WO2024007792A1 - 驱动装置和血泵 - Google Patents

驱动装置和血泵 Download PDF

Info

Publication number
WO2024007792A1
WO2024007792A1 PCT/CN2023/098349 CN2023098349W WO2024007792A1 WO 2024007792 A1 WO2024007792 A1 WO 2024007792A1 CN 2023098349 W CN2023098349 W CN 2023098349W WO 2024007792 A1 WO2024007792 A1 WO 2024007792A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
rotating shaft
thrust
magnetic
Prior art date
Application number
PCT/CN2023/098349
Other languages
English (en)
French (fr)
Inventor
朱绎澄
余顺周
Original Assignee
深圳核心医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳核心医疗科技股份有限公司 filed Critical 深圳核心医疗科技股份有限公司
Priority to EP23834566.4A priority Critical patent/EP4393538A1/en
Publication of WO2024007792A1 publication Critical patent/WO2024007792A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes

Definitions

  • the present application relates to the technical field of medical devices, and in particular to a driving device and a blood pump including the driving device.
  • An intravascular blood pump is a blood pumping device that is inserted into the patient's heart through the patient's blood vessels.
  • the intravascular blood pump is placed within the opening of the heart valve so that blood can flow through the blood pump and into the arteries.
  • the blood pump includes a driving part and an impeller.
  • the driving part has a stationary part and a rotating part that rotates relative to the stationary part.
  • the impeller is fixed to the rotating part and is driven to rotate by the rotating part.
  • there is considerable wear between the stationary part and the rotating part. and the rotating parts move unevenly, affecting the service life and reliability of the blood pump.
  • this application provides a driving device and blood pump with a long service life and relatively reliable performance.
  • An embodiment of the first aspect of the present application provides a driving device for driving an impeller to rotate.
  • the driving device includes:
  • the shell assembly has a limiting surface
  • a rotating shaft rotatably installed on the housing assembly and used to be fixedly connected to the impeller;
  • the rotor is fixedly connected to the rotating shaft
  • a thrust piece fixed to at least one of the rotating shaft and the rotor, the thrust piece, the limiting surface and the rotor are arranged along the axial direction of the rotating shaft, and the thrust piece is located at Between the limiting surface and the rotor, the thrust member can contact the limiting surface;
  • a stator capable of driving the rotor to rotate.
  • the stator can generate a magnetic thrust force on the rotor.
  • the magnetic thrust force can cause the thrust member to abut against the limiting surface.
  • An embodiment of the second aspect of the present application provides a blood pump, including an impeller and the driving device described in any one of the above.
  • the impeller is fixedly connected to the rotating shaft, and the rotating shaft can drive the impeller to rotate.
  • Figure 1 is a schematic three-dimensional structural diagram of the blood pump according to the first embodiment
  • Figure 2 is an exploded view of the blood pump shown in Figure 1;
  • Figure 3 is a partial cross-sectional view of the blood pump shown in Figure 1;
  • Figure 4 is an enlarged view of point A in Figure 3;
  • Figure 5 is a schematic structural diagram of the rotor and stator of the blood pump shown in Figure 1;
  • Figure 6 is a schematic structural diagram of the rotor and stator of the blood pump shown in Figure 5 from another angle;
  • Figure 7 is an assembly diagram of the rotor and thrust member of the blood pump shown in Figure 1;
  • Figure 8 is a schematic structural diagram of the stator of the blood pump driving device according to the second embodiment.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • the blood pump 1 of the first embodiment includes a driving device 20 , a cannula assembly 30 , an impeller 40 and a catheter 50 .
  • the casing assembly 30 is connected to the distal end of the driving device 20, the catheter 50 is connected to the proximal end of the driving device 20, the impeller 40 is rotatably disposed in the casing assembly 30, the impeller 40 is drivingly connected to the driving device 20, and the driving device 20 can The impeller 40 is driven to rotate to realize the blood pumping function of the blood pump 1 .
  • the sleeve assembly 30 has a liquid inlet 31 and a liquid outlet 32 .
  • the liquid outlet 32 is closer to the driving device 20 than the liquid inlet 31 . That is, the liquid outlet 32 is located at the proximal end of the casing assembly 30 , and the liquid inlet 31 is located at the distal end of the casing assembly 30 . Specifically, the liquid outlet 32 is located on the side wall of the sleeve assembly 30 .
  • the cannula assembly 30 extends through a heart valve, such as the aortic valve, with the inlet 31 located within the heart and the outlet 32 and drive device 20 located outside the heart in a blood vessel such as the aorta. When the impeller 40 rotates, blood flows into the cannula assembly 30 from the liquid inlet 31, and then flows out of the cannula assembly 30 from the liquid outlet 32 to enter blood vessels such as the aorta.
  • the casing assembly 30 includes a tube body 33 and a plurality of spaced inserts 34 extending from one end of the tube body 33 along the axis of the tube body 33 , and a gap is formed between two adjacent inserts 34 .
  • the liquid port 32 and the driving device 20 are provided with a sink 21, and one end of the insert 34 away from the tube body 33 is received in the sink 21.
  • the number of sinking grooves 21 and inserting blades 34 are equal, and they form a one-to-one correspondence.
  • the distal end of the driving device 20 is received in the sleeve assembly 30, The liquid-conducting surface is located in the casing assembly 30.
  • the end of the casing assembly 30 used for socketing with the driving device 20 is The thickness of the tube wall is very thin, which affects the connection strength between the casing assembly 30 and the driving device 20.
  • the insert 34 can have a larger thickness, thereby making the casing assembly 30 and the driving device 20 has greater connection strength.
  • the conduit 50 is connected with an end of the driving device 20 away from the sleeve assembly 30 .
  • the conduit 50 is used to accommodate various supply lines.
  • the supply line may be, for example, a flushing line for introducing flushing fluid into the driving device 20 , or a wire for supplying power to the driving device 20 , or a support for supporting the conduit 50 . Parts etc.
  • the driving device 20 includes a housing assembly 100 , a rotating shaft 200 , a rotor 300 and a stator 400 .
  • the rotating shaft 200 is rotatably mounted on the housing assembly 100 and is used to be fixedly connected to the impeller 40; the rotor 300 is fixedly connected to the rotating shaft 200, so that the rotor 300 can drive the rotating shaft 200 to rotate; the stator 400 can drive the rotor 300 to rotate.
  • the housing assembly 100 is generally cylindrical as a whole.
  • the distal end of the housing assembly 100 is fixedly connected to the cannula assembly 30 , and the proximal end is fixedly connected to the catheter 50 .
  • the housing assembly 100 includes a first sleeve 110 , a second sleeve 120 and a shell 130 .
  • the first sleeve 110 and the second sleeve 120 are both fixed to the shell 130 .
  • the housing 130 , the first sleeve 110 and the second sleeve 120 are independent entities before assembly.
  • the first sleeve 110 and the second sleeve 120 can be glued together. fixed in the housing 130.
  • the first sleeve 110 is located at one end of the housing 130 close to the impeller 40
  • the second The sleeve 120 is located at an end of the housing 130 away from the impeller 40 , that is, the first sleeve 110 and the second sleeve 120 are respectively located at the distal end and the proximal end of the housing assembly 100 , so that the first sleeve 110 and the second sleeve 120 They are spaced a set distance along the axial direction of the housing assembly 100 .
  • the housing 130 is generally cylindrical. The distal end of the housing 130 is fixedly connected to the cannula assembly 30 , and the proximal end is fixedly connected to the catheter 50 .
  • the housing 130 has a receiving cavity 131 .
  • the housing 130 has a first cavity wall 132 and a second cavity wall 133 that define the boundaries of the accommodation cavity 131 .
  • the first cavity wall 132 and the second cavity wall 133 are opposite and parallel.
  • the housing 130 also has a first mounting hole 134 and a second mounting hole 135 , and both the first mounting hole 134 and the second mounting hole 135 are connected with the accommodating cavity 131 .
  • An opening of the first mounting hole 134 is located on the first cavity wall 132
  • an opening of the second mounting hole 135 is located on the second cavity wall 133 .
  • the first sleeve 110 is installed in the first mounting hole 134
  • the second sleeve 120 is installed in the second mounting hole 135 .
  • the housing assembly 100 further includes a fixing component 140 that is fixed to the housing 130 .
  • the second sleeve 120 is partially received in the fixing component 140 and partially received in the second mounting hole 135 .
  • the fixing member 140 is provided with a fluid channel 142 connected to the second shaft hole 122 , and the fluid channel 142 is used to communicate with the flushing pipeline.
  • a part of the rotating shaft 200 is received in the housing assembly 100 , and a part extends outside the housing assembly 100 to be fixedly connected to the impeller 40 .
  • the connecting section 210 is defined as the portion of the rotating shaft 200 that extends outside the housing assembly 100 and is used to be fixedly connected to the impeller 40 .
  • the rotating shaft 200 is rotatably mounted on the first sleeve 110 and the second sleeve 120, and the first sleeve 110 and the second sleeve 120 can limit the rotating shaft 200 in the radial direction. To limit the radial swing range of the rotating shaft 200.
  • the rotating shaft 200 is rotatably installed in the first sleeve 110 , and one end of the rotating shaft 200 away from the connecting section 210 is rotatably installed in the second sleeve 120 .
  • the first shaft sleeve 110 is provided with a first shaft hole 112
  • the second shaft sleeve 120 is provided with a second shaft hole 122.
  • the rotating shaft 200 is rotatably inserted through the first shaft hole 112, and the remote connection of the rotating shaft 200 is One end of the segment 210 is rotatably disposed in the second shaft hole 122 .
  • the rotor 300 and the stator 400 are both received in the accommodation cavity 131 . Therefore, the rotor 300 and the stator 400 are located between the first cavity wall 132 and the second cavity wall 133 .
  • the rotor 300 and the stator 400 are both located between the first sleeve 110 and the second sleeve 120 , and the rotating shaft 200 is rotatably installed in the stator 400 .
  • the rotor 300 has magnetism, and the stator 400 can generate a rotating magnetic field that drives the rotor 300 to rotate.
  • the rotor 300 includes a first rotor unit 310 and a second rotor unit 320 , and both the first rotor unit 310 and the second rotor unit 320 are fixed to the rotating shaft 200 .
  • the first rotor unit 310 and the second rotor unit 320 are both received in the accommodation cavity 131 .
  • the stator 400 is located between the first rotor unit 310 and the second rotor unit 320; the first rotor unit 310 is disposed close to the first sleeve 110, and the second rotor unit 320 is disposed close to the second sleeve 120.
  • the first rotor unit 310 and the second rotor unit 320 both have magnetism.
  • the stator 400 can generate a rotating magnetic field that drives the first rotor unit 310 and the second rotor unit 320 to rotate.
  • the rotating shaft 200 will follow the first rotor unit 310 and the second rotor unit 320 to rotate, and finally the impeller 40 will follow the rotating shaft 200 to rotate.
  • the first rotor unit 310 includes a first magnet 311 , and the first magnet 311 is fixedly connected to the rotating shaft 200 .
  • the first magnet 311 is a ring-shaped Halbach array magnet.
  • the first rotor unit 310 further includes a first flywheel 312 , which is fixed to the rotating shaft 200 , and the first magnet 311 is fixed to the first flywheel 312 .
  • the connection strength between the first magnet 311 and the rotating shaft 200 can be enhanced; in addition, the shaking of the rotating shaft 200 during rotation can be reduced, making the entire rotating shaft 200 more stable during the rotating process.
  • the first flywheel 312 includes a first built-in tube 3121, a first disc-shaped portion 3122 and a first outer ring wall 3123. Both the first built-in tube 3121 and the first outer ring wall 3123 are circular tubular structures.
  • the disc-shaped portion 3122 is an annular disc structure.
  • the first built-in tube 3121 and the first outer ring wall 3123 are both fixedly connected to the first disk-shaped portion 3122.
  • the first outer ring wall 3123 is arranged around the first disc-shaped portion 3122.
  • the first built-in tube 3121 and the first outer ring wall 3123 are arranged coaxially.
  • the rotating shaft 200 is passed through the first built-in tube 3121 and is connected with the first built-in tube 3121. Pipe 3121 is fixedly connected.
  • a first installation cavity is formed between the first built-in tube 3121 and the first outer ring wall 3123.
  • the first magnet 311 is accommodated in the first mounting cavity.
  • the shape of the first installation cavity is adapted to the first magnet 311 to facilitate the installation and positioning of the first magnet 311.
  • Such an arrangement enables the first flywheel 312 pairs
  • the first magnet 311 plays a limiting role, which not only facilitates the installation of the first magnet 311, but also makes the combination of the first magnet 311 and the first flywheel 312 more stable.
  • the structure of the second rotor unit 320 is substantially the same as that of the first rotor unit 310 .
  • the second rotor unit 320 includes a second magnet 321 , and the second magnet 321 is fixed to the rotating shaft 200 .
  • the second magnet 321 is a ring-shaped Halbach array magnet.
  • the second rotor unit 320 also includes a second flywheel 322 , the second flywheel 322 is fixed on the rotating shaft 200 , and the second magnet 321 is fixed on the second flywheel 322 .
  • the connection strength between the second magnet 321 and the rotating shaft 200 can be enhanced; in addition, the shaking of the rotating shaft 200 during rotation can be reduced, making the entire rotating shaft 200 more stable during the rotating process.
  • the second flywheel 322 includes a second built-in tube 3221, a second disc-shaped portion 3222, and a second outer ring wall 3223. Both the second built-in tube 3221 and the second outer ring wall 3223 are circular tubular structures.
  • the second disc-shaped portion 3222 is an annular disc structure.
  • the second built-in tube 3221 and the second outer ring wall 3223 are both fixedly connected to the second disc-shaped portion 3222.
  • the second outer ring wall 3223 is arranged around the second disc-shaped portion 3222.
  • the second built-in tube 3221 and the second outer ring wall 3223 are arranged coaxially.
  • the rotating shaft 200 is passed through the second built-in tube 3221 and is connected with the second built-in tube 3221. Pipe 3221 fixed connection.
  • a second installation cavity is formed between the second built-in tube 3221 and the second outer ring wall 3223.
  • the second magnet 321 is accommodated in the second installation cavity.
  • the shape of the second installation cavity is adapted to the second magnet 321 to facilitate the installation and positioning of the second magnet 321 .
  • This arrangement enables the second flywheel 322 to limit the second magnet 321, which not only facilitates the installation of the second magnet 321, but also makes the combination of the second magnet 321 and the second flywheel 322 more stable.
  • the first flywheel 312 is not limited to the above structure. In some embodiments, the first flywheel 312 does not have a first outer ring wall 3123; in some embodiments, the first flywheel 312 does not have a first outer ring wall. wall 3123 and the first built-in tube 3121. At this time, the rotating shaft 200 is fixedly inserted through the center of the first disc-shaped portion 3122. Compared with the first flywheel 312 having only the first disc-shaped portion 3122, providing the first built-in tube 3121 can connect the first flywheel 312 to the rotating shaft 200 more stably.
  • the second flywheel 322 is not limited to the above structure.
  • the second flywheel 322 does not have the second outer ring wall 3223; in some embodiments, the second flywheel 322 does not have the second outer ring wall 3223 and the second outer ring wall 3223.
  • the tube 3221 is built-in. At this time, the rotating shaft 200 is fixedly inserted through the center of the second disc-shaped part 3222. Compared with the second flywheel 322 having only the second disc-shaped portion 3222, providing the second built-in tube 3221 can connect the second flywheel 322 to the rotating shaft 200 more stably.
  • the stator 400 includes a plurality of magnetic cores 410 and a plurality of coils 420.
  • the plurality of magnetic cores 410 are spaced apart along a circle, and the plurality of coils 420 are respectively wound around the plurality of magnetic cores 410.
  • the extension direction of each magnetic core 410 is consistent with the extension direction of the rotating shaft 200 .
  • the magnetic core 410 is generally cylindrical, and the size of the cross-section of the magnetic core 410 remains constant in the extending direction of the magnetic core 410 .
  • the first rotor unit 310 and the second rotor unit 320 are respectively disposed close to both ends of the magnetic core 410 . More specifically, the first magnet 311 of the first rotor unit 310 is close to one end of the magnetic core 410, and the second magnet 321 of the second rotor unit 320 is close to the other end of the magnetic core 410, so that the magnetic core 410 can be connected to the first magnet at the same time. 311 and the second magnet 321 generate magnetic coupling, so that the stator 400 can drive the first rotor unit 310 and the second rotor unit 320 to rotate at the same time.
  • the cross-section shape of the magnetic cores 410 is generally a triangular prism shape, and one edge of each magnetic core 410 faces the axis of the rotating shaft 200 .
  • the edges of the magnetic core 410 are rounded, that is, the edges of the magnetic core 410 are relatively smooth and passivated rounded edges, thereby eliminating sharp edges and corners on the magnetic core 410, which not only facilitates the subsequent coil 420 The winding is beneficial to protecting the insulating material covering the coil 420 at the same time.
  • the cross-sectional shape of the magnetic core 410 may also be fan-shaped, circular, trapezoidal, fan-ring-shaped, etc.
  • each magnetic core 410 includes a magnetic column and a head (i.e., pole shoe) provided on the magnetic column. There are two heads (ie, pole shoes). Heads are provided at both ends of the columns.
  • the extending direction of the magnetic columns is consistent with the extending direction of the rotating shaft 200 .
  • the coil 420 is wound around the magnetic columns of each magnetic core 410 . In the extension direction of the magnetic column, the size of the cross-section of the magnetic column remains constant. Generally speaking, the thickness of the magnetic column is uniform.
  • the first rotor unit 310 and the second rotor unit 320 are respectively disposed close to the two heads.
  • the columnar magnetic core 410 shown in Figures 2 to 6 does not have a head with a large width (ie, a pole piece). At this time, the entire magnetic core The core 410 can all be magnetically coupled with the rotor 300. Compared with the magnetic core 410 with a head, the magnetic core 410 with only a columnar shape can reduce magnetic losses and increase the magnetic coupling density between the magnetic core 410 and the rotor 300. To increase the torque of the stator 400 to the rotor 300 under the same current. On the other hand, the magnetic core 410 without a head can also greatly reduce the problem of power reduction of the driving device 20 caused by local magnetic short circuits caused by contact between adjacent magnetic cores 410 .
  • the magnetic core 410 is made of a magnetic material, such as silicon steel. Therefore, the magnetic core 410 has an attractive force with the first magnet 311 and the second magnet 321 at the same time, that is, there is an attractive force between the stator 400 and the first rotor unit 310, and there is also an attractive force between the stator 400 and the second rotor unit 320. attraction.
  • the stator 400 further includes a positioning ring 430 , which is fixedly sleeved on the plurality of magnetic cores 410 .
  • the material of the positioning ring 430 is neither electrically conductive nor magnetically conductive.
  • the positioning ring 430 is made of polyetheretherketone or ceramic. Both polyetheretherketone and ceramics are non-conductive and non-magnetic materials, which will not affect the performance of the stator 400.
  • Polyetheretherketone has the advantages of hydrolysis resistance, dimensional stability, electrical properties and insulation properties; while ceramics have higher Biocompatibility, mechanical strength, and good wear resistance and corrosion resistance.
  • the positioning ring 430 is generally an annular structure, and the plurality of magnetic cores 410 are respectively bonded and fixed to the inner ring of the positioning ring 430 .
  • the positioning ring 430 is fixedly connected to the housing 130 .
  • the positioning ring 430 is used to support and position the magnetic core 410 and at the same time fix the stator 400 in the housing assembly 100 .
  • the housing assembly 100 has a limiting surface 150.
  • the driving device 20 also includes a thrust member 500 fixed to at least one of the rotating shaft 200 and the rotor 300.
  • the thrust member 500 and the limiting surface The surface 150 and the rotor 300 are arranged along the axial direction of the rotating shaft 200, and the thrust member 500 is located between the limiting surface 150 and the rotor 300.
  • the thrust member 500 can contact the limiting surface 150; the stator 400 can generate magnetism for the rotor 300. Thrust, this magnetic thrust can make the thrust member 500 abut against the limiting surface 150 , thereby limiting the movement range of the rotating shaft 200 in the axial direction of the rotating shaft 200 .
  • the limiting surface 150 is located on the first sleeve 110, and the thrust member 500 is located between the first sleeve 110 and the rotor 300; an opening of the first shaft hole 112 is located on the limiting surface 150, and the first shaft The central axis of the hole 112 is perpendicular to the limiting surface 150 .
  • the first sleeve 110 , the thrust member 500 , the first rotor unit 310 , the stator 400 , the second rotor unit 320 and the second sleeve 120 are sequentially arranged along the axis of the rotating shaft 200 .
  • the thrust member 500 can be directly fixed only with the rotor 300, or only with the rotating shaft 200, or with both the rotor 300 and the rotating shaft 200 at the same time. Direct fixation. Since the rotor 300 is fixed to the rotating shaft 200, the thrust member 500 only needs to be fixed to one of the rotating shaft 200 and the rotor 300 to achieve synchronous rotation and movement of the three. In the illustrated embodiment, the thrust member 500 is fixed on the rotating shaft 200; the side of the thrust member 500 facing away from the limiting surface 150 is in contact with the first flywheel 312 (specifically, the first disc-shaped one) of the first rotor unit 310. Part 3122) is fixed.
  • the first flywheel 312 specifically, the first disc-shaped one
  • the thrust member 500 and the rotating shaft 200 are an integrally formed structure; in some embodiments, the thrust member 500 and the rotating shaft 200 are fixed by bonding or welding, that is, the thrust member 500 and the rotating shaft 200 are fixed before assembly. Independent parts. Since the volume of the blood pump 1 is small, the thrust member 500 and the rotating shaft 200 are integrally formed to facilitate the assembly of the driving device 20 .
  • the thrust member 500 has a thrust surface 510 opposite to the limiting surface 150.
  • the thrust surface 510 is in contact with the limiting surface 150, that is, through the thrust surface 510 realizes the contact between the thrust member 500 and the limiting surface 150 .
  • both the thrust surface 510 and the limiting surface 150 are annular, the axis of the rotating shaft 200 is perpendicular to the thrust surface 510 , and the axis of the rotating shaft 200 passes through the center of the thrust surface 510 ; the first shaft hole 112 The central axis passes through the center of the limiting surface 150.
  • the ratio of the outer diameter of the thrust surface 510 to the outer diameter of the limiting surface 150 is 0.75-1, so that the thrust member 500 and the limiting surface 150 have a suitable contact area. If the outer diameter of the thrust surface 510 If it is too small, the contact area between the thrust member 500 and the limiting surface 150 will be too small, which will increase the wear of the limiting surface 150, and the small contact area between the thrust member 500 and the limiting surface 150 will easily cause the rotating shaft 200 to rotate. Radial deflection occurs during the process; if the outer diameter of the thrust surface 510 exceeds the outer diameter of the limit surface 150, the effective contact area between the thrust member 500 and the limit surface 150 is the area of the limit surface 150, which increases instead. Radial dimensions of thrust member 500.
  • the thrust member 500 is generally an annular structure, and the thrust member 500 is coaxial with the rotating shaft 200 .
  • the thrust member 500 can be a continuous and closed annular structure; the thrust member 500 can also be arranged by a plurality of sector rings, and the plurality of sector rings are evenly spaced around the rotating shaft 200, or can be understood as being composed of a circumference. It is composed of multiple discretely arranged fan rings.
  • the thrust surface 510 is a surface of the thrust member 500 , and the surface of the thrust member 500 that is away from the thrust surface 510 It is fixedly connected to the first flywheel 312 (specifically, the first disc-shaped portion 3122) of the first rotor unit 310.
  • the roughness of at least one of the thrust surface 510 and the limiting surface 150 is less than or equal to 0.1 micron. In some embodiments, the roughness of the thrust surface 510 and the limiting surface 150 is less than or equal to 0.1 micron. In some embodiments, the roughness of one of the thrust surface 510 and the stop surface 150 is less than or equal to 0.1 microns.
  • At least one of the thrust surface 510 and the limiting surface 150 is made of ceramic. Ceramics have high processing precision, high biocompatibility, high mechanical strength, good wear resistance and corrosion resistance.
  • the thrust member 500 and the first sleeve 110 may be made of ceramic, or at least one of the thrust surface 510 and the limiting surface 150 may be a ceramic surface by providing a ceramic coating.
  • the material of the thrust surface 510 is diamond, so that the thrust surface 510 has a higher hardness, a smoother surface, and is wear-resistant. In this case, the thrust surface is realized by providing a diamond coating.
  • the material of 510 is ceramic surface.
  • the local depression of the limiting surface 150 forms a guide groove 152, and the guide groove 152 is connected with the first shaft hole 112 of the first sleeve 110; when the thrust member 500 contacts the limiting surface 150, the partial flow guide The groove 152 is not covered by the thrust member 500. Therefore, when the thrust member 500 abuts against the limiting surface 150, the flow of flushing liquid caused by the thrust member 500 blocking the gap between the first shaft hole 112 and the rotating shaft 200 is solved.
  • the guide groove 152 that is not covered by the thrust member 500 can achieve fluid communication when the thrust member 500 contacts the limiting surface 150 to ensure the smooth flow of flushing liquid; in addition, the flow through the limiting surface 150
  • the local depression forms the guide groove 152 so that the flushing liquid can better flow into between the thrust member 500 and the limiting surface 150 to lubricate the contact surface of the thrust member 500 and the limiting surface 150.
  • the friction between the thrust member 500 and the limiting surface 150 is reduced, and the wear problem caused by the friction between the thrust member 500 and the limiting surface 150 is reduced.
  • the first cavity wall 132 is separated from the rotor 300 (specifically, the first flywheel 312 of the first rotor unit 310 ) by a certain distance to avoid the first cavity wall 132 and the The rotors 300 contact each other to generate friction.
  • the second cavity wall 133 is also separated from the second flywheel 322 of the second rotor unit 320 of the rotor 300 to avoid the second cavity wall 133 and the second flywheel 322 of the second rotor unit 320 of the rotor 300 .
  • the rotor units 320 are in contact with each other to generate friction.
  • the attractive force between the stator 400 and the first rotor unit 310 is defined as the first attractive force
  • the attractive force between the rotor units 320 is a second attractive force
  • the second attractive force is greater than the first attractive force, so as to form a magnetic thrust force that can cause the thrust member 500 to abut against the limiting surface 150 .
  • the structures of the first rotor unit 310 and the second rotor unit 320 are the same. That is, when the first rotor unit 310 and the second rotor unit 320 are at the same distance from the stator 400, the first rotor unit 310 and the stator 400 have the same distance.
  • the attractive force between the second rotor unit 320 and the stator 400 is equal to the attractive force between the second rotor unit 320 and the stator 400 . It is defined that there is a first distance H between the stator 400 and the first rotor unit 310 along the axial direction of the rotating shaft 200, and a second distance h between the stator 400 and the second rotor unit 420 along the axial direction of the rotating shaft 200.
  • the first distance H is greater than The second distance h is such that the second attractive force is greater than the first attractive force.
  • the first distance is the distance between the magnetic core 410 of the stator 400 and the first magnet 311 of the first rotor unit 310
  • the second distance is the distance between the magnetic core 410 of the stator 400 and the second magnet 321 of the second rotor unit 320. spacing between.
  • the ratio of the first spacing H to the second spacing h may be 1.2 to 2.
  • the ratio between the first distance H and the second distance h within this range, the difference between the second attraction force and the first attraction force is controlled within a reasonable range, that is, the value of the magnetic thrust is controlled. If the magnetic force If the thrust force is too large, the axial pressure of the thrust member 500 on the limit surface 150 will be too large, which will cause a large friction force between the thrust member 500 and the limit surface 150, causing the thrust member 500 and the limit surface 150 to contact each other.
  • the value range of the first spacing H is 0.3mm to 0.4mm.
  • the specific value of the first spacing h can be 0.3mm, 0.35mm or 0.4mm, etc.
  • the value range of the second spacing H is It is 0.2mm to 0.25mm, and the specific value of the first spacing can also be 0.2mm, 0.21mm or 0.25mm, etc.
  • the above blood pump 1 and driving device 20 have at least the following advantages:
  • the thrust member 500 By disposing the thrust member 500 fixed to at least one of the rotor 300 and the rotating shaft 200 between the limiting surface 150 of the housing assembly 100 and the rotor 300, so that the thrust member 500 abuts the limiting surface 150, so as to Avoiding or replacing the contact friction between the rotor 300 and the limiting surface 150 avoids the severe wear caused by the direct contact of the rotor, the core component of the blood pump, with the housing assembly 100 in the traditional way, thereby increasing the service life of the driving device 20 and the blood pump 1 ;
  • the stator 400 used to drive the rotor 300 to rotate generates magnetic thrust on the rotor 300, so that the thrust member 500 abuts against the limiting surface 150 to achieve axial limitation of the rotating shaft 200, so as to reduce the axial direction of the rotating shaft 200. Vibration improves the stability and reliability of the operation of the driving device 20.
  • the structure of the driving device of the blood pump of the second embodiment is substantially the same as that of the driving device 20 of the first embodiment, except that the structure of the stator is different.
  • the stator 600 includes a first stator unit 610 , a second stator unit 620 and a magnetic conductive member 630 .
  • the first stator unit 610 , the magnetic conductive member 630 and the second stator unit 620 Set sequentially along the axis of the rotating shaft.
  • the rotating shaft is rotatably inserted through the first stator unit 610 , the magnetic conductive member 630 and the second stator unit 620 .
  • the first stator unit 610, the second stator unit 620 and the magnetic conductive member 630 are all located between the first rotor unit 310 and the second rotor unit 320 shown in Figures 2 to 6.
  • the first stator unit 610 is close to the first
  • the rotor unit 310 is disposed
  • the second stator unit 620 is disposed close to the second rotor unit 320;
  • the first stator unit 610 can drive the first rotor unit 310 to rotate
  • the second stator unit 620 can drive the second rotor unit 320 to rotate.
  • There is a first attractive force between the first stator unit 610 and the first rotor unit 310 and a second attractive force between the second stator unit 620 and the second rotor unit 320 .
  • the structures of the first stator unit 610 and the second stator unit 620 are substantially the same as the stator 400 shown in FIGS. 5 and 6 .
  • the first stator unit 610 has a first magnetic core 611 and a first coil 612 .
  • the coil 612 is wound around the first magnetic core 611.
  • the second stator unit 620 has a second magnetic core 621 and the second coil 622 is wound around the second magnetic core 621.
  • the first magnetic core 611 and the second magnetic core 621 may respectively have The head may not have a head.
  • the difference is that the first stator unit 610 and the second stator unit 620 are not provided with the positioning ring 430 of the stator 400 shown in FIGS. 5 and 6 .
  • the first magnetic core 611 of the first stator unit 610 and the second magnetic core 621 of the second stator unit 620 are both fixedly connected to the magnetic conductive member 630 . If the first magnetic core 611 has a head, the end of the first magnetic core 611 away from the head is fixedly connected to the magnetic conductive member 630, and the first rotor unit 310 is disposed close to the head of the first magnetic core 611; if the second magnetic core 611 has a head. 621 has a head. One end of the second magnetic core 621 away from the head is fixedly connected to the magnetic conductive member 630 . The second rotor unit 320 is disposed close to the head of the second magnetic core 621 .
  • first magnetic core 611 has no head
  • one end of the first magnetic core 611 is fixedly connected to the magnetic conductive member 630, and the first rotor unit 310 is disposed close to the other end of the first magnetic core 611;
  • the second magnetic core 621 has no head.
  • one end of the second magnetic core 621 is fixedly connected to the magnetic conductive member 630
  • the second rotor unit 320 is disposed close to the other end of the second magnetic core 621 .
  • the magnetic conductive member 630 plays a role in closing the magnetic circuit to promote and increase the generation of magnetic flux and improve the coupling capacity. Therefore, the first magnetic core 611 of the first stator unit 610 and the second magnetic core of the second stator unit 620 are connected. 621 are all fixedly connected to the magnetic conductive member 630, and can close the magnetic circuit between the first stator unit 610 and the first rotor unit 310, and close the magnetic circuit between the second stator unit 620 and the second rotor unit 320. Therefore, the arrangement of the magnetic conductive member 630 is beneficial to reducing the overall diameter of the driving device 20 .
  • the first stator unit 610 and the second stator unit can also be realized.
  • the positioning and installation of 620 reduce the assembly difficulty of the first stator unit 610 and the second stator unit 620.
  • a slot that cooperates with the magnetic conductive member 630 can be provided in the outer shell of the housing assembly, and the slot is engaged with the magnetic conductive member 630 to realize the overall fixation of the stator 600. Therefore, , the magnetic conducting member 630 arranged in the above manner can also reduce the installation of positioning structures in the housing assembly, thereby simplifying the structure of the housing assembly and simplifying the assembly process of the entire driving device.
  • the magnetically conductive member 630 includes a first magnetically conductive plate part 631 and a second magnetically conductive plate part 632.
  • the first magnetically conductive plate part 631 is fixedly connected to the first magnetic core 611 of the first stator unit 610, and the second magnetically conductive plate part 632
  • the magnetic plate portion 632 is fixedly connected to the second magnetic core 621 of the second stator unit 620 .
  • the first magnetic conductive plate portion 631 and the second magnetic conductive plate portion 632 are stacked, that is, the surfaces of the first magnetic conductive plate portion 631 and the second magnetic conductive plate portion 632 are in contact with each other.
  • the rotating shaft is rotatably inserted through the first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 .
  • first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 are fixed, so that the first stator unit 610, the second stator unit 620 and the magnetic conductive member 630 form an integral body and are assembled into the housing, so that the stator Assembly of the 600 is easier.
  • the first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 are welded or adhesively fixed.
  • the first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 are two before assembly.
  • the first magnetic core 611 can be fixed first when assembling the driving device.
  • the second magnetic core 621 is fixed to the second magnetic conductive plate part 632, and then the first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 are stacked and fixed.
  • the first magnetic core 611 and the second magnetic core 621 are respectively assembled to the first magnetic conductive plate part 631 and the second magnetic conductive plate part 632, which can make the assembly of the first magnetic core 611 and the second magnetic core 621 more convenient.
  • first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 are made of silicon steel, and the first magnetic core 611 and the second magnetic core 621 are made of silicon steel.
  • the magnetic conductive member 630 is not limited to the combination of the first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 which are separated before assembly. In some embodiments, the first magnetic conductive plate part 631 and the second magnetic conductive plate part 632 are combined.
  • the second magnetically conductive plate portions 632 are not fixed together, but are stacked together; in some embodiments, the magnetically conductive member 630 can also be an integrally formed plate structure, with the first magnetic core 611 and the second magnetic core 621 Both are connected to the magnetic conductive member 630 , that is, the first stator unit 610 and the second stator unit 620 share a magnetic conductive member 630 .
  • the structure of the driving device 20 of the second embodiment is substantially the same as that of the driving device 20 of the first embodiment, it also has similar effects to the driving device 20 of the first embodiment, and will not be described again here.
  • the driving device 20 is not limited to the above structure.
  • the second sleeve 120 can be omitted.
  • the driving device 20 only has the first sleeve 110 .
  • both the first sleeve 110 and the second sleeve 120 can be omitted, and a shaft hole for the rotating shaft 200 to pass through can be directly opened on the housing 130.
  • the limiting surface 150 is the first cavity wall. part of 132.
  • the rotor may have only one rotor unit.
  • the stator is located between the rotor and the thrust member, so that the rotor is attracted by the stator in the direction toward the impeller 40; in this case, , the structure of the stator may be the same as the structure of the stator 400 in Figures 2 to 6, or may be different from the structure of the stator 400 in Figures 2 to 6. In this case, the stator does not have the stator 400 in Figures 3 to 6
  • the positioning ring 430 has a magnetically conductive backing plate, and the magnetically conductive backing plate is fixedly connected to the end of the magnetic core away from the rotor. The magnetic backing plate is used to close the magnetic circuit to promote and increase the generation of magnetic flux, improve the coupling capacity, increase the magnetic flux, and help reduce the overall diameter of the drive device.
  • the driving device of this embodiment has a similar structure to the driving device of the first embodiment, the driving device of this embodiment and the blood pump having the driving device of this embodiment also have similar effects to the first embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种驱动装置(20)和血泵(1),驱动装置(20)包括壳体组件(100)、转轴(200)、转子(300)、止推件(500)和定子(400),壳体组件(100)具有限位面(150);转轴(200)能够转动地安装于壳体组件(100);转子(300)与转轴(200)固接;止推件(500)固接于转轴(200)和转子(300)中的至少一个,止推件(500)、限位面(150)和转子(300)沿转轴(200)的轴向设置,止推件(500)位于限位面(150)和转子(300)之间,止推件(500)能够与限位面(150)抵接;定子(400)能够对转子(300)产生磁推力以使止推件(500)朝限位面(150)抵靠。

Description

驱动装置和血泵
本申请要求于2022年07月08日在中国专利局提交的、申请号为CN202210800319.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,特别是涉及一种驱动装置及包含该驱动装置的血泵。
背景技术
血管内血泵是一种可以经由患者血管探入患者心脏的泵血装置,血管内血泵置于心脏瓣膜的开口内,以便血液能够流经血泵并进入至动脉血管内。血泵包括驱动部分和叶轮,驱动部分具有静止部件和相对于静止部件转动的转动部件,叶轮固接于转动部件,通过转动部件带动叶轮转动,然而静止部件和转动部件之间存在较大的磨损,且转动部件运动不平稳,影响血泵的使用寿命和可靠性。
发明内容
基于此,本申请提供了一种使用寿命较长且较为可靠的驱动装置和血泵。
本申请第一方面的实施例提供了一种驱动装置,用于驱动叶轮转动,所述驱动装置包括:
壳体组件,具有限位面;
转轴,能够转动地安装于所述壳体组件、并用于与所述叶轮固接;
转子,与所述转轴固接;
固接于所述转轴和所述转子中的至少一个的止推件,所述止推件、所述限位面和所述转子沿所述转轴的轴向设置,且所述止推件位于所述限位面和所述转子之间,所述止推件能够与所述限位面抵接;及
能够驱动所述转子转动的定子,所述定子能够对所述转子产生磁推力,所述磁推力能够使所述止推件朝向所述限位面抵靠。
本申请第二方面的实施例提供了一种血泵,包括叶轮和上述任一项所述的驱动装置,所述叶轮与所述转轴固接,所述转轴能够带动所述叶轮转动。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为第一实施例的血泵的立体结构示意图;
图2为图1所示的血泵的分解图;
图3为图1所示的血泵的局部剖视图;
图4为图3中A处的放大图;
图5为图1所示的血泵的转子和定子的结构示意图;
图6为图5所示的血泵的转子和定子的另一角度的结构示意图;
图7为图1所示的血泵的转子和止推件的组装图;
图8为第二实施例的血泵的驱动装置的定子的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图即实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请的技术方案,下面结合具体附图及实施例来进行说明。
在本文中,定义“近端”为靠近操作者的一端;定义“远端”为远离操作者的一端。
参阅图1和图2,第一实施例的血泵1,包括驱动装置20、套管组件30、叶轮40和导管50。套管组件30与驱动装置20的远端连接,导管50与驱动装置20的近端连接,叶轮40能够转动地设置在套管组件30内,叶轮40与驱动装置20传动连接,驱动装置20能够驱动叶轮40转动,以实现血泵1的泵血功能。
具体地,套管组件30具有进液口31和出液口32。其中,出液口32较进液口31更靠近驱动装置20。即出液口32位于套管组件30的近端,进液口31位于套管组件30的远端。具体地,出液口32位于套管组件30的侧壁上。在其中一个实施例中,套管组件30延伸穿过心脏瓣膜,诸如主动脉瓣膜,而进液口31位于心脏内,出液口32和驱动装置20位于心脏外的诸如主动脉的血管中。当叶轮40旋转时,血液从进液口31流入套管组件30中,再从出液口32流出套管组件30以进入至主动脉等血管中。
在一些实施例中,套管组件30包括管本体33及从管本体33的一端沿管本体33的轴线延伸出的多个间隔的插片34,相邻的两个插片34之间形成出液口32,驱动装置20上开设有沉槽21,插片34的远离管本体33的一端收容于沉槽21。在图示的实施例中,沉槽21与插片34的数量相等,两者形成一一对应关系。对于叶轮40的轴向长度较短且通过在驱动装置20的远端形成导液面以保证出液口32处的水力效果的血泵,驱动装置20的远端收容于套管组件30中,导液面位于套管组件30中,为了避免驱动装置20的径向直径过大,同时保证出液口32处的水力效果,使得套管组件30的用于与驱动装置20套接的一端的管壁的厚度很薄,影响套管组件30和驱动装置20之间的连接强度,而采用上述插片34的方式,插片34可以具有较大的厚度,从而使得套管组件30和驱动装置20之间具有较大的连接强度。
导管50与驱动装置20的远离套管组件30的一端对接。导管50用于容置各种供应管线,供应管线例如可以为用于给驱动装置20内通入冲洗液的冲洗管线,又例如给驱动装置20供电的导线,再例如用于支撑导管50的支撑部件等。
请一并结合图3和图4,驱动装置20包括壳体组件100、转轴200、转子300和定子400。转轴200能够转动地安装于壳体组件100上、并用于与叶轮40固接;转子300与转轴200固接,以使转子300能够带动转轴200转动;定子400能够驱动转子300转动。
壳体组件100整体大致呈圆筒状。壳体组件100的远端与套管组件30固接,近端与导管50固接。具体地,壳体组件100包括第一轴套110、第二轴套120和外壳130,第一轴套110和第二轴套120均固接于外壳130。在一些实施例中,外壳130、第一轴套110和第二轴套120在装配之前为独立的个体,装配时,第一轴套110和第二轴套120两者可以通过胶接的方式固定在外壳130内。第一轴套110位于外壳130的靠近叶轮40的一端,第二 轴套120位于外壳130远离叶轮40的一端,也即第一轴套110和第二轴套120分别位于壳体组件100的远端和近端,使得第一轴套110和第二轴套120沿壳体组件100的轴向间隔设定距离。
具体地,外壳130大致为圆筒状。外壳130的远端与套管组件30固接,近端与导管50固接。外壳130具有容置腔131。具体地,外壳130具有界定容置腔131的边界的第一腔壁132和第二腔壁133,第一腔壁132和第二腔壁133相对且平行。外壳130还具有第一安装孔134和第二安装孔135,第一安装孔134和第二安装孔135均与容置腔131连通。第一安装孔134的一个开口位于第一腔壁132上,第二安装孔135的一个开口位于第二腔壁133上。第一轴套110安装于第一安装孔134中,第二轴套120安装于第二安装孔135中。
在图示的实施例中,壳体组件100还包括固定件140,固定件140固接于外壳130,第二轴套120部分收容于固定件140,部分收容于第二安装孔135。其中,固定件140上开设有与第二轴孔122连通的流体通道142,流体通道142用于与冲洗管线连通。
转轴200的一部分收容于壳体组件100,一部分延伸至壳体组件100外而用于与叶轮40固接。定义转轴200的延伸至壳体组件100外而用于与叶轮40固接的部分为连接段210。在图示的实施例中,转轴200能够转动地安装于第一轴套110和第二轴套120上,第一轴套110和第二轴套120能够在径向上对转轴200进行限位,以限制转轴200的径向摆动范围。转轴200能够转动地穿设于第一轴套110,转轴200的远离连接段210的一端能够转动地安装于第二轴套120。具体地,第一轴套110上开设有第一轴孔112,第二轴套120上开设有第二轴孔122,转轴200能够转动地穿设于第一轴孔112,转轴200的远离连接段210的一端能够转动地设置于第二轴孔122内。
转子300和定子400均收容于容置腔131内,因此,转子300和定子400位于第一腔壁132和第二腔壁133之间。转子300和定子400均位于第一轴套110和第二轴套120之间,转轴200能够转动地穿设于定子400。具体地,转子300具有磁性,定子400能够产生驱动转子300转动的旋转磁场。
在图示的实施例中,转子300包括第一转子单元310和第二转子单元320,第一转子单元310和第二转子单元320均固接于转轴200。第一转子单元310和第二转子单元320均收容于容置腔131内。定子400位于第一转子单元310和第二转子单元320之间;第一转子单元310靠近第一轴套110设置,第二转子单元320靠近第二轴套120设置。第一转子单元310和第二转子单元320均具有磁性,定子400能够产生驱动第一转子单元310和第二转子单元320转动的旋转磁场,当第一转子单元310和第二转子单元320转动时,转轴200将跟随第一转子单元310和第二转子单元320转动,最终使得叶轮40跟随转轴200产生转动。
请一并结合图5和图6,在图示的实施例中,第一转子单元310包括第一磁体311,第一磁体311与转轴200固接。其中,第一磁体311为环状的海尔贝克阵列磁铁。
第一转子单元310还包括第一飞轮312,第一飞轮312固接于转轴200,第一磁体311固接于第一飞轮312上。通过设置第一飞轮312可以增强第一磁体311与转轴200的连接强度;另外还能够减少转轴200在转动过程中的晃动,使整个转轴200在转动过程中更加稳定。
具体地,第一飞轮312包括第一内置管3121、第一盘状部3122和第一外环壁3123,第一内置管3121和第一外环壁3123两者均为圆管状结构,第一盘状部3122为环形圆盘结构。第一内置管3121和第一外环壁3123均与第一盘状部3122固接。第一外环壁3123环绕第一盘状部3122设置,第一内置管3121和第一外环壁3123两者同轴设置,转轴200穿设于第一内置管3121中、并与第一内置管3121固定连接。第一内置管3121和第一外环壁3123之间形成有第一安装腔。第一磁体311容置在第一安装腔中。第一安装腔的形状与第一磁体311相适配,以方便第一磁体311的安装和定位。如此设置能够使第一飞轮312对 第一磁体311起到限位作用,不仅方便第一磁体311的安装,而且也使得第一磁体311和第一飞轮312结合更加稳固。
第二转子单元320的结构与第一转子单元310的结构大致相同。第二转子单元320包括第二磁体321,第二磁体321固接于转轴200。具体地,第二磁体321为环状的海尔贝克阵列磁铁。
第二转子单元320还包括第二飞轮322,第二飞轮322固接于转轴200上,第二磁体321固定于第二飞轮322。通过设置第二飞轮322可以增强第二磁体321与转轴200的连接强度;另外还能够减少转轴200在转动过程中的晃动,使整个转轴200在转动过程中更加稳定。
第二飞轮322包括第二内置管3221、第二盘状部3222和第二外环壁3223,第二内置管3221和第二外环壁3223两者均为圆管状结构,第二盘状部3222为环形圆盘结构。第二内置管3221和第二外环壁3223均与第二盘状部3222固接。第二外环壁3223环绕第二盘状部3222设置,第二内置管3221和第二外环壁3223两者同轴设置,转轴200穿设于第二内置管3221中、并与第二内置管3221固定连接。第二内置管3221和第二外环壁3223之间形成有第二安装腔。第二磁体321容置在第二安装腔中。第二安装腔的形状与第二磁体321相适配,以方便第二磁体321的安装和定位。如此设置能够使第二飞轮322对第二磁体321起到限位作用,不仅方便第二磁体321的安装,而且也使得第二磁体321和第二飞轮322结合更加稳固。
需要说明的是,第一飞轮312不限于为上述结构,在一些实施例中,第一飞轮312不具有第一外环壁3123;在一些实施例中,第一飞轮312不具有第一外环壁3123和第一内置管3121,此时,转轴200固定地穿设于第一盘状部3122的中心。相对于仅具有第一盘状部3122的第一飞轮312,设置第一内置管3121能够使第一飞轮312与转轴200更加稳定地连接。第二飞轮322不限于为上述结构,在一些实施例中,第二飞轮322不具有第二外环壁3223;在一些实施例中,第二飞轮322不具有第二外环壁3223和第二内置管3221,此时,转轴200固定地穿设于第二盘状部3222的中心。相对于仅具有第二盘状部3222的第二飞轮322,设置第二内置管3221能够使第二飞轮322与转轴200更加稳定地连接。
在一些实施例中,定子400包括多个磁芯410和多个线圈420,多个磁芯410沿一圆间隔设置,多个线圈420分别缠绕于多个磁芯410。具体地,每个磁芯410的延伸方向均与转轴200的延伸方向一致。
在图示的实施例中,磁芯410大致为柱状,在磁芯410的延伸方向上,磁芯410的横截面的尺寸保持恒定。第一转子单元310和第二转子单元320分别靠近磁芯410的两端设置。更具体地,第一转子单元310的第一磁体311靠近磁芯410的一端,第二转子单元320的第二磁体321靠近磁芯410的另一端,如此使得磁芯410能够同时跟第一磁体311和第二磁体321产生磁耦合,从而使得该定子400能同时驱动第一转子单元310和第二转子单元320转动。
磁芯410的横截面的形状大致为三棱柱状,每个磁芯410的一个棱边朝向转轴200的轴线。例如,磁芯410的棱边均做了倒圆处理,即磁芯410的棱边为相对圆滑和钝化的倒圆棱,从而以消除磁芯410上的尖锐棱角,不仅能够方便后续线圈420的缠绕,同时有利于保护线圈420上包覆的绝缘材料。又如,磁芯410的横截面形状还可以为扇形、圆形、梯形、扇环形等等。
可以理解,磁芯410的结构不限于为上述结构,在其它实施例中,每个磁芯410包括磁柱和设置在磁柱上的头部(即极靴),头部为两个,磁柱的两端均设置有头部,磁柱的延伸方向与转轴200的延伸方向一致,线圈420缠绕于每个磁芯410的磁柱上。在磁柱的延伸方向上,磁柱的横截面的尺寸保持恒定,通俗而言,磁柱粗细均匀。此时,第一转子单元310和第二转子单元320分别靠近两个头部设置。
而图2至图6所示的柱状的磁芯410没有宽度较大的头部(即极靴),此时,整个磁 芯410均能够与转子300进行磁耦合,相较于具有头部的磁芯410,仅具有柱状的磁芯410一方面能够减少磁损耗,增加磁芯410和转子300之间的磁耦合密度,以在相同电流的情况下增大定子400对转子300的扭矩。另一方面,没有头部的磁芯410还能够大大降低相邻磁芯410之间因接触而产生的局部磁短路造成的驱动装置20功率下降的问题。
具体地,磁芯410的材料质为具有磁性的材料,例如硅钢。因此,磁芯410又同时与第一磁体311和第二磁体321之间具有吸引力,即定子400和第一转子单元310之间具有吸引力,定子400与第二转子单元320之间也具有吸引力。
具体地,定子400还包括定位环430,定位环430固定地套设于多个磁芯410上。定位环430的材料为既不导电也不导磁的材料。其中,定位环430的材料为聚醚醚酮或陶瓷。聚醚醚酮和陶瓷均为不导电不导磁的材料,不会影响定子400性能,且聚醚醚酮具有耐水解性、尺寸稳定性、电性能和绝缘性能等优点;而陶瓷具有较高的生物相容性、机械强度,且具有较好的耐磨性和耐腐蚀性。在图示的实施例中,定位环430大致为环状结构,多个磁芯410分别与定位环430的内环粘结固定。定位环430与外壳130固定连接,定位环430用于对磁芯410进行支撑和定位,同时实现了定子400在壳体组件100内的固定。
为了实现转轴200的轴向限位,壳体组件100具有限位面150,驱动装置20还包括固接于转轴200和转子300中的至少一个的止推件500,止推件500、限位面150和转子300沿转轴200的轴向设置,且止推件500位于限位面150和转子300之间,止推件500能够与限位面150抵接;定子400能够对转子300产生磁推力,该磁推力能够使止推件500朝向限位面150抵靠,从而限制转轴200在转轴200的轴向上的移动范围。具体地,限位面150位于第一轴套110上,止推件500位于第一轴套110和转子300之间;第一轴孔112的一个开口位于限位面150上,且第一轴孔112的中心轴线与限位面150垂直。在图示的实施例中,第一轴套110、止推件500、第一转子单元310、定子400、第二转子单元320和第二轴套120沿转轴200的轴线依次设置。
为了实现止推件500固接于转轴200和转子300中的至少一个,止推件500可以仅与转子300直接固定,也可以仅与转轴200直接固定,也可以同时与转子300和转轴200都直接固定。由于转子300固接于转轴200,因此,止推件500只要与转轴200和转子300中一个固接就能够实现三者同步转动和移动。在图示的实施例中,止推件500固接于转轴200上;止推件500背向限位面150的一侧与第一转子单元310的第一飞轮312(具体为第一盘状部3122)固接。在一些实施例中,止推件500与转轴200为一体成型结构;在一些实施例中,止推件500和转轴200通过粘结或焊接固定,即止推件500和转轴200在装配之前为独立部件。由于血泵1的体积很小,止推件500与转轴200为一体成型结构更方便驱动装置20的装配。
请一并结合图3、图4和图7,具体地,止推件500具有与限位面150相对的止推面510,止推面510与限位面150抵接,即通过止推面510实现止推件500与限位面150的抵接。在图示的实施例中,止推面510和限位面150均为环形,转轴200的轴线与止推面510垂直,且转轴200的轴线经过止推面510的中心;第一轴孔112的中心轴线经过限位面150的中心。其中,止推面510的外径与限位面150的外径的比值为0.75-1,如此可以使止推件500与限位面150具有合适的接触面积,若止推面510的外径太小,止推件500与限位面150的接触面积太小,会加大限位面150的磨损,且由于止推件500与限位面150的接触面积小较容易导致转轴200在转动过程中发生径向偏摆;若止推面510的外径超过限位面150的外径,止推件500与限位面150的有效接触面积则为限位面150的面积,反而增加了止推件500的径向尺寸。
在图示的实施例中,止推件500大致为环状结构,止推件500与转轴200共轴。止推件500可以为连续且封闭的环状结构;止推件500还可以由多个扇环排列而成,该多个扇环沿环绕转轴200均匀间隔设置一周,或者,可以理解为由周向离散设置的多个扇环排列而成。其中,止推面510为止推件500的一个表面,止推件500的背离止推面510的表面 与第一转子单元310的第一飞轮312(具体为第一盘状部3122)固接。
具体地,止推面510和限位面150中的至少一个的粗糙度小于或等于0.1微米。在一些实施例中,止推面510和限位面150的粗糙度均小于或等于0.1微米。在一些实施例中,止推面510和限位面150中的一个的粗糙度小于或等于0.1微米。通过减小止推面510和限位面150中的至少一个的粗糙度能够有效减小止推面510和限位面150之间的摩擦力,降低因限位面150和止推件500之间的摩擦导致的磨损问题。
在一些实施例中,止推面510和限位面150中的至少一个的材质为陶瓷。陶瓷的加工精度较高,具有较高的生物相容性、较高的机械强度、较好的耐磨性和耐腐蚀性。此时,止推件500和第一轴套110的材质可以为陶瓷,或者,通过设置陶瓷涂层的方式实现止推面510和限位面150中的至少一个为陶瓷面。在一些实施例中,止推面510的材料为金刚石,以使得止推面510具有较高的硬度,较为光滑的表面,且抗磨损,此时,通过设置金刚石涂层的方式实现止推面510的材料为陶瓷面。
具体地,限位面150的局部凹陷形成导流槽152,导流槽152与第一轴套110的第一轴孔112连通;止推件500与限位面150抵接时,部分导流槽152未被止推件500覆盖,从而当止推件500与限位面150抵接时,解决了止推件500封堵第一轴孔112和转轴200之间的间隙导致的冲洗液流通障碍的问题,未被止推件500覆盖的导流槽152可以在止推件500与限位面150抵接时实现流体连通,保证冲洗液流通的通畅性;另外,通过限位面150的局部凹陷形成导流槽152,以便于冲洗液能够更好地流入至止推件500和限位面150之间,以起到对止推件500和限位面150的接触表面的润滑作用,减小止推件500和限位面150之间的摩擦,减小因止推件500和限位面150之间的摩擦而导致的磨损问题。
具体地,止推件500与限位面150抵接时,第一腔壁132与转子300(具体为第一转子单元310的第一飞轮312)间隔一段距离,以避免第一腔壁132和转子300之间接触而产生摩擦。同样地,止推件500与限位面150抵接时,第二腔壁133与转子300的第二转子单元320的第二飞轮322也间隔一段距离,以避免第二腔壁133和第二转子单元320之间接触而产生摩擦。
为了实现定子400对转子300产生的磁推力能够使止推件500朝向限位面150抵靠,定义定子400与第一转子单元310之间的吸引力为第一吸引力,定子400与第二转子单元320之间的吸引力为第二吸引力,第二吸引力大于第一吸引力,以形成能够使止推件500朝向限位面150抵靠的磁推力。
在本实施例中,第一转子单元310和第二转子单元320的结构相同,也即第一转子单元310和第二转子单元320在与定子400的间距相等时,第一转子单元310与定子400之间的吸引力和第二转子单元320与定子400之间的吸引力相等。定义定子400与第一转子单元310之间沿转轴200的轴向存在第一间距H,定子400与第二转子单元420之间沿转轴200的轴向存在第二间距h,第一间距H大于第二间距h,以使第二吸引力大于第一吸引力。具体地,第一间距为定子400的磁芯410与第一转子单元310的第一磁体311之间的间距,第二间距为定子400的磁芯410与第二转子单元320的第二磁体321之间的间距。
在一些实施例中,第一间距H与第二间距h的比值为可以1.2至2。通过控制第一间距H与第二间距h之间的比值在该范围内,以控制第二吸引力和第一吸引力的差值在合理范围内,也即控制磁推力的值,若该磁推力太大,会导致止推件500对限位面150的轴向压力太大,会导致止推件500与限位面150之间具有较大的摩擦力,而导致止推件500和限位面150增加,且会导致转轴200的转动受阻,甚至是转轴200不能启动;若磁推力太小,止推件500受到的轴向推力小,转轴200在转动过程中,止推件500不能较为稳定抵靠于限位面150,会导致转轴200较大的轴向振动。在一些实施例中,第一间距H的取值范围为0.3mm至0.4mm,例如,第一间距h的具体取值可以为0.3mm、0.35mm或0.4mm等;第二间距的取值范围为0.2mm至0.25mm,第一间距的具体取值可也为0.2mm、0.21mm或0.25mm等。
上述血泵1和驱动装置20至少有以下优点:
通过在壳体组件100的限位面150和转子300之间设置固接于转子300和转轴200中的至少一个的止推件500,以使止推件500与限位面150抵接,以避免或代替转子300与限位面150抵接摩擦,避免了传统方式的血泵的核心部件转子直接与壳体组件100接触而造成的严重磨损,以提高驱动装置20和血泵1的使用寿命;通过用于驱动转子300转动的定子400对转子300产生磁推力,以使止推件500朝向限位面150抵靠,以实现对转轴200的轴向限位,以减小转轴200轴向振动,提高驱动装置20工作的稳定性和可靠性。
第二实施例的血泵的驱动装置与第一实施例的驱动装置20的结构大致相同,区别在于,定子的结构不同。
如图8所示,在本实施例中,定子600包括第一定子单元610、第二定子单元620和导磁件630,第一定子单元610、导磁件630和第二定子单元620沿转轴的轴线依次设置。转轴能够转动地穿设于第一定子单元610、导磁件630和第二定子单元620。
第一定子单元610、第二定子单元620和导磁件630均位于图2至图6所示的第一转子单元310和第二转子单元320之间,第一定子单元610靠近第一转子单元310设置,第二定子单元620靠近第二转子单元320设置;第一定子单元610能够驱动第一转子单元310转动,第二定子单元620能够驱动第二转子单元320转动。其中,第一定子单元610和第一转子单元310之间具有第一吸引力,第二定子单元620和第二转子单元320之间具有第二吸引力。
第一定子单元610和第二定子单元620的结构与图5和图6所示的定子400的结构大致相同,第一定子单元610具有第一磁芯611和第一线圈612,第一线圈612缠绕于第一磁芯611上,第二定子单元620具有第二磁芯621和第二线圈622缠绕于第二磁芯621上,第一磁芯611和第二磁芯621可以分别具有头部,也可以不具有头部,区别在于,第一定子单元610和第二定子单元620没有设置图5和图6所示的定子400的定位环430。
第一定子单元610的第一磁芯611和第二定子单元620的第二磁芯621均与导磁件630固接。若第一磁芯611具有头部,第一磁芯611的远离头部的一端与导磁件630固接,第一转子单元310靠近第一磁芯611的头部设置;若第二磁芯621具有头部,第二磁芯621的远离头部的一端与导磁件630固接,第二转子单元320靠近第二磁芯621的头部设置。若第一磁芯611没有头部,第一磁芯611的一端与导磁件630固接,第一转子单元310靠近第一磁芯611的另一端设置;若第二磁芯621没有头部,第二磁芯621的一端与导磁件630固接,第二转子单元320靠近第二磁芯621的另一端设置。
导磁件630起到闭合磁路的作用,以促进和增加磁通量的产生,提高耦合能力,因此,将第一定子单元610的第一磁芯611和第二定子单元620的第二磁芯621均与导磁件630固接,能够起到闭合第一定子单元610和第一转子单元310之间的磁路、闭合第二定子单元620和第二转子单元320之间的磁路的作用,增加磁通量,因此,导磁件630的设置有利于减小驱动装置20的整体直径。另外,将第一定子单元610的第一磁芯611和第二定子单元620的第二磁芯621均与导磁件630固接,还能够实现第一定子单元610和第二定子单元620的定位和安装,降低了第一定子单元610和第二定子单元620的装配难度。为了方便定子600固定在壳体组件中,可以在壳体组件的外壳内设置与导磁件630配合的卡槽,通过卡槽与导磁件630相卡合以实现定子600的整体固定,因此,上述方式设置的导磁件630还能够减少壳体组件内的定位结构的设置,从而简化壳体组件的结构,简化整个驱动装置的装配过程。
具体地,导磁件630包括第一导磁板部631和第二导磁板部632,第一导磁板部631与第一定子单元610的第一磁芯611固接,第二导磁板部632与第二定子单元620的第二磁芯621固接。第一导磁板部631和第二导磁板部632层叠,即第一导磁板部631和第二导磁板部632相互靠近的一面相抵接。转轴能够转动地穿设于第一导磁板部631和第二导磁板部632。
具体地,第一导磁板部631和第二导磁板部632固接,使得第一定子单元610、第二定子单元620和导磁件630形成一个整体而装配至外壳内,使得定子600的装配更加容易。
具体地,第一导磁板部631和第二导磁板部632焊接或粘接固定,换而言之,第一导磁板部631和第二导磁板部632在装配之前为两个独立的部件,通过将导磁件630设置成在装配前为分体的第一导磁板部631和第二导磁板部632,在装配驱动装置时,可以先将第一磁芯611固接于第一导磁板部631,第二磁芯621固接于第二导磁板部632,然后将第一导磁板部631和第二导磁板部632层叠固定,如此,能够方便第一磁芯611和第二磁芯621分别装配至第一导磁板部631和第二导磁板部632上,能够使第一磁芯611和第二磁芯621装配更加方便。
需要说明的是,第一导磁板部631和第二导磁板部632的材质为硅钢,第一磁芯611和第二磁芯621的材质为硅钢。导磁件630不限于为上述在装配之前为分体的第一导磁板部631和第二导磁板部632组合而成的方式,在一些实施例中,第一导磁板部631和第二导磁板部632没有固接在一起,而是层叠在一起;在一些实施例中,导磁件630还可以为一体成型的板状结构,第一磁芯611和第二磁芯621均连接于导磁件630,即第一定子单元610和第二定子单元620共用一个导磁件630。
由于第二实施例的驱动装置与第一实施例的驱动装置20的结构大致相同,也具有第一实施例的驱动装置20相似的效果,在此不再赘述。
可以理解,驱动装置20不限于为上述结构,在一些实施例中,第二轴套120可以省略,此时,驱动装置20仅具有第一轴套110。在一些实施例中,第一轴套110和第二轴套120均可以省略,可以直接在外壳130上开设供转轴200的穿设地轴孔,此时,限位面150则为第一腔壁132的一部分。在一些实施例中,转子可以仅具有一个转子单元,此时,沿转轴200的轴向,定子位于转子和止推件之间,以使转子受到定子的朝向叶轮40方向的吸引力;此时,定子的结构可以与图2至图6中的定子400的结构相同,也可以不同于图2至图6中的定子400的结构,此时,定子不具有图3至图6中的定子400的定位环430,而具有导磁背板,导磁背板与磁芯的远离转子的一端固接。导磁背板用于闭合磁路的作用,以促进和增加磁通量的产生,提高耦合能力,增加磁通量,有利于减小驱动装置的整体直径。
由于本实施例的驱动装置具有与第一实施例的驱动装置相似的结构,因此,本实施例的驱动装置及具有本实施例的驱动装置的血泵也具有第一实施例相似的效果。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种驱动装置,用于驱动叶轮转动,其特征在于,所述驱动装置包括:
    壳体组件,具有限位面;
    转轴,能够转动地安装于所述壳体组件、并用于与所述叶轮固接;
    转子,与所述转轴固接;
    固接于所述转轴和所述转子中的至少一个的止推件,所述止推件、所述限位面和所述转子沿所述转轴的轴向设置,且所述止推件位于所述限位面和所述转子之间,所述止推件能够与所述限位面抵接;及
    能够驱动所述转子转动的定子,所述定子能够对所述转子产生磁推力,所述磁推力能够使所述止推件朝向所述限位面抵靠。
  2. 根据权利要求1所述的驱动装置,其特征在于,所述转子包括固接于所述转轴的第一转子单元和第二转子单元,所述止推件、所述第一转子单元、所述定子、所述第二转子单元沿所述转轴的轴向依次设置,所述止推件位于所述第一转子单元和所述限位面之间,所述定子能够驱动所述第一转子单元和所述第二转子单元转动,所述定子与所述第一转子单元之间具有第一吸引力,所述定子与所述第二转子单元之间具有第二吸引力,所述第二吸引力大于所述第一吸引力,以形成所述磁推力。
  3. 根据权利要求2所述的驱动装置,其特征在于,所述第一转子单元和所述第二转子单元在与所述定子的间距相等时,所述第一转子单元与所述定子之间的吸引力和所述第二转子单元与所述定子之间的吸引力相等;所述定子与所述第一转子单元之间沿所述转轴的轴向存在第一间距,所述定子与所述第二转子单元之间沿所述转轴的轴向存在第二间距,所述第一间距大于所述第二间距,以使所述第二吸引力大于所述第一吸引力。
  4. 根据权利要求3所述的驱动装置,其特征在于,所述定子包括多个磁芯,每个所述磁芯的延伸方向均与所述转轴的延伸方向一致;所述第一转子单元包括第一磁体;所述第二转子单元包括第二磁体;其中,
    所述第一间距为所述定子的磁芯与所述第一转子单元的第一磁体之间的间距;
    所述第二间距为所述定子的磁芯与所述第二转子单元的第二磁体之间的间距。
  5. 根据权利要求3所述的驱动装置,其特征在于,所述第一间距与所述第二间距的比值为1.2至2;或者,所述第一间距的取值范围为0.3mm至0.4mm,所述第二间距的取值范围为0.2mm至0.25mm。
  6. 根据权利要求2所述的驱动装置,其特征在于,所述定子包括多个磁芯和多个线圈,多个所述磁芯环绕所述转轴设置,每个所述磁芯上缠绕有所述线圈,每个所述磁芯的一端靠近所述第一转子单元设置,另一端靠近所述第二转子单元设置,所述定子能够产生驱动所述第一转子单元和所述第二转子单元转动的旋转磁场;所述第一转子单元和所述第二转子单元均具有磁性,所述第一转子单元和所述磁芯之间具有所述第一吸引力,所述第二转子单元和所述磁芯之间具有所述第二吸引力。
  7. 根据权利要求6所述的驱动装置,其特征在于,所述定子还包括定位环,所述定位环固定地套设于多个所述磁芯上。
  8. 根据权利要求7所述的驱动装置,其特征在于,所述定位环的材料为不导电的材料;和/或,所述定位环的材料为不导磁的材料。
  9. 根据权利要求7所述的驱动装置,其特征在于,所述壳体组件包括外壳;所述定位环与所述外壳固定连接;多个所述磁芯分别与所述定位环的内环粘结固定。
  10. 根据权利要求1所述的驱动装置,其特征在于,所述止推件具有与所述限位面相对的止推面,所述止推面与所述限位面抵接,其中:
    所述止推面和所述限位面中的至少一个的粗糙度小于或等于0.1微米;
    及/或,所述止推面和所述限位面的材质均为陶瓷;
    及/或,所述止推面和所述限位面均为环形,所述转轴的轴线与所述止推面垂直,所述转轴的轴线经过所述止推面的中心,所述壳体组件还具有轴孔,所述转轴能够转动地穿设于所述轴孔,所述轴孔的中心轴线经过所述限位面的中心,所述轴孔的中心轴线与所述限位面垂直,所述止推面的外径与所述限位面的外径的比值为0.75-1。
  11. 根据权利要求1所述的驱动装置,其特征在于,所述止推件为连续且封闭的环状结构;或者,所述止推件由多个扇环排列而成,该多个扇环沿环绕转轴均匀间隔设置一周。
  12. 根据权利要求1所述的驱动装置,其特征在于,所述壳体组件还具有轴孔,所述限位面的局部凹陷形成导流槽,所述导流槽与所述轴孔连通,所述止推件与所述限位面抵接时,所述导流槽至少部分未被所述止推件覆盖,所述转轴能够转动地穿设于所述轴孔。
  13. 根据权利要求2所述的驱动装置,其特征在于,所述壳体组件包括外壳,所述外壳具有容置腔,以及界定所述容置腔的边界的第一腔壁和第二腔壁,所述第一腔壁和所述第二腔壁相对且平行;所述转子和所述定子位于所述第一腔壁和所述第二腔壁之间;在所述止推件与所述限位面抵接时,所述第一腔壁与所述第一转子单元间隔一段距离,且所述第二腔壁与所述第二转子单元也间隔一段距离。
  14. 根据权利要求2所述的驱动装置,其特征在于,所述第一转子单元包括第一磁体和第一飞轮;其中,所述第一飞轮固接于所述转轴,所述第一飞轮包括第一内置管、第一盘状部和第一外环壁,所述第一外环壁环绕所述第一盘状部,所述第一内置管和所述第一外环壁同轴设置,所述转轴穿设于所述第一内置管中、并与所述第一内置管固定连接;所述第一磁体固接于所述第一飞轮;所述止推件具有与所述限位面相对的止推面,所述止推件的背离所述止推面的表面与所述第一飞轮的第一盘状部固接。
  15. 根据权利要求1所述的驱动装置,其特征在于,所述壳体组件包括第一轴套、所述第二轴套和外壳;其中,所述第一轴套和所述第二轴套均固接于所述外壳;所述第一轴套位于所述壳体组件的远端,所述第二轴套位于所述壳体组件的近端;所述转轴能够转动地安装于所述第一轴套和所述第二轴套上;所述限位面位于所述第一轴套上;所述止推件位于所述第一轴套和所述转子之间。
  16. 根据权利要求15所述的驱动装置,其特征在于,所述外壳具有容置腔、第一安装孔和第二安装孔;所述第一安装孔和所述第二安装孔均与所述容置腔连通;所述壳体组件还包括固定件,所述固定件固接于所述外壳的近端;其中,所述第一轴套安装于所述第一安装孔中;所述第二轴套部分收容于所述固定件,部分收容于所述第二安装孔。
  17. 根据权利要求2所述的驱动装置,其特征在于,所述定子包括第一定子单元、第二定子单元和导磁件,所述第一定子单元、所述导磁件和所述第二定子单元沿转轴的轴线依次设置,且均位于所述第一转子单元和所述第二转子单元之间;所述第一定子单元具有第一磁芯,所述第二定子单元具有第二磁芯,所述第一磁芯和所述第二磁芯均与导磁件固接;所述转轴能够转动地穿设于所述第一定子单元、所述导磁件和所述第二定子单元。
  18. 根据权利要求17所述的驱动装置,其特征在于,所述导磁件包括第一导磁板部和第二导磁板部,所述第一导磁板部和所述第二导磁板部层叠;所述第一导磁板部与所述第一磁芯固接,所述第二导磁板部与所述第二磁芯固接。
  19. 一种血泵,其特征在于,包括叶轮和驱动装置;其中,所述驱动装置包括:
    壳体组件,具有限位面;
    转轴,能够转动地安装于所述壳体组件、并用于与所述叶轮固接;
    转子,与所述转轴固接;
    固接于所述转轴和所述转子中的至少一个的止推件,所述止推件、所述限位面和 所述转子沿所述转轴的轴向设置,且所述止推件位于所述限位面和所述转子之间,所述止推件能够与所述限位面抵接;及
    能够驱动所述转子转动的定子,所述定子能够对所述转子产生磁推力,所述磁推力能够使所述止推件朝向所述限位面抵靠。
    所述叶轮与所述转轴固接,所述转轴能够带动所述叶轮转动。
  20. 根据权利要求19所述的血泵,其特征在于,所述血泵还包括套管组件,所述套管组件包括管本体及从所述管本体的一端沿所述管本体的轴向延伸出的多个间隔的插片,相邻的两个所述插片之间形成出液口,所述壳体组件上开设有沉槽,所述插片的远离所述管本体的一端收容于所述沉槽中。
PCT/CN2023/098349 2022-07-08 2023-06-05 驱动装置和血泵 WO2024007792A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23834566.4A EP4393538A1 (en) 2022-07-08 2023-06-05 Driving apparatus and blood pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210800319.7 2022-07-08
CN202210800319.7A CN115025387B (zh) 2022-07-08 2022-07-08 驱动装置和血泵

Publications (1)

Publication Number Publication Date
WO2024007792A1 true WO2024007792A1 (zh) 2024-01-11

Family

ID=83128664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098349 WO2024007792A1 (zh) 2022-07-08 2023-06-05 驱动装置和血泵

Country Status (3)

Country Link
EP (1) EP4393538A1 (zh)
CN (1) CN115025387B (zh)
WO (1) WO2024007792A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025387B (zh) * 2022-07-08 2023-05-30 深圳核心医疗科技股份有限公司 驱动装置和血泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176848B1 (en) * 1996-04-04 2001-01-23 Impella Cardiotechnik Gmbh Intravascular blood pump
KR101457816B1 (ko) * 2013-10-04 2014-11-03 지엠비코리아 주식회사 전동식 워터 펌프
CN112107749A (zh) * 2019-06-21 2020-12-22 上海微创心力医疗科技有限公司 一种导流装置和导管泵
CN112472999A (zh) * 2020-12-22 2021-03-12 余顺周 血泵
CN114652952A (zh) * 2020-12-23 2022-06-24 上海微创心力医疗科技有限公司 轴承、血泵以及心室辅助循环装置
CN115025387A (zh) * 2022-07-08 2022-09-09 深圳核心医疗科技有限公司 驱动装置和血泵

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US5507629A (en) * 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
US5695471A (en) * 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
DE29921352U1 (de) * 1999-12-04 2001-04-12 Impella Cardiotech Ag Intravasale Blutpumpe
CN101932837A (zh) * 2006-03-31 2010-12-29 索罗泰克公司 旋转式血泵
WO2010118475A1 (en) * 2009-04-16 2010-10-21 Bivacor Pty Ltd Heart pump controller
CN104514726A (zh) * 2013-09-27 2015-04-15 沙洲职业工学院 主动电磁轴承叶轮泵
EP2860849B1 (de) * 2013-10-11 2016-09-14 ECP Entwicklungsgesellschaft mbH Komprimierbarer Motor, Implantieranordnung sowie Verfahren zum Positionieren des Motors
DE202016104834U1 (de) * 2015-09-02 2016-12-08 Johnson Electric S.A. Fluidantriebsvorrichtung und Motoraggregat davon
CN207124526U (zh) * 2017-07-28 2018-03-20 上海歌尔泰克机器人有限公司 一种外转子无刷电机
EP3737435B1 (en) * 2018-01-10 2023-10-18 Tc1 Llc Bearingless implantable blood pump
DE102018207611A1 (de) * 2018-05-16 2019-11-21 Kardion Gmbh Rotorlagerungssystem
EP3574932A1 (de) * 2018-05-28 2019-12-04 Berlin Heart GmbH Blutpumpe
CN112436697B (zh) * 2019-08-26 2022-05-03 美的威灵电机技术(上海)有限公司 电机及风机
CN111412151A (zh) * 2020-04-08 2020-07-14 江苏毅合捷汽车科技股份有限公司 一种燃料电池发动机的单级增压直驱离心式空压机
CN111840683A (zh) * 2020-07-31 2020-10-30 余顺周 介入式心室辅助装置
CN112494803A (zh) * 2020-12-22 2021-03-16 余顺周 血泵
CN216356340U (zh) * 2021-04-12 2022-04-19 槃实科技(深圳)有限公司 一种磁悬浮泵
CN114344701A (zh) * 2021-12-27 2022-04-15 浙江大学滨江研究院 一种儿童右心的心室辅助装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176848B1 (en) * 1996-04-04 2001-01-23 Impella Cardiotechnik Gmbh Intravascular blood pump
KR101457816B1 (ko) * 2013-10-04 2014-11-03 지엠비코리아 주식회사 전동식 워터 펌프
CN112107749A (zh) * 2019-06-21 2020-12-22 上海微创心力医疗科技有限公司 一种导流装置和导管泵
CN112472999A (zh) * 2020-12-22 2021-03-12 余顺周 血泵
CN114652952A (zh) * 2020-12-23 2022-06-24 上海微创心力医疗科技有限公司 轴承、血泵以及心室辅助循环装置
CN115025387A (zh) * 2022-07-08 2022-09-09 深圳核心医疗科技有限公司 驱动装置和血泵

Also Published As

Publication number Publication date
CN115025387B (zh) 2023-05-30
EP4393538A1 (en) 2024-07-03
CN115025387A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US10500321B2 (en) Implantable blood pump
WO2023160422A1 (zh) 血泵及其驱动装置
CA3160944C (en) Blood pump
WO2023098470A1 (zh) 血泵及其驱动装置
WO2024007793A1 (zh) 驱动装置和血泵
WO2023098471A1 (zh) 血泵及其驱动装置
WO2024007792A1 (zh) 驱动装置和血泵
WO2024007790A1 (zh) 驱动装置和血泵
WO2023160424A1 (zh) 血泵及其驱动装置
CN115282467B (zh) 驱动机构和血泵
WO2024007791A1 (zh) 驱动装置和血泵
CN115414591B (zh) 驱动装置和血泵
WO2024021918A1 (zh) 驱动装置和血泵
WO2024046499A1 (zh) 驱动机构和血泵
WO2023236759A1 (zh) 驱动装置和血泵
CN115192894A (zh) 驱动装置及血泵
CN115006715A (zh) 驱动装置和血泵
CN114917469A (zh) 驱动装置和血泵
WO2023236717A1 (zh) 驱动装置和血泵
WO2024007813A1 (zh) 驱动机构和血泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023834566

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023834566

Country of ref document: EP

Effective date: 20240328