiting in two directions, which is more stable and consistent.
  • the outer wall of the connecting pipe 34 is flush with the outer wall of the outlet part 352, so that the outer wall of the connecting pipe 34 and the outer wall of the outlet part 352 of the outlet pipe 35 are on the same cylinder, effectively controlling the relationship between the connecting pipe 34 and the outlet pipe 35.
  • the overall outer diameter of the connection makes the connection smooth and avoids undulating drop sections that may cause difficulty in entering the blood vessels of the human body or even scratch the blood vessels.
  • the impeller 20 includes blades 21 .
  • the end of the blade 21 away from the driving mechanism 10 does not exceed the end of the connecting portion 351 away from the driving mechanism 10 .
  • the impeller 20 also includes a hub 22, and the blades 21 are spirally wound on the hub 22.
  • the impeller 20 is partially placed in the outlet pipe 35, and the driving mechanism 10 drives the impeller 20 to rotate. Since the rotation of the impeller 20 will vibrate and produce deflection, a certain distance needs to be set between the impeller 20 and the inner wall of the outlet pipe 35 to ensure that the blades 21 will not hit the inner wall of the outlet pipe 35 when the impeller 20 deflects at its maximum.
  • the inner wall of the pipe where the raised ring 341 is located is narrow, and the blade 21 has a certain height in the axial direction of the outlet pipe 35, and the blade 21 occupies a certain width in the radial direction of the outlet pipe 35, and the blade 21 is in The highest point in the axial direction does not protrude from the outlet pipe 35 , so that the blade 21 does not contact the limiting flange 341 .
  • the limiting convex ring 341 is not limited to the complete circular ring structure in the above embodiment, but can also be a plurality of boss structures that are not connected to each other and evenly spaced. Under the condition of ensuring the limiting, it can save Material.
  • the limiting convex ring 341 may be a structure that is separately connected to the connecting pipe 34 , or may be a structure that is integrally formed with the connecting pipe 34 . If integrally formed, the strength will be higher.
  • the inner diameter of the cannula 33 is smaller than the inner diameter of the outlet pipe 35 , and the width of the first end surface 3411 in the radial direction is greater than the width of the second end surface 3412 in the radial direction, so that the inner wall of the cannula 33 is aligned with the inner diameter of the outlet pipe 35 .
  • the edge of the first end surface 3411 is flush, and the inner wall of the outlet pipe 35 is flush with the edge of the second end surface 3412 .
  • the limiting convex ring 341 also includes a transition surface 3413, which connects the edge of the first end surface 3411 and the edge of the second end surface 3412. Specifically, the size and specifications of the intubation tube 33 and the outlet tube 35 are different.
  • the first end surface 3411 is more protruding from the inner wall of the connecting tube 34 in the radial direction than the second end surface 3412.
  • the first end surface 3411 needs to be The edge of the end surface 3411 is flush with the inner wall of the intubation tube 33, and the edge of the second end surface 3412 is flush with the inner wall of the outlet tube 35.
  • first end surface 3411 and the second end surface 3412 have different widths.
  • the distance between the first end surface 3411 and the second end surface 3412 will form a large vertical drop, and the direction of blood flow is from the intubation tube 33 to the outlet tube 35, and a dead angle will also be formed between the two, so that through the transition surface 3413 connects the edge of the first end surface 3411 and the edge of the second end surface 3412 to form a gentle transition surface 3413, so that the blood can flow directly along the transition surface 3413 without forming a dead corner and causing the risk of blood jam and thrombus.
  • the transition surface 3413 can also be an outer convex arc surface or an inner concave arc surface.
  • the arc surface has a better blood diversion effect.
  • the transition surface 3413 has a cylindrical surface 3413 a that is coaxial with the connecting tube 34 and an inclined surface 3413 b that is angled with the axis of the connecting tube 34 .
  • One end of the cylindrical surface 3413a is connected to one end of the inclined surface 3413b, and one end of the cylindrical surface 3413a away from the inclined surface 3413b is connected to the edge of the first end surface 3411.
  • the cylindrical surface 3413a is flush with the inner wall of the intubation tube 33, and one end of the inclined surface 3413b away from the cylindrical surface 3413a is connected to the edge of the second end surface 3412.
  • the transition surface 3413 is composed of two parts. One end of the cylindrical surface 3413a is connected to the edge of the first end surface 3411, and the insert tube 33 is flush with the inner wall of the insert tube 33 after contacting the first end surface 3411. Flush means that the connection surface between the cylindrical surface 3413a and the cannula 33 transitions smoothly without any undulations. Since the cylindrical surface 3413a is used for transition when processing the limiting convex ring 341, the inclined surface 3413b is prevented from directly connecting the edge of the first end surface 3411 and forming a sharp angle structure at the connection, so the processing difficulty is low. Among them, the edge of the cylindrical surface 3413a and the second end surface 3412 is connected through the inclined surface 3413b.
  • the blood flow passes through the cylindrical surface 3413a and then is guided along the inclined surface 3413b to the outlet pipe 35. Therefore, the cannula 33 and the outlet tube 35 with different inner diameters are connected through the limiting convex ring 341, so that the blood flow channel forms a coherent channel, and the blood flow passes from the inner wall of the cannula 33 to the transition surface 3413 of the limiting convex ring 341, and then The flow flows into the inner wall of the outlet pipe 35 unimpeded throughout the entire process to avoid blood jam and thrombus formation.
  • the outlet pipe 35 is a metal pipe.
  • the cannula 33 is a flexible tube and has elasticity.
  • the outlet pipe 35 is specifically a plastic pipe
  • the connecting pipe 34 is also a metal pipe. Since both ends of the connecting pipe 34 need to be joined with two different materials, during the joining process, one end of the connecting pipe 34
  • the inner wall and the outer wall of the intubation tube 33 are bonded and fixed, and the end of the connecting tube 34 away from the intubating tube 33 is welded and fixed to the outer wall of the connecting portion 351, which meets the process requirements, and is sleeved between the intubating tube 33 and the outlet through the metal connecting tube 34.
  • the strength of the joints of tube 35 is also guaranteed.
  • the connecting tube 34 includes a first tube part 342 and a second tube part 343 that are connected to each other.
  • the inner wall of the first tube part 342 is connected to the outer wall of the insertion tube 33
  • the inner wall of the second tube part 343 is connected to the outer wall of the connecting part 351 .
  • the limiting convex ring 341 is provided on the inner wall of the second tube portion 343 .
  • the outer diameters of the first tube part 342 and the second tube part 343 are the same, and the inner diameter of the first tube part 342 is larger than the inner diameter of the second tube part 343 .
  • the thickness of the pipe wall of the connecting pipe 34 is divided into two sections.
  • the thinner first pipe part 342 is connected to the intubation tube 33 , and the thicker second pipe part 343 is connected to the outlet pipe 35 .
  • the adapter tube 34 is a metal tube with a hard material.
  • the adapter tube 34 is sleeved on the cannula 33 in its axial direction.
  • the outer wall of the first tube part 342 will make the nesting part too stiff, so by reducing the thickness of the first tube part 342, the elasticity of the first tube part 342 can be improved so that it will not be too hard and can adapt to deformation when entering the curved blood vessels of the human body.
  • tube gap 3421 between the inner wall of the first tube part 342 and the outer wall of the cannula 33 .
  • a certain tube gap 3421 is reserved in the radial direction for the glue dispensing operation between the first tube part 342 and the cannula 33.
  • the outer wall of the first tube part 342 will not be moved toward External expansion to avoid expansion of the outer diameter of the dispensing point.
  • the auxiliary positioning tool may be a cylindrical positioning post.
  • the outer diameter of the positioning post is the same as the inner diameter of the cannula 33 or the cylindrical surface 3413a of the limiting convex ring 341.
  • first insert the positioning post to make the outer wall of the positioning post fit with the cylindrical surface 3413a of the limiting convex ring 341 then insert the intubation tube 33 to make the inner wall of the intubation tube 33 fit with the outer wall of the positioning post, and then insert it.
  • the glue can be dispensed in the tube gap 3421 between the tube 33 and the connecting tube 34 .
  • the hollow groove 3422 is a through groove that penetrates the inner and outer walls of the first tube part 342, which can effectively reduce the area of the first tube part 342, thereby improving the elasticity of the first tube part 342; at the same time, during the dispensing process, it can also pass through Dispensing glue in the hollow groove 3422 on the side of the first tube part 342 and operating the glue in multiple directions can make the glue dispensing more uniform and the bonding effect better. Moreover, when the glue is heated and dried, the glue will Expansion, if the side of the first tube part 342 is a closed space, the outer diameter of the adhesive will expand when it expands.
  • the hollow groove 3422 provided can also accommodate a part of the adhesive, so that the adhesive has an expandable space and will not cause The outer diameter is enlarged.
  • the hollow groove 3422 can be an "I"-shaped straight groove, or an "S"-shaped, "J”-shaped, or other meandering curved groove.
  • the hollow grooves 3422 can be arranged in a radial array along the connecting tube 34 or in an axial array along the connecting tube 34 .
  • the blood pump 1 further includes a conduit 40 , which is connected to the proximal end of the driving mechanism 10 .
  • the conduit 40 is used to accommodate various supply lines.
  • the supply line includes a wire for electrical connection with the drive mechanism 10 and a cleaning line for supplying flushing liquid to the drive mechanism 10 of the blood pump 1 .
  • the flushing solution is physiological saline, physiological saline containing heparin, glucose, etc.
  • the driving mechanism 10 includes a housing 100 , a rotating shaft 200 , a first sleeve 300 , a second sleeve 400 and a stopper 500 .
  • the distal end of the housing 100 is fixedly connected to the cannula assembly 30, and the proximal end of the housing 100 is connected to the catheter 40.
  • the housing 100 is generally a cylindrical housing with openings at both ends.
  • the housing 100 has an inner cavity 101, and the flushing liquid in the cleaning pipeline flows into the inner cavity 101 through the proximal end of the housing 100, and flows out of the housing 100 from the distal end of the housing 100.
  • the housing 100 includes a first housing 110 and a second housing 120 .
  • the proximal end of the first sheath 110 is fixedly connected to the catheter 40
  • the distal end of the first sheath 110 is fixedly connected to the proximal end of the second sheath 120
  • the distal end of the second sheath 120 is fixedly connected to the cannula assembly 30 .
  • the first shell 110 and the second shell 120 enclose the inner cavity 101 of the housing 100 .
  • the housing 100 is made up of the first housing 110 and the second housing 120, which facilitates the installation of the rotating shaft 200, the first sleeve 300, the second sleeve 400 and the stopper 500 in the inner cavity of the housing 100. 101 in.
  • the rotating shaft 200 is rotatably provided on the housing 100 .
  • the rotating shaft 200 is fixedly connected to the impeller 20 to drive the impeller 20 to rotate.
  • the rotating shaft 200 includes a shaft portion 210 and a sliding portion 220 .
  • the shaft portion 210 is rotatably mounted on the housing 100 .
  • One end of the shaft portion 210 is fixedly connected to the sliding portion 220 , and the other end of the shaft portion 210 is used to connect to the impeller 20 .
  • the shaft portion 210 is elongated.
  • the distal end of the shaft 210 is located outside the housing 100 and is used to be fixedly connected to the impeller 20 .
  • the impeller 20 can rotate with the shaft 210 .
  • the shaft portion 210 extends generally along the axial direction of the housing 100 , or in other words, the extending direction of the axis of the shaft portion 210 is generally consistent with the axial direction of the housing 100 .
  • the sliding part 220 also has a cylindrical surface 222 and a limiting surface 223.
  • One end of the cylindrical surface 222 is connected to the spherical crown surface 221, and the other end is connected to the limiting surface 223.
  • the axis of the cylinder 222 coincides with the axis of the shaft 210
  • the limiting surface 223 is perpendicular to the axis of the shaft 210 .
  • the limiting surface 223 is substantially circular, and the central axis of the cylindrical surface 222 passes through the center of the sphere where the spherical crown surface 221 is located, and passes through the center of the limiting surface 223 .
  • the diameter of the cylindrical surface 222 is equal to the diameter of the sphere where the spherical cap surface 221 is located.
  • the sliding part 220 is not limited to the above structure.
  • the sliding part 220 may also have a spherical structure.
  • the spherical crown surface 221 is a part of the surface of the sliding part 220 away from the shaft part 210.
  • the sliding part 220 does not have a limiting surface 223 and a cylindrical surface 222.
  • the sliding part 220 does not have the cylindrical surface 222 , and the limiting surface 223 is directly connected to the spherical cap surface 221 .
  • the shaft part 210 and the sliding part 220 are integrally formed structures; in some embodiments, the shaft part 210 and the sliding part 220 can also be fixed together by assembly, welding, bonding, etc.
  • the sliding part 220 has a sliding body and a diamond coating on the surface of the sliding body, so that the surface of the sliding part 220 is smooth and has high wear resistance; in this case, the material of the sliding body may be Materials with a certain stiffness, such as metal, ceramics, etc., the material of the sliding body can be the same as the material of the shaft portion 210 .
  • the first bushing 300 and the second bushing 400 are both located in the inner cavity 101 of the housing 100, and are spaced apart along the axial direction of the housing 100; wherein, The first sleeve 300 is located at the proximal end of the housing 100 , and the second sleeve 400 is located at the distal end of the housing 100 .
  • the first sleeve 300 is provided with a groove 310 , and the sliding portion 220 of the rotating shaft 200 can be movably disposed in the groove 310 , so that the first sleeve 300 limits the movement of the rotating shaft 200 toward the first sleeve 300 .
  • the shaft portion 210 of the rotating shaft 200 is rotatably inserted through the second sleeve 400 , and the second sleeve 400 limits the movement range of the shaft portion 210 in the radial direction of the shaft portion 210 .
  • the second sleeve 400 has a shaft hole 410, and the shaft portion 210 of the rotating shaft 200 is rotatably inserted into the shaft hole 410.
  • the diameter of the shaft hole 410 is slightly larger than the diameter of the portion of the shaft portion 210 of the rotating shaft 200 located in the shaft hole 410 to allow the shaft portion 210 to rotate and allow flushing liquid to pass.
  • the shaft hole 410 has a certain length along the central axis of the shaft hole 410 (or in other words, the shaft hole 410 has a certain length in the axial direction of the housing 100) to limit the radial swing range of the shaft part 210 and at the same time limit the sliding part 220 in Radial swing range.
  • the radial swing range of the sliding part 220 can be adjusted.
  • the rotating shaft 200 When the blood pump 1 is working, the rotating shaft 200 will oscillate to a certain extent, as shown in Figure 30 , especially the end of the rotating shaft 200 away from the impeller 20 or the end of the rotating shaft 200 that cooperates with the first sleeve 300. Larger, the traditional rotating shaft 200 has the risk of being stuck by the first sleeve 300.
  • the spherical crown surface 221 is in sliding contact with the groove wall of the groove 310, that is, The sliding part 220 swings in the groove 310 through the spherical crown surface 221; the depth h of the groove 310 is less than or equal to the height of the spherical crown surface 221 in the axial direction of the shaft part 210, so that it can effectively This effectively prevents other parts of the rotating shaft 200 except the spherical crown surface 221 from contacting the notch of the groove 310, causing the rotating shaft 200 to be stuck, thereby improving the safety and reliability of the driving mechanism 10 and the blood pump 1.
  • the depth h of the groove 310 is greater than the height of the spherical crown surface 221 in the axial direction of the shaft portion 210 and part of the shaft portion 210 is received in the groove 310, when the rotating shaft 200 swings radially, there will be a gap in the groove 310. The rotating shaft 200 cannot rotate due to jamming, which may cause the risk of the pump stopping.
  • the groove 310 is a ball head groove.
  • the groove 310 has a spherical wall 312, and the spherical crown surface 221 of the sliding part 220 is in sliding contact with the spherical wall 312.
  • the radius R of the sphere where the groove 310 is located (or the sphere where the spherical wall 312 is located) is greater than the radius r of the sphere where the spherical crown surface 221 is located, so that the sliding part 220 can slide in the groove 310 and has a certain space for radial swing. .
  • the difference between the radius R of the sphere where the spherical wall 312 is located and the radius r of the sphere where the spherical crown surface 221 is located is defined as D, 0.04mm ⁇ D ⁇ 0.06mm.
  • the diameter of the groove 310 gradually increases.
  • the entire groove wall of the groove 310 is almost a spherical wall 312. So that the spherical crown surface 221 of the sliding part 220 can slide in the groove 310 more smoothly.
  • the center of the sphere where the spherical wall 312 is located is located on the central axis of the groove 310 .
  • the central axis of the groove 310 coincides with the central axis of the first sleeve 300 .
  • the central axis of the groove 310 coincides with the central axis of the shaft hole 410 .
  • the depth h of the groove 310 refers to the depth h of the groove wall 310 when the spherical wall 312 of the groove 310 is in a complete state (that is, when the spherical wall 312 has no holes).
  • the maximum distance between the plane where the notch of the groove 310 is located, that is, as shown in Figure 31, that is, the depth h of the groove 310 is the spherical gap where the spherical wall 312 is located (the bottom surface of the spherical gap and the plane where the notch of the groove 310 is located) overlap) height.
  • the depth h of the groove 310 is 0.6 times to 1 times the radius R of the sphere where the spherical wall 312 is located, that is, 0.6R ⁇ h ⁇ R.
  • This range not only enables the groove 310 to have a radial limiting function to prevent the sliding part 220 from sliding away from the groove 310 , but also makes the diameter of the groove 310 extend along the axis of the first sleeve 300 and in a direction close to the second sleeve 400 The tendency is to gradually increase in order to facilitate the sliding part 220 to fit into the groove 310 and to make the groove 310 have a suitable width to adapt to the requirements of the radial swing range of the sliding part 220 .
  • the depth h of the groove 310 is greater than or equal to half the height of the spherical crown surface 221 in the axial direction of the shaft portion 210, so that the groove wall of the groove 310 has sufficient
  • the radial width allows the sliding part 220 to slide and prevent the sliding part 220 from sliding out of the groove 310 .
  • the edge of the notch of the groove 310 is rounded, so that the edge of the notch of the groove 310 forms a first rounded corner 311 to prevent the sliding part 220 from being scratched by the angular edge of the notch. and wear and tear.
  • the first rounded corner 311 is located at the distal end of the spherical wall 312 so that the groove wall of the groove 310 smoothly transitions from the spherical wall 312 to the distal end surface of the first sleeve 300 .
  • the first sleeve 300 also has a rinse liquid hole 320 for the circulation of rinse liquid.
  • the rinse liquid hole 320 is in fluid communication with the groove 310.
  • the aperture of the rinse liquid hole 320 is smaller than the spherical wall.
  • one end of the flushing liquid hole 320 opens on the proximal end surface of the first sleeve 300 , and the other end opens on the spherical wall 312 .
  • the flushing liquid hole 320 can be communicated with the flushing line in the conduit 40 and thereby can be in fluid communication with the cleaning line, so that the flushing liquid can enter the groove 310 through the flushing liquid hole 320 .
  • the diameter of the flushing liquid hole 320 is smaller than the diameter of the sphere where the spherical crown surface 221 is located.
  • the central axis of the flushing liquid hole 320 passes through the center of the groove 310 or the center of the sphere where the spherical wall 312 is located, so that the flushing liquid can well enter between the groove wall of the groove 310 and the sliding part 220. It can not only play a lubrication role to reduce the friction coefficient between the sliding part 220 and the groove wall of the groove 310, or reduce the friction coefficient between the spherical crown surface 221 and the spherical wall 312, thereby reducing the sliding part 220 and the wear of the first sleeve 300; and the flushing fluid entering the groove 310 from the flushing fluid hole 320 can also play a role in hydraulic suspension support for the sliding part 220.
  • the flushing liquid then flows out of the groove 310 through the opening of the groove 310 and enters the inner cavity 101 of the housing 100 .
  • the flushing liquid hole 320 is a straight hole to reduce the energy consumption of the flushing liquid in the flushing liquid hole 320 .
  • the flushing liquid hole 320 has a first opening 321.
  • the first opening 321 is located at one end of the flushing liquid hole 320 close to the groove 310.
  • the diameter of the first opening 321 is 1/9 of the diameter of the spherical crown surface 221. ⁇ 1/3. If the diameter of the first opening 321 of the flushing liquid hole 320 is too large, the contact surface between the sliding part 220 and the side wall of the groove 310 will be reduced (resulting in unit The pressure on the area is relatively large), which will increase the wear of the groove wall of the groove 310 on the sliding part 220; if the diameter of the first opening 321 is too small, it will affect the amount of flushing liquid entering the groove 310 from the flushing liquid hole 320.
  • the flushing liquid entering the flushing liquid hole 320 not only gives an impulse to the sliding part 220, but also enters between the sliding part 220 and the groove wall of the groove 310 to provide lubrication, thereby reducing the gap between the sliding part 220 and the groove.
  • the friction coefficient between the groove walls of the groove 310 therefore, the amount of flushing liquid entering the groove 310 should not be too small.
  • the edge of the first opening 321 of the flushing liquid hole 320 is provided with a second rounded corner to prevent the sliding part 220 from being scratched and worn.
  • the first opening 321 is located on the spherical wall 312 . The flushing liquid enters between the spherical wall 312 and the spherical crown surface 221 through the first opening 321 to provide lubrication.
  • the driving device 10 further includes a support base 810 .
  • the support base 810 is fixed to the housing 100 .
  • the support base 810 is provided with an installation cavity 811 and a liquid inlet hole 814 connected with the installation cavity 811.
  • the first sleeve 300 is installed in the installation cavity 811, and the flushing liquid hole 320 is connected with the liquid inlet hole 814.
  • the end of the liquid inlet hole 814 away from the installation cavity 811 is used to communicate with the cleaning pipeline of the conduit 40, so that the flushing liquid can flow into the space between the groove wall of the groove 310 and the sliding part 220 through the liquid inlet hole 814 and the flushing liquid hole 320. Then it flows into the inner cavity 101 of the housing 100 .
  • the installation cavity 811 has a cavity bottom 812.
  • the second opening 815 of the liquid inlet 814 is located at the cavity bottom 812 of the installation cavity 811.
  • a support step 813 is provided in the installation cavity 811.
  • the support step 813 and the first sleeve 300 is in contact with each other, so that the first sleeve 300 is separated from the cavity bottom 812 by a certain distance to better ensure the smooth flow of the flushing liquid.
  • the support step 813 is in contact with the side of the first sleeve 300 that is away from the second sleeve 400 .
  • the support base 810 is also provided with a branch channel 816, which is in fluid communication with the liquid inlet hole 814, so that the fluid (such as flushing fluid) flowing through the liquid inlet hole 814 can also flow to the housing 100 through the branch channel 816.
  • one end of the branch channel 816 is connected to the space between the first sleeve 300 and the cavity bottom 812 of the installation cavity 811 , and the other end is connected to the inner cavity 101 .
  • the shunt channel 816 is formed by a partial recess in the cavity wall of the installation cavity 811 .
  • the flushing liquid enters the installation cavity 811 from the liquid inlet hole 814 and is divided into two streams.
  • One stream flows into the groove 310 of the first sleeve 300 through the flushing fluid hole 320, and the other stream flows through the split flow.
  • Road 816 flows out. Providing the diverter channel 816 can ensure the circulation of the flushing liquid when the sliding part 220 blocks the flushing liquid hole 320 .
  • the number of branch channels 816 is two, and the two branch channels 816 are arranged opposite to each other. It can be understood that the number of shunt channels 816 can be adjusted according to design needs. For example, in some embodiments, the number of shunt channels 816 can be one or more than two.
  • the stopper 500 is fixed to the shaft portion 210, the stopper 500 is located between the first sleeve 300 and the second sleeve 400, and the stopper 500 can abut
  • the second sleeve 400 enables the second sleeve 400 to move within a range in which the shaft portion 210 moves toward the second sleeve 400 .
  • the stopper 500 can optionally be a push ring 510 .
  • the stopper 500 when the stopper 500 abuts the second sleeve 400, the stopper 500 does not seal the shaft hole 410 of the second sleeve 400, so that the flushing fluid can pass through the stopper 500 and the second sleeve.
  • the gap between 400 flows into the shaft hole 410 of the second shaft sleeve 400 , that is, the fluid communication between the shaft hole 410 of the second shaft sleeve 400 and the inner cavity 101 is achieved.
  • the outer diameter of the thrust ring 510 is smaller than the outer diameter of the second rotor 620 and the second sleeve 400 , the outer diameter of the thrust ring 510 is larger than the aperture of the shaft hole 410 , and the thrust ring 510 abuts the second sleeve 400 , the thrust ring 510 separates the second sleeve 400 from the second rotor 620 by a certain distance.
  • the thrust ring 510 can reduce the distance between the second sleeve 400 and the stop. The friction area between the pieces 500.
  • the thrust ring 510 can also be arranged by a plurality of sector rings, which are evenly spaced around the shaft portion 210 , or can be understood as a plurality of sector rings that are discretely arranged in the circumferential direction. arranged in rings.
  • One side of the stopper 500 of the second sleeve 400 is partially recessed to form a guide groove 420.
  • the guide groove 420 is connected with the shaft hole 410 of the second sleeve 400; the stopper 500 is connected to the second shaft sleeve 400.
  • part of the guide groove 420 is not covered by the stopper 500 .
  • the thrust ring 510 when the thrust ring 510 abuts the second sleeve 400 , although the thrust ring 510 blocks the gap between the shaft hole 410 and the shaft portion 210 of the second sleeve 400 , it is not covered by the thrust ring 510
  • the guide groove 420 can achieve fluid communication when the thrust ring 510 is in contact with the second sleeve 400 to ensure the smooth flow of the flushing liquid; in addition, by partially locating the second sleeve 400 on the side facing the stopper 500 The depression forms a guide groove 420 so that the flushing liquid can better flow into between the stopper 500 and the second sleeve 400 to lubricate the contact surface of the stopper 500 and the second sleeve 400 , reduce the friction between the stopper 500 and the second sleeve 400, and reduce the friction caused by the stopper 500 and the second sleeve 400.
  • the friction between the stopper 500 and the second sleeve 400 causes wear problems, and also
  • the second sleeve 400 includes a first annular body 401 and a second annular body 402.
  • the diameter of the first annular body 401 is smaller than the diameter of the second annular body 402.
  • the proximal end of the first annular body 401 is connected to the distal end of the second annular body 402 .
  • the first annular body 401 and the second annular body 402 are integrally formed, and the second annular body 402 has a flow guide groove 420 .
  • the housing 100 has a mounting hole 102 that matches the first annular body 401.
  • the mounting hole 102 is located at the far end of the housing 100.
  • the inner wall of the housing 100 is provided with a limiting protrusion 103.
  • the limiting protrusion 103 surrounds the housing 100.
  • the first annular body 401 is installed in the mounting hole 102, and the second annular body 402 abuts against the proximal end surface of the limiting protrusion 103, thereby realizing the positioning and installation of the second sleeve 400, and there is This is beneficial to the stable installation of the second bushing 400.
  • At least one of the first sleeve 300, the second sleeve 400 and the stopper 500 is made of ceramic material. Compared with metal materials, ceramics have higher processing accuracy, higher biocompatibility, higher mechanical strength, and better wear resistance and corrosion resistance.
  • at least one of the first sleeve 300 and the second sleeve 400 has a sleeve body and a diamond coating disposed on a surface of the sleeve body, so that the first sleeve 300 and the second sleeve The surface of 400 is smooth and improves wear resistance.
  • the material of the shaft sleeve body can be a material with a certain stiffness, such as metal, ceramics, etc.
  • the roughness of at least one of the hole wall of the shaft hole 410 , the surface of the shaft part 210 , the surface of the sliding part 220 and the groove wall of the groove 310 is less than or equal to 0.1 micron, thereby effectively reducing the size of the shaft part 210 and the shaft wall.
  • the driving mechanism 10 also includes a first rotor 610.
  • the first rotor 610 is fixed to the rotating shaft 200.
  • the first rotor 610 is located between the first sleeve 300 and the second sleeve 400.
  • the first rotor 610 is fixed to the limiting surface 223 of the sliding part 220 .
  • the limiting surface 223 can increase the connection area between the first rotor 610 and the rotating shaft 200 and improve the connection stability of the first rotor 610 .
  • the limiting surface 223 also plays a role in installation and positioning of the first rotor 610 and limits the movement distance of the first rotor 610 along the axis of the shaft portion 210 toward the first sleeve 300 .
  • the first rotor 610 is fixed to the limiting surface 223 by bonding, welding, etc.
  • the cylindrical surface 222 with a certain length can increase the distance between the first rotor 610 and the first sleeve 300 to prevent the first rotor 610 from abutting the first sleeve 300 when the rotating shaft 200 swings, causing the rotating shaft 200 to get stuck.
  • the first rotor 610 includes a first flywheel 611 and a first magnet 612.
  • the first flywheel 611 is fixed to the rotating shaft 200.
  • the first flywheel 611 is fixed to the limiting surface 223.
  • the first magnet 612 is fixed to the first flywheel 611 .
  • the first magnet 612 is a ring-shaped Halbeck array magnet.
  • the first rotor 610 is located in the inner cavity 101 . The first rotor 610 can rotate relative to the housing 100 and can drive the rotating shaft 200 to rotate.
  • the drive mechanism 10 further includes a stator 700 .
  • the stator 700 and the first rotor 610 are arranged along the axis of the shaft portion 210 , and the stator 700 is located between the first sleeve 300 and the second sleeve 400 .
  • the stator 700 can generate a rotating magnetic field that drives the first magnet 612 of the first rotor 610 to rotate.
  • the stator 700 is fixedly installed on the housing 100, and the stator 700 is located in the inner cavity 101; the shaft 210 is rotatably installed in the stator 700.
  • the stator 700 is located between the first rotor 610 and the stopper 500 .
  • the driving mechanism 10 further includes a second rotor 620 , the second rotor 620 is fixed to the shaft portion 210 , and the second rotor 620 is located between the first sleeve 300 and the second sleeve 400 .
  • the stop 500 is located between the second rotor 620 and the second sleeve 400 .
  • the stopper 500 is fixed to at least one of the second rotor 620 and the shaft 210 , so that the stopper 500 , the rotating shaft 200 and the second rotor 620 rotate and move synchronously.
  • the stopper 500 may be directly fixed to only the second rotor 620 , or only to the shaft part 210 , or to both the second rotor 620 and the shaft part 210 at the same time.
  • a specific structure of the second rotor 620 includes a second flywheel 621 and a second magnet 622 .
  • the second flywheel 621 is fixed to the shaft 210
  • the second magnet 622 is fixed to the second flywheel 621 .
  • the second magnet 622 is a ring-shaped Halbach array magnet. It can be understood that the structure of the second flywheel 621 can be the same as the structure of the first flywheel 611, which will not be described in detail here.
  • the thrust ring 510 is an annular protrusion formed on a side of the second flywheel 621 away from the first rotor 610 .
  • the thrust ring 510 and the second flywheel 621 have an integrally formed structure and form a whole body, which is convenient for installation and eliminates the need for bonding operations.
  • the thrust ring 510 and the second rotor 620 may also be of separate structure before assembly. In this case, the thrust ring 510 may be fixed to at least one of the second rotor 620 or the shaft 210 by bonding or welding. together.
  • the stator 700 includes a magnetic core 710 and a coil 720 , and the coil 720 is wound around the magnetic core 710 .
  • the magnetic core 710 has a generally columnar structure, that is, the magnetic core 710 does not have a large-width head (ie, a pole piece).
  • the magnetic core 710 with a columnar structure can reduce magnetic losses and increase the magnetic coupling density between the magnetic core 710 and the first magnet 612 and the second magnet 622 to increase the pairing of the stator 700 with the second magnet. Torque of one magnet 612 and second magnet 622 (under equal current conditions).
  • the magnetic core 710 without a head can also greatly reduce the problem of local magnetic short circuit and motor power reduction caused by contact between adjacent magnetic cores 710 .
  • the extension direction of the magnetic core 710 is consistent with the axial direction of the housing 100 or the axis of the shaft portion 210 .
  • the first rotor 610 , the stator 700 and the second rotor 620 are sequentially arranged along the axis of the shaft portion 210 .
  • the stator 700 includes a first stator unit 701 and a second stator unit 702 arranged along the axis of the shaft portion 210 , wherein both the first stator unit 701 and the second stator unit 702 include the above-mentioned magnetic components. Core 710 and coil 720 described above.
  • the first stator unit 701 can drive the first rotor 610 to rotate, and the second stator unit 702 can drive the second rotor 620 to rotate.
  • the first stator unit 701 and the second stator unit 702 are both fixedly received in the inner cavity 101 of the housing 100 .
  • the shaft portion 210 is rotatably inserted into the first stator unit 701 and the second stator unit 702 .
  • the first rotor 610, the first stator unit 701, the second rotor 620 and the second stator unit 702 are arranged in sequence along the axis direction.
  • the driving mechanism 10 also includes a magnetic conductive member 820 fixed to the housing 100 .
  • the magnetic core 710 of the first stator unit 701 and the magnetic core 710 of the second stator unit 702 are both fixedly connected to the magnetic conductive member 820 .
  • the shaft portion 210 is rotatably inserted into the magnetic conductive member 820 .
  • the magnetic conductive member 820 plays a role in closing the magnetic circuit to promote and increase the generation of magnetic flux and improve the coupling capacity. Therefore, the magnetic conductive member 820 is provided to close the magnetic circuit between the first stator unit 701 and the first rotor 610 .
  • the function of the circuit and the function of closing the magnetic circuit between the second stator unit 702 and the second rotor 620 increase the magnetic flux, and thus the arrangement of the magnetic conductive member 820 is beneficial to reducing the overall diameter of the driving mechanism 10 .
  • the magnetic conductive member 820 can also be directly fixed to the housing 100 to realize the positioning and installation of the first stator unit 701 and the second stator unit 702, thereby reducing the friction between the first stator unit 701 and the second stator unit 702. Assembly difficulty.
  • the magnetic conductive member 820 includes two magnetic conductive plates 821, which are stacked.
  • One of the magnetic conductive plates 821 is fixedly connected to the magnetic core 710 of the first stator unit 701, and the other magnetic conductive plate 821 is connected to the magnetic core 710 of the first stator unit 701.
  • the magnetic core 710 of the second stator unit 702 is fixed.
  • the driving mechanism of this embodiment has a similar structure to the driving mechanism of the first embodiment, the driving mechanism of this embodiment and the blood pump having the driving mechanism of this embodiment also have similar effects to the first embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rotary Pumps (AREA)

Abstract

提供了一种驱动机构(10)和血泵(1)。驱动机构(10)包括壳体(100)、转轴(200)、转子(400)、第一轴套(510)、第二轴套(520)和止挡件(600)。转轴(200)能够转动地安装于壳体(100)。转轴(200)具有连接端(210)及远离连接端(210)的球头端(220)。连接端(210)用于与叶轮(20)连接。转子(400)固接于转轴(200)。第一轴套(510)开设有凹槽(512)。转轴(200)能够转动地穿设于第二轴套(520)。球头端(220)能够活动地设置于凹槽(512)中。止挡件(600)与转轴(200)和转子(400)中的至少一个固接。止挡件(600)能够与第二轴套(520)抵接。

Description

驱动机构和血泵
本申请要求于2022年07月08日在中国专利局提交的、申请号为CN202210800376.5的中国专利申请的优先权,以及于2022年08月15日在中国专利局提交的、申请号为CN202210977269.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,特别是涉及一种驱动机构和血泵。
背景技术
血泵被设计为经皮插入患者的血管中,例如大腿或腋窝的动脉或静脉的血管内,可以被前探入患者的心脏中以作为左心室辅助设备或右心室辅助设备起作用。因此,血泵也可以被称为心内血泵或血管内血泵。
通常血泵具有驱动机构和叶轮,叶轮与驱动机构的驱动轴连接,为了实现驱动轴的稳定转动,通常需要设置对驱动轴进行定位或限位的结构,导致驱动机构的结构较为复杂。
发明内容
基于此,本申请提供了一种结构较为简单的驱动机构和血泵。
本申请第一方面的实施例提供了一种驱动机构,包括所述驱动机构包括壳体、转轴、转子,以及第一轴套和第二轴套;其中,所述转轴能够转动地安装于所述壳体,所述转轴具有连接端及远离所述连接端的球头端,所述连接端用于与所述叶轮连接;转子固接于所述转轴;所述第一轴套和所述第二轴套均安装于所述壳体,所述第一轴套开设有凹槽,所述凹槽具有内凹的球面壁,其中,所述转轴能够转动地穿设于所述第二轴套,所述球头端能够活动地设置于所述凹槽中,并能够与所述球面壁抵接,所述转子位于所述第一轴套和所述第二轴套之间;止挡件与所述转轴和所述转子中的至少一个固接,所述止挡件位于所述转子和所述第二轴套之间,所述止挡件能够与所述第二轴套抵接。
本申请第二方面的实施例提供了一种血泵,包括叶轮以及如第一方面所述的驱动机构;所述叶轮与所述转轴的所述连接端连接,所述叶轮能够随所述转轴转动。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的血泵的结构示意图;
图2为图1所示的血泵省略了套管、叶轮和部分导管的剖视图;
图3为图2所示的血泵的局部放大图;
图4为图1中的转轴、止挡件、转子、第一轴套和第二轴套组装在一起的剖视图;
图5为图4所示的A部的局部放大图;
图6为图1所示的血泵的转轴的结构示意图;
图7为图1所示的血泵的转子、定子和导磁件的组装在一起的结构示意图;
图8为图7所示的第二转子和导磁件的一个导磁板组装在一起的结构示意图;
图9为图7所述的转子的第一转子的第一飞轮的结构示意图;
图10为图2所示的B部的局部放大图;
图11为图2所示的血泵的第一轴套的结构示意图;
图12为图11中的第二轴套的剖视图;
图13为图1所示的血泵省略了套管、叶轮和部分导管的另一角度的剖视图;
图14为图13的C部的局部放大图;
图15为图13所示的血泵的支撑座的结构示意图;
图16为图2所示的血泵的第二轴套的结构示意图;
图17为本发明实施例提供的血泵的结构示意图;
图18为图17中的血泵的爆炸视图;
图19为图17中的血泵的套管组件的结构示意图;
图20为图19中的D处局部放大图;
图21为图19中的套管组件的衔接管的结构示意图;
图22为图21中的衔接管的内部结构示意图;
图23为图21中的衔接管的内部结构示意图;
图24为图17中的血泵省略插管和衔接管后的爆炸图;
图25为图17中的血泵省略插管和衔接管后的又一爆炸视图;
图26为图17中的血泵省略插管、衔接管和部分导管后的剖视图;
图27为图26的E处局部放大图;
图28为图26中的转轴、第一轴套和第二轴套组装在一起的结构示意图;
图29为图28中的第一轴套和部分转轴的组装示意图;
图30为图28中的转轴发生偏摆时与第二轴套的位置关系示意图;
图31为图26中的第一轴套的剖视图;
图32为图26中的支撑座的结构示意图;
图33为图26中的第二轴套的结构示意图;
图34为图26中的第一转子的结构示意图;
图35为图26中的第二转子的结构示意图;
图36为图26中的定子和导磁件的爆炸视图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图即实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请的技术方案,下面结合具体附图及实施例来进行说明。
在介入医疗领域,通常定义器械距操作者近的一端为近端,距操作者远的一端为远端。
现对本发明实施例中的驱动机构10及血泵1进行说明。
请参考图1,血泵1包括驱动机构10和叶轮20。驱动机构10与叶轮20传动连接,驱动机构10能够驱动叶轮20转动。具体地,血泵1还包括套管40,套管40固接于驱动机构10的远端。叶轮20能够转动地收容于套管40中。其中,套管40具有血液出口41和血 液入口42。叶轮20转动时,血液从血液入口42流入套管40中,再从血液出口41流出。在一个实施例中,套管40延伸穿设于心脏瓣膜,诸如主动脉瓣膜,血液入口42位于心脏内,血液出口41和驱动机构10位于心脏外的诸如主动脉的血管中。具体地,血泵1还包括导管50,导管50与驱动机构10的近端连接。其中,导管50用于容置各种供应管线。例如,供应管线包括用于与驱动机构10电连接的导线以及用于给血泵1通入冲洗液的清洗管线。可选地,冲洗液为生理盐水、含有肝素生理盐水或葡萄糖等。
请结合图2至图6,驱动机构10包括壳体100、转轴200、定子300、转子400、第一轴套510、第二轴套520和止挡件600。其中,壳体100大致为两端开口的筒状壳体。壳体100的远端与套管40固接,近端与导管50固接。壳体100具有内腔。具体地,壳体100内设有分隔环120,分隔环120将壳体100的内腔分隔成限位腔112和容置腔114。在图示的实施例中,限位腔112和容置腔114沿壳体100的轴向设置。
转轴200呈细长状。转轴200能够转动地安装于壳体100,转轴200具有用于与叶轮20连接的连接端210及远离连接端210的球头端220。在图示的实施例中,转轴200大致沿壳体100的轴向延伸,或者说,转轴200的轴线的延伸方向与壳体100的轴向大致一致。限位腔112和容置腔114沿转轴200的轴线设置。转轴200穿设于限位腔112,部分收容于容置腔114,部分位于壳体100外或者说部分延伸至套管10内。转轴200的延伸至壳体100外或者延伸至套管10中的部分为转轴200的连接端210;球头端220位于容置腔114中。具体地,叶轮20与连接端210固接,以使叶轮20能够随转轴200转动。在一些实施例中,转轴200为陶瓷材料制成。相比金属材料,陶瓷的加工精度较高,生物相容性、机械强度较高,且具有较好的耐磨性和耐腐蚀性。
定子300固定地安装于壳体100,即定子300设置在壳体100的内腔中。在图示的实施例中,定子300位于容置腔114中。其中,转轴200能够转动地穿设于定子300。转子400位于壳体100中,即转子400也设置在壳体100的内腔中。在图示的实施例中,转子400位于容置腔114内。转子400固接于转轴200,定子300能够驱动转子400转动,转子400能够带动转轴200转动。具体地,转子400具有磁性,定子300能够产生驱动转子400转动的旋转磁场。
请一并结合图7,在图示的实施例中,转子400包括第一转子410和第二转子420,第一转子410和第二转子420均固接于转轴200。第一转子410和第二转子420均能够转动地收容于壳体100的容置腔114内。第一转子420和第二转子420沿转轴200的轴线设置。其中,定子300位于第一转子410和第二转子420之间。第一转子410和第二转子420均具有磁性,定子300能够产生驱动第一转子410和第二转子420转动的旋转磁场。具体地,第一转子410包括第一磁体411,第一磁体411与转轴200固接。其中,第一磁体411为环状的海尔贝克阵列磁铁。具体地,第一转子410还包括第一飞轮412,第一飞轮412固接于转轴200,第一磁体411固接于第一飞轮412上。通过设置第一飞轮412可以增强第一磁体411与转轴200的连接强度;另外还能够减少转轴200在转动过程中的晃动,使整个转轴200在转动过程中更加稳定。
请一并结合图9,具体地,第一飞轮412包括第一内置管4121、第一盘状部4122和第一外环壁4123,第一内置管4121和第一外环壁4123两者均为圆管状结构,第一盘状部4122为环形圆盘结构。第一内置管4121和第一外环壁4123均与第一盘状部4122固接。第一外环壁4123环绕第一盘状部4122设置,第一内置管4121和第一外环壁4123两者同轴设置,转轴200穿设于第一内置管4121中、并与第一内置管4121固定连接。第一内置管4121和第一外环壁4123之间形成有第一环形腔4124。第一磁体411容置在第一环形腔4124中。第一环形腔4124的形状与第一磁体411相适配,以方便第一磁体411的安装和定位。如此设置能够使第一飞轮412对第一磁体411起到限位作用,不仅方便第一磁体411的安装,而且也使得第一磁体411和第一飞轮412结合更加稳固。
需要说明的是,第一飞轮412不限于为上述结构,在一些实施例中,第一飞轮412不 具有第一外环壁4123;在一些实施例中,第一飞轮412不具有第一外环壁4123和第一内置管4121,此时,转轴200固定地穿设于第一盘状部4122的中心。相对于仅具有第一盘状部4122的第一飞轮412,设置第一内置管4121能够使第一飞轮412与转轴200更加稳定地连接。第二转子420包括第二磁体421,第二磁体421固接于转轴200。具体地,第二磁体421为环状的海尔贝克阵列磁铁。具体地,第二转子420还包括第二飞轮422,第二飞轮422固接于转轴200上,第二磁体421固定于第二飞轮422。通过设置第二飞轮422可以增强第二磁体421与转轴200的连接强度;另外还能够减少转轴200在转动过程中的晃动,使整个转轴200在转动过程中更加稳定。
具体地,参阅图4,第二飞轮422包括第二内置管4221、第二盘状部4222和第二外环壁4223,第二内置管4221和第二外环壁4223两者均为圆管状结构,第二盘状部4222为环形圆盘结构。第二内置管4221和第二外环壁4223均与第二盘状部4222固接。第二外环壁4223环绕第二盘状部4222设置,第二内置管4221和第二外环壁4223两者同轴设置,转轴200穿设于第二内置管4221中、并与第二内置管4221固定连接。第二内置管4221和第二外环壁4223之间形成有第二环形腔。第二磁体421容置在第二环形腔中。第二环形腔的形状与第二磁体421相适配,以方便第二磁体421的安装和定位。如此设置能够使第二飞轮422对第二磁体421起到限位作用,不仅方便第二磁体421的安装,而且也使得第二磁体421和第二飞轮422结合更加稳固。
需要说明的是,第二飞轮422不限于为上述结构,在一些实施例中,第二飞轮422不具有第二外环壁4223;在一些实施例中,第二飞轮422不具有第二外环壁4223和第二内置管4221,此时,转轴200固定地穿设于第二盘状部4222的中心。相对于仅具有第二盘状部4222的第二飞轮422,设置第二内置管4221能够使第二飞轮422与转轴200更加稳定地连接。
具体地,定子300包括沿转轴200的轴线设置的第一定子单元310和第二定子单元320,第一定子单元310能够驱动第一转子410转动,第二定子单元320能够驱动第二转子420转动。具体地,第一定子单元310能够产生驱动第一转子410转动的旋转磁场,第二定子单元320能够产生驱动第二转子420转动的旋转磁场。第一定子单元310和第二定子单元320均固定地收容于壳体100的容置腔114内。转轴200能够转动地穿设于第一定子单元310和第二定子单元320。其中,第一定子单元310和第二定子单元320均位于第一转子410和第二转子420之间。
其中,第一定子单元310和第二定子单元320均包括磁芯和线圈,线圈缠绕于磁芯上。具体地,第一定子单元310包括第一磁芯312和第一线圈313,第一线圈313缠绕于第一磁芯312上。第一磁芯312为多个,多个第一磁芯312环绕转轴200的轴线设置一周。每个第一磁芯312设有一个第一线圈313。第二定子单元320的结构与第一定子单元310的结构相似。请一并结合图8,第二定子单元320包括第二磁芯322和第二线圈323,第二线圈323缠绕于第二磁芯322上。第二磁芯322为多个,多个第二磁芯322环绕转轴200的轴线设置一周。每个第二磁芯322设有一个第二线圈323。
具体地,驱动机构10还包括固接于壳体100的导磁件700,第一定子单元310的第一磁芯312和第二定子单元320的第二磁芯322均与导磁件700固接。具体地,导磁件700固定地收容于壳体100内,例如卡接于壳体100的内侧壁。转轴200能够转动地穿设于导磁件700。第一磁芯312的一端与导磁件700固接,第一转子410靠近第一磁芯312的另一端设置;第二磁芯423的一端与导磁件700固接,第二转子420靠近第二磁芯322的另一端设置。
导磁件700起到闭合磁路的作用,以促进和增加磁通量的产生,提高耦合能力,因此,设置导磁件700能够起到闭合第一定子单元310和第一转子410之间的磁路的作用、闭合第二定子单元320和第二转子420之间的磁路的作用,增加磁通量,因此,导磁件700的设置有利于减小驱动机构10的整体直径。另外,将第一定子单元310的第一磁芯312和第 二定子单元320的第二磁芯322均与导磁件700固接,还能够实现第一定子单元310和第二定子单元320的定位和安装,降低了第一定子单元310和第二定子单元320的装配难度。同时,上述方式设置的导磁件700还能够减少壳体100内的定位结构的设置,从而简化壳体100的结构,简化整个驱动机构10的装配过程。
具体地,导磁件700包括两个导磁板710,两个导磁板710层叠,其中一个磁板710与第一定子单元310的第一磁芯312固接,另一个导磁板710与第二定子单元320的第二磁芯322固接,转轴200能够转动地穿设于两个导磁板710。具体地,两个导磁板710在装配之前为分体式,通过将导磁件700设置成在装配前为分体的两个导磁板710,在装配驱动机构10时,可以先将第一磁芯312固接于导磁板710,第二磁芯322固接于另一个导磁板710,然后将两个导磁板710层叠,如此,能够方便第一磁芯312和第二磁芯322分别装配至两个导磁板710,能够使第一磁芯321和第二磁芯322装配更加方便。
具体地,两个导磁板710固接,从而使得第一定子单元310、第二定子单元320和导磁件700形成一个整体而装配至壳体100内,使得定子300的装配更加容易。例如,两个导磁板710可以通过胶黏或焊接的方式连接在一起。可以理解,在其他实施例中,两个导磁板710没有固接,而是相互接触。需要说明的是,导磁件700不限于上述由两个分体的导磁板710组合而成的方式,导磁件700还可以为一板状结构,第一磁芯231和第二磁芯241均连接于导磁件700,即第一定子单元310和第二定子单元320共用一个导磁件700。
具体地,导磁板710的材质为硅钢,第一磁芯312和第二磁芯322的材质为硅钢。
请再次结合图2、图4和图5,第一轴套510和第二轴套520均安装于壳体100。具体地,第一轴套510收容于容置腔114内,第二轴套520收容于限位腔112内。第一轴套510和第二轴套520均固接于壳体100。第一轴套510和第二轴套520沿壳体100的轴向间隔设置,第一轴套510和第二轴套520能够对转轴200进行限位。第二轴套520较第一轴套510更靠近转轴200的连接端210,或者说,第二轴套520较第一轴套510更靠近壳体100内的分隔环120。转子400位于第一轴套510和第二轴套520之间;定子300也位于第一轴套510和第二轴套520之间。在图示的实施例中,第一转子410、第二转子420、第一定子单元310和第二定子单元320均位于第一轴套510和第二轴套520之间;第一转子410靠近第一轴套510设置,第二转子420靠近第二轴套520设置。换而言之,第一轴套510、第一转子410、第一定子单元310、第二定子单元320、第二转子420和第二轴套520沿转轴200的轴线依次设置,其中,第二轴套510最靠近转轴200的连接端210。
其中,第一轴套510开设有凹槽512,凹槽512具有内凹的球面壁514。转轴200能够转动地穿设于第二轴套520,转轴200的球头端220能够活动地设置于凹槽512中,且转轴200的球头端220能够与球面壁514抵接。凹槽512能够对转轴200的球头端220进行支撑和限位,以限制转轴200沿转轴200的轴线朝远离叶轮20的方向移动的范围,同时,限制转轴200的球头端220在转轴200的径向上的摆动范围。
请一并结合图10、图11和图12,具体地,凹槽512具有槽口512a,转轴200穿设于槽口512a,凹槽512的槽口512a处设置倒圆515。即凹槽512的槽口512a处的槽壁做了倒圆处理,从而以避免转轴200被具有棱角的凹槽512的槽口512a所刮伤和磨损。
具体地,球头端220在转轴200的轴线方向上的长度h小于凹槽512的深度s(凹槽512的深度s即为凹槽512的槽口512a到球面壁514的最大距离),以更好地将球头端220限制凹槽512内,以及减小转轴200的径向摆动范围。然而,凹槽512的深度也不要太大,以避免转轴200位于凹槽512内的长度过长,否则可能增加转轴200的长度。在图示的实施例中,球面壁514的半径大于球头端220的半径,即球面壁514所在的球体的半径大于球头端220所在的球体的半径。球面壁514在第一轴套510的轴向上的长度L小于凹槽512的深度s。
具体地,第一轴套510还开设有与凹槽512连通的通液孔516。其中,通液孔512能够与导管50中的清洗管线连通,以使冲洗液能够通过通液孔516进入到凹槽512内。冲洗 液进入到凹槽512的槽壁和球头端220之间能够起到润滑的作用,以减小球头端220和凹槽512的槽壁之间的摩擦,从而降低球头端220和槽壁的磨损。
具体地,通液孔516的一个开口516a位于球面壁514的中心位置,以使从通液孔516进入凹槽512内的冲洗液尽可能地对转轴200的球头端220提供一个轴向冲力。更具体地,通液孔516的中心轴线和球面壁514围设成的腔体的中心轴线重合,以使通液孔516为直孔以降低冲洗液在通液孔516中的能量消耗。
具体地,通液孔516的位于球面壁514上的开口516a的口径为球头端220所在球体的直径的1/9~1/3(球头端220的直径也即球头端220所在的球体的直径)。在图示的实施例中,由于通液孔516的孔径恒定,也即通液孔516的孔径为球头端220的直径的1/9~1/3。通液孔516的位于球面壁514上的开口516a的口径太大会导致球头端220与球面壁514的接触面减少,会增大球面壁514对球头端220的磨损;开口516a的口径太小会影响从通液孔516进入凹槽512内的冲洗液的量,而进入凹槽512内的冲洗液一方面给需要给球头端220一冲力,另一方面进入到球头端220和球面壁514之间以起到润滑作用,以减小球头端220和球面壁514之间的摩擦系数,因此,进入凹槽512内的冲洗液的量不宜太小。
请一并结合图13、图14和图15,具体地,驱动机构10还包括支撑座800,支撑座800固接于壳体100。支撑座800上开设有安装腔810和与安装腔810连通的进液孔820,第一轴套510安装于安装腔810中。其中,通液孔516与进液孔820连通。进液孔820的远离安装腔810的一端用于与导管50的清洗管线连通,以便于冲洗液能够通过进液孔820、通液孔516流入凹槽512的槽壁和球头端220之间的间隙中,然后流入壳体100的内腔内。
具体地,安装腔810具有腔底812,进液孔820的一个开口位于安装腔810的腔底812,安装腔810内设有支撑台阶814,支撑台阶814与第一轴套510抵接,以使第一轴套510与腔底812间隔一段距离,以更好地确保冲洗液流通的通畅性。具体地,支撑台阶814与第一轴套510的背离第二轴套520的一面相抵接。
具体地,支撑座800还开设有分流道830,分流道830与进液孔820流体连通,以使流经进液孔820的冲洗液还能够经分流道830流到壳体100的内腔内。具体地,分流道300的一端连通于第一轴套510与安装腔810的腔底812之间的间隙,另一端连通于容置腔114。图示的实施例中,分流道830为安装腔810的腔壁局部凹陷形成。换而言之,在通常状态下,冲洗液从进液孔820进入安装腔810后分为两股,一股经通液孔516流入第一轴套510的凹槽512,另一股经分流道830流出。设置分流道830能够在球头端220封堵了通液孔516的情况下保证冲洗液流通。在图示的实施例中,分流道830的数量为两个,两个分流道830相对设置。可以理解,分流道830的数量可以根据设计需要进行调整,例如,在一些实施例中,分流道830的数量也可以为一个或者大于两个。
请结合图2、图3、图4和图16,第二轴套520抵接于分隔环120,即分隔环120位于第二轴套520和转子400之间。在图示的实施例中,分隔环120位于第二轴套520和第二转子420之间。通过分隔环120以便于对第二轴套520进行定位,能够方便第二轴套520的装配。其中,第二轴套520开设有轴孔522,转轴200能够转动地穿设于轴孔522。在图示的实施例中,轴孔522的中心轴线与第一轴套510的通液孔516的中心轴线重合。第二轴套520的轴孔522的孔壁和转轴200之间具有供流体流通的间隙。其中,进入容置腔114内的冲洗液能够流经转轴200和轴孔522的孔壁之间的间隙而流出壳体100。
止挡件600固接于转轴200和转子400(具体为第二转子420)中的至少一个,换而言之,止挡件600可以仅与转子400直接固定,也可以仅与转轴200直接固定,也可以同时与转子400和转轴200都直接固定。由于,转子400固接于转轴200,因此,止挡件600、转轴200与转子400三者同步转动和移动。止挡件600位于转子400和第二轴套520之间,止挡件600能够与第二轴套520抵接,以限制转轴200沿转轴200的轴线朝靠近叶轮20的方向的移动。
由于止挡件600、转轴200与转子400三者同步转动和移动,止挡件600能够与第二 轴套520抵接,以限制转轴200沿转轴200的轴线朝靠近叶轮20的方向的移动,而转轴200的球头端220设置于第一轴套510的凹槽512中,并能够与凹槽512的球面壁514抵接,以限制转轴200沿转轴200的轴线朝远离叶轮20的方向移动的范围,从而实现对转轴200在转轴200的轴线上的限位;同时由于转轴200穿设于第二轴套520,且由于转轴200的球头端220设置在第一轴套510的凹槽512中,第一轴套510的凹槽512的槽壁还能够限制转轴200的球头端220在转轴200的径向上的摆动范围,从而实现对转轴200的径向摆动范围进行整体限制。换而言之,上述设计不仅实现了对转轴200的轴向限位,还实现了对转轴200的径向限位。
在图示的实施例中,止挡件600和第二转子420固接,具体地,止挡件600与第二转子420的第二飞轮422固接。在一些实施例中,止挡件600粘结于第二转子420的第二飞轮422;在一些实施例中,止挡件600和第二转子420的第二飞轮422一体成型。由于血泵1的整体体积小,止挡件600的体积更小,加工精度难,且装配难度大,将止挡件600和第二飞轮422一体成型,方便安装,且省去粘接操作。
具体地,止挡件600与第二轴套520抵接时,止挡件600至少部分位于分隔环120的内环中,止挡件600与分隔环120的内环壁之间具有供流体流通的间隙,且分隔环120与转子400间隔一段距离。通过使止挡件600与分隔环120的内环壁之间具有供流体流通的间隙,从而以使冲洗液能够通过止挡件600与分隔环120的内环壁之间的间隙流入第二轴套520的轴孔522的孔壁之间的间隙中,即实现第二轴套520的轴孔522和容置腔114之间的流体连通;止挡件600与第二轴套520抵接时使分隔环120与转子400间隔一段距离,以避免在止挡件600与第二轴套520抵接时转子400和分隔环120接触而发生摩擦而造成磨损。具体地,止挡件600大致为环状,止挡件600的中心轴线与转轴200的轴线重合。止挡件600的外径小于分隔环120的内径,从而以使止挡件600与分隔环120的内环壁之间具有供流体流通的间隙。在其它实施例中,止挡件600还可以由多个扇环排列而成,该多个扇环沿环绕转轴200均匀间隔设置一周,或者,可以理解为由周向离散设置的多个扇环排列而成。
具体地,止挡件600沿转轴200的轴线的厚度大于分隔环120沿转轴200的轴线的厚度,从而以使止挡件600与第二轴套520抵接时使分隔环120与转子400间隔一段距离。可以理解,在一些实施例中,也可以使止挡件600沿转轴200的轴线的厚度小于或等于分隔环120沿转轴200的轴线的厚度,此时,可以将转子400(具体为第二转子420)和止挡件600在沿转轴200的轴线方向上间隔一端距离,该距离足以使止挡件600与第二轴套520抵接时分隔环120与转子400间隔一段距离即可。
具体地,第二轴套520的朝向止挡件600的一面局部凹陷形成导流槽524,导流槽524与第二轴套520的轴孔522连通;止挡件600与第二轴套520抵接时,部分导流槽524未被止挡件600覆盖,从而当止挡件600与第二轴套520抵接时,即使存在止挡件600封堵第二轴套520的轴孔522和转轴200之间的间隙而导致的冲洗液流通障碍的问题,未被止挡件600覆盖的导流槽524可以在止挡件600与第二轴套520抵接时实现流体连通,保证冲洗液流通的通畅性;另外,通过在第二轴套520的朝向止挡件600的一面局部凹陷形成导流槽524,以便于冲洗液能够更好地流入至止挡件600和第二轴套520之间,以起到对止挡件600和第二轴套520的接触表面的润滑作用,减小止挡件600和第二轴套520之间的摩擦,减小因止挡件600和第二轴套520之间的摩擦而导致的磨损问题。
其中,止挡件600具有止挡面610,止挡面610与转轴200的轴线垂直,第二轴套520具有止位面526,止位面526与第二轴套520的轴孔522的中心轴线垂直,止位面526与止挡面610相对,止位面526能够与止挡面610抵接,以限制转轴200沿转轴200的轴线朝靠近叶轮20的方向的移动。由于止挡面610与转轴200的轴线垂直,止位面526与第二轴套520的轴孔522的中心轴线垂直,转轴200能够转动地穿设于第二轴套520的轴孔522,从而在转轴200正常工作且止挡件600与第二轴套520抵接时,止挡面610和止位面526 能够面面接触,能够减小止挡件600和第二轴套520摩擦而造成的磨损。具体地,止位面526与分隔环120抵接。导流槽524为止位面526的局部凹陷形成。
具体地,止挡面610和止位面526中的至少一个的粗糙度小于或等于0.1微米。在一些实施例中,止挡面610和止位面526的粗糙度均小于或等于0.1微米。在一些实施例中,止挡面610和止位面526中的一个的粗糙度小于或等于0.1微米。通过减小止挡面610和止位面526中的至少一个的粗糙度能够有效减小止挡面610和止位面526之间的摩擦力,降低因第二轴套520和止挡件600之间的摩擦导致的磨损问题。
在一些实施例中,止挡面610和止位面526中的至少一个为陶瓷面。陶瓷的加工精度较高,具有较高的生物相容性、较高的机械强度、较好的耐磨性和耐腐蚀性。此时,止挡件600和第二轴套520的材质可以为陶瓷,或者,通过设置陶瓷涂层的方式实现止挡面610和止位面526中的至少一个为陶瓷面。在一些实施例中,止挡面610的材料为金刚石,以使得止挡面610具有较高的硬度,较为光滑的表面,且抗磨损,此时,通过设置金刚石涂层的方式实现止挡面610的材料为陶瓷面。
可以理解,驱动机构10的结构不限于为上述结构。在一些实施例中,转子400的数量和定子300的数量均为一个,此时,转子400靠近第二轴套520设置,定子单元靠近第一轴套510设置。在一些实施例中,转子400仍然具有第一转子410和第二转子420,但定子300的定子单元为一个,此时,定子单元位于第一转子410和第二转子420之间,定子单元能够同时驱动第一转子和第二转子转动。
请参阅图17和图18,血泵1包括驱动机构10和叶轮20,驱动机构10与叶轮20传动连接,驱动机构10能够驱动叶轮20转动。具体地,血泵1还包括固接于驱动机构10的远端的套管组件30。叶轮20能够转动地收容于套管组件30中。其中,套管组件30具有血液入口31和血液出口32。血液入口31设置于套管组件30的远端,血液出口32位于套管组件30的近端。血液出口32的数量为多个,多个血液出口32沿套管组件30的周向间隔分布。叶轮20转动时,血液从血液入口31流入套管组件30中,再从血液出口32流出。在一个实施例中,套管组件30延伸穿设于心脏瓣膜,诸如主动脉瓣膜,血液入口31位于心脏内,血液出口32和驱动机构10位于心脏外的诸如主动脉的血管中。
请一并结合图19,套管组件30包括插管33、衔接管34和出口管35,插管33、衔接管34和出口管35均为中空的管状结构。插管33与衔接管34套接以使衔接管34的一端的内壁与插管33的外壁连接。具体地,插管33具有近端和远端,插管33的近端与衔接管34接合,其中,血液入口31位于插管33的远端上。
请一并结合图20,出口管35包括靠近衔接管34的连接部351和远离衔接管34的出口部352。出口管35与衔接管34套接以使连接部351的外壁与衔接管34的远离插管33的一端的内壁连接。其中,出口部352的远离衔接管34的一端与驱动机构10固接,叶轮20能够转动地置于出口管35中,或者,叶轮20部分置于出口管35中,部分置于插管33中。血液出口32位于出口部352上。多个血液出口32在出口管35的周向上均匀设置在出口部352上,叶轮20被驱动机构10驱动旋转,以将血液从血液入口31流入,流经插管33后再从出口管35的多个血液出口32流出。
由于传统的插管33与出口管35之间的连接方式为插管33直接套设在出口管35上,但由于插管33为柔性管,出口管35为金属管,没有匹配的装配位,二者的管径也不同,所以连接之前的插管33需要通过工艺塑型来将插管33的端口的口径扩大,以配合出口管35,从而使插管33能够套设在出口管35的外壁上,过程繁琐,连接不稳且塑形处强度下降。
而本实施例提供的套管组件30中的插管33和出口管35通过衔接管34过渡连接,衔接管34的一端的内壁与插管33的外壁连接,出口管35的连接部351的外壁与衔接管34的另一端的内壁连接,可以使得插管33和出口管35固接形成连贯的管道;省去了插管33 和出口管35直接套接而需要将插管33进行塑型工艺的步骤,连接稳固且装配操作简单。
如图19至图22所示,衔接管34的内壁设有限位凸环341。具体地,限位凸环341呈圆环状凸出设置在衔接管34的内壁上,且限位凸环341与衔接管34同轴线。其中,限位凸环341具有沿衔接管34的轴向上设置的第一端面3411和第二端面3412,第一端面3411抵接于插管33的端部,第二端面3412抵接于连接部351的端部。连接部351的外径小于出口部352的外径。衔接管34的远离插管33的一端的端部抵接于出口部352的靠近连接部351的一端的端部,且衔接管34的外壁与出口部352的外壁平齐。具体地,连接部351和出口部352的内径相同,限位凸环341具有一定的厚度,以形成靠近插管33的第一端面3411和靠近出口管35的第二端面3412。当插管33和出口管35分别套设于衔接管34内时,限位凸环341能够同时对出口管35和插管33的轴向方向进行限位,控制出口管35和插管33套接的深度,起到预定位的作用,方便后续的固接操作。同时衔接管34的端部能够抵接于出口部352的端部,与限位凸环341共同作用,形成轴向两个方向的限位,更加稳定和契合。此时衔接管34的外壁与出口部352的外壁平齐,使衔接管34的外壁与出口管35的出口部352的外壁在同一个柱面上,有效地控制衔接管34和出口管35的连接处的整体外径,使该连接处平滑过渡,避免存在起伏的落差段而造成进入人体血管不顺畅,甚至划伤血管。
另外,结合图18-图20和图24所示,叶轮20包括叶片21。叶片21的远离驱动机构10的一端的端部不超过连接部351的远离驱动机构10的一端的端部。具体地,叶轮20还包括轮毂22,叶片21呈螺旋状盘绕在轮毂22上。叶轮20部分置于出口管35中,驱动机构10驱动叶轮20转动。由于叶轮20旋转会振动而产生偏摆,需要与出口管35的内壁之间设置一定的距离,来保证叶轮20在发生最大偏摆时叶片21也不会磕碰到出口管35的内壁,限位凸环341处在的位置的管道的内壁较窄,而叶片21在出口管35的轴向方向上具有一定的高度,叶片21在出口管35的径向方向上占据一定的宽度,叶片21在轴向上的最高点不伸出于出口管35,这样一来,使得叶片21不会接触到限位凸环341。不仅如此,该限位凸环341也不限于上述实施例中的完整的圆环结构,还可以是多个彼此不相连且均匀间隔分布的凸台结构,在保证限位的条件下,可以节省材料。该限位凸环341可以是单独连接到衔接管34的结构,也可以是与衔接管34一体成型的结构,一体成型的话强度更高。
如图20所示,插管33的内径小于出口管35的内径,第一端面3411在径向方向上的宽度大于第二端面3412在径向方向上的宽度,以使插管33的内壁与第一端面3411的边缘平齐、出口管35的内壁与第二端面3412的边缘平齐。限位凸环341还包括过渡面3413,过渡面3413连接第一端面3411的边缘和第二端面3412端面的边缘。具体地,插管33和出口管35的尺寸和规格不同。由于两者的内径不同,即第一端面3411相对于第二端面3412在径向方向上更加凸出于衔接管34的内壁,在分别与限位凸环341抵接的时候,需要使第一端面3411的边缘与插管33的内壁平齐,第二端面3412的边缘与出口管35的内壁平齐,这样在出口管35和插管33与限位凸环341抵接之后,使三者内壁组成的血流通道更加连贯,且三者在连接过渡处不会形成死角,避免血液进入死角造成卡血而形成血栓。
更具体地,由于第一端面3411和第二端面3412的宽度不同。第一端面3411到第二端面3412之间的距离会形成较大的垂直落差,而血流的方向是从插管33流向出口管35,两者之间也会形成有死角,从而通过过渡面3413将第一端面3411的边缘和第二端面3412的边缘连接,形成一个较缓的过渡面3413,使血液可以直接顺着过渡面3413流过,不会形成死角而造成卡血和血栓风险。
其中,过渡面3413还可以是外凸弧面或者内凹弧面,弧面则对血液的导流效果更佳。
如图20所示,过渡面3413具有与衔接管34同轴线的柱形面3413a和与衔接管34的轴线呈角度的斜面3413b。柱形面3413a的一端连接于斜面3413b的一端,柱形面3413a的远离斜面3413b的一端连接于第一端面3411的边缘。柱形面3413a与插管33的内壁平齐,斜面3413b的远离柱形面3413a的一端连接于第二端面3412的边缘。
该过渡面3413由两部分组成,柱形面3413a的一端连接于第一端面3411的边缘,且插管33在与第一端面3411抵接后,与插管33的内壁平齐。平齐指的是柱形面3413a与插管33的连接面平滑过渡,没有起伏的落差。由于在加工成型限位凸环341时,通过柱形面3413a过渡,避免斜面3413b直接连接第一端面3411的边缘而在连接处形成尖角结构,加工难度低。其中,再通过斜面3413b连接柱形面3413a和第二端面3412的边缘,此时血流通过柱形面3413a后顺着斜面3413b导流,流向至出口管35。因此,不同内径的插管33和出口管35通过限位凸环341衔接,使血流通道形成一个连贯的通道,血流从插管33的内壁途径限位凸环341的过渡面3413,再流入出口管35的内壁,全程通畅无阻,避免产生卡血和形成血栓。
进一步地,出口管35为金属管。插管33为柔性管,且具有弹性。在本实施例中,出口管35具体为塑料管,衔接管34也为金属管,由于衔接管34的两端分别需要与两种不同材料进行接合,在接合的过程中,衔接管34的一端的内壁与插管33的外壁粘接固定,衔接管34的远离插管33的一端与连接部351的外壁焊接固定,符合工艺要求,而且通过金属的衔接管34套设在插管33和出口管35的接合处,强度也有保证。
如图20所示,衔接管34包括相互连接的第一管部342和第二管部343。第一管部342的内壁与插管33的外壁连接,第二管部343的内壁与连接部351的外壁连接。限位凸环341设置在第二管部343的内壁。第一管部342和第二管部343的外径相同,第一管部342的内径大于第二管部343的内径。将衔接管34的管壁厚度分为两段,厚度较薄的第一管部342与插管33连接,厚度较厚的第二管部343与出口管35连接。由于插管33为柔性管,具有弹性,依靠此种特性进入弯曲的人体血管更加容易,而衔接管34为金属管,材质较硬,衔接管34在其轴向方向上套设在插管33的外壁,会使得嵌套部分过于僵直,那么通过减少第一管部342的厚度,来提高第一管部342的弹性,使其不会太硬而在进入人体弯曲的血管中能够适应变形。
进一步地,第一管部342的内壁与插管33外壁之间具有管部间隙3421。径向预留一定的管部间隙3421,供第一管部342与插管33之间点胶操作,同时,在点满预定的粘胶之后,也不会使第一管部342的外壁向外扩张,避免点胶处的外径扩大。
其中,由于存在管部间隙3421,而在插管33与衔接管34套设后,无法保证两者同轴心,那么在具体操作过程中,需要采用辅助定位工具来实现两者同轴心,该辅助定位工具可以是一根圆柱状的定位柱,该定位柱的外径与插管33或者限位凸环341的柱形面3413a的内径相同。具体地,先将定位柱插入使定位柱的外壁与限位凸环341的柱形面3413a贴合,再将插管33插入使插管33的内壁与定位柱的外壁贴合,再在插管33与衔接管34之间的管部间隙3421内进行点胶即可。
更进一步地,如图23所示,第一管部342的上开设有若干道镂空槽3422。镂空槽3422为贯穿第一管部342的内外壁的通槽,可以有效地减少第一管部342的面积,从而提高第一管部342的弹性;同时,在点胶过程中,也可以通过在第一管部342的侧面的镂空槽3422中进行点胶,多方位操作点胶,可以使点胶更加均匀,粘合效果更好,而且在粘胶进行加热烘干的时候,粘胶会膨胀,若第一管部342的侧面是封闭的空间,粘胶膨胀时会撑大外径,此时设置的镂空槽3422也能容纳一部分粘胶,使得粘胶具有可膨胀空间,不会造成外径扩大。其中,镂空槽3422可以“I”型直槽,或者为“S”型、“J”型等蜿蜒的弯槽。在排列上,镂空槽3422可以沿衔接管34的径向阵列也可以是沿衔接管34的轴向阵列。
具体地,结合图17和图24,血泵1还包括导管40,导管40与驱动机构10的近端连接。其中,导管40用于容置各种供应管线。例如,供应管线包括用于与驱动机构10电连接的导线以及用于给血泵1的驱动机构10通入冲洗液的清洗管线。可选地,冲洗液为生理盐水、含有肝素生理盐水或葡萄糖等。
结合图24至图26,驱动机构10包括壳体100、转轴200、第一轴套300、第二轴套400和止挡件500。其中,壳体100的远端与套管组件30固接,壳体100的近端与导管40 固接。壳体100大致为两端开口的筒状壳。壳体100具有内腔101,清洗管线内的冲洗液经壳体100的近端流入内腔101,并从壳体100的远端流出壳体100。
在一些实施例中,壳体100包括第一套壳110和第二套壳120。第一套壳110的近端与导管40固接,第一套壳110的远端与第二套壳120的近端固接,第二套壳120的远端与套管组件30固接。第一套壳110和第二套壳120围成壳体100的内腔101。其中,壳体100由第一套壳110和第二套壳120拼接而成,方便转轴200、第一轴套300、第二轴套400和止挡件500等安装于壳体100的内腔101中。
转轴200能够转动地设于壳体100。转轴200与叶轮20固接,以带动叶轮20转动。其中,转轴200包括轴部210和滑动部220,轴部210能够转动地安装于壳体100,轴部210的一端与滑动部220固接,轴部210的另一端用于与叶轮20连接。轴部210呈细长状。轴部210的远端位于壳体100的外部,用于与叶轮20固接。其中,叶轮20能够随轴部210转动。在图示的实施例中,轴部210大致沿壳体100的轴向延伸,或者说,轴部210的轴线的延伸方向与壳体100的轴向大致一致。
滑动部220具有球冠面221。轴部210的轴线经过球冠面221所在球体的球心。在图示的实施例中,球冠面221所在球体的直径大于轴部210的直径。具体地,球冠面221在轴部210的轴线方向上的高度大于或等于球冠面221所在的球体的半径,换言之,球冠面221的表面积至少为其所在球体的表面积的一半。
请一并结合图27,在图示的实施例中,滑动部220还具有柱面222及限位面223,柱面222的一端与球冠面221连接,另一端与限位面223连接,柱面222的轴线与轴部210的轴线重合,限位面223与轴部210的轴线垂直。限位面223大致为圆形,柱面222的中心轴线经过球冠面221所在球体的球心,且经过限位面223的圆心。在图示的实施例中,柱面222的直径等于球冠面221所在球体的直径。
可以理解,滑动部220不限于为上述结构,在一些实施中,滑动部220还可以整个呈球状结构,此时,球冠面221为滑动部220的远离轴部210的部分表面,此时,滑动部220不具有限位面223和柱面222。或者,滑动部220不具有柱面222,限位面223直接与球冠面221连接。在一些实施例中,轴部210和滑动部220为一体成型结构;在一些实施例中,轴部210和滑动部220也可以通过装配、焊接、粘结等方式固接在一起。在一些实施例中,滑动部220具有滑动本体及设置滑动本体的表面上的金刚石涂层,以使滑动部220表面光滑,具有较高的耐磨性;此时,滑动本体的材料可以为具有一定刚度的材料,例如金属、陶瓷等,滑动本体的材料可以和轴部210的材料相同。
结合图26和图28,在图示的实施例中,第一轴套300和第二轴套400均位于壳体100的内腔101中,且沿壳体100的轴向间隔分布;其中,第一轴套300位于壳体100的近端,第二轴套400位于壳体100的远端。其中,第一轴套300开设有凹槽310,转轴200的滑动部220能够活动地设置于凹槽310中,使得第一轴套300限制转轴200朝靠近第一轴套300方向的移动。转轴200的轴部210能够转动地穿设于第二轴套400,第二轴套400限制了轴部210在轴部210径向上的移动范围。第二轴套400具有轴孔410,转轴200的轴部210能够转动地穿设于轴孔410。轴孔410的孔径略大于转轴200的轴部210的位于轴孔410的部分的直径,以允许轴部210转动和允许冲洗液通过。轴孔410沿轴孔410的中心轴线具有一定长度(或者说,轴孔410在壳体100的轴向上具有一定长度),以限制轴部210的径向摆动范围,同时限制滑动部220在径向上的摆动范围。通过调节轴孔410的孔径的大小和调节轴孔410沿其中心轴线的长度,可以调节滑动部220的径向摆动范围。
由于在血泵1工作时,转轴200会产生一定幅度的偏摆,如图30所示,特别是转轴200的远离叶轮20的一端或者说转轴200与第一轴套300配合的一端,摆动幅度较大,传统方式的转轴200存在被第一轴套300卡死的风险,而在本实施例中,结合图29和图31,球冠面221与凹槽310的槽壁滑动抵接,即滑动部220通过球冠面221在凹槽310内摆动;凹槽310的深度h小于或等于球冠面221在轴部210的轴线方向上的高度,从而能够有效 地防止转轴200的除球冠面221以外的其它部分与凹槽310的槽口碰触而导致转轴200被卡死的问题,从而提高驱动机构10及血泵1的安全可靠性。若凹槽310的深度h大于球冠面221在轴部210的轴线方向上的高度,部分轴部210收容于凹槽310中,在转轴200发生径向摆动时,就会存在被凹槽310卡住而导致转轴200不能转动以造成泵停的风险。
具体地,凹槽310为球头槽。凹槽310具有球面壁312,滑动部220的球冠面221与球面壁312滑动抵接。凹槽310所在球体(或者说球面壁312所在球体)的半径R大于球冠面221所在的球体的半径r,以使滑动部220能在凹槽310内滑动,并具有一定径向摆动的空间。定义球面壁312所在的球体的半径R与球冠面221所在的球体的半径r之差为D,0.04mm≤D≤0.06mm。通过限定D的范围,一方面能够降低滑动部210装配进入凹槽310的工艺难度,另一方面能够限定转轴200的最大摆动角,保障了驱动机构10的运行平稳。
具体地,沿第一轴套300的轴线且朝靠近第二轴套400的方向,凹槽310的口径逐渐增大,换而言之,凹槽310的整个槽壁几乎都为球面壁312,以使滑动部220的球冠面221能够在凹槽310内更加平稳地滑动。球面壁312所在的球体的球心位于凹槽310的中心轴线上。在图示的实施例中,凹槽310的中心轴线与第一轴套300的中心轴线重合。凹槽310的中心轴线和轴孔410的中心轴线重合。需要说明的是,在本申请中,凹槽310的深度h是指凹槽310的球面壁312在完整状态下时(即球面壁312未开孔的状态下),凹槽310的槽壁到凹槽310的槽口所在平面的最大距离,即如图31所示,即凹槽310的深度h即球面壁312所在的球缺(该球缺的底面与凹槽310的槽口所在的平面重合)的高度。
在一实施例中,凹槽310的深度h为球面壁312所在球体的半径R的0.6倍~1倍,即0.6R≤h≤R。该范围不仅使得凹槽310具有径向限位作用,防止滑动部220滑动脱离凹槽310,而且使得凹槽310的口径沿第一轴套300的轴线且朝靠近第二轴套400的方向呈逐渐增大的趋势,以便于滑动部220装入凹槽310内,且使得凹槽310具有合适的宽度以适应滑动部220的径向摆动范围的需求。
在一实施例中,结合图28至图31,凹槽310的深度h大于或等于球冠面221在轴部210的轴线方向上的高度的一半,以使凹槽310的槽壁具有足够的径向宽度供滑动部220滑动,防止滑动部220滑动脱离凹槽310。
在一实施例中,凹槽310的槽口的边缘倒圆设置,使得凹槽310的槽口的边缘形成第一倒圆角311,以避免滑动部220被具有棱角的槽口边缘所刮伤和磨损。在图28示出的实施例中,第一倒圆角311位于球面壁312的远端,以使凹槽310的槽壁从球面壁312平缓过渡至第一轴套300的远端端面。
在一些实施例中,结合图26和图27,第一轴套300还具有供冲洗液流通的冲洗液孔320,冲洗液孔320与凹槽310流体连通,冲洗液孔320的孔径小于球面壁312所在球体的直径。具体地,冲洗液孔320的一端开口位于第一轴套300的近端端面,另一端开口位于球面壁312上。冲洗液孔320能够与导管40中的冲洗管线连通,从而能够与清洗管线流体连通,以使冲洗液能够通过冲洗液孔320进入到凹槽310内。冲洗液孔320的孔径小于球冠面221所在球体的直径。
具体地,冲洗液孔320的中心轴线经过凹槽310的中心或者说经过球面壁312所在球体的球心,使得冲洗液能够很好地进入到凹槽310的槽壁和滑动部220之间,不仅能够起到润滑的作用,以降低了滑动部220和凹槽310的槽壁之间的摩擦系数,或者说降低了球冠面221和球面壁312之间的摩擦系数,从而降低滑动部220和第一轴套300的磨损;而且从冲洗液孔320进入到凹槽310内的冲洗液还能够对滑动部220起到液力悬浮支撑作用。冲洗液再经过凹槽310的开口流出凹槽310,进入壳体100的内腔101中。其中,冲洗液孔320为直孔,以降低冲洗液在冲洗液孔320中的能量消耗。
在一实施例中,冲洗液孔320具有第一开口321,第一开口321位于冲洗液孔320的靠近凹槽310的一端,第一开口321的口径是球冠面221的直径的1/9~1/3。冲洗液孔320的第一开口321的口径太大会导致滑动部220与凹槽310的侧壁的接触面减少(导致单位 面积受到的压力较大),会增大凹槽310的槽壁对滑动部220的磨损;第一开口321的口径太小会影响从冲洗液孔320进入凹槽310内的冲洗液的量,而进入冲洗液孔320内的冲洗液一方面给需要给滑动部220一冲力,同时进入到滑动部220和凹槽310的槽壁之间以起到润滑作用,以减小滑动部220和凹槽310的槽壁之间的摩擦系数,因此,进入凹槽310内的冲洗液的量不宜太小。此外,冲洗液孔320的第一开口321的边缘设置有第二倒圆角,避免滑动部220被刮伤和磨损。在图示的实施例中,第一开口321位于球面壁312上。冲洗液经第一开口321进入到球面壁312和球冠面221之间以起到润滑作用。
在一些实施例中,结合图27和图32,驱动装置10还包括支撑座810。支撑座810固接于壳体100。支撑座810上开设有安装腔811和与安装腔811连通的进液孔814,第一轴套300安装于安装腔811中,冲洗液孔320与进液孔814连通。进液孔814的远离安装腔811的一端用于与导管40的清洗管线连通,以便于冲洗液能够通过进液孔814、冲洗液孔320流入凹槽310的槽壁和滑动部220之间,然后流入壳体100的内腔101内。
在一实施例中,安装腔811具有腔底812,进液孔814的第二开口815位于安装腔811的腔底812,安装腔811内设有支撑台阶813,支撑台阶813与第一轴套300抵接,以使第一轴套300与腔底812间隔一段距离,以更好地确保冲洗液流通的通畅性。具体地,支撑台阶813与第一轴套300的背离第二轴套400的一面相抵接。
具体地,支撑座810还开设有分流道816,分流道816与进液孔814流体连通,以使流经进液孔814的流体(例如冲洗液)还能够通过分流道816流到壳体100的内腔101。具体地,分流道816的一端连通于第一轴套300与安装腔811的腔底812之间的间隔,另一端连通于内腔101。图32示出的实施例中,分流道816为安装腔811的腔壁局部凹陷形成。换而言之,在通常状态下,冲洗液从进液孔814进入安装腔811后分为两股,一股通过冲洗液孔320流入第一轴套300的凹槽310,另一股通过分流道816流出。设置分流道816能够在滑动部220封堵了冲洗液孔320的情况下保证冲洗液流通。
在图32示出的实施例中,分流道816的数量为两个,两个分流道816相对设置。可以理解,分流道816的数量可以根据设计需要进行调整,例如,在一些实施例中,分流道816的数量也可以为一个或者大于两个。
在一些实施例中,结合图24至图26,止挡件500固接于轴部210,止挡件500位于第一轴套300和第二轴套400之间,止挡件500能够抵接第二轴套400,使第二轴套400能对轴部210朝向第二轴套400的方向的移动的范围。具体地,止挡件500可选为止推环510。
在一些实施例中,止挡件500抵接第二轴套400时,止挡件500并未密封第二轴套400的轴孔410,从而冲洗液能够通过止挡件500与第二轴套400之间的间隙流入第二轴套400的轴孔410中,即实现第二轴套400的轴孔410和内腔101之间的流体连通。具体地,止推环510的外径小于第二转子620及第二轴套400的外径,止推环510的外径大于轴孔410的孔径,止推环510抵接第二轴套400,止推环510使第二轴套400与第二转子620间隔一段距离,相比第二转子620和第二轴套400直接接触,止推环510能够减小第二轴套400与止挡件500之间的摩擦面积。
在其它实施例中,止推环510还可以由多个扇环排列而成,该多个扇环沿环绕轴部210均匀间隔设置一周,或者,可以理解为由周向离散设置的多个扇环排列而成。
具体地,请结合图33,第二轴套400的止挡件500的一面局部凹陷形成导流槽420,导流槽420与第二轴套400的轴孔410连通;止挡件500与第二轴套400抵接时,部分导流槽420未被止挡件500覆盖。例如,当止推环510与第二轴套400抵接时,虽然止推环510封堵第二轴套400的轴孔410和轴部210之间的间隙,但是未被止推环510覆盖的导流槽420可以在止推环510与第二轴套400抵接时实现流体连通,保证冲洗液流通的通畅性;另外,通过在第二轴套400的朝向止挡件500的一面局部凹陷形成导流槽420,以便于冲洗液能够更好地流入至止挡件500和第二轴套400之间,以起到对止挡件500和第二轴套400的接触表面的润滑作用,减小止挡件500和第二轴套400之间的摩擦,减小因止 挡件500和第二轴套400之间的摩擦而导致的磨损问题,以及对止挡件500和第二轴套400起到散热作用。
在一些实施例中,结合图26和图33,第二轴套400包括第一环状体401和第二环状体402,第一环状体401的直径小于第二环状体402的直径,第一环状体401的近端与第二环状体402的远端连接。在图示的实施例中,第一环状体401和第二环状体402一体成型,第二环状体402具有导流槽420。壳体100具有与第一环状体401相适配的安装孔102,安装孔102位于壳体100的远端,壳体100的内壁设有限位凸起103,限位凸起103围出该安装孔102,第一环状体401安装于该安装孔102内,第二环状体402抵靠于限位凸起103的近端端面,从而实现第二轴套400的定位安装,且有利于第二轴套400的稳定安装。
本实施例中,第一轴套300、第二轴套400和止挡件500中的至少一个为陶瓷材料制成。相比金属材料,陶瓷的加工精度较高,生物相容性、机械强度较高,且具有较好的耐磨性和耐腐蚀性。在一些实施例中,第一轴套300和第二轴套400中的至少一个具有轴套本体及设置轴套本体的表面上的金刚石涂层,以使第一轴套300和第二轴套400的表面光滑,提高耐磨性。此时,轴套本体的材料可以为具有一定刚度的材料,例如金属、陶瓷等。
具体地,轴孔410的孔壁、轴部210的表面、滑动部220的表面和凹槽310的槽壁中的至少一个的粗糙度小于或等于0.1微米,从而有效减小轴部210和轴孔410的孔壁之间的摩擦力,以及滑动部220和凹槽310的槽壁之间的摩擦力。
结合图25、图26和图34,驱动机构10还包括第一转子610,第一转子610固接于转轴200,第一转子610位于第一轴套300和第二轴套400之间,第一转子610与第一轴套300之间具有间隙,以避免第一转子610和第一轴套300之间相互磨损,减小驱动机构10的运行阻力。具体地,第一转子610固接于滑动部220的限位面223。限位面223能够增大第一转子610和转轴200之间的连接面积,提高第一转子610的连接稳固性。限位面223还对第一转子610起到安装定位的作用,以及限制第一转子610沿轴部210的轴线朝靠近第一轴套300的方向移动的距离。可选地,第一转子610通过粘接、焊接等方式固定于限位面223。具有一定长度的柱面222能够增加第一转子610与第一轴套300之间间隔的距离,以防止在转轴200摆动时第一转子610抵接第一轴套300而导致转轴200卡死。
第一转子610包括第一飞轮611和第一磁体612,第一飞轮611固接于转轴200,例如,第一飞轮611固接于限位面223。第一磁体612固接于第一飞轮611。在一些实施例中,第一磁体612为环状的海尔贝克阵列磁铁。在图示的实施例中,第一转子610位于内腔101中,第一转子610能够相对壳体100转动,并且能够带动转轴200转动。
在一些实施例中,结合图25和图26,驱动机构10还包括定子700。定子700和第一转子610沿轴部210的轴线设置,定子700位于第一轴套300和第二轴套400之间。具体地,定子700能够产生驱动第一转子610的第一磁体612转动的旋转磁场。通过将第一转子610和定子700沿轴部210的轴线设置,可减小驱动机构10的整体直径。在图示的实施例中,定子700固定地安装于壳体100,定子700位于内腔101中;轴部210能转动地穿设于定子700。可选地,定子700位于第一转子610和止挡件500之间。
在一些实施例中,驱动机构10还包括第二转子620,第二转子620固接于轴部210,第二转子620位于第一轴套300和第二轴套400之间。在图示的实施例中,止挡件500位于第二转子620和第二轴套400之间。止挡件500固接于第二转子620和轴部210中的至少一个上,使得止挡件500、转轴200与第二转子620三者同步转动和移动。换而言之,止挡件500可以仅与第二转子620直接固定,也可以仅与轴部210直接固定,也可以同时与第二转子620和轴部210都直接固定。
在一实施例中,结合图24、图25和图35,第二转子620的一种具体结构包括第二飞轮621和第二磁体622。第二飞轮621固接于轴部210,第二磁体622固接于第二飞轮621。在一些实施例中,第二磁体622为环状的海尔贝克阵列磁铁。可以理解,第二飞轮621的结构可以和第一飞轮611的结构相同,在此不再一一赘述。
在图示的实施例中,止推环510为形成于第二飞轮621的背离第一转子610的一侧的环形凸起。止推环510和第二飞轮621为一体成型结构,形成一个整体,方便安装且省去粘接操作。此外,止推环510和第二转子620也可以在装配之前为分体结构,此时,止推环510可以通过粘结或者焊接的方式和第二转子620或轴部210中的至少一个固定在一起。
在一些实施例中,结合图25、图26和图36,定子700包括磁芯710和线圈720,线圈720缠绕于磁芯710上。磁芯710大致为柱状结构,即磁芯710没有宽度较大的头部(即极靴)。相较于设置有极靴的磁芯710,柱状结构的磁芯710能够减少磁损耗,增加磁芯710和第一磁体612和第二磁体622之间磁耦合密度,以增大定子700对第一磁体612和第二磁体622的扭矩(在相等电流条件下)。另外,没有头部的磁芯710还能够大大降低因相邻磁芯710之间的接触而导致局部磁短路、电机功率降低的问题。具体地,磁芯710的延伸方向与壳体100的轴向或者轴部210的轴线一致。
第一转子610、定子700和第二转子620沿轴部210的轴线依次设置。在图示的实施例中,定子700包括沿轴部210的轴线设置的第一定子单元701和第二定子单元702,其中,第一定子单元701和第二定子单元702均包括上述磁芯710和上述线圈720。第一定子单元701能够驱动第一转子610转动,第二定子单元702能够驱动第二转子620转动。第一定子单元701和第二定子单元702均固定地收容于壳体100的内腔101。轴部210能够转动地穿设于第一定子单元701和第二定子单元702。第一转子610、第一定子单元701、第二转子620和第二定子单元702沿轴线的方向依次设置。
具体地,驱动机构10还包括固接于壳体100的导磁件820,第一定子单元701的磁芯710和第二定子单元702的磁芯710均与导磁件820固接。轴部210能够转动地穿设于导磁件820。导磁件820起到闭合磁路的作用,以促进和增加磁通量的产生,提高耦合能力,因此,设置导磁件820能够起到闭合第一定子单元701和第一转子610之间的磁路的作用、闭合第二定子单元702和第二转子620之间的磁路的作用,增加磁通量,进而导磁件820的设置有利于减小驱动机构10的整体直径。另外,还可以直接将导磁件820与壳体100固接以实现第一定子单元701和第二定子单元702的定位和安装,降低了第一定子单元701和第二定子单元702的装配难度。具体地,导磁件820包括两个导磁板821,两个导磁板821层叠,其中一个导磁板821与第一定子单元701的磁芯710固接,另一个导磁板821与第二定子单元702的磁芯710固接。
由于本实施例的驱动机构具有与第一实施例的驱动机构相似的结构,因此,本实施例的驱动机构及具有本实施例的驱动机构的血泵也具有第一实施例相似的效果。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种驱动机构,用于驱动叶轮转动,其特征在于,所述驱动机构包括:
    壳体;
    转轴,所述转轴能够转动地安装于所述壳体,所述转轴具有连接端及远离所述连接端的球头端,所述连接端用于与所述叶轮连接;
    转子,固接于所述转轴;
    第一轴套和第二轴套,所述第一轴套和所述第二轴套均安装于所述壳体,所述第一轴套开设有凹槽,所述凹槽具有内凹的球面壁,其中,所述转轴能够转动地穿设于所述第二轴套,所述球头端能够活动地设置于所述凹槽中,并能够与所述球面壁抵接,所述转子位于所述第一轴套和所述第二轴套之间;
    与所述转轴和所述转子中的至少一个固接的止挡件,所述止挡件位于所述转子和所述第二轴套之间,所述止挡件能够与所述第二轴套抵接。
  2. 根据权利要求1所述的驱动机构,其特征在于:所述凹槽具有槽口,所述转轴穿设于所述槽口,所述凹槽的所述槽口处设置倒圆;
    和/或,所述球头端在所述转轴的轴线方向上的长度小于所述凹槽的深度。
  3. 根据权利要求1所述的驱动机构,其特征在于:所述第一轴套还开设有与所述凹槽连通的通液孔,所述通液孔的一个开口位于所述球面壁上,其中:
    所述开口位于所述球面壁的中心位置;和/或,所述开口的口径为所述球头端所在球体的直径的1/9~1/3。
  4. 根据权利要求1所述的驱动机构,其特征在于:所述第一轴套还开设有通液孔,所述通液孔与所述凹槽连通,所述驱动机构还包括支撑座,所述支撑座固接于所述壳体,所述支撑座上开设有安装腔和与所述安装腔连通的进液孔,所述第一轴套安装于所述安装腔中,所述通液孔与所述进液孔流体连通。
  5. 根据权利要求4所述的驱动机构,其特征在于:所述安装腔具有腔底,所述进液孔的一个开口位于所述腔底,所述安装腔内设有支撑台阶,所述支撑台阶与所述第一轴套抵接,以使所述第一轴套与所述腔底间隔一段距离;
    和/或,所述支撑座还开设有分流道,所述分流道与所述进液孔连通,以使进入所述进液孔的流体还能够通过所述分流道流入所述壳体内。
  6. 根据权利要求1所述的驱动机构,其特征在于:所述第二轴套具有轴孔和止位面,所述止位面与所述轴孔的中心轴线垂直;所述转轴能够转动地穿设于所述轴孔,所述止挡件具有止挡面,所述止挡面与所述转轴的轴线垂直,所述止挡面与所述止位面相对,所述止挡面能够与所述止位面抵接。
  7. 根据权利要求6所述的驱动机构,其特征在于:所述止挡面和所述止位面中的至少一个的粗糙度小于或等于0.1微米;
    或者,所述止挡面和所述止位面中的至少一个为陶瓷面;
    或者,所述止挡面的材料为金刚石。
  8. 根据权利要求1所述的驱动机构,其特征在于:所述壳体内设有分隔环,所述分隔环将所述壳体的内腔分隔成限位腔和容置腔,所述限位腔和所述容置腔沿所述转轴的轴线设置,所述第二轴套收容于所述限位腔内,并与所述分隔环抵接,所述转子收容于所述容置腔,以使所述分隔环位于所述第二轴套和所述转子之间;
    所述止挡件与所述第二轴套抵接时,所述止挡件至少部分位于所述分隔环的内环中,所述止挡件与所述分隔环的内环壁之间具有供流体流通的间隙,且所述分隔环与所述转子间隔一段距离。
  9. 根据权利要求8所述的驱动机构,其特征在于:所述第二轴套开设有轴孔,所述转轴能够转动地穿设于所述轴孔,所述转轴与所述轴孔的孔壁之间具有供流体流通的间隙,所述第二轴套的朝向所述止挡件的一面局部凹陷形成导流槽,所述导流槽与 所述轴孔连通;所述止挡件与所述第二轴套抵接时,部分所述导流槽未被所述止挡件覆盖。
  10. 根据权利要求1所述的驱动机构,其特征在于:所述转子包括沿所述转轴的轴线设置的第一转子和第二转子,所述第一转子和所述第二转子均与所述转轴固接,所述第一转子和所述第二转子均位于所述第一轴套和所述第二轴套之间,所述止挡件位于所述第二转子和所述第二轴套之间;
    所述驱动机构还包括能够驱动所述转子转动的定子,所述定子包括沿所述转轴的轴线设置的第一定子单元和第二定子单元,所述第一定子单元和所述第二定子单元均位于所述第一转子和所述第二转子之间,所述第一定子单元能够驱动所述第一转子转动,所述第二定子单元能够驱动所述第二转子转动;所述第一定子单元和所述第二定子单元均包括磁芯和线圈,所述线圈缠绕于所述磁芯上;
    所述驱动机构还包括固接于所述壳体组件的导磁件,所述第一定子单元的所述磁芯和所述第二定子单元的所述磁芯均与所述导磁件固接,所述转轴能够转动地穿设于所述第一定子单元、所述第二定子单元和所述导磁件。
  11. 根据权利要求1所述的驱动机构,其特征在于:所述转轴包括轴部和设于所述轴部的一端的滑动部,所述轴部能够转动地穿设于所述第二轴套,所述轴部的远离所述滑动部的一端为所述连接端;所述滑动部为所述球头端,所述滑动部具有球冠面;
    所述凹槽的深度小于或等于所述球冠面在所述轴部的轴线方向上的高度,其中,所述滑动部能够活动地设置于所述凹槽中,且所述球冠面与所述凹槽的球面壁滑动抵接;所述止挡件固接于所述轴部。
  12. 根据权利要求11所述的驱动机构,其特征在于:所述球冠面与所述球面壁滑动抵接,所述球面壁所在的球体的半径大于所述球冠面所在的球体的半径;沿所述第一轴套的轴线且朝靠近所述第二轴套的方向,所述凹槽的口径逐渐增大。
  13. 根据权利要求11所述的驱动机构,其特征在于:所述凹槽的深度大于或等于所述球冠面在所述轴部的轴线方向上的高度的一半;
    和/或,所述凹槽具有槽口,所述槽口的边缘倒圆设置,所述滑动部穿设于所述凹槽的所述槽口。
  14. 根据权利要求11所述的驱动机构,其特征在于,所述球冠面与所述球面壁滑动抵接,定义所述球面壁所在的球体的半径与所述球冠面所在的球体的半径之差为D,0.04毫米≤D≤0.06毫米;
    和/或,所述球冠面与所述球面壁滑动抵接,所述凹槽的深度为所述球面壁所在的球体的半径的0.6倍~1倍。
  15. 根据权利要求11所述的驱动机构,其特征在于:所述转子包括有第一转子和第二转子;其中,所述第一转子固接于所述轴部,所述第一转子位于所述第一轴套和所述第二轴套之间,所述第一转子与所述第一轴套之间具有间隙;所述第二转子位于所述第一轴套和所述止挡件之间,所述止挡件和所述第二轴套中的至少一个的材料为陶瓷。
  16. 根据权利要求15所述的驱动机构,其特征在于:所述滑动部还具有柱面及限位面,所述柱面的一端与所述球冠面连接,另一端与所述限位面连接,所述柱面的轴线与所述轴部的轴线重合,所述限位面与所述轴部的轴线垂直,所述第一转子抵接于所述限位面。
  17. 一种血泵,其特征在于:包括叶轮和驱动机构;其中,所述驱动机构包括:
    壳体;
    转轴,所述转轴能够转动地安装于所述壳体,所述转轴具有连接端及远离所述连接端的球头端,所述连接端用于与所述叶轮连接;
    转子,固接于所述转轴;
    第一轴套和第二轴套,所述第一轴套和所述第二轴套均安装于所述壳体,所述第一轴套开设有凹槽,所述凹槽具有内凹的球面壁,其中,所述转轴能够转动地穿设于所述第二轴套,所述球头端能够活动地设置于所述凹槽中,并能够与所述球面壁抵接,所述转子位于所述第一轴套和所述第二轴套之间;
    与所述转轴和所述转子中的至少一个固接的止挡件,所述止挡件位于所述转子和所述第二轴套之间,所述止挡件能够与所述第二轴套抵接;
    所述叶轮与所述转轴的所述连接端连接,所述叶轮能够随所述转轴转动。
  18. 根据权利要求17所述的血泵,其特征在于:所述血泵还包括与所述驱动机构连接的套管组件,所述套管组件包括插管、与所述插管套接的衔接管及与所述衔接管套接的出口管,所述衔接管的一端的内壁与所述插管的外壁连接,所述出口管包括连接部和远离所述衔接管的出口部,所述连接部的外壁与所述衔接管的远离所述插管的一端的内壁连接,所述叶轮能够转动地设置于所述出口管中。
  19. 根据权利要求17所述的血泵,其特征在于:所述衔接管的内壁设有限位凸环,所述限位凸环呈圆环状凸出设置在所述衔接管的内壁上;所述限位凸环具有沿所述衔接管的轴向上设置的第一端面和第二端面,所述第一端面抵接于所述插管的端部,所述第二端面抵接于连接部的端部。
  20. 根据权利要求19所述的驱动机构,其特征在于:所述第一端面相对于所述第二端面在径向方向上更加凸出于所述衔接管的内壁,且所述第一端面的边缘和所述第二端面的边缘通过过渡面连接;其中,所述第一端面的边缘与所述插管的内壁平齐,所述第二端面的边缘与所述出口管的内壁平齐;所述过渡面设置为外凸弧面、内凹弧面或斜面中的一者。
PCT/CN2023/099070 2022-07-08 2023-06-08 驱动机构和血泵 WO2024007813A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210800376.5A CN115282467B (zh) 2022-07-08 2022-07-08 驱动机构和血泵
CN202210800376.5 2022-07-08
CN202210977269.X 2022-08-15
CN202210977269.XA CN115414591B (zh) 2022-08-15 2022-08-15 驱动装置和血泵

Publications (1)

Publication Number Publication Date
WO2024007813A1 true WO2024007813A1 (zh) 2024-01-11

Family

ID=89454147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099070 WO2024007813A1 (zh) 2022-07-08 2023-06-08 驱动机构和血泵

Country Status (1)

Country Link
WO (1) WO2024007813A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150051436A1 (en) * 2012-02-16 2015-02-19 Abiomed Europe Gmbh Intravascular blood pump
CN112261969A (zh) * 2018-05-28 2021-01-22 柏林心脏有限公司 流体泵
CN112494803A (zh) * 2020-12-22 2021-03-16 余顺周 血泵
CN112587792A (zh) * 2020-12-22 2021-04-02 余顺周 血泵
CN112689716A (zh) * 2018-10-18 2021-04-20 波士顿科学国际有限公司 血泵轴轴承
CN115282467A (zh) * 2022-07-08 2022-11-04 深圳核心医疗科技有限公司 驱动机构和血泵
CN115414591A (zh) * 2022-08-15 2022-12-02 深圳核心医疗科技有限公司 驱动装置和血泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150051436A1 (en) * 2012-02-16 2015-02-19 Abiomed Europe Gmbh Intravascular blood pump
CN112261969A (zh) * 2018-05-28 2021-01-22 柏林心脏有限公司 流体泵
CN112689716A (zh) * 2018-10-18 2021-04-20 波士顿科学国际有限公司 血泵轴轴承
CN112494803A (zh) * 2020-12-22 2021-03-16 余顺周 血泵
CN112587792A (zh) * 2020-12-22 2021-04-02 余顺周 血泵
CN115282467A (zh) * 2022-07-08 2022-11-04 深圳核心医疗科技有限公司 驱动机构和血泵
CN115414591A (zh) * 2022-08-15 2022-12-02 深圳核心医疗科技有限公司 驱动装置和血泵

Similar Documents

Publication Publication Date Title
WO2024007793A1 (zh) 驱动装置和血泵
WO2023098470A1 (zh) 血泵及其驱动装置
WO2023160422A1 (zh) 血泵及其驱动装置
WO2023098471A1 (zh) 血泵及其驱动装置
CN115282467B (zh) 驱动机构和血泵
WO2023160424A1 (zh) 血泵及其驱动装置
JP7258167B2 (ja) インターベンション式心室補助装置
WO2024046499A1 (zh) 驱动机构和血泵
WO2024007790A1 (zh) 驱动装置和血泵
WO2024021918A1 (zh) 驱动装置和血泵
WO2024007792A1 (zh) 驱动装置和血泵
CN115414591B (zh) 驱动装置和血泵
WO2024007791A1 (zh) 驱动装置和血泵
WO2024007813A1 (zh) 驱动机构和血泵
WO2023236759A1 (zh) 驱动装置和血泵
WO2024120098A1 (zh) 驱动机构和血泵
WO2023179239A1 (zh) 血泵
CN115192894A (zh) 驱动装置及血泵
CN115006715A (zh) 驱动装置和血泵
CN114917469A (zh) 驱动装置和血泵
CN219231201U (zh) 套管组件和血泵
WO2023236717A1 (zh) 驱动装置和血泵
CN115382092A (zh) 驱动装置和血泵
CN115364366A (zh) 驱动机构和血泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834587

Country of ref document: EP

Kind code of ref document: A1