WO2024005671A1 - Способ переработки тяжелого углеводородного сырья - Google Patents

Способ переработки тяжелого углеводородного сырья Download PDF

Info

Publication number
WO2024005671A1
WO2024005671A1 PCT/RU2023/050146 RU2023050146W WO2024005671A1 WO 2024005671 A1 WO2024005671 A1 WO 2024005671A1 RU 2023050146 W RU2023050146 W RU 2023050146W WO 2024005671 A1 WO2024005671 A1 WO 2024005671A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
macropores
raw material
raw materials
pore volume
Prior art date
Application number
PCT/RU2023/050146
Other languages
English (en)
French (fr)
Inventor
Константин Владимирович ФЕДОТОВ
Сергей Евгеньевич КУЗНЕЦОВ
Original Assignee
Публичное акционерное общество "Газпром нефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2022117639A external-priority patent/RU2800374C1/ru
Application filed by Публичное акционерное общество "Газпром нефть" filed Critical Публичное акционерное общество "Газпром нефть"
Publication of WO2024005671A1 publication Critical patent/WO2024005671A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps

Definitions

  • the invention relates to the field of processing heavy hydrocarbon raw materials, including residual oil fractions using catalysts.
  • the first reaction zone contains a catalyst for removing metals, scales and salts, which catalyst may be selected from a catalyst consisting of alumina and cobalt, nickel, molybdenum or a catalyst consisting of aluminum oxide and nickel, molybdenum.
  • the second reaction zone contains dual activity metal removal and sulfur removal catalysts, which catalyst may be selected from an alumina-cobalt-nickel-molybdenum catalyst or an alumina-nickel-molybdenum catalyst.
  • the third zone contains catalysts that provide deep purification from sulfur, purification from nitrogen and carbon reduction through hydrogenation, while the catalyst consists of aluminum oxide and cobalt, nickel.
  • the disadvantage of this method is the limitation on the characteristics of the raw materials that can be involved in processing, namely the method is aimed at processing atmospheric and vacuum residues.
  • This method is closest to the claimed one and is accepted as a prototype.
  • the technical result is a method for processing heavy hydrocarbon raw materials, which makes it possible to simultaneously involve raw materials in the processing process without restrictions on viscosity and density, on the content of sulfur and metals and to obtain petroleum products suitable for further processing to obtain commercial oil refining products without additional operations and the formation of non-recyclable residues.
  • the method of processing heavy hydrocarbon raw materials includes sequentially passing the raw materials in the presence of hydrogen supplied under a pressure of 8-20 MPa through a fixed layer of catalyst 1 containing aluminum oxide as a carrier, and calcium compounds and/or compounds as an active component.
  • magnesium having macropores with a regular spatial structure, through a catalyst 2 containing aluminum oxide as a carrier, and as an active component - compounds of cobalt and/or nickel and/or molybdenum and/or tungsten, having macropores with a regular spatial structure, through a catalyst 3, obtained by sulfidation of a composition containing an active component and a carrier, wherein the active component consists of a heteropolycompound containing at least one of the following compounds of the series [ ⁇ 02 ⁇ 010 ⁇ 38 ⁇ 4] 6 ', ⁇ réelle ⁇ [ ⁇ date120 4 eaux] 2 , No ⁇ [ ⁇ 1 2 0 4 ⁇ ] 2 , [Co(OH)bMo 6 O18] 3 ', [Ni(OH) 6 Mo 6 Oi8] 2 ', [MgMoyOsv] 6 ', [Co(OH) 6 W 6 Oi8] 3 ', [PMo n Wi2- n 0 4 o] 3 ' (where n
  • the essence of the method is that at the first stage, heavy hydrocarbon raw materials are passed through a catalyst 1, which has macropores with a regular spatial structure, containing alkaline additives in the form of calcium and/or magnesium compounds, in the presence of hydrogen supplied under a pressure of 8-20 MPa, this allows you to involve various heavy petroleum raw materials with high viscosity, density and high content of sulfur and metals in the refining process, for example, such as high-viscosity oil, tar, fuel oil, oil residues, which is possible due to the presence of macropores with a regular spatial structure, and also allows for maximum reduction metal content, viscosity, partially - sulfur content in the reaction products.
  • catalyst 1 contains an active component with a calcium content of no more than 10 wt.%, magnesium content of no more than 10 wt.%, has a specific surface area of at least 100 m 2 /g with an outer surface fraction of at least 50% and a specific pore volume of at least 0 .1 cm 3 /g and the proportion of its macropores with a size in the range from 50 nm to 15 ⁇ m is at least 30% in the total specific pore volume of the catalyst.
  • the raw material is passed through a catalyst 2 containing aluminum oxide as a carrier, and as an active component - compounds of cobalt and/or nickel and/or molybdenum and/or tungsten, which has macropores with a regular spatial structure, which makes it possible to minimize the sulfur content, remove remaining metals, and also reduce the density of the raw materials. Maximum sulfur reduction is achieved through the active components of the catalyst.
  • the cobalt content is no more than 20 wt.%, nickel - no more than 20 wt.%, molybdenum - no more than 20 wt.%, tungsten - no more than 20 wt.%, the proportion of its macropores with a size in the range from 50 nm to 15 microns is at least 30% of the total specific pore volume, and its specific surface is at least 70 m 2 /g with an outer surface share of at least 50% and a specific pore volume of at least 0.1 cm 3 /g .
  • the raw material is passed through catalyst 3, obtained by sulfidation of a composition containing a heteropolycompound containing at least one of the following compounds [CO2M010O38H4] 6 ', Cos[PMo1204o] 2 ,
  • catalyst 3 contains citric acid, glycol or EDTA as an organic additive, the proportion of its macropores with a size in the range from 50 nm to 15 ⁇ m is at least 30% of the total specific pore volume, the specific surface area is at least 40 m 2 /g , the proportion of the outer surface is not less than 50% and the specific pore volume is not less than 0.1 cm3/g, while the content of cobalt in the catalyst calcined at 550°C is no more than 20 wt.%, nickel - no more than 20 wt.%, molybdenum - no more than 20 wt.%, tungsten - no more than 20 wt.%, the content of the organic additive is 5-15 wt.% by weight of the catalyst.
  • the raw material is passed through catalysts at a volumetric feed rate of raw materials through the catalysts of 0.15 - 1 h 1 and at a temperature of 340-500°C.
  • the temperature can fluctuate up to 60 °C within the specified parameters.
  • the raw materials can be divided into various petroleum products, for example, diesel fraction, vacuum gas oil (VGO) as a raw material for secondary processes of hydrocracking (HC) and catalytic cracking (CC), residue after processing, as a raw material for coking plants or a component of ship or boiler fuel, as well as when using high-viscosity oil as a raw material - synthetic oil suitable for processing using known technologies, which can be processed using known technologies to obtain commercial petroleum products. In this case, non-recyclable residues are not formed.
  • VGO vacuum gas oil
  • HC hydrocracking
  • CC catalytic cracking
  • the set of features of the proposed method for processing heavy hydrocarbon raw materials allows you to simultaneously involve raw materials in the processing process without restrictions on viscosity and density, on the content of sulfur and metals, efficiently process raw materials while removing sulfur and metals, and also obtain various petroleum products to obtain marketable petroleum refining products.
  • the general method for processing heavy hydrocarbon raw materials is as follows.
  • catalyst 1 was poured into one reactor, containing aluminum oxide as a carrier, and calcium and/or magnesium compounds having macropores with a regular spatial pattern as the active component.
  • 20 g of catalyst 2 containing aluminum oxide as a carrier and compounds of cobalt and/or nickel and/or molybdenum and/or tungsten, having macropores with a regular spatial structure, as an active component are poured into the third reactor add 20 g of catalyst 3, obtained by sulfidation of a composition containing a heteropolycompound as an active component, containing compounds from the series [Co2Mo1oO38H 4 ] 6- , Cos[PMo1204o] 2 , Na3[PMO1 2 0 4 O] 2 , [Co(OH) bMo 6 O18] 3 ', [Ni(OH) 6 Mo 6 Oi8] 2 ', [MouC ⁇ ] 6 ', [Co(OH) 6 W 6 Oi8] 3 '
  • the raw material is sequentially passed in the presence of hydrogen supplied under pressure through 3 catalysts at a given temperature and volumetric flow rate of the raw material, after which gaseous products are separated and, if necessary, separated into petroleum products.
  • tar 1 As a raw material, tar 1 is used, the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 1, catalyst 2 - sample 1, catalyst 3 - sample 2) at a temperature of 450°C, in the presence of hydrogen supplied under a pressure of 14 MPa and a feed volume flow rate (FSSV) of 0.5 h 1 , then the gaseous product is separated and marine fuel MARPOL grade RMG 1380 is obtained.
  • the characteristics of the marine fuel are presented in Table 3, the characteristics of the catalysts are presented in Table 2.
  • tar 2 As a raw material, tar 2 is used, the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 1, catalyst 2 - sample 1, catalyst 3 - sample 2) at a temperature of 380 °C, in the presence of hydrogen supplied under a pressure of 16 MPa and OSPS 0.25 h' 1 , then the gaseous product is separated and marine fuel MARPOL grade RMG 380 is obtained.
  • the characteristics of the marine fuel are presented in Table 3, the characteristics of the catalysts are presented in Table 2.
  • Fuel oil 1 is used as a raw material, the characteristics of the raw material are presented in Table 1.
  • the raw material is passed sequentially through 3 catalysts (catalyst 1 - sample 3, catalyst 2 - sample 2, catalyst 3 - sample 1) at a temperature of 420 °C, in the presence of hydrogen supplied under a pressure of 8 MPa and OSPS 0.5 h' 1 , then the gaseous product is separated and a diesel fraction, VGO and the residue after processing are obtained.
  • the characteristics of petroleum products are presented in Table 3, the characteristics of catalysts are presented in Table 2.
  • Fuel oil 2 is used as a raw material; the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 3, catalyst 2 - sample 2, catalyst 3 - sample 1) at a temperature of 450 °C, in the presence of hydrogen supplied under a pressure of 20 MPa and OSPS 1 h 1 , then the gaseous product, diesel fraction, VGO and the residue after processing are separated.
  • the characteristics of petroleum products are presented in Table 3, the characteristics of catalysts are presented in Table 2.
  • Fuel oil 2 is used as a raw material; the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 3, catalyst 2 - sample 2, catalyst 3 - sample 1) at a temperature of 410 °C, in the presence of hydrogen supplied under a pressure of 16 MPa and OSSP 0.15 h' 1 , then the gaseous product is separated and a diesel fraction, VGO and the residue after processing are obtained.
  • the characteristics of petroleum products are presented in Table 3, the characteristics of catalysts are presented in Table 2.
  • Oil residue is used as a raw material; the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 2, catalyst 2 - sample 3, catalyst 3 - sample 3) at a temperature of 38 °C, in the presence of hydrogen supplied under pressure 12 MPa and OSPS 0.5 h 1 , then the gaseous product is separated and the raw material is separated into VGO and the residue after processing.
  • the characteristics of the obtained petroleum products are presented in Table 3, the characteristics of the catalysts are presented in Table 2.
  • High-viscosity oil is used as a raw material; the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 (catalyst 1 - sample 2, catalyst 2 - sample 3, catalyst 3 - sample 3) catalysts at a temperature of 400 °C, in the presence of hydrogen supplied under a pressure of 10 MPa and OSPS 0.8 h' 1 , then the gaseous product is separated and a synthetic product is obtained.
  • the characteristics of the oil are presented in Table 3, the characteristics of the catalysts are presented in Table 2.
  • tar 1 As a raw material, tar 1 is used, the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 1, catalyst 2 - sample 1, catalyst 3 - sample 1) at a temperature of 340 °C, in the presence of hydrogen supplied under a pressure of 20 MPa and OSPS 0.2 h' 1 , then the gaseous product is separated and the residue after processing and VGO is obtained.
  • the characteristics of petroleum products are presented in Table 3, the characteristics of catalysts are presented in Table 2.
  • Oil residue is used as a raw material; the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 2, catalyst 2 - sample 3, catalyst 3 - sample 3) at a temperature of 500 °C, in the presence of hydrogen supplied under a pressure of 12 MPa and OSPS 0.3 h 1 , then the gaseous product is separated and the raw materials are divided into VGO and the residue after processing.
  • the characteristics of the obtained petroleum products are presented in Table 3, the characteristics of the catalysts are presented in Table 2.
  • Example 10 As a raw material, tar 2 is used, the characteristics of the raw material are presented in Table 1.
  • the raw material is sequentially passed through 3 catalysts (catalyst 1 - sample 1, catalyst 2 - sample 1, catalyst 3 - sample 1) at a temperature of 420 °C, in the presence of hydrogen supplied under a pressure of 16 MPa and OSPS 0.5 h' 1 , then the gaseous product is separated and the raw materials are separated into VGO and the residue after processing.
  • the characteristics of the obtained petroleum products are presented in Table 3, the characteristics of the catalysts are presented in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способу переработки тяжелого углеводородного сырья, включающего последовательное пропускание сырья в присутствии водорода, подаваемого под давлением 8-20 МПа через три неподвижных слоя катализатора, имеющих макропоры с регулярной пространственной структурой. Способ содержит дальнейшее отделение газообразных продуктов с возможностью разделения их на отдельные нефтепродукты. Обеспечивается одновременное вовлечение в процесс переработки сырья без ограничений по вязкости и плотности, по содержанию серы, металлов и получение нефтепродуктов, пригодных для дальнейшей переработки и получение товарных продуктов нефтепереработки без дополнительных операций и образования неперерабатываемых остатков.

Description

СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ
Изобретение относится к области переработки тяжелого углеводородного сырья, в том числе остаточных нефтяных фракций с использованием катализаторов.
В мире существует потребность в эффективных способах переработки низкокачественного углеводородного сырья, например, такого как гудрон, мазут, высоковязкая нефть, различные нефтяные остатки - остатки, образующиеся в процессе нефтепереработки, например, в таких процессах, как гидрокрекинг, каталитический крекинг, замедленное коксование, пиролиз, позволяющие вовлекать в процесс переработки сырье без ограничений по вязкости и плотности, по содержанию серы, металлов и при этом получать нефтепродукты, например, такие как дизельная фракция, вакуумный газойль (ВГО) как сырье для вторичных процессов гидрокрекинга (ГК) и каталитического крекинга (КК), остаток после переработки как сырье для установок коксования или компонент судового или котельного топлива, а также при использовании в качестве сырья высоковязкой нефти - синтетическая нефть, пригодная для переработки по известным технологиям, пригодные для дальнейшей переработки с получением товарных продуктов нефтепереработки, например, таких как дизельное топливо, судовое топливо, автомобильные бензины, нефтяной кокс.
Известны различные способы переработки тяжелого углеводородного сырья с использованием катализаторов.
Известен способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора [Патент РФ № 2704123, опубликован 24.10.2019], содержащего в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кальция, и/или магния, и/или кобальта, и/или никеля, и/или молибдена, и/или вольфрама, катализатор имеет макропоры, образующие регулярную пространственную структуру, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2 г- сырья/г-катализатора/ч, в присутствии водорода, подаваемого под давлением 8-12 МПа.
Известен способ переработки тяжелого нефтяного сырья на защитном слое катализатора [Патент РФ № 2704122, опубликован 24.10.2019], содержащего в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кальция и/или магния, кальция не более 10 мас.%, магния не более 10 мас.%, катализатор имеет макропоры, образующие регулярную пространственную структуру, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300- 600°С, скорости подачи сырья через катализатор 0,2-2 г-сырья/г-катализатора/ч, в присутствии водорода, подаваемого под давлением 8-15 МПа.
Известен способ переработки тяжелого углеводородного сырья [Патент РФ № 2717095, опубликован 18.03.2020] на катализаторе, полученным сульфидированием состава, содержащего активный компонент из гетерополисоединения, содержащего как минимум один из следующих соединений ряда [С02М010О38Н4]6’, Соз[РМо1204о]2, Ni3[PMoi204o]2, [Со(ОН)бМо6О18]3’, [Ni(OH)6Mo6Oi8]2’, [МгМоюОзв ]6’, [Co(OH)6W6Oi8]3’, [PMonWi2-n04o]3’ (где n = 1-11), [РУпМо12-п04о](3+п)’(где п = 1-4), МО120ЗО(ОН)1ОН2[СО(Н2О)3]4 и органическую добавку и носитель, представляющий собой оксид алюминия, оксид кремния, оксид магния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат и их сочетание, обладающий регулярной пространственной структурой макропор, заключающийся в пропускании сырья через неподвижный слой катализатора при температуре 300-550°С, скорости подачи сырья через катализатор 0,1-2 г- сырья/г-катализатора/ч, в присутствии водорода, подаваемого под давлением 7-15 МПа.
Перечисленные способы позволяют вовлекать в процесс переработки сырье без ограничительных требований по вязкости и плотности, содержанию серы, металлов, однако без дополнительных операций и образования неперерабатываемых остатков не позволяют получать нефтепродукты, пригодные для дальнейшей переработки с получением товарных продуктов нефтепереработки.
Известен способ переработки тяжелых нефтей путем облагораживания нефти с последующей перегонкой [Патент № US 10696910, опубликован 30.06.2020], включающий облагораживание нефти путем приведения сырья в контакт с катализатором гидрометаллизации, переходным катализатором, катализатором гидроазотирования и катализатором гидрокрекинга, подачу нефти в сепарационное устройство, при этом конечная точка кипения тяжелой нефти 540°С.
Известен способ переработки атмосферных и вакуумных осадков [Остаточные катализаторы гидроочистки [Электронный ресурс]: официальный сайт компании «Axens». Режим доступа: httDs://www.axens.net/solutions/catalvsts-adsorbents-grading-suDDly/residue- hydrotreating-catalysts (дата помещения сведений в электронную среду: 20.10.2021)] в реакторной системе последовательно соединенных реакторов с каталитической системой, характеризуемой тремя реакционными зонами, где типы и количество каждого катализатора определяются в зависимости от состава исходного сырья. Первая реакционная зона содержит катализатор для удаления металлов, отложения и солей, при этом катализатор может быть выбран из катализатора, состоящего из оксида алюминия и кобальта, никеля, молибдена или катализатора, состоящего из оксида алюминия и никеля, молибдена. Вторая реакционная зона содержит катализаторы двойной активности, направленную на удаление металлов и удаление серы, при этом катализатор может быть выбран из катализатора, состоящего из оксида алюминия и кобальта, никеля, молибдена или катализатора, состоящего из оксида алюминия и никеля, молибдена. Третья зона содержит катализаторы, обеспечивающие глубокую очистку от серы, очистку от азота и восстановление углерода посредством гидрирования, при этом катализатор состоит из оксида алюминия и кобальта, никеля. Недостатком данного способа является ограничение по характеристикам сырья, которое может быть вовлечено в переработку, а именно способ направлен на переработку атмосферных и вакуумных остатков.
Данный способ является наиболее близким к заявляемому и принят в качестве прототипа.
Технический результат - способ переработки тяжелого углеводородного сырья, позволяющий одновременно вовлекать в процесс переработки сырье без ограничений по вязкости и плотности, по содержанию серы, металлов и получать нефтепродукты, пригодные для дальнейшей переработки с получением товарных продуктов нефтепереработки без дополнительных операций и образования неперерабатываемых остатков.
Технический результат достигается тем, что способ переработки тяжелого углеводородного сырья включает последовательное пропускание сырья в присутствии водорода, подаваемого под давлением 8-20 Мпа, через неподвижный слой катализатора 1, содержащий в качестве носителя оксид алюминия, а в качестве активного компонента соединения кальция и/или магния, имеющего макропоры с регулярной пространственной структурой, через катализатор 2, содержащий в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кобальта и/или никеля и/или молибдена и/или вольфрама, имеющий макропоры с регулярной пространственной структурой, через катализатор 3, полученный сульфидированием состава, содержащий активный компонент и носитель, при этом активный компонент состоит из гетерополисоединения, содержащего как минимум один из следующих соединений ряда [С02М010О38Н4]6’, Соз[РМо1204о]2, №З[РМО1204О]2, [Со(ОН)бМо6О18]3’, [Ni(OH)6Mo6Oi8]2’, [МгМоюОзв ]6’, [Co(OH)6W6Oi8]3’, [PMonWi2-n04o]3’ (где n = 1-11), [РУпМо12-пО40](3+п)-(где п = 1-4), МО120ЗО(ОН)1ОН2[СО(Н2О)3]4 или их смесь и органическую добавку, при этом носитель представляет собой оксид алюминия, оксид кремния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат и их сочетание, обладающий регулярной пространственной структурой макропор, и дальнейшее отделение газообразных продуктов с возможностью разделения на отдельные нефтепродукты.
Сущность способа заключается в том, что на первом этапе тяжелое углеводородное сырье пропускают через катализатор 1, имеющей макропоры с регулярной пространственной структурой, содержащий щелочные добавки в виде соединений кальция и/или магния, в присутствии водорода, подаваемого под давлением 8-20 МПа, это позволяет вовлекать в процесс переработки различное тяжелое нефтяное сырье с высокой вязкостью, плотностью и высоким содержанием серы и металлов, например, такое как высоковязкая нефть, гудрон, мазут, нефтяные остатки, что возможно благодаря наличию макропор с регулярной пространственной структурой, а также позволяет максимально снизить содержание металлов, вязкость, частично - содержание серы в продуктах реакции.
Предпочтительно, катализатор 1 содержит активный компонент с содержанием кальция не более 10 мас.%, магния не более 10 мас.%, имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50 % и удельным объемом пор не менее 0,1 см3/г и доля его макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор катализатора.
Далее сырье пропускают через катализатор 2, содержащий в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кобальта и/или никеля и/или молибдена и/или вольфрама, имеющий макропоры с регулярной пространственной структурой, что позволяет максимально снизить содержание серы, убрать оставшиеся металлы, а также понизить плотность сырья. Максимальное снижение серы достигается за счет активных компонентов катализатора.
Предпочтительно, в катализаторе 2 содержание кобальта составляет не более 20 мас.%, никеля - не более 20 мас.%, молибдена - не более 20 мас.%, вольфрама - не более 20 мас.%, , доля его макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, а его удельная поверхность - не менее 70 м2/г с долей внешней поверхности не менее 50% и удельном объеме пор не менее 0,1 см3/г.
На следующем этапе сырье пропускают через катализатор 3, полученный сульфидированием состава, содержащий гетерополисоединение, содержащего как минимум один из следующих соединений [С02М010О38Н4]6’, Соз[РМо1204о]2,
Ni3[PMoi204o]2, [Со(ОН)бМо6О18]3’, [Ni(OH)6Mo6Oi8]2-, [МгМоюОзв ]6’, [Co(OH)6W6Oi8]3-, [PMonWi2-n04o]3’ (где п = 1-11), [РУпМо12-п04о](3+п)’(где п = 1-4), МО120ЗО(ОН)ЮН2[СО(Н2О)3]4 или их смесь и органическую добавку, при этом носитель представляет собой оксид алюминия, оксид кремния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат и их сочетание, обладающий регулярной пространственной структурой макропор, что позволяет доочистить сырье от серы, снизить вязкость и плотность, и провести реакцию гидрокрекинга с получением нефтепродуктов с более низким концом кипения.
Предпочтительно, катализатор 3 содержит в качестве органической добавки лимонную кислоту, гликоль или ЭДТА, доля его макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, удельная поверхность - не менее 40 м2/г, доля внешней поверхности не менее 50% и удельный объем пор не менее 0,1 смЗ/г, при этом содержание в прокаленном при 550°С катализаторе кобальта - не более 20 мас.%, никеля - не более 20 мас.%, молибдена - не более 20 мас.%, вольфрама - не более 20 мас.%, содержание органической добавки составляет 5-15 мас.% от веса катализатора.
Предпочтительно сырье пропускают через катализаторы при объемной скорости подачи сырья через катализаторы 0, 15 - 1 ч 1 и при температуре 340-500°С. В процессе протекания химических реакций температура может колебаться до 60 °C в заданных параметрах.
После пропускания сырья через 3 катализатора отделяют газообразные продукты и нафту, что позволяет получить судовое топливо, соответствующее требованиям МАРПОЛ. При необходимости получения других товарных продуктов нефтепереработки после отделения газообразных продуктов сырье возможно разделить на различные нефтепродукты, например, такие как дизельная фракция, вакуумный газойль (ВГО) как сырье для вторичных процессов гидрокрекинга (ГК) и каталитического крекинга (КК), остаток после переработки, как сырье для установок коксования или компонент судового или котельного топлива, а также при использовании в качестве сырья высоковязкой нефти - синтетическая нефть, пригодная для переработки по известным технологиям, которые можно перерабатывать по известным технологиям с получением товарных продуктов нефтепереработки. При этом не образуются неперерабатываемые остатки.
Совокупность признаков предложенного способа переработки тяжелого углеводородного сырья позволяет одновременно вовлекать в процесс переработки сырье без ограничений по вязкости и плотности, по содержанию серы, металлов, эффективно переработывать сырье, при этом удаляя серу, металлы, а также получать различные нефтепродукты для получения товарных продуктов нефтепереработки.
Способ переработки тяжелого углеводородного сырья в общем виде осуществляется следующим образом.
В ходе проведенных экспериментов в один реактор засыпают 10 г катализатора 1, содержащего в качестве носителя оксид алюминия, а в качестве активного компонента соединения кальция и/или магния, имеющего макропоры с регулярной пространственной структурой, в другой реактор засыпают 20 г катализатора 2, содержащего в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кобальта и/или никеля и/или молибдена и/или вольфрама, , имеющего макропоры с регулярной пространственной структурой, в третий реактор засыпают 20 г катализатора 3, полученного сульфидированием состава, содержащего в качестве активного компонента гетерополисоединение, содержащего соединения из ряда [Со2Мо1оОз8Н4]6-, Соз[РМо1204о]2, №З[РМО1204О]2, [Со(ОН)бМо6О18]3’, [Ni(OH)6Mo6Oi8]2’, [ МоюС^ ]6’, [Co(OH)6W6Oi8]3’, [PMonWi2-n04o]3’ (где n = 1-11), [РУпМо12-пО40](3+п)-(где п = 1-4), МО120ЗО(ОН)1ОН2[СО(Н2О)3]4 и органическую добавку, а в качестве носителя - оксид алюминия, оксид кремния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат и их сочетание, обладающего регулярной пространственной структурой макропор.
Сырье последовательно пропускают в присутствии водорода, подаваемого под давлением, через 3 катализатора при заданных температуре и объёмной скорости подачи сырья после чего отделяют газообразные продукты и при необходимости разделяют на нефтепродукты.
Пример 1.
В качестве сырья используют гудрон 1, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 1, катализатор 2 - образец 1, катализатор 3 - образец 2) при температуре 450°С, в присутствии водорода, подаваемого под давлением 14 МПа и объемной скорости подачи сырья (ОСПС) 0,5 ч 1, далее отделяют газообразный продукт и получают судовое топливо МАРПОЛ марки RMG 1380. Характеристики судового топлива представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания сырья через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 2.
В качестве сырья используют гудрон 2, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 1, катализатор 2 - образец 1, катализатор 3 - образец 2) при температуре 380 °C, в присутствии водорода, подаваемого под давлением 16 МПа и ОСПС 0,25 ч’1, далее отделяют газообразный продукт и получают судовое топливо МАРПОЛ марки RMG 380. Характеристики судового топлива представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3. Пример 3.
В качестве сырья используют мазут 1 , характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 3, катализатор 2 - образец 2, катализатор 3 - образец 1) при температуре 420 °C, в присутствии водорода, подаваемого под давлением 8 МПа и ОСПС 0,5 ч’1, далее отделяют газообразный продукт и получают дизельную фракцию, ВГО и остаток после переработки. Характеристики нефтепродуктов представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 4.
В качестве сырья используют мазут 2, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 3, катализатор 2 - образец 2, катализатор 3 - образец 1) при температуре 450 °C, в присутствии водорода, подаваемого под давлением 20 МПа и ОСПС 1 ч 1, далее отделяют газообразный продукт, дизельную фракцию, ВГО и остаток после переработки. Характеристики нефтепродуктов представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 5.
В качестве сырья используют мазут 2, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 3, катализатор 2 - образец 2, катализатор 3 - образец 1) при температуре 410 °C, в присутствии водорода, подаваемого под давлением 16 МПа и ОССП 0,15 ч’1, далее отделяют газообразный продукт и получают дизельную фракцию, ВГО и остаток после переработки. Характеристики нефтепродуктов представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 6.
В качестве сырья используют нефтяной остаток, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 2, катализатор 2 - образец 3, катализатор 3 - образец 3) при температуре 38 °C, в присутствии водорода, подаваемого под давлением 12 МПа и ОСПС 0,5 ч 1, далее отделяют газообразный продукт и разделяют сырье на ВГО и остаток после переработки. Характеристики полученных нефтепродуктов представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 7.
В качестве сырья используют высоковязкую нефть, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 (катализатор 1 - образец 2, катализатор 2 - образец 3, катализатор 3 - образец 3) катализатора при температуре 400 °C, в присутствии водорода, подаваемого под давлением 10 МПа и ОСПС 0,8 ч’1, далее отделяют газообразный продукт и получают синтетическую. Характеристики нефти представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 8.
В качестве сырья используют гудрон 1, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 1, катализатор 2 - образец 1, катализатор 3 - образец 1) при температуре 340 °C, в присутствии водорода, подаваемого под давлением 20 МПа и ОСПС 0,2 ч’1, далее отделяют газообразный продукт и получают остаток после переработки и ВГО. Характеристики нефтепродуктов представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 9.
В качестве сырья используют нефтяной остаток, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 2, катализатор 2 - образец 3, катализатор 3 - образец 3) при температуре 500 °C, в присутствии водорода, подаваемого под давлением 12 МПа и ОСПС 0,3 ч 1, далее отделяют газообразный продукт и разделяют сырье на ВГО и остаток после переработки. Характеристики полученных нефтепродуктов представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Пример 10. В качестве сырья используют гудрон 2, характеристики сырья представлены в таблице 1. Сырье последовательно пропускают через 3 катализатора (катализатор 1 - образец 1, катализатор 2 - образец 1, катализатор 3 - образец 1) при температуре 420 °C, в присутствии водорода, подаваемого под давлением 16 МПа и ОСПС 0,5 ч’1, далее отделяют газообразный продукт и разделяют сырье на ВГО и остаток после переработки. Характеристики полученных нефтепродуктов представлены в таблице 3, характеристики катализаторов представлены в таблице 2.
После пропускания через каждый катализатор проводят анализ сырья. Характеристики сырья после каждого реактора указаны в таблице 3.
Таблица 1 - Виды и характеристики тяжелого углеводородного сырья
Figure imgf000010_0001
Таблица 2 - Состав катализаторов
Figure imgf000010_0002
Таблица 3 - Параметры процесса
Figure imgf000010_0003
Figure imgf000011_0001
Figure imgf000012_0001

Claims

WO 2024/005671 Формула изобретения PCT/RU2023/050146
1. Способ переработки тяжелого углеводородного сырья, включающий
- последовательное пропускание сырья в присутствии водорода, подаваемого под давлением 8-20 МПа,
- через неподвижный слой катализатора 1, содержащий в качестве носителя оксид алюминия, а в качестве активного компонента соединения кальция и/или магния, имеющего макропоры с регулярной пространственной структурой,
- через катализатор 2, содержащий в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кобальта и/или никеля и/или молибдена и/или вольфрама, имеющий макропоры с регулярной пространственной структурой,
- через катализатор 3, полученный сульфидированием состава, содержащий активный компонент и носитель, при этом активный компонент состоит из гетерополисоединения, содержащего как минимум один из следующих соединений ряда [СО2МО1ООЗ8Н4]6-, СОЗ[РМО1204О]2, Ni3[PMoi2O40]2, [Co(OH)6Mo6Oi8]3’, [Ni(OH)6Mo6Oi8]2’, [Ni2Moio038H4]6-, [Co(OH)6W6Oi8]3’, [PMonWi2-n04o]3’ (где n = 1-11), [PVnMoi2.nO40](3+I1)- (где n = 1-4), МО12ОЗО(ОН)ЮН2[СО(Н2О)3]4 ИЛИ ИХ смесь и органическую добавку, при этом носитель представляет собой оксид алюминия, оксид кремния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат и их сочетание, обладающий регулярной пространственной структурой макропор,
- и дальнейшее отделение газообразных продуктов с возможностью разделения на отдельные нефтепродукты.
2. Способ по пункту 1, отличающийся тем, что катализатор 1 содержит активный компонент с содержанием кальция не более 10 мас.%, магния не более 10 мас.%.
3. Способ по пункту 1, отличающийся тем, что доля макропор катализатора 1 с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор катализатора 1.
4. Способ по пункту 1, отличающийся тем, что катализатор 1 имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50 % и удельным объемом пор не менее 0,1 см3/г.
5. Способ по пункту 1, отличающийся тем, что в катализаторе 2 содержание кобальта составляет не более 20 мас.%, никеля - не более 20 мас.%, молибдена - не более 20 мас.%, вольфрама - не более 20 мас.%.
6. Способ по пункту 1, отличающийся тем, что в катализаторе 2 доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор.
WO 2024 / /.00 v5n6u71OU ^ НО n livyMHKK-Tivy 11 , п 0т 1 ЛпиИцЧяаюЮтЩпиИйИеСЯя T 1 P сMМ, ч 4т1 о0 KятiяJпlгHгoaСiТ v/ и20 r2u3vi/w05i01 ^4у6 рсЛЬНу „Ю поверхность не менее 70 м2/г с долей внешней поверхности не менее 50% и удельном объеме пор не менее 0,1 см3/г.
8. Способ по пункту 1, отличающийся тем, что катализатор 3 содержит в качестве органической добавки лимонную кислоту, гликоль или ЭДТА.
9. Способ по пункту 1, отличающийся тем, что доля макропор с размером в диапазоне от 50 нм до 15 мкм в катализаторе 3 составляет не менее 30% в общем удельном объеме пор, с удельной поверхностью не менее 40 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г, при этом содержание в прокаленном при 550°С катализаторе 3 кобальта - не более 20 мас.%, никеля - не более 20 мас.%, молибдена - не более 20 мас.%, вольфрама - не более 20 мас.%, содержание органической добавки составляет 5-15 мас.% от веса катализатора.
10. Способ по пункту 1, отличающийся тем, что сырье пропускают через катализаторы при объемной скорости подачи сырья через катализаторы 0, 15 - 1 ч 1 и при температуре 340-500°С.
PCT/RU2023/050146 2022-06-29 2023-06-09 Способ переработки тяжелого углеводородного сырья WO2024005671A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2022117639 2022-06-29
RU2022117639A RU2800374C1 (ru) 2022-06-29 Способ переработки тяжелого углеводородного сырья

Publications (1)

Publication Number Publication Date
WO2024005671A1 true WO2024005671A1 (ru) 2024-01-04

Family

ID=89381028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2023/050146 WO2024005671A1 (ru) 2022-06-29 2023-06-09 Способ переработки тяжелого углеводородного сырья

Country Status (1)

Country Link
WO (1) WO2024005671A1 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
RU2666733C1 (ru) * 2018-03-13 2018-09-12 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Катализатор глубокого гидрообессеривания вакуумного газойля и способ его приготовления (варианты)
RU2680386C1 (ru) * 2017-12-28 2019-02-20 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ гидрогенизационной переработки углеводородного сырья
RU2717095C1 (ru) * 2019-09-11 2020-03-18 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
US10696910B2 (en) * 2017-07-17 2020-06-30 Saudi Arabian Oil Company Systems and methods for processing heavy oils by oil upgrading followed by distillation
RU2726626C2 (ru) * 2016-04-27 2020-07-15 Ифп Энержи Нувелль Способ конверсии, включающий использование взаимозаменяемых защитных слоев гидродеметаллизации, стадию гидроочистки в неподвижном слое и стадию гидрокрекинга во взаимозаменяемых реакторах
RU2734235C1 (ru) * 2020-03-05 2020-10-13 Акционерное общество «Газпромнефть - Московский НПЗ» (АО «Газпромнефть - МНПЗ») Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
US20210101136A1 (en) * 2017-12-13 2021-04-08 IFP Energies Nouvelles Process for hydroconversion of heavy hydrocarbon feedstock in hybrid reactor
US11015129B2 (en) * 2019-04-12 2021-05-25 Axens Naphtha hydrotreating process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
RU2726626C2 (ru) * 2016-04-27 2020-07-15 Ифп Энержи Нувелль Способ конверсии, включающий использование взаимозаменяемых защитных слоев гидродеметаллизации, стадию гидроочистки в неподвижном слое и стадию гидрокрекинга во взаимозаменяемых реакторах
US10696910B2 (en) * 2017-07-17 2020-06-30 Saudi Arabian Oil Company Systems and methods for processing heavy oils by oil upgrading followed by distillation
US20210101136A1 (en) * 2017-12-13 2021-04-08 IFP Energies Nouvelles Process for hydroconversion of heavy hydrocarbon feedstock in hybrid reactor
RU2680386C1 (ru) * 2017-12-28 2019-02-20 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ гидрогенизационной переработки углеводородного сырья
RU2666733C1 (ru) * 2018-03-13 2018-09-12 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Катализатор глубокого гидрообессеривания вакуумного газойля и способ его приготовления (варианты)
US11015129B2 (en) * 2019-04-12 2021-05-25 Axens Naphtha hydrotreating process
RU2717095C1 (ru) * 2019-09-11 2020-03-18 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
RU2734235C1 (ru) * 2020-03-05 2020-10-13 Акционерное общество «Газпромнефть - Московский НПЗ» (АО «Газпромнефть - МНПЗ») Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Residue Hydrotreating Catalysts: Catalysts for fixed-bed atmospheric and vacuum residue hydrodesulfurization units", RESIDUE HYDROTREATING CATALYSTS, AXENS, pages 1 - 3, XP009552473, Retrieved from the Internet <URL:https://www.axens.net/solutions/catalysts-adsorbents-grading-supply/residue-hydrotreating-catalysts> [retrieved on 20230914] *

Similar Documents

Publication Publication Date Title
KR20160052435A (ko) 낮은 침강물 함량을 갖는 연료유의 생산을 위한 부유상 수소분해 단계, 침강물의 성숙 단계 및 분리 단계를 포함하는 석유 공급원료의 변환 방법
JPS5850636B2 (ja) 重質炭化水素油の脱硫処理方法
JP5396008B2 (ja) アルキルベンゼン類の製造方法
CN107849466A (zh) 包括加氢裂化步骤、沉淀步骤和沉积物分离步骤以生产燃料油的原料转化方法
KR20150120428A (ko) 단환 방향족 탄화수소의 제조 방법
SA520411072B1 (ar) نظم وطرق لمعالجة أنواع نفط ثقيلة بواسطة رفع درجة نفط يعقبها تقطير
JP6014460B2 (ja) 前処理工程を含む連続的水素化処理による、再生可能な材料を用いるパラフィン燃料の製造
RU2610525C1 (ru) Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья
JP6770953B2 (ja) 水素化処理油の製造方法及び接触分解油の製造方法
US11505754B2 (en) Processes for producing petrochemical products from atmospheric residues
KR20150077424A (ko) 단환 방향족 탄화수소의 제조 방법
JP2879793B2 (ja) ガス油処理方法
WO2024005671A1 (ru) Способ переработки тяжелого углеводородного сырья
CN102453537A (zh) 一种页岩油加氢最大量生产清洁柴油的方法
RU2662232C1 (ru) Способ гидрокрекинга углеводородного сырья
WO2007063872A1 (ja) 水素の製造方法、改質ガソリンの製造方法及び芳香族炭化水素の製造方法
JP4658491B2 (ja) 環境対応軽油の製造方法
JP4680520B2 (ja) 低硫黄軽油の製造方法および環境対応軽油
RU2800374C1 (ru) Способ переработки тяжелого углеводородного сырья
JP5457808B2 (ja) 1環芳香族炭化水素の製造方法
US5376258A (en) Process for hydrogenating treatment of heavy hydrocarbon oil
JPH0753968A (ja) 重質炭化水素油の水素化処理方法
KR20150071665A (ko) 탄화수소 유분의 수소화탈황을 위한 방법
JP2980436B2 (ja) 重質炭化水素油の処理方法
CN102199448A (zh) 一种催化裂化汽油加氢脱硫降烯烃的工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831997

Country of ref document: EP

Kind code of ref document: A1