WO2024007513A1 - 一种高密度气凝胶水性膏料及其制备方法 - Google Patents

一种高密度气凝胶水性膏料及其制备方法 Download PDF

Info

Publication number
WO2024007513A1
WO2024007513A1 PCT/CN2022/135114 CN2022135114W WO2024007513A1 WO 2024007513 A1 WO2024007513 A1 WO 2024007513A1 CN 2022135114 W CN2022135114 W CN 2022135114W WO 2024007513 A1 WO2024007513 A1 WO 2024007513A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
airgel
aerogel
water
aerogels
Prior art date
Application number
PCT/CN2022/135114
Other languages
English (en)
French (fr)
Inventor
孙光耀
鲁祥凯
云山
朱鹏
张静
王科铮
任天斌
Original Assignee
江苏集萃功能材料研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃功能材料研究所有限公司 filed Critical 江苏集萃功能材料研究所有限公司
Publication of WO2024007513A1 publication Critical patent/WO2024007513A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present invention relates to the field of thermal insulation materials, and more specifically, the present invention relates to an aerogel aqueous paste and a preparation method thereof.
  • Aerogel has a porous network structure and excellent thermal insulation properties, and the aerogel is light.
  • the density of silica aerogel is only 0.003g/cm 3 , which improves its application performance.
  • due to its density The difference with other materials (such as resin matrix) makes the dispersion of airgel and resin matrix extremely poor, and the agglomeration of airgel is obvious, which increases the difficulty of application.
  • organic solvents are often added, which destroys the network structure of the aerogels to a certain extent.
  • Chinese patent application document CN102459079A provides an airgel composition, which is composed of an airgel component, a binder and a surfactant. However, it does not solve the problem of dispersion of the airgel component during use.
  • silica airgel powder is directly added to the mixed liquid. Especially when the added silica airgel content is too much, it will inevitably increase Inhomogeneity of mixing, and in order to obtain a material with good uniformity, more operating time is required.
  • the first aspect of the present invention provides a high-density airgel aqueous paste.
  • the density of the paste is 0.85-1.17g/cm 3 .
  • the airgel in the paste The content is 4.6 ⁇ 15wt%.
  • the raw materials for preparing the high-density aerogel aqueous paste also include a dispersant, and the weight of the dispersant is 0.3 to 0.8% of the total weight of the raw materials except the dispersant.
  • the dispersant in this application is not particularly limited and can be selected from any one or more of anionic, cationic, nonionic, amphoteric, and electrically neutral categories, specifically including ammonium salt type dispersants and quaternary ammonium salt type. Any one or more of dispersants, heterocyclic dispersants, nitrate dispersants, carboxylates, sulfonates, sulfate ester salts, phosphate ester salts, etc.
  • the airgel powder meets at least one of the following conditions:
  • the average particle size is 1 to 15 ⁇ m
  • the tap density is 0.1-0.2g/cm 3 ; the tap density is preferably 0.15g/cm 3 ;
  • the airgel powder is hydrophobic airgel powder.
  • the hydrophobic airgel powder is selected from the group consisting of carbon aerogels, silica aerogels, graphene oxide aerogels, fullerene aerogels, fiber/silica aerogels, and three-dimensional aerogels.
  • Hydrophobic airgel powder can prevent water from entering the pores and avoid the huge capillary force generated in the pores when water evaporates, thereby destroying the airgel structure and causing collapse, causing it to lose its thermal insulation performance.
  • the water-repelling characteristics of hydrophobic aerogels make it difficult to fully disperse in water, and cannot fully exert its heat insulation and moisturizing effects in the system. After extensive research, the applicant found that using 0.3 to 0.8% dispersant can effectively solve this problem. problem, allowing the hydrophobic airgel powder to fully play its role in the formula system, further giving the insulation board a lower thermal conductivity.
  • the inorganic filler is selected from one or more of titanium oxide, vanadium oxide, calcium oxide, zirconium oxide, tungsten oxide, potassium hexatitanate, sodium titanate, and magnesium titanate.
  • the inorganic filler is potassium hexatitanate, it not only improves the tap density of the aerogel water-based paste, but also the thermal conductivity of potassium hexatitanate decreases at high temperatures, and the prepared masterbatch has stable thermal insulation properties. Quality guaranteed.
  • the density of the inorganic filler is 3.3-7.3g/cm 3 , and examples include 3.3g/cm 3 , 4.17g/cm 3 , 5.9g/cm 3 , 7.27g/cm 3 , etc. .
  • the second aspect of the present invention provides a method for preparing the high-density airgel aqueous paste, which includes the following steps: mixing airgel powder, water, dispersant, and inorganic filler at a rotation speed of 1000-5000 rpm. Mix for 10-180min.
  • the third aspect of the present invention provides an application of the high-density aerogel aqueous paste as a thermal insulation additive in polymer material processing.
  • the present invention has the following beneficial effects:
  • airgel water-based paste can solve the problems of dust pollution and difficulty in unloading during the mixing and granulation process of airgel powder and plastic matrix. It is environmentally friendly and easier to operate.
  • the present invention does not involve organic solvents, is safe and environmentally friendly, does not destroy the pore structure of the airgel, and can maximize the thermal insulation function.
  • the particle size of the silica airgel powder is 1 ⁇ m
  • the tap density is 0.1g/cm 3
  • the thermal conductivity is 0.018W/(m ⁇ K)
  • the inorganic filler is titanium oxide, and its density is 4.26 g/cm 3 .
  • the preparation method of the airgel water-based paste is as follows: mix silica airgel powder, water, titanium oxide, and dispersant tego 750W, mix at 2000 rpm for 5 minutes, and prepare an airgel content of 7.65wt%. Airgel water-based paste with a density of 0.85g/ cm3 .
  • the density of the prepared airgel water-based paste is 1.00g/cm 3 and the airgel content is 6.22wt%.
  • the density of the prepared airgel water-based paste is 1.17g/cm 3 and the airgel content is 5.02wt%.
  • An aerogel water-based paste the specific implementation method is the same as Example 1; the difference is that the amount of inorganic filler is 0 (the amount of dispersant is 0.65g), the prepared airgel content is 22.96wt%, and the density is 0.33g /cm 3 airgel water-based paste.
  • Comparative Example 1 does not add inorganic fillers, its aerogel content exceeds 20%, but its density is 0.33g/cm 3 , which only meets the high aerogel content, but does not meet the high density requirements.
  • Comparative Example 2 and Comparative Example 3 do not add inorganic fillers, and their densities are both lower than 0.85g/ cm3 .
  • the airgel content is required to be 4.6 to 15wt%, which is difficult to meet the high density requirements. Only high-density pastes can interact with polymers. The materials are dispersed more evenly when mixed, thereby achieving high thermal insulation performance.
  • Example 1 The paste (0.85g/cm 3 ) in Example 1 and the plastic resin matrix PE (density 0.9g/cm 3 ) were mixed at a weight ratio of 73.4:26.6, and then continued to melt and mix at 120°C for 15 minutes before casting. It is an insulation board (airgel content 6.91%).
  • the obtained PE insulation board containing aerogel was tested and found that the thermal conductivity was 0.041W/(m ⁇ K), the compressive strength was 25.5MPa, and the flexural strength was 10.2MPa.
  • the aerogel aqueous paste obtained in Comparative Example 1 (density is 0.33g/cm 3 ) and the plastic resin matrix PE (density is 0.9g/cm 3 ) are mixed at a weight ratio of 24.4:75.6, and then heated at 120°C. Continue melting and mixing for 15 minutes, and cast into an insulation board (airgel content 6.91%).
  • the obtained PE insulation board containing aerogel was tested and the average thermal conductivity was 0.18W/(m ⁇ K).
  • An airgel water-based paste the specific implementation is the same as Application Example 1; the difference is that the airgel powder is hydrophilic airgel powder.
  • the obtained PE insulation board containing aerogel was tested and the average thermal conductivity was 0.36W/(m ⁇ K). This is because when hydrophilic airgel powder is used to prepare the paste, water enters the micropores of the airgel and generates huge capillary force when it volatilizes, destroying the airgel structure and causing it to collapse, thereby losing efficient In terms of thermal insulation performance, the measured thermal conductivity is not much different from that of PE pure masterbatch.
  • An aerogel water-based paste the specific implementation is the same as Application Example 1; the difference is that the density of the airgel powder is 0.2g/cm 3 , the inorganic filler is tungsten oxide, and the density is 7.27g/cm 3 .
  • An airgel aqueous paste with an airgel content of 7.65wt% and a density of 1.36g/ cm3 was prepared and cast into a PE insulation board (airgel content 6.91%).
  • the density of the prepared airgel water-based paste is 0.38g/cm 3 and the airgel content is 21.32wt%.
  • the aerogel water-based paste When the aerogel water-based paste is mixed with the resin matrix PE, the overall distribution is poor, more agglomeration occurs, and the texture of the insulation board produced is uneven.
  • the obtained PE insulation board containing aerogel was tested and found that the average thermal conductivity was 0.14W/(m ⁇ K), the compressive strength was 13.7MPa, and the flexural strength was 5.5MPa, which was also worse than Application Example 1.
  • Application Comparative Example 1 only uses airgel powder and resin matrix to mix and melt to prepare an insulation board containing airgel. Because the density of airgel powder is too low, it is all on the top of the resin. The resulting insulation board The board texture is uneven and the thermal conductivity coefficient is 0.25W/(m ⁇ K), which is worse than the aerogel-containing insulation board with uniform texture in Application Example 2 (the thermal conductivity coefficient is 0.042W/(m ⁇ K)).
  • Application Comparative Example 2 uses low-density airgel paste and resin matrix in Comparative Example 1 to be mixed and melted to prepare an airgel-containing insulation board.
  • the dispersion effect is poor, and the obtained insulation board has Partial agglomeration occurs, and the thermal conductivity is 0.18W/(m ⁇ K), which is also worse than the insulation board obtained in Application Example 2. Therefore, the high solid content and high density aqueous airgel paste obtained by the present invention has very good application effect in polymer material processing.
  • Application Comparative Example 3 uses hydrophilic airgel powder instead of hydrophobic airgel powder. Although hydrophilic airgel powder has good dispersion in water-based pastes, due to the destruction of the airgel structure, the production process is difficult. The resulting insulation board is less effective.
  • Application Comparative Example 4 uses a paste with the same aerogel content and different densities as Application Example 1 to prepare an insulation board with the same airgel content.
  • Application Comparative Example 4 Due to the higher density, it is not evenly distributed, making the thermal conductivity of Application Comparative Example 4 slightly smaller. It is large, and its compressive resistance and bending resistance are relatively poor.
  • Application Comparative Example 5 uses a formula other than that of the present invention to prepare an insulation board with the same aerogel content as Application Example 1. The same problems as Application Example 4 occur. The thermal insulation performance, compression resistance and bending resistance are not as good as Application Example 1. .
  • the airgel water-based paste of the present application by adding appropriate inorganic fillers and controlling the weight ratio of airgel powder and inorganic filler, not only makes the density of the airgel water-based paste much greater than the density of the airgel powder, but also This makes the airgel more convenient for the application of downstream products, has better density adaptability with various commonly used materials (such as resin matrix), and avoids the problem of uniform mixing and dispersion.
  • it may be due to the airgel and Controlling the weight ratio of the inorganic fillers within this range not only solves the problem of agglomeration between the inorganic fillers and the airgel powders, but also makes the airgel powders have good dispersion and contact, achieving The purpose of thermal insulation.
  • the suitable inorganic fillers mentioned in this application refer to substances with certain infrared radiation functions, which can reduce the problem of performance degradation of airgel paste caused by the use of fillers.

Abstract

本发明涉及保温隔热材料领域,更具体地,本发明涉及一种高密度气凝胶水性膏料及其制备方法。所述膏料的密度为0.85~1.17g/cm 3,膏料中气凝胶含量为4.6~15wt%。本发明的气凝胶水性膏料与高分子基体(如PE、PP)等密度匹配性好,混合过程中不产生粉尘,能更好地分散于高分子基体中,大幅度提升了材料的隔热性能,解决了因气凝胶粉体密度过低与高分子混合困难以及产生粉尘污染的问题。

Description

一种高密度气凝胶水性膏料及其制备方法 技术领域
本发明涉及保温隔热材料领域,更具体地,本发明涉及一种气凝胶水性膏料及其制备方法。
背景技术
气凝胶具有多孔的网络结构,具有优异的隔热保温性能,且气凝胶质轻,二氧化硅气凝胶的密度仅为0.003g/cm 3,提高了其应用性能,然而由于其密度与其他材料(例如树脂基体)的相差性,使得气凝胶与树脂基体的分散性极差,气凝胶的团聚性明显,增加了应用的困难。且目前气凝胶在使用过程中,常常添加有机溶剂,在一定程度上破坏了气凝胶的网络结构。
中国专利申请文献CN102459079A提供了一种气凝胶组合物,由气凝胶成分、粘结剂以及表面活性剂构成,然而其并没有解决气凝胶成分在使用过程中分散性的问题。中国专利CN104496399B在保温隔热复合材料的制备方法中,将二氧化硅气凝胶粉体直接加入到混合液中,尤其是当加入的二氧化硅气凝胶含量过多时,其势必会增大混合的不均匀性,而为了获得均匀性好的材料,需要花费更多的操作时间。
发明内容
针对现有技术中存在的一些问题,本发明第一个方面提供了一种高密度气凝胶水性膏料,所述膏料的密度为0.85~1.17g/cm 3,膏料中气凝胶含量为4.6~15wt%。
优选的,制备原料包括重量比为x:y:z的气凝胶粉料、水和无机填料,x:y=0.30~0.50,x:z=0.06~0.32。
优选的,所述高密度气凝胶水性膏料的制备原料还包括分散剂,所述分散剂的重量为除分散剂以外的制备原料总重量的0.3~0.8%。
本申请中分散剂不做特别限定,选自阴离子型、阳离子型、非离子型、两性型、电中性型类别中任意一种或多种,具体包括铵盐型分散剂、季铵盐型分散剂、杂环型分散剂、啰盐型分散剂、羧酸盐、磺酸盐、硫酸酯盐、磷酸酯盐等中任意一种或多种。
优选的,所述气凝胶粉料满足如下条件的至少一种:
(a)平均粒径为1~15μm;
(b)振实密度为0.1~0.2g/cm 3;振实密度优选为0.15g/cm 3
(c)在25℃的导热系数小于0.024W/(m·K)。
优选的,所述气凝胶粉料为疏水型气凝胶粉料。
优选的,所述疏水型气凝胶粉料选自碳气凝胶、二氧化硅气凝胶、氧化石墨烯气凝胶、富勒烯气凝胶、纤维/二氧化硅气凝胶、三氧化二铝气凝胶、氧化钛气凝胶、氧化铜气凝胶、氧化锆气凝胶、聚合物气凝胶中一种或多种。疏水型气凝胶粉料能够阻止水进入孔道内,避免水分挥发时在孔道内产生巨大的毛细管力,进而破坏气凝胶结构,造成坍塌,使其丧失隔热保温性能。但是疏水型气凝胶排斥水的特性导致其在水中难以充分分散,在体系中无法充分发挥隔热保湿作用;本申请人经过大量探究发现,采用0.3~0.8%的分散剂能够有效解决这一问题,使得疏水型气凝胶粉料在配方体系中充分发挥作用,进一步赋予保温板材更低的导热系数。
优选的,所述无机填料选自氧化钛、氧化钒、氧化钙、氧化锆、氧化钨、六钛酸钾、钛酸钠、钛酸镁中一种或多种。当无机填料为六钛酸钾时,不仅提高了气凝胶水性膏料的振实密度,同时六钛酸钾在高温下的导热系数会下降,制备得到的母粒的保温隔热性能稳定,品质有保障。
在一种实施方式中,所述无机填料的密度为3.3-7.3g/cm 3,可以列举的有3.3g/cm 3,4.17g/cm 3,5.9g/cm 3,7.27g/cm 3等。
本发明第二个方面提供了一种所述高密度气凝胶水性膏料的制备方法,包括如下步骤:将气凝胶粉料、水、分散剂、无机填料混合,以1000-5000rpm的转速混合10-180min。
本发明第三个方面提供了一种所述高密度气凝胶水性膏料在高分子材料加工中作为保温隔热助剂的应用。
本发明与现有技术相比具有以下有益效果:
1.由于气凝胶水性膏料密度远大于气凝胶粉料,因而与其他材料(如树脂基体)复合时的密度匹配性更佳,可较好地解决因气凝胶密度太低导致的分散性差的问题,能够更加均匀地混合和分散物料。
2.采用气凝胶水性膏料可解决气凝胶粉体与塑料基体混合造粒过程中存在的粉尘污染、下料困难等问题,既环保,操作还更加简便。
3.本发明不涉及有机溶剂,安全环保的同时,不会破坏气凝胶气孔结构,可最大程度发挥保温隔热功能。
具体实施方式
以下通过具体实施方式说明本发明,但不局限于以下给出的具体实施例。
实施例1
一种气凝胶水性膏料,组成为30g二氧化硅气凝胶粉料,100g水,260g无机填料(二氧化硅气凝胶粉料与水的重量比为x:y=0.30,二氧化硅气凝胶粉料与无机填料的重量比为x:z=0.12),以及1.95g的分散剂tego 750W;所述分散剂的用量为除此之外的物料总量的0.5wt%。
其中,二氧化硅气凝胶粉料的粒径为1μm,振实密度为0.1g/cm 3,导热系数为0.018W/(m·K);所述无机填料为氧化钛,其密度为4.26g/cm 3
该气凝胶水性膏料的制备方法为:将二氧化硅气凝胶粉料、水、氧化钛、分散剂tego 750W混合,以2000rpm转速混合5min,制备成气凝胶含量为7.65wt%,密度为0.85g/cm 3气凝胶水性膏料。
实施例2
采用原料与实施例1一致,水的重量为100g;不同点在于,无机填料的重量为350g,使得x:y=0.3,x:z=0.09,以及分散剂用量为2.40g(重量为除此之外的物料总量的0.5wt%)。制备出的气凝胶水性膏料密度为1.00g/cm 3,气凝胶含量为6.22wt%。
实施例3
采用原料与实施例1一致,水的重量为100g;不同点在于,无机填料的重量为465g,使得x:y=0.3,x:z=0.07,以及分散剂用量为2.98g(重量为除此之外的物料总量的0.5wt%)。制备出的气凝胶水性膏料密度为1.17g/cm 3,气凝胶含量为5.02wt%。
实施例4-12
所用原料和产物信息见表1。
表1
Figure PCTCN2022135114-appb-000001
对比例1
一种气凝胶水性膏料,具体实施方式同实施例1;不同点在于,无机填料用量为0(分散剂用量为0.65g),制备成气凝胶含量为22.96wt%,密度为0.33g/cm 3气凝胶水性膏料。
对比例2
一种气凝胶水性膏料,具体实施方式同实施例1;不同点在于,制备原料为重量为4.85g的二氧化硅气凝胶粉料和100g的水(气凝胶粉与水的重量比为x:y=0.05),无机填料用量为0,以及0.52g的分散剂tego 750W,制备成气凝胶含量为4.6wt%,密度为0.71g/cm 3气凝胶水性膏料。
对比例3
一种气凝胶水性膏料,具体实施方式同实施例1;不同点在于,制备原料为重量为17.75g的二氧化硅气凝胶粉料和100g的水(气凝胶粉与水的重量比为x: y=0.18),无机填料用量为0,以及0.52g的分散剂tego 750W,制备成气凝胶含量为15wt%,密度为0.42/cm 3气凝胶水性膏料。
对比例1与实施例1相比,不添加无机填料,其气凝胶含量超过20%,密度却为0.33g/cm 3,只满足气凝胶高含量,但达不到高密度要求。对比例2和对比例3与实施例1相比,不添加无机填料,其密度均比0.85g/cm 3低。综上对比例,使用纯气凝胶粉或不添加无机填料的情况下,要求气凝胶含量为4.6~15wt%,均难以达到高密度的要求,而只有高密度的膏料才能与高分子材料混合时分散的更均匀,从而达到高隔热保温性能。
应用例1
采用实施例1中膏料(0.85g/cm 3)与塑料树脂基体PE(密度为0.9g/cm 3)以73.4:26.6重量比进行混合后,再在120℃下继续熔融混合15min,浇铸成型为保温板材(气凝胶含量6.91%)。
对获得的含气凝胶的PE保温板进行测试,导热系数为0.041W/(m·K),抗压强度25.5MPa,抗弯强度10.2MPa。
应用例2-4
采用实施例8中气凝胶膏料(ρ=1.00g/cm 3)与塑料树脂基体以50:50重量比混合后,在120℃下继续熔融混合15min,浇铸成型为含气凝胶的PE保温板(气凝胶含量6.91%),对获得的含气凝胶的PE保温板进行测试。
应用例2-4所用原料和产物测试结果如表2所示。
表2
Figure PCTCN2022135114-appb-000002
应用对比例1
直接采用气凝胶粉(振实密度为0.2g/cm 3)与塑料树脂基体PE(密度为0.9g/cm 3)以6.91:93.09重量比进行混合后,再在120℃下继续熔融混合15min, 浇铸成型为保温板材(气凝胶含量6.91%)。
直接添加气凝胶粉与树脂熔融混合,因气凝胶粉密度过低,与树脂基体混合十分差,气凝胶粉处于树脂上部,导致浇铸所得的保温板材质地均一性很差,进行导热系数测试,导热系数偏高,平均数据为0.25W/(m·K)。
应用对比例2
采用对比例1中所得气凝胶水性膏料(密度为0.33g/cm 3)与塑料树脂基体PE(密度为0.9g/cm 3)以24.4:75.6重量比进行混合后,再在120℃下继续熔融混合15min,浇铸成型为保温板材(气凝胶含量6.91%)。
气凝胶水性膏料与树脂基体密度相差较大,其分散效果比气凝胶粉好,但不如高密度气凝胶膏料,制得保温板质地均一性较差,存在部分团聚现象。对获得的含气凝胶的PE保温板进行测试,平均导热系数为0.18W/(m·K)。
应用对比例3
一种气凝胶水性膏料,具体实施方式同应用例1;不同点在于,气凝胶粉料采用亲水型气凝胶粉。制备成气凝胶含量为7.65wt%,密度为0.85g/cm 3气凝胶水性膏料,并浇铸成型为PE保温板材(气凝胶含量6.91%)。
对获得的含气凝胶的PE保温板进行测试,平均导热系数为0.36W/(m·K)。这是因为采用亲水型气凝胶粉制备膏料时,水进入气凝胶微孔中,并在挥发时产生巨大的毛细管力,破坏了气凝胶结构,使其坍塌,从而丧失高效的隔热保温性能,所测得的导热系数与PE纯母粒相差不大。
应用对比例4
一种气凝胶水性膏料,具体实施方式同应用例1;不同点在于,气凝胶粉料密度为0.2g/cm 3,无机填料为氧化钨,密度为7.27g/cm 3。制备成气凝胶含量为7.65wt%,密度为1.36g/cm 3气凝胶水性膏料,并浇铸成型为PE保温板材(气凝胶含量6.91%)。
与应用例1相比,虽然膏料、保温板中的气凝胶粉含量均相同,但密度要大更多,因此与PE混合时分散效果没有应用例1好,且部分未知存在团聚,使得保温板的性能下降。经测试,平均导热系数为0.11W/(m·K),抗压强度18.7MPa,抗弯强度8.6MPa,均比应用例1要差。
应用对比例5
一种气凝胶水性膏料,具体实施方式同应用例1;不同点在于,x:y=0.6,x:z=0.5,以及分散剂用量为1.4g(重量为除此之外的物料总量的0.5wt%)。制备出的气凝胶水性膏料密度为0.38g/cm 3,气凝胶含量为21.32wt%。
将所得膏料(0.65g/cm 3)与塑料树脂基体PE(密度为0.9g/cm 3)以29.1:70.9重量比进行混合后,再在120℃下继续熔融混合15min,浇铸成型为保温板材(气凝胶含量6.91%)。
气凝胶水性膏料与树脂基体PE混合时,整体分布较差,出现较多团聚现象,制得保温板质地不均。对获得的含气凝胶的PE保温板进行测试,平均导热系数为0.14W/(m·K),抗压强度13.7MPa,抗弯强度5.5MPa,同样比应用例1差。
应用对比例1与应用例2相比,仅采用气凝胶粉与树脂基体混合熔融制备含气凝胶的保温板,因气凝胶粉密度太低导致其均处于树脂上部,所制得保温板质地不均一,导热系数为0.25W/(m·K),比应用例2质地均一的含气凝胶的保温板(导热系数为0.042W/(m·K))效果差。应用对比例2与应用例2相比,采用对比例1中低密度的气凝胶膏料与树脂基体混合熔融制备含气凝胶的保温板,其分散效果较差,所制得保温板存在部分团聚现象,导热系数为0.18W/(m·K),也比应用例2所得保温板效果差。因此,本发明所得高固含、高密度的水性气凝胶膏料在高分子材料加工中的应用效果十分好。应用对比例3采用亲水型气凝胶粉替代疏水型气凝胶粉,虽然亲水型气凝胶粉在水性膏料中有良好的分散性,但由于气凝胶结构遭到破坏,制得的保温板效果较差。应用对比例4则是采用与应用例1同气凝胶含量不同密度的膏料制备相同气凝胶含量的保温板,因密度较大导致未能均匀分布,使得应用对比例4的导热系数稍大,且抗压性能和抗弯性能也相对较差。应用对比例5采用非本发明配方,制得与应用例1相同气凝胶含量的保温板,出现与应用对比例4相同的问题,保温性能、抗压性能以及抗弯性能均不如应用例1。
本申请的气凝胶水性膏料,通过加入合适的无机填料,并控制气凝胶粉料和无机填料的重量比,不仅使得气凝胶水性膏料密度远大于气凝胶粉料的密度,使得气凝胶更好地便于下游产品的应用,与各种常用材料(如树脂基体)拥有更好的密度适配性,避免了无法均匀混料和分散的问题,同时可能由于气凝胶和无机填料的重量比控制在该范围之内,不仅同时解决了无机填料之间以及气凝胶粉料 之间的团聚性,反而使得气凝胶粉料之间具有良好的分散和接触性,达到保温隔热的目的。此外,本申请中所提合适无机填料,是指具有一定红外辐射功能的物质,降低因使用填料导致气凝胶膏料性能下降的问题。

Claims (10)

  1. 一种高密度气凝胶水性膏料,其特征在于,所述膏料的密度为0.85~1.17g/cm 3,膏料中气凝胶含量为4.6~15wt%。
  2. 根据权利要求1所述的高密度气凝胶水性膏料,其特征在于,所述膏料的制备原料包括重量比为x:y:z的气凝胶粉料、水和无机填料,其中,x:y=0.3~0.5,x:z=0.06~0.32。
  3. 根据权利要求2所述的高密度气凝胶水性膏料,其特征在于,所述制备原料还包括分散剂,所述分散剂的重量为除分散剂以外的制备原料总重量的0.3~0.8%。
  4. 根据权利要求2或3所述的高密度气凝胶水性膏料,其特征在于,所述气凝胶粉料满足如下条件的至少一种:
    (a)平均粒径为1~15μm;
    (b)振实密度为0.1~0.2g/cm 3
    (c)在25℃导热系数小于0.024W/(m·K)。
  5. 根据权利要求4所述的高密度气凝胶水性膏料,其特征在于,所述气凝胶粉料为疏水型气凝胶粉料。
  6. 根据权利要求5所述的高密度气凝胶水性膏料,其特征在于,所述气凝胶粉料选自碳气凝胶、二氧化硅气凝胶、氧化石墨烯气凝胶、富勒烯气凝胶、纤维/二氧化硅气凝胶、三氧化二铝气凝胶、氧化钛气凝胶、氧化铜气凝胶、氧化锆气凝胶、聚合物气凝胶中一种或多种。
  7. 根据权利要求6所述的高密度气凝胶水性膏料,其特征在于,所述无机填料的密度为3.3-7.3g/cm 3
  8. 根据权利要求7所述的高密度气凝胶水性膏料,其特征在于,所述无机填料选自氧化钛、氧化钒、氧化钙、氧化锆、氧化钨、六钛酸钾、钛酸钠、钛酸镁中一种或多种。
  9. 一种根据权利要求1-8任一项所述的高密度气凝胶水性膏料的制备方法,其特征在于,包括如下步骤:将气凝胶粉料、水、分散剂、无机填料混合,以1000-5000rpm的转速混合10-180min。
  10. 一种根据权利要求1-8任一项所述的高密度气凝胶水性膏料在高分子材料加工中作为保温隔热助剂的应用。
PCT/CN2022/135114 2022-07-04 2022-11-29 一种高密度气凝胶水性膏料及其制备方法 WO2024007513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210776658.6A CN114874493B (zh) 2022-07-04 2022-07-04 一种高密度气凝胶水性膏料及其制备方法
CN202210776658.6 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024007513A1 true WO2024007513A1 (zh) 2024-01-11

Family

ID=82683543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135114 WO2024007513A1 (zh) 2022-07-04 2022-11-29 一种高密度气凝胶水性膏料及其制备方法

Country Status (2)

Country Link
CN (1) CN114874493B (zh)
WO (1) WO2024007513A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874493B (zh) * 2022-07-04 2022-09-30 江苏集萃功能材料研究所有限公司 一种高密度气凝胶水性膏料及其制备方法
CN116143486B (zh) * 2023-04-17 2023-08-22 柯灵爱尔(北京)环境技术中心 气凝胶保温石膏材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496399A (zh) * 2014-12-15 2015-04-08 苏州同玄新材料有限公司 一种气凝胶建筑保温隔热复合材料及其制备方法
CN108299875A (zh) * 2017-08-28 2018-07-20 优澎(嘉兴)新材料科技有限公司 无机绝热膏及其制备方法
CN114874493A (zh) * 2022-07-04 2022-08-09 江苏集萃功能材料研究所有限公司 一种高密度气凝胶水性膏料及其制备方法
CN115216124A (zh) * 2022-05-19 2022-10-21 江苏集萃功能材料研究所有限公司 一种高分散气凝胶母粒及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468907B (zh) * 2007-12-27 2012-03-07 上海暄洋化工材料科技有限公司 一种SiO2纳米复合绝热保温膏及其制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496399A (zh) * 2014-12-15 2015-04-08 苏州同玄新材料有限公司 一种气凝胶建筑保温隔热复合材料及其制备方法
CN108299875A (zh) * 2017-08-28 2018-07-20 优澎(嘉兴)新材料科技有限公司 无机绝热膏及其制备方法
CN115216124A (zh) * 2022-05-19 2022-10-21 江苏集萃功能材料研究所有限公司 一种高分散气凝胶母粒及其制备方法与应用
CN114874493A (zh) * 2022-07-04 2022-08-09 江苏集萃功能材料研究所有限公司 一种高密度气凝胶水性膏料及其制备方法

Also Published As

Publication number Publication date
CN114874493A (zh) 2022-08-09
CN114874493B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2024007513A1 (zh) 一种高密度气凝胶水性膏料及其制备方法
Ren et al. Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity
CN105349114A (zh) 掺杂氮化硼复合材料及其制备方法和应用
CN109437663B (zh) 一种具有近零介电常数温度系数的聚四氟乙烯基陶瓷复合材料及其制备方法
CN105802589A (zh) 一种高强度导热膜及其制备方法
WO2021164225A1 (zh) 一种高导热填料的化学和物理处理方法
CN111154167A (zh) 一种隔热聚乙烯复合材料及其制备方法
CN106366418A (zh) 纳米石墨负载石墨烯纳米带改性聚乙烯薄膜的方法
CN110041895B (zh) 一种储热传热材料及其制备方法
CN108249924B (zh) 一种碳化硅陶瓷及其制备方法和Al-SiC复合材料
JP7187919B2 (ja) 熱伝導性複合材料及びその製造方法
Thomas et al. Dielectric properties of PTFE loaded with micro-and nano-Sm 2 Si 2 O 7 ceramics
CN108659411A (zh) 一种硅酸钙填充含氟聚合物复合材料及其制备方法
CN105602007B (zh) 高分散性核壳型MH@CMSs阻燃剂的制备方法
CN109575482B (zh) 一种用于高频覆铜板的基板材料及其制备方法
CN115417676B (zh) 一种高导热六方氮化硼/立方氮化硼复合烧结体及其制备方法
CN110804234A (zh) 一种新型的石墨烯制备pptc过流保护元件的方法
CN113462171A (zh) 相变降温助剂母粒制备及其在加热不燃烟降温段的应用
JP5062978B2 (ja) 無機物膜の製造方法
KR20140066505A (ko) 계면을 이용한 에어로겔 복합 재료 제조 방법
KR102282500B1 (ko) 무기나노입자 분산을 통해 열전도도가 향상된 나노복합절연소재 및 그 제조방법
JP2005053752A (ja) 改質黒鉛粒子及びこの改質黒鉛粒子を配合した塗料
KR20210153335A (ko) 이중 분포를 갖는 탄소소재 조성물을 이용한 고강도 및 고열전도성 방열 부품의 제조방법 및 이로부터 제조되는 방열 부품
CN107841137A (zh) 一种含有纳米铜/聚酰亚胺的高介电复合材料及其制备方法
JP7438442B1 (ja) 窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950070

Country of ref document: EP

Kind code of ref document: A1