WO2023236759A1 - 驱动装置和血泵 - Google Patents
驱动装置和血泵 Download PDFInfo
- Publication number
- WO2023236759A1 WO2023236759A1 PCT/CN2023/095268 CN2023095268W WO2023236759A1 WO 2023236759 A1 WO2023236759 A1 WO 2023236759A1 CN 2023095268 W CN2023095268 W CN 2023095268W WO 2023236759 A1 WO2023236759 A1 WO 2023236759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft
- arc
- hole
- convex surface
- mounting hole
- Prior art date
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 45
- 239000008280 blood Substances 0.000 title claims abstract description 45
- 238000009434 installation Methods 0.000 claims description 26
- 238000004804 winding Methods 0.000 claims description 11
- 230000004308 accommodation Effects 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 8
- 230000005389 magnetism Effects 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 description 21
- 239000012530 fluid Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002627 tracheal intubation Methods 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 3
- 230000004087 circulation Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 210000003709 heart valve Anatomy 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/81—Pump housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/135—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
- A61M60/139—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/857—Implantable blood tubes
Definitions
- This application relates to the technical field of medical devices, and in particular to a driving device and a blood pump.
- An intravascular blood pump is a blood pumping device that is inserted into the patient's heart through the patient's blood vessels.
- the intravascular blood pump is placed within the opening of the heart valve so that blood can flow through the blood pump and into the arteries.
- the blood pump includes a driving device and an impeller.
- the impeller is fixed on the rotating shaft of the driving device, and the rotating shaft drives the impeller to rotate.
- the rotating shaft usually has greater wear.
- this application provides a driving device and a blood pump that can reduce the wear of the rotating shaft.
- An embodiment of the first aspect of the present application provides a driving device for driving an impeller to rotate.
- the driving device includes:
- the housing assembly is provided with mounting holes;
- the rotating shaft includes a first shaft section for fixed connection with the impeller and rotatable through the mounting hole.
- the first shaft section is provided with an arc-shaped convex surface in the circumferential direction, and the arc-shaped convex surface is At least partially located in the mounting hole, the inflection point of the arc-shaped convex surface is opposite to the hole wall of the mounting hole, and at the inflection point of the arc-shaped convex surface, the arc-shaped convex surface is in contact with the hole wall of the mounting hole.
- the gap between them is the smallest; when the first shaft segment contacts the hole wall of the installation hole, the inflection point of the arc-shaped convex surface contacts the hole wall of the installation hole.
- the embodiment of the second aspect of the present application provides a blood pump, including an impeller and a driving device.
- the driving device includes:
- the housing assembly is provided with mounting holes;
- the rotating shaft includes a first shaft section for fixed connection with the impeller and rotatable through the mounting hole.
- the first shaft section is provided with an arc-shaped convex surface in the circumferential direction, and the arc-shaped convex surface is At least partially located in the mounting hole, the inflection point of the arc-shaped convex surface is opposite to the hole wall of the mounting hole, and at the inflection point of the arc-shaped convex surface, the arc-shaped convex surface is in contact with the hole wall of the mounting hole.
- the gap between them is minimum; when the first shaft segment contacts the hole wall of the mounting hole, the inflection point of the arc-shaped convex surface contacts the hole wall of the mounting hole;
- the impeller is fixed to the first shaft section, and the impeller can rotate with the rotating shaft.
- Figure 1 is a schematic three-dimensional structural diagram of the blood pump according to the first embodiment
- Figure 2 is a schematic diagram of the exploded structure of the blood pump shown in Figure 1 with part of the sleeve assembly omitted;
- Figure 3 is a cross-sectional view of the blood pump shown in Figure 1 with part of the sleeve assembly omitted;
- Figure 4 is a schematic structural diagram of the first sleeve of the blood pump shown in Figure 1;
- Figure 5 is a schematic structural diagram of the second sleeve of the blood pump shown in Figure 1;
- Figure 6 is a schematic cross-sectional structural view of the first sleeve and the second sleeve in the blood pump shown in Figure 1 after assembly;
- FIG 7 is a schematic structural diagram of the shaft tube of the blood pump shown in Figure 1;
- Figure 8 is a cross-sectional view of the first sleeve, the second sleeve and the rotating shaft of the blood pump shown in Figure 1 after assembly;
- Figure 9 is a schematic diagram of the partial structure at A in Figure 8.
- Figure 10 is a schematic structural diagram of the rotor of the blood pump shown in Figure 1;
- Figure 11 is a cross-sectional view of the rotor shown in Figure 10;
- Figure 12 is an exploded view of the rotor shown in Figure 10;
- Figure 13 is a partial cross-sectional view of the driving device of the blood pump according to the second embodiment
- Figure 14 is a partial schematic diagram of the driving device of the blood pump according to the third embodiment.
- Figure 15 is a partial schematic diagram of the driving device of the blood pump according to the fourth embodiment.
- Fig. 16 is a partial schematic diagram of the driving device of the blood pump according to the fifth embodiment.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
- plurality means two or more than two, unless otherwise explicitly and specifically limited.
- a blood pump 1 includes a driving device 20 , a sleeve assembly 30 , an impeller 41 and a catheter 42 .
- the casing assembly 30 is connected to the distal end of the driving device 20, the catheter 42 is connected to the proximal end of the driving device 20, the impeller 41 is rotatably disposed in the casing assembly 30, the impeller 41 is connected to the driving device 20, and the driving device 20 can drive The impeller 41 rotates to realize the blood pumping function of the blood pump 1 .
- the cannula assembly 30 has an inlet 301 and an outlet 302.
- the outlet 302 is closer to the driving device 20 than the inlet 301 . That is, the outlet 302 is located at the proximal end of the cannula assembly 30 and the inlet 301 is located at the distal end of the cannula assembly 30 .
- the cannula assembly 30 extends through a heart valve, such as the aortic valve, with the inlet 301 located within the heart and the outlet 302 and drive device 20 located outside the heart in a blood vessel such as the aorta.
- a heart valve such as the aortic valve
- the cannula assembly 30 includes an intubation tube 31 and an outlet tube 32 .
- the intubation tube 31 and the outlet tube 32 are fixedly connected.
- the outlet tube 32 is connected between the intubation tube 31 and the driving device 20 , that is, the outlet tube 32
- the distal end is connected to the proximal end of the cannula 31
- the proximal end of the outlet tube 32 is connected to the driving device 20 .
- the inlet 301 is opened on the intubation tube 31
- the outlet 302 is opened on the outlet tube 32 .
- the impeller 41 is received in the outlet pipe 32; the position of the impeller 41 generally corresponds to the position of the outlet 302.
- the conduit 42 is coupled with an end of the driving device 20 away from the sleeve assembly 30 .
- the conduit 42 is used to accommodate various supply lines.
- the supply line may be, for example, a cleaning line for introducing cleaning fluid into the driving device 20 , or a wire for supplying power to the driving device 20 , or a support for supporting the conduit 42 . Parts etc.
- the driving device 20 includes a housing assembly 100 , a rotating shaft 200 , a stator 330 and a rotor 340 .
- the housing assembly 100 has a mounting hole 131, and the rotating shaft 200 is rotatably inserted through the mounting hole 131; the impeller 41 is fixedly connected to the rotating shaft 200; the stator 330 and the rotor 340 are both accommodated in the housing assembly 100; the rotor 340 and The rotating shaft 200 is fixed; the stator 330 can drive the rotor 340 to rotate, the rotor 340 can drive the rotating shaft 200 to rotate, and the impeller 41 can rotate with the rotating shaft 200 to realize the blood pumping function of the blood pump 1 .
- the wires in the conduit 42 extend into the housing assembly 100 and are electrically connected to the stator 330 to provide power to the stator 330 .
- the housing assembly 100 includes a pump housing 110 , a shaft tube 120 , a first sleeve 130 and a second sleeve 140 .
- the pump housing 110, the shaft tube 120, the first shaft sleeve 130 and the second shaft sleeve 140 are split before assembly, that is, the housing assembly 100 is a split pump housing 110, the shaft tube 120, and the first shaft sleeve 130. It is assembled with the second sleeve 140.
- the pump housing 110 has a cylindrical structure with a substantially circular cross-section.
- the pump casing 110 has an accommodating cavity 112 , and the stator 330 and the rotor 340 are both received in the accommodating cavity 112 of the pump casing 110 .
- the shaft tube 120 has an installation opening 121 located at one end of the shaft tube 120 close to the sleeve assembly 30 .
- the first sleeve 130 and the second sleeve 140 are fixedly received in the shaft tube 120 .
- the first sleeve 130 and the second sleeve 140 are both fixedly connected to the shaft tube 120 .
- the first bushing 130 and the second bushing 140 are arranged along the axial direction of the shaft tube 120 , and the first bushing 130 is arranged closer to the impeller 41 than the second bushing 140 .
- the mounting hole 131 is opened in the first sleeve 130 .
- the rotating shaft 200 is rotatably inserted through the first sleeve 130 and the second sleeve 140 .
- first bushing 130 and the second bushing 140 are split type; both the first bushing 130 and the second bushing 140 can be installed from the installation opening 121 of the shaft tube 120 , that is, the first bushing 130 and the second bushing 140 can be installed in the shaft tube 120 .
- the maximum outer diameters of the two sleeves 140 are both slightly smaller than the diameter of the installation port 121 .
- the shaft tube 120 is provided with a load-bearing protrusion 122 at one end close to the pump housing 110, and the second sleeve 140 is in contact with the load-bearing protrusion 122; the first sleeve 130 is in contact with the second sleeve 140, so that the load-bearing protrusion 122 plays a position-limiting role on the first sleeve 130 and the second sleeve 140 in the axial direction of the pump housing 110 to facilitate the assembly of the first sleeve 130 and the second sleeve 140 .
- the bearing protrusion 122 is generally annular in shape.
- the shaft tube 120 is also provided with a glue injection hole 123, and the glue injection hole 123 is filled with adhesive glue.
- the adhesive glue fixedly bonds the first shaft sleeve 130 and the second shaft sleeve 140 to the shaft tube 120, and secures the third shaft sleeve 130 to the shaft tube 120.
- the first sleeve 130 and the second sleeve 140 are fixedly connected.
- the first sleeve 130 is provided with a limiting hole 132 , and the diameter of the limiting hole 132 is larger than the diameter of the mounting hole 131 .
- the mounting hole 131 is closer to the impeller 41 than the limiting hole 132 .
- the limiting hole 132 and the mounting hole 131 are coaxially arranged and communicate with each other, so that the limiting hole 132 and the mounting hole 131 together form a stepped hole.
- the first sleeve 130 has a first limiting surface 133 , and the first limiting surface 133 defines a partial boundary of the limiting hole 132 .
- the first limiting surface 133 may be arranged perpendicular to the axial direction of the rotating shaft 200 , or may be arranged inclined relative to the axial direction of the rotating shaft 200 .
- the second sleeve 140 includes a thick section 141 and a thin section 142 .
- the thin section 142 has a cross-sectional size smaller than that of the thick section 141 .
- the thick section 141 has a contact surface 1411 .
- the outer contours of the thin section 142 and the thick section 141 are both circular.
- the cross-sectional size of the thin section 142 is smaller than the cross-sectional size of the thick section 141, which means that the outer diameter of the thin section 142 is smaller than that of the thick section 142.
- the thin section 142 is protruding from the contact surface 1411 .
- the second sleeve 140 has a through hole 143 .
- the through hole 143 extends from the end surface of the thin section 142 away from the abutment surface 1411 to the side of the thick section 141 away from the abutment surface 1411 , so that the through hole 143 penetrates through the thick section 142 . Segment 141 and thin segment 142.
- the diameter of the limiting hole 132 is larger than the diameter of the through hole 143 .
- the thin section 142 is received in the limiting hole 132 , and the contact surface 1411 is in contact with the first sleeve 130 .
- the side of the thick section 141 away from the contact surface 1411 is in contact with the bearing protrusion 122 .
- the end surface of the thin section 142 away from the abutment surface 1411 is the second limiting surface 144.
- the second limiting surface 144 is spaced apart from and opposite to the first limiting surface 133, so that the first limiting surface 133 and the second limiting surface 133 are opposite to each other.
- the surfaces 144 are spaced apart along the axial direction of the rotating shaft 200 .
- the second limiting surface 144 may be arranged perpendicular to the axial direction of the rotating shaft 200 , or may be inclined relative to the axial direction of the rotating shaft 200 .
- the first limiting surface 133 and the second limiting surface 144 are both perpendicular to the axial direction of the rotating shaft 200 , and the first limiting surface 133 and the second limiting surface 144 are parallel and opposite.
- the hole wall 132a of the limiting hole 132, the first limiting surface 133 and the second limiting surface 144 jointly define a limiting cavity 150, and the mounting hole 131 and the through hole 143 are both connected with the limiting cavity 150.
- the limiting cavity 150 is actually a part of the limiting hole 132
- the first limiting surface 133 and the second limiting surface 144 are the two wall surfaces of the limiting cavity 150 in the axial direction of the rotating shaft 200 .
- the rotating shaft 200 passes through the mounting hole 131 , the limiting cavity 150 and the through hole 143 .
- One end of the rotating shaft 200 is received in the pump casing 110 , and the other end extends into the casing assembly 30 and is fixedly connected to the impeller 41 .
- the holes of the rotating shaft 200 and the mounting hole 131 There are gaps between the walls, between the rotating shaft 200 and the cavity wall of the limiting cavity 150 , and between the rotating shaft 200 and the wall of the through hole 143 for the circulation of cleaning fluid.
- the cleaning fluid can flow from the pump housing 110 through the gap between the rotating shaft 200 and the hole wall of the through hole 143 , the gap between the rotating shaft 200 and the cavity wall of the limiting cavity 150 , and the gap between the rotating shaft 200 and the mounting hole 131 It enters the casing assembly 30 and flows out from the outlet 302.
- the dotted arrow in Figure 8 represents the flow direction of the cleaning fluid.
- the flow direction of the cleaning fluid is opposite to the flow direction of the blood in the cannula assembly 30. This can prevent the blood in the cannula assembly 30 from entering the driving device 20 through the mounting hole 131.
- the cleaning fluid also plays a lubricating role.
- the cleaning fluid can reduce the frictional resistance between the rotating shaft 200 and the first sleeve 130 and the second sleeve 140, and reduce the friction between the rotating shaft 200 and the first sleeve 130 and the second shaft. Wear between sets of 140.
- the housing assembly 100 is not limited to the above method.
- more than two of the pump housing 110, the shaft tube 120, the first sleeve 130 and the second sleeve 140 may be an integral structure;
- the pump housing 110 and the shaft tube 120 can be integrally formed;
- one of the first shaft sleeve 130 and the second shaft sleeve 140 can be integrally formed with the shaft tube 120;
- the first shaft sleeve 130 can be a disc-shaped ring Structure;
- the first sleeve 130 is composed of two separate tubular rings and a disc ring; for example, the second sleeve 140 can also only have a thick section 141.
- the rotating shaft 200 includes a first shaft section 210, a second shaft section 220, a third shaft section 230 and a fourth shaft section connected in sequence. 240.
- the axes of the first shaft section 210 , the second shaft section 220 , the third shaft section 230 and the fourth shaft section 240 are coincident.
- the first shaft section 210 is rotatably inserted into the mounting hole 131 , and the first shaft section 210 is fixedly connected to the impeller 41 .
- the second shaft section 220 is rotatably received in the limiting cavity 150 .
- the third shaft section 230 is rotatably inserted through the through hole 143; the fourth shaft section 240 is received in the accommodation cavity 112 of the pump housing 110.
- the fourth shaft section 240 is fixedly connected to the rotor 340 .
- the first shaft section 210 is received in the housing assembly 100 , and part extends into the casing assembly 30 to be fixedly connected to the impeller 41 .
- the first shaft section 210 is provided with an arc-shaped convex surface 211 in the circumferential direction. Specifically, the arc-shaped convex surface 211 radially protrudes in a direction away from the axis of the first shaft section 210 (the radial direction is the direction perpendicular to the axis of the first shaft section 210). At least part of the arc-shaped convex surface 211 is located in the mounting hole 131.
- the inflection point of the arc-shaped convex surface 211 is opposite to the wall of the mounting hole 131; The gap between them is the smallest.
- the inflection point of the arc-shaped convex surface 211 contacts the wall of the mounting hole 131 . Since the rotating shaft 200 will have a certain radial rocking during the rotation, when the rotating shaft 200 rocks, the first shaft section 210 will be in contact with the hole wall of the mounting hole 131 , and the first shaft section 210 will be in contact with the hole wall of the mounting hole 131 . The larger the area, the greater the wear of the first shaft section 210.
- the above-mentioned rotating shaft 200 is provided with an arc-shaped convex surface 211 in the circumferential direction of the first shaft section 210, so that when the first shaft section 210 is connected with the mounting hole 131, When the wall is in contact, only the inflection point of the arc-shaped convex surface 211 contacts the hole wall of the mounting hole 131 to form a point-to-surface contact, thereby reducing the contact area between the first shaft section 210 and the wall of the mounting hole 131 and reducing the rotation shaft 200 of wear and tear.
- the inflection point of the arc-shaped convex surface 211 in this application refers to the point where the arc-shaped convex surface 211 has the largest distance relative to the axis OO' of the first shaft segment 210, that is, the most convex point of the arc-shaped convex surface 211.
- the inflection point of the arc-shaped convex surface 211 is the line PP′.
- the axis OO' of the first shaft section 210 is the axis of the rotating shaft 200 and is also the axis of the second shaft section 210 .
- axes of the shaft section 220 , the third shaft section 230 and the fourth shaft section 240 are coincident.
- the arcuate convex surface 211 is arranged around the axis OO' of the first shaft section 210.
- the arcuate convexity 211 in this manner can facilitate the manufacturing of the rotating shaft 200.
- the arc-shaped convex surface 211 is continuously arranged around the axis of the first shaft section 210 . It can be understood that in other embodiments, a plurality of spaced arc-shaped convex surfaces 211 can also be provided in the axial direction of the first shaft section 210 .
- the width of the gap between the inflection point of the arc-shaped convex surface 211 (line PP′) and the hole wall of the mounting hole 131 is less than or equal to 2 ⁇ m. Since it is difficult for the smallest red blood cells (diameter of about 8 ⁇ m and thickness of about 2 ⁇ m) to enter a gap with a width of less than or equal to 2 ⁇ m, and the reverse flushing cleaning fluid passes through the gap, it prevents blood from entering the gap.
- the distance along the axial direction of the first shaft segment 210 from the inflection point (line PP′) of the arc-shaped convex surface 211 to the plane where the opening of one end of the mounting hole 131 close to the impeller 41 is located and the value of H is The range is H ⁇ 0.2mm.
- the plane where the opening of one end of the mounting hole 131 close to the impeller 41 is located is perpendicular to the axis of the first shaft section 210 direction, or perpendicular to the axis OO' of the first shaft segment 210.
- the inflection point (line PP′) of the arc-shaped convex surface 211 is located in the mounting hole 131, and is slightly lower than the opening of one end of the mounting hole 131 close to the impeller 41.
- the mounting hole The hole wall of 131 forms a better support effect for the rotating shaft 200, so that when the rotating shaft 200 contacts the hole wall of the mounting hole 131, only the inflection point (line PP′) of the arc-shaped convex surface 211 contacts the hole wall of the mounting hole 131. On the other hand, ensure the flushing strength of the cleaning fluid.
- the arc-shaped convex surface 211 has a first arcuate portion 212 and a second arcuate portion 213 connected to the first arcuate portion 212.
- the first arcuate portion 212 and the second arcuate portion 213 are arranged along the axial direction of the first axis segment 210.
- the connection between the first arcuate portion 212 and the second arcuate portion 213 is the inflection point (line PP′) of the arcuate convex surface 211; along the axial direction of the first shaft section 210 and toward the direction approaching the impeller 41, the first arcuate portion 212
- the distance to the axis OO' of the first shaft section 210 gradually increases, and the distance from the second arcuate surface 213 to the axis OO' of the first shaft section 210 gradually decreases.
- the arcuate convex surface 211 is entirely located in the mounting hole 131; along the axis OO' of the first shaft section 210 and toward the direction close to the impeller 41, the gap between the first arcuate surface 212 and the wall of the mounting hole 131 is The width of the gap gradually decreases, and the width of the gap between the second arcuate portion 213 and the hole wall of the mounting hole 131 gradually increases.
- the width of the gap between the arc-shaped convex surface 211 and the hole wall of the mounting hole 131 is the smallest.
- the hole wall at the opening of one end of the mounting hole 131 close to the impeller 41 is in contact with the hole wall of the first shaft section 210
- the width of the gap between them is less than or equal to 2 ⁇ m, then the width of the gap between the inflection point of the arc-shaped convex surface 211 (line PP′) and the hole wall of the mounting hole 131 is less than 2 ⁇ m, that is, it is closer to the impeller 41 than the mounting hole 131
- the width of the gap between the hole wall at the opening of one end and the first shaft section 210 is even smaller.
- the width of the gap between the inflection point of the arc-shaped convex surface 211 and the hole wall of the mounting hole 131, and the gap between the hole wall at the opening of one end of the mounting hole 131 close to the impeller 41 and the first shaft section 210 The width can also be adjusted according to needs and design.
- the mounting hole 131 has a connected first hole part 131a and a second hole part 131b.
- the diameter of the first hole part 131a is constant. direction, the diameter of the second hole part 131b gradually decreases, the first shaft segment 210 is passed through the first hole part 131a and the second hole part 131b, and the inflection point (line PP′) of the arc-shaped convex surface 211 is in contact with the first hole part
- the hole walls of the first hole portion 131a are opposite to each other.
- the inflection point (line PP′) of the arc-shaped convex surface 211 contacts the hole wall of the first hole portion 131a. That is, the aperture of the end of the second hole 131b close to the limiting cavity 150 is larger than the aperture of the first hole 131a.
- the first hole 131a with a constant aperture can better support the rotating shaft 200 and reduce the shaking arc of the rotating shaft 200.
- the second hole portion 131b whose hole diameter changes in the above manner can guide the cleaning liquid, so that the cleaning liquid can enter the mounting hole 131 easily.
- the hole wall at one end of the through hole 143 close to the limiting cavity 150 is formed with an internal chamfer, which is beneficial to reducing the contact area between the rotating shaft 200 and the second sleeve 140 and reducing wear of the rotating shaft 200 .
- the second shaft section 220 is fixedly connected to an end of the first shaft section 210 away from the impeller 41 .
- the second shaft section 220 is rotatably received in the limiting cavity 150 .
- the cross-sectional size of the second shaft section 220 is smaller than the cross-sectional size of the limiting cavity 150 .
- the diameter of the cross section of the second shaft section 220 is larger than the diameter of the mounting hole 131 and the diameter of the through hole 143 , so that the second shaft section 220 is limited in the limiting cavity 150 , so that the second shaft section 220 does not enter.
- the second shaft section 220 is located between the first limiting surface 133 and the second limiting surface 144, thereby limiting the rotating shaft 200 in the axial direction of the rotating shaft 200.
- the second shaft segment 220 can contact the first limiting surface 133 and the second limiting surface 144 to prevent the rotating shaft 200 from axial movement or limit its axial movement distance.
- the second shaft section 220 is always in sliding contact with the first limiting surface 133 and the second limiting surface 144; in other embodiments, the first limiting surface 133 and the second limiting surface 144 The distance between them is slightly larger than the axial length of the second shaft section 220, so that during the rotation of the rotating shaft 200, the second shaft section 220 has a certain float between the first limiting surface 133 and the second limiting surface 144. space for cleaning fluid to flow.
- a flow gap 151 is formed between the second shaft section 220 and the cavity wall extending along the axis OO' of the limiting cavity 150 for the cleaning liquid to flow.
- a first guide groove 1331 is formed in a local recess of the first limiting surface 133 .
- the first guide groove 1331 extends from the hole wall 1311 of the mounting hole 131 to the limiting position. Hole wall 132a of hole 132 extends such that The first guide groove 1331 communicates with the mounting hole 131 and the limiting hole 132 . Since the limiting cavity 150 is a part of the limiting hole 132 , the first guide groove 1331 is also connected to the limiting cavity 150 .
- a second guide groove 1441 is formed in a local recess of the second limiting surface 144 .
- the second guide groove 1441 extends from the hole wall 1311 of the through hole 143 to the outer peripheral surface of the thin section 142 .
- the second guide groove 1441 communicates with the through hole. 143 and limiting cavity 150.
- the flow gap 151 since the flow gap 151 is actually a part of the limiting cavity 150, the flow gap 151 communicates with the first flow guide groove 1331 and the second flow guide groove 1441 at the same time.
- the provision of the first guide groove 1331 and the second guide groove 1441 facilitates the circulation of the cleaning liquid.
- first guide groove 1331 and the second guide groove 1441 may be provided, or the first guide groove 1331 and the second guide groove 1441 may not be provided.
- both axial ends of the second shaft segment 220 are provided with chamfers 222 , thereby reducing the contact area between the rotating shaft 200 and the first limiting surface 133 and/or the second limiting surface 144 . , further reducing the contact area between the rotating shaft 200 and the first sleeve 130 and the second sleeve 140, so as to further reduce the wear of the rotating shaft 200.
- the sharp edges of the second shaft section 220 in contact with the first bushing 130 and the second bushing 140 are prevented from causing wear to the first bushing 130 and the second bushing 140, and can also form a guide for the cleaning fluid. flow effect.
- the third shaft section 230 is rotatably installed in the through hole 143 . There is a gap for the circulation of cleaning fluid between the third shaft section 230 and the hole wall of the through hole 143 .
- the fourth shaft section 240 is connected to one end of the third shaft section 230 away from the second shaft section 220 , and the fourth shaft section 240 is received in the accommodation cavity 112 .
- the cross-sectional size of the fourth shaft section 240 is smaller than the cross-sectional size of the third shaft section 230 .
- the rotor 340 is fixedly connected to the fourth shaft section 240 .
- the fourth shaft section 240 is at least partially received in the stator 330 .
- the rotating shaft 200 , the first sleeve 130 and the second sleeve 140 can be made of ceramic materials, which can improve the wear resistance of the rotating shaft 200 , the first sleeve 130 and the second sleeve 140 and further prevent the rotating shaft 200 from being damaged. , the first sleeve 130 and the second sleeve 140 are worn.
- the stator 330 includes a first stator unit 332 and a second stator unit 333. Both the first stator unit 332 and the second stator unit 333 can drive the rotor 340 to rotate. Specifically, the first stator unit 332 and the second stator unit 333 are spaced apart along the extension direction of the rotating shaft 200 . The first stator unit 332 and the second stator unit 333 are both fixedly connected to the housing assembly 100 . The fourth shaft section 240 of the rotating shaft 200 is rotatably installed in the first stator unit 332 . That is, the rotor 340 is rotatable relative to the housing assembly 100 , while the first stator unit 332 and the second stator unit 333 are non-rotatable relative to the housing assembly 100 .
- the first stator unit 332 and the second stator unit 333 may be connected in parallel or in series. In some embodiments, the first stator unit 332 and the second stator unit 333 can synchronously drive the rotor 340 to rotate. The first stator unit 332 and the second stator unit 333 can jointly drive the rotor 340 to rotate, or can independently drive the rotor 340 to rotate.
- the rotor 340 has magnetism, and the stator 330 can generate a rotating magnetic field that drives the rotor 340 to rotate. Specifically, both the first stator unit 332 and the second stator unit 333 can generate a rotating magnetic field that drives the rotor 340 to rotate.
- the first stator unit 332 includes a first magnetic core 3321, a first coil 3322 and a first back plate 3323.
- the first back plate 3323 is fixed to the housing assembly 100.
- the first back plate 3323 is fixed to the axle tube 120.
- the extension direction of each first magnetic core 3321 is consistent with the extension direction of the rotating shaft 200 .
- Each first magnetic core 3321 is fixedly connected to the first back plate 3323.
- the first coil 3322 is wound around the first magnetic core 3321.
- a first coil 3322 and a first magnetic core 3321 form a coil winding.
- the plurality of coil windings of the first stator unit 332 are arranged around the fourth shaft section 240 .
- the structure of the second stator unit 333 is similar to that of the first stator unit 332 .
- the second stator unit 333 includes a second magnetic core 3331, a second coil 3332 and a second back plate 3333.
- the second back plate 3333 is fixed to the housing assembly 100 .
- Each second magnetic core 3331 is fixedly connected to the second back plate 3333.
- the second coil 3332 is wound around the second magnetic core 3331.
- a second coil 3332 and a second magnetic core 3331 form a coil winding. Then, the plurality of coil windings of the second stator unit 333 are arranged around the axis of the fourth shaft section 240 (ie, OO').
- the first magnetic core 3321 and the second magnetic core 3331 each include a magnetic column and a head (ie, a pole piece) disposed at one end of the magnetic column, and the extension direction of the magnetic column is consistent with the extension direction of the rotating shaft.
- the first back plate 3323 is coupled to an end of the magnetic column of the first magnetic core 3321 that is away from the head; the second back plate 3333 is coupled to an end of the magnetic column of the second magnetic core 3331 that is far from the head.
- the magnetic column in the extending direction of the magnetic column, the magnetic column is generally in the shape of a columnar body with uniform size, that is, the cross-sectional size of the magnetic column 3331 remains constant.
- the thickness of the magnetic column 3331 is uniform.
- the first coil 3322 is wound around the magnetic column of the first magnetic core 3321
- the second coil 3332 is wound around the magnetic column of the second magnetic core 3331.
- both the first magnetic core 3321 and the second magnetic core 3331 only include magnetic columns, that is, neither the first magnetic core 3321 nor the second magnetic core 3331 has a large cross-sectional width.
- head ie, pole piece
- the magnetic column of the first stator unit 332 is the first magnetic core 3321
- the magnetic column of the second stator unit 333 is the second magnetic core 3331.
- the entire first magnetic core 3321 can be magnetically coupled with the rotor 340
- the entire second magnetic core 3331 can be magnetically coupled with the rotor 340.
- a magnetic core with only magnetic columns it can reduce magnetic losses and increase the magnetic coupling density between the magnetic core and the rotor 340 to increase the torque of the stator unit on the rotor 340 under the same current.
- magnetic cores without heads can also greatly reduce the problem of power reduction of the driving device 20 caused by local magnetic short circuits caused by contact between adjacent magnetic cores.
- first magnetic core 3321 and the second magnetic core 3331 are not limited to the above two methods.
- one of the first magnetic core 3321 and the second magnetic core 3331 can also have a magnetic column and a head at the same time. part and the other has only magnetic columns.
- the cross-section shape of the magnetic columns of the first magnetic core 3321 and the second magnetic core 3331 is generally a triangular prism shape, and one edge of each magnetic column faces the axis of the rotating shaft.
- the edges of the magnetic pillars are rounded, that is, the edges of the magnetic pillars are relatively smooth and blunt rounded edges, thereby eliminating sharp edges and corners on the magnetic pillars, which not only facilitates subsequent coils. The winding is beneficial to protecting the insulation material covering the coil.
- the cross-sectional shapes of the magnetic columns of the first magnetic core 3321 and the second magnetic core 3331 may also be sector-shaped, circular, trapezoidal, sector-ring-shaped, etc.
- the rotating shaft 200 is spaced apart from the second stator unit 333 along the axis of the fourth shaft section 240 (that is, along the axis OO'), that is, the end of the fourth shaft section 240 away from the third shaft section 230 It is spaced apart from the second stator unit 333 , that is, the fourth shaft section 240 of the rotating shaft 200 does not penetrate into the second stator unit 333 .
- the cross-sectional size of the magnetic columns of the second stator unit 333 is larger than the cross-sectional size of the magnetic columns of the first stator unit 332 .
- the cross-sectional dimensions of the first stator unit 332 and the second stator unit 333 are the same and the outer diameter of the housing assembly 100 remains unchanged, considering that the rotating shaft 200 is located outside the second stator unit 333, the second stator unit There is no rotating shaft 200 in 333.
- the cross-sectional size of the magnetic column of the second stator unit 333 can be reasonably increased without increasing the outer diameter of the pump casing 110. This can increase the impact of the second stator unit 333 on the rotor 340.
- this method can reasonably reduce the current supply to the stator 330, thereby reducing power consumption. It also reduces the heat generation of the driving device 20 and avoids the blood pump 1 from being damaged by heat during operation. The accumulation may cause excessive temperature, which may cause discomfort or even harm to the human body.
- the rotating shaft 200 can also penetrate into the second stator unit 333.
- the cross-sectional dimensions of the magnetic columns of the first stator unit 332 and the second stator unit 333 are the same.
- the first back plate 3323 and the second back plate 3333 generally have a flat structure.
- the first back plate 3323 and the second back plate 3333 are made of the same material as the first magnetic core 3321 and the second magnetic core 3331, such as cobalt steel and other soft magnetic materials.
- the back plate can function to close the magnetic circuit of the stator unit to promote and increase the generation of magnetic flux in the stator unit and improve the coupling capacity between each stator unit and the rotor 340 .
- providing the first back plate 3323 in the first stator unit 332 can promote and increase the generation of magnetic flux in the first stator unit 332 and improve the coupling capacity between the first stator unit 332 and the rotor 340;
- second Providing the second back plate 3333 in the stator unit 333 can promote and increase the generation of magnetic flux in the second stator unit 333 and improve the coupling capacity between the second stator unit 333 and the rotor 340 .
- the backing plate can increase the magnetic flux, providing the backing plate in the first stator unit 332 and the second stator unit 333 respectively is also beneficial to reducing the overall diameter of the driving device 20 .
- the driving device 20 also includes a positioning member 360, which is fixed in the pump housing 110.
- the positioning member 360 has a positioning post 364, and the second back plate 3333 of the second stator unit 333 is provided with a positioning hole 3334.
- the post 364 passes through the positioning hole 3334.
- the positioning member 360 can perform the positioning function of the second stator unit 333 and improve the installation accuracy and efficiency of the second stator unit 333.
- the central axis of the positioning column 364 and the central axis of the second stator unit 333 coincide with each other.
- the positioning member 360 is also provided with a through hole 365 , which can be used to communicate with a cleaning pipeline that supplies cleaning fluid into the driving device 20 or to install a cleaning pipeline.
- the first stator unit 332 may not have the first back plate 3323, and the second stator unit 333 may not have the second back plate 3333, or the first stator unit 332 may not have the second back plate 3333.
- One of the second stator units 333 has a back plate, and the other does not have a back plate. If the second stator unit 333 does not have the second back plate 3333, a plurality of positioning holes can be directly opened on the positioning member 360, and one ends of the plurality of second magnetic cores 3331 are respectively positioned in the plurality of positioning holes.
- the positioning member 360 can be omitted.
- a locking position for engaging with the edge of the second back plate 3333 can be provided in the pump housing 110 to engage with the second back plate 3333 through the locking position.
- the second stator unit 333 is fixed; or the second stator unit 333 is bonded and fixed to the pump shell 110 through adhesive.
- the first stator unit 332 can be bonded and fixed with the shaft tube 120 through an adhesive, or can be fixed by setting corresponding clamping positions in the pump housing 110 to engage with the first back plate 3323 . .
- the rotor 340 is received in the accommodation cavity 112 of the pump housing 110.
- the rotor 340 is located between the first stator unit 333 and the second stator unit 334 along the axis OO'.
- the rotor 340 includes a first magnet 342 and a second magnet 343.
- the first magnet 342 and the second magnet 343 are both fixed to the fourth shaft section 240.
- the first magnet 342 and the second magnet 343 are both located on the first stator.
- the first stator unit 332, the first magnet 342, the second magnet 343 and the second stator unit 333 are arranged in sequence.
- the first stator unit 332 can generate a rotating magnetic field that drives the first magnet 342 to rotate
- the second stator unit 333 can generate a rotating magnetic field that drives the second magnet 343 to rotate.
- the two stator units respectively provide torque to the rotor 340 through two magnets, which can increase the driving force for the rotation of the rotor 340.
- the rotor 340 also includes a flywheel 344, which is fixedly connected to the fourth shaft section 240 of the rotating shaft 200.
- the flywheel 344 is located between the first stator unit 332 and the second stator unit 333.
- the first magnet 342 and the second magnet 343 are all fixed on the flywheel 344. More specifically, the flywheel 344 is fixed to an end of the fourth shaft section 240 away from the third shaft section 230 .
- the connection strength between the first magnet 342 and the second magnet 343 and the fourth shaft section 240 can be enhanced; in addition, by arranging the first magnet 342 and the second magnet 343 on the same flywheel 344, the third magnet can be reduced.
- the rocking of the fourth shaft section 240 during the rotation process makes the fourth shaft section 240 more stable during the rotation process.
- flywheel 344 includes an inner tube 3442, a disk 3444, and an outer annular wall 3446.
- Both the built-in tube 3442 and the outer ring wall 3446 have a circular tube structure, and the disc-shaped portion 3444 has an annular disc structure.
- the built-in tube 3442 and the outer ring wall 3446 are both fixedly connected to the disc-shaped portion 3444.
- the outer ring wall 3446 is arranged around the disc-shaped portion 3444.
- the inner tube 3442 and the outer ring wall 3446 are arranged coaxially.
- the fourth shaft section 240 is inserted into the inner tube 3442 and is fixedly connected to the inner tube 3442.
- An accommodating space is formed between the built-in tube 3442 and the outer ring wall 3446, and the disc-shaped portion 3444 divides the accommodating space into two installation cavities 3448.
- the two installation cavities 3448 are both annular cavities.
- the first magnet 342 and the second magnet 343 are respectively accommodated in two installation cavities 3448.
- the first magnet 342 and the second magnet 343 are both annular, and the shapes of the two installation cavities 3448 are respectively adapted to the first magnet 342 and the second magnet 343 to facilitate the installation and positioning of the first magnet 342 and the second magnet 343.
- Such an arrangement enables the flywheel 344 to limit the first magnet 342 and the second magnet 343, which not only facilitates the installation of the first magnet 342 and the second magnet 343, but also makes the first magnet 342 and the second magnet 343 and the flywheel 344 combination is more stable.
- the flywheel 344 is not limited to the above structure. In some embodiments, the flywheel 344 does not have an outer ring wall 3446; in some embodiments, the flywheel 344 does not have an outer ring wall 3446 and a built-in tube 3442. In this case, The fourth shaft section 240 is fixedly inserted through the disc-shaped portion 3444 , for example, the center of the disc-shaped portion 3444 . Compared with the flywheel 344 having only the disc-shaped portion 3444, providing the built-in tube 3442 can connect the flywheel 344 and the fourth shaft section 240 more stably.
- both the first magnet 342 and the second magnet 343 are annular Halbach array magnets.
- both the first magnet 342 and the second magnet 343 include a plurality of magnetic bodies, for example, the number of magnetic bodies is four, six, eight or ten, etc., each magnetic body is in the shape of a fan ring, and the plurality of first magnets are A plurality of magnetic bodies are arranged around the fourth shaft section 240 to form an annular structure.
- a plurality of magnetic bodies of the second magnet 343 are arranged around the rotor 340 to form an annular structure.
- the first magnet 342 has a first magnetic body 3422 that is magnetized along the axial direction of the first magnet 342, and the second magnet 343 has a second magnetic body 3432 that is magnetized along the axial direction of the second magnet 343.
- the magnetic body 3422 and the second magnetic body 3432 are respectively disposed on opposite sides of the disc-shaped portion 3444, and the positions of the first magnetic body 3422 and the second magnetic body 3432 correspond to each other; in the extension direction of the rotor 340, the first magnetic body 3422 and the second magnetic body 3432 are positioned correspondingly.
- the magnetic body 3422 and the second magnetic body 3432 have opposite polarities on the side facing the disk-shaped portion 3444 .
- This arrangement can facilitate the installation of the first magnet 342 and the second magnet 343 and prevent the first magnetic body 3422 and the second magnetic body 3432 of the first magnet 342 and the second magnet 343 corresponding to the positions of the disc-shaped portion 3444 from repelling each other.
- This causes assembly difficulties.
- the polarity of the side of the first magnetic body 3422 facing the disc-shaped portion 3444 is N pole
- the polarity of the side of the second magnetic body 3432 facing the disc-shaped portion 3444 is S pole.
- the principle of mutual attraction of poles eliminates the interference of magnetic repulsion and improves the installation efficiency of the first magnet 342 and the second magnet 343 .
- the flywheel 344 is also provided with a second magnetic body 4332 for determining the installation position of the first magnetic body 3422.
- the marking part 345 may be set as a groove, a scale mark, a mark, or the like.
- the marking portion 345 is provided on at least one of the built-in tube 3442, the disc-shaped portion 3444, and the outer ring wall 3446. Specifically, in the illustrated embodiment, identification portions 345 are provided on the end surfaces of both ends of the built-in tube 3442 .
- the first shaft section 210 of the rotating shaft 200 of the driving device 20 is provided with an arc-shaped convex surface 211 on the circumferential direction, and at the inflection point PP' of the arc-shaped convex surface 211, the arc-shaped convex surface 211
- the gap between the first shaft section 210 and the wall of the mounting hole 131 is minimal, so that when the first shaft section 210 contacts the wall of the mounting hole 131 of the housing assembly 100, the inflection point PP' of the arc-shaped convex surface 211 is in contact with the wall of the mounting hole 131.
- the wall contact forms point-to-surface contact, thereby reducing the contact area between the first shaft section 210 and the hole wall of the mounting hole 131 , thereby reducing wear of the rotating shaft 200 .
- the split housing assembly 100 with the above structure is used, that is, the split pump housing 110, shaft tube 120, first shaft sleeve 130 and second shaft sleeve 140 are assembled into the housing assembly 100, and the shaft tube 120 is
- the maximum outer diameter of the mounting opening 121 is slightly smaller than the aperture of the mounting hole 121, which can facilitate the assembly of the driving device 20.
- the first sleeve 130, the second sleeve 140 and the rotating shaft 200 can be assembled from one direction, which can simplify The assembly of the driving device 20 improves production efficiency.
- the fourth shaft section 240 of the rotating shaft 200 is disposed in the stator 330 and the cross-sectional size of the fourth shaft section 240 is smaller than the cross-sectional size of the third shaft section 230, this is on the basis of ensuring the structural strength of the entire rotating shaft 200.
- the space occupied by the fourth shaft section 240 in the radial direction of the stator 330 can be reduced, and the cross-sectional size of the magnetic column in the stator 330 can be reasonably increased while ensuring that the outer diameters of the stator 330 and the pump housing 110 remain unchanged.
- the magnetic columns can be designed to be thickened reasonably.
- Making the cross-sectional size of the third shaft section 230 larger enables the rotating shaft 200 to have greater structural strength at the through hole 143 .
- the cross-sectional size of the magnetic column of the second stator unit 333 can be reasonably increased without increasing the outer diameter of the pump housing 110. In this way, the driving torque of the second stator unit 333 to the rotor 340 can be increased. When the required torque is the same, this method can reasonably reduce the current supply to the stator 330, thereby reducing power consumption and reducing the heat generation of the driving device 20. .
- the structure of the driving device 20 is not limited to this method.
- the fourth shaft section 240 of the rotating shaft 200 is also penetrated through the second stator unit 333; in another embodiment, the stator 330 may also only have a stator unit, There may be only the first stator unit 332 or only the second stator unit 333 .
- the structure of the driving device of the blood pump of the second embodiment is roughly the same as that of the driving device 20 of the first embodiment.
- the main differences are:
- the hole wall of the mounting hole 131' in this embodiment is provided with an arc-shaped concave portion 131c opposite to the arc-shaped convex surface 211'.
- the curvature of the concave portion 131c is smaller than the curvature of the arc-shaped convex surface 211'.
- the position of the concave portion 131c is opposite to the position of the second arc portion 213' of the arc-shaped convex surface 211'; the curvature of the concave portion 131c is smaller than the curvature of the second arc portion 213'.
- the hole wall of the mounting hole 131' also includes a first inner wall 131d.
- the first inner wall 131d is opposite to the first arc surface 212'.
- the first inner wall 131d is a straight wall extending parallel to the axis along the first shaft section 210'.
- the first inner wall 131d can also be an inclined wall inclined relative to the axis of the first shaft section 210', or the first inner wall 131d can also be an arc concave wall; when the mounting hole 131' is opposite to the position of the first arcuate portion 212'
- the hole wall that is, the first inner wall 131d is an arc-shaped concave wall
- the curvature of the hole wall of the mounting hole 131' opposite to the position of the first arcuate portion 212' can be the same as or different from the curvature of the concave portion 131c.
- the first arcuate portion 212' is closer to the second shaft section 220' of the rotating shaft than the second arcuate portion 213'.
- the driving device of this embodiment has a similar structure to the driving device of the first embodiment, the driving device of this embodiment and the blood pump having the driving device of the second embodiment also have similar effects to the first embodiment.
- the structure of the driving device of the blood pump in the third embodiment is roughly the same as that of the driving device 20 in the first embodiment.
- the main differences are:
- the width of the gap between the arc-shaped convex surface 211′′ and the hole wall of the mounting hole 131′′ gradually decreases. That is, relative to the first shaft segment 210′′, the width of the gap gradually decreases.
- the arc-shaped convex surface 211′′ on the first shaft section 210 of the driving device 20 of this embodiment only has a first arc-shaped portion.
- the position of the inflection point PP' of the arc-shaped convex surface 211" is located at an end of the arc-shaped convex surface 211" away from the second shaft segment 220".
- the position of the inflection point PP' of the arc-shaped convex surface 211" The position is just flush with the plane where the opening of one end of the mounting hole 131′′ is located close to the impeller.
- the position of PP′ at the inflection point of the arc-shaped convex surface 211′′ can also be lower than the plane where the opening of one end of the mounting hole 131′′ close to the impeller is located. PP′ is still received in the mounting hole 131′′, and the opening at one end of the mounting hole 131′′ close to the impeller is closer to the impeller than the position of PP′ at the inflection point of the arc-shaped convex surface 211′′.
- the distance H between the position of PP′ at the inflection point of the arc-shaped convex surface 211′′ and the plane where the opening of one end of the mounting hole 131′′ near the impeller is located satisfies 0.1mm ⁇ H ⁇ 0.2mm.
- the driving device of this embodiment has a similar structure to the driving device of the first embodiment, the driving device of this embodiment and the blood pump having the driving device of the second embodiment also have similar effects to the first embodiment.
- the structure of the driving device of the blood pump of the fourth embodiment is roughly the same as that of the driving device 20 of the first embodiment.
- the main differences are:
- the arc-shaped convex surface 211"' on the first shaft segment 210"' has a similar structure to the arc-shaped convex surface 211 of the first embodiment, and also has a first arc-shaped surface 212"' and a first arc-shaped surface 212"'. 212′′′ connected to the second arcuate portion 213′′′.
- the first arcuate portion 212′′′ of the arcuate convex surface 211′′′ is located in the mounting hole 131′′’, and at least part of the second arcuate portion 213′′’ is located in the mounting hole 131′′. 'outside.
- the distance H between the position of PP′ at the inflection point of the arc-shaped convex surface 211′′′ and the plane where the opening of one end of the mounting hole 131′′′ is located close to the impeller is less than or equal to 0.2mm, further 0.1mm. ⁇ H ⁇ 0.2mm.
- the driving device of this embodiment has a similar structure to the driving device of the first embodiment, the driving device of this embodiment and the blood pump having the driving device of this embodiment also have similar effects to the first embodiment.
- the structure of the driving device of the blood pump in the fifth embodiment is roughly the same as that of the driving device 20 in the first embodiment, and the main differences are:
- the first shaft section 210′′′′ has a first column portion 214 received in the housing assembly 110′′′′ and a second column connected to the first column portion 214 and located outside the housing assembly 110.
- the second column part 215 is used to be fixedly connected to the impeller, and the second column part 215 and the first column part 214 are coaxially arranged.
- the peripheral surface of the end of the second column part 215 close to the first column part 214 is the column surface 215a, and the arc-shaped convex surface 211"" is located at the end of the first column part 214 close to the second column part 215.
- the arc-shaped convex surface 211"" Connected to the cylindrical surface 215a, the connection point between the arc-shaped convex surface 211"" and the cylindrical surface 215a is the inflection point PP' of the arc-shaped convex surface 211"".
- the inflection point PP′ of the convex surface 211′′′′ is flush with the plane where the opening of one end of the mounting hole 131′′′′ close to the impeller is located.
- the diameter of one end of the second column part 215 close to the first column part 214 is equal to the diameter of the first column part 214 at the inflection point PP′ of the arc-shaped convex surface 211′′′′.
- the arc-shaped convex surface 211′′′′ still only has a first arc surface.
- the arc-shaped convex surface 211′′′′ is located at an end of the first column part 214 away from the second shaft segment 220′′′′.
- the driving device of this embodiment has a similar structure to the driving device of the first embodiment, the driving device of this embodiment and the blood pump having the driving device of this embodiment also have similar effects to the first embodiment.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种血泵(1)和驱动装置(20),驱动装置(20)包括壳体组件(100)和转轴(200),壳体组件(100)设有安装孔(131);转轴(200)包括第一轴段(210),第一轴段(210)的周向上设有弧形凸面(211),弧形凸面(211)的至少部分位于安装孔(131),弧形凸面(211)的拐点处与安装孔(131)的孔壁相对,在拐点处,弧形凸面(211)与安装孔(131)的孔壁之间的间隙最小;当第一轴段(210)与安装孔(131)的孔壁接触时,拐点处与安装孔(131)的孔壁接触。
Description
本申请要求于2022年06月10日在中国专利局提交的、申请号为202210650440.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及医疗器械技术领域,特别是涉及一种驱动装置和血泵。
血管内血泵是一种可以经由患者血管探入患者心脏的泵血装置,血管内血泵置于心脏瓣膜的开口内,以便血液能够流经血泵并进入至动脉血管内。血泵包括驱动装置和叶轮,叶轮固定在驱动装置的转轴上,通过转轴带动叶轮转动,但是,对于传统的驱动装置,其转轴通常存在较大的磨损。
发明内容
基于此,本申请提供了一种驱动装置和血泵,可以减少转轴的磨损。
本申请第一方面的实施例提供了一种驱动装置,用于驱动叶轮转动,所述驱动装置包括:
壳体组件,设有安装孔;及
转轴,包括用于与所述叶轮固定连接、且能够转动地穿设于所述安装孔的第一轴段,所述第一轴段的周向上设有弧形凸面,所述弧形凸面的至少部分位于所述安装孔,所述弧形凸面的拐点处与所述安装孔的孔壁相对,且在所述弧形凸面的拐点处,所述弧形凸面与所述安装孔的孔壁之间的间隙最小;当所述第一轴段与所述安装孔的孔壁接触时,所述弧形凸面的拐点处与所述安装孔的孔壁接触。
本申请第二方面的实施例提供了一种血泵,包括叶轮和驱动装置,所述驱动装置包括:
壳体组件,设有安装孔;及
转轴,包括用于与所述叶轮固定连接、且能够转动地穿设于所述安装孔的第一轴段,所述第一轴段的周向上设有弧形凸面,所述弧形凸面的至少部分位于所述安装孔,所述弧形凸面的拐点处与所述安装孔的孔壁相对,且在所述弧形凸面的拐点处,所述弧形凸面与所述安装孔的孔壁之间的间隙最小;当所述第一轴段与所述安装孔的孔壁接触时,所述弧形凸面的拐点处与所述安装孔的孔壁接触;
其中,所述叶轮固接于所述第一轴段,所述叶轮能够随所述转轴转动。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为第一实施例的血泵的立体结构示意图;
图2为图1所示的血泵省略了部分套管组件的分解结构示意图;
图3为图1所示血泵的省略了部分套管组件的剖视图;
图4为图1所示血泵的第一轴套的结构示意图;
图5为图1所示血泵的第二轴套的结构示意图;
图6为图1所示血泵中第一轴套和第二轴套装配后的剖视结构示意图;
图7为图1所示血泵的轴管的结构示意图;
图8为图1所示血泵的第一轴套、第二轴套和转轴装配后的剖视图;
图9为图8的A处局部结构示意图;
图10为图1所示的血泵的转子的结构示意图;
图11为图10所示的转子的剖视图;
图12为图10所示的转子的分解图;
图13为第二实施例的血泵的驱动装置的局部剖视图;
图14为第三实施例的血泵的驱动装置的局部示意图;
图15为第四实施例的血泵的驱动装置的局部示意图;
图16为第五实施例的血泵的驱动装置的局部示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图即实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请的技术方案,下面结合具体附图及实施例来进行说明。
在本文中,定义“近端”为靠近操作者的一端;定义“远端”为远离操作者的一端。
参阅图1和图2,本发明第一实施例的血泵1包括驱动装置20、套管组件30、叶轮41和导管42。套管组件30与驱动装置20的远端连接,导管42与驱动装置20的近端连接,叶轮41能够转动地设置在套管组件30内,叶轮41与驱动装置20连接,驱动装置20能够驱动叶轮41转动,以实现血泵1的泵血功能。
具体地,套管组件30具有入口301和出口302。其中,出口302较入口301更靠近驱动装置20。即出口302位于套管组件30的近端,入口301位于套管组件30的远端。在其中一个实施例中,套管组件30延伸穿过心脏瓣膜,诸如主动脉瓣膜,而入口301位于心脏内,出口302和驱动装置20位于心脏外的诸如主动脉的血管中。当叶轮41旋转时,血液从入口301流入套管组件30中,再从出口302流出套管组件30以进入至主动脉等血管中。
在一些实施例中,套管组件30包括插管31和出口管32,插管31和出口管32两者固接,出口管32连接在插管31和驱动装置20之间,即出口管32的远端与插管31的近端连接,出口管32的近端与驱动装置20连接。入口301开设于插管31,出口302开设于出口管32上。叶轮41收容于出口管32;叶轮41的位置大致与出口302的位置相对应。
导管42与驱动装置20的远离套管组件30的一端对接。导管42用于容置各种供应管线,供应管线例如可以为用于给驱动装置20内通入清洗液的清洗管线,又例如给驱动装置20供电的导线,再例如用于支撑导管42的支撑部件等。
请一并结合图3,在一些实施例中,驱动装置20包括壳体组件100、转轴200、定子330和转子340。其中,壳体组件100具有安装孔131,转轴200能够转动地穿设于安装孔131;叶轮41与转轴200固接;定子330和转子340均收容于壳体组件100;转子340与
转轴200固接;定子330能够驱动转子340转动,转子340能够带动转轴200旋转,叶轮41能够随转轴200转动以实现血泵1的泵血功能。其中,导管42中的导线延伸至壳体组件100内而与定子330电连接以给定子330供电。
在图示的实施例中,壳体组件100包括泵壳110、轴管120、第一轴套130和第二轴套140。其中,泵壳110、轴管120、第一轴套130和第二轴套140在装配之前为分体式,即壳体组件100为分体式的泵壳110、轴管120、第一轴套130和第二轴套140组装而成。
泵壳110为横截面大致为圆形的筒状结构。泵壳110具有容置腔112,定子330和转子340均收容于泵壳110的容置腔112内。
轴管120的一端与泵壳110固接,另一端与套管组件30(具体为出口管32)固接。轴管120具有安装口121,安装口121位于轴管120的靠近套管组件30的一端。
第一轴套130和第二轴套140固定地收容于轴管120内。第一轴套130和第二轴套140均与轴管120固接。其中,第一轴套130和第二轴套140沿轴管120的轴向设置,第一轴套130相对第二轴套140更靠近叶轮41设置。其中,安装孔131开设于第一轴套130上。转轴200能够转动地穿设于第一轴套130和第二轴套140。具体地,第一轴套130和第二轴套140为分体式;第一轴套130和第二轴套140均能够从轴管120的安装口121装入,即第一轴套130和第二轴套140的最大外径均略小于安装口121的口径。
具体地,轴管120靠近泵壳110的一端设置有承载凸起122,第二轴套140与承载凸起122相抵接;第一轴套130与第二轴套140抵接,使得承载凸起122在泵壳110的轴向上对第一轴套130和第二轴套140起到限位作用,以方便第一轴套130和第二轴套140的装配。在其中一个实施例中,承载凸起122大致呈环状。轴管120上还开设有注胶孔123,注胶孔123内填充有粘结胶,粘结胶将第一轴套130和第二轴套140固定地粘结于轴管120,并将第一轴套130和第二轴套140固接。
参阅图3、图4、图5和图6,第一轴套130开设有限位孔132,限位孔132的孔径大于安装孔131的孔径。其中,安装孔131相对限位孔132更靠近叶轮41。限位孔132和安装孔131两者同轴设置且相互连通,使得限位孔132和安装孔131共同形成一个台阶孔。第一轴套130具有第一限位面133,第一限位面133界定限位孔132的部分边界。第一限位面133可以垂直于转轴200的轴向设置,也可以相对于转轴200的轴向倾斜设置。
第二轴套140包括粗段141和细段142,细段142的横截面尺寸小于粗段141的横截面尺寸,粗段141具有抵接面1411。在图示的实施例中,细段142和粗段141的外轮廓均为圆形,那么,细段142的横截面尺寸小于粗段141的横截面尺寸即为细段142的外径小于粗段141的外径。细段142凸设于抵接面1411上。第二轴套140具有贯穿孔143,贯穿孔143从细段142的远离抵接面1411的一端的端面延伸至粗段141的远离抵接面1411的一侧,以使贯穿孔143贯穿于粗段141和细段142。限位孔132的孔径大于贯穿孔143的孔径。其中,细段142收容于限位孔132,且抵接面1411与第一轴套130抵接。通过抵接面1411的限位作用以及细段142的导向作用,可以提高安装精度和安装效率。粗段141的远离抵接面1411的一侧与承载凸起122抵接。细段142的远离抵接面1411的一端的端面为第二限位面144,第二限位面144与第一限位面133间隔且相对,使得第一限位面133和第二限位面144沿转轴200的轴向间隔设置。第二限位面144可以垂直转轴200的轴向设置,也可以相对转轴200的轴向倾斜。在图示的实施例中,第一限位面133和第二限位面144均垂直于转轴200的轴向,且第一限位面133和第二限位面144平行且相对。
其中,限位孔132的孔壁132a、第一限位面133和第二限位面144共同围设出一限位腔150,该安装孔131和贯穿孔143均与该限位腔150连通。换而言之,该限位腔150实际为限位孔132的一部分,第一限位面133和第二限位面144为限位腔150在转轴200的轴向上的两个腔壁面。
转轴200穿设于安装孔131、限位腔150和贯穿孔143,转轴200的一端收容于泵壳110,另一端延伸至套管组件30内、并与叶轮41固接。其中,转轴200和安装孔131的孔
壁之间、转轴200与限位腔150的腔壁之间、转轴200与贯穿孔143的孔壁之间均具有供清洗液流通的间隙。清洗液能够从泵壳110流经转轴200与贯穿孔143的孔壁之间的间隙、转轴200与限位腔150的腔壁之间的间隙、以及转轴200和安装孔131的之间的间隙而进入套管组件30中,并从出口302中流出。图8中虚线箭头代表清洗液的流动方向,清洗液的流动方向与血液在套管组件30中的流动方向相反,如此可以防止套管组件30中的血液通过安装孔131进入至驱动装置20内;另外,清洗液还起到润滑的作用,清洗液能够减小转轴200与第一轴套130、第二轴套140之间的摩擦阻力,减少转轴200和第一轴套130、第二轴套140之间的磨损。
需要说明的是,壳体组件100不限于为上述方式,在一些实施例中,泵壳110、轴管120、第一轴套130和第二轴套140中的两个以上可以为一体结构;例如,泵壳110和轴管120可以为一体成型;例如,第一轴套130和第二轴套140中的一个可以与轴管120一体成型;例如,第一轴套130可以为盘状环结构;例如,第一轴套130由两个分体的管状环和盘状环构成;例如,第二轴套140也可以仅具有粗段141。
请一并参阅图3、图7、图8和图9,在一些实施例中,转轴200包括依次连接的第一轴段210、第二轴段220、第三轴段230和第四轴段240。其中,第一轴段210、第二轴段220、第三轴段230和第四轴段240的轴线重合。第一轴段210能够转动地穿设于安装孔131,第一轴段210与叶轮41固接。第二轴段220能够转动地收容于限位腔150中。第三轴段230能够转动地穿设于贯穿孔143;第四轴段240收容于泵壳110的容置腔112内。第四轴段240与转子340固接。
第一轴段210的部分收容于壳体组件100,部分延伸至套管组件30中而与叶轮41固接。其中,第一轴段210的周向上设有弧形凸面211。具体地,弧形凸面211朝远离第一轴段210的轴线的方向径向凸出(径向即为垂直于第一轴段210的轴线的方向)。弧形凸面211的至少部分位于安装孔131,弧形凸面211的拐点处与安装孔131的孔壁相对;且在弧形凸面211的拐点处,弧形凸面211与安装孔131的孔壁之间的间隙最小。当第一轴段210与安装孔131的孔壁接触时,弧形凸面211的拐点处与安装孔131的孔壁接触。由于转轴200在转动过程中会有一定的径向晃动,在转轴200晃动时,第一轴段210会与安装孔131的孔壁接触,第一轴段210与安装孔131的孔壁的接触面积越大,第一轴段210的磨损就会越大,而上述转轴200通过在第一轴段210的周向上设置弧形凸面211,以使当第一轴段210与安装孔131的孔壁接触时,仅弧形凸面211的拐点处与安装孔131的孔壁接触,以形成点面接触的方式,而减少第一轴段210与安装孔131的孔壁的接触面积,减少转轴200的磨损。
需要说明的是,本申请的弧形凸面211的拐点处指的是弧形凸面211的相对第一轴段210的轴线OO'距离最大处,也即为弧形凸面211的最凸处。例如在图示的实施例中,弧形凸面211的拐点处即为线PP′处。由于第一轴段210、第二轴段220、第三轴段230和第四轴段240的轴线重合,因此,第一轴段210的轴线OO'即为转轴200的轴线,也为第二轴段220、第三轴段230和第四轴段240的轴线。
具体地,弧形凸面211环绕第一轴段210的轴线OO'设置一周,该方式的弧形凸起211能够方便转轴200的制造生产。在图示的实施例中,弧形凸面211环绕第一轴段210的轴线连续设置一周。可以理解,在其它实施例中,还可以在第一轴段210的轴向上设置多个间隔的弧形凸面211。
在一些实施例中,弧形凸面211的拐点处(线PP′)到安装孔131的孔壁之间的间隙的宽度小于或等于2μm。由于最小的红血球(直径约为8μm,厚度约为2μm)难以进入宽度小于或等于2μm的间隙,加之反向冲洗的清洗液经过此间隙,阻止了血液进入此间隙。
具体地,定义沿第一轴段210的轴向,弧形凸面211的拐点处(线PP′)到安装孔131的靠近叶轮41的一端的开口所在的平面的间距为H,H的取值范围为H≤0.2mm。在图示的实施例中,安装孔131的靠近叶轮41的一端的开口所在的平面垂直于第一轴段210的轴
向,或者说垂直于第一轴段210的轴线OO'。进一步地,0.1mm≤H≤0.2mm,弧形凸面211的拐点处(线PP′)位于安装孔131内,并略低于安装孔131的靠近叶轮41的一端的开口,一方面使安装孔131的孔壁对转轴200形成更好的支撑效果,使转轴200在与安装孔131的孔壁接触时,仅弧形凸面211的拐点处(线PP′)与安装孔131的孔壁接触,另一方面保证清洗液的冲洗力度。
具体地,弧形凸面211具有第一弧面部212和与第一弧面部212连接的第二弧面部213,第一弧面部212与第二弧面部213沿第一轴段210的轴向设置,第一弧面部212与第二弧面部213的连接处为弧形凸面211的拐点处(线PP′);沿第一轴段210的轴向且朝靠近叶轮41的方向,第一弧面部212到第一轴段210的轴线OO'的距离逐渐增大,第二弧面部213到第一轴段210的轴线OO'的距离逐渐减小。在图示的实施例中,弧形凸面211全部位于安装孔131内;沿第一轴段210的轴线OO'且朝靠近叶轮41的方向,第一弧面部212与安装孔131的孔壁之间的间隙的宽度逐渐减小,第二弧面部213与安装孔131的孔壁之间的间隙的宽度逐渐增大,在第一弧面部212与第二弧面部213的连接处,也即在线PP′处,弧形凸面211与安装孔131的孔壁的之间的间隙的宽度最小。
在一些实施例中,为了防止血液中的红血球进入第一轴段210和安装孔131的孔壁之间,安装孔131的靠近叶轮41的一端的开口处的孔壁与第一轴段210的之间的间隙的宽度小于或等于2μm,那么,弧形凸面211的拐点处(线PP′)与安装孔131的孔壁之间的间隙的宽度小于2μm,即比安装孔131的靠近叶轮41的一端的开口处的孔壁与第一轴段210之间的间隙的宽度还要小。
可以理解,弧形凸面211的拐点处与安装孔131的孔壁之间的间隙的宽度、以及安装孔131的靠近叶轮41的一端的开口处的孔壁与第一轴段210之间的间隙的宽度还可以根据需要和设计进行调整。
为了便于清洗液从限位腔150进入安装孔131内,安装孔131具有连通的第一孔部131a和第二孔部131b,第一孔部131a的孔径恒定,沿靠近第一孔部131a的方向,第二孔部131b的孔径逐渐减小,第一轴段210穿设于第一孔部131a和第二孔部131b,弧形凸面211的拐点处(线PP′)与第一孔部131a的孔壁相对,当第一轴段210与安装孔131的孔壁接触时,弧形凸面211的拐点处(线PP′)与第一孔部131a的孔壁接触。即第二孔部131b的靠近限位腔150的一端的孔径大于第一孔部131a的孔径,孔径恒定的第一孔部131a能够更好地对转轴200进行支撑,减少转轴200的晃动弧度,孔径按照上述方式变化的第二孔部131b能够起到对清洗液的导流作用,以便于清洗液进入安装孔131内。
在一些实施例中,贯穿孔143的靠近限位腔150的一端的孔壁形成有内倒角,有利于减少转轴200与第二轴套140之间的接触面积,减少转轴200的磨损。
第二轴段220与第一轴段210的远离叶轮41的一端固接。第二轴段220能够转动地收容于限位腔150中,换而言之,第二轴段220的横截面尺寸小于限位腔150的横截面尺寸。第二轴段220的横截面的直径大于安装孔131的孔径和贯穿孔143的孔径,以使得第二轴段220被限定在限位腔150中,如此,使得第二轴段220不会进入至贯穿孔143和安装孔131中,第二轴段220位于第一限位面133和第二限位面144之间,从而在转轴200的轴向上对转轴200进行限位。
具体地,第二轴段220能够与第一限位面133和第二限位面144抵接,防止转轴200产生轴向移动或限定其轴向移动距离。在一些实施例中,第二轴段220始终与第一限位面133和第二限位面144滑动抵接;在另一些实施例中,第一限位面133和第二限位面144之间的间距略大于第二轴段220的轴向长度,以使转轴200在旋转过程中,第二轴段220在第一限位面133和第二限位面144之间具有一定的浮动空间,以供清洗液流动。第二轴段220与限位腔150的沿轴线OO'延伸的腔壁之间形成供清洗液流通的过流间隙151。
请再次参阅图4、图5及图6,进一步地,第一限位面133的局部凹陷形成有第一导流槽1331,第一导流槽1331从安装孔131的孔壁1311向限位孔132的孔壁132a延伸,使得
该第一导流槽1331连通安装孔131和限位孔132。鉴于限位腔150为限位孔132的一部分,第一导流槽1331也连通该限位腔150。第二限位面144的局部凹陷形成有第二导流槽1441,第二导流槽1441从贯穿孔143的孔壁1311延伸至细段142的外周面,第二导流槽1441连通贯穿孔143和限位腔150。其中,由于过流间隙151实际为限位腔150的一部分,因此,过流间隙151同时连通第一导流槽1331和第二导流槽1441。通过设置第一导流槽1331和第二导流槽1441有利于清洗液的流通。
需要说明的是,在一些实施例中,也可以仅设置第一导流槽1331和第二导流槽1441中的一个,或者不设置第一导流槽1331和第二导流槽1441。
在一些实施例中,第二轴段220的轴向上的两端部设置有倒角222,如此一方面减少转轴200跟第一限位面133及/或第二限位面144的接触面积,进一步减少转轴200跟第一轴套130和第二轴套140的接触面积,以进一步减少转轴200的磨损。另一方面避免第二轴段220跟第一轴套130和第二轴套140接触的尖锐棱边对第一轴套130和第二轴套140构成磨损,且也可以形成对清洗液的导流作用。
第三轴段230能够转动地穿设在贯穿孔143。其中,第三轴段230与贯穿孔143的孔壁之间具有供清洗液流通的间隙。
第四轴段240与第三轴段230的远离第二轴段220的一端连接,第四轴段240收容于容置腔112内。第四轴段240的横截面尺寸比第三轴段230的横截面尺寸小。转子340与第四轴段240固接。第四轴段240至少部分收容于定子330。
具体地,转轴200、第一轴套130和第二轴套140可以采用陶瓷材料制成,如此可以提高转轴200、第一轴套130和第二轴套140的耐磨性,进一步防止转轴200、第一轴套130和第二轴套140产生磨损。
请再次结合图3,定子330包括第一定子单元332和第二定子单元333,第一定子单元332和第二定子单元333均能够驱动转子340转动。具体地,第一定子单元332和第二定子单元333沿转轴200的延伸方向间隔设置。第一定子单元332和第二定子单元333均与壳体组件100固接。转轴200的第四轴段240能够转动地穿设于第一定子单元332。即转子340相对壳体组件100是可转动的,而第一定子单元332和第二定子单元333相对于壳体组件100是不可转动的。
其中,第一定子单元332和第二定子单元333可以并联,也可以串联。在一些实施例中,第一定子单元332和第二定子单元333能够同步驱动转子340转动。第一定子单元332和第二定子单元333能够共同驱动转子340转动,也可以单独驱动转子340转动。
在一些实施例中,转子340具有磁性,定子330能够产生驱动转子340转动的旋转磁场。具体地,第一定子单元332和第二定子单元333均能够产生驱动转子340转动的旋转磁场。
具体地,第一定子单元332包括第一磁芯3321、第一线圈3322和第一背板3323。第一背板3323固接于壳体组件100,在图示的实施例中,第一背板3323固接于轴管120。第一磁芯3321为多个,多个第一磁芯3321沿一圆周间隔设置。具体地,每个第一磁芯3321的延伸方向均与转轴200的延伸方向一致。每个第一磁芯3321与第一背板3323固接。第一线圈3322缠绕于第一磁芯3321。其中,一个第一线圈3322与一个第一磁芯3321构成一个线圈绕组。那么,第一定子单元332的多个线圈绕组环绕第四轴段240设置。
第二定子单元333的结构与第一定子单元332的结构类似。第二定子单元333包括第二磁芯3331、第二线圈3332和第二背板3333。第二背板3333固接于壳体组件100。第二磁芯3331为多个,多个第二磁芯3331沿一圆周间隔设置。具体地,每个第二磁芯3331的延伸方向均与第四轴段240的轴线(即轴线OO')平行。每个第二磁芯3331与第二背板3333固接。第二线圈3332缠绕于第二磁芯3331。其中,一个第二线圈3332与一个第二磁芯3331构成一个线圈绕组。那么,第二定子单元333的多个线圈绕组环绕第四轴段240的轴线(即OO')设置。
在一些实施例中,第一磁芯3321和第二磁芯3331均包括磁柱和设置在磁柱的一端的头部(即极靴),磁柱的延伸方向与转轴的延伸方向一致。第一背板3323与第一磁芯3321的磁柱的远离头部的一端接合;第二背板3333与第二磁芯3331的磁柱的远离头部的一端结合。其中,在磁柱的延伸方向上,磁柱大致呈尺寸均匀的柱状体,即磁柱3331的横截面尺寸保持恒定,通俗而言,磁柱3331粗细均匀。第一线圈3322缠绕于第一磁芯3321的磁柱上,第二线圈3332缠绕于第二磁芯3331的磁柱上。
请结合图3,而在图示的实施例中,第一磁芯3321和第二磁芯3331均仅包括磁柱,即第一磁芯3321和第二磁芯3331均没有横截面宽度较大的头部(即极靴),那么,第一定子单元332的磁柱即为第一磁芯3321,第二定子单元333的磁柱即为第二磁芯3331。此时,整个第一磁芯3321均能够与转子340进行磁耦合,整个第二磁芯3331均能够与转子340进行磁耦合,相较于具有极靴的磁芯,仅具有磁柱的磁芯一方面能够减少磁损耗,增加磁芯和转子340之间的磁耦合密度,以在相同电流的情况下增大定子单元对转子340的扭矩。另一方面,没有头部的磁芯还能够大大降低相邻磁芯之间因接触而产生的局部磁短路造成的驱动装置20功率下降的问题。
可以理解,第一磁芯3321和第二磁芯3331不限于上述两种方式,在一些实施例中,还可以是第一磁芯3321和第二磁芯3331中的一个同时具有磁柱和头部,另一个仅具有磁柱。
在一些实施例中,第一磁芯3321和第二磁芯3331的磁柱的横截面的形状大致为三棱柱状,每个磁柱的一个棱边朝向转轴的轴线。在一些实施例中,磁柱的棱边均做了倒圆处理,即磁柱的棱边为相对圆滑和钝化的倒圆棱,从而以消除磁柱上的尖锐棱角,不仅能够方便后续线圈的缠绕,同时有利于保护线圈上包覆的绝缘材料。在另一些实施例中,第一磁芯3321和第二磁芯3331的磁柱的横截面的形状还可以为扇形、圆形、梯形、扇环形等等。
在图示的实施例中,沿第四轴段240的轴线(也即沿轴线OO'),转轴200与第二定子单元333间隔,即第四轴段240的远离第三轴段230的一端与第二定子单元333间隔,也即,转轴200的第四轴段240未穿入第二定子单元333内。其中,第二定子单元333的磁柱的横截面尺寸大于第一定子单元332的磁柱的横截面尺寸。
磁柱的横截面积越大,所产生的磁通量就越大,定子单元对转子340的扭矩就越大,所需电流越小,有利于降低功耗,减少发热。在第一定子单元332和第二定子单元333的横截面尺寸相同、且壳体组件100的外径保持不变的情况下,鉴于转轴200位于第二定子单元333之外,第二定子单元333中并未穿设有转轴200,可以通过不增加泵壳110外径的方式合理增大第二定子单元333的磁柱的横截面尺寸,如此可以增大第二定子单元333对转子340的驱动扭矩,在所需扭矩相同的情况下,此方式可以合理减少对定子330的电流供应,从而降低了功耗,同时还减少驱动装置20的发热量,避免血泵1在工作过程中因热量聚集而产生温度过高而对人体造成不适甚至是伤害。
需要说明的是,在其它实施例中,转轴200也可以穿入至第二定子单元333内,此时,第一定子单元332和第二定子单元333的磁柱的横截面尺寸相同。
第一背板3323和第二背板3333大致呈平板状结构。第一背板3323和第二背板3333采用与第一磁芯3321和第二磁芯3331相同的材料制成,例如钴钢等软磁性材料制成。
背板能够起到闭合定子单元的磁路的作用,以促进和增加定子单元磁通量的产生,提高每个定子单元和转子340之间耦合能力。换而言之,第一定子单元332中设置第一背板3323能够促进和增加第一定子单元332磁通量的产生,提高第一定子单元332和转子340之间的耦合能力;第二定子单元333中设置第二背板3333能够促进和增加第二定子单元333磁通量的产生,提高第二定子单元333和转子340之间的耦合能力。由于背板能够增加磁通量,因此,在第一定子单元332和第二定子单元333中分别设置背板还有利于减小驱动装置20的整体直径。
具体地,驱动装置20还包括定位件360,定位件360固接于泵壳110内,,定位件360具有定位柱364,第二定子单元333的第二背板3333设有定位孔3334,定位柱364穿设于定位孔3334。如此可以使得定位件360发挥对第二定子单元333的定位功能,提高第二定子单元333的安装精度和安装效率。具体地,定位柱364的中心轴线与第二定子单元333的中心轴线相互重合。在一些实施例中,定位件360上还开设有贯通孔365,贯通孔365可以用于与向驱动装置20内通入清洗液的清洗管线连通或者用于安装清洗管线。
需要说明的是,在一些实施例中,第一定子单元332也可以不具有第一背板3323,第二定子单元333也可以不具有第二背板3333,或者,第一定子单元332和第二定子单元333中的其中一个具有背板,另一个不具有背板。若第二定子单元333不具有第二背板3333,可以直接在定位件360上开设多个定位孔,多个第二磁芯3331的一端分别定位于多个定位孔。
在一些实施例中,定位件360可以省略,此时,可以在泵壳110内设置用于与第二背板3333的边缘卡合的卡位,以通过卡位与第二背板3333相卡合而实现第二定子单元333的固定;或者第二定子单元333通过粘结剂与泵壳110粘结固定。第一定子单元332可以通过粘结剂与轴管120粘结固定,也可以通过在泵壳110内设置相应的卡位与第一背板3323卡合,实现第一定子单元332的固定。
请一并结合图3和图10-图12,转子340收容于泵壳110的容置腔112中。在图示的实施例中,沿轴线OO',转子340位于第一定子单元333和第二定子单元334之间。具体地,转子340包括第一磁体342和第二磁体343,第一磁体342和第二磁体343均固接于第四轴段240,第一磁体342和第二磁体343均位于第一定子单元332和第二定子单元333之间,即沿轴线OO',第一定子单元332、第一磁体342、第二磁体343以及第二定子单元333依次排列。其中,第一定子单元332能够产生驱动第一磁体342转动的旋转磁场,第二定子单元333能够产生驱动第二磁体343转动的旋转磁场。两个定子单元分别通过两个磁体对转子340提供扭矩,可以增大对转子340转动的驱动力。
具体地,转子340还包括飞轮344,飞轮344与转轴200的第四轴段240固接,飞轮344位于第一定子单元332和第二定子单元333之间,第一磁体342和第二磁体343均固接于飞轮344。更具体地,飞轮344固接于第四轴段240的远离第三轴段230的一端。
通过设置飞轮344可以增强第一磁体342和第二磁体343与第四轴段240的连接强度;另外,通过将第一磁体342和第二磁体343均设置在同一个飞轮344上,能够减少第四轴段240在转动过程中的晃动,使第四轴段240在转动过程中更加稳定。
在图示的实施例中,飞轮344包括内置管3442、盘状部3444和外环壁3446。内置管3442和外环壁3446两者均为圆管状结构,盘状部3444为环形圆盘结构。内置管3442和外环壁3446均与盘状部3444固接。外环壁3446环绕盘状部3444设置,内置管3442和外环壁3446两者同轴设置,第四轴段240穿设于内置管3442中、并与内置管3442固定连接。内置管3442和外环壁3446之间形成有容置空间,盘状部3444将该容置空间分隔为两个安装腔3448。两个安装腔3448均为环形腔。第一磁体342和第二磁体343分别容置在两个安装腔3448中。第一磁体342和第二磁体343均为环形,两个安装腔3448的形状分别与第一磁体342和第二磁体343相适配,以方便第一磁体342和第二磁体343安装和定位。如此设置能够使飞轮344对第一磁体342和第二磁体343起到限位作用,不仅方便第一磁体342和第二磁体343的安装,而且也使得第一磁体342和第二磁体343和飞轮344结合更加稳固。
需要说明的是,飞轮344不限于为上述结构,在一些实施例中,飞轮344不具有外环壁3446;在一些实施例中,飞轮344不具有外环壁3446和内置管3442,此时,第四轴段240固定地穿设于盘状部3444,例如,盘状部3444的中心。相对于仅具有盘状部3444的飞轮344,设置内置管3442能够使飞轮344与第四轴段240更加稳定地连接。
在一些实施例中,第一磁体342和第二磁体343均为环状的海尔贝克阵列磁铁。具体
地,第一磁体342和第二磁体343均包括多个磁性体,例如磁性体的数量为四个、六个、八个或十个等,每个磁性体呈扇环形,第一磁体的多个磁性体环绕第四轴段240设置一周以形成环形结构,第二磁体343的多个磁性体环绕转子340设置一周以形成环形结构。
更具体地,第一磁体342具有沿第一磁体342的轴向充磁的第一磁性体3422,第二磁体343具有沿第二磁体343的轴向充磁的第二磁性体3432,第一磁性体3422和第二磁性体3432分别设置在盘状部3444的相背离的两侧,且第一磁性体3422和第二磁性体3432的位置相对应;在转子340的延伸方向上,第一磁性体3422和第二磁性体3432的朝向盘状部3444的一侧的极性相反。如此设置可以方便第一磁体342和第二磁体343的安装,避免第一磁体342和第二磁体343的位于盘状部3444的位置相对应的第一磁性体3422和第二磁性体3432相互排斥而造成装配困难的问题。举例而言,第一磁性体3422朝向盘状部3444的一侧的极性为N极,则第二磁性体3432朝向盘状部3444的一侧的极性为S极,根据N极和S极相互吸引的原理,从而消除磁性斥力的干扰,提高第一磁体342和第二磁体343的安装效率。
为了方便第一磁体342和第二磁体343的安装,提高第一磁体342和第二磁体343的安装精度,飞轮344上还设有用于确定第一磁性体3422的安装位置和第二磁性体4332的安装位置的标识部345。标识部345可以设置为槽、刻度线或者是标识等。在安装第一磁体342和第二磁体343时,只要使用标识部445分别标识出第一磁体342和第二磁体343的其中一个磁性体的位置,就可以确定剩余磁性体的安装位置,从而方便第一磁体342和第二磁体343的安装。具体地,标识部345设置在内置管3442、盘状部3444及外环壁3446中的至少一个上。具体在图示的实施例中,内置管3442的两端的端面上均设于标识部345。
上述驱动装置和血泵至少具有如下优点:
(1)由于转轴200在转动过程中会有一定的径向晃动,在转轴200晃动时,转轴200会与安装孔131的孔壁接触,转轴200与安装孔131的孔壁的接触面积越大,转轴200的磨损就会越大,而上述驱动装置20的转轴200的第一轴段210的周向上设有弧形凸面211,且在弧形凸面211的拐点PP'处,弧形凸面211与安装孔131的孔壁之间的间隙最小,使得当第一轴段210与壳体组件100的安装孔131的孔壁接触时,弧形凸面211的拐点PP'处与安装孔131的孔壁接触,以形成点面接触的方式,而减少第一轴段210与安装孔131的孔壁的接触面积,减少转轴200的磨损。
(2)采用上述结构的分体式的壳体组件100,即分体的泵壳110、轴管120、第一轴套130和第二轴套140组装成壳体组件100,并使轴管120的安装口121的最大外径均略小于安装孔121的孔径,能够方便驱动装置20的装配,例如,使得第一轴套130、第二轴套140和转轴200能够从一个方向组装,能够简化驱动装置20的装配,提高生产效率。
(3)鉴于转轴200的第四轴段240穿设在定子330中,且第四轴段240的横截面尺寸小于第三轴段230的横截面尺寸,如此在保证整个转轴200结构强度的基础上,可以减少第四轴段240在定子330径向上的占用空间,在保证定子330和泵壳110外径不变的情况下,可以合理增大定子330内磁柱的横截面尺寸,通俗而言,可以合理对磁柱进行加粗设计。磁柱的横截面尺寸越大,所产生的磁通量就越大,定子330对转子340的扭矩就越大,所需电流越小,有利于降低功耗,减少发热,避免血泵1在工作过程中因热量聚集而产生温度过高而对人体造成不适甚至伤害。而使第三轴段230的横截面尺寸较大,能够使转轴200在贯穿孔143处具有较大的结构强度。
(4)而上述驱动装置20的转轴200在轴向上与第二定子单元333间隔,可以通过不增加泵壳110外径的方式合理增大第二定子单元333的磁柱的横截面尺寸,如此可以增大第二定子单元333对转子340的驱动扭矩,在所需扭矩相同的情况下,此方式可以合理减少对定子330的电流供应,从而降低功耗,同时减少驱动装置20的发热量。
可以理解,驱动装置20的结构不限于为方式,在一些实施例中,转轴200的第四轴段240也穿设于第二定子单元333;在另一个实施例中,定子330还可以仅具有一个定子单元,
可以仅具有第一定子单元332,也可以仅具有第二定子单元333。
参阅图13,第二实施例的血泵的驱动装置与第一实施例的驱动装置20的结构大致相同,区别主要在于:
本实施例的安装孔131′的孔壁上设有与弧形凸面211′相对的弧形的凹面部131c,凹面部131c的弯曲弧度小于弧形凸面211′的弯曲弧度,当第一轴段210′与安装孔131′的孔壁接触时,仍然是弧形凸面211′的拐点处(线PP′)与凹面部131c接触,以形成点面接触的方式。
在图示的实施例中,凹面部131c的位置与弧形凸面211′的第二弧面部213′位置相对;凹面部131c的弯曲弧度小于第二弧面部213′的弯曲弧度。安装孔131′的孔壁还包括第一内壁131d,第一内壁131d与第一弧面部212′的位置相对,第一内壁131d为与沿第一轴段210′的轴线平行延伸的直壁,第一内壁131d也可以为相对第一轴段210′的轴线倾斜的斜壁,或者第一内壁131d也可以为弧形凹壁;当与第一弧面部212′的位置相对的安装孔131′的孔壁即第一内壁131d为弧形凹壁时,与第一弧面部212′的位置相对的安装孔131′的孔壁的弯曲弧度可以与凹面部131c的弯曲弧度相同,也可以不同。其中,第一弧面部212′较第二弧面部213′更靠近转轴的第二轴段220′。
由于本实施例的驱动装置具有与第一实施例的驱动装置相似的结构,因此,本实施例的驱动装置及具有第二实施例的驱动装置的血泵也具有第一实施例相似的效果。
参阅图14,第三实施例的血泵的驱动装置与第一实施例的驱动装置20的结构大致相同,区别主要在于:
本实施例中,沿第一轴段210″的轴向且朝靠近叶轮的方向,弧形凸面211″与安装孔131″的孔壁之间的间隙的宽度逐渐减小。即相对于第一实施例的驱动装置20的第一轴段210上的弧形凸面211,本实施例的弧形凸面211″仅具有第一弧面部。此时,弧形凸面211″的拐点处PP′的位置位于弧形凸面211″的远离第二轴段220″的一端。在图示的实施例中,弧形凸面211″的拐点处PP′的位置正好与安装孔131″的靠近叶轮的一端的开口所在的平面平齐。
需要说明的是,在一些实施例中,弧形凸面211″的拐点处PP′的位置还可以较安装孔131″的靠近叶轮的一端的开口所在的平面低些,弧形凸面211″的拐点处PP′仍然收容于安装孔131″内,而安装孔131″的靠近叶轮的一端的开口较弧形凸面211″的拐点处PP′的位置更靠近叶轮。即类似于图9所示,弧形凸面211″的拐点处PP′的位置与安装孔131″的靠近叶轮的一端的开口所在的平面的距离H满足0.1mm≤H≤0.2mm。
由于本实施例的驱动装置具有与第一实施例的驱动装置相似的结构,因此,本实施例的驱动装置及具有第二实施例的驱动装置的血泵也具有第一实施例相似的效果。
参阅图15,第四实施例的血泵的驱动装置与第一实施例的驱动装置20的结构大致相同,区别主要在于:
本实施例中,第一轴段210″′上的弧形凸面211″′具有与第一实施方式的弧形凸面211相似的结构,也具有第一弧面部212″′和与第一弧面部212″′连接的第二弧面部213″′。弧形凸面211″′的第一弧面部212″′位于安装孔131″′内,第二弧面部213″′的至少部分位于安装孔131″′外。弧形凸面211″′的拐点处PP′的位置与安装孔131″′的靠近叶轮的一端的开口所在的平面的距离H(类似于图9所示)小于或等于0.2mm,进一步为0.1mm≤H≤0.2mm。
由于本实施例的驱动装置具有与第一实施例的驱动装置相似的结构,因此,本实施例的驱动装置及具有本实施例的驱动装置的血泵也具有第一实施例相似的效果。
参阅图16,第五实施例的血泵的驱动装置与第一实施例的驱动装置20的结构大致相同,区别主要在于:
在图示的实施例中,第一轴段210″″具有收容于壳体组件110″″的第一柱部214和与第一柱部214连接、且位于壳体组件110外的第二柱部215,第二柱部215用于与叶轮固接,第二柱部215与第一柱部214共轴设置。第二柱部215的靠近第一柱部214的一端的周面为柱面215a,弧形凸面211″″位于第一柱部214的靠近第二柱部215的一端,弧形凸面211″″与柱面215a连接,弧形凸面211″″与柱面215a的连接处为弧形凸面211″″的拐点处PP′,弧
形凸面211″″的拐点处PP′与安装孔131″″的靠近叶轮的一端的开口所在的平面平齐。具体而言,第二柱部215的靠近第一柱部214的一端的直径等于第一柱部214在弧形凸面211″″的拐点处PP′的直径。即在本实施例中,弧形凸面211″″仍然仅具有第一弧面部。弧形凸面211″″位于第一柱部214的远离第二轴段220″″的一端。
由于本实施例的驱动装置具有与第一实施例的驱动装置相似的结构,因此,本实施例的驱动装置及具有本实施例的驱动装置的血泵也具有第一实施例相似的效果。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。
Claims (20)
- 一种驱动装置,用于驱动叶轮转动,其特征在于,所述驱动装置包括:壳体组件,设有安装孔;及转轴,包括用于与所述叶轮固定连接、且能够转动地穿设于所述安装孔的第一轴段,所述第一轴段的周向上设有弧形凸面,所述弧形凸面的至少部分位于所述安装孔,所述弧形凸面的拐点处与所述安装孔的孔壁相对,且在所述弧形凸面的拐点处,所述弧形凸面与所述安装孔的孔壁之间的间隙最小;当所述第一轴段与所述安装孔的孔壁接触时,所述弧形凸面的拐点处与所述安装孔的孔壁接触。
- 根据权利要求1所述的驱动装置,其特征在于,定义沿所述第一轴段的轴向,所述弧形凸面的所述拐点处到所述安装孔的靠近所述叶轮的一端的开口所在的平面之间的间距为H,所述H的取值范围为H≤0.2mm。
- 根据权利要求1所述的驱动装置,其特征在于,所述弧形凸面具有第一弧面部,所述第一弧面部位于所述安装孔内,沿所述第一轴段的轴向且朝靠近所述叶轮的方向,所述第一弧面部到所述第一轴段的轴线的距离逐渐增大,所述弧形凸面的拐点处位于所述第一弧面部上。
- 根据权利要求3所述的驱动装置,其特征在于,所述弧形凸面还具有与所述第一弧面部连接的第二弧面部,所述第二弧面部与所述第一弧面部沿所述第一轴段的轴向设置,所述第二弧面部与所述第一弧面部的连接处为所述弧形凸面的拐点处;沿所述第一轴段的轴向且朝靠近所述叶轮的方向,所述第二弧面部到所述第一轴段的轴线的距离逐渐减小。
- 根据权利要求4所述的驱动装置,其特征在于,所述第二弧面部位于所述安装孔内。
- 根据权利要求1所述的驱动装置,其特征在于,所述弧形凸面的拐点处的位置与所述安装孔的靠近所述叶轮的一端的开口所在的平面平齐。
- 根据权利要求6所述的驱动装置,其特征在于,所述第一轴段具有收容于所述壳体组件的第一柱部和与所述第一柱部连接、且位于所述壳体组件外的第二柱部,所述第二柱部用于与所述叶轮固接,所述第二柱部与所述第一柱部共轴设置,所述第二柱部的靠近所述第一柱部的一端的周面为柱面,所述弧形凸面位于所述第一柱部的靠近所述第二柱部的一端,所述弧形凸面与所述柱面连接,所述弧形凸面与所述柱面的连接处为所述弧形凸面的拐点处。
- 根据权利要求1所述的驱动装置,其特征在于,所述弧形凸面全部位于所述安装孔内,沿所述转轴的轴向且朝靠近所述叶轮的方向,所述弧形凸面与所述安装孔的孔壁之间的间隙的宽度逐渐减小。
- 根据权利要求1所述的驱动装置,其特征在于,所述弧形凸面环绕所述第一轴段的轴线连续设置一周。
- 根据权利要求1所述的驱动装置,其特征在于,所述弧形凸面的拐点处到所述安装孔的孔壁之间的间隙的宽度小于或等于2μm。
- 根据权利要求1所述的驱动装置,其特征在于,所述安装孔的孔壁上设有与所述弧形凸面相对的弧形的凹面部,所述凹面部的弯曲弧度小于所述弧形凸面的弯曲弧度,当所述第一轴段与所述安装孔的孔壁接触时,所述弧形凸面的拐点处与所述凹面部接触。
- 根据权利要求11所述的驱动装置,其特征在于,所述弧形凸面具有第一弧面部和第二弧面部,所述第一弧面部与所述第二弧面部沿所述第一轴段的轴向设置,所述第二弧面部相对于所述第一弧面部靠近所述叶轮,所述第二弧面部与所述第一弧面部的连接处为所述弧形凸面的拐点处;所述凹面部的位置与所述第二弧面部位置相对,所述凹面部的弯曲弧度小于所述 第二弧面部的弯曲弧度。
- 根据权利要求12所述的驱动装置,其特征在于,所述安装孔的孔壁包括第一内壁,所述第一内壁与所述第一弧面部的位置相对;其中,所述第一内壁为与所述第一轴段的轴线平行的直壁;或者,所述第一内壁为相对所述第一轴段的轴线倾斜的斜壁;或者,所述第一内壁为弧形凹壁。
- 根据权利要求1所述的驱动装置,其特征在于,所述安装孔具有连通的第一孔部和第二孔部,所述第一孔部的孔径恒定,沿靠近所述第一孔部的方向,所述第二孔部的孔径逐渐减小,所述第一轴段穿设于所述第一孔部和所述第二孔部,所述弧形凸面的拐点处与所述第一孔部的孔壁相对,当所述第一轴段与所述安装孔的孔壁接触时,所述弧形凸面的拐点处与所述第一孔部的孔壁接触。
- 根据权利要求1所述的驱动装置,其特征在于,所述转轴还包括与所述第一轴段的一端连接的第二轴段、及与所述第二轴段的远离所述第一轴段连接的第三轴段,所述第一轴段的远离所述第二轴段的一端用于与所述叶轮固接;所述壳体组件还具有限位腔和贯穿孔,所述限位腔与所述安装孔连通,所述贯穿孔与所述限位腔连通,所述第二轴段能够转动地收容于所述限位腔内,所述第三轴段能够转动地穿设于所述贯穿孔,所述第二轴段的横截面尺寸大于所述安装孔的孔径和所述贯穿孔的孔径。
- 根据权利要求15所述的驱动装置,其特征在于,所述壳体组件还具有容置腔,所述容置腔与所述贯穿孔连通,所述转轴还具有与所述第三轴段的远离所述第二轴段的一端连接的第四轴段,所述第四轴段收容于所述容置腔内,所述第四轴段比所述第三轴段细;所述驱动装置还包括收容于所述容置腔内的转子和定子,所述转子与所述第四轴段固接,所述定子能够驱动所述转子转动,所述转子能够带动所述转轴转动,所述第四轴段至少部分收容于所述定子。
- 根据权利要求16所述的驱动装置,其特征在于,所述转子具有磁性,所述定子包括第一定子单元和第二定子单元,所述第一定子单元和所述第二定子单元均能够产生驱动所述转子转动的旋转磁场,所述第一定子单元、所述转子和所述第二定子单元沿所述第四轴段的轴线依次布置,所述第四轴段能够转动地穿设于所述第一定子单元,所述转子固接于所述第四轴段的远离所述第三轴段的一端,所述第二定子单元与所述转轴沿所述第四轴段的轴线间隔设置;其中,所述第一定子单元和所述第二定子单元均具有多个线圈绕组,所述第一定子单元的所述多个线圈绕组环绕所述第四轴段设置,所述第二定子单元的所述多个线圈绕组环绕所述第四轴段的轴线设置,所述第二定子单元的所述线圈绕组和所述第一定子单元的所述线圈绕组均具有磁柱,所述第二定子单元的所述磁柱的横截面尺寸大于所述第一定子单元所述磁柱的横截面尺寸。
- 根据权利要求16所述的驱动装置,其特征在于,所述壳体组件包括分体设置的泵壳、轴管、第一轴套和第二轴套;所述泵壳具有所述容置腔,所述轴管的一端与所述泵壳固接,所述轴管靠近所述泵壳的一端设置有承载凸起,所述轴管远离所述泵壳的一端具有安装口;所述第一轴套和所述第二轴套能够自所述安装口固定地收容于所述轴管内,并沿所述轴管的轴向设置,所述第一轴套相对所述第二轴套更靠近所述叶轮,所述第二轴套与所述承载凸起相抵接;所述安装孔开设于所述第一轴套上,所述转轴能够转动地穿设于所述第一轴套和所述第二轴套。
- 根据权利要求15所述的驱动装置,其特征在于,所述贯穿孔的靠近所述限位腔的一端的孔壁形成有内倒角。
- 一种血泵,其特征在于,包括叶轮和驱动装置,所述驱动装置包括:壳体组件,设有安装孔;及转轴,包括用于与所述叶轮固定连接、且能够转动地穿设于所述安装孔的第一轴段,所述第一轴段的周向上设有弧形凸面,所述弧形凸面的至少部分位于所述安装孔,所述弧形凸面的拐点处与所述安装孔的孔壁相对,且在所述弧形凸面的拐点处,所述弧形凸面与所述安装孔的孔壁之间的间隙最小;当所述第一轴段与所述安装孔的孔壁接触时,所述弧形凸面的拐点处与所述安装孔的孔壁接触;其中,所述叶轮固接于所述第一轴段,所述叶轮能够随所述转轴转动。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210650440.6 | 2022-06-10 | ||
CN202210650440.6A CN114768088A (zh) | 2022-06-10 | 2022-06-10 | 驱动装置和血泵 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023236759A1 true WO2023236759A1 (zh) | 2023-12-14 |
Family
ID=82422063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/095268 WO2023236759A1 (zh) | 2022-06-10 | 2023-05-19 | 驱动装置和血泵 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114768088A (zh) |
WO (1) | WO2023236759A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114768088A (zh) * | 2022-06-10 | 2022-07-22 | 深圳核心医疗科技有限公司 | 驱动装置和血泵 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06339525A (ja) * | 1992-11-27 | 1994-12-13 | Urawa Kogyo Kk | 血液ポンプ |
JP2016130566A (ja) * | 2015-01-14 | 2016-07-21 | 三菱重工業株式会社 | 軸受機構およびポンプ |
CN108883216A (zh) * | 2016-03-23 | 2018-11-23 | 阿比奥梅德欧洲股份有限公司 | 血泵 |
US20210085954A1 (en) * | 2018-03-14 | 2021-03-25 | The Cleveland Clenic Foundation | Blood pump with magnetically loaded partial arc journal bearing |
CN113599692A (zh) * | 2021-08-05 | 2021-11-05 | 深圳核心医疗科技有限公司 | 血泵 |
CN215025224U (zh) * | 2020-12-22 | 2021-12-07 | 深圳核心医疗科技有限公司 | 血泵 |
CN114768088A (zh) * | 2022-06-10 | 2022-07-22 | 深圳核心医疗科技有限公司 | 驱动装置和血泵 |
-
2022
- 2022-06-10 CN CN202210650440.6A patent/CN114768088A/zh active Pending
-
2023
- 2023-05-19 WO PCT/CN2023/095268 patent/WO2023236759A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06339525A (ja) * | 1992-11-27 | 1994-12-13 | Urawa Kogyo Kk | 血液ポンプ |
JP2016130566A (ja) * | 2015-01-14 | 2016-07-21 | 三菱重工業株式会社 | 軸受機構およびポンプ |
CN108883216A (zh) * | 2016-03-23 | 2018-11-23 | 阿比奥梅德欧洲股份有限公司 | 血泵 |
US20210085954A1 (en) * | 2018-03-14 | 2021-03-25 | The Cleveland Clenic Foundation | Blood pump with magnetically loaded partial arc journal bearing |
CN215025224U (zh) * | 2020-12-22 | 2021-12-07 | 深圳核心医疗科技有限公司 | 血泵 |
CN113599692A (zh) * | 2021-08-05 | 2021-11-05 | 深圳核心医疗科技有限公司 | 血泵 |
CN114768088A (zh) * | 2022-06-10 | 2022-07-22 | 深圳核心医疗科技有限公司 | 驱动装置和血泵 |
Also Published As
Publication number | Publication date |
---|---|
CN114768088A (zh) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11813444B2 (en) | Blood pump | |
WO2023098470A1 (zh) | 血泵及其驱动装置 | |
WO2024007790A1 (zh) | 驱动装置和血泵 | |
WO2023160422A1 (zh) | 血泵及其驱动装置 | |
WO2023236759A1 (zh) | 驱动装置和血泵 | |
WO2023098471A1 (zh) | 血泵及其驱动装置 | |
WO2022134956A1 (zh) | 血泵 | |
WO2023160424A1 (zh) | 血泵及其驱动装置 | |
WO2024007793A1 (zh) | 驱动装置和血泵 | |
CN115282467B (zh) | 驱动机构和血泵 | |
WO2024007792A1 (zh) | 驱动装置和血泵 | |
WO2024007791A1 (zh) | 驱动装置和血泵 | |
CN117282020A (zh) | 驱动装置和血泵 | |
WO2024021918A1 (zh) | 驱动装置和血泵 | |
CN115006715A (zh) | 驱动装置和血泵 | |
CN114917469A (zh) | 驱动装置和血泵 | |
CN115192894A (zh) | 驱动装置及血泵 | |
WO2023236717A1 (zh) | 驱动装置和血泵 | |
WO2024007813A1 (zh) | 驱动机构和血泵 | |
CN117258136A (zh) | 包括磁性驱动装置的介入式血泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23818924 Country of ref document: EP Kind code of ref document: A1 |