WO2024004267A1 - パワーモジュール用コンデンサ、及びこれを備えている電力変換装置 - Google Patents

パワーモジュール用コンデンサ、及びこれを備えている電力変換装置 Download PDF

Info

Publication number
WO2024004267A1
WO2024004267A1 PCT/JP2023/005847 JP2023005847W WO2024004267A1 WO 2024004267 A1 WO2024004267 A1 WO 2024004267A1 JP 2023005847 W JP2023005847 W JP 2023005847W WO 2024004267 A1 WO2024004267 A1 WO 2024004267A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
capacitor
power module
housing
power
Prior art date
Application number
PCT/JP2023/005847
Other languages
English (en)
French (fr)
Inventor
朋彦 真田
亮 飯田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024004267A1 publication Critical patent/WO2024004267A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • Patent Document 1 discloses a capacitor module in which an adjustment member is disposed close to at least one of a plurality of capacitor cells (capacitor elements). The proximity of the adjustment member to the capacitor cell causes the adjustment member to influence the magnetic flux generated by the loop current flowing through the capacitor cell, thereby adjusting the inductance of the capacitor cell.
  • the capacitor cell of Patent Document 1 is connected to a switching section through a bus bar (conductor). Inductance in the current path through which the loop current flows may occur more in the bus bar connected to the switching section than in the capacitor cell.
  • the present disclosure has been made to solve the above-mentioned problems, and provides a power source that can suppress the generation of inductance in a conductor connecting a capacitor element and a power module, and also suppress the rise in temperature of this conductor.
  • the purpose of the present invention is to provide a module capacitor and a power conversion device.
  • a power module capacitor includes a housing, a plurality of capacitor elements housed in the housing and arranged adjacent to each other, positive electrodes of the plurality of capacitor elements, and a plurality of positive electrodes of the plurality of capacitor elements.
  • a negative electrode side conductor that connects to the negative electrode is housed in the casing and fills a space formed between each of the inner surface of the casing, the plurality of capacitor elements, the positive electrode side conductor, and the negative electrode side conductor.
  • an insulating part that insulates the housing, the capacitor element, the positive conductor, and the negative conductor from each other; a conductive plate disposed between the current path of the positive electrode side conductor and the current path of the negative electrode side conductor extending from the capacitor element to the power module, with the positive electrode side conductor and the negative electrode side conductor interposed through the insulating part; and the conductive plate is formed of a material having higher thermal conductivity than the insulating part.
  • a power conversion device includes the above-described power module capacitor, the power module, and a cooler that cools the power module capacitor and the power module, A housing is connected to the cooler, and the conductive plate is disposed integrally with the housing.
  • a capacitor for a power module and a power conversion device that can suppress the generation of inductance in a conductor that connects a capacitor element and a power module, and also suppress the rise in temperature of this conductor. Can be done.
  • FIG. 1 is a perspective view showing a schematic configuration of a power conversion device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram of a power module capacitor and a power module according to a first embodiment of the present disclosure when viewed from the II-II line direction shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of the power module capacitor taken along line III-III shown in FIG. 2; 3 shows the inside of a power module capacitor according to a second embodiment of the present disclosure, and is a partially enlarged view of the portion shown in FIG. 2.
  • FIG. 4 is a diagram showing the inside of a power module capacitor according to a second embodiment of the present disclosure, and corresponds to the portion shown in FIG. 3.
  • FIG. 3 is a diagram showing the inside of a power module capacitor according to a second embodiment of the present disclosure, and corresponds to the portion shown in FIG. 3.
  • FIG. 3 shows the inside of a power module capacitor according to a third embodiment of the present disclosure, and is a partially enlarged view of the portion shown in FIG. 2.
  • FIG. 4 is a diagram showing the inside of a power module capacitor according to a third embodiment of the present disclosure, and corresponds to the portion shown in FIG. 3.
  • FIG. 4 is a diagram showing the inside of a power module capacitor according to another embodiment of the present disclosure, and corresponds to the portion shown in FIG. 3.
  • FIG. 3 is a diagram showing the inside of a power module capacitor according to another embodiment of the present disclosure, and corresponds to a partially enlarged view of the portion shown in FIG. 2.
  • FIG. 4 is a diagram showing the inside of a power module capacitor according to another embodiment of the present disclosure, and corresponds to the portion shown in FIG. 3.
  • FIG. 3 shows the inside of a power module capacitor according to another embodiment of the present disclosure, and corresponds to the portion shown in FIG. 3.
  • a power converter is a device that converts DC power into three-phase AC power or the like.
  • Examples of the power conversion device of this embodiment include an inverter used in a system such as a power plant, an inverter used to drive an electric motor (motor) of an electric vehicle, etc.
  • the power converter 100 includes a casing 1, an external input conductor 20, a power module capacitor 2, a power converter 3, and a cooler 4.
  • the casing 1 and the cooler 4 are shown by two-dot chain lines.
  • the casing 1 forms the outer shell of the power converter 100.
  • the casing 1 is made of metal such as aluminum, synthetic resin, or the like.
  • the casing 1 in this embodiment is made of aluminum and has a rectangular parallelepiped shape.
  • the outer surface of the casing 1 has two side surfaces arranged back to back to each other.
  • the side facing one side will be referred to as the “input side side 1a”, and the side facing the other side will be referred to as the “output side side 1b".
  • An external input conductor 20 for inputting DC power is drawn out from the input side surface 1a.
  • the input side surface 1a and the output side surface 1b are in a parallel relationship.
  • the external input conductors 20 are a pair of electrical conductors that supply DC power supplied from a power system outside the power converter 100 or a DC power source such as a battery to the power module capacitor 2.
  • the external input conductor 20 in this embodiment is made of metal containing copper or the like.
  • the external input conductor 20 has a first conductor 20a as a positive electrode and a second conductor 20b as a negative electrode. One ends of the first conductor 20a and the second conductor 20b are connected to the power module capacitor 2, and the other ends of the first conductor 20a and the second conductor 20b are connected in a direction intersecting the input side surface 1a of the casing 1. and extends to the outside of the casing 1.
  • the first conductor 20a and the second conductor 20b in this embodiment have the same shape.
  • the power module capacitor 2 is a smoothing capacitor module that stores charges input from the external input conductor 20 and suppresses voltage fluctuations associated with power conversion.
  • a power module capacitor 2 is housed in a casing 1.
  • the DC voltage input from the external input conductor 20 is smoothed by suppressing ripples by passing through the power module capacitor 2 and is applied to the power converter 3.
  • the power module capacitor 2 will be simply referred to as “capacitor 2.”
  • the capacitor 2 includes a housing 21, a capacitor element 22, a positive conductor 23, a negative conductor 24, an insulating section 25, and a conductive plate 26.
  • the casing 21 forms the outer shell of the capacitor 2 and accommodates each component that makes up the capacitor 2.
  • the housing 21 is made of metal such as aluminum, for example.
  • the casing 21 in this embodiment has a rectangular cross section, and has a cylindrical shape extending from the input side surface 1a toward the output side surface 1b when housed in the casing 1. Therefore, the housing 21 has an inner surface 210 and two openings.
  • the inner surface 210 defines a rectangular parallelepiped space for accommodating the above-mentioned components other than the casing 21 of the capacitor 2.
  • the inner surface 210 is composed of four surfaces.
  • one of the four surfaces composing the inner surface 210 will be referred to as the "top surface 211”
  • the inner surface 210 facing the top surface 211 will be referred to as the bottom surface 212.
  • the top surface 211 and the bottom surface 212 are, for example, in a parallel state.
  • the two inner surfaces 210 that connect the top surface 211 and the bottom surface 212 and that face each other are referred to as "side surfaces 213."
  • the two side surfaces 213 are, for example, in a parallel state, and are, for example, perpendicular to the top surface 211 and the bottom surface 212.
  • the two openings open in a direction perpendicular to the direction in which the input side surface 1a and the output side surface 1b of the casing 1 extend.
  • Capacitor element 22 is a film capacitor housed in housing 21 .
  • the capacitor element 22 is arranged between the top surface 211 and the bottom surface 212 on the inner surface 210, and has a columnar shape extending between the top surface 211 and the bottom surface 212.
  • a plurality of capacitor elements 22 are arranged adjacent to each other within the housing 21 . As shown in FIG. 2, each capacitor element 22 is arranged with a gap S between adjacent capacitor elements 22 within the housing 21.
  • the capacitor element 22 has an upper surface 22a facing the top surface 211 on the inner surface 210, and a lower surface 22b facing the opposite side from the upper surface 22a. That is, the lower surface 22b faces the bottom surface 212 of the inner surface 210. As shown in FIGS. 2 and 3, the capacitor element 22 has a positive electrode 22p disposed on the upper surface 22a and a negative electrode 22n disposed on the lower surface 22b.
  • the positive electrode side conductor 23 is a conductor that electrically connects the positive electrode 22p of the capacitor element 22 and the positive electrode of the power module 30 in the power conversion section 3 arranged outside the capacitor 2.
  • the positive electrode side conductor 23 is made of, for example, a metal containing copper or the like.
  • the positive electrode side conductor 23 has a first plate portion 232 and a P bus bar 233.
  • the P bus bar 233 extends integrally with the first plate portion 232 toward the power module 30 disposed outside the housing 21 .
  • the P bus bar 233 has a first hanging portion 233a and a first connecting portion 233b.
  • the first hanging portion 233a extends from the outer edge portion 232a of the first plate portion 232 facing the output side surface 1b toward the bottom surface 212 side of the inner surface 210 of the housing 21.
  • the first connecting portion 233b extends from the end of the first hanging portion 233a toward the output side surface 1b integrally with the first hanging portion 233a.
  • the first connecting portion 233b extends from the inside of the housing 21 to the power module 30 through an opening of the housing 21 facing the output side surface 1b.
  • An extended end of the first connecting portion 233b is connected to the positive electrode of the power module 30.
  • the first connecting portion 233b in this embodiment extends in a direction perpendicular to the direction in which the first hanging portion 233a extends.
  • the above-mentioned one end of the first conductor 20a of the external input conductor 20 is connected to the outer edge portion 232a of the first plate portion 232 facing the input side side surface 1a side.
  • the negative electrode side conductor 24 is a conductor that electrically connects the negative electrode 22n of the capacitor element 22 and the negative electrode of the power module 30 in the power conversion section 3 arranged outside the capacitor 2.
  • the negative electrode side conductor 24 is made of, for example, a metal containing copper or the like.
  • the negative electrode side conductor 24 has a second plate portion 242 and an N bus bar 243.
  • the second plate part 242 in this embodiment has a flat plate shape and has the same shape as the first plate part 232.
  • the second plate portion 242 is disposed across the lower surfaces 22b of the plurality of capacitors 2, and is connected to each negative electrode 22n of the plurality of capacitors 2.
  • the second plate portion 242 and the first plate portion 232 of the positive conductor 23 sandwich the plurality of capacitor elements 22 therebetween.
  • the second plate portion 242 is arranged within the housing 21 with a gap between it and the bottom surface 212 .
  • the second plate portion 242 has an outer edge portion 242a as a surface corresponding to the thickness of the second plate portion 242.
  • the N bus bar 243 extends integrally with the second plate portion 242 toward the power module 30 disposed outside the housing 21 .
  • N bus bar 243 and P bus bar 233 have the same shape.
  • the N bus bar 243 has a second hanging portion 243a and a second connecting portion 243b.
  • the second hanging portion 243a extends from the outer edge portion 242a of the second plate portion 242 facing the output side surface 1b toward the top surface 211 side of the inner surface 210 of the housing 21.
  • the second connecting portion 243b extends from the end of the second hanging portion 243a toward the output side surface 1b integrally with the second hanging portion 243a.
  • the second connection portion 243b extends from the inside of the casing 21 to the power module 30 through an opening of the casing 21 facing the output side surface 1b.
  • An extended end of the second connection portion 243b is connected to the negative electrode of the power module 30.
  • the second connecting portion 243b in this embodiment extends in a direction perpendicular to the direction in which the second hanging portion 243a extends.
  • the second connecting portion 243b is arranged in parallel with the first connecting portion 233b with a gap G interposed therebetween.
  • the second connecting portion 243b is aligned with the first connecting portion 233b in a direction in which side surfaces 213 of the inner surface 210 of the housing 21 face each other.
  • a spatial distance is ensured in the gap G created by arranging the second connection part 243b and the first connection part 233b side by side.
  • the dimension of the gap G in this embodiment is, for example, 1 mm or more and 10 mm or less. Note that if an insulating member (not shown) made of insulating paper, synthetic resin, etc. is placed between the first connecting portion 233b and the second connecting portion 243b to fill the gap G, the gap G The dimension may be, for example, greater than 0 mm and less than 1 mm.
  • the above-mentioned one end of the second conductor 20b of the external input conductor 20 is connected to the outer edge portion 242a of the second plate portion 242 facing the input side surface 1a side.
  • the insulating section 25 is an insulating member housed in the housing 21.
  • the insulating portion 25 is made of synthetic resin material or the like.
  • the insulating portion 25 in the drawings is shown by hatching due to space limitations.
  • the insulating section 25 is disposed to fill the space formed between the inner surface 210 of the housing 21, the plurality of capacitor elements 22, the positive electrode side conductor 23, and the negative electrode side conductor 24. 21, the capacitor element 22, the positive conductor 23, and the negative conductor 24 are insulated from each other. That is, the insulating section 25 is interposed between each component that constitutes the capacitor 2. At the same time, the insulating section 25 supports and positions each component constituting the capacitor 2 within the casing 21.
  • the insulating portion 25 is formed by filling the housing 21 with a potting material and then applying a predetermined temperature and time to harden the potting material.
  • a potting material for example, silicone gel, epoxy resin, or the like is used as the potting material.
  • the potting material is applied from the upper side to the other side with the opening on one side of the housing 21 closed using a predetermined member, and the opening on the other side facing upward in the vertical direction.
  • the liquid is filled into the casing 21 through the opening.
  • the conductive plate 26 is housed in the housing 21 and is a flat conductive member.
  • the conductive plate 26 in this embodiment is arranged between the P bus bar 233 on the positive electrode side conductor 23 and the N bus bar 243 on the negative electrode side conductor 24 via the insulating part 25.
  • the conductive plate 26 connects the gap G between the first connection part 233b of the P bus bar 233 and the second connection part 243b of the N bus bar 243, the first hanging part 233a of the P bus bar 233, and the inside of the casing 21. and between the second hanging portion 243a of the N bus bar 243 and the side surface 213 inside the casing 21.
  • the conductive plate 26 connects these positive conductors between the current path of the positive conductor 23 extending from the capacitor element 22 to the power module 30 and the current path of the negative conductor 24 extending from the capacitor element 22 to the power module 30. 23 and the negative electrode side conductor 24 with an insulating portion 25 interposed therebetween.
  • the power converter 3 converts the power input from the capacitor 2 and outputs the converted power to the outside.
  • the power converter 3 is housed in the casing 1.
  • the power converter 3 in this embodiment includes three power modules 30 each responsible for outputting U-phase, V-phase, and W-phase output in order to output three-phase AC power. Therefore, the power conversion device 100 in this embodiment is a three-phase inverter including three power modules 30.
  • the insulating plate 321 has a flat plate shape.
  • the insulating plate 321 has a first surface 321a and a second surface 321b located on the back side of the first surface 321a. That is, the first surface 321a and the second surface 321b of the insulating plate 321 are parallel to each other and are placed back to back.
  • a back pattern which is a pattern of copper foil or the like, is formed over one surface. The back pattern is fixed to the center of the front surface 31a of the base plate 31 via a bonding material.
  • the insulating plate 321 in this embodiment is made of an insulating material such as ceramic, for example.
  • insulating material such as ceramic
  • paper phenol, paper epoxy, glass composite, glass epoxy, glass polyimide, fluororesin, etc. can be used as the insulating material forming the insulating plate 321.
  • a plurality of surface patterns 322 are arranged on the first surface 321a of the insulating plate 321. These plurality of surface patterns 322 are arranged adjacent to each other with a gap in the direction in which the insulating plate 321 spreads. In this embodiment, a case will be described as an example in which three surface patterns 322 are arranged on the first surface 321a. Hereinafter, for convenience of explanation, these three surface patterns 322 will be referred to as a first surface pattern 322a, a second surface pattern 322b, and a third surface pattern 322c.
  • the first surface pattern 322a and the second surface pattern 322b are patterns for exchanging input and output of DC current with the capacitor 2, and correspond to an inlet portion or an outlet portion of a loop between PNs formed on the surface pattern 322. .
  • An external output conductor 34 is connected to the third surface pattern 322c for outputting the AC current converted by the power semiconductor element 323 to a load (not shown) such as an AC rotating electric machine provided outside the power conversion device 100. has been done.
  • the power semiconductor element 323 is a circuit element that converts power through a switching operation that turns on and off voltage and current.
  • the power semiconductor element 323 is, for example, a switching element such as an IGBT or a MOSFET.
  • a switching element such as an IGBT or a MOSFET.
  • a MOSFET is applied to the power semiconductor
  • four power semiconductor elements 323 are connected to the surface pattern 322 of the circuit board 32. Note that when using an IGBT, it is necessary to arrange a diode in parallel with the IGBT to flow a current in the opposite direction.
  • the four power semiconductor elements 323 in this embodiment are comprised of two first power semiconductor elements 323a and two second power semiconductor elements 323b.
  • the first power semiconductor element 323a is connected to the first surface pattern 322a.
  • the second power semiconductor element 323b is connected to the third surface pattern 322c.
  • the power semiconductor element 323 When the power semiconductor element 323 is a MOSFET, the power semiconductor element 323 has an input surface on which an input terminal (not shown) corresponding to a drain is formed, and an output surface on which an output terminal (not shown) corresponding to a source is formed. and a gate corresponding to a control signal input terminal for controlling switching of the power semiconductor element 323.
  • the input surface of the power semiconductor element 323 is electrically connected to the surface pattern 322 via a bonding material or the like.
  • One end of a bonding wire Wb serving as a conducting wire is electrically connected to the output surface of the power semiconductor element 323.
  • the bonding wire Wb is made of metal including aluminum or the like. That is, the surface patterns 322 formed on the first surface 321a are electrically connected to each other by wire bonding.
  • the input surface of the first power semiconductor element 323a is connected to the first surface pattern 322a.
  • One end of the bonding wire Wb is connected to the output surface of the first power semiconductor element 323a, and the other end of the bonding wire Wb is connected to the third surface pattern 322c.
  • the input surface of the second power semiconductor element 323b is connected to the third surface pattern 322c.
  • One end of the bonding wire Wb is connected to the output surface of the second power semiconductor element 323b, and the other end of the bonding wire Wb is connected to the second surface pattern 322b.
  • DC power is input to the first power semiconductor element 323a through the first surface pattern 322a, and the second power semiconductor element 323b has a second surface pattern 322b and a second surface pattern 322b and a second power semiconductor.
  • DC power is input through the bonding wire Wb that connects the element 323b.
  • a control signal generated by a control section (not shown) including a gate drive circuit board and the like provided outside the circuit board 32 is input to the power semiconductor element 323.
  • the power semiconductor element 323 performs switching according to this control signal. Note that when the power semiconductor element 323 is an IGBT, the power semiconductor element 323 has an input surface corresponding to a collector, an output surface corresponding to an emitter, and a gate corresponding to a control signal input terminal.
  • the bonding material used for bonding for example, solder, sintered material (powder of metal, etc.), etc. can be used.
  • the main terminal portion 33 is an electrical conductor that exchanges DC power between the capacitor 2 and the circuit board 32.
  • the main terminal portion 33 is made of metal including copper or the like.
  • the main terminal portion 33 has a P terminal 331 as a positive electrode in the power module 30 and an N terminal 332 as a negative electrode in the power module 30. These P terminals 331 and N terminals 332 are arranged side by side with a gap having the same spacing as the gap G above.
  • the P terminal 331 is connected to the first connection portion 233b of the P bus bar 233 of the capacitor 2 by a fastening portion such as a bolt.
  • the N terminal 332 is connected to the second connection portion 243b of the N bus bar 243 of the capacitor 2 by a fastening portion such as a bolt. Note that, in FIG. 2, illustration of a connecting portion between the P terminal 331 and the first connecting portion 233b and a connecting portion between the N terminal 332 and the second connecting portion 243b is omitted.
  • the external output conductor 34 is an electrical conductor for outputting the AC power converted by the power semiconductor element 323 to the outside of the power conversion device 100.
  • the external output conductor 34 is made of metal containing copper or the like.
  • One end of the external output conductor 34 is connected to the third surface pattern 322c on the circuit board 32.
  • the other end of the external output conductor 34 extends outside the casing 1 in a direction intersecting the output side surface 1b.
  • the other end of the external output conductor 34 is connected to, for example, power output wiring (not shown) connected to a load such as a motor.
  • the resin case 35 is a member that mechanically reinforces the external output conductor 34 and the main terminal portion 33 while being fixed to the surface 31a of the base plate 31.
  • the resin case 35 is made of, for example, a synthetic resin material (insulating material).
  • a synthetic resin material for example, PPS (polyphenylene sulfide) can be used as the material for forming the resin case 35 in this embodiment.
  • a synthetic resin material other than PPS may be used for the resin case 35.
  • the resin case 35 is fixed to the surface 31a of the base plate 31 with, for example, adhesive.
  • the resin case 35 surrounds the circuit board 32 from the outside while covering the P terminal 331 and the N terminal 332 of the main terminal portion 33 and the external output conductor 34 from the outside.
  • the resin case 35 surrounds the circuit board 32 in a direction along the surface 31a of the base plate 31. Therefore, the resin case 35 and the base plate 31 define a space in which the circuit board 32 is accommodated. In this embodiment, for convenience of explanation, this space in which the circuit board 32 is accommodated is referred to as a "potting space Rp.”
  • the sealing part 36 is an insulating member disposed within the potting space Rp.
  • the potting space Rp is filled with a liquid potting material from the outside (potting) to seal the members exposed within the potting space Rp.
  • the potting material filled in the potting space Rp is cured by applying a predetermined temperature and time, and electrically insulates each member in the potting space Rp and the space outside the power module 30 from each member. do.
  • the same potting material as that filled in the casing 21 of the capacitor 2 can be used.
  • the sealing portion 36 is formed of this potting material.
  • the sealing part 36 in the potting space Rp is arranged so as to cover each surface of the circuit board 32, the bonding wire Wb, the external output conductor 34, and the main terminal part 33.
  • the cooler 4 is a device that cools the capacitor 2 and the power module 30 of the power conversion section 3. As shown in FIG. 1, the cooler 4 is provided so as to be stacked on the casing 1, and is fixed and integrated with the casing 1. As shown in FIG. 3, the cooler 4 has a base 41 and radiation fins 42. As shown in FIG. In addition, in FIG. 3, the base 41 and the radiation fins 42 are shown by dotted lines.
  • the base 41 has a plate shape.
  • the base 41 has a joint surface 41a and a heat radiation surface 41b.
  • the bonding surface 41a is a surface that is bonded to the outer surface of the casing 21 of the capacitor 2 and the back surface 31b of the base plate 31 in the power module 30 via a bonding material or the like (see also FIG. 2).
  • the heat radiation surface is a surface facing opposite to the bonding surface 41a. That is, the base 41 of the cooler 4 is connected to the casing 21 of the capacitor 2 and the base plate 31 of the power module 30.
  • the joint surface 41a and the heat radiation surface 41b are parallel to each other and are placed back to back.
  • the radiation fins 42 are columnar members arranged in plural on the radiation surface 41b of the base 41. Each heat radiation fin 42 projects from the heat radiation surface 41b toward the side opposite to the capacitor 2 and the power module 30 with the base 41 as the center.
  • a liquid refrigerant W such as water is introduced into the cooler 4 from the outside.
  • the heat radiation surface 41b of the base 41 and the radiation fins 42 are cooled by contacting with the liquid refrigerant W introduced from the outside.
  • the liquid refrigerant W is heated by exchanging heat with the heat conducted from the capacitor 2 and the power module 30 to the base 41 and the radiation fins 42, and simultaneously cools the capacitor 2 and the power module 30.
  • the DC power input to the first plate portion 232 of the positive electrode side conductor 23 through the first conductor 20a of the external input conductor 20 as a positive electrode is transferred to the The signal is input to the P terminal 331, which is the positive terminal of the module 30. Further, the DC power input to the positive electrode side conductor 23 is input into the capacitor element 22 from the positive electrode 22p of the capacitor element 22. DC power input from the P terminal 331 to the surface pattern 322 is converted into AC power by the power semiconductor element 323. This AC power is used by a load such as an AC rotating electrical machine outside the power converter 100 through the external output conductor 34 connected to the surface pattern 322.
  • the AC power returned from the external load is input again to the surface pattern 322 through the external output conductor 34, converted to DC power by the power semiconductor element 323, and then input to the N terminal 332.
  • the DC power input to the N terminal 332 flows through the negative conductor 24 and the second conductor 20b of the external input conductor 20.
  • the DC power input from the positive electrode 22p of the capacitor element 22 is stored as an electric charge (charging) within the capacitor element 22, and is repeatedly discharged through the negative electrode 22n.
  • the DC current flowing through the positive conductor 23 and the negative conductor 24 is smoothed.
  • a direct current flows through the P bus bar 233 of the positive conductor 23 and the N bus bar 243 of the negative conductor 24, magnetic flux is generated from each of the P bus bar 233 and the N bus bar 243.
  • the conductive plate 26 is arranged between the P bus bar 233 and the N bus bar 243, the magnetic flux generated by the current flowing through the P bus bar 233 and the N bus bar 243 interlinks with the conductive plate 26.
  • an induced current back electromotive force
  • the magnetic flux generated by this induced current causes the P bus bar 233 and the N bus bar 243 to Magnetic flux is canceled out.
  • the density of the magnetic flux generated by the current flowing through the P bus bar 233 and the N bus bar 243 in the housing 21 decreases.
  • the inductance in the positive conductor 23 and the negative conductor 24 is reduced.
  • the heat generated by the P bus bar 233 and the N bus bar 243 is conducted to the conductive plate 26 through the insulating section 25.
  • the heat conducted to the conductive plate 26 is diffused within the conductive plate 26.
  • the heat generated from the P bus bar 233 and the N bus bar 243 is higher than the configuration in which the conductive plate 26 is not arranged. can be further diffused within the casing 21. In other words, the P bus bar 233 and the N bus bar 243 can be further cooled.
  • the casing 21 connected to the cooler 4 and the conductive plate 26 are integrated, the heat conducted from the P bus bar 233 and the N bus bar 243 to the conductive plate 26 is released to the casing 21. At the same time, the casing 21 is cooled by the cooler 4. Therefore, it is possible to further suppress the conductor from increasing in temperature.
  • the conductive plate 26a is housed in the housing 21.
  • the conductive plate 26a is made of a material with higher thermal conductivity than the insulating portion 25, and is made of the same material as the housing 21.
  • the conductive plate 26a in this embodiment has a first portion 261 and a second portion 262.
  • the first portion 261 is a flat conductive member.
  • the first portion 261 is arranged between the P bus bar 233 on the positive conductor 23 and the N bus bar 243 on the negative conductor 24 with the insulating portion 25 interposed therebetween.
  • the first portion 261 includes a gap G between the first connecting portion 233b of the P bus bar 233 and the second connecting portion 243b of the N bus bar 243, and a gap between the first hanging portion 233a of the P bus bar 233 and the inside of the casing 21. and between the second hanging portion 243a of the N bus bar 243 and the side surface 213 inside the casing 21.
  • the first portion 261 is arranged between the current path of the positive electrode side conductor 23 and the current path of the negative electrode side conductor 24, which is closer to the power module 30 than the capacitor element 22. Further, the first portion 261 is disposed integrally with the housing 21 with the top surface 211 and the bottom surface 212 of the inner surface 210 of the housing 21 connected to each other.
  • the second portion 262 is a conductive member that is integrally formed with the first portion 261.
  • the second portion 262 is arranged in the gap S between adjacent capacitor elements 22.
  • the second portion 262 in this embodiment is disposed between adjacent capacitor elements 22 with the insulating portion 25 interposed therebetween so as to partition the adjacent capacitor elements 22 . Further, the second portion 262 is sandwiched between the first plate portion 232 of the positive electrode side conductor 23 and the second plate portion 242 of the negative electrode side conductor 24 via the insulating portion 25.
  • the conductive plate 26a constituted by the first portion 261 and the second portion 262 forms a T-shape when viewed from the direction in which the side surfaces 213 on the inner surface 210 of the casing 21 face each other. are doing.
  • the heat generated in the capacitor element 22 is conducted to the second portion 262 of the conductive plate 26a through the insulating portion 25.
  • the heat conducted to the second portion 262 is diffused within the second portion 262.
  • the second portion 262 since the second portion 262 has higher thermal conductivity than the thermal conductivity of the insulating portion 25, the second portion 262 is separated from the capacitor element 22 compared to a configuration in which the second portion 262 is not disposed between the capacitor elements 22.
  • the generated heat can be further diffused within the housing 21. In other words, the capacitor element 22 can be further cooled.
  • the casing 21 connected to the cooler 4 and the first portion 261 of the conductive plate 26a are integrated, and the first portion 261 and the second portion 262 are integrated, the P bus bar 233
  • the heat conducted from the N bus bar 243 to the first portion 261 and the heat conducted from the capacitor element 22 to the second portion 262 can be released to the housing 21. Therefore, it is possible to further suppress the conductor and the capacitor element 22 from increasing in temperature.
  • FIGS. 6 and 7 a third embodiment of the power conversion device 100 according to the present disclosure will be described with reference to FIGS. 6 and 7.
  • the same reference numerals are given to the same components in the figures as in the second embodiment described above, and the explanation thereof will be omitted.
  • the configurations of the P bus bar 233 of the positive conductor 23 and the N bus bar 243 of the negative conductor 24 are different from the configurations of the P bus bar 233 and N bus bar 243 described in the second embodiment.
  • the P bus bar 233 in this embodiment has a first extending portion 233c, a first hanging portion 233a, and a first connecting portion 233b.
  • the first extending portion 233c extends from the outer edge portion 232a of the first plate portion 232, which faces the output side surface 1b, toward the output side surface 1b.
  • the first hanging portion 233a extends from the end of the first extending portion 233c toward the bottom surface 212 side of the inner surface 210 of the housing 21, integrally with the first extending portion 233c.
  • the first connecting portion 233b extends from the end of the first hanging portion 233a toward the output side surface 1b integrally with the first hanging portion 233a.
  • the first connecting portion 233b extends from the inside of the housing 21 to the power module 30 through an opening of the housing 21 facing the output side surface 1b.
  • An extended end of the first connecting portion 233b is connected to the positive electrode of the power module 30.
  • the first connecting portion 233b in this embodiment extends in a direction perpendicular to the direction in which the first hanging portion 233a extends. Further, the first connecting portion 233b extends in the same direction as the first extending portion 233c.
  • the N bus bar 243 and the P bus bar 233 in this embodiment have the same shape.
  • the N bus bar 243 has a second extending portion 243c, a second hanging portion 243a, and a second connecting portion 243b.
  • the second extending portion 243c extends from the outer edge portion 242a of the second plate portion 242 facing the output side surface 1b toward the output side surface 1b.
  • the second hanging portion 243a extends from the end of the second extending portion 243c toward the top surface 211 side of the inner surface 210 of the housing 21, integrally with the second extending portion 243c.
  • the second connecting portion 243b extends from the end of the second hanging portion 243a toward the output side surface 1b integrally with the second hanging portion 243a.
  • the second connection portion 243b extends from the inside of the casing 21 to the power module 30 through an opening of the casing 21 facing the output side surface 1b.
  • the second connecting portion 243b in this embodiment extends in a direction perpendicular to the direction in which the second hanging portion 243a extends.
  • the second connecting portion 243b is arranged in parallel with the first connecting portion 233b with a gap G interposed therebetween.
  • the second connecting portion 243b is aligned with the first connecting portion 233b in a direction in which side surfaces 213 of the inner surface 210 of the housing 21 face each other.
  • the area of the first portion 261 of the conductive plate 26a disposed between the capacitor elements 22 can be increased compared to the configuration described in the second embodiment.
  • the surface area of the first portion 261 of the conductive plate 26a can be increased by the length of the first extending portion 233c and the second extending portion 243c. Therefore, the amount of magnetic flux that acts on (interlinks with) the conductive plate 26a from the capacitor element 22, the P bus bar 233, and the N bus bar 243 can be increased. As a result, inductance can be further reduced.
  • the sections adjacent in the opposing direction of the side surfaces 213 of the housing 21 are equal to the length of the first extending portion 233c and the length of the second extending portion 243c. It's a minute shorter. Therefore, for example, when current flows through the P bus bar 233 and the N bus bar 243 and generates heat, the heat conducted from the P bus bar 233 and the N bus bar 243 to the first portion 261 of the conductive plate 26a through the insulating section 25 is concentrated. can be suppressed.
  • the capacitor 2 described in the above embodiment may further include a casing insulating layer 27 disposed on the inner surface 210 of the casing 21 and integrally with the casing 21.
  • the housing insulating layer 27 is an oxide of the metal material forming the housing 21 .
  • the housing 21 is made of aluminum, it is an oxide (anodized film) formed by alumite processing the aluminum forming the housing 21. Thereby, the insulation between the positive electrode side conductor 23 and the negative electrode side conductor 24 and the housing 21 can be improved.
  • the distance between the top surface 211 and bottom surface 212 of the inner surface 210 of the housing 21 and the first plate part 232 of the positive electrode side conductor 23 and the second plate part of the negative electrode side conductor 24 can be reduced.
  • the amount of magnetic flux interlinked with the top surface 211 and the bottom surface 212 on the inner surface 210 of the housing 21 can be increased, Inductance can be reduced.
  • the housing insulating layer 27 may be an insulating coating material made of a synthetic resin material or the like.
  • the capacitor 2 described in the first embodiment may further include a conductive plate insulating layer 28 disposed integrally with the conductive plate 26 on the surface of the conductive plate 26.
  • the conductive plate insulating layer 28 is an oxide of the metal material forming the conductive plate 26.
  • the conductive plate 26 is made of aluminum, it is an oxide (anodized film) formed by alumite processing the aluminum forming the conductive plate 26.
  • the distance between the first connection portion 233b of the P bus bar 233 on the positive conductor 23 and the second connection portion 243b of the N bus bar 243 on the negative conductor 24 can be reduced.
  • the amount of magnetic flux interlinked with 26a can be increased, and the inductance can be reduced.
  • the conductor insulating layer 29 may be arranged on the outer surfaces of the first conductor 20a and the second conductor 20b of the external input conductor 20.
  • the capacitor element 22 described in the above embodiment has the positive electrode 22p disposed on the upper surface 22a and the negative electrode 22n disposed on the lower surface 22b, the structure is not limited to this.
  • the capacitor element 22 may have a negative electrode 22n disposed on the upper surface 22a and a positive electrode 22p disposed on the lower surface 22b.
  • the first plate part 232 of the positive electrode side conductor 23 is connected to the positive electrode 22p arranged on the lower surface 22b, and the first conductor 20a and the P bus bar 233 of the positive electrode side conductor 23 are connected to this first plate part 232. It is enough if it is connected.
  • the second plate portion 242 of the negative electrode side conductor 24 is connected to the negative electrode 22n arranged on the upper surface 22a, and the second conductor 20b and the N bus bar 243 of the negative electrode side conductor 24 are connected to this second plate portion 242. It is fine if it is done. Therefore, the respective arrangements of the first conductor 20a and the positive electrode side conductor 23 and the respective arrangements of the second conductor 20b and the negative electrode side conductor 24 described in the above embodiment may be interchanged. Even in this case, the first connection portion 233b of the P bus bar 233 is connected to the P terminal 331 on the power module 30, and the second connection portion 243b of the N bus bar 243 is connected to the N terminal 332 on the power module 30. That's fine.
  • the present invention is not limited to this configuration.
  • the conductive plates 26 and 26a may be made of a metal material having higher thermal conductivity than the metal material forming the housing 21.
  • parallel In addition, “parallel”, “perpendicular”, and “same shape” explained in the above embodiment refer to states of being substantially parallel, perpendicular, and the same shape, and are Slight errors and design tolerances are allowed. Note that the structure may be slightly inclined from the parallel and perpendicular state.
  • an inverter is used as an example of the power conversion device 100, but the power conversion device 100 is not limited to an inverter.
  • the power conversion device 100 may be a device that performs power conversion using the power semiconductor element 323, such as a converter or a combination of an inverter and a converter.
  • the power conversion device 100 is a converter, an AC voltage is input to the external output conductor 34 from an external input power source (not shown), and the power semiconductor element 323 on the circuit board 32 converts this AC voltage into a DC voltage
  • the configuration may be such that the DC voltage from the power semiconductor element 323 is output to the outside of the power conversion device 100 through the positive conductor 23 and the negative conductor 24.
  • the power module capacitor 2 includes a housing 21, a plurality of capacitor elements 22 housed in the housing 21 and arranged adjacent to each other, and positive electrodes 22p of the plurality of capacitor elements 22. , a positive electrode side conductor 23 connecting the positive electrode of the power module 30 disposed outside the housing 21, and a plurality of the capacitors with the plurality of capacitor elements 22 sandwiched therebetween together with the positive electrode side conductor 23.
  • the conductive plates 26, 26a are arranged between the positive electrode side conductor 23, the negative electrode side conductor 24, and the insulating part 25 between the current path of the conductor 24, and the conductive plates 26, 26a It is formed of a material having higher thermal conductivity than the insulating part 25.
  • the power module capacitor 2 according to the second aspect is the power module capacitor 2 according to the first aspect, in which the conductive plate 26a includes the current path of the positive electrode side conductor 23 and the negative electrode Among the current paths of the side conductor 24, a first portion 261 disposed between the current paths closer to the power module 30 than the capacitor element 22, and an adjacent capacitor element that is integrally formed with the first portion 261. 22, and a second portion 262 disposed between them.
  • the magnetic flux generated by the current flowing through the capacitor element 22 interlinks with this second portion 262.
  • an induced current (back electromotive force) corresponding to the amount of the interlinked magnetic flux flows through the second portion 262, and the magnetic flux generated by this induced current causes the capacitor element to The magnetic flux from 22 is canceled out.
  • the power conversion device 100 according to the third aspect includes the power module capacitor 2 according to the first aspect or the second aspect, the power module 30, the power module capacitor 2, and the power module capacitor 2 according to the first aspect or the second aspect.
  • a cooler 4 that cools the module 30 is provided, the housing 21 is connected to the cooler 4, and the conductive plates 26, 26a are arranged integrally with the housing 21.
  • the casing 21 is cooled by the cooler 4 while the heat conducted to the conductive plates 26, 26a from the current path of the positive electrode side conductor 23 and the current path of the negative electrode side conductor 24 is released to the casing 21.
  • a capacitor for a power module and a power conversion device that can suppress the generation of inductance in a conductor that connects a capacitor element and a power module, and also suppress the rise in temperature of this conductor. Can be done.
  • Conductor insulating layer 30 Power module 31...Base plate 31a...Front surface 31b...Back surface 32...Circuit board 33...Main terminal portion 34...External output conductor 35...Resin case 36...Sealing portion 41...Base 41a...Joint surface 41b...Heat radiation surface 42...Radiation fin 100...Power conversion device 210...Inner surface 211...Top surface 212...Bottom surface 213...Side surface 232...First plate part 232a, 242a...Outer edge part 233...P bus bar 233a...First hanging part 233b...First connection part 242...Second plate part 243...N bus bar 243a...Second hanging part 243b...Second connection part 261...First part 262...Second part 321...Insulating plate 321a...First surface 321b...Second surface 322...Surface pattern 322a ...First surface pattern 322b...Second surface pattern 322c...Third

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inverter Devices (AREA)

Abstract

本開示のコンデンサは、筐体内で隣接配置された複数のコンデンサ素子と、各コンデンサ素子の正極と、パワーモジュールの正極とを接続する正極導体と、正極導体とともに複数のコンデンサ素子を間に挟んだ状態で、各コンデンサ素子の負極とパワーモジュールの負極とを接続する負極導体と、筐体内で筐体内面、複数のコンデンサ素子、正極導体、及び負極導体のそれぞれの間の空間を埋めるように配置されることでこれらを互いに絶縁する絶縁部と、絶縁部よりも熱伝導性が高い材料で形成され、筐体内でコンデンサ素子からパワーモジュールへ延びる正極導体の電流経路と、コンデンサ素子からパワーモジュールへ延びる負極導体の電流経路との間で、これら正極導体及び負極導体と絶縁部を介して配置された導電板とを備える。

Description

パワーモジュール用コンデンサ、及びこれを備えている電力変換装置
 本開示は、パワーモジュール用コンデンサ、及びこれを備えている電力変換装置に関する。
 本願は、2022年6月30日に日本に出願された特願2022-105889号について優先権を主張し、その内容をここに援用する。
 例えば特許文献1には、複数のコンデンサセル(コンデンサ素子)のうちの少なくとも一つに近接した調整部材が配設されたコンデンサモジュールが開示されている。調整部材がコンデンサセルに近接することで、この調整部材がコンデンサセルを流れるループ電流によって生じる磁束に影響を与える結果、コンデンサセルのインダクタンスが調整されている。
特開2013-017319号公報
 ところで、上記特許文献1のコンデンサセルは、バスバー(導体)を通じてスイッチング部に繋がっている。ループ電流が流れる電流経路におけるインダクタンスは、コンデンサセルよりも、スイッチング部に繋がるバスバーの方でより発生する場合がある。
 また、近年、パワーモジュールを備える電力変換装置の分野では、付加価値向上のためにパワーモジュールの高電圧化・大電流化・高周波化・高速スイッチング化の機運が高まっている。それに伴って、コンデンサセルと、上記スイッチング部としてのパワーモジュールとを接続するバスバーがより高温化する場合がある。そのため、コンデンサモジュールでは、バスバーの高温化を抑制することが要求される。
 本開示は、上記課題を解決するためになされたものであって、コンデンサ素子とパワーモジュールとを繋ぐ導体におけるインダクタンスの発生を抑制しつつ、この導体が高温化することを抑制することができるパワーモジュール用コンデンサ、及び電力変換装置を提供することを目的とする。
 上記課題を解決するために、本開示に係るパワーモジュール用コンデンサは、筐体と、前記筐体に収容され、隣接配置された複数のコンデンサ素子と、複数の前記コンデンサ素子の正極と、前記筐体の外部に配置されたパワーモジュールの正極とを接続する正極側導体と、前記正極側導体とともに複数の前記コンデンサ素子を間に挟んだ状態で、複数の前記コンデンサ素子の負極と前記パワーモジュールの負極とを接続する負極側導体と、前記筐体に収容され、前記筐体の内面、複数の前記コンデンサ素子、前記正極側導体、及び前記負極側導体のそれぞれの間に形成された空間を埋めるように配置されることで、前記筐体、前記コンデンサ素子、前記正極側導体、及び前記負極側導体を互いに絶縁する絶縁部と、前記筐体に収容され、前記コンデンサ素子から前記パワーモジュールへ延びる前記正極側導体の電流経路と、前記コンデンサ素子から前記パワーモジュールへ延びる前記負極側導体の電流経路との間で、これら正極側導体及び負極側導体と前記絶縁部を介して配置された導電板と、を備え、前記導電板は、前記絶縁部よりも熱伝導性が高い材料によって形成されている。
 上記課題を解決するために、本開示に係る電力変換装置は、上記のパワーモジュール用コンデンサと、前記パワーモジュールと、前記パワーモジュール用コンデンサ及び前記パワーモジュールを冷却する冷却器と、を備え、前記筐体は、前記冷却器に接続され、前記導電板は、前記筐体と一体に配置されている。
 本開示によれば、コンデンサ素子とパワーモジュールとを繋ぐ導体におけるインダクタンスの発生を抑制しつつ、この導体が高温化することを抑制することができるパワーモジュール用コンデンサ、及び電力変換装置を提供することができる。
本開示の第一実施形態に係る電力変換装置の概略構成を示す斜視図である。 本開示の第一実施形態に係るパワーモジュール用コンデンサ及びパワーモジュールを図1に示すII-II線方向から見た時の図である。 図2に示すIII-III線方向のパワーモジュール用コンデンサの断面図である。 本開示の第二実施形態に係るパワーモジュール用コンデンサの内部を示すものであり、図2で示した部分を一部拡大したものに対応した図である。 本開示の第二実施形態に係るパワーモジュール用コンデンサの内部を示すものであり、図3で示した部分に対応した図である。 本開示の第三実施形態に係るパワーモジュール用コンデンサの内部を示すものであり、図2で示した部分を一部拡大したものに対応した図である。 本開示の第三実施形態に係るパワーモジュール用コンデンサの内部を示すものであり、図3で示した部分に対応した図である。 本開示のその他の実施形態に係るパワーモジュール用コンデンサの内部を示すものであって、図3で示した部分に対応した図である。 本開示のその他の実施形態に係るパワーモジュール用コンデンサの内部を示すものであって、図2で示した部分を一部拡大したものに対応した図である。 本開示のその他の実施形態に係るパワーモジュール用コンデンサの内部を示すものであって、図3で示した部分に対応した図である。
 以下、添付図面を参照して、本開示によるパワーモジュール用コンデンサ、及びこれを備えている電力変換装置を実施するための形態を説明する。
[第一実施形態]
[電力変換装置]
 電力変換装置は、直流電力を三相交流電力等に変換する装置である。本実施形態の電力変換装置には、例えば、発電所等の系統で用いられるインバータや、電気自動車等の電動機(モータ)の駆動に用いられるインバータ等が挙げられる。
 図1に示すように、電力変換装置100は、ケーシング1と、外部入力導体20と、パワーモジュール用コンデンサ2と、電力変換部3と、冷却器4とを備えている。なお、図1中では、ケーシング1及び冷却器4は、二点鎖線で示されている。
(ケーシング)
 ケーシング1は、電力変換装置100の外殻を成している。ケーシング1は、アルミニウム等の金属、又は合成樹脂等により形成されている。本実施形態におけるケーシング1は、アルミニウムによって形成されており、直方体状を成している。ケーシング1の外面は、互いに背合わせとなるように配置されている二つの側面を有している。
 以下、説明の便宜上、これら二つの側面のうち、一方側を向く側面を「入力側側面1a」と称し、他方側を向く側面を「出力側側面1b」と称する。入力側側面1aからは、直流電力を入力するための外部入力導体20が引き出されている。本実施形態における入力側側面1aと出力側側面1bとは、平行の関係にある。
(外部入力導体)
 外部入力導体20は、電力変換装置100の外部の電力系統や、バッテリ等の直流電源から供給される直流電力をパワーモジュール用コンデンサ2へ供給する一対の電気導体である。本実施形態における外部入力導体20は、銅等を含む金属により形成されている。
 外部入力導体20は、正極としての第一導体20aと、負極としての第二導体20bとを有している。第一導体20a及び第二導体20bの一端は、パワーモジュール用コンデンサ2に接続されており、これら第一導体20a及び第二導体20bの他端は、ケーシング1の入力側側面1aと交差する方向でケーシング1の外部に延びている。本実施形態における第一導体20aと第二導体20bとは、同一の形状を成している。
(パワーモジュール用コンデンサ)
 パワーモジュール用コンデンサ2は、外部入力導体20から入力された電荷を蓄えるとともに、電力の変換に伴う電圧変動を抑えるための平滑コンデンサモジュールである。パワーモジュール用コンデンサ2は、ケーシング1に収容されている。
 外部入力導体20から入力された直流電圧は、このパワーモジュール用コンデンサ2を経由することでリプルが抑えられて平滑化されるとともに、電力変換部3へ印加される。以下では、説明の便宜上、パワーモジュール用コンデンサ2を単に「コンデンサ2」と称する。
 図1から図3に示すように、コンデンサ2は、筐体21と、コンデンサ素子22と、正極側導体23と、負極側導体24と、絶縁部25と、導電板26とを備えている。
 (筐体)
 筐体21は、コンデンサ2の外殻を成しており、コンデンサ2を構成する各部品を収容する。筐体21は、例えば、アルミニウム等の金属によって形成されている。本実施形態における筐体21は、断面が長方形状(矩形状)であり、ケーシング1に収容された際に入力側側面1aから出力側側面1bに向かって延びる筒状を成している。したがって、筐体21は、内面210と、二つの開口部を有している。
 内面210は、コンデンサ2が備える筐体21以外の上記各部品を収容するための直方体状の空間を画定している。内面210は、四つの面によって構成されている。以下、説明の便宜上、この内面210を構成する四つの面のうち、一の内面210を「天面211」と称し、この天面211と対向する内面210を底面212と称する。天面211と底面212とは、例えば平行の状態にある。
 また、これら天面211と底面212とを接続するとともに互いに対向する二つの内面210を「側面213」と称する。二つの側面213は、例えば平行の状態にあり、天面211及び底面212と、例えば垂直な状態にある。二つの上記開口部は、ケーシング1の入力側側面1a及び出力側側面1bの広がる方向に対して垂直な方向に向かって開口している。
 (コンデンサ素子)
 コンデンサ素子22は、筐体21に収容されているフィルムコンデンサである。コンデンサ素子22は、内面210における天面211と底面212との間に配置され、これら天面211と底面212との間で延びる柱状を成している。コンデンサ素子22は、筐体21内で複数が隣接配置されている。図2に示すように、各コンデンサ素子22は、筐体21内で隣り合うコンデンサ素子22に対して隙間Sをあけて配置されている。
 コンデンサ素子22は、内面210における天面211に対向する上面22aと、この上面22aとは反対側を向く下面22bとを有している。即ち、下面22bは、内面210における底面212と対向している。図2及び図3に示すように、コンデンサ素子22は、上面22aに配置された正極22pと、下面22bに配置された負極22nとを有している。
 (正極側導体)
 正極側導体23は、コンデンサ素子22の正極22pと、コンデンサ2の外部に配置された電力変換部3におけるパワーモジュール30の正極とを電気的に接続する導体である。正極側導体23は、例えば、銅等を含む金属によって形成されている。正極側導体23は、第一板部232と、Pバスバー233とを有している。
 本実施形態における第一板部232は、平板状を成している。第一板部232は、複数のコンデンサ素子22の各上面22aに亘るように配置されており、複数のコンデンサ素子22の各正極22pに接続されている。第一板部232は、筐体21内で天面211と隙間をあけて配置されている。第一板部232は、この第一板部232の厚みの部分に相当する面としての外縁部232aを有している。
 Pバスバー233は、第一板部232から筐体21の外部に配置されたパワーモジュール30へ向かってこの第一板部232と一体に延びている。Pバスバー233は、第一垂下部233aと、第一接続部233bとを有している。第一垂下部233aは、第一板部232の外縁部232aのうち、出力側側面1b側を向く外縁部232aから、筐体21の内面210における底面212側に向かって延びている。
 第一接続部233bは、第一垂下部233aが延びた先からこの第一垂下部233aと一体に、出力側側面1bに向かって延びている。第一接続部233bは、筐体21の内部から、出力側側面1b側を向く筐体21の開口部を通過してパワーモジュール30へ延びている。第一接続部233bの延びた先は、パワーモジュール30の正極に接続されている。本実施形態における第一接続部233bは、第一垂下部233aが延びる方向に対して垂直な方向に延びている。
 また、第一板部232の外縁部232aのうち、入力側側面1a側を向く外縁部232aには、外部入力導体20の第一導体20aの上記一端が接続されている。
 (負極側導体)
 負極側導体24は、コンデンサ素子22の負極22nと、コンデンサ2の外部に配置された電力変換部3におけるパワーモジュール30の負極とを電気的に接続する導体である。負極側導体24は、例えば、銅等を含む金属によって形成されている。負極側導体24は、第二板部242と、Nバスバー243とを有している。
 本実施形態における第二板部242は、平板状を成しており、第一板部232と同一の形状を成している。第二板部242は、複数のコンデンサ2の各下面22bに亘るように配置されており、複数のコンデンサ2の各負極22nに接続されている。第二板部242は、正極側導体23の第一板部232とともに複数のコンデンサ素子22を間に挟んでいる。第二板部242は、筐体21内で底面212と隙間をあけて配置されている。第二板部242は、この第二板部242の厚みの部分に相当する面としての外縁部242aを有している。
 Nバスバー243は、第二板部242から筐体21の外部に配置されたパワーモジュール30へ向かってこの第二板部242と一体に延びている。Nバスバー243とPバスバー233とは、同一の形状を成している。Nバスバー243は、第二垂下部243aと、第二接続部243bとを有している。第二垂下部243aは、第二板部242の外縁部242aのうち、出力側側面1b側を向く外縁部242aから、筐体21の内面210における天面211側に向かって延びている。
 第二接続部243bは、第二垂下部243aが延びた先からこの第二垂下部243aと一体に、出力側側面1bに向かって延びている。第二接続部243bは、筐体21の内部から、出力側側面1b側を向く筐体21の開口部を通過してパワーモジュール30へ延びている。第二接続部243bの延びた先は、パワーモジュール30の負極に接続されている。
 本実施形態における第二接続部243bは、第二垂下部243aが延びる方向に対して垂直な方向に延びている。第二接続部243bは、第一接続部233bとギャップGを介して並設されている。第二接続部243bは、筐体21の内面210における側面213同士が互いに対向する方向で第一接続部233bと並んでいる。
 第二接続部243bと第一接続部233bとが並んで配置されることで生じるギャップGには、空間距離(絶縁距離)が確保されている。本実施形態におけるギャップGの寸法は、例えば、1mm以上、10mm以下である。
 なお、これら第一接続部233bと第二接続部243bとの間のギャップGを埋めるように絶縁紙や合成樹脂等によって形成された絶縁部材(図示省略)が間に配置された場合、ギャップGの寸法は、例えば0mmよりも大きく、1mm未満であってもよい。
 第二板部242の外縁部242aのうち、入力側側面1a側を向く外縁部242aには、外部入力導体20の第二導体20bの上記一端が接続されている。
 (絶縁部)
 絶縁部25は、筐体21に収容されている絶縁部材である。絶縁部25は、合成樹脂材料等によって形成されている。図面中における絶縁部25は、紙面の都合上、ハッチングで示されている。
 絶縁部25は、筐体21の内面210、複数のコンデンサ素子22、正極側導体23、及び負極側導体24のそれぞれの間に形成された空間を埋めるように配置されることで、これら筐体21、コンデンサ素子22、正極側導体23、及び負極側導体24を互いに絶縁する。即ち、絶縁部25は、コンデンサ2を構成する各部品間に介在している。同時に、絶縁部25は、コンデンサ2を構成する各部品を筐体21内で支持するとともに位置決めしている。
 なお、絶縁部25は、筐体21内にポッティング材が充填された後、所定の温度と時間がかけられ、このポッティング材が硬化することによって形成される。ポッティング材には、例えばシリコンゲルやエポキシ樹脂等が採用される。
 ポッティング材は、例えば、筐体21における一方側の開口部を所定の部材を用いて閉塞するとともに、他方側の開口部を鉛直方向における上方側に向かせた状態で、上方側からこの他方側の開口部を通じて筐体21内に充填される。
 (導電板)
 図1から図3に示すように、導電板26は、筐体21に収容されており、平板状を成す導電性部材である。本実施形態における導電板26は、正極側導体23におけるPバスバー233と、負極側導体24におけるNバスバー243との間に絶縁部25を介して配置されている。
 具体的には、導電板26は、Pバスバー233の第一接続部233bとNバスバー243の第二接続部243bとの間におけるギャップG、Pバスバー233の第一垂下部233aと筐体21内の側面213との間、及びNバスバー243の第二垂下部243aと筐体21内の側面213との間に亘るように配置されている。
 また、導電板26は、筐体21の内面210における天面211及び底面212を互いに接続した状態で、筐体21と一体に配置されている。導電板26は、絶縁部25よりも熱伝導性の高い材料によって形成されている。本実施形態における導電板26は、筐体21と同一の材質によって形成されている。したがって、導電板26は、アルミニウムによって形成されている。
 したがって、導電板26は、コンデンサ素子22からパワーモジュール30へ延びる正極側導体23の電流経路と、コンデンサ素子22からパワーモジュール30へ延びる負極側導体24の電流経路との間で、これら正極側導体23及び負極側導体24と絶縁部25を介して配置されている。
(電力変換部)
 電力変換部3は、コンデンサ2から入力された電力を変換するとともに、変換した電力を外部に出力する。電力変換部3は、ケーシング1に収容されている。本実施形態における電力変換部3は、三相交流電力を出力するために、U相、V相、及びW相用の出力をそれぞれ担当する三つのパワーモジュール30を有している。したがって、本実施形態における電力変換装置100は、三つのパワーモジュール30を備える三相インバータである。
 (パワーモジュール)
 パワーモジュール30は、入力された電力を変換して出力する。図2に示すように、パワーモジュール30は、ベースプレート31と、回路基板32と、外部出力導体34と、樹脂ケース35と、封止部36と、ボンディングワイヤWbとを備えている。
 ベースプレート31は、平板状を成す部材である。ベースプレート31は、表面31aと、この表面31aの裏側に位置する裏面31bとを有している。即ち、ベースプレート31の表面31aと裏面31bとは互いに平行を成した状態で背合わせになっている。ベースプレート31の裏面31bは、接合材等(図示省略)を介して、冷却器4に固定されている。本実施形態におけるベースプレート31には、例えば銅等を含む金属が採用される。なお、ベースプレート31には、アルミニウム等を含む金属が採用されてもよい。
 回路基板32は、絶縁板321と、表面パターン322と、パワー半導体素子323と、裏面パターン(図示省略)とを有している。
 絶縁板321は、平板状を成している。絶縁板321は、第一面321aと、この第一面321aの裏側に位置する第二面321bとを有している。即ち、絶縁板321の第一面321aと第二面321bとは互いに平行を成した状態で背合わせになっている。絶縁板321の第二面321bには、銅箔等のパターンである裏面パターンが一面に形成されている。当該裏面パターンは、接合材を介してベースプレート31の表面31aの中央に固定されている。
 本実施形態における絶縁板321は、例えばセラミック等の絶縁材料により形成されている。なお、絶縁板321を形成する絶縁材料としては、セラミック以外にも、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスエポキシ、ガラスポリイミド、フッ素樹脂等を採用することができる。
 表面パターン322は、絶縁板321の第一面321aに形成された平面状に広がる銅箔等のパターンである。表面パターン322は、例えば、絶縁板321の第一面321aに接合等で固定された後、エッチング等がなされることにより形成される。
 表面パターン322は、絶縁板321の第一面321a上に複数配置されている。これら複数の表面パターン322は、絶縁板321が広がる方向で隙間を介して互いに隣接配置されている。本実施形態では、三つの表面パターン322が第一面321a上に配置されている場合を一例として説明する。以下、説明の便宜上、これら三つの表面パターン322を第一表面パターン322a、第二表面パターン322b、及び第三表面パターン322cと称する。
 第一表面パターン322a及び第二表面パターン322bは、コンデンサ2と直流電流の入出力をやり取りするためのパターンであり、表面パターン322に形成されるPN間のループにおける入口部分もしくは出口部分に相当する。第三表面パターン322cには、パワー半導体素子323によって変換された交流電流を電力変換装置100の外部に設けられた交流回転電機等の負荷(図示省略)へ出力するための外部出力導体34が接続されている。
 パワー半導体素子323は、電圧や電流をオンオフするスイッチング動作により電力を変換する回路素子である。パワー半導体素子323は、例えば、IGBTやMOSFET等のスイッチング素子である。本実施形態では、一例として、パワー半導体にMOSFETを適用した場合を示しており、四つのパワー半導体素子323が回路基板32の表面パターン322に接続されている。なお、IGBTを使用する場合は、このIGBTと逆方向へ電流を流すダイオードを並列配置する必要がある。
 本実施形態における四つのパワー半導体素子323は、二つの第一パワー半導体素子323aと、二つの第二パワー半導体素子323bとによって構成されている。第一パワー半導体素子323aは、第一表面パターン322aに接続されている。第二パワー半導体素子323bは、第三表面パターン322cに接続されている。
 パワー半導体素子323がMOSFETの場合、パワー半導体素子323は、ドレインに相当する入力用端子(図示省略)が形成された入力面と、ソースに相当する出力用端子(図示省略)が形成された出力面と、パワー半導体素子323のスイッチングを制御するための制御信号入力用端子に相当するゲートとを有する。
 パワー半導体素子323の入力面は、表面パターン322に接合材等を介して電気的に接続されている。パワー半導体素子323の出力面には、導線としてのボンディングワイヤWbの一端が電気的に接続されている。ボンディングワイヤWbは、アルミニウム等を含む金属によって形成されている。即ち、第一面321aに形成された表面パターン322同士は、ワイヤボンディングによって電気的に接続されている。
 第一パワー半導体素子323aの入力面は、第一表面パターン322aに接続されている。一端が第一パワー半導体素子323aの出力面に接続されたボンディングワイヤWbの他端は、第三表面パターン322cに接続されている。第二パワー半導体素子323bの入力面は、第三表面パターン322cに接続されている。一端が第二パワー半導体素子323bの出力面に接続されたボンディングワイヤWbの他端は、第二表面パターン322bに接続されている。
 第一パワー半導体素子323aには、第一表面パターン322aを介して直流電力が入力され、第二パワー半導体素子323bには、第二表面パターン322b、及びこの第二表面パターン322bと第二パワー半導体素子323bとを接続するボンディングワイヤWbを介して直流電力が入力される。第一パワー半導体素子323aと第二パワー半導体素子323bとがスイッチング動作を行うことにより、上記の直流電力が交流電力へ変換され第三表面パターン322cへ出力される。
 パワー半導体素子323には、回路基板32の外部に設けられたゲート駆動回路基板等を含む制御部(図示省略)によって生成された制御信号が入力される。パワー半導体素子323は、この制御信号に従ってスイッチングを行う。なお、パワー半導体素子323がIGBTの場合、パワー半導体素子323は、コレクタに相当する入力面と、エミッタに相当する出力面と、制御信号入力用端子に相当するゲートとを有する。
 なお、ベースプレート31の表面31aと絶縁板321の第二面321bに形成された裏面パターンとの接合、パワー半導体素子323と表面パターン322との接合、及び、ベースプレート31の裏面31bと冷却器4との接合に用いられる接合材には、例えば、半田や焼結材(金属等の粉末)等を採用することができる。
 主端子部33は、コンデンサ2と回路基板32との間で直流電力をやり取りする電気導体である。主端子部33は、銅等を含む金属によって形成されている。主端子部33は、パワーモジュール30における正極としてのP端子331と、パワーモジュール30における負極としてのN端子332とを有している。これらP端子331及びN端子332は、上記ギャップGと同じ間隔のギャップを介して並んで配置されている。
 P端子331は、コンデンサ2のPバスバー233における第一接続部233bに、例えばボルト等の締結部によって接続されている。N端子332は、コンデンサ2のNバスバー243における第二接続部243bに、例えばボルト等の締結部によって接続されている。なお、図2中では、P端子331と第一接続部233bとの接続部分、及びN端子332と第二接続部243bとの接続部分の図示が省略されている。
 外部出力導体34は、パワー半導体素子323によって変換された後の交流電力を電力変換装置100の外部へ出力するための電気導体である。外部出力導体34は、銅等を含む金属により形成されている。外部出力導体34の一端は、回路基板32における第三表面パターン322cに接続されている。図1に示すように、外部出力導体34の他端は、出力側側面1bと交差する方向でケーシング1の外部に延びている。外部出力導体34の他端には、例えば、モータ等の負荷につながる電力出力用の配線(図示省略)が接続される。
 図2に示すように、樹脂ケース35は、ベースプレート31の表面31aに固定された状態で、外部出力導体34、及び主端子部33を機械的に補強する部材である。樹脂ケース35は、例えば、合成樹脂材料(絶縁材料)等により形成されている。本実施形態における樹脂ケース35を形成する材料には、例えば、PPS(ポリフェニレンサルファイド)を採用することができる。なお、PPS以外の合成樹脂材料を、樹脂ケース35に採用してもよい。樹脂ケース35は、ベースプレート31の表面31aに、例えば接着剤等によって固定されている。
 樹脂ケース35は、主端子部33のP端子331及びN端子332、並びに外部出力導体34を外側から覆った状態で、回路基板32を外側から囲っている。樹脂ケース35は、ベースプレート31の表面31aに沿う方向で、回路基板32を周囲から囲む樹脂ケース35を成している。したがって、樹脂ケース35は、ベースプレート31とともに回路基板32が収容される空間を画成している。本実施形態では、説明の便宜上、回路基板32が収容されるこの空間を「ポッティング空間Rp」と称する。
 封止部36は、ポッティング空間Rp内に配置されている絶縁部材である。ポッティング空間Rpには、外部から液状のポッティング材が充填され(ポッティング)、ポッティング空間Rp内で露出する部材を封止する。ポッティング空間Rp内に充填されたポッティング材は、所定の温度及び時間がかけられることで硬化し、ポッティング空間Rp内における各部材間、及び各部材とパワーモジュール30外部の空間とを電気的に絶縁する。本実施形態におけるポッティング材には、コンデンサ2の筐体21内に充填されるポッティング材と同一のものを採用することができる。
 したがって、封止部36は、このポッティング材によって形成されている。ポッティング空間Rp内における封止部36は、回路基板32、ボンディングワイヤWb、外部出力導体34、及び主端子部33のそれぞれの表面を覆うように配置されている。
(冷却器)
 冷却器4は、コンデンサ2及び電力変換部3のパワーモジュール30を冷却する装置である。図1に示すように、冷却器4は、ケーシング1に積層されるように設けられており、ケーシング1に固定され一体化されている。図3に示すように、冷却器4は、基部41と、放熱フィン42とを有している。なお、図3中では、基部41及び放熱フィン42は、点線で示されている。
 基部41は、板状を成している。基部41は、接合面41aと、放熱面41bとを有している。接合面41aは、コンデンサ2の筐体21の外面、及びパワーモジュール30におけるベースプレート31の裏面31bに接合材等を介して接合される面である(図2も参照)。放熱面は、接合面41aとは反対側を向く面である。即ち、冷却器4の基部41は、コンデンサ2の筐体21、及びパワーモジュール30のベースプレート31に接続されている。
 接合面41aと放熱面41bとは、互いに平行を成した状態で背合わせになっている。放熱フィン42は、基部41の放熱面41bに複数配置されている柱状を成す部材である。各放熱フィン42は、基部41を中心に、コンデンサ2及びパワーモジュール30とは反対の側へ放熱面41bから突出している。
 冷却器4には、例えば、外部から水等の液冷媒Wが導入される。基部41の放熱面41bと、放熱フィン42は、この外部から導入された液冷媒Wと接触することで冷却される。液冷媒Wは、コンデンサ2、及びパワーモジュール30から基部41及び放熱フィン42へ伝導した熱と熱交換して温められると同時に、これらコンデンサ2及びパワーモジュール30を冷却する。
(作用・効果)
 正極としての外部入力導体20の第一導体20aを通じて、正極側導体23の第一板部232に入力された直流電力は、Pバスバー233の第一垂下部233a及び第一接続部233bを通じて、パワーモジュール30の正極であるP端子331へ入力される。また、正極側導体23に入力された直流電力は、コンデンサ素子22の正極22pからコンデンサ素子22内に入力される。P端子331から表面パターン322へ入力された直流電力は、パワー半導体素子323で交流電力に変換される。この交流電力は、表面パターン322に接続された外部出力導体34を通じて、電力変換装置100の外部の交流回転電機等の負荷で利用される。外部の負荷から戻る交流電力は、外部出力導体34を通じて、再び表面パターン322に入力され、パワー半導体素子323によって直流電力に変換された後、N端子332に入力される。N端子332に入力された直流電力は、負極側導体24、及び外部入力導体20の第二導体20bを流れる。コンデンサ素子22の正極22pから入力された直流電力は、コンデンサ素子22内で電荷として蓄えられつつ(充電)、負極22nを通じた放電が繰り返される。コンデンサ素子22における上記の充放電が繰り返されることによって、正極側導体23及び負極側導体24を流れる直流電流が平滑化される。正極側導体23のPバスバー233及び負極側導体24のNバスバー243を直流電流が流れた際、これらPバスバー233及びNバスバー243のそれぞれから磁束が発生する。
 上記構成によれば、導電板26がPバスバー233及びNバスバー243の間に配置されているため、これらPバスバー233及びNバスバー243を流れる電流によって発生する磁束が導電板26に鎖交する。これにより、導電板26に鎖交した磁束の量に応じた誘導電流(逆起電力)がこの導電板26中を流れるとともに、この誘導電流によって発生する磁束によってPバスバー233及びNバスバー243からの磁束が打ち消される。つまり、筐体21内のPバスバー233及びNバスバー243を流れる電流によって発生する磁束の密度が低下する。その結果、正極側導体23及び負極側導体24におけるインダクタンスが低減される。
 また、Pバスバー233及びNバスバー243で生じた熱は、絶縁部25を通じて導電板26へ伝導する。導電板26に伝導した熱は、導電板26中を拡散する。上記構成によれば、導電板26は、熱伝導性が絶縁部25の熱伝導性よりも高いため、導電板26が配置されない構成と比較して、Pバスバー233及びNバスバー243から生じた熱を筐体21内でより拡散させることができる。つまり、Pバスバー233及びNバスバー243をより冷却することができる。
 したがって、コンデンサ素子22とパワーモジュール30とを繋ぐ導体におけるインダクタンスの発生を抑制しつつ、導体が高温化することを抑制することができる。
 また、上記構成によれば、冷却器4に接続された筐体21と導電板26とが一体であるため、Pバスバー233及びNバスバー243から導電板26に伝導した熱を筐体21へ逃がしつつ、筐体21が冷却器4によって冷却される。したがって、導体が高温化することをより抑制することができる。
[第二実施形態]
 次に、本開示に係る電力変換装置100の第二実施形態について図4及び図5を参照して説明する。なお、以下に説明する第二実施形態では、上記の第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第二実施形態では、コンデンサ2における導電板26aの構成が、第一実施形態で説明した導電板26の構成と異なっている。
 (導電板)
 導電板26aは、筐体21に収容されている。導電板26aは、絶縁部25よりも熱伝導性の高い材料によって形成されており、筐体21と同一の材質によって形成されている。本実施形態における導電板26aは、第一部分261と、第二部分262とを有している。
 第一部分261は、平板状を成している導電性部材である。第一部分261は、正極側導体23におけるPバスバー233と、負極側導体24におけるNバスバー243の間に絶縁部25を介して配置されている。
 具体的には、第一部分261は、Pバスバー233の第一接続部233bとNバスバー243の第二接続部243bとの間におけるギャップG、Pバスバー233の第一垂下部233aと筐体21内の側面213との間、及びNバスバー243の第二垂下部243aと筐体21内の側面213との間に配置されている。
 したがって、第一部分261は、正極側導体23の電流経路及び負極側導体24の電流経路のうち、コンデンサ素子22よりもパワーモジュール30側の電流経路間に配置されている。また、第一部分261は、筐体21の内面210における天面211及び底面212を互いに接続した状態で、筐体21と一体に配置されている。
 第二部分262は、第一部分261と一体に形成されている導電性部材である。第二部分262は、隣り合うコンデンサ素子22間の隙間Sに配置されている。本実施形態における第二部分262は、隣り合うコンデンサ素子22を仕切るように、絶縁部25を介した状態で隣り合うコンデンサ素子22間に配置されている。また、第二部分262は、正極側導体23の第一板部232、及び負極側導体24の第二板部242に絶縁部25を介して挟まれている。
 なお、図5に示すように、第一部分261と第二部分262とによって構成された導電板26aは、筐体21の内面210における側面213同士が対向する方向から見て、T字状を成している。
(作用・効果)
 上記構成によれば、導電板26aの第二部分262が隣り合うコンデンサ素子22間に配置されているため、コンデンサ素子22を流れる電流によって発生する磁束がこの第二部分262に鎖交する。これにより、第二部分262に鎖交した磁束の量に応じた誘導電流(逆起電力)が第二部分262中を流れるとともに、この誘導電流によって発生する磁束によってコンデンサ素子22からの磁束が打ち消される。つまり、コンデンサ素子22を流れる電流によって発生する磁束の密度が低下する。その結果、電流経路としてのコンデンサ素子22におけるインダクタンスが低減される。
 また、コンデンサ素子22で生じた熱は、絶縁部25を通じて導電板26aの第二部分262へ伝導する。第二部分262に伝導した熱は、この第二部分262中を拡散する。上記構成によれば、第二部分262は、熱伝導性が絶縁部25の熱伝導性よりも高いため、第二部分262がコンデンサ素子22間に配置されない構成と比較して、コンデンサ素子22から生じた熱を筐体21内でより拡散させることができる。つまり、コンデンサ素子22をより冷却することができる。
 また、上記構成によれば、冷却器4に接続された筐体21と導電板26aの第一部分261とが一体であり、第一部分261と第二部分262とが一体であるため、Pバスバー233及びNバスバー243から第一部分261に伝導した熱、及びコンデンサ素子22から第二部分262に伝導した熱を筐体21へ逃がすことができる。したがって、導体及びコンデンサ素子22が高温化することをより抑制することができる。
[第三実施形態]
 次に、本開示に係る電力変換装置100の第三実施形態について図6及び図7を参照して説明する。なお、以下に説明する第三実施形態では、上記の第二実施形態と共通する構成については図中に同符号を付してその説明を省略する。第三実施形態では、正極側導体23のPバスバー233、及び負極側導体24のNバスバー243の構成が、第二実施形態で説明したPバスバー233及びNバスバー243の構成と異なっている。
 本実施形態におけるPバスバー233は、第一延在部233cと、第一垂下部233aと、第一接続部233bとを有している。第一延在部233cは、第一板部232の外縁部232aのうち、出力側側面1b側を向く外縁部232aから出力側側面1bに向かうように延びている。第一垂下部233aは、第一延在部233cの延びた先からこの第一延在部233cと一体に、筐体21の内面210における底面212側に向かって延びている。
 第一接続部233bは、第一垂下部233aが延びた先からこの第一垂下部233aと一体に、出力側側面1bに向かって延びている。第一接続部233bは、筐体21の内部から、出力側側面1b側を向く筐体21の開口部を通過してパワーモジュール30へ延びている。第一接続部233bの延びた先は、パワーモジュール30の正極に接続されている。本実施形態における第一接続部233bは、第一垂下部233aが延びる方向に対して垂直な方向に延びている。また、第一接続部233bは、第一延在部233cが延びる方向と同一の方向に延びている。
 本実施形態におけるNバスバー243とPバスバー233とは、同一の形状を成している。Nバスバー243は、第二延在部243cと、第二垂下部243aと、第二接続部243bとを有している。第二延在部243cは、第二板部242の外縁部242aのうち、出力側側面1b側を向く外縁部242aから出力側側面1bに向かうように延びている。第二垂下部243aは、第二延在部243cの延びた先からこの第二延在部243cと一体に、筐体21の内面210における天面211側に向かって延びている。
 第二接続部243bは、第二垂下部243aが延びた先からこの第二垂下部243aと一体に、出力側側面1bに向かって延びている。第二接続部243bは、筐体21の内部から、出力側側面1b側を向く筐体21の開口部を通過してパワーモジュール30へ延びている。
 本実施形態における第二接続部243bは、第二垂下部243aが延びる方向に対して垂直な方向に延びている。第二接続部243bは、第一接続部233bとギャップGを介して並設されている。第二接続部243bは、筐体21の内面210における側面213同士が互いに対向する方向で第一接続部233bと並んでいる。
(作用・効果)
 第三実施形態の構成によれば、第二実施形態で説明した構成に対して、コンデンサ素子22間に配置された導電板26aにおける第一部分261の面積を増加させることができきる。例えば、導電板26aの第一部分261の表面積を、第一延在部233c及び第二延在部243cの長さ分増加させることができる。したがって、コンデンサ素子22、Pバスバー233、及びNバスバー243から導電板26aに作用(鎖交)する磁束の量を増加させることができる。その結果、インダクタンスをより低減することができる。
 また、第二実施形態で説明した構成に対して、筐体21の側面213同士の対向方向で隣り合う区間が、第一延在部233cの長さ分、及び第二延在部243cの長さ分短くなる。したがって、例えば、Pバスバー233及びNバスバー243に電流が流れて発熱した際、これらPバスバー233及びNバスバー243から絶縁部25を介して導電板26aの第一部分261に伝導する熱が集中することを抑制することができる。
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成は実施形態の構成に限られるものではなく、本開示の要旨を逸脱しない範囲内での構成の付加、省略、置換、及びその他の変更が可能である。
 図8に示すように、上記実施形態で説明したコンデンサ2は、筐体21の内面210上に筐体21と一体に配置された筐体絶縁層27を更に備えていてもよい。この場合、筐体絶縁層27は、筐体21を形成する金属材料の酸化物である。筐体21がアルミニウムによって形成されている場合、筐体21を形成するアルミニウムをアルマイト加工することによって形成される酸化物(陽極酸化被膜)である。これにより、正極側導体23及び負極側導体24と筐体21との間における絶縁性を高めることができる。したがって、筐体21の内面210における天面211及び底面212と、正極側導体23の第一板部232及び負極側導体24の第二位板部との間の距離を縮めることができる。その結果、第一板部232及び第二板部242を流れる電流によって生じる磁束のうち、筐体21の内面210における天面211及び底面212に鎖交する磁束の量を増大させることができ、インダクタンスを低減させることができる。なお、上記筐体絶縁層27は、合成樹脂材料等によって形成されている絶縁コーティング材であってもよい。
 また、図9に示すように、第一実施形態で説明したコンデンサ2は、導電板26の表面に導電板26と一体に配置された導電板絶縁層28を更に備えていてもよい。この場合、導電板絶縁層28は、導電板26を形成する金属材料の酸化物である。導電板26がアルミニウムによって形成されている場合、導電板26を形成するアルミニウムをアルマイト加工することによって形成される酸化物(陽極酸化被膜)である。これにより、正極側導体23のPバスバー233及び負極側導体24のNバスバー243と導電板26との間における絶縁性を高めることができる。したがって、導電板26と、Pバスバー233及びNバスバー243との間の距離を縮めることができる。その結果、Pバスバー233及びNバスバー243を流れる電流によって生じる磁束のうち、導電板26に鎖交する磁束の量を増大させることができ、インダクタンスを低減させることができる。なお、上記導電板絶縁層28は、合成樹脂材料等によって形成されている絶縁コーティング材であってもよい。また、導電板絶縁層28は、第二実施形態で説明した導電板26aの表面にこの導電板26aと一体に配置されてもよい。
 また、図10に示すように、上記実施形態で説明したコンデンサ2は、正極側導体23及び負極側導体24の外面上にこれら正極側導体23及び負極側導体24と一体に配置された導体絶縁層29を更に備えていてもよい。この場合、導体絶縁層29は、合成樹脂材料等によって形成されている絶縁コーティング材である。これにより、正極側導体23と負極側導体24との間における絶縁性を高めることができる。したがって、筐体21の内面210における天面211及び底面212と、正極側導体23の第一板部232及び負極側導体24の第二板部242との間の距離を縮めることができる。また、正極側導体23におけるPバスバー233の第一接続部233bと、負極側導体24におけるNバスバー243の第二接続部243bとの間の距離を縮めることができる。これらの結果、第一板部232及び第二板部242を流れる電流によって生じる磁束のうち、筐体21の内面210における天面211及び底面212に鎖交する磁束の量、及び導電板26,26aに鎖交する磁束の量を増大させることができ、インダクタンスを低減させることができる。なお、詳細な図示は省略するが、導体絶縁層29は、外部入力導体20の第一導体20a及び第二導体20bの外面上に配置されてもよい。
 また、上記実施形態で説明した導電板26,26aは、筐体21と一体に形成されず、絶縁部25によって筐体21内で位置決めされている構成であってもよい。
 また、上記実施形態で説明したコンデンサ2のコンデンサ素子22は、フィルムコンデンサに限定されることはない。コンデンサ素子22は、例えば、電解コンデンサ等であってもよい。
 また、上記実施形態で説明したコンデンサ素子22は、上面22aに配置された正極22pと、下面22bに配置された負極22nとを有しているが、この構成に限定されることはない。コンデンサ素子22は、上面22aに配置された負極22nと、下面22bに配置された正極22pとを有していてもよい。
 この際、正極側導体23の第一板部232は、下面22bに配置された正極22pに接続され、第一導体20a、及び正極側導体23のPバスバー233は、この第一板部232に接続されればよい。また、負極側導体24の第二板部242は、上面22aに配置された負極22nに接続され、第二導体20b、及び負極側導体24のNバスバー243は、この第二板部242に接続されればよい。
 したがって、上記実施形態で説明した第一導体20a及び正極側導体23のそれぞれの配置と、第二導体20b及び負極側導体24それぞれの配置とは、互いに入れ替わってもよい。この場合であっても、Pバスバー233の第一接続部233bは、パワーモジュール30におけるP端子331に接続され、Nバスバー243の第二接続部243bは、パワーモジュール30におけるN端子332に接続されればよい。
 また、上記実施形態では、導電板26,26aが筐体21と同じ材質によって形成される構成を説明したが、この構成に限定されることはない。導電板26,26aは、筐体21を形成する金属材料よりも熱伝導性の高い金属材料によって形成されていてもよい。
 また、上記実施形態で説明した、「平行」、「垂直」、及び「同一の形状」とは、実質的に平行、垂直、及び同一の形状である状態を指すものであって、製造上のわずかな誤差や設計上の公差等は許容される。なお、平行及び垂直な状態から多少傾斜している構成であってもよい。
 また、上記実施形態では、電力変換装置100としてインバータを一例にして説明したが、電力変換装置100はインバータに限定されることはない。電力変換装置100は、例えば、コンバータや、インバータとコンバータとを組み合わせたもの等、パワー半導体素子323により電力変換を行う装置であってもよい。電力変換装置100がコンバータの場合は、外部の入力電源等(図示省略)から外部出力導体34に交流電圧が入力されて回路基板32におけるパワー半導体素子323がこの交流電圧を直流電圧に変換し、パワー半導体素子323からの直流電圧が正極側導体23及び負極側導体24を通じて電力変換装置100の外部へ出力される構成であってもよい。
[付記]
 各実施形態に記載のパワーモジュール用コンデンサ、及び電力変換装置は、例えば以下のように把握される。
 (1)第1の態様に係るパワーモジュール用コンデンサ2は、筐体21と、前記筐体21に収容され、隣接配置された複数のコンデンサ素子22と、複数の前記コンデンサ素子22の正極22pと、前記筐体21の外部に配置されたパワーモジュール30の正極とを接続する正極側導体23と、前記正極側導体23とともに複数の前記コンデンサ素子22を間に挟んだ状態で、複数の前記コンデンサ素子22の負極22nと前記パワーモジュール30の負極とを接続する負極側導体24と、前記筐体21に収容され、前記筐体21の内面210、複数の前記コンデンサ素子22、前記正極側導体23、及び前記負極側導体24のそれぞれの間に形成された空間を埋めるように配置されることで、前記筐体21、前記コンデンサ素子22、前記正極側導体23、及び前記負極側導体24を互いに絶縁する絶縁部25と、前記筐体21に収容され、前記コンデンサ素子22から前記パワーモジュール30へ延びる前記正極側導体23の電流経路と、前記コンデンサ素子22から前記パワーモジュール30へ延びる前記負極側導体24の電流経路との間で、これら正極側導体23及び負極側導体24と前記絶縁部25を介して配置された導電板26,26aと、を備え、前記導電板26,26aは、前記絶縁部25よりも熱伝導性が高い材料によって形成されている。
 これにより、導電板26,26aが正極側導体23及び負極側導体24の電流経路間に配置されているため、それぞれの電流経路を流れる電流によって発生する磁束が導電板26,26aに鎖交する。磁束が導電板26,26aに鎖交することで、鎖交したこの磁束の量に応じた誘導電流(逆起電力)がこの導電板26,26a中を流れるとともに、この誘導電流によって発生する磁束によって各電流経路からの磁束が打ち消される。また、熱伝導性が絶縁部25の熱伝導性よりも高いため、導電板26,26aが電流経路間に配置されない構成と比較して、各電流経路から生じた熱を筐体21内でより拡散させることができる。
 (2)第2の態様に係るパワーモジュール用コンデンサ2は、前記第1の態様に係るパワーモジュール用コンデンサ2であって、前記導電板26aは、前記正極側導体23の前記電流経路及び前記負極側導体24の前記電流経路のうち、前記コンデンサ素子22よりも前記パワーモジュール30側の前記電流経路間に配置された第一部分261と、前記第一部分261と一体に形成され、隣り合う前記コンデンサ素子22間に配置された第二部分262と、を有してもよい。
 これにより、導電板26aの第二部分262が隣り合うコンデンサ素子22間に配置されているため、コンデンサ素子22を流れる電流によって発生する磁束がこの第二部分262に鎖交する。磁束が第二部分262に鎖交することで、鎖交したこの磁束の量に応じた誘導電流(逆起電力)が第二部分262中を流れるとともに、この誘導電流によって発生する磁束によってコンデンサ素子22からの磁束が打ち消される。
 (3)第3の態様に係る電力変換装置100は、前記第1の態様又は前記第2の態様に係るパワーモジュール用コンデンサ2と、前記パワーモジュール30と、前記パワーモジュール用コンデンサ2及び前記パワーモジュール30を冷却する冷却器4と、を備え、前記筐体21は、前記冷却器4に接続され、前記導電板26,26aは、前記筐体21と一体に配置されている。
 これにより、正極側導体23の電流経路、及び負極側導体24の電流経路から導電板26,26aに伝導した熱を筐体21へ逃がしつつ、筐体21が冷却器4によって冷却される。
 本開示によれば、コンデンサ素子とパワーモジュールとを繋ぐ導体におけるインダクタンスの発生を抑制しつつ、この導体が高温化することを抑制することができるパワーモジュール用コンデンサ、及び電力変換装置を提供することができる。
 1…ケーシング 1a…入力側側面 1b…出力側側面 2…パワーモジュール用コンデンサ(コンデンサ) 3…電力変換部 4…冷却器 20…外部入力導体 20a…第一導体 20b…第二導体 21…筐体 22…コンデンサ素子 22a…上面 22b…下面 22p…正極 22n…負極 23…正極側導体 24…負極側導体 25…絶縁部 26,26a…導電板 27…筐体絶縁層 28…導電板絶縁層 29…導体絶縁層 30…パワーモジュール 31…ベースプレート 31a…表面 31b…裏面 32…回路基板 33…主端子部 34…外部出力導体 35…樹脂ケース 36…封止部 41…基部 41a…接合面 41b…放熱面 42…放熱フィン 100…電力変換装置 210…内面 211…天面 212…底面 213…側面 232…第一板部 232a,242a…外縁部 233…Pバスバー 233a…第一垂下部 233b…第一接続部 242…第二板部 243…Nバスバー 243a…第二垂下部 243b…第二接続部 261…第一部分 262…第二部分 321…絶縁板 321a…第一面 321b…第二面 322…表面パターン 322a…第一表面パターン 322b…第二表面パターン 322c…第三表面パターン 323…パワー半導体素子 323a…第一パワー半導体素子 323b…第二パワー半導体素子 331…P端子 332…N端子 G…ギャップ Rp…ポッティング空間 S…隙間 W…液冷媒 Wb…ボンディングワイヤ

Claims (3)

  1.  筐体と、
     前記筐体に収容され、隣接配置された複数のコンデンサ素子と、
     複数の前記コンデンサ素子の正極と、前記筐体の外部に配置されたパワーモジュールの正極とを接続する正極側導体と、
     前記正極側導体とともに複数の前記コンデンサ素子を間に挟んだ状態で、複数の前記コンデンサ素子の負極と前記パワーモジュールの負極とを接続する負極側導体と、
     前記筐体に収容され、前記筐体の内面、複数の前記コンデンサ素子、前記正極側導体、及び前記負極側導体のそれぞれの間に形成された空間を埋めるように配置されることで、前記筐体、前記コンデンサ素子、前記正極側導体、及び前記負極側導体を互いに絶縁する絶縁部と、
     前記筐体に収容され、
     前記コンデンサ素子から前記パワーモジュールへ延びる前記正極側導体の電流経路と、前記コンデンサ素子から前記パワーモジュールへ延びる前記負極側導体の電流経路との間で、これら正極側導体及び負極側導体と前記絶縁部を介して配置された導電板と、
     を備え、
     前記導電板は、前記絶縁部よりも熱伝導性が高い材料によって形成されている
     パワーモジュール用コンデンサ。
  2.  前記導電板は、
     前記正極側導体の前記電流経路及び前記負極側導体の前記電流経路のうち、前記コンデンサ素子よりも前記パワーモジュール側の前記電流経路間に配置された第一部分と、
     前記第一部分と一体に形成され、隣り合う前記コンデンサ素子間に配置された第二部分と、
     を有する
     請求項1に記載のパワーモジュール用コンデンサ。
  3.  請求項1又は請求項2に記載のパワーモジュール用コンデンサと、
     前記パワーモジュールと、
     前記パワーモジュール用コンデンサ及び前記パワーモジュールを冷却する冷却器と、
     を備え、
     前記筐体は、前記冷却器に接続され、
     前記導電板は、前記筐体と一体に配置されている
     電力変換装置。
PCT/JP2023/005847 2022-06-30 2023-02-17 パワーモジュール用コンデンサ、及びこれを備えている電力変換装置 WO2024004267A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-105889 2022-06-30
JP2022105889A JP2024005624A (ja) 2022-06-30 2022-06-30 パワーモジュール用コンデンサ、及びこれを備えている電力変換装置

Publications (1)

Publication Number Publication Date
WO2024004267A1 true WO2024004267A1 (ja) 2024-01-04

Family

ID=89381944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005847 WO2024004267A1 (ja) 2022-06-30 2023-02-17 パワーモジュール用コンデンサ、及びこれを備えている電力変換装置

Country Status (2)

Country Link
JP (1) JP2024005624A (ja)
WO (1) WO2024004267A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011056A (ja) * 2015-06-19 2017-01-12 日産自動車株式会社 コンデンサモジュール
JP2017195285A (ja) * 2016-04-20 2017-10-26 株式会社指月電機製作所 外部端子構造及び樹脂モールド型コンデンサ
WO2018180897A1 (ja) * 2017-03-30 2018-10-04 アイシン・エィ・ダブリュ株式会社 インバータユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011056A (ja) * 2015-06-19 2017-01-12 日産自動車株式会社 コンデンサモジュール
JP2017195285A (ja) * 2016-04-20 2017-10-26 株式会社指月電機製作所 外部端子構造及び樹脂モールド型コンデンサ
WO2018180897A1 (ja) * 2017-03-30 2018-10-04 アイシン・エィ・ダブリュ株式会社 インバータユニット

Also Published As

Publication number Publication date
JP2024005624A (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
JP6915633B2 (ja) 電力変換装置
CN106953504B (zh) 电子的线路单元
JP5664472B2 (ja) 電力変換装置
WO2015040902A1 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JP2015149805A (ja) 電力変換装置
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
JPWO2020174584A1 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
WO2024004267A1 (ja) パワーモジュール用コンデンサ、及びこれを備えている電力変換装置
US20220262895A1 (en) Semiconductor device and manufacturing method thereof
WO2022145097A1 (ja) パワー半導体装置
WO2024004266A1 (ja) 電力変換装置
WO2024004259A1 (ja) 電力変換装置
WO2023210099A1 (ja) パワーモジュール、及び電力変換装置
WO2023210098A1 (ja) 電力変換装置
JP7343026B1 (ja) 電力変換装置
WO2023032060A1 (ja) 電力変換装置
WO2023286479A1 (ja) 電力変換装置
US20230396183A1 (en) Power conversion device
JP7345621B2 (ja) 電力変換装置および電力変換装置の製造方法
US20230282589A1 (en) Substrate for power module and method of producing substrate for power module
WO2023243238A1 (ja) 電力変換装置
WO2021015050A1 (ja) 電気回路装置
CN118176656A (zh) 功率模块
CN112152471A (zh) 用于电源装置的集成功率单元
JP2023112990A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830723

Country of ref document: EP

Kind code of ref document: A1