WO2024007793A1 - 驱动装置和血泵 - Google Patents

驱动装置和血泵 Download PDF

Info

Publication number
WO2024007793A1
WO2024007793A1 PCT/CN2023/098354 CN2023098354W WO2024007793A1 WO 2024007793 A1 WO2024007793 A1 WO 2024007793A1 CN 2023098354 W CN2023098354 W CN 2023098354W WO 2024007793 A1 WO2024007793 A1 WO 2024007793A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
rotor
sleeve
driving device
ball head
Prior art date
Application number
PCT/CN2023/098354
Other languages
English (en)
French (fr)
Inventor
谢端卿
余顺周
Original Assignee
深圳核心医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳核心医疗科技股份有限公司 filed Critical 深圳核心医疗科技股份有限公司
Publication of WO2024007793A1 publication Critical patent/WO2024007793A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • This application relates to the technical field of medical devices, and in particular to a driving device and a blood pump.
  • the blood pump is designed to be inserted percutaneously into a patient's blood vessel, such as an artery or vein in the thigh or armpit, and can be advanced into the patient's heart to function as a left ventricular assist device or a right ventricular assist device.
  • a patient's blood vessel such as an artery or vein in the thigh or armpit
  • Blood pumps usually include a driving device and an impeller.
  • the impeller is connected to the driving shaft of the driving device.
  • it is usually necessary to add components that limit the position of the driving shaft. This results in a complex structure of the driving device and increases the size of the driving device. assembly difficulty.
  • this application provides a driving device and blood pump that are easier to assemble.
  • An embodiment of the first aspect of the present application provides a driving device, including:
  • the first rotor is fixed to one end of the rotating shaft, the first rotor has a ball head, and the ball head protrudes along the axis of the rotating shaft;
  • the first bushing is installed on the housing.
  • the first bushing is provided with a groove with a concave spherical groove wall, wherein the ball head can be movably arranged on the housing. In the groove, the ball head can abut against the spherical groove wall;
  • the second sleeve is installed on the housing, wherein the rotating shaft is rotatably passed through the second sleeve, and the first rotor is located between the first sleeve and the second sleeve. between the second bushings;
  • a limiting component the limiting component is fixed to the rotating shaft, the limiting component is located between the second sleeve and the first rotor, and the limiting component can interact with the second sleeve Abut.
  • An embodiment of the second aspect of the present application provides a blood pump, including an impeller, and a driving device as described in the first aspect; the rotating shaft is connected to the impeller, and the rotating shaft can drive the impeller to rotate.
  • Figure 1 is a schematic structural diagram of a blood pump provided by an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the blood pump shown in Figure 1, omitting the sleeve, impeller and part of the conduit;
  • Figure 3 is a cross-sectional view of the blood pump in Figure 1 assembled with the rotating shaft, thrust ring, first rotor, second rotor, first bushing and second bushing;
  • Figure 4 is a partial enlarged view of part A shown in Figure 2;
  • Figure 5 is a schematic structural diagram of the first flywheel of the first rotor shown in Figure 2;
  • Figure 6 is a cross-sectional view of the first flywheel described in Figure 5;
  • Figure 7 is a partial enlarged view of B in Figure 6;
  • Figure 8 is a schematic structural diagram of the first bushing in Figure 2;
  • Figure 9 is a cross-sectional view of the first bushing in Figure 8.
  • Figure 10 is a schematic structural diagram of the fixed seat of the blood pump shown in Figure 2;
  • Figure 11 is a partial enlarged view of the blood pump shown in Figure 2;
  • Figure 12 is a schematic structural diagram of the second sleeve of the blood pump shown in Figure 2;
  • FIG. 13 is a schematic structural diagram of the stator and the magnetic conducting member of the blood pump shown in FIG. 1 assembled together.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • the end of a device closest to the operator is usually defined as the proximal end, and the end far from the operator is defined as the distal end.
  • the blood pump 1 includes a driving device 10 and an impeller 20.
  • the driving device 10 is drivingly connected to the impeller 20, and the driving device 10 can drive the impeller 20 to rotate.
  • the blood pump 1 further includes a sleeve 40 fixed on the distal end of the driving device 10 .
  • the impeller 20 is rotatably received in the casing 40 .
  • the cannula 40 has a blood inlet 41 and a blood outlet 42. When the impeller 20 rotates, blood flows into the cannula 40 from the blood inlet 41 and then flows out from the blood outlet 42 .
  • the cannula 40 extends through a heart valve, such as the aortic valve, the blood inlet 41 is located within the heart, and the blood outlet 42 and drive device 10 are located outside the heart in a blood vessel such as the aorta.
  • the blood pump 1 also includes a conduit 50 , which is connected to the proximal end of the driving device 10 .
  • the conduit 50 is used to accommodate various supply lines.
  • the supply line includes a wire for electrical connection with the drive device 10 and a cleaning line for feeding flushing fluid to the blood pump 1 .
  • the flushing solution is physiological saline, physiological saline containing heparin, glucose, etc.
  • the driving device 10 includes a housing 100 , a rotating shaft 200 , a first rotor 300 , a first sleeve 400 , a second sleeve 500 and a limiting component 600 .
  • the housing 100 is generally a cylindrical housing with openings at both ends.
  • the distal end of the housing 100 is fixedly connected to the sleeve 40 , and the proximal end is fixedly connected to the catheter 50 .
  • Housing 100 has an interior cavity.
  • the housing 100 is provided with a separation ring 110 , and the separation ring 110 separates the inner cavity of the housing 100 into a limiting cavity 102 and an accommodation cavity 103 .
  • the limiting cavity 102 and the accommodating cavity 103 are arranged along the axial direction of the housing 100 .
  • the rotating shaft 200 is elongated.
  • the rotating shaft 200 is rotatably installed on the housing 100 , and is used to connect with the impeller 20 .
  • the rotating shaft 200 extends generally along the axial direction of the housing 100 , or in other words, the extending direction of the axis of the rotating shaft 200 is generally consistent with the axial direction of the housing 100 . Therefore, the limiting cavity 102 and the accommodating cavity 103 is generally arranged along the axis of the rotating shaft 200 .
  • the rotating shaft 200 passes through the limiting cavity 102, is partially accommodated in the accommodation cavity 103, and is partially located outside the housing 100 or The said part extends into the casing 40.
  • one end of the rotating shaft 200 for connecting the impeller 20 is the connecting end 210 .
  • the rotating shaft 200 is made of ceramic material. Compared with metal materials, ceramics have higher processing accuracy, higher biocompatibility, higher mechanical strength, and better wear resistance and corrosion resistance.
  • the first rotor 300 is fixed to one end of the rotating shaft 200 . Specifically, the first rotor 300 is fixed to an end of the rotating shaft 200 away from the connecting end 210 .
  • the first rotor 300 has a ball head 310 that protrudes along the axis of the rotating shaft 200 in a direction away from the connecting end 210 .
  • the first rotor 300 is located in the housing 100 .
  • the first rotor 300 is located in the accommodation cavity 103 .
  • the first rotor 300 can rotate relative to the housing 100 and can drive the rotating shaft 200 to rotate.
  • the driving device 10 further includes a stator 700 , and the stator 700 can drive the first rotor 300 to rotate.
  • the stator 700 is fixedly installed in the housing 100
  • the stator 700 is specifically located in the accommodation cavity 103
  • the rotating shaft 200 is rotatably installed in the stator 700 .
  • the first rotor 300 has magnetism
  • the stator 700 can generate a rotating magnetic field that drives the first rotor 300 to rotate.
  • the first rotor 300 includes a first flywheel 320 and a first magnet 330 .
  • the first flywheel 320 is fixed to the rotating shaft 200
  • the first magnet 330 is fixed to the first flywheel 320 .
  • the first magnet 330 and the first flywheel 320 together form the rotor body of the first rotor 300 .
  • the first magnet 330 is a ring-shaped Halbach array magnet.
  • the ball head 310 is provided on the first flywheel 320 .
  • the first flywheel 320 includes a first disc-shaped portion 321, a first internal tube 322 and a first external tube 323. Both the first internal tube 322 and the first external tube 323 are It is a circular tube structure, and the first disc-shaped part 321 is an annular disc structure. One ends of the first internal tube 322 and the first external tube 323 are both fixedly connected to the first disc-shaped portion 321 . The first internal tube 322 and the first external tube 323 are located on the same side of the first disc-shaped portion 321 and are coaxially arranged. The inner diameter of the first external tube 323 is larger than the outer diameter of the first internal tube 322 .
  • the first internal tube 322 It is at least partially accommodated in the first external tube 323 , and a first annular cavity 324 for accommodating the first magnet 330 is formed between the first external tube 323 and the first internal tube 322 .
  • the shape of the first annular cavity 324 is adapted to the shape of the first magnet 330 to facilitate the installation and positioning of the first magnet 330 .
  • Such an arrangement enables the first flywheel 320 to limit the position of the first magnet 330, which not only facilitates the installation of the first magnet 330, but also makes the combination between the first magnet 330 and the first flywheel 320 more stable.
  • the end of the rotating shaft 200 away from the connecting end 210 is fixedly received in the first built-in tube 322 , that is, the rotating shaft 200 does not pass through the first disc-shaped portion 321 , so that the driving device 10 can be designed to be shorter.
  • the ball head 310 is located on a side of the first disc-shaped portion 321 away from the first built-in tube 322 .
  • the first rotor 300 further includes a connecting column 340 with one end fixed to the rotor body.
  • the ball head 310 is formed at an end of the connecting column 340 away from the rotor body.
  • one end of the connecting column portion 340 away from the ball head 310 is fixed to the first flywheel 320 (specifically, the first disc-shaped portion 321).
  • the axis of the connecting column 340 coincides with the axis of the rotating shaft 200 .
  • the ball head 310 is generally hemispherical; the ball head 310 has a spherical crown surface 311 and a circular bottom surface connected to the spherical crown surface 311, and the circular bottom surface is connected to the end surface of the connecting column 340.
  • the connecting column 340 is coaxial with the ball head 310 , and the diameter of the end surface of the connecting column 340 close to the ball head 310 is equal to the diameter of the circular bottom surface.
  • the first flywheel 320 is not limited to the above structure. In some embodiments, the first flywheel 320 does not have the first external tube 323; in some embodiments, the first flywheel 320 does not have the first external tube 323. tube 323 and the first built-in tube 322. At this time, the rotating shaft 200 is fixedly inserted through the center of the first disc-shaped portion 321. Compared with the first flywheel 320 having only the first disc-shaped portion 321 , providing the first built-in tube 322 can connect the first flywheel 320 and the rotating shaft 200 more stably.
  • the first sleeve 400 and the second sleeve 500 are both installed on the housing 100 .
  • the first sleeve 400 is received in the accommodation cavity 103
  • the second sleeve 500 is received in the limiting cavity 102 .
  • the first sleeve 400 and the second sleeve 500 are both fixed to the housing 100 .
  • the first sleeve 400 and the second sleeve 500 are spaced apart along the axial direction of the housing 100 .
  • the rotating shaft 200 is rotatably inserted into the second sleeve 500 .
  • the second sleeve 500 is closer to the rotating shaft 200 than the first sleeve 400 .
  • the first rotor 300 is located between the first sleeve 400 and the second sleeve 500 ;
  • the stator 700 is also located between the first sleeve 400 and the second sleeve 500 .
  • the first sleeve 400 is provided with a groove 410, and the groove 410 has a concave spherical groove wall 412.
  • first rotor The ball head 310 of the ball 300 can be movably arranged in the groove 410, and the ball head 310 can abut against the spherical groove wall 412.
  • the groove 410 can support and limit the ball head 310 of the first rotor 300 to limit the range of movement of the first rotor 300 and the rotating shaft 200 in the direction away from the impeller 20 along the axis of the rotating shaft 200, and at the same time, limit the movement of the rotating shaft 200.
  • the swing range of the rotating shaft 200 in the radial direction.
  • the connecting post 340 is partially received in the groove 410, the groove 410 has a notch 413, and the connecting post 340 passes through the notch 413.
  • the length h of the ball head 310 in the axial direction of the rotating shaft 200 is less than the depth s of the groove 410 (the depth s of the groove 410 is the maximum distance from the notch 413 of the groove 410 to the spherical groove wall 412), so as to better
  • the ball head 310 is restricted in the groove 410 and the radial swing range of the first rotor 300 and the rotating shaft 200 is reduced.
  • the radius of the spherical groove wall 412 is greater than the radius of the ball head 310 , that is, the radius of the sphere where the spherical groove wall 412 is located is greater than the radius of the sphere where the ball head 310 is located.
  • the length L of the spherical groove wall 412 in the axial direction of the first sleeve 400 is less than the depth s of the groove 410 .
  • the notch 413 of the groove 410 is rounded, that is, the groove wall at the notch 413 of the groove 410 is rounded, so as to prevent the connecting column 340 from being blocked by the angular notch of the groove 410. 413 scratches and wear.
  • the ball head 310 is provided with a diamond coating to make its surface smooth and improve wear resistance.
  • the first sleeve 400 also has a liquid hole 420 connected with the groove 410 .
  • the liquid through hole 420 can be in fluid communication with the cleaning line in the conduit 50 so that the flushing liquid can enter the groove 410 through the liquid through hole 420 .
  • the flushing liquid entering between the groove wall of the groove 410 and the ball head 310 can play a lubricating role to reduce the friction between the ball head 310 and the groove wall of the groove 410, thereby reducing the friction between the ball head 310 and the ball head 310.
  • the first sleeve 400 is worn.
  • an opening 421 of the liquid hole 420 is located at the center of the spherical groove wall 412 so that the flushing liquid entering the groove 410 from the liquid hole 420 can provide an axial impulse to the ball head 310 as much as possible. More specifically, the central axis of the liquid hole 420 coincides with the central axis of the cavity surrounded by the spherical groove wall 412 , so that the liquid hole 420 is a straight hole to reduce the energy consumption of the flushing liquid in the liquid hole 420 .
  • the diameter of the opening 421 of the liquid hole 420 located on the spherical groove wall 412 is 1/9 to 1/3 of the diameter of the sphere where the ball head 310 is located.
  • the diameter of the liquid hole 420 is constant, that is, the diameter of the liquid hole 420 is 1/9 to 1/3 of the diameter of the sphere where the ball head 310 is located. If the diameter of the opening 421 of the liquid hole 420 on the spherical groove wall 412 is too large, the contact surface between the ball head 310 and the spherical groove wall 412 will be reduced (resulting in a greater pressure per unit area), and the spherical groove wall 412 will be enlarged.
  • the driving device 10 further includes a fixed base 810 , and the fixed base 810 is fixed to the housing 100 .
  • the fixed base 810 is provided with an installation cavity 811 and a liquid inlet hole 812 connected with the installation cavity 811.
  • the first sleeve 400 is installed in the installation cavity 811.
  • the liquid passage hole 420 is connected with the liquid inlet hole 812 .
  • the end of the liquid inlet hole 812 away from the installation cavity 811 is used to communicate with the cleaning pipeline of the conduit 50 so that the flushing liquid can flow into the space between the groove wall of the groove 410 and the ball head 310 through the liquid inlet hole 812 and the liquid hole 420 , and then flows into the inner cavity of the housing 100 .
  • the installation cavity 811 has a cavity bottom 8111.
  • An opening 8121 (see Figure 4) of the liquid inlet hole 812 is located at the cavity bottom 8111 of the installation cavity 811.
  • a support step 8112 is provided in the installation cavity 811.
  • the support step 8112 is in contact with the first axis.
  • the sleeve 400 is in contact with each other so that the first sleeve 400 is separated from the cavity bottom 8111 by a certain distance to better ensure the smooth flow of the flushing fluid.
  • the support step 8112 is in contact with the side of the first sleeve 400 that is away from the second sleeve 500 .
  • the fixed base 810 is also provided with a branch channel 813, which is in fluid communication with the liquid inlet hole 812, so that the fluid (such as flushing liquid) flowing through the liquid inlet hole 812 can also flow to the housing 100 through the branch channel 813.
  • the branch channel 813 is connected to the gap between the first sleeve 400 and the cavity bottom 8111 of the installation cavity 811 , and the other end is connected to the accommodation cavity 103 .
  • the shunt channel 813 is formed by a partial recess in the cavity wall of the installation cavity 811 . In other words, under normal conditions, the flushing liquid enters the installation cavity 811 from the liquid inlet hole 812 and is divided into two streams.
  • One stream flows into the groove 410 of the first sleeve 400 through the liquid hole 420, and the other stream flows through the diverter.
  • Road 813 flows out.
  • the provision of the diverter channel 813 can ensure the flow of flushing liquid when the ball head 310 blocks the liquid hole 420 .
  • the number of branch channels 813 is two, and the two branch channels 813 are arranged opposite to each other. It can be understood that the number of shunt channels 813 can be adjusted according to design needs. For example, in some embodiments, the number of shunt channels 813 can be one or more than two.
  • the second sleeve 500 is in contact with the separation ring 110 .
  • the second sleeve 500 is received in the limiting cavity 102 , and the second sleeve 500 is positioned through the separation ring 110 to facilitate the assembly of the second sleeve 500 .
  • the second sleeve 500 is provided with a shaft hole 510, and the rotating shaft 200 is rotatably inserted into the shaft hole 510.
  • the central axis of the shaft hole 510 coincides with the central axis of the liquid hole 420 of the first sleeve 400 .
  • the limiting component 600 is fixed to the rotating shaft 200 .
  • the limiting component 600 is located between the second sleeve 500 and the first rotor 300 .
  • the limiting component 600 can contact the second sleeve 500 to limit the movement of the rotating shaft 200 along the rotating shaft 200 .
  • the stator 700 is located between the first rotor 300 and the limiting component 600 .
  • the limiting component 600 includes a thrust ring 610 and a second rotor 620.
  • the second rotor 620 is fixed to the rotating shaft 200.
  • the thrust ring 610 is fixed to the second rotor 620 and the rotating shaft 200. At least one of them.
  • the thrust ring 610 can be directly fixed only with the second rotor 620 , or only with the rotating shaft 200 , or can be directly fixed with both the second rotor 620 and the rotating shaft 200 at the same time.
  • the thrust ring 610 Since the second rotor 620 is fixed to the rotating shaft 200 and the thrust ring 610 is fixed to at least one of the second rotor 620 and the rotating shaft 200, the thrust ring 610, the rotating shaft 200 and the second rotor 620 rotate synchronously and move.
  • the thrust ring 610 is located between the second rotor 620 and the second sleeve 500 .
  • the thrust ring 610 can contact the second sleeve 500 to restrict the movement of the rotating shaft 200 along its axial direction toward the impeller 20 . scope.
  • the first rotor 300 is fixed to one end of the rotating shaft 200, and the ball head 310 of the first rotor 300 is disposed in the groove 410 of the first sleeve 400, and can contact the spherical groove wall 412 of the groove 410, To limit the range of movement of the rotating shaft 200 in the direction away from the impeller 20 along the axis of the rotating shaft 200, thereby limiting the position of the rotating shaft 200 on the axis of the rotating shaft 200; at the same time, because the rotating shaft 200 passes through the second sleeve 500, and because the ball The head 310 is disposed in the groove 410 of the first sleeve 400.
  • the groove wall of the groove 410 of the first sleeve 400 can also limit the swing range of the ball head 310 in the radial direction of the rotating shaft 200, thereby achieving alignment of the rotating shaft 200.
  • the radial swing range is limited as a whole. In other words, the above design not only realizes the axial limitation of the rotating shaft 200 , but also realizes the radial limitation of the rotating shaft 200 .
  • the second rotor 620 is received in the accommodation cavity 103 , and the separation ring 110 is located between the second rotor 620 and the second sleeve 500 .
  • the second rotor 620 includes a second flywheel 621 and a second magnet 622.
  • the second flywheel 621 is fixed on the rotating shaft 200, and the second magnet 622 is fixed on the second flywheel 621.
  • the second magnet 622 is a ring-shaped Halbeck array magnet.
  • the second flywheel 621 includes a second disc-shaped portion 6211, a second inner tube 6212, and a second outer tube 6213. Both the second inner tube 6212 and the second outer tube 6213 are circular tubular structures.
  • the disc-shaped portion 6211 is an annular disc structure.
  • the second internal tube 6212 and the second external tube 6213 are both fixedly connected to the second disc-shaped portion 6211.
  • the second external tube 6213 is arranged around the second disc-shaped portion 6211.
  • the second internal tube 6212 and the second external tube 6213 are arranged coaxially.
  • the rotating shaft 200 is passed through the second internal tube 6212 and connected with the second internal tube 6212. Pipe 6212 is fixedly connected.
  • a second annular cavity is formed between the second internal tube 6212 and the second external tube 6213.
  • the second magnet 622 is housed in the second annular cavity.
  • the shape of the second annular cavity is adapted to the second magnet 622 to facilitate the installation and positioning of the second magnet 622 .
  • This arrangement enables the second flywheel 621 to limit the second magnet 622, which not only facilitates the installation of the second magnet 622, but also makes the combination of the second magnet 622 and the second flywheel 621 more stable.
  • the second flywheel 621 is not limited to the above structure.
  • the second flywheel 621 does not have a second external tube 6213; in some embodiments, the second flywheel 621 does not have a second internal tube. 6212 and the second outer The tube 6213 is placed.
  • the rotating shaft 200 is fixedly inserted through the center of the second disc-shaped portion 6211.
  • providing the second built-in tube 6212 can connect the second flywheel 621 to the rotating shaft 200 more stably.
  • the thrust ring 610 is an annular protrusion formed on a side of the second flywheel 621 facing away from the stator 700 . More specifically, the thrust ring 610 is disposed on a side of the second disc-shaped portion 6211 facing away from the stator 700 . Two built-in tubes 6212 on one side. That is, the thrust ring 610 and the second flywheel 621 are integrally molded structures to form a whole. Since the overall volume of the blood pump 1 is small, the thrust ring 610 is smaller, the processing accuracy is difficult, and the assembly is difficult. The thrust ring is 610 and the second flywheel 621 are integrally formed, which facilitates installation and eliminates the need for bonding operations.
  • the thrust ring 610 and the second rotor 620 can also be separated structures before assembly.
  • the thrust ring 610 can be bonded or welded to the second rotor 620 and the rotating shaft. At least one of the 200 is fixed together.
  • the thrust ring 610 when the thrust ring 610 abuts the second sleeve 500, the thrust ring 610 is at least partially located in the inner ring of the separation ring 110, and there is a gap for fluid communication between the thrust ring 610 and the inner ring wall of the separation ring 110. gap, and the separation ring 110 is spaced apart from the second rotor 620 by a certain distance.
  • the flushing fluid can flow into the second shaft through the gap between the thrust ring 610 and the inner ring wall of the separation ring 110 .
  • the fluid communication between the shaft hole 510 of the second shaft sleeve 500 and the accommodation cavity 103 is realized; when the thrust ring 610 abuts the second shaft sleeve 500, the separation ring 110 and the second shaft sleeve 500 are connected.
  • the rotors 620 are spaced apart at a certain distance to avoid friction and wear caused by contact between the second rotor 620 and the separation ring 110 when the thrust ring 610 contacts the second sleeve 500 .
  • the thrust ring 610 is generally annular, and the central axis of the thrust ring 610 coincides with the axis of the rotating shaft 200 .
  • the outer diameter of the thrust ring 610 is smaller than the inner diameter of the separation ring 110 , so that there is a gap for fluid communication between the thrust ring 610 and the inner ring wall of the separation ring 110 .
  • the thrust ring 610 can also be arranged by a plurality of sector rings, which are evenly spaced around the rotation axis 200 , or can be understood as a plurality of sector rings that are discretely arranged in the circumferential direction. Arranged.
  • the thickness of the thrust ring 610 along the axis of the rotating shaft 200 is greater than the thickness of the separation ring 110 along the axis of the rotating shaft 200 , so that when the thrust ring 610 abuts against the second sleeve 500 , the separation ring 110 is in contact with the second rotor. 620 at a distance. It can be understood that in some embodiments, the thickness of the thrust ring 610 along the axis of the rotating shaft 200 can also be made smaller than or equal to the thickness of the separation ring 110 along the axis of the rotating shaft 200 .
  • the second rotor 620 and the thrust ring can be 610 is spaced apart at a distance along the axis of the rotating shaft 200 , and the distance is sufficient to separate the separation ring 110 and the second rotor 620 when the thrust ring 610 abuts the second sleeve 500 .
  • the side of the second sleeve 500 facing the thrust ring 610 is partially recessed to form a guide groove 530.
  • the guide groove 530 is connected with the shaft hole 510 of the second sleeve 500; the thrust ring When 610 is in contact with the second shaft sleeve 500, part of the guide groove 530 is not covered by the thrust ring 610.
  • the thrust ring 610 when the thrust ring 610 is in contact with the second shaft sleeve 500, although the thrust ring 610 blocks the second shaft
  • the flow guide groove 530 is formed by partially recessing the side of the second sleeve 500 facing the thrust ring 610, so that the flushing liquid can better flow into the space between the thrust ring 610 and the second sleeve 500.
  • the thrust ring 610 has a stop surface 611, which is perpendicular to the axis of the rotating shaft 200.
  • the second sleeve 500 has a stop surface 520, and the stop surface 520 is in contact with the shaft hole 510 of the second sleeve 500.
  • the central axis is vertical, and the stop surface 520 is opposite to the stop surface 611 .
  • the stop surface 520 can contact the stop surface 611 to limit the movement of the rotating shaft 200 along the axis of the rotating shaft 200 toward the impeller 20 .
  • the rotating shaft 200 can be rotatably inserted into the shaft hole 510 of the second sleeve 500, so that When the rotating shaft 200 is operating normally and the thrust ring 610 is in contact with the second sleeve 500, the stop surface 611 and the stop surface 520 can be in face-to-face contact, which can reduce the friction between the thrust ring 610 and the second sleeve 500. of wear and tear.
  • stop The plane 520 is in contact with the separation ring 110 .
  • the guide groove 530 is formed by a partial depression of the stop surface 520 .
  • the roughness of at least one of the stop surface 611 and the stop surface 520 is less than or equal to 0.1 micron. In some embodiments, the roughness of the stop surface 611 and the stop surface 520 is less than or equal to 0.1 micron. In some embodiments, the roughness of one of stop surface 611 and stop surface 520 is less than or equal to 0.1 microns.
  • At least one of the stop surface 611 and the stop surface 520 is a ceramic surface. Ceramics have high processing precision, high biocompatibility, high mechanical strength, good wear resistance and corrosion resistance.
  • the thrust ring 610 and the second sleeve 500 may be made of ceramic, or at least one of the stop surface 611 and the stop surface 520 may be a ceramic surface by providing a ceramic coating.
  • the material of the stop surface 611 is diamond, so that the stop surface 611 has a higher hardness, a smoother surface, and is wear-resistant. In this case, the stop surface is realized by providing a diamond coating.
  • the material of 611 is ceramic surface.
  • the stator 700 includes a first stator unit 710 and a second stator unit 720 arranged along the axis of the rotating shaft 200.
  • the first stator unit 710 can drive the first rotor 300 to rotate, and the second stator unit 710 can drive the first rotor 300 to rotate.
  • the stator unit 720 can drive the second rotor 620 to rotate.
  • the first stator unit 710 can generate a rotating magnetic field that drives the first rotor 300 to rotate
  • the second stator unit 720 can generate a rotating magnetic field that drives the second rotor 620 to rotate.
  • the first stator unit 710 and the second stator unit 720 are both fixedly received in the accommodation cavity 103 of the housing 100 .
  • the rotating shaft 200 is rotatably inserted through the first stator unit 710 and the second stator unit 720 .
  • the first stator unit 710 and the second stator unit 720 are both located between the first rotor 300 and the second rotor 620 .
  • the first rotor 300, the second rotor 620, the first stator unit 710 and the second stator unit 720 are all located between the first sleeve 400 and the second sleeve 500; the first rotor 300 is close to the first sleeve 400 is set, and the second rotor 620 is set close to the second sleeve 500.
  • first sleeve 400, the first rotor 300, the first stator unit 710, the second stator unit 720, the second rotor 620 and the second sleeve 500 are arranged in sequence along the axis of the rotating shaft 200, wherein the The two sleeves 500 are closest to the connecting end 210 of the rotating shaft 200 .
  • the first stator unit 710 and the second stator unit 720 both include a magnetic core and a coil, and the coil is wound around the magnetic core.
  • the first stator unit 710 includes a first magnetic core 711 and a first coil 712, and the first coil 712 is wound around the first magnetic core 711.
  • There are multiple first magnetic cores 711 and the plurality of first magnetic cores 711 are arranged around the axis of the rotating shaft 200 .
  • Each first magnetic core 711 is provided with a first coil 712 .
  • the structure of the second stator unit 720 is similar to that of the first stator unit 710 .
  • the second stator unit 720 includes a second magnetic core 721 and a second coil 722.
  • the second coil 722 is wound around the second magnetic core 721.
  • There are multiple second magnetic cores 721 and the plurality of second magnetic cores 721 are arranged around the axis of the rotating shaft 200 .
  • Each second magnetic core 721 is provided with a second coil 722 .
  • the driving device 10 further includes a magnetic conductive member 820 fixed to the housing 100 .
  • the first magnetic core 711 of the first stator unit 710 and the second magnetic core 721 of the second stator unit 720 are both in contact with the magnetic conductive member 820 .
  • the magnetic conductive member 820 is fixedly received in the housing 100 , for example, is clamped on the inner wall of the housing 100 .
  • the rotating shaft 200 is rotatably passed through the magnetic conductive member 820 .
  • One end of the first magnetic core 711 is fixedly connected to the magnetic conductive member 820, and the first rotor 300 is disposed close to the other end of the first magnetic core 711; one end of the second magnetic core 721 is fixedly connected to the magnetic conductive member 820, and the second rotor 620 is close to The other end of the second magnetic core 721 is provided.
  • the magnetic conductive member 820 plays a role in closing the magnetic circuit to promote and increase the generation of magnetic flux and improve the coupling capacity. Therefore, the magnetic conductive member 820 is provided to close the magnetic circuit between the first stator unit 710 and the first rotor 300 .
  • the function of the circuit and the function of closing the magnetic circuit between the second stator unit 720 and the second rotor 620 increase the magnetic flux, and thus the arrangement of the magnetic conductive member 820 is beneficial to reducing the overall diameter of the driving device 10 .
  • the first stator unit 710 and the second stator unit can also be realized.
  • the positioning and installation of 720 reduce the assembly difficulty of the first stator unit 710 and the second stator unit 720.
  • the magnetic conducting member 820 arranged in the above manner can also reduce the number of positioning structures in the housing 100, thereby simplifying the structure of the housing 100 and simplifying the assembly process of the entire driving device 10.
  • the magnetic conductive member 820 includes two magnetic conductive plates 821 , which are stacked. One of the magnetic conductive plates 821 is fixedly connected to the first magnetic core 711 of the first stator unit 710 , and the other magnetic conductive plate 821 is fixedly connected to the first magnetic core 711 of the first stator unit 710 . 821 with the second stator unit 720 of the second The magnetic core 721 is fixed, and the rotating shaft 200 is rotatably passed through the two magnetic conductive plates 821 . Specifically, the two magnetic conductive plates 821 are separated before assembly. By arranging the magnetic conductive member 820 into two separated magnetic conductive plates 821 before assembly, when assembling the driving device 10, the first magnetic conductive plate 821 can be assembled first.
  • the magnetic core 711 is fixed to the magnetic conductive plate 821, the second magnetic core 721 is fixed to another magnetic conductive plate 821, and then the two magnetic conductive plates 821 are stacked. In this way, the first magnetic core 711 and the second magnetic core can be conveniently connected. 721 are respectively assembled to two magnetic conductive plates 821, which can make the assembly of the first magnetic core 711 and the second magnetic core 721 more convenient.
  • the two magnetic conductive plates 821 are fixed, so that the first stator unit 710, the second stator unit 720 and the magnetic conductive member 820 form a whole body and are assembled into the housing 100, making it easier to assemble the stator 700.
  • two magnetically conductive plates 821 can be connected together by gluing or welding. It can be understood that in other embodiments, the two magnetically conductive plates 821 are not fixed, but are in contact with each other.
  • the magnetic conductive member 820 is not limited to the above-mentioned combination of two separate magnetic conductive plates 821.
  • the magnetic conductive member 820 can also be a plate-like structure, with the first magnetic core 711 and the second magnetic core 721 are connected to the magnetic conductive member 820, that is, the first stator unit 710 and the second stator unit 720 share a magnetic conductive member 820.
  • the magnetic conductive plate 821 is made of silicon steel, and the first magnetic core 711 and the second magnetic core 721 are made of silicon steel.
  • Both the first magnetic core 711 and the second magnetic core 721 have a columnar structure and do not have a head with a large width (ie, a pole piece).
  • the magnetic core with a columnar structure can reduce magnetic losses and increase the magnetic coupling density between the magnetic core and the magnets to increase the torque of the stator 700 pairs of magnets (under equal current conditions).
  • the magnetic core without a head can also greatly reduce the problem of local magnetic short circuit and motor power reduction caused by contact between adjacent magnetic cores.
  • the structure of the driving device 10 is not limited to the above structure.
  • the driving device 10 includes a first rotor 300, a second rotor 620 and a stator 700, but the stator 700 has only one stator unit, that is, only the first stator unit 710 and no second stator unit 720.
  • the first stator unit 710 is located between the first rotor 300 and the second rotor 620, and the first stator unit 710 can drive the first rotor 300 and the second rotor 620 to rotate simultaneously.
  • the limiting component 600 is not limited to the above-mentioned structure.
  • the limiting component 600 is only the thrust ring 610 and does not have the second rotor 620.
  • the stator 700 only has one stator unit.
  • the thrust ring 610 is fixed to the rotating shaft 200 and contacts the second sleeve 500 to limit the range of movement of the rotating shaft 200 along its axis toward the second sleeve 500 .
  • the limiting component 600 is only the second rotor 620 without the thrust ring 610. At this time, the second rotor 620 is fixed to the rotating shaft 200, and the stator 700 is located between the first rotor 300 and the second rotor 620.
  • the driving device of this embodiment has a similar structure to the driving device of the first embodiment, the driving device of this embodiment and the blood pump having the driving device of this embodiment also have similar effects to the first embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种驱动装置(10)和血泵(1)。驱动装置(10)包括壳体(100)、转轴(200)、第一转子(300)、第一轴套(400)、第二轴套(500)和限位部件(600),第一转子(300)固接于转轴(200)的一端,第一转子(300)具有球头部(310),第一轴套(400)开设有具有内凹的球面槽壁(412)的凹槽(410),球头部(310)能够活动地设置于凹槽(410)内,转轴(200)能够转动地穿设于第二轴套(500),限位部件(600)固接于转轴(200),限位部件(600)位于第二轴套(500)和第一转子(300)之间,限位部件(600)能够与第二轴套(500)抵接。血泵(1)包括驱动装置(10)和叶轮(20)。

Description

驱动装置和血泵
本申请要求于2022年07月08日在中国专利局提交的、申请号为CN202210801382.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,特别是涉及一种驱动装置和血泵。
背景技术
血泵被设计为经皮插入患者的血管中,例如大腿或腋窝的动脉或静脉的血管内,可以被前探入患者的心脏中以作为左心室辅助设备或右心室辅助设备起作用。
血泵通常包括驱动装置和叶轮,叶轮与驱动装置的驱动轴连接,为了实现驱动轴的稳定转动,通常需要增加对驱动轴进行限位的部件,导致驱动装置的结构复杂,加大了驱动装置的装配难度。
发明内容
基于此,本申请提供了一种较易装配的驱动装置和血泵。
本申请第一方面的实施例提供了一种驱动装置,包括:
壳体;
用于与叶轮连接的转轴,所述转轴能够转动地安装于所述壳体;
第一转子,固接于所述转轴的一端,所述第一转子具有球头部,所述球头部沿所述转轴的轴线凸出;
第一轴套,所述第一轴套安装于所述壳体,所述第一轴套开设有具有内凹的球面槽壁的凹槽,其中,所述球头部能够活动地设置于所述凹槽内,且所述球头部能够与所述球面槽壁抵接;
第二轴套,所述第二轴套安装于所述壳体,其中,所述转轴能够转动地穿设于所述第二轴套,所述第一转子位于所述第一轴套和所述第二轴套之间;
限位部件,所述限位部件固接于所述转轴,所述限位部件位于所述第二轴套和所述第一转子之间,所述限位部件能够与所述第二轴套抵接。
本申请第二方面的实施例提供了一种血泵,包括叶轮,以及如第一方面所述的驱动装置;所述转轴与所述叶轮连接,且所述转轴能够带动所述叶轮转动。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的血泵的结构示意图;
图2为图1所示的血泵省略了套管、叶轮和部分导管的剖视图;
图3为图1中的血泵的转轴、止推环、第一转子、第二转子、第一轴套和第二轴套组装在一起的剖视图;
图4为图2所示的A部的局部放大图;
图5为图2所示的第一转子的第一飞轮的结构示意图;
图6为图5所述的第一飞轮的剖视图;
图7为图6中B处的局部放大图;
图8为图2中的第一轴套的结构示意图;
图9为图8中的第一轴套的剖视图;
图10为图2所示的血泵的固定座的结构示意图;
图11为图2所示的血泵的局部放大图;
图12为图2所示的血泵的第二轴套的结构示意图;
图13为图1所示的血泵的定子和导磁件的组装在一起的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图即实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请的技术方案,下面结合具体附图及实施例来进行说明。
在介入医疗领域,通常定义器械距操作者近的一端为近端,距操作者远的一端为远端。
现对本发明实施例中的血泵1和驱动装置10进行说明。
请参阅图1,血泵1包括驱动装置10和叶轮20,驱动装置10与叶轮20传动连接,驱动装置10能够驱动叶轮20转动。
具体地,血泵1还包括固接于驱动装置10的远端的套管40。叶轮20能够转动地收容于套管40中。其中,套管40具有血液入口41和血液出口42。叶轮20转动时,血液从血液入口41流入套管40中,再从血液出口42流出。在一个实施例中,套管40延伸穿设于心脏瓣膜,诸如主动脉瓣膜,血液入口41位于心脏内,血液出口42和驱动装置10位于心脏外的诸如主动脉的血管中。
具体地,血泵1还包括导管50,导管50与驱动装置10的近端连接。其中,导管50用于容置各种供应管线。例如,供应管线包括用于与驱动装置10电连接的导线以及用于给血泵1通入冲洗液的清洗管线。可选地,冲洗液为生理盐水、含有肝素生理盐水或葡萄糖等。
请参阅图2至图4,驱动装置10包括壳体100、转轴200、第一转子300、第一轴套400、第二轴套500和限位部件600。
壳体100大致为两端开口的筒状壳体。壳体100的远端与套管40固接,近端与导管50固接。壳体100具有内腔。具体地,壳体100内设有分隔环110,分隔环110将壳体100的内腔分隔成限位腔102和容置腔103。在图示的实施例中,限位腔102和容置腔103沿壳体100的轴向设置。
转轴200呈细长状。转轴200能够转动地安装于壳体100,转轴200用于与叶轮20连接。在图示的实施例中,转轴200大致沿壳体100的轴向延伸,或者说,转轴200的轴线的延伸方向与壳体100的轴向大致一致,因此,限位腔102和容置腔103大致沿转轴200的轴线设置。转轴200穿设于限位腔102,部分收容于容置腔103,部分位于壳体100外或 者说部分延伸至套管40内。具体地,转轴200的用于连接叶轮20的一端为连接端210。
在一些实施例中,转轴200为陶瓷材料制成。相比金属材料,陶瓷的加工精度较高,生物相容性、机械强度较高,且具有较好的耐磨性和耐腐蚀性。
第一转子300固接于转轴200的一端,具体地,第一转子300固接于转轴200的远离连接端210的一端。第一转子300具有球头部310,球头部310沿转轴200的轴线朝远离连接端210的方向凸出。在图示的实施例中,第一转子300位于壳体100中。第一转子300位于容置腔103内。第一转子300能够相对壳体100转动,并且能够带动转轴200转动。
具体地,驱动装置10还包括定子700,定子700能够驱动第一转子300转动。在图示的实施例中,定子700固定地安装于壳体100内,定子700具体位于容置腔103中,转轴200能够转动地穿设于定子700。在其中一个实施例中,第一转子300具有磁性,定子700能够产生驱动第一转子300转动的旋转磁场。
具体地,第一转子300包括第一飞轮320和第一磁体330,第一飞轮320固接于转轴200,第一磁体330固接于第一飞轮320上。第一磁体330和第一飞轮320共同构成第一转子300的转子本体。其中,第一磁体330为环状的海尔贝克阵列磁铁。具体地,球头部310设于第一飞轮320上。通过设置第一飞轮320可以增强第一磁体330与转轴200的连接强度,还能够减少转轴200在转动过程中的晃动,使整个转轴200在转动过程中更加稳定。
具体地,请一并结合图5,第一飞轮320包括第一盘状部321、第一内置管322和第一外置管323,第一内置管322和第一外置管323两者均为圆管状结构,第一盘状部321为环形圆盘结构。第一内置管322和第一外置管323的一端均与第一盘状部321固接。第一内置管322和第一外置管323位于第一盘状部321的同一侧且共轴设置,第一外置管323的内径大于第一内置管322的外径,第一内置管322至少部分收容于第一外置管323,第一外置管323和第一内置管322之间形成容置第一磁体330的第一环形腔324。第一环形腔324的形状与第一磁体330的形状相适配,以方便第一磁体330的安装和定位。如此设置能够使第一飞轮320对第一磁体330起到限位作用,不仅方便第一磁体330的安装,而且也使得第一磁体330和第一飞轮320结合更加稳固。
具体地,转轴200的远离连接端210的一端固定地收容于第一内置管322中,即转轴200未穿过第一盘状部321,如此可以将驱动装置10设计得更短。其中,球头部310位于第一盘状部321的背离第一内置管322的一侧。
请一并结合图6和图7,具体地,第一转子300还包括一端固接于转子本体的连接柱部340,球头部310形成于连接柱部340的远离转子本体的一端端部。换而言之,连接柱部340的远离球头部310的一端固接于第一飞轮320(具体为第一盘状部321)。连接柱部340的轴线与转轴200的轴线重合。在图示的实施例中,球头部310大致为半球形;球头部310具有球冠面311及与球冠面311连接的圆形底面,圆形底面与连接柱部340的端面连接,连接柱部340与球头部310共轴,且连接柱部340的靠近球头部310的一端的端面的直径与圆形底面的直径相等。
需要说明的是,第一飞轮320不限于为上述结构,在一些实施例中,第一飞轮320不具有第一外置管323;在一些实施例中,第一飞轮320不具有第一外置管323和第一内置管322,此时,转轴200固定地穿设于第一盘状部321的中心。相对于仅具有第一盘状部321的第一飞轮320,设置第一内置管322能够使第一飞轮320与转轴200更加稳定地连接。
请参考图2和图3,第一轴套400和第二轴套500均安装于壳体100。具体地,第一轴套400收容于容置腔103内,第二轴套500收容于限位腔102内。第一轴套400和第二轴套500均固接于壳体100。第一轴套400和第二轴套500沿壳体100的轴向间隔设置,转轴200能够转动地穿设于第二轴套500,第二轴套500较第一轴套400更靠近转轴200的连接端210。第一转子300位于第一轴套400和第二轴套500之间;定子700也位于第一轴套400和第二轴套500之间。
具体地,第一轴套400开设有凹槽410,凹槽410具有内凹的球面槽壁412。第一转子 300的球头部310能够活动地设置于凹槽410内,且球头部310能够与球面槽壁412抵接。凹槽410能够对第一转子300的球头部310进行支撑和限位,以限制第一转子300和转轴200沿转轴200的轴线朝远离叶轮20的方向移动的范围,同时,限制转轴200在转轴200的径向上的摆动范围。
请一并结合图8和图9,具体地,连接柱部340部分收容于凹槽410,凹槽410具有槽口413,连接柱部340穿设于槽口413。球头部310在转轴200的轴线方向上的长度h小于凹槽410的深度s(凹槽410的深度s即为凹槽410的槽口413到球面槽壁412的最大距离),以更好地将球头部310限制在凹槽410内,以及减小第一转子300及转轴200的径向摆动范围。在图示的实施例中,球面槽壁412的半径大于球头部310的半径,即球面槽壁412所在的球体的半径大于球头部310所在的球体的半径。球面槽壁412在第一轴套400的轴向上的长度L小于凹槽410的深度s。
具体地,凹槽410的槽口413处设置倒圆,即凹槽410的槽口413处的槽壁做了倒圆处理,从而以避免连接柱部340被具有棱角的凹槽410的槽口413所刮伤和磨损。
具体地,球头部310设有金刚石涂层,以使其表面光滑,提高耐磨性。
具体地,第一轴套400还开设有与凹槽410连通的通液孔420。其中,通液孔420能够与导管50中的清洗管线流体连通,以使冲洗液能够通过通液孔420进入到凹槽410内。冲洗液进入到凹槽410的槽壁和球头部310之间能够起到润滑的作用,以减小球头部310和凹槽410的槽壁之间的摩擦,从而降低球头部310和第一轴套400的磨损。
具体地,通液孔420的一个开口421位于球面槽壁412的中心位置,以使从通液孔420进入凹槽410内的冲洗液尽可能地对球头部310提供一个轴向冲力。更具体地,通液孔420的中心轴线和球面槽壁412围设成的腔体的中心轴线重合,以使通液孔420为直孔以降低冲洗液在通液孔420中的能量消耗。
具体地,通液孔420的位于球面槽壁412上的开口421的口径为球头部310所在球体的直径的1/9~1/3。在图示的实施例中,由于通液孔420的孔径恒定,也即通液孔420的孔径为球头部310所在球体的直径的1/9~1/3。通液孔420的位于球面槽壁412上的开口421的口径太大会导致球头部310与球面槽壁412的接触面减少(导致单位面积受到的压力较大),会增大球面槽壁412对球头部310的磨损;开口421的口径太小会影响从通液孔420进入凹槽410内的冲洗液的量,而进入凹槽410内的冲洗液一方面给需要给球头部310一冲力,同时进入到球头部310和球面槽壁412之间以起到润滑作用,以减小球头部310和球面槽壁412之间的摩擦系数,因此,进入凹槽410内的冲洗液的量不宜太小。
请一并结合图2、图4和图10,具体地,驱动装置10还包括固定座810,固定座810固接于壳体100。固定座810上开设有安装腔811和与安装腔811连通的进液孔812,第一轴套400安装于安装腔811中。其中,通液孔420与进液孔812连通。进液孔812的远离安装腔811的一端用于与导管50的清洗管线连通,以便于冲洗液能够通过进液孔812、通液孔420流入凹槽410的槽壁和球头部310之间,然后流入壳体100的内腔内。
具体地,安装腔811具有腔底8111,进液孔812的一个开口8121(见图4)位于安装腔811的腔底8111,安装腔811内设有支撑台阶8112,支撑台阶8112与第一轴套400抵接,以使第一轴套400与腔底8111间隔一段距离,以更好地确保冲洗液流通的通畅性。具体地,支撑台阶8112与第一轴套400的背离第二轴套500的一面相抵接。
具体地,固定座810还开设有分流道813,分流道813与进液孔812流体连通,以使流经进液孔812的流体(例如冲洗液)还能够通过分流道813流到壳体100内。具体地,分流道813的一端连通于第一轴套400与安装腔811的腔底8111之间的间隙,另一端连通于容置腔103。图示的实施例中,分流道813为安装腔811的腔壁局部凹陷形成。换而言之,在通常状态下,冲洗液从进液孔812进入安装腔811后分为两股,一股通过通液孔420流入第一轴套400的凹槽410,另一股通过分流道813流出。设置分流道813能够在球头部310封堵了通液孔420的情况下保证冲洗液流通。
在图示的实施例中,分流道813的数量为两个,两个分流道813相对设置。可以理解,分流道813的数量可以根据设计需要进行调整,例如,在一些实施例中,分流道813的数量也可以为一个或者大于两个。
请结合图2和图11,第二轴套500抵接于分隔环110。在图示的实施例中,第二轴套500收容于限位腔102内,通过分隔环110以便于对第二轴套500进行定位,能够方便第二轴套500的装配。其中,第二轴套500开设有轴孔510,转轴200能够转动地穿设于轴孔510。在图示的实施例中,轴孔510的中心轴线与第一轴套400的通液孔420的中心轴线重合。第二轴套500的轴孔510的孔壁和转轴200之间具有供流体流通的间隙。其中,进入容置腔103内的冲洗液能够流经转轴200和轴孔510的孔壁之间的间隙而流出壳体100。
限位部件600固接于转轴200,限位部件600位于第二轴套500和第一转子300之间,限位部件600能够与第二轴套500抵接,从而限制转轴200沿转轴200的轴线朝靠近第二轴套500的方向移动的范围。在图示的实施例中,定子700位于第一转子300和限位部件600之间。
请参考图2、图3和图11,限位部件600包括止推环610和第二转子620,第二转子620固接于转轴200,止推环610固接于第二转子620和转轴200中的至少一个上。换而言之,止推环610可以仅与第二转子620直接固定,也可以仅与转轴200直接固定,也可以同时与第二转子620和转轴200都直接固定。由于第二转子620固接于转轴200,而止推环610固接于第二转子620和转轴200中的至少一个上,使得止推环610、转轴200与第二转子620三者同步转动和移动。其中,止推环610位于第二转子620和第二轴套500之间,止推环610能够与第二轴套500抵接,以限制转轴200沿其轴向朝靠近叶轮20的方向移动的范围。
此外,第一转子300固接于转轴200的一端,第一转子300的球头部310设置在第一轴套400的凹槽410中,并能够与凹槽410的球面槽壁412抵接,以限制转轴200沿转轴200的轴线朝远离叶轮20的方向移动的范围,从而实现对转轴200在转轴200的轴线上的限位;同时由于转轴200穿设于第二轴套500,且由于球头部310设置于第一轴套400的凹槽410内,第一轴套400的凹槽410的槽壁还能够限制球头部310在转轴200的径向上的摆动范围,从而实现对转轴200的径向摆动范围进行整体限制。换而言之,上述设计不仅实现了对转轴200的轴向限位,还实现了对转轴200的径向限位。
第二转子620收容于容置腔103,分隔环110位于第二转子620和第二轴套500之间。具体地,第二转子620包括第二飞轮621和第二磁体622,第二飞轮621固接于转轴200上,第二磁体622固定于第二飞轮621。通过设置第二飞轮621可以增强第二磁体622与转轴200的连接强度;另外还能够减少转轴200在转动过程中的晃动,使整个转轴200在转动过程中更加稳定。
可选地,第二磁体622为环状的海尔贝克阵列磁铁。
具体地,第二飞轮621包括第二盘状部6211、第二内置管6212和第二外置管6213,第二内置管6212和第二外置管6213两者均为圆管状结构,第二盘状部6211为环形圆盘结构。第二内置管6212和第二外置管6213均与第二盘状部6211固接。第二外置管6213环绕第二盘状部6211设置,第二内置管6212和第二外置管6213两者同轴设置,转轴200穿设于第二内置管6212中、并与第二内置管6212固定连接。第二内置管6212和第二外置管6213之间形成有第二环形腔。第二磁体622容置在第二环形腔中。第二环形腔的形状与第二磁体622相适配,以方便第二磁体622的安装和定位。如此设置能够使第二飞轮621对第二磁体622起到限位作用,不仅方便第二磁体622的安装,而且也使得第二磁体622和第二飞轮621结合更加稳固。
需要说明的是,第二飞轮621不限于为上述结构,在一些实施例中,第二飞轮621不具有第二外置管6213;在一些实施例中,第二飞轮621不具有第二内置管6212和第二外 置管6213,此时,转轴200固定地穿设于第二盘状部6211的中心。相对于仅具有第二盘状部6211的第二飞轮621,设置第二内置管6212能够使第二飞轮621与转轴200更加稳定地连接。
在图示的实施例中,止推环610为形成于第二飞轮621的背离定子700的一侧的环形凸起,更具体地,止推环610设置在第二盘状部6211的背离第二内置管6212的一侧。即止推环610和第二飞轮621为一体成型结构,形成一个整体,由于血泵1的整体体积小,止推环610的体积更小,加工精度难,且装配难度大,将止推环610和第二飞轮621一体成型,方便安装,且省去粘接操作。
可以理解,在其他实施例中,止推环610和第二转子620也可以在装配之前为分体结构,此时,止推环610可以通过粘结或者焊接的方式和第二转子620和转轴200中的至少一个固定在一起。
具体地,止推环610与第二轴套500抵接时,止推环610至少部分位于分隔环110的内环中,止推环610与分隔环110的内环壁之间具有供流体流通的间隙,且分隔环110与第二转子620间隔一段距离。通过使止推环610与分隔环110的内环壁之间具有供流体流通的间隙,从而以使冲洗液能够通过止推环610与分隔环110的内环壁之间的间隙流入第二轴套500的轴孔510中,即实现第二轴套500的轴孔510和容置腔103之间的流体连通;止推环610与第二轴套500抵接时使分隔环110与第二转子620间隔一段距离,以避免在止推环610与第二轴套500抵接时第二转子620和分隔环110接触而发生摩擦而造成磨损。
具体地,止推环610大致为环状,止推环610的中心轴线与转轴200的轴线重合。止推环610的外径小于分隔环110的内径,从而以使止推环610与分隔环110的内环壁之间具有供流体流通的间隙。在其它实施例中,止推环610还可以由多个扇环排列而成,该多个扇环沿环绕转轴200均匀间隔设置一周,或者,可以理解为由周向离散设置的多个扇环排列而成。
具体地,止推环610沿转轴200的轴线的厚度大于分隔环110沿转轴200的轴线的厚度,从而以使止推环610与第二轴套500抵接时使分隔环110与第二转子620间隔一段距离。可以理解,在一些实施例中,也可以使止推环610沿转轴200的轴线的厚度小于或等于分隔环110沿转轴200的轴线的厚度,此时,可以将第二转子620和止推环610在沿转轴200的轴线方向上间隔一段距离,该距离足以使止推环610与第二轴套500抵接时分隔环110与第二转子620间隔一段距离即可。
具体地,请一并结合图12,第二轴套500的朝向止推环610的一面局部凹陷形成导流槽530,导流槽530与第二轴套500的轴孔510连通;止推环610与第二轴套500抵接时,部分导流槽530未被止推环610覆盖,从而当止推环610与第二轴套500抵接时,虽然止推环610封堵第二轴套500的轴孔510和转轴200之间的间隙,但是未被止推环610覆盖的导流槽530可以在止推环610与第二轴套500抵接时实现流体连通,保证冲洗液流通的通畅性;另外,通过在第二轴套500的朝向止推环610的一面局部凹陷形成导流槽530,以便于冲洗液能够更好地流入至止推环610和第二轴套500之间,以起到对止推环610和第二轴套500的接触表面的润滑作用,减小止推环610和第二轴套500之间的摩擦,减小因止推环610和第二轴套500之间的摩擦而导致的磨损问题,以及对止推环610和第二轴套500起到散热作用。
具体地,止推环610具有止挡面611,止挡面611与转轴200的轴线垂直,第二轴套500具有止位面520,止位面520与第二轴套500的轴孔510的中心轴线垂直,止位面520与止挡面611相对,止位面520能够与止挡面611抵接,以限制转轴200沿转轴200的轴线朝靠近叶轮20的方向的移动。由于止挡面611与转轴200的轴线垂直,止位面520与第二轴套500的轴孔510的中心轴线垂直,转轴200能够转动地穿设于第二轴套500的轴孔510,从而在转轴200正常工作且止推环610与第二轴套500抵接时,止挡面611和止位面520能够面面接触,能够减小止推环610和第二轴套500摩擦而造成的磨损。具体地,止 位面520与分隔环110抵接。导流槽530为止位面520的局部凹陷形成。
具体地,止挡面611和止位面520中的至少一个的粗糙度小于或等于0.1微米。在一些实施例中,止挡面611和止位面520的粗糙度均小于或等于0.1微米。在一些实施例中,止挡面611和止位面520中的一个的粗糙度小于或等于0.1微米。通过减小止挡面611和止位面520中的至少一个的粗糙度能够有效减小止挡面611和止位面520之间的摩擦力,降低因第二轴套500和止推环610之间的摩擦导致的磨损问题。
在一些实施例中,止挡面611和止位面520中的至少一个为陶瓷面。陶瓷的加工精度较高,具有较高的生物相容性、较高的机械强度、较好的耐磨性和耐腐蚀性。此时,止推环610和第二轴套500的材质可以为陶瓷,或者,通过设置陶瓷涂层的方式实现止挡面611和止位面520中的至少一个为陶瓷面。在一些实施例中,止挡面611的材料为金刚石,以使得止挡面611具有较高的硬度,较为光滑的表面,且抗磨损,此时,通过设置金刚石涂层的方式实现止挡面611的材料为陶瓷面。
具体地,请参考图2和图13,定子700包括沿转轴200的轴线设置的第一定子单元710和第二定子单元720,第一定子单元710能够驱动第一转子300转动,第二定子单元720能够驱动第二转子620转动。具体地,第一定子单元710能够产生驱动第一转子300转动的旋转磁场,第二定子单元720能够产生驱动第二转子620转动的旋转磁场。第一定子单元710和第二定子单元720均固定地收容于壳体100的容置腔103内。转轴200能够转动地穿设于第一定子单元710和第二定子单元720。其中,第一定子单元710和第二定子单元720均位于第一转子300和第二转子620之间。具体地,第一转子300、第二转子620、第一定子单元710和第二定子单元720均位于第一轴套400和第二轴套500之间;第一转子300靠近第一轴套400设置,第二转子620靠近第二轴套500设置。换而言之,第一轴套400、第一转子300、第一定子单元710、第二定子单元720、第二转子620和第二轴套500沿转轴200的轴线依次设置,其中,第二轴套500最靠近转轴200的连接端210。
其中,第一定子单元710和第二定子单元720均包括磁芯和线圈,线圈缠绕于磁芯上。具体地,第一定子单元710包括第一磁芯711和第一线圈712,第一线圈712缠绕于第一磁芯711上。第一磁芯711为多个,多个第一磁芯711环绕转轴200的轴线设置一周。每个第一磁芯711设有一个第一线圈712。
第二定子单元720的结构与第一定子单元710的结构相似。第二定子单元720包括第二磁芯721和第二线圈722,第二线圈722缠绕于第二磁芯721上。第二磁芯721为多个,多个第二磁芯721环绕转轴200的轴线设置一周。每个第二磁芯721设有一个第二线圈722。
具体地,驱动装置10还包括固接于壳体100的导磁件820,第一定子单元710的第一磁芯711和第二定子单元720的第二磁芯721均与导磁件820固接。具体地,导磁件820固定地收容于壳体100内,例如卡接于壳体100的内侧壁。转轴200能够转动地穿设于导磁件820。第一磁芯711的一端与导磁件820固接,第一转子300靠近第一磁芯711的另一端设置;第二磁芯721的一端与导磁件820固接,第二转子620靠近第二磁芯721的另一端设置。
导磁件820起到闭合磁路的作用,以促进和增加磁通量的产生,提高耦合能力,因此,设置导磁件820能够起到闭合第一定子单元710和第一转子300之间的磁路的作用、闭合第二定子单元720和第二转子620之间的磁路的作用,增加磁通量,进而导磁件820的设置有利于减小驱动装置10的整体直径。另外,将第一定子单元710的第一磁芯711和第二定子单元720的第二磁芯721均与导磁件820固接,还能够实现第一定子单元710和第二定子单元720的定位和安装,降低了第一定子单元710和第二定子单元720的装配难度。同时,上述方式设置的导磁件820还能够减少壳体100内的定位结构的设置,从而简化壳体100的结构,简化整个驱动装置10的装配过程。
具体地,导磁件820包括两个导磁板821,两个导磁板821层叠,其中一个导磁板821与第一定子单元710的第一磁芯711固接,另一个导磁板821与第二定子单元720的第二 磁芯721固接,转轴200能够转动地穿设于两个导磁板821。具体地,两个导磁板821在装配之前为分体式,通过将导磁件820设置成在装配前为分体的两个导磁板821,在装配驱动装置10时,可以先将第一磁芯711固接于导磁板821,第二磁芯721固接于另一个导磁板821,然后将两个导磁板821层叠,如此,能够方便第一磁芯711和第二磁芯721分别装配至两个导磁板821,能够使第一磁芯711和第二磁芯721装配更加方便。
具体地,两个导磁板821固接,从而使得第一定子单元710、第二定子单元720和导磁件820形成一个整体而装配至壳体100内,使得定子700的装配更加容易。例如,两个导磁板821可以通过胶黏或焊接的方式连接在一起。可以理解,在其他实施例中,两个导磁板821没有固接,而是相互接触。
需要说明的是,导磁件820不限于上述由两个分体的导磁板821组合而成的方式,导磁件820还可以为一板状结构,第一磁芯711和第二磁芯721均连接于导磁件820,即第一定子单元710和第二定子单元720共用一个导磁件820。
具体地,导磁板821的材质为硅钢,第一磁芯711和第二磁芯721的材质为硅钢。
第一磁芯711和第二磁芯721均为柱状结构,没有宽度较大的头部(即极靴)。相较于设置有极靴的磁芯,柱状结构的磁芯能够减少磁损耗,增加磁芯和磁体之间磁耦合密度,以增大定子700对磁体的扭矩(在相等电流条件下)。另外,没有头部的磁芯还能够大大降低因相邻磁芯之间的接触而导致局部磁短路、电机功率降低的问题。
可以理解,驱动装置10的结构不限于为上述结构。在一些实施例中,驱动装置10包括第一转子300、第二转子620和定子700,但定子700只有一个定子单元,即只有第一定子单元710,没有第二定子单元720,此时,第一定子单元710位于第一转子300和第二转子620之间,第一定子单元710能够同时驱动第一转子300和第二转子620转动。
可以理解,限位部件600不限于为上述结构,在一些实施例中,限位部件600仅为止推环610,不具有第二转子620,此时,定子700仅具有一个定子单元。止推环610固接于转轴200,且抵接第二轴套500,以限制转轴200沿其轴线朝靠近第二轴套500的方向移动的范围。在一些实施例中,限位部件600仅为第二转子620,不具有止推环610,此时,第二转子620固接于转轴200,定子700位于第一转子300和第二转子620之间,第二转子620远离定子700的一侧抵接第二轴套500或分隔环110,以限制转轴200沿其轴线朝靠近叶轮20的方向移动的范围。
由于本实施例的驱动装置具有与第一实施例的驱动装置相似的结构,因此,本实施例的驱动装置及具有本实施例的驱动装置的血泵也具有第一实施例相似的效果。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种驱动装置,其特征在于,包括:
    壳体;
    用于与叶轮连接的转轴,所述转轴能够转动地安装于所述壳体;
    第一转子,固接于所述转轴的一端,所述第一转子具有球头部,所述球头部沿所述转轴的轴线凸出;
    第一轴套,所述第一轴套安装于所述壳体,所述第一轴套开设有具有内凹的球面槽壁的凹槽,其中,所述球头部能够活动地设置于所述凹槽内,且所述球头部能够与所述球面槽壁抵接;
    第二轴套,所述第二轴套安装于所述壳体,其中,所述转轴能够转动地穿设于所述第二轴套,所述第一转子位于所述第一轴套和所述第二轴套之间;
    限位部件,所述限位部件固接于所述转轴,所述限位部件位于所述第二轴套和所述第一转子之间,所述限位部件能够与所述第二轴套抵接。
  2. 根据权利要求1所述的驱动装置,其特征在于:所述第一转子包括第一飞轮和第一磁体,所述第一飞轮固接于所述转轴,所述第一磁体固接于所述第一飞轮,所述球头部设于所述第一飞轮上;所述驱动装置还包括定子,所述定子位于所述第一转子和所述限位部件之间,所述定子能够产生驱动所述第一磁体转动的旋转磁场。
  3. 根据权利要求2所述的驱动装置,其特征在于:所述第一飞轮包括第一盘状部、第一内置管和第一外置管,所述第一内置管和所述第一外置管的一端均与所述第一盘状部固接,所述第一内置管和所述第一外置管位于所述第一盘状部的同一侧且共轴设置,所述第一外置管的内径大于所述第一内置管的外径,所述第一内置管至少部分收容于所述第一外置管,所述第一外置管和所述第一内置管之间形成容置所述第一磁体的第一环形腔;所述转轴具有用于连接所述叶轮的连接端,所述转轴的远离所述连接端的一端固定地收容于所述第一内置管中;所述球头部位于所述第一盘状部的背离所述第一内置管的一侧。
  4. 根据权利要求1所述的驱动装置,其特征在于:所述第一轴套还开设有通液孔,所述通液孔与所述凹槽连通,所述驱动装置还包括固定座,所述固定座固接于所述壳体,所述固定座上开设有安装腔和与所述安装腔连通的进液孔,所述第一轴套安装于所述安装腔,所述通液孔与所述进液孔流体连通。
  5. 根据权利要求4所述的驱动装置,其特征在于:所述安装腔具有腔底,所述进液孔的一个开口位于所述腔底,所述安装腔内设有支撑台阶,所述支撑台阶与所述第一轴套抵接,以使所述第一轴套与所述腔底间隔一段距离;
    和/或,所述固定座还开设有分流道,所述分流道与所述进液孔连通,以使进入所述进液孔的流体还能够通过所述分流道流入所述壳体内;
    和/或,所述通液孔的一个开口位于所述球面槽壁上,所述开口位于所述球面槽壁的中心位置,且所述开口的口径为所述球头部所在球体的直径的1/9~1/3。
  6. 根据权利要求4所述的驱动装置,其特征在于:所述凹槽的槽口处设置成倒圆;所述球头部设有金刚石涂层。
  7. 根据权利要求1所述的驱动装置,其特征在于:所述第一转子还包括转子本体和一端固接于所述转子本体的连接柱部,所述转子本体固接于所述转轴,所述球头部形成于所述连接柱部的远离所述转子本体的一端端部,所述球头部在所述转轴的轴线方向上的长度小于所述凹槽的深度,其中,所述连接柱部部分收容于所述凹槽。
  8. 根据权利要求7所述的驱动装置,其特征在于:所述球头部设置为半球形;所述球头部具有球冠面及与球冠面连接的圆形底面,圆形底面与所述连接柱部的端面连接,所述连接柱部与所述球头部共轴,且所述连接柱部的靠近所述球头部的一端的端面的直径与所述圆形底面的直径相等。
  9. 根据权利要求1所述的驱动装置,其特征在于:所述限位部件包括第二转子和止推环,所述第二转子固接于所述转轴,所述止推环固接于所述第二转子和所述转轴中的至少一个上,所述止推环能够与所述第二轴套抵接。
  10. 根据权利要求9所述的驱动装置,其特征在于:所述第二转子包括第二飞轮和第二磁体,所述第二飞轮固接于所述转轴,所述第二磁体固接于所述第二飞轮;所述驱动装置还包括定子,所述定子位于所述第一转子和所述第二转子之间,所述定子能够产生驱动所述第二磁体转动的旋转磁场,其中,所述止推环为形成于所述第二飞轮的背离所述定子的一侧的环形凸起。
  11. 根据权利要求9所述的驱动装置,其特征在于:所述壳体内设有分隔环,所述分隔环将所述壳体的内腔分隔成限位腔和容置腔,所述分隔环位于所述第二轴套和所述第二转子之间,所述第二轴套收容于所述限位腔内,并与所述分隔环抵接,所述第二转子收容于所述容置腔;
    所述止推环与所述第二轴套抵接时,所述止推环至少部分位于所述分隔环的内环中,所述止推环与所述分隔环的内环壁之间具有供流体流通的间隙,且所述分隔环与所述第二转子间隔一段距离。
  12. 根据权利要求11所述的驱动装置,其特征在于:所述止推环沿所述转轴的轴线的厚度大于所述分隔环沿所述转轴的轴线的厚度,以使所述止推环与所述第二轴套抵接时,所述分隔环与所述第二转子间隔一段距离。
  13. 根据权利要求9所述的驱动装置,其特征在于:所述止推环具有止挡面,所述止挡面与所述转轴的轴线垂直;所述第二轴套具有止位面,所述止位面与所述止挡面相对,所述止位面能够与所述止挡面抵接;所述止位面上设置有导流槽,所述导流槽与所述第二轴套的轴孔连通,以供冲洗液流通,且所述止位面与所述止挡面抵接时,部分所述导流槽未被所述止推环覆盖。
  14. 根据权利要求13所述的驱动装置,其特征在于:所述止挡面和所述止位面中的至少一个的粗糙度小于或等于0.1微米;或者,所述止挡面和所述止位面中的至少一个为陶瓷面。
  15. 根据权利要求9所述的驱动装置,其特征在于:所述止推环设置为环状,所述止推环的中心轴线与所述转轴的轴线重合;或者,所述止推环由多个扇环排列而成,该多个扇环沿环绕所述转轴均匀间隔设置一周。
  16. 根据权利要求10所述的驱动装置,其特征在于:所述止推环和所述第二转子的第二飞轮一体成型;或者,所述止推环通过粘结或焊接的方式和所述第二转子、所述转轴中的至少一个连接固定。
  17. 根据权利要求9所述的驱动装置,其特征在于:所述驱动装置还包括定子,所述定子包括沿所述转轴的轴线设置的第一定子单元和第二定子单元,所述第一定子单元和所述第二定子单元均位于所述第一转子和所述第二转子之间,所述第一定子单元能够驱动所述第一转子转动,所述第二定子单元能够驱动所述第二转子转动。
  18. 根据权利要求17所述的驱动装置,其特征在于:所述第一定子单元包括第一磁芯和所述第一线圈,所述第一线圈缠绕于所述第一磁芯上;所述第二定子单元包括第二磁芯和第二线圈,所述第二线圈缠绕于所述第二磁芯上;所述驱动装置还包括固接于所述壳体的导磁件,所述导磁件与所述第一磁芯和所述第二磁芯均固接。
  19. 根据权利要求18所述的驱动装置,其特征在于:所述导磁件包括两个导磁板,两个所述导磁板层叠,其中一个所述导磁板与所述第一磁芯固接,另一个所述导磁板与所述第二磁芯固接。
  20. 一种血泵,其特征在于:包括叶轮和驱动装置;其中,所述驱动装置包括:
    壳体;
    用于与叶轮连接的转轴,所述转轴能够转动地安装于所述壳体;
    第一转子,固接于所述转轴的一端,所述第一转子具有球头部,所述球头部沿所述转轴的轴线凸出;
    第一轴套,所述第一轴套安装于所述壳体,所述第一轴套开设有具有内凹的球面槽壁的凹槽,其中,所述球头部能够活动地设置于所述凹槽内,且所述球头部能够与所述球面槽壁抵接;
    第二轴套,所述第二轴套安装于所述壳体,其中,所述转轴能够转动地穿设于所述第二轴套,所述第一转子位于所述第一轴套和所述第二轴套之间;
    限位部件,所述限位部件固接于所述转轴,所述限位部件位于所述第二轴套和所述第一转子之间,所述限位部件能够与所述第二轴套抵接;
    所述转轴与所述叶轮连接,且所述转轴能够带动所述叶轮转动。
PCT/CN2023/098354 2022-07-08 2023-06-05 驱动装置和血泵 WO2024007793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210801382.2A CN115282470B (zh) 2022-07-08 2022-07-08 驱动装置和血泵
CN202210801382.2 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024007793A1 true WO2024007793A1 (zh) 2024-01-11

Family

ID=83822728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098354 WO2024007793A1 (zh) 2022-07-08 2023-06-05 驱动装置和血泵

Country Status (2)

Country Link
CN (2) CN116808430A (zh)
WO (1) WO2024007793A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116808430A (zh) * 2022-07-08 2023-09-29 深圳核心医疗科技股份有限公司 驱动装置和血泵
CN116407753A (zh) * 2022-12-09 2023-07-11 深圳核心医疗科技有限公司 驱动机构和血泵

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457816B1 (ko) * 2013-10-04 2014-11-03 지엠비코리아 주식회사 전동식 워터 펌프
US20150051436A1 (en) * 2012-02-16 2015-02-19 Abiomed Europe Gmbh Intravascular blood pump
CN110709114A (zh) * 2017-04-05 2020-01-17 毕瓦克公司 心脏泵驱动器和轴承
CN110768441A (zh) * 2018-07-25 2020-02-07 广东威灵汽车部件有限公司 电机、水泵及车辆
CN111375098A (zh) * 2018-12-29 2020-07-07 上海微创心力医疗科技有限公司 经皮血泵及其转子限位结构
US10722627B1 (en) * 2018-05-24 2020-07-28 RBTS Inc. Blood pump bearing with integrated fluid diffuser/inducer system
CN112472999A (zh) * 2020-12-22 2021-03-12 余顺周 血泵
CN112689716A (zh) * 2018-10-18 2021-04-20 波士顿科学国际有限公司 血泵轴轴承
CN114652952A (zh) * 2020-12-23 2022-06-24 上海微创心力医疗科技有限公司 轴承、血泵以及心室辅助循环装置
CN115282470A (zh) * 2022-07-08 2022-11-04 深圳核心医疗科技有限公司 驱动装置和血泵

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060089521A1 (en) * 2004-10-21 2006-04-27 Chang Sheldon S L Rotor driven linear flow blood pump
US8419609B2 (en) * 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
EP2719403B1 (en) * 2012-10-12 2016-09-28 Abiomed Europe GmbH Centrifugal blood pump
CN103438000B (zh) * 2013-07-24 2016-01-13 张翼 圆柱定轨转子泵及圆柱定轨转子泵组合增压内燃发动机
CN103362829A (zh) * 2013-08-03 2013-10-23 浙江威格泵业有限公司 一种屏蔽泵
CN105221234A (zh) * 2015-09-18 2016-01-06 河南省西峡汽车水泵股份有限公司 一种高稳定隔离式的电动水泵
EP3300749A1 (de) * 2016-09-29 2018-04-04 Berlin Heart GmbH Passiv magnetisch gelagerte blutpumpe
EP3205360B1 (en) * 2016-02-11 2018-08-29 Abiomed Europe GmbH Blood pump
EP3698820A1 (en) * 2019-02-22 2020-08-26 ECP Entwicklungsgesellschaft mbH Catheter device with a drive shaft cover

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150051436A1 (en) * 2012-02-16 2015-02-19 Abiomed Europe Gmbh Intravascular blood pump
KR101457816B1 (ko) * 2013-10-04 2014-11-03 지엠비코리아 주식회사 전동식 워터 펌프
CN110709114A (zh) * 2017-04-05 2020-01-17 毕瓦克公司 心脏泵驱动器和轴承
US20200171224A1 (en) * 2017-04-05 2020-06-04 Bivacor Inc. Heart pump drive and bearing
US10722627B1 (en) * 2018-05-24 2020-07-28 RBTS Inc. Blood pump bearing with integrated fluid diffuser/inducer system
CN110768441A (zh) * 2018-07-25 2020-02-07 广东威灵汽车部件有限公司 电机、水泵及车辆
CN112689716A (zh) * 2018-10-18 2021-04-20 波士顿科学国际有限公司 血泵轴轴承
CN111375098A (zh) * 2018-12-29 2020-07-07 上海微创心力医疗科技有限公司 经皮血泵及其转子限位结构
CN112472999A (zh) * 2020-12-22 2021-03-12 余顺周 血泵
CN114652952A (zh) * 2020-12-23 2022-06-24 上海微创心力医疗科技有限公司 轴承、血泵以及心室辅助循环装置
CN115282470A (zh) * 2022-07-08 2022-11-04 深圳核心医疗科技有限公司 驱动装置和血泵

Also Published As

Publication number Publication date
CN116808430A (zh) 2023-09-29
CN115282470A (zh) 2022-11-04
CN115282470B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2024007793A1 (zh) 驱动装置和血泵
WO2023098470A1 (zh) 血泵及其驱动装置
WO2023160422A1 (zh) 血泵及其驱动装置
CN115282467B (zh) 驱动机构和血泵
WO2023098471A1 (zh) 血泵及其驱动装置
WO2023160424A1 (zh) 血泵及其驱动装置
WO2024046499A1 (zh) 驱动机构和血泵
WO2024007790A1 (zh) 驱动装置和血泵
CN115414591B (zh) 驱动装置和血泵
WO2024021918A1 (zh) 驱动装置和血泵
US20200155740A1 (en) Centrifugal blood pump device
CN111840683A (zh) 介入式心室辅助装置
WO2024007792A1 (zh) 驱动装置和血泵
WO2024007791A1 (zh) 驱动装置和血泵
WO2023236759A1 (zh) 驱动装置和血泵
CN115192894A (zh) 驱动装置及血泵
WO2024007813A1 (zh) 驱动机构和血泵
CN116407753A (zh) 驱动机构和血泵
CN115006715A (zh) 驱动装置和血泵
CN114917469A (zh) 驱动装置和血泵
WO2023236717A1 (zh) 驱动装置和血泵
CN217430665U (zh) 驱动装置和血泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834567

Country of ref document: EP

Kind code of ref document: A1